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:i~i :: Preface "

The purpose of this thesis was to develop and evaluate the

performance of a run time math library for those architectures conforming

to MIL-STD-1750A, and is intended to serve as a benchmark for future

contractor development. The routines implemented include all circular

trigonometric functions and their inverses. Appendix A contains the

descriptions of pseudo-operations I've used in explaining the design of

these functions, and will prove useful to you as you try to follow my

logic.

In developing and doing the performance evaluation of the math

library, and in learning how to use the different support tools and

hardware, I have had a great deal of help from others. In that respect I am

deeply indebted to my thesis advisor, Dr. Panna Nagarsenker, for her

continuing patience and assistance during those times of confusion and

near panic. I am also indebted to Mr. Bobby Evans and Mr. Dale Lange, from

the sponsoring organization, for all the help that they gave me in getting

all the equipment and outside information that I needed. A special thanks

also goes out to my friend Heidi for all her support and patience.

Steven A. Hotchkiss

• . ° .
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This project produced a run-time math library for the MIL-STD-1750A

embedded computer architectures. The math library consists of the

,A circular trigonometric functions and their inverses. In addition, the steps

required for the performance analysis of the math library have been

outlined.

Several approximation methods were investigated, but the Chebyshef

Economization of the Maclaurin series polynomials, and rational

approximations derived from the second algorithm of Remes were

determined to be the best available. Each functions implementation was

:' designed to take advantage of features of MIL-STD-1750A architectures.

The recommended test procedures will provide measures of the average

and worst case generated errors within each approximation.

Ix
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1.~~: Inroucio

Bacntrdutround:::'

The Air Force has a vested interest in reducing the life-cycle costs

of its avionics weapon systems. Standardization of high order languages

and an Instruction Set Architecture (ISA) is one way the Air Force feels

it can reduce these costs. In the past, a major cost contributor was the

proliferation of unique avionics systems and subsystems. Costs increased

with respect to: purchasing and inventorying small-lot spares at many

bases; training technicians to maintain complex and/or unique flight and

test equipment; developing and maintaining software development

facilities; training programmers to write application programs in seldom

6used high order languages; and in training programmers to maintain

software (especially operating systems) in seldom used machine

-v languages. (: 8.1)

MIL-STD-1750A defines a standard 16-bit instruction set

architecture intended primarily for avionics weapon systems. The major

cost advantage of this standard ISA will come in the form of common

support software tools. An extensive set of support software tools has

already been developed and includes: a 1750A assembler/crossassembler;

a J73 compiler with 1750A ISA code generator; linker/loader programs;

and a 1750A acceptance test program (1: 8.4). Other cost benefits will be

realized through the independent development of software and hardware,

(2: 1) and common maintenance and test equipment. (3:168)

Standardization of languages will also have an impact on cost
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C: -:- reduction. *In 1978 the Department of Defense had in its inventory,

software written in about 150 different programming languages. This

Slinguistic proliferation increased maintenance problems due to

programmer training requirements and lack of support tools for many of

the languages". (1:6.1) The D.O.D. and Air Force recognized this as a

problem, and they took steps to correct it. D.O.D. Instruction 5000.31,

"Interim List of D.O.D. Approved High Order Programming Languages",.

states that only approved languages may be used for new defense system

software. JOVIAL is one of the languages approved by this instruction.

As previously mentioned, the development of a standard ISA such as

MIL-STD-1750A will help reduce total life-cycle costs of Air Force

avionics weapon systems. This reduction will come partially through the

6. Iuse of common support software tools, many which have already been

developed. It was also mentioned that one of the support software tools

already developed includes a JOVIAL compiler that generates 1750A ISA

code; however, a math library containing all the algebraic and

trigonometric functions required by these languages has not been

developed. The sponsor for this thesis is the Aeronautics System Division,

Language Control Branch. They are the D.O.D. JOVIAL and ADA compiler

validation site, and are responsible for the development of such libraries.

Completion of this thesis will help the Air Force reduce avionics weapon

systems cost through the development of a math library for software

support of all 1750A systems.

2



At the time of this writing there are no math libraries written that

take advantage of the I 750A instruction set. In keeping with the intent of

recent standardization policies of both the D.O.D and Air Force, the library

* provided is written in the D.OD approved language JOVIAL. The coding of

the library was only a small effort of this thesis. Most of the detail has I
* gone into verification ,validation, and performance evaluation of the

product. Inasmuch, the focus of this report is divided into two primary

categories; software development and software testing.

Math libraries are important because they provide the programmer

several tools that serve as building blocks for applications. Math libraries

prevent programmers from having to reinvent the wheel each time a

function is needed. Libraries also provide a means for using functions

that take full advantage of a particular computer architecture computer

architecture.

The design of a procedure for computing the value of functions is not
mathematically complete in itself. An understanding of a computer

architecture's operation is necessary to insure that the computation of

any given function is as efficient as possible, while also providing the
highest degree of accuracy. Such architectural considerations include:

word size; number of bits in both the exponent and coef ficient fields of a
floating point number, the number or integer and fraction bits in

fixed-point numbers, the way mathematical operations are performed byr

the architecture, memory size of the architecture, and execution time.

Other considerations include overflow, underf low, and precision. These

3
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- -- considerations for the functions define the problem addressed by this

thesis effort.

Scope
L ,

This effort was limited to the design, code, and performance

evaluation of the circular and inverse circular trigonometric functions.

The functions were included in a math library targeted for MIL-STD-1750A

computer architectures, and are the ones typically found in most FORTRAN

libraries. Specifically, these functions include: sine (sin), cosine (cos),

tangent (tan), cotangent (cot), arcsine (asin), arccosine (acos), and

arctangent (atan and atan2).

All functions have been written to either accept and return double

precision fixed-point values, or to accept and return extended precision

floating-point values. Floating-point functions are distinguished from the

fixed-point functions by the name used to invoke them. All floating-point

functions have an "f" concatenated to the end of them; otherwise, they

have the same names as those used by the fixed-point functions. For

example: the fixed-point sine function is invoked by using the name "sin",

and the floating-point sine function is invoked by using the name "sinf".

Also provided are performance summaries for each of the functions,

and algorithms that may be used to determine the polynomial coefficients ..

for computing any of functions addressed by this paper. These algorithms

can be found in Appendix A, and produce coefficients that are valid for any

nonvector architecture.

4
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Assu tions..

During a design review held in May of 1985, it was made clear that

certain events could cause overflow errors and underflow errors, and

division by zero. Since the functions are to be used within an embedded

avionics weapon system, it is necessary that such conditions are detected :. %.-

and handled gracefully. The consensus of opinion from all participants of

the design review was, that the functions should not be aborted, and that

default values should be returned. The error conditions and values returned

are discussed in the individual design sections of this thesis. This

constitutes an important assumption on how to handle such error

conditions, and bears further investigation before implementing on a

real-time system.

Another factor discussed during the design review was, that there is

a need for both fixed-point and floating-point functions. Floating-point

functions are more precise than fixed-point algorithms, but take longer to

execute. Conversely, fixed-point functions don't have the precision, but are

much faster. In addition, it was mentioned that many avionics applications

also use what is termed as pi-radians. Pi-radians are angular units of

measure expressed in terms of multiples of pi, and are equal to radian

measures divided by pi. For example: 1800 is equivalent to 3.141596

radians, or 1.0 pi-radian. If the algorithms use pi-radian measure rather

than radian measure, there is no need for overflow conditzon checks, and

therefore, a significant amount of work is eliminated from the domain

reduction computations.

5
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As stated earlier, algorithms for both fixed-point and floating-point

type functions have been written. Because of time limitations, both
methods of unit measure could not be implemented, and only the

fixed-point algorithms use the pi-radian metric. The assumption is that if

the need arises, this thesis can serve as a guide for implementing both .

function types in either unit of measure. ]
General Aooroach:-

The approach used during this thesis effort, is termed the A
"logicalized" model of a software system development cycle. This approach

was considered a better alternative to the more commonly used
"waterfall" method of software system development. The waterfall

consists of the apparently neat, concise and logical ordering of a series of

steps that must be accomplished to obtain a final software product. These

steps are performed in order and include: systems analysis, requirements

definition, preliminary design, detailed design, coding, testing, and

implementation.

The logicalized model is similar to the waterfall model just

described, but is more concerned with the problem definition side of the

cycle (see figure 1). This approach makes it more useful for eliminating

errors that are typically occur during the waterfall's requirements

definition and design phases. Errors generated during these phases of the

waterfall model typically occur because designers have a tendency to shift

between (abstract) high-level design issues and (physical) implementation

considerations . Thayer (5: 335-41) and Boehm et al.

6
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* . PHASE INPUT TASK OUTPUT

ANALYSIS Interviews, Model problem Abstract model IL
ranaom data, and implied of implied
and so on solution solution--

DESIGN Abstract model of Model an Abstract model
implied solution implementable of implementable
and environmental solution solution
constraints

CODE Abstract model of Implement Executable "
an implementable solution solution
solution

Table 1 Information Flow of the Logicalized Software
Development Cycle -.

(6: 125-33) made it clear that these problems existed , and made the

point that design errors not only outnumbered other errors, but that they

were also more persistent. For that reason, more attention was given to

the top-down decomposition and abstract (logical) modeling of this

particular software system. Such a structured approach recommends a

dichotomy between the logical design issues, and implementation issues.

The information flow of a logicalized model is summarized in Table

1, and is "analogous to an artist's conception of a building: There is

enough information to allow the customer and designer to communicate

and to establish the buildings pluses and minuses, but not enough detail to

begin construction. A series of reviews, refinements, and the imposition

. . ........................................... ......................
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of local building ordinances for example, are necessary before that

construction can start." (7: 14)

Therefore, the approach taken for this project was similar to that

just described. The ASD/Language Control Branch established the

* requirements for a MIL-STD-1750A run-time math library written in the

D.O.D approved high-order language JOVIAL. During a des-ign review and

several other meetings, certain design considerations were refined. From

there, a "logical"M model was established as a baseline. This was

accomplished by using the refined problem statement, and researching the

* different methods for approximating the different trigonometric functions.

The baseline model served as a reference from which all decisions

regarding actual implementation could be made. Before preceding to the

next phase of development two such decisions had to be made. These

decisions were to determine which testing methods and which

perfor'mance evaluation techniques would be used after coding was

complete. These decisions determined what sort of tests would catch all

* possible errors, and determined what techniques could be used to establish

* a confidence level for the final product.

Up until this point, the abstract model has been devoid of any

implementation considerations. However, after it was clear that the

abstract design was complete and consistent with the requirements, it

became necessary to consider changes to fit the problem into the

MIL-STD-1750A environment. Before any changes could be made, it was

necessary to complete the following steps: study the architecture and ISA

*defined by MIL-STD-1750A; determine what resources were available,

such as software support tools and hardware; and then to learn how to use

9
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~ :~.;:the available resources. From there, it was possible to develop an abstract

model of an implementable solution. This model took advantage of those

*environmental factors that affected the speed and accuracy of computation Q

* for each function approximation.

The major subset of the logicalized software engineering

* methodology just described is called structured programming. Structured

- programming can be understood as the decomposition of a problem in order

to establish a manageable problem structure. The highest conceptual level

* represents a general description of the problem, and each level of

decomposition provides more detail into the problem. This decomposition

is carried out until the problem is almost in coded form, and is often

called a stepwise refinement of the problem. All implementation

considerations are left until the lowest levels of refinement.

The goals of structured programming must be: to minimize the
..

the effort required to correct errors in sections of code found to be '-

* deficient; upgrading sections when more reliable, functional, or efficient

* techniques are discovered; and to minimize the life-cycle costs of the

software. (8:32) In addition it must reduce the complexity of the problem.

Structured flowcharting is a technique used to support these

* structured programming concepts and goals, and is "designed to reduce

* labels and unstructured branching, encourage a single entry/single exit

approach, aid in the use of top-down design techniques, and enhance

modularization. The approach encourages the designer to conceive of the

system in high-level constructs and not in terms of individual detailed

statements."M (7:116) The structured flowcharting technique was used

10



throughout the development of this project, not only because of the

aforementioned reasons, but also for its simplicity and understandability

:'2 .*

from a reviewer standpoint.

IL

* Seauence of Presentation

This thesis addresses the the design and performance evaluation of a

run-time math library that is targeted to MIlL-STD-1750A architectures.

The requirements definition for this problem has already been discussed

development of this thesis effort (Chapter 2). In particular, abstract

odesign considerations for each of the implemented functions is discussed.

The next area for discussion is the detailed design considerations that

were made during implementation of the library functions (Chapter 3). The

last aspects covered in this report are the test and performance

evaluation methods used.

Appendices include algorithms usefulI f or determining the

coefficients of each of the functions (appendix E), pseudo-code operations

used in the structured flowcharts (Appendix A), source listings for the

implemented functions (Appendix B), support software developed in
conjunction with this thesis (Appendix C), and the VAX VMS command files

required to compile link and run the developed product (Appendix D).

(CatrK-PolmSoe.Tenx opcdsusdi h hoeia --.

deelpmntofths heisefor (hate 2. n aricla, bsrat 11i-
-. . . . . . . .. . . . . . . . . . . . .



11. Theoretil Develop ent,I .. - -

Genral Discussion--

The purpose of this thesis was to create and analyze trigonometric

functions developed for 1750A architectures. This chapter is concerned

with the design theory of the algorithms used to approximate those

functions. Within the given constraints, the emphasis for each of the

designs is to compute results as quickly and as accurately as possible.

One way of computing a value quickly is to select an approximation

that converges rapidly towards the value of the true function, f(%). There

t  were several methods of approximation that were considered; however, the

polynomial and relational approximations described by Cody and Waite

(4: 17-84) were found to be the best. The coefficients given by Cody and

Waite were derived by using Chebyshev Economization of the Taylor series

for each function for the approximation itself, or as a starting point for

computing a rational approximation via the second algorithm of Remes.

An excellent reference for Cnebyshev Economization is Conte and de Boor

(9: 265-273), and an excellent reference for the second algorithm of

Remes is Ralston. (10: 301-306)

Another means of reducing the amount of processing time required to

compute a result is to take advantage of certain aspects of the computer's

architecture, as well as the different execution times for different

1instructions within the ISA. For example, incrementing the exponent field

of a floating-point value is not only faster, but more accurate than the

12
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equivalent operation of multiplying by two, or examining the sign bit of a

variable is faster than comparing the entire value to zero. These

techniques have been used, and are referenced in the design descriptions

as pseudo-operations. These operations are equivalent to those described

by Cody and Waite (4: 9), and are listed in Appendix A.

The accuracy of an approximation may be dependent upon the domain

over which the function is approximated. For example, if the domain of an t.,
approximation is halved, the error may be reduced by a factor of about

2"( + 1) for all polynomials of degree n. ( 1: 59) This can be shown to be

true for most functions, but not all of them. Domain reduction has no

effect on accuracy in approximations of certain functions; however, it

still serves as an excellent guide when designing an application. This is

p i_..e due to the way computer architectures perform operations and store L

mathematical values for floating-point numbers. The most significant

bits of a number are always maintained, and since only a finite number of

bits are available to represent the value, it is possible that bits from a L

fractional representation may be lost during operations on large numbers.

Fortunately, the trigonometric functions lend themselves to domain

reduction through the properties of periodicity, symmetry, and

antisymmetry. This allows function arguments to be reduced so that a

more accurate approximation may be calculated than what is possible

without argument reduction. How these properties are actually used in

domain reduction depends on the function, and are described in the

following subsections.

. ... . -
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~~~ADproximation Techniaues Z -

The rlIL-STD-1750A ISA doesn't call for the implementation of the

* elementary functions as standard instruction operators, so it is necessary

. to design software routines of optimum efficiency to replace them. The

word "optimum" could be given a variety of precise definitions, but k

presumably it refers to an average execution time and storage space.

* Unfortunately, there is no known way to derive or prove such an "optimal"

design. For these reasons, the search for the appropriate approximation

technique was limited to polynomial and rational approximations.

Some of the most popular methods of approximation used are called
Chebyshev approximations. Chebyshev approximations are often referred

to as "minimax" approximations because they are used to minimize the

maximum "error" between the true function J(%), and the approximation

of f(%). However, these methods of approximation are not without their

problems, and there is a price, even though it is small one, to be paid for

using them. For example, the sum-of-squares of the errors in a Chebyshev F

approximation will be higher than if a least-squares method of

approximation is used. However, since Chebyshev approximations assure

* that an error is never greater than a given amount, they were selected by

this study.

EPoUnomiFal. The first class of approximations discussed are

polynomials, and are the simplest of all the classes of approximations

"- considered. The most important subclass of the polynomials is the class

14



-T (Chebyshev), and are polynomials not exceeding degree n. The

Chebyshev polynomials are especially important, and gave rise to the

general concept of Chebyshev "approximations" discussed in the preceding

paragraph.

The motivation for using Chebyshev polynomials over all other

polynomials is their property of least maximum error, and their error

behavior over the entire interval of the approximated function. Through

the use of Theorem 1, the Alternation Theorem given below, Chebyshev

was able to prove for all the polynomials of degree n with a leading

coefficient of 1, that the Chebyshev polynomial divided by 2 -' has the

least maximum error in the interval [-1,11. In other words, no other

polynomial of the type mentioned will have a smaller error than

,(x)/2f'-'. In order for a polynomial Pa(x) to be considered a Chebyshev [,

approximation of the function f(.), the theorem requires that the

maximum discrepancy between j(%) and P (-) occur with alternating

signs at n+2 points over the interval [-1,11.

Alternation Theorem: The polynomial P. of degree n that (1) L.

best approximates f is characterized by the existence of at

least n+2 "points of alternation"

The other motivation for the use of Chebyshev polynomials is that

its generated errors are more well behaved than the errors generated by

other polynomials. For example, approximations, based on the Maclaurin r

series whose ir,.erval includes zero, have errors that are very nonuniform

15



-- small near the middle, but very large at the end points. It is more

desirable to use an approximation whose behavior is more uniform instead

of powers of . Since, as stated in Theorem 1, the Chebyshev

polynomials spread the error over the entire interval, they provide this

more desirable behavior.

Definition of th Chebyshev .oluoial. The Chebyshev polynomials

form an orthogonal set, and are defined by the following equation.

= () cos (ne) e -arccos (,) (I)
n = 1, 2....

From elementary trigonometry, cos(ne) is a polynomial of degree

n in cos(e), and cos(arccos(x)) x; therefore, it follows that the

Chebyshev polynomials defined by TA(x) = cos(n arccos(,x)) are

polynomials of degree n.

By substituting arccos(x) for 8 and T,(x) for cos(narccos(x.))

in the identity function shown in equation (2), the recurrence relation

defined in (3) is formed.

cos ((n + 1)8) + cos ((n - 1)G) = 2 cos (e) cos (ne) (2)

T =0 2X Tr.(%~) - (X) (3)

Let 1 and T= , then from the recurrence relation r

defined in (3), successive polynomials of greater degree can be generated

as in column A of Table 2.

16
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Table -2 (A) Chebyshev Polynomials; (B ) Powers of Chebyshev Polynomials ,--

I .

By using the results in column A,1 of Table 2, the powers of the "

Chebyshev polynomials can be found. That is, it is possible to express the

powers of in terms of T, An example of the powers of r are :::

l._eshown in Table 2 column 1 Appendix E contains an algorithm that

generates both the Chebyshev polynomials, and their powers..--
Chebyshev c0iT.to. As already mentioned, the Maclaurin".".

series can be used to approximate many functions. In addition to the ...

disadvantages that have already been mentioned for using this series as an :-

approximation, the Maclaurin series also converges very slowly. That is, i':

it takes several multiplications and additions to obtain a desired -

accuracy. One way of obtaining a lower degree polynomial, and still...
maintain the desired accuracy, is to use a technique that is called ::

"telescoping" or uChebyshev Economization". In other words, the '

polynomial can be expressed in a manner similar to that shown in (4). .::

P.(,x) =do~o(,%) +.. + d.T.()-:-

17-.
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To compute the economized polynomial approximation to the function

, (7 ) of absolute accuracy c on the interval [-1, 11, use the following

procedure as outlined by Conte et.al. (9: 271-272)

Step 1. Get a power series expansion for f(,) valid on -I 1;

typically, calculate the Maclaurin or Taylor series expansion for J(".)

around 0. L.,

Step 2. Truncate the power series to obtain a polynomial as in (5),

which approximates f(v.) on [-1, 11 within an error c, where , is

smaller than c, and c. is defined as in (6). The result of c. is the

maximum absolute value, within the interval [-1, 1l, of the product of

the first truncated coefficient, % to the power of n + 1, and the n * I

derivative of the function J(.).

P,,(%) a, ,xato  (5)""

¢,=R,,(x) =an+ , 1 ( (, (6) i.

Step 3. By making use of a table similar to that shown in Table 2

column IS, expand the polynomial Pn(%) into a Chebyshev series as

defined in (4). In other words, substitute the far right-hand-side of the

equations in Table 2 column 1, with the appropriate powers of ,

18,



contained in the polynomial formed by Step 2 of this algorithm. The

result is similar to that shown in (7), but of a greater degree.

Step 4. Retain the first k + 1 terms in this series, i.e. find

equation (7), choosing k as the smallest possible integer such that

equation (8) holds true.

P k() do-ro(%) + + dT(7)

a+* d+a K...+dD (8)

Step 5. Convert the result of Step 4 into a power series polynomial

similar to (5), by making use of a table similar to that in Table 2 column

A. In other words, substitute the right-hand-side values of Table 2

column A., into the equation formed by Step 4. Simplify the result.

Rational, Aroximations. In most instances, rational approximations

will generate a least maximum error that is as small or smaller than a

Chebyshev polynomial, and will also cost less in terms of the number of

multiplications and additions required to compute them. Therefore, they

deserved attention in this study.

As stated earlier, the approximation techniques considered by this

thesis are classified as Chebyshev approximations. These methods,

through their exploitation of Theorem 1, provide approximations whose

maximum error is less than those generated by other techniques. There

19



W, m,,' ".

COft.....

apx.m R [a bX

and the members of

the sequence

11A Calculate the economiZed
approximation
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the initial approximation

F ig u re2 Calculation of Pemes Rational Approxim'Orations.
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" .are several algorithms that generate rational approximations that can be

considered Chebyshev approximations; however, the ones that generate the

most uniform approximations are those generated by the second algorithm

of Remes. This algorithm is easily automated, and is described in detail

by the following subsection.

Ih Scond Algorithm QL Reme.g The method used in this

description is similar to that outlined by Ralston (10: 301-305), and is

summarized in Figure 2.

Let J(') be a continuous function that is to be approximated over the

the interval [a, b), and let the interval include the point 0.0 "

Furthermore, let (9) equal the error of any rational approximation of the

form shown in (10).

a,'

r = max I J() - Rmk(x) I (9)

21
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Step 1 of the algorithm names the input required for this algorithm.

The input value f,)is the function being approximated. If the algorithm

is being run on a machine with higher precision than the error for which

the function is being approximated, then the built-in functions of the

machine can be used for I~) f the machine that the algorithm is to run

on is of the same precision for which the approximation is to be made,

then a reasonable substitute, such as a truncated power series that is of

equal or greater precision than what is being approximated, can be used.

The other inputs include: m, k, [a. b), and CO. ... C1. The values

m, and k represent the degree of the polynomials found in the

numerator and denominator, respectively. The interval fa, b Iis the

interval for which the approximation is valid, and should include the point

* zero, as it will allow the coefficient b., of the denominator, to always

be one. The values C. . . . C, represent the first N + 1 coef ficients of

* the power series polynomial that is being converted to a rational

approximation. The value N represents the sum of the degree of the

polynomials used in the numerator and the denominator (m +~ k).

The second step of the algorithm is to compute a series of Pade

approximations and their error coefficients. The Pade approximations are

of the f orm depicted in ( 1) with the restrictions that 0 i m and

0 Kj - i k. For example, the sequence of Pade approximations computed

f for an R 2 approximation would only include R(10 ,00(-x), R(1)1.0(,-),

* *R(
2) I'~, R(321(-x), and R(),2-) The error of the approximations is

* equal to the first power of ntruncated from the power series, multiplied

22
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by the error coefficients shown in (12). The error calculations used would

only include: d 0,0)1, d( 10)2 , dP1 ), d(2 1 )4, and d 22).

Ri0, =O .. ,N - 1 011)

d L C b ':12)

The coefficients for each of the sequence of Pade approximations are

computed using (13) and (14). Equation (13) forms a set of m linear

equations, which when solved, determines the value of the coefficients

SI used in the denominator. Those values can then be directly substituted

into the set of equations formed by (14), and will determine the value of

the coefficients for the numerator.

- b==00,1. N -r-I (10) 1.
C-a -- i 0 b )

b , ,0, 1, *M (14)

23
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the Chebyshev polynomial Ti.1. This polynomial can be determined by

using equation (3) of the previous subsection. Once the coefficients of -

T are found, then the values y from (15) can be directly substituted

into (16), and thus solve C(-x). The value t, in (15) is the coefficient

for Ul in TN+1 (u). The rational approximation must also be normalized,

that is, the numerator and denominator must be divided by be, such that

b will remain equal to i.

-d?+Mk) t12 N  =0, N - 1 (15)

= N+ i tj+l'

(0-1 ?N).x i

p (.x) + z Pi( + (16)
= **-O 1 "-"Li

Q1, (x) + "-. v(x ')

The final step of the Remes algorithm is an iterative one. Now that

the initial approximation to the function has been found, it becomes

necessary to find the N + 2 points of alternation. This can be done

through interpolation, or by dividing the interval into several small pieces

and solving for each point on a division. This method works, and all that

is necessary is a little bookkeeping to maintain a list of the N + 2

24
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.""points of alternation. This step consists of the following three

procedures. .

Procedure 1. Solve the system of N + 2 equations for the N + 2

unknowns ao (06 0), b (0) . bk (o) , and E(o) as shown in

expression (17). Note that YO) is the magnitude of error in the

approximation at each of the points ,1o) , and for the first iteration

ip can be assumed to be 0.

