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ABSTRACT

The activites at the ETS have expanded from observations of
deep-space artificial satellites during the dark hours to
observations of near-Earth satellites near noon. Not only do
these varying tasks require different video cameras and
associated equipment, they can benefit from a tailored analysis
of the resulting astrometric data. 1In particular, the
observation of near-Earth artificlal satellites very near the
astronomical zenith has become a frequent mode of operation. For
some of these satellites a parallax can be discerned when bdboth
ETS telescopes are used. For others, their nearly circular orbit
coupled with a zenith passage suffices to fix their elemeni set.
This Project Report details both types of analysis. :
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I. INTRODUCTION

Certain artificial satellites are best illuminated at
twilight. The reason is they are so close to the Earth that were
it darker they would be eclipsed. Clearly were it brighter than
twilight, their phase angle would be larger and the sky
background would be very bright. A consequence of these
considerations is that they are most easily observed near the
zenith. A result of their closeness to the Earth is increased
atmospheric drag. Therefore, whether by design or owing to
natural forces, their orbits are nearly circular. Hence, there
are only four meaningful entries in their orbital element set,
not six.

The bulk of this Report is concerned with two different
methods of obtaining these four quantities as a result of
observing the nearly zenithal passage of an artificial satellite
in a8 nearly circular orbit. Two cases are presented. In the
first instance, a satellite beyond about 1000 km will move slowly
enough across the small field of view of the ETS telescopes to
allow for a good deduction of its angular velocity. This plus
the position and the relevant celestial mechaniecs uniquely
determines the element set. In the second case the satellite is
much closer and moves too fast to reliably determine its speed.

However, its very closeness means that it has a measurable

parallax. The measurement of the parallax, the slope of the
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streaks, and the position also uniquely defines the element set.

This Project Report discusses both of these cases in depth.
The principal aspect of the analysis missing is an estimation of
the errors involved for we usually observe an object slightly off
the zenith, whose orbit is not truly circular, and so on. As

observing needs demand, more sophistication will be introduced.
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II. POSITION PLUS ANGULAR VELOCITY

A. Data Acquisition

From a videotape of the passage of a near-Earth satellite
played back in very slow motion one can clearly see the
progression of the head of the streak. If the recorder has a
stop frame mode, then individual frames (and fields; the 1/30 of
a second video frame consists of two 1/60 of a second interleaved
video fields) can be viewed. The addition of a device for
measuring location on the videotape and a frame counter complete
the data acquisition hardware (see Figs. 1 and 2).

With such a setup (Fig. 2) one can make a progression of
pairs of (say) rectangular coordinate measures of the head of the
streak. A simple method of treating the data that smooths out
non-linearities in the camera target, stretching of the
videotape, and so on, is to difference them pairwise. Division
by the appropriate number of frames, multiplication by 30, and
then multiplication by the plate scale gives the velocity in arc
seconds per second of time. Averaging a series of such pairwise-
differenced velocities across the field of view provides the
angular velocity data for analysis.

It is useful to be able to determine the orbital inclination
from the slope of the streak. To this end the pairs of points
are fit, via the method of least squares, to a straight line.

The last pliece of information needed is the position and we know
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Figure 1. Schematic representation of a succession of overlaid
video frames showing the progressive movement of the head of a
satellite'’'s streak.
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that; it is at the zenith at the time of observation. E
B. Celestial Mechanics Y
o
From the solution of the two-body problem we can express the F
geocentric right ascension and declination in terms of the ;f
orbital element set. Using the symbols defined below, the s
results are -7
b
a = Q + tan~'(cositanu), 6 = sin~'(sinisinu) (1) :;Q
?;
a = semi-major axis Qi
e = eccentricity Ef
w = argument of perigee i'
i = inclination -l
Q@ = longitude of the ascending node ff
T = time of perigee passage -
v = true anomaly R
u = v + p = argument of latitude )
E = eccentric anomaly ;i
M = mean anomaly T
n = mean motion
a = geocentric right ascension K
§ = geocentric declination i
1 = local sidereal time f
. ..w
¢' = geocentric latitude of the observer Fs
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A = topocentric right ascension

A = topocentric declination

Because I have assumed the orbit is circular, e = 0. I can now

define T and @ such that w = 0. Then, at time ¢,

U‘V*W'V'M'E‘n(t"T)

Rewrite the expression for the mean anomaly as

M = Mz + n(t - tz)

where t, is the Universal Time corresponding to zenith passage.

