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ABSTRACT

A simplified description of robotic manipulator
is in terms of its zero reference position. It re-
quires the specification of the joint axes directions
and the coordinates of points locating the joint axes
in the base coordinate system. This description can
be learned quickly and is not prone to the errors of
interpretation. It has previously been used to de-
rive closed form inverse kinematic solutions for
simple manipulators as well as to develop efficient
numerical solutions for general manipulators. This
paper develops manipulator dynamics in an extended
zero reference position description. The recursive
Newton-Euler formulations for the problems of in-
verse and direct dynamics are presented in this

puper.

1. INTRODUCTION

The dynamics of robot arms has been considered
by several investigators [1-10]. A common formula-
tion is based upon the Denavit and Hartenberg kine-
matic description of spatial chains [11-13] and the
use of either 4xé matrices or 3x3 matrices along with
3x1 column vectors for kinematic and dynamic analyses
[{1-8}. Lagrangisn [1,2,7), recursive Lagrangian {5,
8], as well as recursive Newton-Euler [3,4,6} ap-
roaches have been used for dynamic formulations.
Methodologies leading to explicit computations of
actuater forces or torques have been considered by
using dual matrices [9] and Kane's dynamical equa-
tions [10].

The aforementioned 4x4 matrices have twelve non-
trivial entries. In multiplying two 4x4 matrices,
multiplications with the trivial elements (zero and
one) can be avoided during the programming stages,
or the concept of matrix partitioning can be used to
achieve some computational economy. Ignoring such
possibilities, references [5,8) report that the 3x3
matrix and 3xl vector based Lagrangian formulation is
more than twice sas efficient than the 4x4 matrix
based Lagrangian formulation. Amongother approaches,
explicit methods appear to be the most efficient but
these become dependent upon the configuration of the
manipulator. For configuration independent formula-
tions, the recursive Newton-Euler formulations ap-
pear to be most efficient.

An alternate kinematic description of robot
arms, called the zero reference position description,
has been used by Gupta [14]. It can be mastered
quickly and it 1s not prone to the errors of inter-
pretation by the user. Special cases such as when

the adjacent joimt axes become nearly parallel (e.g. Vi.1

due to manufacturing errors) do not create any prob-
lems in this representation. The zero reference
position method has been used for closed form [14,15)
as well as iterative [16] inverse kinematic robot
solutions.

In this paper, vhich is based upon reference
[{17), we develop formulations for robot dynamics by
using an extended zero reference position descrip-
tion. These formulations include: inverse dynamics
which 1s the problem of determining actuator drive
forces or torques to sustain the specified end-effec-
tor motion (section 3); and direct dynamics (or simu-
lation) which is the problem of determining the end-
effector motion resulting from the application of
specified forces or torques by the actuators (section
4). 1In view of their relative efficiency, only the
recursive Newton-Euler formulation using the zero
reference position method is discussed here; refer-
ence {17] should be consulted for the details of the
Lagrangian formulation.

2. ZERO REFERENCE POSITION DESCRIPTION

In the zero position description [14,15], & suit-
able configuration of the manipulator is designated
as the gzero reference position where all of the joint
variables have rero values (Fig. 1). 1Inthis zeroref-
erence position the unit vectors along the revolute
or prismatic joints (u,, along the kth joint, k = 1
to 6) as well as the position vector of a point on
the axis of each joint (Q ks k = 1 to 6) are given
in the base coordinate system. 1In Fig. 1, k = 1
for a typical revolute joint and k £ j for a typical
prismatic joint. 1In addition, the position vector

uap

z uvio

Y0

Qjo

The zero reference posicion

Figure 1.
description for typical revolute axis 1,
prismatic axis j and end-effector.
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poh of a reference point h on the hand and two per-
pendicular unit vectors through the point h (pref-
erably an axisl and a transverse unit vector, Uoa
and uoy) are also given. All of the joint variables
are set to zero at this reference position. The
unit vectors uok (k ®= 1 to 6), uoa snd uot, and
position vectors Qok (k = 1 to 6) and poh completely
define the kinematic structure of the manipulator.
At & general position, the governing kinematic equa-
tione of the manipulator can be written as follows
{l14-17].

6

nl (P(GK. 8 v Yo® on)] - IQH)

k=

(la)

The 4x4 matrix [PH] represents the displacement of
the hand from 1ts zero reference position to the
current position. The current position of the hand
is normally & part of the trajectory specification.
The 4xé matrix [D(8y. ks Uoks Qok)] represents a
rotation of smount €, and & trunslation of amount &k
with respect to the invariant line vector {(ugks Qok)
1.e. the vector Uok passing through the point Qgy.
In a partioned form, this mastrix can be written as
follows [13].

[DCok» 8k+ Yoks Qok}] =
4xd 0 ! 1

where

2
(880 9] = (1] 4 (G Jetnd + 1Ug, 1 (1-cos®)

" y
0 Yok Yok
z x
‘Lok 13 Yok 0 Yok
v x
“Yok Yok 0

B " e T RS T g

1f the kth joint is revclute, then sy = 0; 1if the
kth joint is prismatic, ther & = 0.

An extension of the above description [17) for
dynamic analysis is as follows. The unit vectors
u,g (k =1 to6), yu,, and u,, sre known as before.
However, instead of the reference position vectors
Qok for points on the joint axes, reference body
vectors bo,k+] (k = 1 to 6) are defined such that
b0,k+] is tne pody vector of the link k+l and 1t
connects the center of the kth joint to the center
of the (k+1)th joint. The position vector of the
joint center on the kth axis in the zero reference
position can be computed dby adding the body vectors
bozs bg3s .. box. The unit vectors ugy (k = 1 to
6), ug, and ug, and the body vectore bgy (k = 2 to 7)
conpletcly define the kinematic structure of the
manipulator. A correspondence among the joint vari-
ables using the aforementioned zero reference posi-

tion description or the common D-H description can V], 2

be established easily [14,16).