In th negboho of eah ' X(, thr is aX pon -x(' at whc h,

0) __ _ _ __ _ _ I)'E ( '

ft

b~~~i,il° .-.

p Procedure 2. Find (h0() as shown im (18). The function ho( ) then

at o Replace each rform) bp the corresponding of(l) I , the
~~~point at which h0(x) has its maximum magnitude, is one of" the points:::

, ./ ) , do not perform procedure 3. If not, replace one of the points .(1) ..'."

by -x: in such a way that h,(%) still alternates in sign on the points

25
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Procedure 3. Repeat procedures 1 and 2 using ,o(1)

from (17). This process generates a sequence of rational approximations

which will converge to an optimum if the initial extrema were

suf ficiently close.

DeinCons iderat ions

I nin X Cos. Close examination of figures 3a and 3b reveals a L
relationship that can be used to reduce the amount of storage space

required by the routines that compute the values of these two functions.

The relationship is expressed in (19). Therefore, by adjusting the argument

that is passed to the Cos function, both it and the Sin function can be

written as short linkages to another procedure that performs a majority

of the calculations.

cos (a) =sin ( I + 1T/2) (19)

The three properties discussed in the preceding section, periodicity

symmetry and antisymmetry, are illustrated in figures 3a and 3b . These

26....... *... .... , %
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o

properties are exploited to reduce an argument to within the

*smallest possible domain of values accurately representing sin(c ) or-.

cos~x) for all ( . By the periodicity property shown in (20) and displayed .

.. in Figure 3a, it is easy to see that the argument can be reduced

*to within the interval [-2n, 2rT], To compute sin(a) , determine --

I p such that cc = Ip ' 2Tnk , where k is an integer. Then sin(Cx) equals
sin(13). ::

sin (cx)= sin (x +2rr) (20) r;

27
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Examination of Figure 3a also illustrates that sin (a) is

antisymmetric about the point zero-pi. That is, sin(a) equals -sin(-a)

By noting the sign change of the result, this property can be used to

reduce an argument to within the interval [0, 2rr]. The interval (TI,

2nTl in sin(x) is also antisymmetric with respect to the interval [0, it]. r. -T

Therefore, by noting the sign change of this result and the relationship

shown in (21), a can be set to a -Tt The argument is then reduced to

within the interval [O,iT].

sin (a t)= -sin (a) (21)

Lastly, examination of Figure 3a also illustrates that sin(a) is

* **symmetric about the point nt/2. As shown in (22), the argument a can be

reduced to within the interval [0, iT/2], by setting a to tr-a .

sin (a 7 t/2) sin (iT/2 - a) (22)

TIan and o.. As with the sin and cos functions, close examination of

the graphs for Tan and Cot (figures 4a and 4b) reveal a relationship that

can be used to reduce the amount of storage space required to implement

both functions. The relationship is expressed in equation (23). Therefore, r

by flagging which routine was originally called,-both routines can serve as

28
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short linkages to another procedure that performs a majority of the .

calculations.

cot (a)= 1 / tan (a) (23)

The properties of periodicity and antisymmetry are also illustrated

in figures 4a and 4b. These properties are exploited to reduce an argument

to within the smallest possible domain of values accurately repre-

senting tan(a) . By the property of periodicity shown in (24) and displayed

in Figure 4a, it is easy to see that the argument a can be reduced to

within the interval [-/2, i/2]. To compute tan(a), simply determine

Ssuch that a =p+ Wrk ,where k ii an integer. Then tan(a) equals

tan(p).

tan (a) = tan (a + T) (24)

Examination of Figure 4a also illustrates that tan(a) is

antisymmetric about the point zero-pi. That is, tan(a) equals tan(-a) . By

noting the sign change of the result, this property can be used to reduce

the argument to within the interval [0, T/2].

Knowledge of plane trigonometry will allow reduction of the

argument to within an even smaller interval. Let a be any angle whose
". vertex is at the origin of a rectangular Cartesian coordinate system. Also,

30



iIr

let P(xj) be any point on that angle. The variable . is measured

along the horizontal axis, and y is measured along the vertical axis. Then

the function tan(a) is defined as y/n . From this, it can be shown

that for any angle within the interval [7T/4, it/21, equation 25 holds

true.

Therefore, by setting a to i/2 - oc and returning the reciprocal of

tan(o), the angle a can effectively be reduced to lie within the interval

[0, 7r/4]."

tan (a) 1 /tan (nr/2 - a) (25)

ID Asin and A=. The equation [3 sin(Ca) determines an infinite

number of real values for P within the interval [-. I]. Therefore, the

inverse, a = sin-(p), has many possible solutions. However, for sin-'(p)

to be a true function, there there is the restriction of one a for every I.

value p . For this reason, it is necessary to pick a range of principal

values that will satisfy this restriction. Figure 5 depicts the range of

principle values defined for this function, and is the interval [-Tr/2, it/21.

Careful examination of Figure 5 reveals a relationship that can be

used to reduce the amount of storage space required by the routines that

compute the values of these functions. The relationship is expressed in L-.

(26). From the range of values defined for sin-(a) (see Figure 5), and

the relationship defined in (26); the the range of values over which

cos-'(a) is defined includes [0, 7]. By adjusting the results that are -

computed in

31
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Fiqure 5 Graph of the Inverses of Sine and Cosine

a separate procedure, both Asin and Acos can serve as short linkages to

* that procedure.

Cos-' (a) =ir/2 - sirf- (a) (26)

By restricting the argument of the functions to the interval [0, .51,
the identity function shown in (27) can also be used. Note that by solving

for sirea a) in equation (26) and substituting the result into the

left-hand-side of (27) ,we come up with the definition for cos-,(()

shown in (28).

-- 7
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Figure 6 Graph of the Inverse of Tangent

sin-' (a) Tr/2 - 2 sin-' vr'I(1/2 (27)

Cos-' (a) 2 sin-' -1(1-a)/2 (28)

.:.

Atn The equation p=tan(ca) determines an infinite number of

*real values for pwithin the interval [11 Therefore, the inverse,

a tan-() has many possible solutions. However for tan-'(P) to be

a true function, there can only be one a for every value P. For this

reason, it is necessary to pick a range of principal values that will

satisfy this restriction. Figure 6 depicts the range of principal values

defined for this function, and is the interval [-Tr/4, ~T/4]

*Examination of Figure 6 illustrates that tan-t(ca) is antisymmetric

abou t the point zero. That is, tan'1(c) =-tan-'(-a) .By noting the sign

33
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.*'. "-change of the result, this property can be used to reduce an argument to ,-.

within the interval [0, c1.

In a manner similar to the reduction method described in equation

(24) of the tangent subsection, the argument can be reduced to within the

interval [0,11 . The identity function depicted in (29) is valid for those

arguments greater than or equal to one. This same identity function can

be used to reduce the argument to within the interval [0, 7r/41 . This is .

performed by subtracting from it/2 , the arctangent of the inverse for the

reduced argument.

Atan(ax) = T12 - Atan(1/a) (29)

a'-'

The final range reduction reduces the argument to within the interval L.
[0, 2 - -1/3- . This is done by making use of the identity functions shown

in equations (30) and (31).
L

(a ;3 ( -- II M - a ) (30) '-.

Atan a) =T/6+ Atan(p) (31)

34
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- Ill. Development a D of th Functions"

:..; General D iscussion

This chapter deals with the detailed design of each of the specific

functions. As was stated earlier, two type representations have been

designed and implemented. Therefore, each of the following sections

contain a discussion on the design of each function's fixed-point and

floating-point implementation.

Each design has an associated structured flowchart, and each box

within the flowchart has been numbered for ease of reference.

Pseudo-operations are used throughout each of the flowcharts, and

includes those defined by Cody and Waite (4: 9-10). Furthermore, a few

additional pseudo-operations have been introduced. (see Appendix A)

Although the approximation methods used are those suggested by Cody

and Waite, the actual design implementations are significantly different.

The designs proposed by Cody and Waite are guidelines for a broad class of

computer, and weren't specifically targeted towards a 1750A architecture.

Therefore, the designs have been tailored somewhat. In addition,

fixed-point algorithms were designed to be invoked with arguments

expressed in pi-radian measure. This metric was discussed in the

-Assumptions" section of chapter one.

The coefficients for each of the functions were either taken from

Cody and Waite, or are modifications of those provided by Cody and Waite.

These modifications are discussed in their appropriate subsection.
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Fixed-Point. In Chapter two, it was noted that the identity function

for "Cos", equation (19), could be used to design a procedure that will

compute the values for both the sine and cosine functions. Indeed, if one

looks at Figure 3, this concept can be verified. For example: examine the

graph of cosine and note that Cos(-ir) is equivalent to Sin(t-Tr+Tr/2).

Therefore, by adjusting the cosine's argument a , to its absolute value,

plus Tr/2 , one routine can be developed that will compute the values of

both functions.

JOVIAL, the high order language used to implement these functions,

doesn't have the facility for supporting multiple entry points. As a result,

_ doboth "Sin" and "Cos" have been implemented as shown in figures 7a, 7b, and

8. Both functions have their own unique entry points, but both call the

function "SinCos" to compute the desired results.

Note that steps 2, 3, and 4 of Figure 7a, represent the identity

function for "Cos". The fixed-point algorithms use pi-radian measures

(pi-radians = radians/it); therefore, one half is used in lieu of 7T/2.

Since an argument's legal range of values for this fixed-point

implementation is H-I, I1 ; these functions have been defined as having

one sign bit, one integer bit, and 30 fractional bits (-2<7<2). The JOVIAL

compiler will not let programmers invoke this routine with an

incompatible type ; however, it is still possible for "Cos" to generate a

value outside the function's defined range. This could potentially cause

a problem on another machine, but not on a 1750A. Adding .5 -
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pi-radians to the argument whose absolute value (through programmer

error) is already within the interval [1.5, 2), will cause an overflow.

However, the MIL-STD-1750A specifies that fixed-point overflows will

result in the most-significant-bits being lost, and the least significant

retained. This feature of the 1750A architecture is actually a benefit to

this design implementation. The cosine function has a period of 27t

radians (2 in pi-radian measure), and since an overflow causes the result

to be a modulo of the period length, the final result is in its reduced form.

As stated earlier, the legal range of values for these functions is

[-1, 11 In addition to the aforementioned situation, it is possible that an

adjustment to the cosine argument would result in its being outside the

legal interval yet not overflow. No further reduction is performed.

however, as the same potential problem exists in programs that invoke the

"Sin" function. Therefore, any further reductions are handled in "SinCosm.

The variable "Sign" shown in step 8 of the "SinCos" function (Figure

8), is what is used to note the sign changes discussed on pages 26 and 27.

Since the initial step of this algorithm is to reduce the original argument

to within the interval [0, .51 , the approximating polynomial will always

compute a positive result. Therefore, during each phase of the domain

reduction process, it is necessary to keep track of those arguments whose

functional values are, in reality, antisymmetric with the computed result.

The value returned to the calling procedure will be the result of the

polynomial approximation multiplied by the value of "Sign" (±1).

The variable "X" is the argument passed to the "SinCos" function.

Since domain reduction on the argument is required, and since JOVIAL

39
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treats formal parameters as read only, the value of "X" is assigned to "F'.

The variable" F" is used throughout the domain reduction phase. (step 8)

The first step of the domain reduction process is to restrict "F" to

within the interval [0, 2) If 7" is negative, it is antisymmetric with

respect to, its corresponding positive value. Examine Figure 3a and note

that sin(x) equals -sin(-x) ; therefore, the sign change is noted

(Sign - Sign) , and "F" is set to its absolute value. The built-in

function for absolute value was found to give inconsistent results, so the

absolute value is found by: F -F. (steps 9 and 10 of Figure 8)

The second step of the domain reduction phase is to reduce the

argument to within the interval [0,11 Examine Figure 3a, and note that

the interval [1, 2] (in pi-radians) is antisymmetric, with respect to, the

m iinterval [0,11 Again, the sign difference must be noted (Sign = -Sign),

and the argument reduced to: F- 1 - F (steps 11 and 12 of Figure 8)

The final phase of the domain reduction step, places the argument, -
•

"F", within the interval. [0, .51 . This reduction is accomplished by

exploiting the sine function's property of symmetry. Examine Figure 3a

again, and note that the interval (0,11 is symmetric about the point

one-half. That is, sin(0) = sin(l), sin(.2) = sin(.8) .... etc.. Stated

another way, if "F" is greater than .5 ; then sin(F) can be computed using

sin(l-F) . Therefore, "F" is reduced by setting F to I - F. (steps 13 and

14 of Figure 8)

The next step of the algorithm is to compute the result of a

polynomial approximation for sin(F) . This polynomial is a "Chebyshev_"

Economization" of the Maclaurin series for sine. However, if the reduced

argument is so small that its use within the approximation would cause an
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underf low (i.e. "F" is less than some epsilon "eps"), the approximation is

set to 7T*F . In systems using a radian measure -- sin(F) approaches "F"

as "F" approaches zero. Therefore, in systems using pi-radian measure --

sin(F) approaches F*iT as "F' approaches zero. The lower limit is set

to the value that prevents the computation r *FS from underflowing

(r1 is a coefficient from the approximating polynomial). As with an

overflow condition, the 1750A handles underflows without interrupting

software processing, but sets the result to zero. Underflow may not

create a problem, but the check for underflow may eliminate the overhead

associated with computing the polynomial approximation. (steps 15 and

18 of Figure 8)

The coefficients used in this algorithm are modifications of those
I **presented by Cody and Waite (4: 132). The approximation described by Cody

and Waite is similar to the form shown in (32). The "r" values represent

the coefficients of the approximation, and Tte represents the angle being

approximated. These modifications were necessary because the algorithms

of Cody and Waite use arguments expressed in radian measure (i.e. TMe),

rather than pi-radians as in this implementation.

P(Tre) r5 (erO) l + r4(ire) 9  r ( )eT +r ( e) +

rt(re)3 . (iTO) (32)

r
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" .By restructuring (32) into the form of that shown in (33), the new

coefficients can be easily computed. From (32), (33), and the definition

for pi-radians; it can be shown that the new coefficients, r', can

be computed by: r'. r,T . Where "y", is the power of the angle

expressed by the radian metric -- r,(7r)y in (34).

P(iT9) - ITO1 r5 911 T+9 r4 89 T1 'ir3 9? + T r2 95 +

TJ$rl 83  T (33)

A cursory examination of this method of approximation shows, that it

would be very inefficient if the algorithm were coded exactly as shown

(32 or 33). This problem is eliminated by making use of "Homer's Rule". If

"G" is set to the value "F2" , the polynomial can be computed as shown in

(34) and (35). (steps 16 and 17 of Figure 8)

result - ((((((r 5 G + r4) G + r$) G + r,) G + r,) G (34)

result - result T + iT (35)

This last method of approximation requires eight multiplications and

five additions; as compared to the five multiplications, five additions, and

five powers shown in (32). The significant difference in the number of

arithmetic operations, will also prevent the loss of precision that

accompanies the computation of the individual powers of "F".
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r -Cody & Waite Power of .TI new r'

r1  -0.16666_66560_.883 E+0 - 1.64493-40611-_400 E+0

r2  0.83333-30720-556 E-2 11 0.81174-21707-751 E+O

-r3  0.19840-83282-313 E-3 -0.19074-76226-769 E+0

r4  0.27523-97106-775 E-5 I 8  0.0261 1-62053-162 E+0

r -0.23868-34640-601 E-7 1110 -2.23522-40374-060 E-3

Table 3 oefficients for Polynomial approximation to Sin

The coefficients for this method of approximation were determined

from the relationship, r. - rpl , and the powers of it implicit to (34).

The new values were computed using the coefficients given by Cody and

Waite, the value of pi in (36), and a machine of higher precision than that

of the 1750A. The new coefficients are shown in Table 3.

pL
pi 3.14159-26535-90 (36)

ioai- Point. The method used in approximating the floating-point

sine and cosine functions, is very similar to that just described. So, there

will be references to the discussions of the preceding subsection. The

major difference between the previous algorithm and this one is, that this

algorithm accepts arguments expressed in the conventional radian

measure.
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Even though these algorithms accept arguments of radian measure,

they are still quite different from the algorithms described by Cody and

Waite. Their algorithm converts the argument to pi-radians,

44
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generated through the use of guard digits within the architecture.

Therefore, since the argument has to be converted to p1-radians anyway, the ;

new design leaves it in that unit of measure throughout the procedure. "i:

As was discussed in the previous subsection, JOVIAL cannot support

multiple entry points, and as a consequence, both "sinf" and "Cosf" are "

little more than linkages to the routine "SinCosf" (see Figure 9). .-

46
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. -.-.: Note the naming convention used for these functions. They are

distinguished from their fixed-point counterparts by the letter "f" at the

end of their name. This convention is used for all functions implemented

as a result of this thesis, and will not be elaborated elsewhere.

Prior to invoking the function "SinCosf", both "Sinf" and "Cosf" must

perform a limit check on their passed argument. This step is necessary to

insure a good approximation for large arguments. Due to the way floating-

point values are stored, least significant bits are lost as numbers become

larger. It is possible for a number to be so large, that it is no longer

representable as a reasonable multiple of pi. Therefore, the maximum

limit used in these algorithms is similar to that recommended by Cody

and Waite (4: 134). The maximum size an argument can take is, the -

integer value Tf* 2t/2 (where "t" is the number of non-sign bits of the

floating-point coefficient). If the argument is greater than the maximum

limit, each of the respective functions will return a value of zero. This is

an area in need of further analysis, and should lead to an acceptable 1
method for handling exceptions within this avionics weapon systems.

(steps 1 and 2 of figures 9a and 9b)

Before "Cosf" can invoke the function "Sincosf", it must make use of

the identity function described in equation (19). Since the floating-point

argument is still in radian measure at this point, 1/2 is added to the

absolute value of the variable "'. (steps 3 - 5)

The first step of the "SinCosf" function is to initialize the variables

that will be used during the domain reduction phases. The working variable

F", will contain the eventual reduced argument. Dividing "F" by 11

initializes it to a multiple of pi-radians. In the actual implementation, "F"

47
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N . is multiplied by the constant in (3?) rather than divided by 11 This t
* method is preferred, because multiplications are more efficient than

division in most architectures. (step 7 Figure 10a)

I /T( 0.31830-9861-8.38 (3?) U.

The variable "Y", initialized in step 7, will be used to find the

integer portion of "F". Since JOVIAL doesn't include the built-in function

"INT" f or extracting the integer portion of a floating-point number, other -

features of the language are used to perform the equivalent action. This

method is discussed in Appendix A; however, at this point the variable

must be initialized to zero.

As in the fixed-point algorithm described in the preceding subsection,

it is necessary to note any reduction process that has an affect on the

sign of the final result. Therefore, the "Sign" flag must be initialized to

one. (step 8 Figure b0a)

The first phase of range reduction, is to reduce the argument to

within the range of all positive multiples pi. If "F" is negative, it is

antisymmetric with its positive counterpart; therefore, after setting 'F"-

to its absolute value, the sign change must be noted (Sign =-Sign). (steps

9- 10 Figure I a)

The next domain reduction phase reduces the argument to within the

interval 10, 11 ,and is represented by steps I11 through 14 of the

"SinCos" flowchart. If the argument 7F", is greater than or equal to one, it

has an integer portion defined within it. If the integer portion of "F" i s

48 Nk
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Figure 11 Bit Layout of 1750A Floating-Point Number

odd, then the argument lies in an interval that is antisymmetric, with

I 4"

respect to, those arguments that lie within the interval (0, 11 . If it is

antisymmetric, the sign difference must be noted before proceeding.

The description of the ODD function (step 12 Figure 10a) in Appendix

A makes it sound as though the process is rather involved. To the

contrary, it is very simple and fast as compared to the method described

by Cody and Waite. This function can be implemented by using JOVIAL

specified tables that take advantage of the floating-point bit pattern

shown in Figure 11.

In a manner similar to that described for the ODD function, the "INT"

function can be simulated. If the exponent points to the least significant

bit of a floating-point number's integer field, then bits zero through the

least significant bit, contain the actual integer. The integer bits of the

argument "F" are copied into the equivalent bit positions of the variable

"Y" , and then the exponent field of "Y" is set to the value of the

exponent field contained in "F". Subtracting "Y" from "F" will reduce the

. argument " to within the interval (0,11. (steps 14 and 15, Figure 10a)

i.: -.-:4.



-o d ; W a .e :,ower of .i new r'

_666_66 E+ 11 1.6449 3_40668_460 E+"
0 . 3 3333_3 3 3 3 3_-276 E -2 .0 0 117 - :*1,2 2=" -".-..- iiI ull4_ _4-5..-_7,,8 E+O ').'

:. -'"' 19841-26982-322 E-3 T -0. 19075_ 18239-486 E+O.

r4  0.'27557_31642-129 E-5 1V 2.61470_45158-310 E-2

r -0.25051 - 87088-347 E-7 - - -2.34605-8793_600 E-3r -:.-,'...J _ , .07. 471-7 ..1o .

12 u~ ~.. 9  -r +0,16047-84463-238 E-9 i 1.4832528223-590 E-4

r_ -0.7-706-.6 775-071 E- , -6.72364 4 7557-180 E-6

Tatbte 4 Coefficients for Polvnomial :pproimation to Sinf

The last step of the range reduction phase is to place the argument to

within the interval 110, .51 . This step is identical to that described in

the fixed-point algorithm, and involves comparing 7"F to one-half. If TPMis

greater than one-half the "F" is set to, 1 - F. (step 17, Figure 10b)

The next two steps of the algorithm are: to approximate the function

s in(F); and then adjust it by multiplying it by "F' and "Sign". These steps

are identical to those described in the previous subsection, and need notL

be expanded again. Even though the coefficients used in the approximating

polynomial are different from thos. used by the fixed-point algorithm,

they were derived in the same manner as described before. These values

are displayed in Table 4.
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- -Fied-Poi1nt. In chapter two, the Identity function for "Tan" and "Cot",

equation (23), established that a procedure could compute approximations

for both the tangent and cotangent functions. A cursory examination of

Figure 28 will verify this. Therefore, by noting which function is

invoked, a single procedure can be called to do both computations.

Since JOVIAL doesn't have the facility for supporting multiple

entry-points, these functions have been Implemented as shown in figures

1 2a, 1 2b, and 13. Both "Tan" and "Cot" have their own unique entry-points,
but both call "TanCota to compute the desired results.

. 51"
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Note that the "Cot" function does not implement the identity function,

as do the "Cos" or "Cosf" functions. The approximation method used, Is the

"Remes" algp ithm discussed in the preceding chapter. Since this method is

a rational approximation that uses a polynomial evaluation for the

numerator, and another for the denominator; the identity function can be

implemented within *TanCot" . "TanCot" must choose which polynomial

evaluations are to be used as the numerator, and as the denominator. This

decision Is based on the value of "Job", a flag passed to it by "Tan" and

"Cot". (step 2, figures 1 2 and 1 2b) which function has been invoked, one

routine can be developed that will compute the values of both functions.

Step 5, of Figure 1 3, is not a computer operation. However, it is an

efficient means of implementing the "Tan" and "Cot" identity function, and

one of the range reduction phases. The rational approximation is of the form

shown in equation (10); where the polynomial used in the numerator is

represented by Pg ,and the polynomial used in the denominator is

represented by Qg. Each polynomial's evaluation is contained in a table

called "Poly": Pg is in entry zero, and Qg is contained in entry one.

The "alias" pseudo-operation, is equivalent to a JOVIAL "Define" . It is a

note to the compiler, that there are two methods of referring to each

table entry. The reason for this may not be intuitively obvious at this

point, but will become clear later.

As in every function discussed previously, it is necessary to note any

domain reduction processes that have an impact on the sign of the final

result. Since the final domain reduction phase of this algorithm reduces an

argument to within the pi-radian interval [0, .25]1 computed results

are always positive. Therefore, the "Sign" flag is initialized to indicate a
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positive result. If, at any point during the domain reduction step, it is

determined that the true functional value is antisymmetric with what is ,.

currently indicated, the flag is negated (i.e. Sign --Sign). (step 5, Figure
13)

Steps 6, 7, and 8 of the TanCot flowchart, are where the initial

numerator and denominator are determined. If "TanCot" was called by "Cot"

the "Num" flag (indicates which table entry of "Poly" is the numerator) is

set to one, and its counterpart, "Den" is set to zero. This is where the use

of an alias may start making sense. Even though this function could have

been coded without using aliases; it is more convenient, and more

readable, if the design doesn't have to be concerned with "which" entry

contains "what" polynomial evaluation. All that is necessary, is to keep

track of how each will be used: either as a numerator or as a denominator.

This is how the identity function has been implemented. In the event that

"TanCot" is called by "Tan", "Num" and "Den" are set to zero and one,

respectively.

The next step of this algorithm is domain reduction, and the first

phase of this step is to limit the argument to all positive values of

pi-radians. If the argument "X" is negative, it is antisymmetric with its

positive counterpart. The variable "X" is set to its absolute value, and the

sign dichotomy is noted (Sign = -Sign). (steps 9 and 10, 13)
F

As was the case for "Sin" and "Cos", "Tan" and "Cot" accept arguments

expressed in pi-radian measure. The legal range of values accepted by

these routines is [-I, I] , and their argument's fixed-point attributes are

the same as those defined in the "Sin" and "Cos" functions. Consequently,
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MIL-STD-1750A architectures will allow the value of arguments to lie

within the the interval (-2, 2). After the aforementioned domain reduction

phase, arguments will be limited to the interval [0, 2) Since the

architecture will allow arguments outside the function's defined interval, i el

it is necessary to consider those exceptions during domain reduction.

Examine Figure 4a, and note that the period of tangent is one pi-radian.
The expression, Tan(X) Tar(X-1) , is a true equality, and illustrates

that function calls with an argument in the interval (1.2) can still be

approximated if their argument is reduced by one. (steps 11 and 12,

Figure 13)

The next domain reduction phase will reduce the argument to within

the interval [0, .51 . Examine Figure 4a, and note that those arguments

failing in the interval [.5, 11 are antisymmetric, with respect to, those

lying in the interval [0, .51 . That is, if X>.5 , then Tan(X)=-Tan(1-X).

As an example, assume that X .75 . Examine Figure 4a, and note that