As I will explicitly show below, at the zenith,

a = A = 1tand § = A = ¢

for any observer. Thus, since a = 1 and § = ¢' at the zenith by

definition, it follows that Egs. (1) implies Egs. (2);

7z =~ @ + tan"'(cositanM;), ¢' = sin”'(sinisinMy) (2)

For our observatory ¢' > 0. Hence, as i ¢ [O,n] and sini > 0, it

follows that M, € [0,m] too. Equations (2) are two equations
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in three unknowns. The angular velocity provides two more
equations and introduces the fourth unknown (i.e., a). Before
seeing this I need to project the geocentric motion onto the

topocentric celestial sphere.
C. Topocentric Appearance

Let the observer's geocentric location be given by p =
pi(1,¢') where & is a unit vector of direction cosines in the
equatorial coordinate system. The satellite's geocentric
location in this reference frame can be written as r = ri&(a,é).

The topocentric location is R = R&(A,4),

|

=rL-£f (3)

Equation (3) can be rewritten in component form as

psinh

tan(a - A) = (4)

1 - pcosh

qsin(Yy - &)

tan(§ - 4) = 37— qocos(Y -8y

R/r = sin(6 - Y)ecsec(a - Y)
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where the auxilary quantities p, q, and Y are defined by

p = (p/r)coséd'secs
(5)

qQ = (p/r)sin¢'cscY
tanY = tan¢'cos[(a - A)/2]sec[h + (a - A)/2]

h is the hour angle = t - «a.

Note that h = 0 when © = a, that is for any object on the
celestial meridian there is no parallax in right ascension.
Therefore, a = A at the zenith. Note too that if h = 0 and a = A
then Y = ¢'. Whence if 6 = ¢' too (i.e., at the astronomical
zenith), 8 = A from the middle of Eqs. (#4). This proves my
assertions earlier.

Differentiate Eq. (3) once with respect to the time t and
solve for ﬁ, A, and A. Evaluate the results at the zenith
[wherein R = r - p despite the apparent indeterminateness in the

last of Eqs. (4)]. You will find

. . aa, - et . as,
Ry =00 Ay =3 =5 8, = 773 (6)

I have replaced r by a because e is zero.

From the differentiated version of Eqs. (1) and the fact
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that u = n(t - T) in this instance one finds

IRy T
Y .

A |
-:_.\
s
. ncosisec?M . R
- = ] .
e T+ oos?itani™M’ O nsinisec¢'cosM N

Now it is known that M, ¢ [0,7]. So, either M; is an acute
angle and sinM, = sin¢'csci or M; is an obtuse angle and can

be written as M, = ™ - m, where m; ¢ [0,7/2]. As in this .

instance, sinM; = sin(w - my;) = sinmz = cscisin¢', tanM,
= + sin¢'/(sin?*i - sin?¢')'/? in the two cases. Only the square jﬁﬂ

=
of this is needed, ‘;,,

ay = ncosisec?¢’', 6, = nsinisec¢'cosM,

v
Y
et 17

e

Observe that if M, is less than or equal to w/2 then

"*rv‘
.

cosM; = +(sin®i - sin®*¢')'/? csci whereas if M, is greater
than or equal to w/2, cosMj; = -cosmy; = -(sin?i - sin?¢')!/?

¢sci. Therefore,

1
§, = * n(sin®i - sin?s")

/ M_ acute
z

2
seco'
Mz obtuse

From Eqs. (6) it follows that the sign of A, is the same as that

as éz. Moreover, sgn(kz) is a quantity that is determined by

the observations themselves. Whence, the correct quadrant for
Mz can be ascertained by observing the north-south direction of

motion. Finally, for the topocentric angular velocity, e
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. , na(sin®*i-sin?¢') / sec¢’
- , A =1 (7)
z a - p z a - p

. nacosisec?¢' - pt

Before proceeding to a calculation of the motion as seen
projected onto the telescope's focal plane, which is what is
recorded by the videotape recorder, consider the topocentric
angular speed éz,

2

8, = (Alcos?a, + A2)1/2 (8)

na . . 172
Py [1 - 2(pT/na)cosi + (pt/na)2cos?¢']

For a polar orbit, and many near-Earth satellites are nearly in

such an orbit,

2
[1 «+ (pi/na)’cos’¢']l/

Z a -~ p

na 1
- — — = 2 240
= [1 + 5(pi/na)?cos?e’]

as na >> pt. Thus, the binomial theorem expansion is especially
accurate in this case. 1t should also be clear that for a fixed
value of a, éz is a maximum for a polar orbit. Table 1

provides a matrix of 8; values (in deg/sec) for R, . 100(100)

1500 km and i = 35(10)85, 90°.
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TABLE 1
TOPOCENTRIC ANGULAR SPEED (DEG/SEC)

ﬁ}\{\ 35° 450 550 65° 750 85° 90°
km

;? 100 4.278  4.309  4.346  4.388 4,432  4.478  4.502

¥ 200 2.122  2.138  2.156 2.177 2.199 2.222 2.234 0
3 300 1.403  1.414  1.426 1.4H0 1,455 1.470 1,478 4

: 400 1.044 1,052 1.061 1.072 1.083 1.094 1.100 ?;r
500 0.829 0.835 0.843 0.851 0.860 0.869 0.874 ;iﬁ
600 0.686 ©.691  0.697 0.704 0.711 0.719  0.723 f;a
700 0.583 0.588 0.593 0.599 0.605 0.612 0.615 Eu
800 0.507 0.511 0.515 0.520 0.526 0.532 0.535 éfﬁ
900 0.447  0.451  0.455 0.459  0.464 0.469 0.472 iff
1000 0.399 0.403 0.406 0.410 0.415 0.420 0.422 Qi?
1100 0.361  0.363 0.367 0.371 0.375 0.379  0.381 {f;
1200 0.328  0.331  0.334  0.337 0.341  0.345  0.347 i::
1300 0.301 0.303 0.306 0.309 0.313 0.316 0.318 ;ﬁf
1400 0.278 0.280 0.282 0.285 0.289 0.292 0.293 SE;
1500 0.257 0.259 0.262 0.265 0.268 0.271  0.272 iif
%
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D. Focal Plane Coordinates

The motion we are interested in appears to occur on the
surface of a sphere. We analyze it after projection onto the
focal plane of the telescope. The nature of this projection is
complicated but for small fields of view the results are simple.
So, incorporating this new approximation into our analysis, the
rectangular coordinates £, n in the camera's focal plane
(measured in the same units as the telescope's focal length f),
where n is positive northward (increasing declination) and £ is

positive eastward (increasing right ascension), are given by

g/f = (A - A*)cosa®, n/f = & - a* (v)

In Eqs. (9) £ and n are the rectangular coordinates appropriate
for an object near the optical axis of the telescope when the
object's topocentric right ascension and declination are A, A.
The topocentric equatorial coordinates of the point where the
(extended) optical axis of the telescope would pierce the sky are
a*, a*,
Now, since I have assumed that the field of view is small,
it follows that for the cases of interest (n large) the transit
time across the field of view will be short. Therefore, a
sufficiently accurate representation of A and A around the time
of zenith passage is just the first two terms in a power series

in t -ty

13
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A= AZ + Az(t - tz)y A = Az + Az(t = tz)

l-‘.“u.'ﬁ;,‘/ g

A..' " -,q,

A; and Az are just equal to t and ¢'. Az and hz were

A

last seen in Eqs. (7). Combining this information with Egs. (9),

and the fact that A* = T, a* - ¢$', ylelds

E/f = Az(t - ty)cosé', n/f = Ay(t - tz) -
The speed of motion across the field of view is (E* + n2)'/? ;?;
which is, it turns out, just féz; éz was given in Eq. (8). i.i

The slope of the streak, dn/dE, is

172
dn na{sin?i{ - sin?¢"') / sec?¢’
S = — = 4

E (10)

(nacosisec®¢' - p1)

where the plus or minus sign ambiguity still stems from the

quadrant ambiguity for Mz. Take the limit as na/pt-—-—=. Then,

8, — [GMg/a(a - p)2]is? (11a)
since n?a® = GMg, and if:
NOW
s =+ (sin?i - sin?¢')'/? sect -
5\:7
Or, solving for the inclination (s is the slope of the streak *;
determined by the least squares fit referred to earlier) :fﬂ
14 S
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operation.

cos¢’

cosi = + (11b)
“(a ey’

Now the plus/minus sign ambiguity is from a square root

In this approximation one can proceed as follows:

Note the direction of motion. This fixes the sign of
Az and the quadrant for sz

Calculate féz from the videotapes as discussed in
subsection A. Solve the cubic equation for the
semi-major axis a in Eq. (11a).