Tan(.75)=-1 . Also note that, Tan(1-.75) = Tan(.25) = 1 = -Tan(.75)

This example illustrates that, the argument can be reduced if the sign

change is noted, and the argument set to: X I -X (steps 13 and 14)

The final phase of domain reduction, reduces the argument to within

the interval [0, .251 Again, examine Figure 4a. Note that all arguments

lying in the interval [.25, .51 , are inversely related to those arguments in

the interval [0, .251 That is, if X>.25 then Tan(X) I /Tan(.5-X)

Further argument reduction is accomplished by swapping the values of the

*Poly" subscripts, "Num" and "Den', and setting the variable OX to

X=.5-X. (steps 15 and 16, Figure 13)

...--:.
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As stated earlier, fixed-point underf low and overflow will not create

a problem for software packages running on a 1750A architecture.

However, if the argument. is not examined for such conditions, there will

be an unnecessary amount of overhead incurred while obtaining an

approximation to these functions. Step 17 of the "TanCot" flowchart is

intended to eliminate the unwarranted overhead. If the argument, "X", is

less than some epsilon, the approximation is found by setting the

polynomial mPgm to X*T , and the polynomial "Qgm to one. Otherwise,

each polynomial must be evaluated separately. The epsilon used during

implementation, is the inverse of MAXIT ; where "MAX" is the maximum

representable value allowed by the attributes of the returned function. The

attributes of the returned function are: one signed bit, 12 integer bits, and

18 fractional bits (steps 17 and 18, Figure 13)

The process of evaluating the two polynomials, "Pg" and "Qg", is

similar to that of P(u, in the "Sin" and "Cos" implementation. Each

polynomial was derived through the use of the "Second Algorithm of

Remes", and each are of the form shown in (38) and (39), respectively.

Coding the evaluations in the manner implied by (38) and (39), is very

inefficient. This inefficiency, is eliminated through the use of "Homer's"

ru le.

Pg P2(te) 5 + P,(ire)+ Poe) (38)

Qg Q 2( T) 4 + Qp(7t) 2  Q (39)
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P -0.1 1 13 14 0,5 E5 0 nz -T". 109703:36L E

, 1 f10751 .1-476-46 E-2 01'. 1C4729457_.970- E+C :

QO 0. 1 0000-00000-000 E+ 1 n 0. 10000-00000-000 E+ I

-.444613-47720-281 E+O -0 4396 1479_150 E+I.

Q 0. 15973-92213-300 E-1 0.1555-.53606-405 E+I

Table 5 Coefficients f::,r Polynomial appro:mation to Tan

Application of 'Horner's' rule, will leave the polynomials in the form

shown in equations (40) and (41) .K

Pg =I P2 (T(9) 2 
+p1 (7(0) 2 

+p} (7r8) (40)

2i,

Qg (Q (T(8) 2 + Q rB()2 Q] +(41)

These equations use the radian metric, iTn The subscripted values of

'P', and "0", represent the coefficients determined by Cody and Waite

(4 162). If (40) and (41) are restructured as in (42) and (43); the angle,

9 is a pi-radian metric. The radian coefficients, multiplied by their
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associated power of pi, determine new pi-radian coefficients. The new

coefficients are given in Table 5. (step 19, Figure 13)

Pg = ([(P 2 T4 )82 + P7(21 T82 + P1i} 8 (40)

Og= [(Q 2 
4)02 + QiT 21 82 +1 (41)

The evaluation of Tan(X) is the final step of this algorithm. The

result of OPg" is stored in "Poly(O)", and the result of "Qg" is stored in

"Poly(1)" . The evaluation to be used as the numerator, as well as the one

to be used as the denominator, is determined by the values in "Num" and

"Den". The value returned is the result of the polynomial division,

multiplied by "Sign" . (step 20, Figure 13)

loating-Point. In chapter two, it was noted that the identity function

for "Tan" and "Cot", equation (23), could be used to design a procedure that

will compute the values for both the tangent and cotangent functions. A

cursory examination of Figure 28 will verify this. Therefore, by

noting which function has been invoked, one routine can be developed that

will compute the values of both functions.
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Figure 14 a) Tanf;- b) Cotf1 Structured Flowchart i

T-

Both "Tanf" and "Cotr are logically identical to "Tan" and "Cot". (see

figures 12 and 14) The only difference between the two type

implementations, is that the floating-point algorithms are invoked with

arguments expressed in radian measure.

Step 5 of "TanCotf" is similar to step 5 of Figure 13. The only

difference is that the argument, "X", is divided by 77/2 =As mentioned

earlier, multiplications are typically more efficient than divisions; so the "

division is implemented as the product of the argument and the constant in

(42).

r/2 = 1.5707963267-95 (42)
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Floating-Poi nt Nltip] y Exponent Adj ustmrent

OPER AT ION E::<EcT ION T IME i)PER AT ION EXECUT ION T IME
inV. sec i n p. se e

EFL 4.00 LR 0.56

8N6L815

Totals 17.0611 sec 6.60 ji sc

*Times not determined, worst caise times from similar operations used.

I able 6 E-ecutiorn Tirrles f or 1 750A I nstructi ons. From
Sperry 1 63 1 Programnmer Reference Mianual

Steps 6 through 9, of' Figure 15, are identical to the same numbered L
steps in Figure 13. The logic, for both cases, is identical, and wont be

expanded any further.

The division performed in step 5 of this algorithm, expresses the

other multiple of 1T/2 , is the negative inverse of the interval [0, 11/21.

Therefore, if M~ and its integer portion is odd; the sign dichotomy is noted,

and the table subscripts for "Poly" are swapped. The subscript swap,

changes which polynomials will be used as the numerator and denominator

of this rational approximation. (step I11 and 12, Figure 15)

Step 13 of this algorithm, is used to express the argument in pi-radian

measure (i.e. X * 2/17 * 1/2 = X/17 = pi-radians). Rather than dividing by

two or multiplying by one-half, a faster and more accurate method is used.

The layout of a 1 750A f loating-point number was presented in the "SinCosf"
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-. Cody & Waite Power of Tf Pi-Radian Coeff

I. 1 10000-00000_000 E+ 1 3.14159-265358960 E+0
P -0:. , ,J,,_. 4'_ .. E+ 142 -0.12661 07104-141 E+1.L

0 8 05-- 18!471 -?0 E-2 0.2- 1 45 3_6 81 E+C-

S -0.7486_34666 12 E-5 -0 ....... 85785.-.563 E-2

0 0. 10000-00000-000 E+ 1 . 0. 10000-00000-000 E+ 1

.Q -0.46161-68037-429 E+O 11 -0.45559-75237-838 E+ 1

Q.. +0.23344-85282-207 E- I V 0.22740-00893-720 E+ I
Q Q3 -0.20844-80442-204 E-3 -r6  -0.2003-9-96971-354 E+O

Table Coefficients for Polynomial appromation to Tan f

section. This knowledge can be used to make multiplications, involving

powers-of-two, more efficient. Remember, the exponent field of a

floating-point number is expressed as a power-of-two; therefore, a division

by two can be accomplished by subtracting 1 from the exponent field. The

subtraction can be made through the use of JOVIAL specified tables,

containing a signed integer field that overlays the exponent of "X".

Table 6 compares the execution times of the "Exponent Adjustment"

method just described, against floating-point multiplies. It's interesting to

note, that the implemented method is almost three times faster than a

straight multiply.

The logic for the rest of the design is Identical to the last six steps of

of the fixed-point algorithm, and needs no further explanation. Two

implementation exceptions are: the values of epsilon, and the coefficients

K .used in the approximations. Epsilon is set to a value; such that Pg/Qg , and

its inverse, will not cause an overflow, or an underflow. The coefficients,
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for this approximation, were found in the same manner as described in the

-" "TanCot" subsection, and are summarized in Table 7.

Up to this point, all discussions of the detailed design section have

.4#

been divided into two subsections; one concerned with fixed-point

implementation, and a second concerned with f loating-point

implementation. The last two sections of this chapter discuss the inverse

trigonometric functions, and their implementation. The fixed-point and

floating-point implementations have arguments that are in the same

metric, and ;therefore, do not differ significantly in their design. With but

two exceptions, the only difference between the two type iASin" and

ACos" functions are the coefficients used in their approximations. For

that reason, there is only one design discussion. The lone exceptions will

be noted later.

The identity function that relates "ACos" to "ASin" is shown in

equation (26), and is expanded upon in (27) and (28) . These equations

illustrate the point that one procedure can be written to compute the

approximations of both functions. The routine "ASinCos" , will return the

appropriate value, depending on which function invoked it. As mentioned <

several times prior to this, JOVIAL does not support multiple
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Figure 16 ASin and ACos Structured Flovchart

° .

entry-points, and forces the two functions to be implemented as shown in

figures 16 and 17.

Each function invokes the procedure "ASinCos" by passing the

argument, and a flag indicating which function is making the call.

The function approximation of "ASinCos" is performed in three steps:

reduction of the argument "Y" to within the interval [0, .51 ; the

evaluation of sin-'(Y) ; and reconstruction of sin-(Y) to the

representation of the calling function sin-'(X).

The first step of argument reduction is performed by step 3 in the

flowchart of Figure 17. The sign change is not noted, because the final

reduction is not a multiple of ±1.

The computation of sir-(Y) is sensitive to error for large

arguments, especially for those that are close to 1. Therefore, careful

argument reduction is required to limit this problem. Steps 5 through 8

are designed to do just that, and the reader is encouraged to reference
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Cody and Waite (4: 174) for a detailed discussion on the benefits of this I.

design consideration.

If the argument, reduced by step 3, is greater than .5 ,then a table all,

index is set to: one minus the value of "Jobm. That is if "ASinCosm was

invoked by "ACos", the table index is given the value "On, and if called by

*ASin" it is given the value "I" . The index value is used to indicate which

path was taken from step 4.

If the right path of the flowchart was taken, then the next step is

insure that a legal argument was passed by a user. If the argument is

greater-than one it is an undefined argument. The current design sets the

return value to the maximum representable value of the implemented

function type. However, this is an area requiring further analysis, and

should provide a better means of handling such exceptions.

Step 8 reduces the argument, such that step 13 will compute the

arcsine of the compliment angle. Examine Figure 5 in chapter 2. If the

results of step 13 are plotted for those arguments lying in the interval

[.5, 11 (as a result of taking the right path of the flowchart); they would

form a curve that is the the "mirror" of the arccosine curve (i.e. for the

portion of the arccosine curve in the interval [.5, 11, rotate it 90 degrees

about the horizontal axis). This information will prove useful in

understanding how sin-'(X) is reconstructed from sin-(Y).

If, in step 4, the argument is less-than-or-equal-to .5 • the left

path of the flowchart is taken. If the the argument is less than a -.

predefined epsilon, then "Result" is set to "Y" . This is one of two steps

that differ for the two implementations. The fixed-point implementation
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PO 0.00000-00000_000 E+ I 0.00000-00000-000 E+ I
P -0.27516-55529-060 E+ 1 + -537,4216436-677 E+ I

P, 0.9 '58-76237-.486 E+ 1 -0.13428-7079 13..43 E+2

P3  -0.59450-14419-325 E+0 +0.59683_15761-775 E+I

P4  -0.65404-06899-934 E+0

Qo -0. 16509-93320-242 E+2 0.51223-2962-01 1 E+2

Q I 0.24864-72896-916 E+2 -0. 10362-27316-640 E+3

Q2 -0. 10333-86707-211 E+2 0.68719-59765-381 E+2

Q3 0. 10000-00000-000 E+ 1 -0.16429-55755-750 E+2

Q4 0. 10000-00000-000 E+ I

Table 3 ASin/ACos Fixed and Floating-Point Coefficients

converts "Result" to pi-radian measure by dividing by pi. If the argument

is greater-than the epsilon, then "G" is set to Y2 . (steps 10-12, Figure

17)

Step 13 computes the rational approximation of arcsine, and is

implemented in a manner identical to that described in the "Tan and

Cot" section of this chapter. This is the only other step that differs in the

two algorithms. The fixed-point implementation is expressed in pi-radian

measure by dividing "R(g)" by pi. The coefficients of each polynomial used

in the two type implementations are shown in Table 8.

The last step of the algorithm is necessary to reconstruct sir-().

from the result, sin-(Y) , generated by step 13. The two tables "A" and

"B" are used in this process, and require the knowledge of which function
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invoked the "ASinCosm function, as well as, which path was taken during "

the argument reduction step.

Examine Figure 5, and also note the relationships expressed in (26),

(27), and (28) . Earlier, it was mentioned that, if the right path of the

flowchart is taken for argument reduction (i.e. the argument "Y" is in the

interval [.5, 11 ); the arcsine forming the compliment angle is computed.

A curve of the possible results would "mirror" the arccosine curve shown

in Figure 5 . If the function "ACos" is the invoking routine, and the original

argument is positive, then the result lying on the mirrored curve is

negative, with respect to, the arccosine curve shown in Figure 5

Therefore, the results from step 13, are subtracted from zero. (steps 14,

15, and 17; Figure 17) If the original argument is negative, the results on

the "mirrored" curve are IT less than the arccosine curve, and requires that

pi (I in pi-radian measure) be added to reconstruct the true function. .. "

(steps 14-16, Figure 17)

If arccosine is being approximated, and the left path of argument

reduction is taken (i.e. the argument "Y" is in the interval [0, .5] ), the

results of step 13 represent the arcsine curve shown in Figure 5 . If the

original argument is positive, then arcsine curve is reconstructed into an L

arccosine curve by subtracting the results of step 13 from T/2 . (steps

14, 15, and 17; Figure 17) If the original argument was negative, the sine

curve in the interval (0, .51 , is rT/2 (.5 in pi-radian measure) less

than that represented by the arccosine curve shown in the interval

[-.5, 01; therefore, the arccosine is constructed from the results of step

13, by adding Tr/2 . (steps 14-16, Figure 17)
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If the arcsine function is being approximated, and the right path of

argument reduction was taken (i.e. "Y" lies in the interval [.5, 11 ); the

results of step 13 are represented by the "mirrored" curve. This curve is
iT/2 (.5 in pi-radian measure) less than the function being approximated,

and requires that n/2 be added to reconstruct it to the true function. If

the left path was taken, the results of step 13 are already represented by

the arcsine curve. If the original argument was negative, then the results

of step 18 are antisymmetric, with respect to, the true value of the

function, and are complimented.
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IV Validation Verification Performance Evaluaion

General Discussion .:.;

This chapter is concerned with describing the methodology used for

determining the correctness and performance qualities of the implemented

functions. Due to problems in the availability of hardware and the

associated support software, the testing and performance evaluations are

somewhat limited. Hardware became available towards the middle of the

thesis effort, but software tools used for development were incompatible

with those required by the available 1750A. The loader used by the

available 1750A equipment, expects files of a different format than what

is created by the software development tools. Rather than developing a

new loader, a routine was written that converts load modules into a

format required by the 1750A loader. The reformatting procedure is listed

in Appendix C.

Another problem that had to be overcome before testing and

evaluation could be considered, was the availability of input/output (1/0) L

routines. Without I/0 routines, further considerations for testing would be

fruitless. No I/0 packages were available, and as a consequence, had to be

S--created. This delayed testing efforts considerably, as an I/0 routine had

to be developed with the use of the MIL-STD-1750A standard ISA, rather

70
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than with a high-order language. The 1/0 package developed is listed in

Appendix B, and is only capable of writing to a user console.

Performance analysis requires the comparison of 1750A results, with

those generated on a machine of higher precision. Unfortunately, this I
requirement made the newly created 1/0 routine insufficient for this task.

An available console driver has a routine that writes user specified areas

of 1750A memory to magnetic disk. By storing a function's results in a

specified area of 1750A memory, the test results can then be dumped to

disk for an eventual upload to a VAX I1 /780A. The results are then

available for input to the different software test packages. However, the

record format of the 1750A memory dump is not in a friendly format, and

must be converted to a readable form. At the time of this writing, a

routine for making the disk file readable is not completely debugged.

However, it is at a point where it could be completed by another

programmer.

The aforementioned problems have limited the amount of time

available for designing extensive test procedures. Therefore, validation,

verification, and performance analysis is confined to: manual static
r

analysis methods, critical value testing, and measurement of each

algorithms generated error.

7.1
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- '-.Manual Static Analusis Methods

I

To most people, manual static analysis is called "desk checking" -

Static analysis involves the search for any inconsistencies between design -

tools (i.e. flowcharts), design details (chapter 3), program headers, and

program comments. This method is useful for finding errors caused by the

translation of design into code, as well as possible design errors. An

inconsistency may indicate potential problems. This methodology was

used, and all inconsistencies that were found were resolved.
L

Critical Vaue Ti.tino

Critical value testing is an attempt to "break" the software, and

requires the selection of specific arguments that could possibly cause

problems. A knowledge of each of the algorithms is required to select

proper arguments. Individual test cases are not listed here, but the reader

may find specific information by examining the test procedures listed in

Appendix B.

t is possible to generalize the tests performed without listing the

specific test cases. Potential test arguments are those whose

intermediate results could generate an overflow or underflow, or are

arguments lying in the fringe of computational abnormality. These
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arguments will help detect problem areas, and will give an indication as

to how robust each function is.

In addition. arguments that test each path of the algorithm have been

selected. Path testing is limited to insuring that every path of an

algorithm is tested, and does not imply that every possible path

combination is taken.

Performance Evaluation

As was mentioned in the introduction of this chapter, screen output

to the user console and hard copies of computed results are insufficient

for performance evaluation. Their use would imply a visual comparison of

generated results against published tables. Such a technique limits the

number of comparisons that could be made, and would cause doubt as to

the credibility of the comparisons. At best, it would provide a good

feeling for the quality of each function's performance. Therefore, it is

better to automate the process completely, and compare the generated

results against another machine generated standard.,V..

The performance evaluation of the functions involves the computation

of two important statistics: the maximum relative error (MRE), and the

.- root-mean-square relative error (RE). Their values are determined through

the use of (43) and (44), where F(K) is the test result and f(x) is the
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comparison value generated by the same extended-precision function call

written for the VAX 11/780. 1.13

... 8X F(xi) + , ( i) 43

MRE= (43)

" f(x) ..- -(44

This method of error checking is an automatic tabular comparison,

where the VAX routines serve as the accepted standard. The test routine

tests densely packed samples of evenly spaced arguments spread

throughout [-31T 37r) for floating-point algorithms, and [-. 1] f or

fixed-point algorithms. When regenerating arguments within the test

modules, it is important not to introduce unnecessary errors. This means

that arguments in the VAX should have its lower order bits padded with

zeros. The most-significant bits must be equivalent to the number of bitsL

in the 1750A argument, and no extra precision should be introduced.

The method of argument generation just described is recommended by

Cody (12: 762), and is the method used at the NASA Lewis Research

Center. This method is preferred to a random-number test because it

measures the relative error throughout an entire interval. Using densely

packed arguments also gives valuable insight to problems of different

argument ranges. If the evenly spaced interval is set to a power of two
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(representable on both machines), and is not less than the

least-significant bit of the 1750A argument, then an initial argument can

be chosen, such that, zero padding will only have to be performed once.

For example, if an initial floating-point argument is -3.1415 and the

chosen interval is 2-2, the second argument will be -3.1415 + 2-2

Additional padding is not necessary, because "carries" are cascaded

forward and do not increase the number of most-significant bits in the

next argument. Arguments used in the function calls on both machines

must be the same, and must be generated in the same order.

Extra care is needed while reading the 1750A results from disk. Each

of the 1750A results are stored in an unformatted file, and must be read

into a binary record. This record is moved, bit-by-bit, to a variable of the

appropriate type (VAX 11/780 fixed-point or floating-point). The

bit-by-bit manipulation is accomplished through the use of JOVIAL

specified tables, and prevents conversion errors associated with

formatted input.

Before a comparison of the two results (one from the 1750A, and the

other from the VAX) can be made, the results generated within the test

module must be reduced to the same precision (same number of L

most-significant bits) as those from the 1750A. The precision reduction

gives a rounded result that can be used to determine the MRE and RE, and

will give a meaningful interpretation to the inherited error of the 1750A

functions.
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V Conclusions and Recommendations

Concl usi ons L:

The purpose of this thesis was to develop and to do performance

evaluation on a run-time math library developed specifically for

MIL-STD-1750A architectures. The library consists of the floating-point

implementation of several algebraic functions. Performance evaluation

was the major effort of this thesis, but not in the manner intended.

Function approximations are accomplished through the use of either

Chebyshef or rational approximations. The two different approximation

methods were discussed in chapter two, and are useful in understanding

certain design considerations. The values of each polynomial's

coefficients were derived by (or were modifications of those derived by) -

Cody and Waite. (4: 17-84) However, the implementation designs are

significantly different from those suggested by Cody and Waite, The

primary difference between the implemented designs and those suggested

by Cody and Waite, are the methods of argument reduction required of each

function.

Performance evaluation turned out to be the major effort, but not

because of extensive or elaborate testing of the library functions. Most of

the effort involved overcoming the following problems:
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1.) There were several compiler bugs in the original 1750A compiler

used. Assembly listings had to be reviewed, in order to verify each

compilation of the source code.

2.) The use of a simulator for performance evaluation was ruled out

because of the limited number instructions that could be simulated, its

inability to simulate the use of floating-point data, and the relative speed

at which results were calculated. The simulator also lacked a facility for

writing results to mass storage. Storage of results on an external device

is necessary for input to software test packages.

3.) A new compiler and linker was introduced near the midpoint of the

thesis effort, and required a long learning curve in order to use them.

4.) Once a 1750A machine became available, it was determined that

all its support software was intended for use with files created by the-t

old compiler and linker.

5.) Rather than use a compiler and linker that had several deficiencies,

or write a new loader routine, it was decided to write a support tool that

would convert load modules into a format expected by the available loader.

6.) The reformatting program required the use of JOVIAL and its

specified table features. It also required the use of FORTRAN routines to

perform the I/O of source and target files. The FORTRAN and JOVIAL

interfaces did not operate as expected, and the use of COMMON/COMPOOL

areas wouldn't work. This required parameter passing between the

routines, and the documentation for this type of interface was very

inadequate; however, the problems were eventually resolved.
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7.) The reformatting tool was written for use on a VAX 11/780. It

was assumed that the JOVIAL compiler was free of bugs for a VAX target. .

However, when the reformat routine was being debugged, it was

discovered that JOVIAL table names could be overlayed, but corresponding

table items weren't overlayed with them. This problem took a long time

to discover, and an additional amount of time to design around.

8.) 1/0 routines have not been written for the 1750A, and had to be

developed. These routines are only capable of writing to a console screen.

9.) Screen output is insufficient for generating the thousands of

results that would be needed during testing and evaluation, so another

means of capturing the data had to be developed. Due to the lack of time

and inexperience in the internal 1/0 communications techniques of the

1750A hardware, development of a disk I/0 routine was not a feasible

alternative. It was determined that results could be stored in specific

locations of memory, and then an available console routine could be used

to write the information to disk. An additional problem was encountered

when it was discovered that the record format of the disk files is not in a

VAX friendly format, and another routine had to be written to unpack the

stored results.

These problems limited the scope of this thesis effort to developing

the following: designs; code that is free of syntax errors; the

development of command files for compiling, assembling, and linking

routines written for the 1750A; tools for formatting load modules that

are capable of being loaded into a Sperry 1631 implementation of the

N IL-STD-1750A; and tools that unpack test results stored on an RT/1 1
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,-- formatted floppy disk. Generic test algorithms are provided, but are not

written in a high-order-language. They provide the basic structure for

critical range testing, and a means of evaluating and measuring each -,

functions performance.

Recommendations

The products produced by this thesis effort are at point where design

of the intended performance evaluation can begin. All the groundwork has

been provided, and should be adequate for someone to continue the effort.

Many of the aforementioned problems have been resolved, and support tools

and command files are provided to shorten the learning curve that

follow-on programmers wil.l have to experience.

The following recommendations should be considered if this effort is

continued.

1.) If the effort is limited to the use of JOVIAL, an analysis should be

made for determining how to handle exceptions detected at run time.

Exceptions include arguments outside legally defined limits.

2.) Since Ada has features for exception handling, all the library

functions should also be developed and implemented in Ada.

3.) Another point may be in favor or using Ada is that it also allows

the creation of generic packages and subprograms. The generic
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subprograms define a template, and generic parameters provide the

facility for tai'oring the template to fit a particular need at translation

- time. In other words, one subprogram could provide calculations for both

* fixed-point or floating-point arguments, based on how it is used at

*compile time. Because a generic package would not be able to take

* advantage of the specific hardware functions unique to floating-point and

* fixed point routines, this may result in a degradation of performance.

4.) Initially, it was discussed that all the math library routines should

be written in both JOVIAL and Ada with the intent that a comparative

evaluation could be done on the two languages. Unfortunately. an Ada ~

compiler targeted to the 1750A is not yet available. When a compiler

* does become available, it is recommended that a new Ada math library be

developed and this comparative evaluation be performed.

5.) The compiler problems, mentioned above, should be corrected, and

1 750A architectures and associated suppoht software should be acquired

before more time is allocated to the effort.
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::: Appendix -A

The following pseudo-operations were used in describing the LA

implementation designs of the different mathematic functions.

ADX(X.N): augments the integer exponent of a floating-point

representation of X by N. This scales the argument X by 2N.

For example,

ADX(1.0,2) = 4.0

FIX(X): returns the fixed-point representation of the

floating-point value X .This operation requires explicit

conversion in JOVIAL.

FLOAT(X): returns the floating-point representation of the

fixed-point argument X. This operation requires explicit

conversion in JOVIAL.

ODD(X): determines whether the argument X is odd. For an

integer, the least-significant bit is checked directly. For a

floating-point number, the integer portion is checked. A

description of the floating-point process for this determination

is giwr, below.
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Figure 15 Bit Layout of 1750A Floating-Point Number

To determine whether the integer portion is odd, knowledge

of the internal representation of the 17504 floating-point number is

necessary. The argument X is a JOVIAL specified table item that

makes the components shown in Figure 16 easily accessible. Within

this table is an integer item that overlays the exponent field of X.

This exponent field is the tool needed to check whether the integer

portion is odd or even. Since X has a value of one or greater, and

- all floating-point values are normalized, the exponent can be used to

point to the least significant bit of the integer field. Because X< is

positive, a one in the least significant bit would indicate the

integer portion is odd. A limit on the maximum value of the

coefficient has been imposed by the functions that use this routine.

This limit prevents the least-significant bit of the integer portion

from falling in the exponent or 1563" area of the floating-point

* . coefficient (see Figure 16).
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Since the 1750A architecture requires that all floating-point

values be normalized, the most-significant bit is in the first bit

position following the sign bit. The decimal-point is assumed to be

positioned immediately behind the sign bit, but immediately in front

of the most-significant bit. The exponent represents a power of

two; therefore, if e represents the value of the exponent field, the

value of the floating-point number is: coefficient * 2c .

Equivalently, it is obvious that the decimal-point floats s places to

the left if s is negative, or e places to the right if positive.

Knowledge of how floating-point numbers are stored can be

used to determine whether the integer portion of a number is odd.

The following example gives an explanation of the process.

Given the following machine representation of a

floating-point number, determine whether its integer portion

is odd. In the example below, the decimal-point was inserted

only for clarity.

0.I 10000000000000000000000000000 10000000000000000

Since the sign bit of the exponent is zero, the value of

the coefficient is positive. The following two numbers are

summed together to determine the value represented by this

coefficient:
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The exponent field is in bold text, and has the value

one. Therefore, the value of this floating-point

representation is, the coefficient (.75) multiplied by two

to-the-power-of the exponent (1), or 1.5.

.75 2 = 1.5

Another way to compute the result is to shift the

decimal-point in a direction as indicated by the exponent. -

The exponent in this case is +1 so the decimal-point is

shifted one position to the right. The number can then be

computed in a similar manner as described above.

This last method demonstrates how to determine

whether this example is even or odd. If the decimal-point

is shifted 1 position to the right, this number will have 1

integer bit and 38 fractional bits. The integer bits always

occupy the left-most position of the number. If the exponent

is thought of as a pointer from the left-most side of the

number, the least-significant integer bit can be fournd. The

exponent in this example points to bit position one. Since

the bit is set to 1, this example's integer value is odd. I
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INT(X): return the integer portion of the floating-point

argument X. The description ODD(X) given above determines the

least-significant bit of the integer portion of the floating-point

argument. This is used to extract the entire integer portion of

the argument (bits 0 through the least significant bit).

8.
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* 18 JULY 1U5 *
L VESI(G: 1.0 *
NWtft: Cos

* MDUL ISER: 1.0 *
* CESCRIPTIOI: *
* This function Is invoked to compute the fixed-point value for the *
* cosine of an a gle that has been exprslsed in pi-radians. A *
." * pi-radian can be exp as a value between -i.0 and 1.0, d *

C" *oh- value dun multipi led by pi is equivalent to an angle *
* w ssed in radian measure. Fixed-point has the advantage of *
* speed of computation over floating-point algorithm, and using *
• pi-radians further exploits this difference bI simplifying the *
• critical stop of range reluction. The range redaction effort is *
* performed In SinCos, and is used to reduce the passed rgumnt *
• into the interval (-.5 pi, .5 pi). This ra gectioninsrs * .
S max I um accuracy of the pp oxImated function. Both the rgument *
SXx' and the returned value 'Cos' ore expressed in 175CR double- *

• precision fixed-point reprentation. Both have one sign bit, one *
integer bit, and 30 fractional bits. The actual value returned Is *

• computed by the function 'SInCos'. Becae the Identity function, *
• Sin(x) a cos(x - pi/2), 'SinCos' can be invoked to compute both *

sine and cosine values. *
SPASSlED UIFIiLES:Xx - The pi-radian meaisure for which cosine computed. *

* The wrgueent is in double precision fixed-point. *
* RETUFS: Cos - the computed value in double precision fixed-point -
* OOILES CALLED: SinCos •
* AUTHC.: Capt. Steven R. Hotclkiss *
* HISTORY: This project was iwndertaken as a thesis project for *
* partIal fulfIlI Iet of requIrements for an 11S degree *
* In Information Science from the ir Force Institute *
* of Technology. Sponsoring organization is the ASO *
* Languagl Control Stooch, Wright Patterson FB,Oh. *

START

FEF PROC SInCos FIENT (Xx) A 1,30;
BEGIN
ITEM Xx A 1,30;

Cosine Procedure

OEF PROC Cos RENT (Xx) A 1,30;

BEGIN

ITEM Xx A 1,30;
ITEM Arg A 1,30; L
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: ..- ~:IF Xx < 0.0;

f-g a Xx + .5;

Cox m SInCos(ftg);

EB
TERM
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* DATE: 18 JULY 1995
* VERSIONI: 1.0 F
* MIE: Sin
* MIOMUL NLR: 1.0

*This function is Invoked to ot the fixed-point value for the
*sine of an angle that has been ep mspi in pi-radians. A

p pI-rod I an can be mipreased as a valImu between - 1. 0 and 1. 0, and*
in evaluewhen multiplied by pi Is equvalent to anangle

*expressed In radian measure. Fixe-pInt has the advantage of *
*speed of computation over floating-pint algorithm, and usning
*p1-radians further exploits this difference by simplifying the *

craitical stop of rang reduction. The rag e.tion effort Is *
-performe In S I Cos, anid Is uswed to re~ethe pased argmnt *

*into the Intervl (-.5 pi, .5 pi). This rangere tI an i nwures *
*maximmccraq of the approximated function. Both the argument *

* Xx and the returned value 'Sin' we expressed in 175CR double- *
*precision fixed-point representation. Both have one sign bit, one *

* integer bit, and 30 fractional bits. The actual value returned is*
*computed byj the function 'SinCos'. Because the identity function,
*Sin(x) = cos(x - pi/2), 'SinCos an be invoked to compute both

s sno and cos ine valIues.
*PASSED VARIRLES:Xx - The p1-radian mesue for which sine is coeputed.*

* The argument Is in double precision fixed-point.
*FETLMS: S in - the computed value In double precision fixed-point*

M OOULES CALLED: Si nCos
AUftTHOR: Capt. Steven A. Hotchkiss

*HISTORY: This project am undertaken as a thesis project for
* partial fulfillment of requirements for an MS deqee
* In Information Science from the Air Force Institute *
* of Techn~ology. Sponsoring organization is the ASO
* Language Control bach, Wight Patterson RFB,Oh. *

START

REF PROC SinCos RENT (Xx) A 1,30;
BEG IN
ITEM Xx A 1,30;
ENO

-Sin Procedure

OEF PROC Sin RENT (Xx) A 1,30;

BEGIN1

ITEM Xx A 1,30;

Sin aSinCos(Xx);

RETURN;
END

TERM
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" DATE: 19 JULY 1995 •
* UERSlOf: 1.0 .
" NAME: SinCos
" M01.LE IMER: 1.1
" OlESCR IPTiO:
• This function is coiled by either 'Sin' or 'Cos'. The algorithm •

SuIlsed is designed around a polynomIal approxImation of the sine ,
• function. The coefficients we derived through a ChIbyshe *
* economization of the power series. Since 'Sin' and 'Cos' use *
• pi-radiwns as an argument, the economized coefficients owe
• multiplied by an a prol iate poe of pi. The first step of the *
* algorithm is to redce the arient to the interval for which * . -
• the polynomial is valid (-.5 p1, .5 pi). The next stop Is to •
• determine if the atrgment would caie on underfIon, If it does *
• the value of the argument is the value returned (sin(x)-->x for •

SsmaIll x). In fixed-point arithmetic, underfIow causes doesn t •
• cause problems, but checking for underflow prevents inecessary .
• computations. The computed result of the polyomial reflects the •
• use of Hor rule. This function and its argument are double •
• precision fixed-point values. *
• PASSED URIR9LES: Xx - doubIe precision fixed-point .reprsentation of ,
• an anle expressed in pl-radians (radIans *
• divided by pi equals pi-radiwns). Legal ran .
* of values Include -1.0 to 1.0 '

R ETURNS: A 175OR double precison fixed-point representation *
•9 of 'Sin' or 'Cos'
* OLLES CALLED: Mone *
• AUTHOR: Capt. Ste"e A. Hotchkiss •
• HISTORY: This project ams undertken as a thesis project for •
• partial fulfillment of requirements for an MS dege •
• in Information Science from the Air Force Institute •
* of TechInolog. Sponsoring organization is the FISO
• Lange Control bach, Wright Patterson RFS,Oh. •

-..-

START

DEF PROC SinCos RENT (Xx) R 1,30;

BEG IN

COISTRIT ITE Eps A 1,30 - 0.000564851?;
CONSTANT ITEM PiFixed R 2,29 a 3. 141592536;

ColBTNT ITEM RI F 39 w -1.44934051140;
CONSTANT ITEM R2 F 39 a +0.8117421707751;
CONSTANT ITEM R3 F 39 * -0. 190747226=769;
CONSTANT ITEM R4 F 39 u +0.0261120162;
CONSTANT ITEM RS F 39 "-2.2352240374055E-3;

CONSTANT ITEM PiFloat F 39 a 3.141592653589;
CONSTANT ITEM One F 39 -41.0;

ITEM Ff A 1,30;
ITEM li A 1,30;
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I . TEII Xx A 1, 30;
ITM Og F 39;
I TEN Sign A 1, 0;
I TEN Result F 39;

"~q Rat ri oI an phase

Ff a Xx;

I F Fft 0.0;

BEG IN
Ff a Ff-l;

END

Ft f 1.0 - Ff;

-Test for- unduleflIow cond itons
IF Ft (a Eps;

BEGIN
Re- a PiFixed;
END

ELSE
BEG IN

- 8eIn Computation of polyniomial
Og (F 39*) A(* 1,30 *)(Ff Ff));
Remilt s (((((S*GgR4)*94.R3)*g.R2)*Gg+fiI)*Gg;
Remult a Result * PiFloat + PIFloat;

END
SinCos R * 1,30 RX* 1,30 *X r Ff) Sin)
RETURN;

END
TERM
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* ORTE: 18 JULY 1985 *
* VERSION: 1.0 *
* NIrE: CosF *
* ?OLE NUMBER: 1.0 *
* ESCRIPTION: "

This function is invoked to computo the floating point value for *
the cosine of an angle that has ben expressed in radian measue. *

* Both the argument 'Xx' and the returned value 'Cos' re in 17"O *
* extended precision floating point rmpresentation. The actual *
* value returned Is cmputed by the function 'SinCosF'. Becase of *
* the identity function, sin(x) a oos(x - pi/2), 'SinCosF' can *
* be Invoked to compte both sine and cosine values.
* PlSSED URRIRSLES:Xx - The radian eare for which sine is c-ted. *
• The argument is In extidmd precision float.
* RETURNS: CosF - the computed value in extended floating point. "
* NOOULES CALED: SinCosF*
* AUJTHOfR: Capt. Steven A. Hotchkiss
* HISTORY: This project was undertaken as a thesis project for *
* portial fulfil lIment of requir-emets for an MS deg *
* in Information Science from the Air Force Institute *
* of Tec logy. Sponsoring organization is the IS *-
"* Lnuage Control Brand , riht Patterson RFB,Oh. *

START
.4

REF PROC SinCosF RENT (Xx) F 39;
BEG IN
ITEM Xx F 39;
END

1CosfProcee

DEF PROC CosF RENT (Xx) F 39;

BEGIN

ITEI Xx F 39;
ITEM Y! F 39;

CONSTANT ITEM Yax F 39 a +O.232Ql5010Q991E+7;
CONSTAIT ITEM Pl vByTeo F 39 a 1.5-0793279489;
CONSTANT ITEM Zero F 39 a 0.0;

-- Xx;

IF (Yy > Yx) OR (Yy ' -< mx);
CosF - Zero;

ELSEr

IF Yy Zero;

Yy PiOIv~yTwo + Yy,

92
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* CauF aSinCoF(%%);

END
TERMl
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SOFiTE: 18 JULY Igo *
V UERSION: 1.0 ,

• MNRE: Sirf *
* MODULE NUMBER: 1.0 *
* ESCR IPTION: *

* This function is invoked to coiputo the floating point value for *
• the sine of an angle that has bow expressed in radian imasure. *
• Both the amwent 'Xx' and the retlrned value '$in re in 1750A *

•extended precision floating point , ep aiset ation. The actual *.-

•the Identityl function, Sin~x) m cos(x - pi/2), 'SinCosF' can *..

•ARIRBLES:Xx - The radian meire for which sine Is computed. *
REUN:•n The argument Is in extended precision float. *

• RETF : SnF -the computed vallue In extended floating-pint. * ,

SOLLES CALLED: SinCosF *
RUTHOR: Capt. Steven R. Hotchkiss *
HISTORY: This project was undertaken as a thesis project for *

partial fulfillment of requirements for an M1S degree *
• in Information Science from the Air Fore Institute *
* of Tehnology. Sponsoring orgonization is the ASO *
• language Control Branc, Wlight Patterson AFBOh. *
* * . -

START

REF PROC SlnCosF RENT (Xx) F 39;L
BEGIN
ITEM Xx F 39;

END

" - - - - - - Sinf Procedure ------- - -

OEF PROC SIrF RENT (Xx) F 39;

BEGIM

ITEM Xx F 39;

SInF SinCosF(Xx);

RETURN;
END

TERM
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* DATE: 19 JLLY 1965*
" * VERSION: 1.0 .". .
* NAME: Sino *"
* MOIULENLER: 1.1
* DESCRIPT I: *
• This function Is called by either 'SinF' or 'CosF ' . The algorith-
* used is a polynomial approximation of the sine function. The *
* coeffecients we determined through a Chpjshv Econoeization *

• of the poe series, and ",e carried out to 1753OR machine *.
• pecision. For efficient computa~tion, the polynomial om*'

• ¢ mI Uted using; 14nw's Rule. This function returns an extw ied
• prec:ision floatir 1)int valu.*

S UARIABLES: Job - a flag Indicating wether to comput* either *
j the sine or cosine of an angle expressed in

radian
•bsX - the absolute value of the angle under *

consideration
Yy - originally set to FbsX, but modified *

by the algorithm for range reduction of *
the original angle. *

• RETRNS: Fin Extended precision floating-point approximation to *
• a user requested call to either 'SinF' or 'CosF' *
* MOLES CALLED: None *
* AUTHOR: Capt. Steven A. Hotchkiss *
* HISTORY: This project was undertaken as a thesis project for *
* partial fulfillment of requirements for an M1S deee *
* in Infor mtion Scienc from the Air Force Institute
*.e of Technology. Sponsoring organization is the ASO *

* Language Control Branch, Wright Patterson AFB,Oh. *

* *%
aT .

START

DE POC SinCosF RIET (Xx) F 39;

BEGIN

CONSTANT ITEM RI F 39 a -1.6449340668480;
CONSTANT ITEM R2 F 39 a +0.8117424252778;
CONSTANT ITEM R3 F 39 a -0. 1907518239486;
CONSTANT ITEM R4 F 39 - +2.6147845158310E-2;
CONSTANT ITEM1 R3 F 39 a -2.3460587938500E-3;
CONSTANT ITEMl A6 F 39 = 1.48=28223590E-4;
CONSTANT ITEM R7 F 39 a -6.?236447557190E-6;

CONSTANT ITEM Eps F 39 - +0.13486M15234861E-5;
CONSTANT ITEM Pi F 39 a 3.14159265358%;
CONSTANT ITEII One F 39 - 1.0;
CONSTANT ITEM Zero F 39 - 0.0;
CONSTANT ITEM Or alf F 39 • 0.5;
CONSTANT ITEM OneDi vByPi F 39 +0.31830988618379E0;

ITEM Sign F 39;
ITEM Og F 39;
ITEM Xx F 39;
ITEM PiRadians F 39;

.. .... -95.. ---..



TEll Resul t F 3g;

ThBILE Ovrlapj (0) WI 5;

I TEI Ftf F 39 P08(0,0);
I TEM Fexp S ? P0S8, 1);
I TEM Fb its B 46 P08(0, 0);

I TEM %%j F 3V P05(0,3);
I TEM 'texp S ? P08(9, 4);
I TEM sti ts 8 48 P08(0, 3);

FI (0) a Xx~ In*tiveyi;
Signr One;

IF FI(0) CZr.;
BEG IN
Ff(0) * 41(0);

Sign Sign;

END

Yu(0) uZr.;

IF Fexp(0) )- 1;
BEG IN

U IF BIT(Fbits(0),Fwxp(0),1) 1*1*;
Si a-Sirn;

-Q(O a Fexp(0)
BtT(tbits(0),O,Fexp(0)41) - BIT(Fbits(0),0,Fep(0)41);

PiRodin FfP(0) -yO)

IF PiRodians > OP aIf;
PiRodians OnGe - PiRodlets;

IF PiRadiwts Eps;
Result -PiRodlons *P1;

ELSE

Og - PiRodlwts *PiRodimms
Result = (((((((( R? * g * RB)V Og * AS) *Og * R4) * g +' A1) * g

+ R2)*Gg +RI)* Gg) +One)*PiRodions *Pi;
END

SIvCo* u Result Sin

RIETURI'
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* DATE: 5 August 1985*
* VERS ION: 1.0
* M~E: Cot
* MOULE NVIBER: 1.0
* MESCRIPTION:

*Cot is invoked to compu te the cotanigent of a user passe angl e. The*S
* angle is expressed in pi-radians: pi-radians -> radians/pi. '
* The rgmof l egalI valIues for the angle arwe (- 1. 0, 1.0>> Both the

w rigment and result are expressed as fixed point remilts. The
* value returned is copted by the function TanCot.

* PASSED VARlL.ES: Xx - the angle in p1-radians
* RETURNS: a value for the cotangent of Xx.

*plus and minus infinity are cots!deoe as -4095 and 4095
" MILES CALLED: TanCot*
* AUTHOR: Capt. Steven A. Hiotchkiss
" H ISTORY: This project was unidertaken as a thesis project for *

*parti1alI fulIf illIment of requirements for an M1S degree
*in Information Science from the A ir Forc Institute *
* of Tectw logy. Sponsoring organization is the ASO
* Language Control Brach Wright Patterson RFS,Oh. *

-- - -- -- -- - - - - - - - - - -- - - - - - - -- - --

START

REF PROC TanCot RET(Rrg, Job) A 12, 18;
BEGIN
ITEMI Arg A 1,30;
ITEMI Job B;

END

-. Cot Procedure ---

DEF PROC Cot REtIT(Xx) A 12,18;

BEGIN

DEFI ME Tangen t "18'0";
DEFINE Cotangent "B

ITEMI Xx R1,30;
ITEMI Job B;

Job a Cotangent;
Cot = TanCot(Xx, Job);

RETURN;

END
TERM

97
A - -. .. .... . ....



* * DATE: 8 August 195
UERSIOII: 1.0
NAMWE: Ton*

* ODUJLE NLIIBE: 1.0 *-

*Tan is Invoked to compte the tangent of a user passed angle. The*
* * angle is expressed in pi-radlwws: pi-radians -> radians/pi.

* The range of IsgmlI valIue for the angle arwe (- 1. 0,1. 0)1 Both the
w arwmeit and resulIt are exprsed as f ixed po Int resuts. The

* value returned Is computed by the function TonCot.
*PASSED VMRI ILES: Xx - the angl I In p1I-rad Ians
*RETURNS: a value for the tangent of Xx.

* plus and sinus Infinity arem owIdeve as -4095 and 4095
" NODULESV CALED TanCot
* AUTHOR: Capt. Steveni R. H~otchkiss
" HISTORY: This project ow undertaken as a thesis project for *

* partial fulfillmetnt of requiremets for an MS degree*
*in Information Scienc from the Air Fore I nst itute *
* of Technologyj. Sponsoring organization is the RSD

i Language Control bianch Wright Pattw'so RF9,Oh.

START

REF PROC TanCot RENT(Arg, Job) R 12, 18;
BEG IN
I TEN Rrg A 1,30;
ITEM Job B;

Tan Procedure ------

DEF PROC Tan RENfT(Xx) A 12, 18;

BEGINM

DEFINHE Tan gent 180'";
DEFINE Cotangent B ;

ITEM Xx A1, 30;
ITEM Job B;

Job = Tangent;
Tan = TanCot(Xx, Job);

END
TERM
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* DATE: 6 August Igo *
* YERSION: 1.0 * .
* N1E: TcnCot .
* MOOLLENI RUER: 1.1 *

* DESRIPTION:
*This function is Invoked b' either Ton or Cot' to te the *
S appropriate value for a given angle. The angle 'Rrg' is given in *

, pi-r'adlan: pi-radlan -> radians/pi. Since tan(x) a I/cot(x) *
* both functions can call this routine to compte the desire values.*
* Since Tangent and Cotangent approach plus or minus infinity at *

*certain angles, a check Is required to prevent dadtion due to *
* rundrflow or overflow, plus and minus infinity for this procedure *
* ore camsi de to be 4095 and -4095 r tipectively. The coefficient *

used In the two polynomials we determined through the P-E.
* method. The original polynomial was determined through a *
* Chebysheff econimization of the pomw series for tangent. *

PASSED UI.IRBLES: lrg - an angle expressed in pi-radlans *
* Job - tel Is wether to compute tangent or cotanget *
* RETURS: Either the tangent or cotangent of a given angle. *
* there are 12 integer bits and 18 fraction bits for this *
* function.
* IMODLES E: Ion * Mom
* AUTHO: Cat. Steven R. Hotchkiss
* HISTORY: This project was undertaken as a thesis project for *
* partial fulfillment of requirements for an MS degree *
* in Information Scie from the Air Fore Institute
* of Technology. Sponsoring organization Is the ISO *
* language Control Branch, Wrigt Patterson AFB,Oh. *

START

OEF PROC TanCot RE1(Rrg, Job) A 12, 18;

BEGIN ----

DEFINE Tangent "B'O"'
OEFINE Cotanget "l'
DEFINE Pg "Polyrmaial(0)";
DEFINE Qg "Polynaial(1)";

ITEM Job B;
ITEM Rrg A 1,30;
ITEM Xx A 1,30;
ITEM Xfloat F 39;
ITEM Gg F 39;
ITEM Sign F 39; -

ITEM On'e STATIC F 39. 1.0;

CONSTAIT ITEI PiFloat F 39 a 3. 14159265359;
CONSTANT ITEM PIFixed A 2,29 a 3. 141592 3;
CONSTANT ITEM Eps A 1,30 - 0.00007773138;
CONSTANT ITEM LpperLimit A 12,18 - 4095.0;
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IT'E PO STATIC F 39;
CONSTFIAT ITEM Pl F 39 a-1.0m0003361855;
CONSTANT ITEM P2 F 39 - 0. 104720845707;
OUER.AY PiFloat: PO;

ITEI 00 STATIC F 39;
COMSTANT ITEM Ql F 39 -4.388061479150;
COHSTRNT ITEM 02 F 39 u I. 65038405;
OBERI.RY One: (00;

....

* TABLE Array (0:1);
BEOIN
ITEM Polynomial F 39;

ITEM Numrator U 8;
ITEM Denominator U 8;
ITE Nm B 8;
I TEM Den 8 8,

OUERLRY limer tor :Mm;
AEN.AY Denominator : Dan;

Sign = One;
Xx - 13g;.' .

, IF Job - Cotmagent;

END
ELSE

BEGIN
Numerator = 0;
Denominator - 1;
END

IF Xx < 0.0;
BEGI N
Xx a -Xx;
Sign - -Sign; L
END"

IF Xx1.0;
Xx " Xx - 1.0;

IF Xx .5;
BEG IN
Xx a 1.0 - Xx;
Sign a -Sign;
END

IF Xx ) .25;
BEGIN
Xx a .5 - Xx;
BIT(Num,7,I) - NOT BIT(uI,7? I);
BIT(Oen,?, 1) - NOT BIT(Den,, 1>;
E10;
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XfIat (F 31*(Xx);
I IFXx Eps;

Pq a Mfout 0 PIFloat;

END
ELSE

ag = Mfoot *Xfloat;
Pg a ((P2 * Gg + PI) * PIFloat + PO)~ Xfloat;
Og - (02 * Sq + 01) * Og + 00;*.

TanCat u(0 A 12,18* (Sign J
PoIywaftoI (*ate)/PoWamiGI (Owimnor));

FETLMN;
END

TERMl
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• %*

D DATE: 1g JULY 1985 *
-* UERSION: 1.0 *

SWKE: CotF
MOOULE MUMBER: 1.0 *

This function is invoked to coeputo the cotangent of an angle

* expressed in radian measure. Beomse of the identity function *
* Tan(X) a 1/Cot(X), the two functions 'Tn and 'Cot' can both *
* invoke the function 'TanCot' to compute their respective values. -
"-' • Both the arg Lent and the result of this function are expressed -
* In 17ROA extended precision floating-point rtmp entation. * J
* PASED URRBLES: Xx - the angle of interest, expresm in extended *

* floating- int representation. The angle must * ,-

*~ ~ Iia between ( -2329M4. 03, 23234.90 ) *-

* RETUFiM: Cotangint of the angle Xx (-1.0 to 1.0) In extnded .
* floating-point representation *
* MOOLES CALLED: TonCotF *

* AUTHOR: Capt. Steven A. Hotchkiss
* HISTORY: This project vas undtdken as a thesis project for *

* rtial fulfillment of requirments for an 11S dege *-
* in Information Science from the Air Force Institute *

*of Technologyj. Sponsoring organization is the AGSO 41
* anage Control kand, iIght Patteson AOh. *

TREF PROC TnCotF R K (Rg, Job) F 39; 
l''I

* BEGIN
ITEM Arg F 39;
ITEM Job B

"-" " Cotf Procedue " -

OEF PAM CotF RENT (Xx) F 39;

BE in

OEFIHE Tangent B0
DEFINE Cotangent 011

ITO Xx F 39;
ITEM Job 9;

Job Cotangent;
CotF TanCotF(Xx, Job);

EORETURN;

TERM
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ORTE:19 -LY 1985

* lM: TOWf
* IOLE NUIIBE: 1.0

nFESAIPTIOII:
*This function is invoked toco to the tangmnt ofan wgle
* xpresseM in radian meesre. Because of the identity function
* Ton(X) a 1/Cot(X), the two functions 'Ton' anod 'Cot' can both k
*invoke the function 'TanCot' to compute their respectiv.e values. *
*Both the argument and the result of this function w~e exp-essed *
* in 1750R extended precision floating-pint ir setation.
* PASED IRIASES Xx -the angle of interest, expmdn in extend

f float ing-poI nt vepresentat Ion. The ange Isat
* ~lie between ( -2329349. 33, 23293M.032

*RETURNS: Tangent of theangie Xx (-1.0 to 1.0) inexctended*
*~ floating-point representation*

0 IIOOLLES CALLED: TanCotF
* AUTHOR: Capt. Steven A. Hotcikiss
* HISTORY: This project was undertaken as a thesis project for *

*part ialI fulIfilI Iment of reimIremnts for an MS degee
.4 * in Information Science froe the Air Force Institute *

* of T cnlogyj. Sponsoring organization is the AISO
*~ Language Control Sandcl, Wright Patterso RFB,0h.

Sq START
REF PROC TanCotF REIT (Arg, Job) F 39;

BEGIM
I TEJI Rg F 39;
ITEMI Job B;
END

Tanf Procedure - ----

DEF PROC TanF RENT (Xx) F 39;

DEFIME Tangent "3"
DEFINE Cotangent "3"

TEMl Xx F 39;
ITEMI Job 9;

Job m Tan gent;
TwnF a TanCotF(Xx, Job);

RETURN;
EtC

TMR
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* ORTE: 1g JULY 195 *
* UMERIO: 1.0 [
* NAI: TonCOtF *
* IODULE NLMUER: 1.1 *
* DESO2RIPTION: *
* This function is calledl j either 'Tan' or 'Cot' to compute the *
* tangent or cotawnget of their respective angles. The result is *
* caeputed by using a Rational aproximatIan I P(X)/Q(X) 1. The *
* coefficients used we found by a Pade approximation of the * .
* Chephey economization of the powr series for tangent functions. *
* The result of this function Is In 17'OR extended precision *
* floating-point , reentaton. *
* PASSD UIIIBLES: Xx - the angle under onsideration, eprsid in *.
* rodIans. Xx mut lie betueen
,C -232934g.g0332, 232934G0332
. -asolutevalueof Xx, used to.preto flow
*I flag - designates whether to compute Tan or Cot *
* FETI : 75ORA etended precision float for Tan or Cot *
* IOULES CALLED: ,one -
* AUThOR: Capt. Steven A. Hotchkiss *
* HISTORY: This project was undertaken as a thesis project for *
.* partlal fulfillment of recuirments for an MS d *

* in Information Science from the Rir Fore Institute *
* of TeclnoIogyj. Sponsoring oranization is the D *
* Language Control Branch, Wright Patterson RFD,Oh. *. .

DEF PROC TanCotF RENT (Arg,Job) F 39;

DEFIME Tangent 1B';
DEFINE Cotangent " 1o .

DEFIME Pg "PolIynomial (0)";
DEFIOE Qg "PolIoeial ( I );

TAB3LE Rrroy (0:1);
BEGIN"
ITEM Polynomial F 39;

TABLE Overlays (0) U 6;
BEGIM
ITEM Xx F 39 P09(0,0);
ITEM Xep S 7 POS(8,1);
IT1 Xbits B 48 POS(O,O);

ITEM Yy F 39 POS(0,3);
ITEM Yexp S 7 POS(8,4);
ITEM Ybits 8 48 P0S(0,3);EMD

ITEM Arg F 39;
ITEM Job B;
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ITEh Numerator U 8;
ITEI Denominator U 8;
I TEJN f. B 8;
ITE Dan B 8-

OULA Ntumetor :um;
MMLNAfr Denominator Dan;

ITEII Og F39;
ITEM Sign F 39;

COI8TRWT ITEM PO F 32 .1. 0;
COISTRIT ITEM PI F 39 .- 1.2551071041410;
COHSTlT ITEM P2 F 39 .40.2733219453861;
CiIOSTWIT ITEM P3 F 39 -7.1948585M-3;

CGHSTHWT ITEM 0O F 39 a+1.0;
CONSTRIT ITEM Q1 F 39 -4.5559752379380;
CONSTAfNT I TEM 02 F 39 =+2.2740008937200;
CGHSTFffT I TEN Q3 F 39 -- 0. 20039971354;

CONSTANT ITEM YOx F 39 -+0.: El+7;
CORSTT ITEM Zero F 39 a 0.00;
CONSTRAT ITEM One F 39 a 1.00;
COHSTITr ITEM OnvHaIuf F 39 - 0.50;
CONSTINT ITEII OneFourth F 39 " 0.25;
COHSTRIT ITEM TwlOivyPi F 39 "40.3l61g72375;
COHSTAIT ITENI PIFloot F 39 =+3.141592533898;
CONSTANT ITEM Eps F 39 -+0. 13488M915234SE-5;

Sign a One;
Y!(0) a Zero;
Xx(D) a Rrg * TwoivBi;

IF Job a Cotangent;

Numerator * 1;
Denominator -0;

ELSE
BEGIN
Numerator " 0;
Denominator - 1;
END.",

IF Xx(O) C Zero;
BEGIN
Xx(O) * -Xx(0);
Sign =-Sign;

IF (Xexp(O) > 0) AD (BIT(Xbits(O),Xxp(O),1)- 18'1');
BEGIN
Sign * -Sign;
BIT(I'im,7, 1) = MOT BIT(Ium,?, 1);
BIT(Den,7,1) a NOT BIT(Den,7,1);
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IF XeoV(O) 1;

ywx(O) a Xexp(O);
BIT(Ybits(O),O,XWx(O)+1) aBIT(Xbits(O),O,XV(O)1I);

XXx() a XX(O) - Yqj(O);

IF Xx(O) 0 Zero;
Xxp(O) = Xexp(O) - (CS 7 )(1 )

IF Xx(O) > Friorh
BEG IN
Xx(D) *Onin14f-Xx();
BIT(tMa1 7, 1) NOT BIT~tka,7, 1);
BIT(Dn,1) -NOT BIT(Don,7, 1);

IF Xx(O) ( Eps;
BEG IN
Pg - Xx(O) *PiFloat;

Qg a one
END -

ELSE
BEG IN
Og a XX(o) *Xx(O);
Pg - (((P3 * Og + P2) * Gg + P1) * Gg * PiFloat + PO) *Xx(O);

Qg a ( 03 * Og + 032) * Gg + 01) * Gg + 00;
END

TanCotF -Sign Po I yom Ia I (Mumrator)/Po I yrxn ia I Dninator);

FETURM;

END

TERM
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- - - - - - - - - - - - - -~ - - - - - - - - - - - - - -

* DATE: 21 August Ig-
* UERSION: 1.0
* IfE: FCoS *
* MODULE IEnBER: 1.0 *
* DECrIPTIOM: *
* This pro is used to call ,SinCos. RS rI Cos is the *

routine that actua I U compL tes the i.Km, cosine for * " .*r q~uawt Xx. They w ad c this wNl beas both Rsin *I._

RCos can use the same routine for their comtatiorw.
* This is because of the identity function

* FACos(X) a pi/2 - RSin(x) *
* PASSED IUFIRLES: Xx - the cosine for which an angle is to be *

* computed.
* RETURNS: RCos - expremd in fixed-point pl-radlaw *
* IODULES CALLED: ASInCos *
* AUTHOR: Capt. Steven R. Hotchkiss ,
* HISTORY: This project wa undertaken as a thesis project for *
* portial fulfillment of requirements for an MS degree *
* in Inforeation Science from the Air Force Institute *
* of Technology. Sponsoring organization is the RSO *
* Language Control Branch, Wright Patterson AFB,Oh. *

--- ----------

STAFT

REF PROC ASinCos FENT(rg, Job) A 1,30;
BEGIN
ITEM Arg A 1,30;
ITEM Job U 8;

END

----- -- ACos Procedure ~ * *

DEF PROC ACos FEIT(Xx) A 1,30;
BEGIN

DEFINE RcSine "
DEFINE ArcCosine "I";

ITEM Xx A 1,30;
ITE Job U 8;

Sm SinCos(Xx, Job);

RETURM; . -

TERM
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-- - - -- - - - .. .- - - - - - -- - - -- - -

*DATE: 21 August 190
VERSION: 1.0

* AlE: ASin
* IOLLE NUMBES: 1.0
nq DECIPTION:

*This progr~ is used to ccal I AS 1nCos. AS InCos I x the
* routine that actually' coeputes the inuerse sine for
* argi~wit Xx. They are coded this way because both ASin *

R Cos can use the se routine for their computations. *
- This is because of the identity function*
* ACos(X) a pl/2 - ASin(x)

-PASSED VARlIRBIES: Xx - the fixe-pint invers for which an angle is *
*~is to be opted

F ETURMS: ASIn - the angle In p1-radians.
* IOLSS CALLED: AS I Cos
* AUTHOR: Capt. Steven A. Hotchkiss
* H ISTORY: This project was undertdan as a thesis project for *

* ~~partial fulfillment of requiemets for, an MIS degre
* in information Scienc from the Arh Force Institute *

o of Tectmo Iogqj. Sponsor ig organ iza t ion is the ASM
*~ Lanuag Control Branch, Wright Patterson AF9,Oh.

START

* . EF PROC AS I Cos RENT (Arg, Job) A 1, 30;
BEGIN
ITM Arg A 1,30;
ITEM Job U 8;