Determine the slope of the streak as discussed in
subsection A and use it in Eq. (11b). This provides a
value for the inclination i. The correct quadrant for
i is fixed by the second part of Eqs. (2). Obtain a
value for M; from this expression too.

Use the time of zenith passage plus the first part of
Eqs. (2) to calculate the longitude of the ascending
node Q.

Refine a and i as necessary from Eqs. (8,10) in an

iterative fashion and repeat steps 3, 4, 5.

.......................

.......................
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E. The General Problem

Equations (1) and their derivatives are four equations in
the four unknowns a, i, 2, and T. Projecting them onto the
topocentric celestial sphere via Eqs. (4, 5) introduces no new
variables. Actually there is a better representation in terms of

topocentric variables given by
sin(a - A) = psinH
sin(§ - A) = gsin(Y - &)

where p, q, and Y are defined in Eqs. (5) and H = 1 - A.
Finally, the modelling of the motion across the focal plane in
Eqs. (9) also introduces no new variables. Thus, &, n and their
derivatives are connected to a, i, 2, and T albeit indirectly.
Moreover, there appears to be no way to elegantly solve the

problem numerically.
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III. PARALLAX

g

A. Data Acquisition yv-
hipd
. \ Y
In this instance the near-Earth satellite was so close -

-

Wy
e

(< 1000 km) to us that we could separately resolve the two
streaks from the two telescopes at the ETS after the videotapes
were overlaid (see Fig. 3). The distance between corresponding :f;
points on the streaks is the parallax. This is related to the

topocentric distance of the satellite. Since we are assuming a

g circular orbit and zenith passage, the topocentric distance is

’ just a - »p [use L'Hospital's rule on the last of Eqs. (4) for an 3;{
A analytical demonstration of the geometrically obvious]. E§§

- Therefore, we can compute the semi-major axis a. The inclination :iﬁ

. of the orbit comes from a measurement of the slope of the th:
E streak. Note that since a is smaller for this class of §§E
- satellites than those treated above, this is an even better ‘{f\
! approximation. :éb

E Looking at Fig. 3 it is imperative to realize that the éig
. parallax is the distance between corresponding points on the two f?:

streaks and not the perpendicular distance between the two

streaks. We now need to consider how to go from the experimental

Tty 4y 1,
N n

Al A
v .
LA
SRR
N . LT

setup to the appropriate quantity.
B. The Geometry

Consider an observer located at p = p(71,¢'). In detail,

this observer has a geocentric distance p, a geocentric latitude
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PARALLAX

Figure 3. Schematic representation of a pair of simultaneous
video frames overlaid. In this case (unlike Fig. 1), the
satellite is so close that a parallax can be detected. Note
the distinction between the distance between the streaks and
the parallax itself. The parallax is the distance between
corresponding (i.e., simultaneously occurring) points on the
streaks.
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¢$', and a geocentric west longitude A. The local sidereal time

depends upon A and the Universal Time t via
T = constant + 1.0027379093t - A

The numerical constant exhibited is just T in Eq. (6). Let this

observer percelve a satellite at topocentric position A and A

when it has geocentric location r = ri(a,8). Equations (3, 4,

and 5) provide the interrelationships.

; Now consider a second, nearby observer whose geocentric
location is given by p + Ap, ¢' + A¢', and A + AX. At the same
instant of time he will perceive the satellite to be at A + AA

I and A + AA where

(p + Ap)sin(h + Ah)
- tan(a = A - 8A) = (5T Ap)Gos(h + AR

) (q + Ag)sin(Y + AY - &)
- tan(8 - A - BA) = =g i TEq)a0s(T ¥ AT - 87

Although written in a suggestive form, these equations are

exact. If |Ap| and p[(Arcos¢')? + (A$')2]'/2 are both small
quantities compared to p, then we may simplify these results, for
AA, AA, Ap, Aq, and AY will all be small in magnitude too.

Summarizing several pages of algebra,

19
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pAicosh - Apsinh - p2A)
1 - 2pcosh + p?