~~~****~ AS in Procedure '*"'~

DEF PROC AS in RENT(Xx) A 1,33);

BIEG IlM

DEFIlME ArcSi1no O
DIEFINE ArcCosine 1";

ITEMI Xx A 1,30;
ITEMI Job U 8;

Job a "cire;
ASin a ASinCos(Xx, Job);

RETURN;
ENDr
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* DATE: 21 August IM
* IMESIOtI: 1.0 18
* NAII: ASinCos
* MOCLENLIIBER: 1.1*
* DESCRIPTION:*

*This proq is inrittmn to return the cortLct angle for a user *
* passed ar4ment. Thg argument .epWesmnts the S ine or Cos ine of*
* the angle to be returned. The returned angle Is in pi-radian
* measur'e (pi-radian -) radlans/pi). This routine can be called*
* by either ASIn or A~os because of the identityj function
* RCos(x) = pi/2 - RSln(x). The coefficients a"r determined byj
* of the method of Chebyshev expansion as des=ribed In AR First
* ~Course In ltmerlcaI An~alysis' by Anthonyj Ralston.

*PASSED UMIALES 9 Rg - the sine or cosine of the angle to be
* determined. Vriable Is in fixed-point

* Job - tells whether to copte for ACos or ASin *
*RETURNS. The angle representation for the argument. The angle*

* is in pi-radlans. Leogal values fall in the rangr

* 100ILES CALLE: None*I * AUfHO: Capt. Steven A. Hotchkiss
*HISTORY: This project was undertaken as a thesis project for *

* partial fulf ill ment of rei~h emsnts for an M19 degre
* in Information Scienc from the Air Forc Institute
* of Technology. Sponsoring organization is the ASO

I Language Control Branch, Wr1it Patterson RB, Oh.

START

REF PROC Scpt RElNT(Xx) F 39;
BEGIN
ITE Xx F 39;

RsinCos Procedure

DEF PROC ASinCos: RE?T(rg, Job) A 1,30;

DIEFiNE ArcSine
DEFINME RrcCoulIne "I";
DEFINE Positive O
DEFINE Negative '1;

I TEJI Job U 8a
ITEuM Ii U B;
ITEMI Arg A 1,30;r
ITEMl Result A 1,30;
ITOJ Pg F 39;
ITEMI Qg F 39;
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TFELE Overlop(0) U 5;
BEGI N
I TEM Yyj F 39 P06(0,0);
1TEM Yexp s 7 ?PO9(8,1);
ITEMI Og F 39 POS(0,3);
I TEM Owx S 7 P05(8,4);
END

I0STN TIU.E Constants (0: 1) W 4 a 0.0, 1.0, 0.5, 0.5;
BEGIN
ITEM Ra A 1,30 P06(0,0);
ITEM 9b A 1,30 P06(0, 2);
END

CMNSTRINT I TEM Eps F 39 a 9.58737994290E-5;
COIISTWIT ITEM On@DrP I F 39 w 0.3193 IS=137;
CONSTANT ITEM One F 39 w 1.0;
C01NSTANT ITEM Owftaif F 39 s 0.5;
CONSTANT ITEMl Oneint S 7 a 1;
CONSTANT ITEM Xom R 1,30 a 1.9999999;

CONSTANT ITEM P1 F 39 a -0.2751655290595E+1;
CONSTANT I TEMl P2 F 39 - 40.290587823748M9+1;
CONSTANT ITEM P3 F 39 z -0. 5950144193246E40;

CONSTANT I TEM 00 F 39 - -0. 16509933202424E+2;
CONSTANT ITEM 01 F 39 - +0.24854728959154E+2;
CONSTANT ITEM 02 F 39 -- 0.103338702113E+2;a.CONSTANT ITEM 03 F 39 a 0.1 *1*nOOOO+I

K V~Yy(0) u *F 39 *)( AS(Arg)

IF Yy(0) '.OroI f
BEGIN
Ii a Job;
IF Yy(0) ( Eps;

BEGI N
Result * ~A 1,30 *)(Yy(0) *Ore0vePi )
0070 LI;
END

Gg(0) -Yy(0) *yo)

END
ELSE

BEG I N
Ii m I -Job;

IF Yy(0) ) Or*;
BEG IN
ASinCos Xm=

Gew(O) a Gwcp(0) -Onelnt; " Gg aGg/2 or 09 wGg *2~-
Yy (0) a -Sqrt(Gg(0));
Yep(0) a Yw(0) + Onulnt; ' y mu t*2 or Yy aYy * 2
END
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Pg a ((P3 G g(O) + P2) * 09(0) +. P1) 0 Og0(0);
Og w( Gg() + 02) *Gg3(0) + Q1) * 0(0) +Q0;

Result -' A~ * 1,30 *) ff(gmtfl' +. %Dy(o) * Pg /Qg)*

LI: IF Job = RrcSine;
BEDIN
RmIlt * ~A 1, 30) PA Ieut +. R(Ii);

IF Rrg < 0.0;
ResulIt *-Result;

END
EL.SE "ELSE Job *ArcCosine"

IF Arg < 0.0;
Result = R* 1,30 *)(BbVll + Result

ELSE
Resul t - A 1, 30 *(Ro( Il I Resul t

AS I nos Ra Resut;

FTUAH;
END

TERM
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-- - - --- -~~ - - - -- -- - - - - - - - -- - - -- - - - - - - ---- -- . u ,- -' -

** DATE: 21 August 1M8
* LJERS ION: 1.0 '1~

* NAME: RCosf
* MI AU. NUMBSER: 1.0 IN
* DES rIPT ION: 31

*This Prraill i s used to coIlI AS InCOsf . RS I Cosf I s the
31 routine that actual ly comptes the invrse cos ine for 31
11 c omt Xx. They wre coded th is way becloooe both As Inf
31 PaCosf cam use the sum routine for their computations.

*This Is becui~oi of the Identty function Al
* Cos(X) = pI/2 - RSIn~x) 111

* ASEDLRIR9LES: Xx - the cosine for diich an angl is tob1
* coeputed.

* RETURNS: ACosf - exressed I n flIoat Ing-po Int
* MODULES CALLED: ASlnCosf
* AUTHOR: Cpt. Steven A. Hotc-klss
* H ISTORY: This project was undertaken as a thesis project for So

* part ial ful f illIment of require mnts for an MS5 do"e
*in Information Science from the Air Force Institute 11

of Tectloogy. Sponsoring organization is the ASO 10
Language Control &-anch Wight Pattersoin AF8,Oh.

START

REF PROC RSirCos RENT(Arg, Job) F 39;
BEGIN
ITEMI Ag F 39;
ITEMI Job U 8;

* - END

Rcosf Procedure

DEF PROC ACos RENT(Xx) F 39;
BEGIN

DEFINE ArcS Ino
DEFINE ArcCosIno "I';

ITEMI Xx F 39;
ITEMI Job U 8;

Job -ArcCosine;
ACosf * ASinCosf(Xx, Job);

END
TERM
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DATE: 21 August 1985 *La
* ERSIOII: 1.0

NAME: RS~nf

*This paWo Is used to cal I ASinCosf. RSlrtCosf I s the
* routine that actuailly coptes the i nverse sInme for
* wogument Xx. They we coded this way become both ASinf
* ACosf can use the same routine for their computations.
* This is beciase of the identity function
* RCos(X) a p1/2 - ASIn(x)

*PASSED UMAR9ES: Xx - the floating-pint inverse for which an angle is*
* is to be pted

RETURNtS: AISInf - the the angle.
M OMILES CRLED ASirCosi
AUTHOR: Capt. Stemw A. Hotchkiss

*HISTORY: This project sow under tdme as a thesis project for *
*part IalI fuIf I IImwnt of reWuI reints for on MS dlegree
* in Information Sci---ce from the Air Forc I nst itute
* of Technology. Sponsoring organization Is the ASO
* Language Control fkanch, Wright Patterson AFB,0h.

REF PROC RSinCosf REKT(Arg, Job) F 39;
MEIN

ITEMI Rg F 39;
ITEMI Job U 8;
END

---- ASinf Procedure -- * -

OEF PRIX AS In RENT(Xx) F 39;

BEG IN

DEFINE ArcSine no.;

DEFI HE RrcCos Ine ";I%

ITEM Xx F 39;
ITEM Job U 8;

Job w ArcSine;
ASinf a ASInCosf(Xx, Job);

RETURN;
EMD

TERM -
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*e 0
- ~ ~ ~ ~ ~ ~ ~ , - - - - -- - - - -

* DATE: 21 August IMS 6 _* VERSION: 1.0

* MAIf RSinCosf *
* lOOLLEN LER: 1.1 *
SDIESCRIPTION: .

* This proWam is ritten to return the cor et angle for a user *
passed agUment. The argnent ,epresents the Sine or Cosine of *

e~~h ancgleto be34 returned. The returnetd anlgle is In radian* seure. This routine am be called .

* I:Nb either MSine or RCosf become of the Idelntityu function ,-.

RCos(x) a pi/2 - RSin(x). The coefficients we determined by *
* of the mthod of Chebpty eompasian as described In 'A First *
* Course In Munerleal Rnoa ls' by Ith Rolston. *
* PRSSED UARVIRLES: Rrg - the sine or cosine of the angle to be *
* determined. Voriable Is In floating-point *
* Job - tel Is d-ether to coepute for ACosf or ASinf ,
* REMAINS: The angle representation for the argument. The angle *
* is in radians. Leagal values fall in the range *
* 1E CRAE: None *

* AUTHOR: Capt. Steven A. Hotchkis *
* HISTORY: This project was undertaken as a thesis project for *
* partial fulfillment of requireents for an MS de *
* in Inforeation Science fre the Air Fores Institute "

* of Techniologyj. SponsorIng orggo ization Is the ASO
* Language Control banch, Wright Patterson RFB,Oh. *

-. a

REF PROC Sqrt RENT(Xx) F 39;
BEG IN
ITO' xx F 3g;

.. -

------- ----- '

OEF PROC ASinCos RET(Rrg, Job) F 39;

BEGIN

DEFINE ArcSne ; 
DEFINE -cCosine "I";
DEFINE Positive a";
DEFINE NegatIv e a1";

ITEM Job U 8;
ITEMI I U 8;
ITEM Ag F 3g;

rI TENI Result F 3g;
ITEM Pg F 3g;
ITEM Qg F 39;
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TF:LE Ovwlas(O) U 5;
BEGIN
ITES Yy F 39 POS(O,O);
ITEM Vex S 7 Pos(8, 1);
ITEM Og F 39 P08(0,3);
I TEh GeV S 7 POS(9,4); -.'-

CONSTANT TRIBLE Contants (0:1) W 6*
0.0, 1.5"707983879, 0.78539I103394, 0.839133974;MOIN -.

ITEN Ra F 39 POS(O,0);
ITEII Bb F 39 POS(0,3);
EMg

CONSTANT ITEN Eps F 39 a O. 37924290E-5;
CONSTANT ITEM OnesuerPI F 39 a 0.3183098901I37;
CONSTANT ITEM One F 39 a 1.0;
CONSTANT ITEM Ine~ilf F 39 a 0.5;
CONSTANT ITE OneInt S 7 a I;
CONSTANT ITEM Xmx F 39 • I1tM.ORT(39);

CONSTANT ITEM Pi F 39 - +0.853 11435877E+1;
CONSTANT ITEI P2 F 39 a --0.1342971r'I343E+2;
CONSTANT ITEM P3 F 39 a +0.5968315"1775E+1;
CONSTANT ITEI P4 F 39 a -0.1400581 144+O ;

CONSTANT ITEM QO F 39 a +0.5j29882011E+2;
CONSTANT ITEM 01 F 39 a -0. 10352273185044E+3;
CONSTANT ITEM (12 F 39 a +O.W871959785381E+2;
CONSTANT ITEM 03 F 39 a -0.1642955755750E+2;
CONSTANT ITEM Q4 F 39 a + a.10OCD- 0 E+ I;

Yy~(0) a ABS(R-g);

IF Y1(0) (a Orwftlf;

Il a Job;
IF Yys(O) < Eps;

BEO IN
Result - YY<O);
0010 LI;

DOg(o> YY<o) * v(o>;

EE
BEGIN
Ii 1 -Job; .

IF Yy(0) ' One;
BEGIN
ASInCosf a Xam;

OTO 1.2;
END

og (0)a One - ,,(O>;
O-x(:)a oe<o(0)- Onelnt; Og Og/2 orogog*2**-l"
-. (0) a -Sqrt(og(o));
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Ye(0)u Yep(O) + Omlnt; "YyjsYy2 or y y y2 4  1"
EBC

Pg a (((P4 * Og(0) + P3) * Gg(O) + P2) * Og(0) + P1) * EGg(0);
Oig a(( Gg() +03) * g(0) + (2) *Gg(O) +Q1) * gQ(0)+ 0; .

Resul t U VyCo) + VyCO) * Pg /Qg;

LI: IF Job a Arfline;

RSemit *Remilt + aCi);

IF Arg '0.0;
Result - -Result;

ESE "ELSE Jab * f*%Coslneu
IF Arg ( 0. 0;

Result a tb(Ii) + Resul t;
ESE

Result AGO Remi - Reut;

RS inCos uRemult;

L2: RETLMN,;
ENDC

TERN
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am 1 iJLY 12 *

NAME: lothtib
* IOLE NUMIBER: 1.0
* OESCr iPTIOII:

* This compool is required byj nq JOVIAL pt'og that needs to
* referenc aNs of the math furctians written for floating-pint *
* or fixe-pint computations
*~~~R PISE ~ANL N/A
R ETURNS: N/A

* IODULE CRLED N/A
*AUTHOR: Capt. Steven A. Hotchkiss and

* Capt Jennifer Fried
H ISTORY: This project a udartal as a thesis project for

*part IalI fulIf illIment of rapI reents for an flS doge
I In I nformatioan Scenc ee from the A Ir Fore institute

* ~of Technoiogy. Sponsoring organization is the AMO
* Lanuag.Control Be md , Wright Patterson RFD,Oh.

START

CO MLfathLib;

REF PROC Exp Rnt(Arg) F 39;
BEG IN
ITEMI Frg F 39;
END

REF PROCAX o P~nt(FA"g) F 39;
BEG IN
ITEMI ARg F 39;
ED

REF PROIC "10gl Rnt(Rig) F 39;
BEG IN
ITEM Arg F 39;
EMI

RE PROC Scrt RENT(Rrg) F 39;
KEai"1
ITEM Arig F 39;
END

RIEF PROC S in RENT(Xx) A 1, 30;
BEG IN
ITEM Xx A 1,30;
ENID

REF PROIC Cos RENT(Xx) A 1, 30;
- BEGIN

(TOl Xx A 1, 30;
Slm
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FIEF PROC To FEtT(Xx) A 12,18;
BEGIN
ITEN Xx A 1,30;

op.'

FEF PROC Cot FENT(Xx) A 12,18;" ~BEGINI':"

ITEMI Xx A 1,30;

FFf PIM ASIn FfIT(Xx) R 1,30;
BEG I wN

ITEO Xx A 1,30;
EM'I

EF POC ACos FEfT(Xx) A 1,30;
BEGIN
ITEm Xx A 1,30;

END

FEF PROC FITan FET(Xx) A 1,30;
BEGIN
ITEM Xx A 1,30;
EMD

REF PFOC Sinf E]T(Xx) F 39;
BEGIN
ITEM Xx F 39;
END

REF PFOC Cosf RE"TCXx) F 39;9EG IN...-"

ITEM Xx F 39;
END

REF PROC Tanf RET(Xx) F 39;
BEG IN
ITEM Xx F 39;

END

REF PROC Cotf FENT(Xx) F 39;
BEG IN
ITEM Xx F 39;
END

REF PROC RSinf RENT(Xx) F 39;
BEG IN
ITEM Xx F 39;

FIEF PROC Cosif RENT(Xx) F 39;
BEGIN
ITEM Xx F 39;
END

-" 118 -'-'.-
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FEF Pffle RTanf Ref(Xx) F 3g;

ITE Xx F 39;

END

TERMI
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- - - -----~ ~ -- - -- - - - - - -- - - - - - - - - - - - - - - - - -

* DATE: 29 August 19es
* VERSIONI: 1.0*
* tagf: Ito~ess
* lIOOCE NIUMBES: 1.0*
* DESCRIPTIONI:*

*This Iopo is necessaryj to reference routines that owe
* ncesaryfor testing and performance vialuation of ol mawth
*funct I am dew Ioaped for the 17M0.

* PSSEVlRIA9E9 N/A
RETURNS:. N/A
M ODUJLES C&LM: K/A

*AUTHOR: Cpt. Steme A. Hotchkiss and
*Capt. Jenni for Friead

H HISTORY: This project on unidertaken as a thesis project for
* partial fulfillment of re~irnts for an 119 dog-e
* in Information Science from the Air Force Institute
* of Teawilogy. Sponsoring organ ization is the ASO
*~ Langiage Control Branch, Wright Patterson AFB,Oh.

START

COl'P001 loRets;

The following I TEIs are reW 1 red to pr In t a carr-i age re turn and
I line feed on a terminal conneted to a MIIL-ST1D-1750 computer

OEF ITEMI Carriage STATIC U 15 2573;
DEF I TEII CALF STATIC C 2;
OVERLAY Carriage: CALF;

*The fol lowing referenced subroutine is written in 1750 Assembly language
*and Is used to print ch aratr strings only. Noncharacter types will
*have to be converted before callIing this routine. The fol losing DEFINE Is
*recommende for all rout ines calI ng ObcS Im:

* DEFINE I1RITE'STRING(R) 'Printc( ~DIZE(!R),LOC(IR))-;

An o eample of a typical call follows:

* ITEMI Example C 2;

o WITESTRIMG(Example);
r

REF PROC Printc REIIT(Length, Mlessage);12



ITEM Length U (9lTSINMO1);
I TENI Messge P;

-ElOM 0:i '

' The fol lowing referenced routine is necessary for routines wishing
* to corvt floating-point values to a di"acter string

FREF P FItToChar (Frg) C 20;

ITEM rg F 39;

The fol lowing refwwce routine is rwecesml for routines wishing
to convert fixed-pint values to a chmrater string. The vriale

*Int~verlay ant be overlayed on top of a fixe-pint variable aid
BltslnFao Is o n integ value Indicating the nu.bw of fraction

" bits in the fixed-point value.

FIEF PROC FIxToChr (Int verla, B1tslIfrr:) C 20;
BEGDI

ITEM Int.Cerl¢y S 31;
I1E1 I tsInFrac U 8;
EMI

TERM

PL
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* lATE: 29 Rugust 1gs *"
* UERSIONI: 1.0 *
* MFIIE: FixToChaor *
* MODULE NUBE: 1.0 *
* DESCRIPTIOI: *
* This routine is used to convert fixed-point values into *

dl mactar representation. This routine was necessair for *
testing aid perfo e evaluation of math routines developed

* for the 1750 *
SPSSED VARIABLES: IntOverla - t Intee Uariabile Overlayed on top "

* of a flxed-pint value *
• BitslnFrac - the number of fractional bits of *

S the fixed-point argument *
R ETUNS: a 20 character rpresentation of the argument *

* MOG CALLED: FItToChar *
AUTHOR: Capt. Stein A. Hotchk 5iss and *

* Capt. Jennifer Fried *
* HISTORY: This project was undertaken as a thesis project for *
* partial fulfillment of requirments for an MS deire *
* in Infor mtion Scienc froe the Air Force Institute *
j * of Technlogy. Sponsoring otganization is the RO *
"• Language Control Branch, Wright Patterson B,Oh. •

START

REF PROC FItToChor (Arg) C 20;
BEGIN
ITEMI Rrg F 39;
END

i F i xToCh ar P c d e .---

CEF PROC FixToChar (IntOverl, itsinFrac) C 20;

BEGIN "";

ITEM IntOverla S 31;
ITEM 8i tslnFrac U 8;

TABLE Overlays (0) II 3;
BEGIN
ITEM rg F 39 Ps(o,o);
ITENRFrgxp S 7POS(8,1);
END

Rrg(O) - ( F 39 *)( Intlverily );
ArgExp() xp(O) - (* S )( BitslnFrac );

FixToChar a FItToChar(Arg(O)) r

RETURN;
END

TERM
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*DATE: 29 Aujgust 1965
* LERSIOII: 1.0*
*mwE: FitToChar
*MOOIJE NUMBER: 1.0*

WW OCIPTIOtI:
*This routine is used to convert floating-point values into *
* ~ ~ h ~atr representation. This routine was necessaryj for
* testing and performance evaluation of math routines developed *
* for the 1750
* PASED I.IAULES: Arg - the value to be converted

" FTLIRNS: a 20 character r~resstat ion of the arg;wmt
" MOOLLES CALLED: none
" AUTHOR: Cpt. Steven A. Hotchkiss and*

* C~pt. Jennifer Fried *-
*HISTORY: This project ons undertake as a thesis project for *

*partial fu If IlIIment of requ Iirinutts for an MS degree
* ~in Information Scia-c froe the Air Force Institute *
* of Tecnlogyj. Sponsoring organization is the ASO

I Language Control Branch , Wright Patterson RFB,Oh. *

-- -- - -- - -- - - -- - - -- -- -- - - -- - - - -

START

DEP PROC FitToChar (ftrg) C 20;

BED IN

OEWIME Yes Ila. V
DEFINE No "1DO";

ITEM ft'g F 39;
ITEM Fraction F 39;

IITEM Temp F 39;
ITEM Result C 20;

ITEM Ix U 8;
ITEM ly U 8;
ITEM ExpCnt U 8;

ITEM Megxp 9;

ITEM Char~al U 8;
ITEM Crep C I;
MALAY CharRep: CharUal;

ITEM ZeroRep STATIC C 1 *0';
ITEM Zerokl STATIC U 8;
OV~ERLAY ZeroRep: ZerioUa I;

CONSTANT ITEM Zero F 39 =0.0;
CONSTANT ITEM One F 39 a1.0;

5CONSTANT ITEM TenF Ioat F 39 -10.0; r
CONSTANT ITEM PtFive F 39 a0.5;
CONSTANT ITEM PtOne F 39 a 0. 1;
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Remilt -a 0 DO0_-0 -0 0 .E00

I F Ag Zero;
BEGIN
Fraction * frg
BMT(Resul t0,t)

ELSE
Fraction *rg

IF Fraction 4tne
NM~gxp aYes;

ELSE
ftgExp a No;

ExpCnt aO;
WH4ILE (Fraction On)

BEG IN
ExpCnt a ExpCnt + 1;
Fraction a Fraction /Turf Iloat;

IF (N~Exp a Yes) RtM Fraction 4>Zero);
BEG IN
BYTE(Result,17,I)

WHILE (Fraction 4PtOne);
BEG IN

Fraction Fractin *Tuf Ioat;
EIID

EIIO

Iu*a 0 ;
WH4ILE ((Fraction 4> Zero) AlM (ly < 13));

BEG IN
Temp -Fraction * TenFloat;
IF ly 12;

Temp a Teop + PtFive;
Ilk Chm'4JaI n(* Ug*)(T )

Fraction a Temp - (*F 39 *)( CharVal )
ChawValI a Chm4.II + Zwvoial;
BYTE(ResuIt,lIU+3, I) aChwRm;

lya Ilj + 1;

Chu~a.aI a US9 *)ExpCnt M10 10) + Zwvol;
BYTE(Rem I t, 1g, 1) s CharRep;
ChwVaI - (* US9 *)(ExpCnt /10) + Zerot Il;
BYT(Rem I t, 1B,1) a ChwArW;

FitToChar *Result;
it

RETURN;
£11

TER
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T ITLE HOL(PAIMTC)
MODULE PR I TC

*DATE: 4 September18
*VERSI OM: 1.0

* WAE: Printe
* mODUI tUIBER: 1.0
* DESCR IPT IOhN:

* This module is called to print a character string onto
* a console that is coifteted tooa MI I-Std-t750 coeputer

*PASSE VARRIRELS:
* LEN6TH-3 - this variable contains a count Of the nrAber

*~C chaVc I to print
* 1ESSAGa-this iso a ocation pointer forthe String tobe

* printed
*RETURN:

*prints mesages On user COnlsold
* MODULES CALLED:
* AUJTHOR: Capt. Steven A. Hotchkiss and

* Capt. Jennifer Fried
*HISTORY: This project was oixdrtaiken as a thesis project for

*part IalI fu IflllIImsnt of PewuI relents for an MS degre
* in Information Science from the Air Forc Institute
*of Ted w ooW. Sponsorinmg Organ ization is the ASO
*Language Control Branch', Wright Patterson AFS, Oh.

*$4-SEP-95/16:Og:29

PRIIITOFF 00D NOT LIST METAS

*START OF META DEFINITIONIS

OATAS META 3 . RPETE PRESET MIETA
LF(O) EQ.J

-LOOP 2. 1, "R(13F -1
VOID OF ..,),WMI,....DRTRS
GOTO TEST

NORM LAGIEL
DATA OF(-)

TEST LOOP1TEST
MEMD

__TSMETA 3
- ~~LOOP ,,F,)

DATA OF(-)
LOOPTEST

LENGTH 25,ggM

SECTION ET 0 .CSIECT META

- LOWP 2,1,31 ,.

SC(DL)*(_) CSECT
LOOPTESTr
MEMO
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*OEBERTE RED EcPJATES META

REO META
xmC LOOP 0,1,15
NC(R) EOU XNC

LOOPTESTji

BSFE E.UITES

812 ~ EQU 1

815 EcQJ 15

C ONDITION1 CODE EcVATES

JIOP EQU 0
..LT EcU I
£0Q EOU 2
-.LE 01.1 3
-ST 01.1 4
-ME EOU 5

-Cy EQU a
LT EQU 9

-LLE EQU 11

LIIE 01.1 13
-cE EOIJ 14

.. LIIEWJ 15

*END OF EOURTES

REG
SECT IONl
PRINT
DEFINE PRINTC

PSSDATRS ECRJ 3
PSSCOH11$ EQU 4
PSSCOCES 01.1 2
* NO REF OATA DECLARATIONS1
* NO SYREF/TYPE/RBSOLUTE DECLARATIONS
* LOCAL PAUTOMATIC DATA *** SIZE IN OD- 2 DECIMAL 2 HEX ~

* LOCAL JTOI RI C DATA FOR PROC PRINTC:
*STACK FARI ** SIZE IN UDROS - 2 DECIMAL :2 HEX :

91..00O3EF ECIU HEXCO) SIZE.- 2
LEPIOTH-.3 EQU HEX(O) .SIZE a
MESSAGE..3 01. HMX1 I SIZE =
* END OF LOCAL WrTOIRT IC DECLARAT I ONS
* PSECT SOAT I S EMPT
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* R3 a LOCAT IONI OF CHRACTER STR INO

PSSCOOE ORIGIN HEXCO)
PRINTC EOU $

ORIGIN HEX(0002)
*RISP R2, 1 ADJUST C2HARACTER COUNIT

SFI R2, I IST TW MRM8EPJIVET TO
*~1 m P2.RO t2/2)

BLE 1L.D9 BIRMCH OUT I F I LLIEGAL CMA COUNT
OUTPUT EQJ

XIO IR,CS REAID CONSOIS STATUS
TSR 1, C*E5OfCK STATUS BI1T 1
BEZ OUTPUT I F OFF, LOOP BACK UNT IL CONSOLE FRDY
L R5,, . GET MEX TWO CHARACTERS OF NESSAGE
XIO R5,CO PRINT BOTH CHARACTER
RISP R3,1 .POINT TO NEXT TWO CHRAACTERS

*soJ R2, OUTPUT .OECREIEIT LOOP COLET, 00 W"C I F MORE
IREQU

RISP R15,2
POPM R2,R3
URS R15
ORIGIN HEXCOOCO)
PSHM R2,R3
SISP R15, 2
ORIGIN HEX(00 13)
EMD
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• *
* DATE: 10 October 1985
* VERSIONI: 1.0*
* NAME Refiat *
* IQOQI. NUMBER: *

D CESCRIPTIOfN: *
* This routine Is used to onuert ITS LINK film Into *
* a format that can be loaded into the SPERY 1531 *

* coeputer (175CR architecture). The ITS film are*
S'.SO' files and mist be in the 90 column remord fort *

• described In the Elf ITS Load Module ICD (COtL o1005 *
Scontract F33657-03-C-0244). Use of the command file *

* LINK17UO.COM to lin all compiled modules wilI insure *
* that thee records are of the right format. The format *
• of the SPERRY loader records are defIned in "ppendix 9 *
* of its pogiraimi referece m ual. The bjtes of all *
* binary data fields mat be swapped (i.e. the high *

Sorder bits of a wo are swapped with the low o-der ) *
SThe only tye ITS record converted are binary and *
Send racord types. It also igtores all protection *

• indicators, and can not handle expanded minory jobs. *
* MWhen all object files are copied into a single object *
* for Iinking by the ITS LINKER, the main procedre must *

* be copied into the file firstIllIIl Otherwise, this *
• application will have no way of determining the point *
* that execution is to begin. The 'end' record created *

Sby the ITS linker contains the lowest addrress of the *
* load module, and this application assuaes that the *
* routine begins at that point. The ITS file contains * -'-
,_ * dataflelds that are In HEX character representation, *
~i* and the SPERRY 1631 expects binary data fields; *
.* therefore the ITS data mat also be converted to *

* binary *
• PASSED VRIAIL.S: N/A *
* IETIURNS: N/ *
* MOCULES CALLED: OetHr *
* lReadf *

""* Printf *!::* clrtup * :
* IntFil *

*Wite~ed
* RTHOR: Capt. Steven A. otc liss and *
* pt. JanI fer Fried

HISTORY: This project was undertaken as a thesis project for *
* partial fulfillIment of reqirements for an MS des *"
* in Information Sciec from the Air Force Institute *
• of Technology. Sponsoring organization is the RSO * L
-* Language Control Branch, Wright Patterson RFB,Oh. *

* *%

STARTr

!COIOC(lo00to);.:: :. !I Ce3POCA ('loCal Is' ); -.

IC'tfO (CRfIltCpl');
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X PROORFM Reftiat;

BufPtr(O) - 1
ButPtr(1) a1;

Initial Ize 10 Filem
I ntF II;

*Got Heaft- info for Leader File
GetHdr;

WHILE NOT Eof,

"Read thefis80clm
Rleadf (: I tsRcd, Eof)

UPut Loader Inoitolhiga Mmory Locations
lWds InRcd a - lO - Asci 10;
PRdrC(O) a od()
WIC(O) a lWdl(O);
IWd2C(O) a d()

*9 Wd3(O) m 11d3O);
lWW4(O) a Ud4(O);
Ud5C(O) = MOdM0;
WLIdC(0) a IWd(0);
WdC(O) = Ud7(O);

UInitialize the Output Buffers
FOR Ix: 1 BY I WHILE lx'33;

CharToBln(Ix) = 0;

FOR Ix: 0 BY 1 WHILE lx(53;
Outsuff(lx) a 0;

Convert Char' To Bin and Pack It
FOR lx: I BY I WHILE Ix~32;

BEG IN
IF (RscIlO<CuharToIn(Ix)) AM (CharToBn(x)=.sci);

CharToBincix) w CharToBln(Ix) - Rsd 10;
ELSE

IF (RsciiA~whorTo~in(Ix)) AMO (CharToein(Ix)i~sciIlF>;
CharToincix) s ChrTain(Ix) - RteiuR + 10;

Hoif~yte(ix) * Nbbies~ix);

IF Typ(O)
BEGIN "This is a binaryj iveard"

IF SufPtr(Suff) + Udslv~cd (=51 AMI LdPT -Laddr(O);
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"",.*...* BEGIN "Old Recordand still room forme data fields.

" Flip Flop the position of each byte of a 1750R word -

FOR Ix: 0 BY I WHILE Ix'jdslfnRcd;
BEOIN
BufBteO(BufPtr(Buff)+lx) - FieldL(lx+i);
9uf9 lte1(BufPtr(Buff)+Ix) u FieIdl(Ix+l);

- Point to alere info from next ITS 90 colmn record"
- is to be placed into this loader remord
kufPtr(luff) a BufPtr(Buff) + l4dslnRcd;

" Update load point so the next ITS record can be checked to "
see if It belongs in this loader rec ..-

LdPt L'dPt + UdslnIrcd;

IF BufPtr(Buff) - 61;
BEOIN " Loader Record is full and needs to be written

Wrr
- -II~bdliruffe 60;"

IRcdTuPl * Reci iB; 2:"-

BEGIN Old record and not Fnu rc or new remord

IF Ldt *Laddr(O);
IN " Same loade cod but not enouh raoe for all-

U data fields In ITS remd

SOW Bytes of ao going into loadr reco

FOR Ix: 0 BY I WHILE BufPtr(Suff>'ix ( 51;
BEGI N

ufOte (BufPtr(Buff)e.lx) a Fi -ndL(x4l");
Buf~yte1(kufPtr(Buff)lIx) - FieIdH(1x41);
LdPt a Ldt + 1;

o rie " the full r rcod out

IWdsln&.ffer a 60;
icdTlpl -Ted-IS;

Set the load point for this new loader recod
Ldd(O) a Le~t;

Swap bytes of the other ITS data fielids and place them i nto
recor. If the next ITS record doesn't hav the load pointU
computed here, It should be the first entries for another
l ode record
FOR l: ix BY I 4HILE ly udsflxcd;

BEO I7
Suf9'tO(BufPtr(Buff)+ly) a Fieldl.(I+l);
uflytel(BufPtr(8uff)+ly) a FieldH(ly+i);
LdPt L LdPt + 1;

•.................................
14dsnilufop 60;"-7'
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END

END "Sames record not anoghrom

EL~SE

BEGIN -this is the start of a ne loadr recmd,

IF NOT FirstPass;
OEGI N

IF kufPtr(Buff) 43 1;
BEGIN Othe last reor didn't get filled up, so it

hasn't been written yet. The routine
W"ibteed sets BufPtr to I before exit

RcdTypI * sci 8II;
UdsirbJffer *BufPtr(Buff) -1;
IWrIte~cd;
ENO

END *and not first pass

FirstPass - False;

Set the load point for this l oader reorm
LdAd(O) uLaddr(O);

Swap byjtes of ITS data fields going Into loader recor
FOR Ix: 0 BY 1 WHIILE lx < lWdslnRcd;

BEGIN
Buf9~te0(Ix1l) a FleldL(1x41);
Buf~qtal(lx41) m FieldH(Ix+1);

BufPtr(Buff) - IWdsinRcd+ 1;
Ldt *Ladd"(O) + Udslnfled;

END "aid new r ecord

END "and of old recor not enough roF -Or new re4cord

E60 'end of this is a binaryj recrd

ELSE

BEGIN "this is an execution af s reord
IF Typ(0) a Eu

BEG IN
RcdTyp I a SM1; "blIa*k E"
Clut~uff(0) a Laddr(O);
Oit~uff(1) a 30; -asci i recor serator
Wite~d;

END "end execution address record

END "end while loop-

-r l"te end Of f il l0oader record
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RcdTp I.8=2; b I a*F

- Out~uFF(O) - 30; asci i cwr~ spu aor

Clown up Flesw ued"

TERMl
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* .*

* OlE: 10 Octobe Ig85 *
* UERSION: 1.0 *
* MI: tit d * -.
* MODULE NUMIER. 7 *
* OES IPTIO1: *
* This routine is called by Reflt to do 10 stuff that *
• neds to be done throu t themain procedure. Three *

* types of MPERRY 1831 odw recom we writteni:
• Binary ,Execution, md End of file. If the record type *
• is a binay .erd, this routine computes a dwwd um *

Sfor It and toks It on to the and of the reco . Then *
• the eord type is orittin out fol Iled by the binary *

e eord. If the recor type Is an execution recor or *
* an and of file record, the record type Is written OUt *
Sfoillomed by thercrd. The varilble 'Buff' is a

* global variable that points to the rem to be
* mwitten. *
* PASSEDJAR I BILS: None
* RETURNS: Nothing *
* IODULES CALLED: Printf - a FORTAN 10 routine *
* AUTHOR: Capt. Stevn A. Hotchkiss ad *
* Capt. Jennifer Fried *
* HISTORY: This project a udertaken as a thesis project for *
* partial fulfillment of requirements for an MS deree *
a in Information Science from the Air Force Institute a
a of Technology. Sponsoring organization is the ASO *
ia LngLuag Control Braidh, right Patte sorn RFB,Oh. a

* *

START

IcRfttCp L
1 COMPOL * (o~ata,

REF PROC Printf(RcdTyp,Buffer);
'L INKGE FORTRR;
BEGIN
ITEM RcdTyp S 15;
ITEMI Buffer C 128;

DEF PROC Writecd;
BEG IN ,.

IoopCnt * Idslniuffer;

If RcdTypl R IciiB;

ChkSum -48'0000';
Out~uff(O) - LdRd(O); r
...Sm = ChkSu XOR OutBuffB(O);

Outiuff(1) UdsIriBuffer;
ClhkSum C thSum XOR OutBuffB(1);
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FOR Ix: I BY I WH4ILE Ix 'uLoopCnt;
BEG INta OUTBEFF(1x41) aBufI~d(Ix);
ChkSita uChkSum XOR Out~uffS(lx41);

OuttufD(Ix4) UChk*&a,

Pi-intf(RcdTypI ,OuFId);

PrIntf(RcdTypl,OutFId);

ajfptr(sif f1) ;
9i..f f RBS( 1-%f f;

FETURII;

I
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* DATE: 10 October 1*8
* VERSIONI: 1.0 l

* NNE: loCalls
* IOOULE MI.IMER: g '

DESCRIPTION:
* This compool is required for Reftiot to reference its
* associated FORTRAN 10 routines

*PASSED VARIABLE: N/A '

RETU.RNS: N/A
* OOLLES C..LEO: N/A
'S UTHOR: Cpt. Stevaen A. Hotchkiss aid

*Cpt. JemnI for FrIead '
'SHISTOI This project was undertaken as a thesis project for '

'SpartlIalI fulIf IllIment of requI rements for an MS degree '

'S in Information Sciencb from the Air Force Institute '
'Sof TecInoogqj. Sponsor ing or gatizot ian i s the FED

'S LaguageControl Branch Wright Patterson RFB,Oh. '

START

COMPOOL IoCal Is;

REF PROC Wbri te~d;
BEG IN
EMD

REF PROC GetHdr;
I L IIKAGE FORTRAN;
BEGI N
ENID

REF PROC Readf:I ts~cd, Eof)L
1LINKAGE FOATRI;

BEG IN
ITEMI ItsRcdC 80;
ITEMI Eof B 1;
EID

REF PROC Printf(RadTyp, Buffer);
L INHKAGE FORTRAN;

NoGt"I
ITEMI AcdTyp S 15;
ITEM Buffer C 125;
EID

REF PROC CinUp;
ULNKAGE FORTRAN;

BEG IN
END

REF PROC IntFiI;
L I WAGE FORTRAN;

BEGIN
EID

TERM
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* OATE: 10 October IMg8 *

V UERSION: 1.0 * .,
* MARE: loat *"
* MOLLE NlII9ER: 8 *
* DESCRIPTION: *
* This compool defines all data reW iired for the DIL *
Sroutine Reflat and its associated FORTRAN 10 routines *

* PASSD UARIAILE: N/A I
* RETURNS: Mil/A ,
* MOULES CALLED: 1/A *
* AUTHOR: Capt. Stwvem A. Hotchkiss and *
i Capt. Jrmi tifr Fried *
• HISTORY: This project was undertake a thesis project for *

partIal fulflilInt of requilI rwts for an MS dwy *
• in Information Sciene from the Air Foc Institute $
• of Tec'wrology. Sponsoring organization is the ASO *
* Lanl~w gu Control Brwch, Wrbighit Patterson AF8,Oh. *

*o *

START

COtMOL loOata;

DU ITEM Infil C 10;
DEF ITEM Outfil C 10;4 EF ITEM Filna C 5;"'

ITEM C 80;

DEF TABLE ItsTable(O) M 20;
BEGIN
ITEM Addr C 4 POS(16,00);
ITEM Tyjp C I P09(18,01);
ITEM Cnt C 1 POS(24,01);
ITEM Cntl S 7 POS(24,01);
ITEM Udl C 4 POS(08,03);
ITEM U:2 C 4 POS(18,05);
ITEM IWd3 C 4 P0(24,07);
ITEM Ud4 C 4 POS(00,10);
ITEM Wd5 C 4 PO8(08, 12);
ITEM kZ C 4 PO8(18,14);
ITEiO Wd? C 4 POS(24, 15);
END

DEF ITEM ItsRAd C 90;
OUELRY ItsRed: ItsTable;

DEF TLE OutRcd (0:52) T 1 WI;
BEGIN
ITEM OutBuff S 15 POS(0,0);
ITEM OutBuffB B 16 POS(O,O);

DEF ITEM OutFld C 128;
OVERLAY OutRed: OutFId; "

DEF ITEM Eof B 1;
0EF ITEM RcdTypl S 15;
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OEF ITEMI PcdTyp C 2;
- OUE&W RcdTypI: RdTyp;

r ~ ~ OUEIRY tnfil, outFiI, Flnam, Meader, ItsRod, OutFId, Eof, RcdTyp;

TERMl

AAS ~
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* DATE: 10 October 1Q85*
*IJERS I ON: 1.0 L

* MAPE: RftltCpI
* MIODULE MUM9ER: 10*

* ECIPTIOM:
*Thi1s coupoolI conta ins all the varlo ble s and table s *

* ~that are used to unpack ITS I i nkervm reod, packs them
* and cownverts the HEX characts to binry data fields,
* ma then places them into a SPERRY 1831 loader recrd

" LaTHR:aSen ontrotrachis UitPtesn Fdh

inF ITfor Lin Scec frmte i ore;sttt

DEF ITEMI Udslud S 15;

DEF ITEMI LoPt S 15;
DEF ITEMI lnBuffe S 5;

DEF ITEMIx Zer STTI 1 0

DEF ITEMI Asc SI S17;

DEF ITEMl Zie STATIC C 1 '0;
DEF ITEMI Rsciig STATIC S 7;
OVERLAY tZero: Asclii;

CEF ITEMI Min STATIC C 1-A9;
DEF ITEMI AsclA STATIC S 7;
OVERLAY ARn: Asci;

DEF ITEMI AR STATIC C 1I W;
DEF ITEM AsejiF STATIC S 7;
OVERLAY FR: Asci iF;

DEF ITEMl 98 STATIC C I2.6;
DEF ITEM Ascii9 STATIC S 15;
OVERLAY 98: Asc iiBF;
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DEF TF43LE LoodPoint (0);
BEG IN
ITEMI Ldd S 15;
END

DEF TABLE BufStut (0:1);
BEG IN
ITEM BuIPtr 9 7;

OWF TABLE Pockedl~od (0) U 8;
BEG IN
ITEMI Rdd'C C 4 P09(0,0);
ITEM UdiC C 4 P08(0,1);
ITEMI Ld2C C 4 P09(0,2);
ITEMI Ud3C C 4 P09(0,3);
ITEMI UdC C 4 P09(0,4);
ITEMI WId5C C 4 P09(0,5);
ITEM UdOC C 4 P09(0,5);
ITEM IWdC C 4 P09(0,7);

END

DEF TABLE Chm-Cortvm't (1:32) T 8 W;

ITEMI CharToBin S 7 P09(0,0);
ITEMI Nibbles S 3 P09(4,0);

END

IYJERLAY PackedLcd: ChwrConvert;

DEF TAIBLE Hex~uf (1:32) T 4 U;
BEG IN
ITEMI Hoif9~to S 3 P09(0,0);
END

DEF TAIBLE Paklts (0:7) T 18 U;
BEG IN
ITEMI Laddr S 15 P09(0,0);