AA =

(12)

-qAYcos{(Y - &) - Agsin(Y - &) + q?AY
b = 1 - 2qecos{Y - §) + q°*

AYsecYeseY = (AA/2){tan[(a - A)/2] - tan[h + (a - A)/2]} +

Ap'secd'cscod' - Artan[h + (a - a)s2]

Ap/p = Ap/p - Ad'tand'

Aq/q = Ap/p + Ad'coté' - AYcotY

and, since Ah = -AA

AR/R = [cot(A - Y) - cot(6 - Y)]JAY - adcot(A - Y)

C. Focal Plane Formulas

Once again each observer records the events as projected
onto his focal plane. If they both have small fields of view,
then the approximation in Eqs. (9) is appropriate. If the first
observer measures §, n corresponding to A, A, then the second one
will obtain § + Af and n + An corresponding to A + AA and A + AA.

As AA* = -A) and aa* = ag',

AE/f = -(A - A*)A¢'sinA® + (AA + AM)cosa¥ (13a)




An/f = AA - A¢’ (13b)

The separation between corresponding points on the streaks is
equal to [(AE)? + (An)2]'/2,
However, all of this occurs near a zenith passage. Thus,

*

h =0, a =>A=A"=71,6=4=4"=~¢', Y =¢', and p = q =

p/r = p/a. From Eqs. (12),

pAA -qAY

—— ——— —_— e ———— —— '
M~ 35, bA—=p-c—, and AY—=A¢

Therefore, Egqs. (13) may be approximately written as

Alcos¢' -A¢!

- e - — 14
AE/ S - A T (14)

The distance between corresponding points on the streak is

[(Arxcosp')? + (A¢')2]1/2

1T - p/a

Were this measured we could compute the semi-major axis a for a

known observer separation.

D. Data Analysis - Two Parallel Lines

If all one has is two parallel streaks, near the center of

the field of view, from two telescopes pointing nearly

21
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‘ zenithally, then one can no longer determine which are
ﬁf corresponding pairs of points. The reason is simple - we are
jf looking at a static picture wherein all time information
] concerning the development of the streaks has been lost. Hence,
2; we must proceed in another fashion.
;} Let (£,,n,) be the values of £, n at time t, for the first
’ observer. The corresponding values of these coordinates for the -
-f second observer will be (&, + AE,n, + An). At time t, the first
‘ observer measures (£,,n,). For the corresponding point on his
0! streak the second observer will deduce (g, + AE,n, + An). Note
that there is no time dependence in An or AE, see Eqs. (14).
That is why the corresponding points are identically offset and,
therefore, why the two streaks are parallel.
Use the two-point form of the equation of a straight line to
deduce the equations for the two streaks. Then recast the result
in the slope-intercept form. The results are
_-_ N2 = N, Ezny - Eun:
o~ = m + b m = —————— b = ——— -
N n ¢ ' £ - &, ' E. - &, °3
%j' n=mf + B, B =Db + An - mAE (15) i }iﬁ
o '.-{"
The two slopes are the same but the y-intercepts are different. Fﬁ%
. r._.'
;} Clearly if we can determine b, B, and m, then in light of Egs. :fﬁ
C . Ny
o,
(14), we can determine the semi-major axis a. 5"4
) i
2 22 o
. - ;5:
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As our instruments and measuring devices are not perfect, we st

N do not measure £, n but approximations to them, say x, y. k$;

- : ]

“ i

‘3 Suppose that we make N measurements on the fainter streak f{‘é{

- 4
b {(xn,yn)} and N measurements on the brighter streak :

{(Xn,¥n)l. Then, since it is more difficult to measure Ef?

fainter streaks than it is to measure brighter ones, we weight :jﬁ

the measures on the fainter streak by w ¢ [0,1]. A logical sum ii;

»
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l
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of the squares of the residuals to consider is

h]

=
"
'
[ 3

s =1 {wly, - (mx_+ b)]2 + (Y. - (mx_ + B)]‘} _

- n=1 n n n n =
; Minimizing S with respect to m, b, and B provides three normal EEZ
- equations for their determination. From these values and the ;ﬁé
T£ knowledge of p, A¢', and AA comes a if the relationship (15) is ;%.
; utilized. Eg;
With a and i determined and the direction of motion known, t;;

Egs. (2) yields M, and then @ since we know the time of

observation.
E. The Inclination

There is a purely geometric way to deduce the inclination.

e One need only draw the topocentric celestial sphere and reflect ‘,
upon the four exhaustive and exclusive possibilities shown in lﬁ:

Fig. 4. By solving the node, zenith, and meridian/equator :iﬁ

-

intersection right spherical triangle, one comes to Eq. (11b). ET

23 o
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- Figure U4, Spherical triangles for the four exhaustive and S8
- mutually exclusive kinds of zenith passage. .jﬁ
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