DEF TABLE Bi1nFi1elIds (0:7) T 15 W;
BEGIN
ITEMI Field S 15 P09(0,0);
ITEMI FieIdH S 7 P09(0,0);
ITEMI Fieldl. S 7 P09(8,0);

END

COJERLRY IHoftf,Ix: Poklts: Binfields;

DEF TABLE DatFields (0) II 1;
BEGIN
ITEMI B.d9~te0 S 7 P09(0,0);r
TEMl kilfqtel S 7 P08(8,0);

ITEM Buf~d S 15 P09(0,0);
END

TERM
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C C
C DATE: 10 October 19 C
C VERSIONI: 1.0 C
C NAMIE: lntFIl C
C NOOLLE NIJIBER: 5 C
C DECIPTIOM:
C This routine Is called by the JOVIL~. routine called C

C naeof afile that as ra tdby an ITSlink, C
C promt the user, for the nne of a file that the C
C reformatted ITS file is to be written to, and then C

C opens bothfilm. The Input fI112 must bea".SOO" il
C and the output file is a ".DAT" file. C
C PASSE I ILES: Mone C
C FETIS : Nothing C
C GLIBRL UM ALES: All vaiables used wre global, and hame been C

Ruo:CALD defInred i n Ae ow~ (OF)L co Iled IloData C

C Capt. Jennifer Fried C
C HISTORY: This project audertaken as a thesis project for C
C partial fulfillmient of req.irents for an 116 deg-m C

*C in Information Science from the Air Force Institute C
CofTcnlg.Sosrn roiainIth S
C LagaeCnrlBadCrih atro Fh
C

Subroutine lntFilI

IMPLICIT INTEGER (R-Z)

CHRRAC ItEr* F1 Inam
CNARACTER*10 infil, Outfll

WRITE(*,*)' Enter File Nmoe (Miax 5 Characters)
REA(*, 10)Fi mna

10 FORIIAT(R6)

I * ll10(Fini,.) 1
IF (I.LE.0) THEM

I a I MDEX(F I Inao, I
IF (I.LE.O) THEN

END IF
END IF

Infil a FiInam(1: I)//'.SO*
Outfil a Filnin(1:I)//'.OAT'
URITE(*,*)'Input File a ',lnfil,0Output file * ,Outfil

OPEH(UNIT a 2, WKN - I nf ilI, TYPE a 'OLD', FORM ' FORMATTED')I
OPENCLEIIT m 3, HAME = Ou tFIlI, TYPE z 'NEW',

IFORM 'UMLFORIRTTED')
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C C
C DmT: 10 October 195 C
C IJERoI ON: 1.0 C
C PRE: GetHdr C
C MIODULE NUMB9ER: 2 C
C DESCR IPTION: C
C This rout Ine per fore 10 for a JOVIAL routine cal led C
C Refliat. I t requests a user to Inputoaone line C
C hedethat willbe placedIn ailoaderfile. C
C P VSE ARIABLES: Nobne C '
C RTURNS: Nothing C
C OLDBRL AR I LES: AllI variables used are global, and are def ined In C
C the common (CIPO)called loDato C
C MOOULES; CALLED: None C
C AUTHOR: Capt. Sta~em A. Hotchkiss and C
C Capt. Jennilfer Fried C
C HISTORY: This project was tudertaliwn as a thesis project for C
C parti1alI fulIfill1ment of requiremen ts for an MS degree C
C in Information Scienc from the Air Force Institute C
C of Ted logy. Sponsoring organization is the ASOD C
C Language Control Branch, Wright Patterson FD,Oh. C
C AA6C

Subroutine GetHdr

IMPLICIT INTEGER (A-Z) .
IMTEOER*2 Sacr
CHRI R9 Header
CHRAC IRF I AS
DATA FIS/30/

Spacerl = 0
WR~ITE(*,*)' Enter Optional I Line Header Text
Read(*, 10 )Header

10 FOWRI(ABO)
WI ITECC, *hkaImdwq

WIriTE(3Y' 07/Header//ASL.
00 20 1-42,54

WA I TE(3 )Spacer I
20 CONTINLE
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--- -- --- -- -- - -- - - C
C DATE: 10 October 19S5 C*C VERS IOMI: 1.0C

C W:Printi C
C MtOBILE NIIBER: 4 CC DESCRIPTIOM: C
C This routine Is called byj the JIAL routine called CC Qeftit. I t i s used to or ite SPERRY lOWde Irecou t C
C to a -. DATa file. The name of the fli being written Is C
C stored in the globalv %nible OutflI I wich wsset In C

*C the routine called IntFil C
C PASSED (ROLES: None C
C RETIRIS: Nothing C
C GLOBAL VAR IAI Alt variables used are global, and ore def ined In C
C the common (CPO)called Io~ata C
C MODLUES CALLED: None C
C AUTHOR: Cpt. Stw.qwn R. Hotchkiss and C
C Capt. Jennifer Fried C
C H ISTORY: This project wa wndetaken as a thesis project for C
C partial fulfillment of r@Wiuirinlts for an MSG doge C
C In Information Science from the Air Foe Institute C
C of Technology. Sponsoring organization Is the ASO C I.,

C LagaeControl Brna , Wrigt Patterson RFB,Oh. C
C

Subroutine Printf(cdTyp, OutFld) Lf
IMIPLICIT INTEOER CAZ)
O4IATER*2 RcdTyp
INTEOER2 OutFid(1:53)

NRlTE(3)RcdTp,(0utFld(l), 1 1,53) 1.
WRITE(*,*)Write next recor

END
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-- -C -- 4 -IA. w. A4

C C
C ORTE: 10 October IM8 C
C VERSION: 1.0 C
C 1'Af: Readf C
C IIOOULE ILIMBER: 3 C
C DESRIPTION: C
C This routine is called byj the JOUJLN routine called C
C Reftiat. I ts i s useid to read S0 co I un eoord created C
C by the ITS linker~. The nowe of the fil being read is C
C S totm in the global variable Infil which was set in C
C the routine called lntFll. This file Is a ".90" file C
C PASSED ft" LS hn C
C RETLIS: Nothing C
C GLOBAL VARIASLES All variables used we global, ard are defined In C
C the common COOL)called loData C
C MODULES CALLED: Nlone CL
C AUTHOR: Capt. Steven A. Hotch~kiss and C

*C Capt. Jennifer Fried C
C HISTORY: Th is proj ect oas undertaken as a thes is proj ect for C
C partial fulfillment of requiremen ts for an 119 degree C
C in Information Scimnc from the Air Force Institute C
C of TechnologyJ. Sponsoring organization is the ASO C
C Lamguage Control Branch, Wighl~t Patterson RF9,Oh. C
C C

Subroutine Readf(lts~cd, Eof)

IMPLICIT INTEGER (A-Z)

CHARACTIER*80 I sd
LOG I CL*4 Eof

Eo f uFALSE.

REO(2, 10, END -20) lts~cd
10 FORtIAT(ASO)

MR ITE(*,*)I ts~ad
OMT030[

20 Eof uTALJE.
30 CONTI IUE

END
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C C
CDATE: 10 October IM8 C

C VIERSI~h: 1.0 C
C Wm : CinUp C

CCt Iegle PTrIOled
C This proutene Is caledte as ah rotiei pRet to os C

patile flillmsedt f qmtor' 1011 ge C
C PASSEDtlo ScienceLES fNmthoirnoeesttt C

CRTMotehnooj pnoingogmitinithRS C

Subroutin CiLM: None
C GLOBAL CR T ITES ERl (vr-Z) sue e lbl n e e ndI

ILS(UI th 2) mcl e o~t
C LTOSELU Cat3) ve .Hthks n

C Cat. Jnnifr Fred

-.. -. -- --- - - -- - - - -- - - ---- C**~~-
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SI RWI750 - sembie a 1750 sourc maile

$i f Ii le Input surces nome of moule f1I11.81

$ 1 Create R lerInp uut f Ile Ul that designates "I I-td-t 5 the target
$ 1 rather then the @itoivSte 17Mta

AMUENI THRGETzfl75OA
$STY *PP .Ui
$ MSIN PI*.UI UI I IM INPUT F ILE (INW)
$ ASSION OPI.SI 111 1 175M 111UUL111fy FILEP1. (INUU)
$ mis4 'P1.0111 w I 0116= OUPUT
$ USIoI 'PP.90 so I SviMOic OUTPUT
$ ASSION 111.1. LO0 I LISTING OUTPUT

ROASIGN LID - IM-..175M 01 I LlURW INPUT

$ SET UIFY

$ rim-OION UI
$ ENIGN 00
$ ri wIGH 0

$ OR IGON 0 1

$ ELITE *PP*.Ui;*
$ SET NOLOIPY
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~~.1 JOU170~lD -JOVIAL COMPILE FOR MIL-8TD-1750R TRET

1 JOU1750 f Ile 1. f Iletype)lo(ptloaul

1 0 .9., 6"175D TESTI Sam /SYNTFKRLNL/8mTATCS
* IIJO 175D1 IEST /HMCHIW-X=cOS

1 ftNte: If the f IlIetupe I S JO, apt Ic OrnOW be typed as 2d pa eter.

1 I Rilting object euiaule ha type .BJ

JOVIAL 'P1' P2' /TRFhE~m17M5filOIHFOCRS/SW2



' :.--I LII7 0 - Link an or m 17OR target abject moduli.
I I.IW17WmJ file .

$ - Il Is object f Ile (containing an or we abject modules)
create object fl l by fIrst deleting ofl .obj fi le for

1 I MW0OLs that don't cantuin Ny Offs. Then use the
fol losing coamom to oeate the abject f Ile

sI PY .OIJ f le.0
1 Io fE 1ile.0 f Ile.IO ...

1 i m ft IIe created by the calplII md the ainmle mI be copied to the
$ 1 s fl Ile, but the X will give an Incompatible flI e owning. Igo'e

1 the owning, the copy is m"e am M-
SI1Create Linker Input file =UI"l .

$IET URIF"Y
$ CTE 'PI'.UI"--

.LINK OATA,LIST,OUEDI lNW"
RLOCR1E LOCAT I OPI1000 ?IOULES.
LIItlND

FISSION 'PI'.UI UI I LIKER CTROL (IIUt)
SION 'PI'.mJ 00 1 OBECT NOILE(S) (INPUt)

* tt 'P,'.90 so I I< NI (OUTPUT)
$ sSI. 'P,.W LO I LI.E LIST FILE (OUTPUT)
$ AIGN LILrJ0WIoi75O 01 I LiY OBJECT FILE (INP)• SI

ITLI11 I AMI 1751 Linker...re logic device Ul
I Output on SO md LO

$ EIION 01

$ innRoSloN Lo
SIIoNa" 01

DEETE PI'.UI;*
S T UE I FY

149



1 *;.C Thisv procdur Is -nom wit eac login.----

1 and -- be -m-4t alr orwio t

i1

1 e tSd I wI .qjs Noe thamt e Ia, vasX- e al lamarset up

$ SET NIYERIFY
*S SET PROTECT I I (SYSTEBI R, CUME: RUM, RM N, WILD: NAE)ADWJLT

5 9 : 14C 3EAMTCH
$ O :mSET OULT

as Om DIECTCA/SIZE
E EDI

* HOME :SET DEFNKLT OUCSOL: CUCL.NTCHMI
$ LO : LOOW.COI
5 LS :iDICCRY
* P0 :i9101 UEISYSP lNT
* PS :m SIM IES lLike NIXpscami
$ PNC :m SHOM OEFRULT I Like UNIIX pod commwi
S R RN

so SHOW54 DEVJICES
so SB :-HlYICS /OLOFL /FILL

* ST :4M TEFMIIA.
* N :10 m 54M USERS I Like UNIIX dw am~
* SIX) SM M1M ~JM$*UEIE/.L

S o m SET TERPtR.1111DTH40
8 132 :m SET TERMINMIlOTHm 132

U $ JOU15 &W &~1750
S LII75:mmILIWI750
$ 8111750 m IIN1750

FMAI7150 M 1750~
$ LKMm WVWOTECT

1 End umwv def Ined keyuI n.

1 OVINE JUJIA LI~MR FOR RMWiIC SERRICHINO FOR URX TFME

1 ISION JMLIWJ:JOW.ISU.MLS ULMIARY

1 The following def Ines the 175R support tools pmd-amis

SLIlEO :m LINKITS
FIRM :m $TOMLS:RRIO

1 EN LM LI".NCOII

EXIT
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- - 7 - ' - ? - -- - - 9 ' 'J C - -V .-~~' ' -2 -~ - -- ----------- - - .-. - -

with TEXLIO0;
use TEXTJO0;

SI th TC*EWW'9IN..POIDE;
use TCOEB1~fJ ICGE;

procedure TOHEBSUiCMNFlITtI Is

- This proedue Is te wain diIver for th Tdmbiiphf ecmalzain
- of a polynial@.

EOn-IZEMLPCLWMfIRL: FLOATJECTOR (0.A.ILOME)
CO. .IUJOK a), 0.0);

-The Is the resulting eamize oefficlits to the polWimlal
SIM: FLOW-LEMT~ (0. .t.FIXE9SO) :m (0. .PIULDEOf a) 0.0);

-This value Is a tumpary mark ovma for the sum of the colIuwis
- of the mork matr Ix

UORILMMhIX: FLORT..MhIX (..~.EA,0 IXE~
(0). .t9X.DEM a) (0.. Ht 090G a), 0. 0));

-Tmprww mark am or1 farming fth eaamized cueff Iciants
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procedur DIVLW-YMCTO (PRIWTJUCT- In YECTOR) Is
-The sole purpos of this routine Is to displayj an Integer vectorb

package INT-10 Is new INTEGERSJO (Intagwr);
us I HT.O0;

begin -Display UJctor.
forl I In 0. .CEUCFJLWCfIN. loop

put (I)
put (a )
put CPAIIWT..J.CMa (I)
nm...I Ins;

end Iaap;
end OtSPAM-1JECTOR;
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oeur DUW-ITObRuIMIW C.VflhE1*UWM InI FRin.WrM)W~ Is

-The sis purpove of this routine Is to displiq a floating point umtoi

package INT-10l Is ne iIEGELIO (Integnb);
wen INT.JO;
paclog. FLT-10O Is nm FLORT-10O (float);
wen FLT-10i;

begin -Oiusplov Float Vecor.
for I In 0.. .CEGEAFJCwION. lowp

put (I);
put (a );
put (FRIMT-EIS R (D));
nes- inm;

OWd loop;
mid DISPNLMLOTJCT
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pr.e4r -IPWH I (PRINTJUTIX: In IMIhX) Is

-awg INT.-10 Is new INTEDELIG Clntagur);

podiog FLT-10I Is ne FLIORT-10I (float);
us FLT-1O;

begin -ODisplqy ratrix.
for' I In 0. .DEEJF.PVWIIL loop

put (I);
put (m );
for Iin 0.. .CEHEFJCMWMIIL loop

put (PRINT.MhIX (I,0));
put " 0);

NW loop;
nm.... Ins;

NWI loop;
encd D ISPLAYJURI X;
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p ocedue DIMMLY..LOTJMTIX (PRINT..MhIX: In PLATJMIX) Is
-The mle purpose of this routine is to display a floating point matrix

podmWg INT-10 Is vim INTERLIO (integr);
wie I HTiG ; _
package FLT-1I s vim FLOff-lO (flout);

begin -Olqpiq Float fttrix.
for' I In 0. .EEAF.POWIRIf loop

put (I);
put (a m)
for J In 0.. "LMEJFJ MIIIiI loop

put (PRiNMMMIX (1,0));

it~ in;X

WW loop
num-II ne

wd loop



- - - -- - - - - - - - - - - - - - - - - - - - - - - - ;- -- - -~- '

begin -dqjtf Eanuiiztion.

INW-TCaFP IC IENTS
put Clviput Cofflenuts);

OILM-JLOW-MECTOR (CWICIEMI);

num.I Ine;
put ("Td'bytmt Polyrtomiale);
naw..I Ins;
DIWPLWI.MhI X (TOWEISIEFCMWIA);

F-I".. LLF-CHVSW
put (lo sof Tdmbufe);

0 1 SPLWFLOmT.JM hIX (FCER.LAF...TOEDYE);

--Osurote the work atr Ix usmd I n the f Inal I alculations of the economized
-polyrioiai. Again th ecmtrix Is lam triwipilar.

for I In 0.. .DO-.LWf-lVlI1I. loop
for JInO0.. 1 loop

NOUMJTIX Ci1,J) :w fiaot(ILTILIER (D)) F LAS..F-.TOIYUW (1,J)
*CfFiCIIS (1);

OW loop;
WWd loop;

ftrwn0ate te s f wo* arm ou
for J in 0.. .En 9ELN..CLYIONIN. loop

5.31(J) :w SU11J) + (UOSLI91TIX(I,J));
OW loop;

ard loop;

-Parop the f inal addi tions unc multipiloations to farm the i I t.
for I In 0.. (VEELDF.PMLWIRIM - 1) loop

for J in 0.. 1 loop
EcOPNIZMNDICLDI~FlIL (J) :m IZiELPCLYNOIRi (Ji) +

fioat(TCHEW JIg.pLYNCIILS (1,J)) * Sil (1);
ad locop;

OW locop;

put ("Eoanaeizmd Poiwriomiai);

DIMM-W.JOAT.JI.CTR (ECIZ1MJ4PLYNCIRL)n;

aWd TCOUYW.JEHOMi TCH;
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MAE: -eoer1 IM
- ~USIOH: 1.0
- tOE-: TCEF.PACt OE +.

- W THSIITJWM

- ItUTfF ICIEIfTS
~IL.TCHEVWMWUUTL-MlJPL WEI.CTVRIM IIF

-DIIPI.LRYM
-- DISFL .UMCT

- IEHRiOPTIN: Prouid with each routine.
- AU UIFIULES: The input to this systm Is the description of
- the poluinmlal to be emnomized.
- FRTII: The remult of pIaceIng is the coefflaluits of the
- economizmed polynomial.
- MLIN ONLES: T NOiW.1.E=0CI1TiCll

- UTHOR: Capt Jam Ifor Friead and
- Copt Steven Hotdlk.ss
- HISITOR: Oiginal vwsIon, De1, IM "'

oith TEXTIG; us TEXTI"0;

paikage TCHEB EfjA'COKE Is

- This pakage receives the coefficiits of a polynmial that Is to be
- econoized, computes Its Tedtbuhq polinmial, and the po..r of
- Tch o ft ma tr ix . --- - -

-- tinonstrolned type declaations
type HM IX is arraj (integer range ), intege range 43) of integr;

-- ftatrix of Intege value, used to contain the Tdmhptef polynomials
tye FLORT .IMIX Is arra (intege range 4), intege r tge a ) of float;

-- tatrix of floating point values, ped to contain the pomi of
- Tdobyief

tye UECR is art.l (Intege rage 4)) of Integer;
-- Vetar of Integer valuu, used to contoin the muItp Ie of the matrIx

te FLORT-ECT is wrw C Intege ruMge 4)) of floot;
-- Uector of flooting point values, uNed to contain the coefflcients of
- the polynolal

-- ftloble declarations
mX..DIOIT: integer := 19;

-The milmum nbw of digits permitted In a PW. Is nine.
- This value relsunts the mximum Input string length for two mumliers
- and a slam, ".

AX : integer :a 9;
-he aimum value of the largest rnpanet of the polynmial

-Ei ME JFJMIOIIlIL: integW :a 0;
-The actual value of the largest exponnt as Input by the m.

CEFFICIENTS: FLORTJCTR (0..IR! EO) :w (0..IIRX.IEREE =) 0.0);
-- ContoIn, a coeffIcIent for each dmWee of the polynmial that ws"
- specIf lead b the ume"

-LUTIPIM: UECTOR (0..IIRX.EOE) :m (0..IIX.JDEOM w 0);
-This vaector contains the reciprocal of the values contained on
- the diagonal of the Tchalydef polynmalol matrix.
- ed In gouiutlng the economeild polynoaial.
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(0. .I RXJU (0.. .IULD 0));
-The mtrix obtained dm using the Tdobqtef taa.

PUERS.flF..TOWEDYIEF: PLOmT.MIX (0. .HRL8EU, . .. H1UCJEUKE)
(0. .HRXJEUi =3, (0. .I XJEU a), 0.0));

-The matrix farmed dun applying the seodstop of the ecan aztian

functimn MTIM-LTOINT (8: string) return integnr;
-This functimn Is umed to cawt, the input coefficient string into an

-Integer value that equates to the mwatm' andl the domaeinatm'.

-Thn procages perform the functions specifled by this podwge
procedure II9U..CEFFICIENTS;
--Get the Input coefficints for the polipamial
prmare UTEEY..MLIflL;

-Guiutathe Tdobyitf poilweiai mitrix
proedue cCWUTL.PCSRmSJF..TOHWHEF;

Oumtnot the pows of Tdw6Wq~f maitrix
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pocltp body TCHBOW..fMCM is

function' SThIMLTO-INT (S: string) return Integer Is
-String to Integer eaivaiunt cows Ion.

CH : dw'er; -Individual nulm In each
-plaomholdmr of the Input string.

DIGIT : integer; -Individual iwab.' In each plaoshoider
-of the output Intege..

12LTIPLIM Integer :a 1; -Tens value of the Integer
D pI nte..

FIMI-U...SLT :Integer :m 0; -- Otput integ. being pim ated.
POSITION : Integer :* S'last; --Pointer Into Input string

-(moves right to left).

begin -- String to Integer oowu'slon.

-Starting free the enid of the Input string, proass each
-swceove caruacter untI I at I dhaou hame been converted.

while POSITION )- St irst loop

--Get ane da tr digit free the Input string.
MM :w S(POSITION);

I, -If this Is a valild dwactar digit represen tation, onvet the
-dio gtar into I ts numeric rep ewentation, and mu tlply I t by
-Its tnsvalue.

If CIM In V..*g* then
DIGIT :w doacter'pos(CHAR) - duactw'pmCO');
DIGIT :*DIGIT * ILTIPLIER;

-i f the f inal value of I be the aont negat4e nmbr,
- designate It asthe eat negative nmabe arid stop
- proanshIng. The reomn this Is done Is to adjust for the
- problem that the absolute value of the most negative nmbr
- Is I digit iwgu' than the east positive numbet- and sill
- result In an out-of-boumd condition.
If Integer'last m(FIIU...ESIT - 1) + DIGIT then

FINLEILLT aintoeu first;
POSITION :u 5' first;

also

-Othereise, this Is not the et negative iPAbu'. Thus,
- add the aarent digit to the rest of those founid, and
- Increment the taw. value to the nuct logo' number.
FIU.MUILT := FIVU....MSULT + DIGIT;
IUTIPLIER :*IITIPLIER 0 10;

and If;

-if the original Input wa negative, than negate the results.
olsif C . - then

FIHRLJE.StLT :w -FIML-...MULT;
and If;

-Adjust the pointer Into the Input string to point to the next
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dw totothleft.
POBITtN :a POSITION - 1;

wil locop;

-Convesion ftlnliiml, retuarn the gww ted Integer.
rtun FitW...MStLT;

* aid STRINILTO-IT;

5-.4
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proedure INULMPFFICIENTS Is
-This procadee obtainw the informitio n about the Input polynomial and
-- cnets the oefficlmts Into floating point foat

pdiae iNIO is ne Iw T 0JOI(integou);

POMMR: Integr := 3;
-Indicates dether all poewr, only the wen, or only tit odd powes
- we premnt in the Input polynomial. Originally sat z out of
- boan condition to vwIfV pqw Input.

SIP: Integer :a 2;
-Inrement value for entering the coefficients of the polynomial

IMITIAL: Integer := 0; ..ofh.;•
-Starting value for the value of the wa t

'.~ ~ ~ C I M:lllt: InMager;

--Loop moter throuh the Input string" PMM: Integer; :'

-- ftauotor of the coeffcllent
IENOIIINRTIR: Integer;

-ODominatos of the coefficIent
CI ETM.STIiO: string (1. .itUOlOIT);
--String vrexentatian of the coefficient

LA-T-.DIOIT: Integr;
--fatual length of the Input string

begin -Input Coefficients.

-Obtain the value of the lges t umponont of the polynoial--.
- It must be between 2 g. and.
whi Is. OEGUKEJF..FOLWMONI. ( 2 or m gn 9 LflFJOLWINL 1) HFIXJESE loop

put (Enter the deg of poIlnomlal desired. (01nimul Is 2): );
get ( EIRE.F._LYINClAL);
ne..I I no;

and loop;

-- Obtain in Indicator for the tye of the polj ioeIa Is expon ts
Whil I NER 0 or P E )2 1 oop
put (Ent' 0 for coefficients for ILL poses of X0);

::nuil. I no;

put (wEnter I for coefficlents for 0O poeaws of X0);
..:. nm~Iine; .:,:

put (wEnter 2 for coeffIluIts for L3U1 poevs of X);:'- ne.l ine; -

got (PI0 );
ad loop;

-- Set the Initial aid Inoremntal values for obtaining the polomial"
- efficients. 5 tie.
If PO 0 "then

STEPS :u I;
',- elsif POSERS u I then

1IITIAL :I 1;
.A if;

161
-. . . . .*.',.*. . . . ... .. . ..... .... .. .-.- o ..



--Obtain the coefficlets for each elemet of the polnomial
pit (lEnter the coeff ilents of the smerie being widmd byo);
nom-i Ina;£
put (a etering a froatlon, i.e. -2/3 or +2/3 or 2/3"); k _
nml. I no;put ('mffleint for XS =);

ne..I Ine;
--Loop ttJough al I elments
ii lIe INITIA. cm E,,,I-O-iI. Il ..Joop

put (INITIRL);
put (a a );.
giLl Ins (CW NT-.TIIN,LIMT.DIOIT);
nlL.I Ino;CODTR:- 1;"';'

-Step thm* the Input string looking for the w icih beparates
- the nator from the d Iammtmr. If on does not I st, or It
- appws in elther the first or the last position in the string,
- than the coefficient must be remntmed..
while COUNTER <.RST-r.OiT loop

If (CIMlM l-= IM (WIRITER) a ') and
(COUNTER / i C ERTSTR NMfIrst wid
COINTER I. UAT.OISIT) then

declare
Once the =/= has been located md Is in a pro. locotion

- obtain the niau'ater string and the denoelnator string.
UtIlTOR.ST1NG: string renmes

CMI#ERTr.JIO (COIIUT-T ItS'first.. (COINTER - 1));
DIOINATR. INO: string ranomes

CnIfE-T.ST111II ((COUMTER 1)..LiaTlOIT);

beg In -9S1ock
-Convrt the tao strings into integers
MIUMT :w STRINOINT (t11Tt8); '"NG);
OEHOINTOR :a STRINlTO.INT ( IIlTR..STRIN);

-If the dm inatar Is a val Id value, than gumm to the floating - "
- point value for the coeffielant
if INRlIT R /. 0 than

COEFFICIENTS (INITIAL) := float(UNERAT ) / floaut(EOIIIIRTOR);
.- laoer nt to the nUe t eleant In the polynoial.
INITIAL := INITIAL + STEPS;

end If;

-Indicate that this coefflelent hos been found aid coneted
CONE :n LA.DIOIT;

md; -- lok

},.'" ma d i f;...
-Point to the next dw tar In the Input string
COUMINT :C COUTER. I;

aid loop;
and Il0op;

md IUPT.COEFFICIE;TS;
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-GUMato the matrix of the Tdtchaiief polyimiai. The plocoM~ umes
v ~alue of the matrix eimants that have alreaft been found.

-The 0lgorith§ Is reawsive In that rapect.

begin --Coaputa TdbWef PptaMIGI.

-The f irst tW elemnts must be ini tial ized to of low the folilowing
-pamses to tun them.

TO iw -IftwCMIRtS (0,0):*I

-4-o0p ttwvt* the low triangular portion of the matrix
- and calculate the Tdubohef polqpioaiui Values.

for I In 2..UDEOE loop
for J In 0.. 1 - 2 loop

TOHEBYSWPJCWMIM.8 (1,J) :a
TcHIWJICF.PLVNfIALS (1,J) - TCHEBYW..PCLYN"INJ~ (I 2,)

end l oop;

for J~ In 0.. 1 - I loop
TCHESWJLIOhMIN (i,j + 1)

TOEWW-iEF..P*INS (Ij + 1) +
(2 0 TOHw~suilO.LMiiRLs (I -,j)

end loop;
end rEWITTOEBWPLYCI AL;
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- --- -. - - - - - - - -- ---------- --------- -. - *

procedwe~ COUUTLPIE.F...FTOW4SEF Is
--Compuite the matrix far the powi of Tdm~pef

cCUFICIEMTJ.LIST: FLMT..ECTOR (0. .t2LDEAA) :a
(0. .IWRINEM a3, 0.0);

INDEX: Integer :w LEUF...PCYND?1IRf;
STEP: Integer;
POWNER: IntmWi;

begin -Cmpute Pamu' of Tdtbyef.
shI le IN=X ),a0 loap

tILTIPLIER (IN=) := I TOWEB'WJCLWHOIFLS(IEXINX)
STEP :a INDEX;
whi le STEP )a 0 loap

COOFICIENT..LIST (51W) := f Iaat(TOEIYUWSW IOHMIN.SCIDXSW)
STEP :*1STP - 1;

aid Ileap;
PO FTOHYSEF (INEX, INDEX) :1. 0;

STEP := INDEX - 2;
wsle STEP 3- 0 loap

F SLflF.TOHWBI (IWE, STE):
-(COEFFICIENT.LIT (STEP)
/ f at(TCHinEYSHP0LYOIM.S (SWE,STE));

POINTER :a X1W;
whiI@. POINTER )a 0 leap

COMFICIENT-LIST (PO INMM) :
CUEFFICIENT..LIST (POINTE) + PCER..FJCEBYUE (INDE, STEP)
* I Iost(TCHOYSHEFJCLVHCI IS (STEPPOINMIDI)); 4

POINTE := POINTE - 2;
aid leap;
STEP :*STW - 2;

and leaop;
IN=E := IN=E - 1;

wid leap;
mid CMIWUTLPGERLGIF-TOU3SYUf;

aid WJAI11O-GE;

r
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" - ate: 28 Nov 1e65 0_
- Vers Ion: 1.0
- NM: 111proxDiver
--Iodlue Nue: 1.0

- Description: This routine loop until a um is dom aW oting
* - d'idmwwe function he deie

.-Pieh i¢ es: Noae"--
- Retrns: None
- Olobals Used: Choice
- Rhoili: Coiled: IM
- uthr: Capt. St ni R. Hothiiss -d

Capt. Jennier Fried
- HistWV: Developed as a thesis aid A project

with 01LUN.JTUA; use 0C..DATUM;
with IPIOXIMIImT ; UNS IFMlITOA9;
with TEXTI0; use TE_;-l0;

prcce 311FOHLDAiLR Is

LIN: Integer :m 0;
OEN: integer :m 1;
CHOICE, KEY : dwamter;
QUIT :u mter : '7';

pock INTI0 Is new INTEU.LIO(ITEGER);
use INT.i0;
package LT..I0 Is new FLDRTIO(LONLFLORT);

use FLTI 0;

begin

set pe lgth(24);

- initial Ize data points
COMVLTUYSHEV;

Slet the mer approxImte as mnq fuctIoes as eded
while (CHOICE /- QUIT) loop

- select function to app rxieste
- b giving users a ewnu of optlons
IEWJ(CHOICE);

- ae the buI It functioan to ma a we accurate appxiemtIon
CllUTr-PUE.*P4 I ?TI 0S; t

If CHOICE / QUIT then
for I In O..1 loop

If C(UI, ) /a 0.0 or C(n, I) /a 0.0 than
put(*o*" );

* put( I );

put(C(lU'l, I));
put(" bOO");
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put( I)
- -put( 0));

putCWB4 I);
naa-I Ins;iv

w I;
WWd If;

put(H~lt wqj key to amntuw);

nmLJ I rs;

L m4 loop;

0FF- I L
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- Date: 28 Novmb I=9
- ersion: 1.0
- Hams: OLOBULDaTAw
- Module Number: 2.0
- Description: Contains all global vwlabls

- PisedVariables: H/A
*- Returns: H/A

-Moduls Cal ed: /
- Ruthor: Capt. Steven A. Hotd*iss andl

Capt. Jumnifer Fried
-History: Completed for Thesis and FOR project

padiag DLUFJAT8E Is

tyjpe LCO..-FLCAT Is digits g;
type VECTOR is wrrJ( integer .,ag 0. .25) of LOMB-FLOAT;
type IITTRIX Is arraj( integer rang 0. .25, Integer awg 0..25) of

LOUWFLOAT;
tyjpe PROLIRIX Is arnray (Integer rang 0..25, Integer rang 0.. ,

I nteger ang 0..25) of LCHL-FLOAT;

,T: 1'MRlIX; - Maitrix containing the coefficients of
- different poses of Tohsbyhs polynomials

R: PAIE.MRTR IX; - Used to contain the series of PAC aWro
- ACSH or D,C)
- 8 Is the seies number

-HNar- H 1- 0for thwe ar
0 -1I for the denominator

Z C - coef ficient for a poer of X for the
-particular serim' nuierator or
-dnm inator

0: VECTOR; -FErm values of PROE approxImatloiw
M: I nteger, - Poser of the tisrtor polyn'omial
K: i nteger, - Poser of th14 denominator polynomial
H: I nteger; - Pose of the Initial poser seris
NKCLLIIH: V.ECTOR; - Contains the coefficients for the

- different posers of nX for the pose

- meis eup-oion of a function
COEFFICIENT: string(i. .33); - Uised to contain usm ento-ed coefficients

WS: LOLFLOAT- a pomtsermies expanion
US: OH9-LW;- Convergent epsilon

C: IIWRiX; - Final rational approxiatlon

end OLOSALRIDATUAM;
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- slon: 1.0
-Name: C~OMMJUS

* Mouloae Amber: 3.0
- Dma lptian: This podiag contuins p~ejv that we Involted

-~~ Mku0'mt the wtm
- Pas Vadiables: N/S

-Returns: N/A
- lobals Used: "/A

Mtodles Called: NIM
- uthar: Capt. Btevmi R. Hstdai~ss and

- Capt. Jennife Fr~ied
-History: Deriopeid as a thmis and SM project

*I th GLUN...DTAE; use aLOuAL-DATAM-
packag LPFIOMtAC I s

pe ocede POWER..PWIPT(1U1, WB: out I ntmg.; Epsi I Ion: out LDNLPLDAT)

2 ~~procekae G~OEFFICIENFS(STAICTWE: In dhuater; POS: In Int*We);

functioan PAOCLNTFRMt, T0, BY: Intege) return LflNGJLOff;

function FOCCI I. (MIUB: Integer) retuan LCNOLDT;

and cccLPRso;
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with 1EXT.JO; urs TECT-lO;
pockag body CWLPFlOM I s

pacitge INT-10 Is ,ww INTUERiO(intg);
use INT-1O;

Kpackage FLT-10 Is ne FLORT-..l(LOILIFLOAIT);
use FLT-1O;6
pu ooae POOLPHOPTCIU, W8: out Integr; EpslIon: out LOH..LORT) Is

putCmEnter th o -of the dmwator(ust be Intgr) )

putCOlntiu' the pso of thedevceiatmus e negr

gt(Im 'xIm stigf)ltit9I l'gh )
new..I I no;

100 ~pu~ilmtb In va eal Enrt io w d oto s);

id PI;
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*~ ~ ~ 3 Ora Iir EF.COFFiCiENTS(STWJCTMK: In dmuster; POSE: In Integer) Is

COW : LOHSJLOAT :m 0.0;
FROND TO, BY : Integr;

p~oaiae ET..POSIE(?UU: In Integer; COWF: out LWISJLORT) Is

LASNTJIW :Integer :a COEFFICIENT last-1;
Nl1TCm booss. := ME;

OUT-COWF LONOJq=;T
OR..A h Integer;
iml mil str Ing( 1. .15);
INOUTEIVIO umtimn;

p oamsa, CVWUTL.MfR..DOEFF(MIJN ME: In string;
COWP: out LONILORT) Is

CHF..PTR: integer :* M f irst;
IIJTORM: LONOJFLOAT : 0.0;

DEOI1RTOR, SIGN1: LOIG-FLOANT :1.0;

begin -COWUTJL-.COU

If (uIJ(CHm.PTR) a 1+0) then
CIM :a Ci..pm+ 1;

aisif (MMNILMP1) Vw- ta
SIGN1 := -SlOW;
Ofi.RR :a OC..P"h+ 1;

aid If;

shlIse (GIM(C0R.P ) /a mid (0..PTR to ME'iit)) loop
IIIIRTO :a HMETRM 10.04

~U09T~dw~tw~'pos(KIMCOHPA)) -
ahu'aatu'posC0O'));

aid Ioop;

CHM..PTR :a OEN'f fIrst;
I f (DBIC1OILM1) - I+') then

CHAR :a CHFPTR., 1;
alsif (MENCHRm..Ph)* ) than

SIM1 :0 -910GN*
CHR.P :a CI..PTR+ 1;

idil I ((= ~lR.. ) /m. a id (CCI"T 4a a01'iast)) loop
?UwEVTOR :a IvTA 0 10.0 +

LOSIFLOA(dwter' pos(DEN(OffLFTR)) -
dw Gtw'ps( '0' ));

CWUF :* I9ERRTOAIDENOIHmTQOh;

aidl COPLER9EIV FPW
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begin - Tr3%M

F-a*4p;

-rmt the im'
put(*Enter the coof flcI aIats for x*);
put(MUW);

gmt(COEFICIEMTr);

for I In CCWICIENf rnge loop
I f (10 4m COWFIffCTI ) mid COWPFICIBI) 'g') or

cOEFFICIENT(I)a '- or COEICIENTCf(D or
~CEFICIIMDI a Y or COWFFICIEMTCIl) .then

If COEFFICtE~fT(l) m Y then
I~.t" :a OEN'f lrst;

IMFRTC :m FFNJE;
elsif COEFFICIEHTMl w W or COEFFICIENM~~ or

(00 4m CGIEFFICIEN1(I) amd COWICIENTC) 4w* B')
then
If IURA thm *

OEN(ONFOLPTh) :*COFICIBMTI);
mid If;

cILP :a CM..PM + 1;

aim IP~R

aid If;
end Ilcop;

exit;
mil Iloap;

CO EB-O (M M, OU-CEFF);
Cauv :a OUT-CaEFF;
put(OUT..CEF);
neua.l Inso;

examt Ion
dim IUMUTERM ~puUl IWO Input Eiror 111en'tm value. 0);

nem-I Ins;
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begin -~CIEwCIFICIEMr

set pmengwthC24);

put-l ne(mpoum of the 'X In fractioal form.0); I
put-.i Ine(OI f a signi is mitavrd, It, mst, be the )
put..) In(fIrst diw'actmr. No blanks we al loved. 0);
put-l Ine(OThe em aloube size Is g digits pm'o);
puUl ine(arame. );

NUI ne; :
pu~l ne(tope entries: 1/2 + 1/2 *or - 14");

TO :0 PamW;
coe SThUC1LM is

dhm *1' * RMN: 0;
BY .1;

dimn 2 *'FRO :a 0;
BY .2;--

dwm 13 *FROHM u1;
BY .2;

dhen othmsm), FRAN 0;
BY .1;

mid cme;

dii I I (FRON (m TO) l oop
OETJOC1WFCCUFF);
PFXLMIN(FRM) := COW;
FFIM :a FRON + BY;

mnd loop;

mid OET..CVEFF I C I ER;
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timctlan pfMCCROJI TO, BY: Integr) return LC1ILFLORT Is

FESIT: LONBJLOA :0 1.0;
LoCP..TEBT: Integer := FRI1;

bein

si le (LOOP-TEST (a TO) loop
FSULT := FMMT * LaIIL.FLORT(OUP-TEST);
Loop-TERT: LOW-T.EST + BY;

=~Ip;

rta'n(REMLT);
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*function FWMCALft (1,IUE: Integr) rmeturn LOIILFLOfT Is

RMILT: LWISJFLWA := 1.0;

for I In2.K- lo

MIRJLLT :a FESIT * LVLFM( );
*ai I leap;

rturn(FAISLT);

mWd FRICI RLN;

aid CMIULPJcS
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- Onto: 29 lNmbw 1985
- UmsIn: 1.0
- Home: FUNCT IOPNCK0
- tolu Ie llimbo: 4.0
- Om iptin: This pacitae contain moil that am called to *I th..

coepute a predefined pom swis wipmuain of a function
or allow a umrs to enter their am"

- Passed Ulalale: N/A
- ReturI:: H/R
- Olabals ind: GLLM..RAT1
-Nhiduimw Called: Nom
- fAthor: Cpt. Steven A. H~othkiss and
- Capt. Junifab Fried
- Hlstov: Dmelaped as a thesis and OR project

packag. FUMCTIGAVC Is

pe ae SINHERIES;

-p.roce TML.ER IES;-

p oae AS I ILEEIES;

P1 Ocumr ATM4JE I ES;

0 procedure EXPJEAI ES;

P e BUILD-EMIES;

:-w RK FI,,' I ONPFK ;

176" -..,....-do dh..1. .... .-. ...... .. .. , . .,. .... . . . • . . . . .. .. . .. . -.. .',. .



with O~N.DATUUEK; ume aU M TUUE,
wi thl ~HLOJWM; usm IOLPMC;
with TEXT-10l; urs TEXT-..l;
pacdagm bo' FUNCTIC1LPACKAE Is

proca SUUMIEB Is

?I: Integer;

begin
- got the powers of te numetor a~d dIamluta pot Wialls.
- Also promt the usrnu far a owugut epsi Ian.
PONER..RW(H,KVS);

- Compute tihe powmp of the 'lholaw'in seieis. It Is the su of the power
- of the maator, duuainatar, aid the value tw
H :mn * K 42;

-Campuite the Initial mpiImatlng polyrial
fartI InO-25 loop

l'nFAMIN(l) :M O.0;
aid l oop;

for I I n 1..(CNf1)/2) loop
PFCLMIN(l*-1) :a -1.000ljPACTI IL(2l1-1);

OWd loop;

mdSIN.JIRB;
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procedwa TPLMEI ES Is

N: Intaer;

begin
- got the powms of the numrator aid dw mantor polynamlals.
- Flso - t the u for a coewmgmt eps I an.
PGMRAWCIT(l, K, EPS);

- Compute ft power of the 1inur In orI es. It Is the eus of the pa.m
- of the urim, otr, dmnomi btr, awl the value two
N :" N K+ 2;

-Compute the Initial appr imting polynoial --
far I In O..25 loop .- :

IffLN IrK) :" 0.0;
md loop;

for I In I..((Ift')/2) loop
IffLM IN(2*I+1) :* PFOOJCT(2, 201, 2) /FICI IFL(20l01); ...

d loop; ,TI-"

midl TMPLBEI ES;
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r r r . . - -17 .7 ' . - % - - -

proceMam ASINJURIES Is

I: Maer.;

beg in
- get the powr of the nsaweatwr old denmiator polynoiamals.
- Also, picot the wsi fo cww m~ t epslIon.
PGERJ4OW'(M, K,EPn);

- Compute the powmi of the NI'clurln swrim. It I s the. of the pw
- of the numerator, denontor, oni the value two
N :* N*IC *2;

-Compute the Initial qpoimoting polyn'oial
for I In 0..23 loop

OWd loop;

for I I n I..(N4I)/2) loop
"11101.1111(l02-1) :u RCUCT, C(-2)02+1),2)/

PFCOUC(2,(*2-2),2)
LCNL-FLCAT(102-1);-.-

miW loop;

aid AS I RSI ES;
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PIVOuMM ATRLJMEB Is

N: Integer;
begin

- gut the powrs of the nuw tar mcl denminator polynomlals.
- Also prompt the ume for a cavewrgwt apsl Ian.
PO4M-.uIWDK(I, K, EPS);

- Camute the porer of the Nkclerin series. It Is the sum of the power
- of the nuia tor, d ulminatar, and the value tm
H :-nl+K*2;

- Copute the Initial lpr olting polyniaol.
for I In 0..25 loopMRMJII I) :a 0.0; ""

OI loap;

for I In 1..(( 1)/2) loop
FtCLMMIH(2I1-1) :a -I.O( I-I)fACTGIAL(20I-I);

id loop;

mid ATRMIES;
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procedue BUILD-JERIES Is

N Integer~;

begini

ntepegmulwgth(24);

- got the powe of the turator and dlmnomator polynomagls.
- Alo prmpt the user for a convergent apsI Ion.
PCOER.IPRPT(I,K,EPi);

- Compute the powe of the IloclaurIn series. It Is the sua of the powar
- of the rumrator, denominator, and the value to
I :-tl+K+ 2;

- Compute the Initial opproximating poinmial
for I In 0..25 loop

WLRURN I ) 0.0;
end loop;

- Prompt the umr for the struture of the polynoeial
nmspagm;

LI:
loop

put-l ime(Entu I If a I pows of X);
put-I Ine(Entr 2 If onlv en pows of X);
put("Enter 3 If only odd poew of X -) ");
get(STIJCTUFE);
f w- Im;

If '1' > STJCTM or STIJCTL )'3' then
put-l Ine(CBad Entry. Try again.0);

aism
GET..CEPP I C I ENTS1 CTURE,N;

end If;

exit Li;

d loop Li;

aid BUILSERIES;
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* - ,mg.j.g. ,- .-

I: Intager;

begin
- got the poers of tle umerator awl dmminotor polyinialls.
- Rlo pr pt the tuer for a amwergmt apsI Ion.
POJWAMU (?IF K,S );

- Cauta the pwer of the hllrin seie. It is the un of the pow
- of the masetar, dmminatar, mid the valu tuo
- :-l*K+2;

- Cmute the Initial prasting poIWeu u.
for I In 0..25 loopHINRMIIWI) :a 0.0; -"

mid loap;

for I in 0..H loop
l MINgLCR I ) : 1.0 /FACITRIAL();

Od lop;
mnd JmIuR;

ancl RNICT I OLPAICM;
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-Oute: 23 tm"u IM51:
-Uwslan: 1.0

- Nome: ffPAMTCR= fouwls Nkmu: 5.0
-Descriptimn: This package Includes puvasdia that compute

- qprmdmatiocs'i t~o tun selected fwctlo,.
- Pasd Ul11: N/Af

- mturns: NOA
- Glabass ed: OLOft...RTUU

- Nudli Cal led: N/A
- ftathor: Cpt. Steven A. Htdlia wnd
- Cpt iwni1U' Fried

- Histmv: iaoped asa thesis awl project

packam WP 111NTOR Is

prom, IUW(040W: out d'i ar);

-rcaw CV f fiT ION

Old WPOimTU
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with GLUN.JAITUR; qam GOLN.ATUU;
with PNCIlUC.POE una ICTIOUMM;
*I th lEMrIG; ume ECT..l0;

_~ b~odgxIifra Is

padugsp FLT-10 Is no FLCATJO(LffiSLOT); we PLT..JO;

pggamiur ChIUU1LTOMYW Is
-build the glol table or containing Us. mmoftlalwts for

T(0,0) :m 1.0;

T(2,1) -*1.0; *
for I In 3. .25 loop

for J In 0. .25 loop
T(lDJ) :*TC11J) - T(I-2.,J);

adloop;

for J In 0..24 loop
T(l1J#1) :.TCI,JDIt) *2.0 *TCI-t,J);

ad loop;

ad loop;
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proeue ?UW(C4OICE: out dwuactwh) Is

11111.MCHOE: ewmation;

stpmWm.Juth(24);

-lu scramuw wid print mu..

put-I lne(OChmem fum~tlan to be oqprestr);
nm.Jl I no;

put-l lne(ntor I for sino);
put-l InaVTnter 2 for toe);
puLIJIneCTter 3 for usinon);
put-l I n(Tntw 4 for aretunw);
pu-I I no(lntew fo Iagew);
pu-IIn.e(Ttar 8 for ~ deffned fumtlono);
puLI1Ino(intor 7 to q I t");

for' I In IRLoWrng la
ffLMRIN~) :*0.0;

OW leap;

As put(am. M);
got(oUT.040ICE);
COICE := OJLCHOICE;

dwi I' w SIN-MRIES;

dun '3 a)- MINJUIB;
dw 64 , * TW- m EI ES;
dwn 6S' wi, EPI.ERE;

dun others a)- rais. UU11.HiCE;

wid awa;
eit;

OWd loap;
ecept ion

put-l ino(o imI I d entry. Try opmI n*)
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precedwam CDMUU1L.FUL PM0II M Is

KRI : Integer :a 0;
1019: -negr:, 1

T IP UGIX;
*O : WI ;

begin

- this proceue onvets the Iitial opraminting poIlpimei
- (the Nmiarin poem' series) Into a rotlmhl Minrmtlon
- clew out this PME qpoi..tlon's mu'etar
- mi demaminstor poSI ilis
for I In 0..3 loop

for' IMKE In 0.. 1 loop
for CVWFICIPI In 0..25 loop

R(1UIEB,1IDIJB,CGEFICI~fr) :*0.0;
OWd loop;

mid loop;
OWd loop;

for I In 0.31 loop - loop for al I ps of the muotor

for J I n 0. .K loop - loop for oIlI pinmr of the dutaim Inotar

Si. If 0I "n J) them
-build a wk matrix to solve simu tommi equitam

3(O) :s 1.0;
NJM :0 1 + JI;

for S In 0. .(N.J1 - I - 1) loop
for 1,1 in 0. .J loop

If (HI1 m 0) them,

aid I f;
mid loop;

OW loop;

-Solve simuaimou equatios for dutaminctor coefflaients
for HI1 in 1. .J loop

If (UWWCH1I) m 0.0) thui

for M2 In 1. .J loop
If Cua(Hm,M1)/W 0.0) them

TRIP9023);

0111) :u 19;
for NO3 In l..J loop

TO9 :a 14=02,111);

UM(HI,H3) :a 199;
wid loop;
exIt SETUP;

aid if;
end loop 111W
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If 139 /a 0. 0 then

ond Itf;

for 11 In, I.d leoW
It 139W /a 0. 0 tlwi

WOK4NI1,1) := UONCCI2)ITU9P;
elm

UOM(NI.N) :*0.0;
OW It,;

ww loop;

for M In I.A. loop
If (MI /a H2) thin

7W : -ew(M2,Nl);
for NI3 In 1..J loop

UMCIN2,NS) :a UW(N2JNI) + UON(N,NI) * 199;
OWd leap;
SG@2) WIN +CE 4 (NI) 0139;

OWd leap;

OWd leap;

-:u edonointa oefiflonmts to compute thenueao

fur I In 0.. 1 loo
for 112In O..Nt Ilop

R~lJIUII) (I R 'l41RIM,Nl) + DOW) IVfLMMIIC1-t@)j
B(0);

wid Ileap;
OW leaop;
for III In rowrs 0. .J leap

R(14J,I,I) :0401)'(0);
OW) := IC0i) B (0);

Old leoap;

- Compute the Oas tha we used to compute C(amk)
- (I44I) w SILsO to J (r=IwelIn(Ie+D4I-LMq(L)I
D(I+%9I) :a 0.0;
for L In 0. .J loop

0(l4JI)~~ :*DlJ4) CLft3IN(41-L) B (L);
mid leap;

OWd leap;
mid loop;
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premiue CWUTLDK Is

R: Integer :a 0;
0: Integer :ul;
LNMM: UEM;

-Compute the Lado (alpii)

for J In 0..Ol.K-1) loop
Itf 0(14 1)/ 0. 0 then

LFtMKJo-1) := (0(11*+) * TCI1,J1)) /((2.0 0(*14)) * D(J+1));
Gen

LFMWA(14) :*0.0;

Load P*(X) nlWMwtthiR n!9aafiet emtvy
tfor I In 0..1lo

OW leap;

for I In 0. .K loop
C(9, I :ROW,4KSI1

ud loop;

-Compute coeffticients A0 of umeator anmi l o f denia tor
for qJ In 0.. (M1) leap

for K In 0..25 loop
R(JR,K) := R(J,1AK) 0 LNM(J+I);
C(A,K) := C(AK) + R(J,AK);
R(IIDK) := R(JBK) 0 LNR(J41);
CCSK) := C(I.K) + R(J,IK);

mid leap;
NWd leap;
C(A,0) :m C(R,0) + LMMIUO);

for I ln re'e 0. . lea cp;
C(AI)D :a CCR, I)/CC9I0);
CceII) :0 C(9I l/C(I110);

OWd leap;
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