For dynsmic formulation, additional data con-
cerning the dynamic properties of the manipulator is

8ls0 defined in the rero reference position.
cident points p and

of the kth joint such that
the kth link and pk*! 1s the body point of the
(k+1)th link. The following quantities are then
defined at the zero position.

Coin-
are defined at the center

p{ is the body point of

k
ok body vector of the kth link from Py to
the center of mass Gy

gok body vector of the kth link from the
center of mass G, to p° (note that
bok * Sok *+ dok)

W weight of the kth link

symmetric inertia matrix of the kth link
about the translated base coordinate

3x3 system through the wmass center Gy when
the arm 18 at zero positions

G
[15,]

The vectors Uk, bk+1., Ck+] and di4+] and the time
varying inertia matrix [Ift) at the current (non-zero)
configuration are computed as follows.

o) = (R {u,} (28)
e = 1R {bg 1y} (2b)
gt = B Heg ) (2c)
) = IR {45 ) (2d)
(3$+1] = [R] (Ig.k+l] )" (2e)

vhere [R,] 1s the rotation matrix of the link k+l
from 1{t§ zero position to the current position. It
18 computed as follows.

k AT
(R, -151 (RO, u,y)) ™ SR

In equation (3), the rotation matrix [R(84, usq)]

1s the principal 3x3 minor of the 4x4 displacement
matrix [D(B;, 84, upys poi)) contained in equation
(1b); it represents a rotation 61 about the axie Uoj.

3. INVERSE DYNAMICS - ACTUATOR DRIVE FORCES
OR _TOROUES

————r

The kth joint variable is defined as qy such
that for a revolute joint qy = 6, and for a prismat-
ic joint qy = sk. It 1e assumed that the solution
of the problem of the inverse kinematics is availubic.
Thus for the specified rotation matrix of the hand
RY, position vector of a reference point h on the
fiand, velocity vy, of the point h, and angular vele:
city vector wp or skew-symmetric matrix “Zh] of the
hand, the corresponding joint values Q, (0 = (uy.

Qps «++» 96)T) and joint rates Q are available.

For inverse kinematic accelerations the follow:
ing equation, which is used to compute the jointi
rates O, 1s differentiated.

: “h
(31 1@ ')ﬂ




In equation (4), [J) 1s the 6x6 velocity Jacobian
matrix of the manipulator and its elements are com-
puted by using the zero-position notation. Equa-
tion (4a) is differentiated to obtain equation (4b).

(4b)

. . e 0_5,‘
J “'3—
3) {(Q) +13) {Q Y

where a;, and gy are linear and angular accelerations
of the hand and [J] is a 6x6 matrix whose elements
are the derivatives of the elements of the Jacobian
matrix [J]. A recursive method to compute [J] 1s
discussed in reference [17]. Equation (4b) is then
solved for the joint accelerations Q.

when the velocity and acceleration of the hand
as well as the corresponding data at the joint level
(1.e. Q, §. Q) are known, the dynamics of the mani-
pulatot can Be formulated as follows. A recursive
process for the computation of the actuator forces
(or torques) starts from the 7th link. At each
step, the angular velocity and acceleration of a
particular link, and the linear acceleration of its
mass center are computed. These values are thenused
to compute the inertias force and inertia moment act-
ing on the link. The joint forces and torques are
then computed by writing the dynamical equilibrium
equations (D'Alembert's principle) for that link.

In particular, when the recursive process is
at the kth link (k=7, 6, 8, ..., 2), the computation
is as follows

“eer T WV

%+l

if the kth joint is revolute

. . g PR At R .

& if the kth joint is prismatic
(5)

where w, 1s the angular velocity of the kth link.
Equation (5) is differentiated to compute the angu-
lar acceleration %+

Beer T B T HE X Yy
if the kth joint is revolute

B +1

1f the kth joint is prismatic (6)

o -

The next step 1s the computation of the acceleration
of the mass center of the kth link. Before that,
however, two vectors pE_le and G
defined as follows.

kpk (Fig. 2) are

e, LINK Ko
LINK K
Pigure 2. Two adjacent links k and k+l.

. /4—"‘-.
: “V
: HéZ?ﬁ”)
5 o

ek 4f the kth joint 1s revolute

Sk 4f the kth joint 1s prismatic and

kK
kak - the collar is on the kth 1link
!k + QY if the kth joint is prismstic
and the collar 1s on the
(k+1)th link 7
< if the (k-1)th joint 1s revolute
S i1f the (k-1)th joint is prismatic
p* - and the collar is on the kth link
k-lck

% + qk—lgk-l 1f the (k-1)th joint 1s

priematic and the collar is on
the (k-1)th 1link (8)

It should be noted that the actuator forces (or
torques) do not depend on which link carries the
collar of the prismatic joint. The joint reactions,
however, are affected by this fact.

The acceleration of the mass center G, 1s now -
obtained from the acceleration of the mass center et
Gy4+1 by using the relation for two points in the same
body (equations 9, 11) and also for coincident points
belonging to different bodies (equation 10). For
prismatic joints, note the Coriolis acceleration term AR
in equation (10). fo e

Wl
- g - -
Skt T o T B X (g X R Gyy)
P
B X P Gy ®

2pt+l if the kth joint is revolute
a -
pk . . .
Tkt T Kl T 29 G X % o
1f the kth joint is prismatic (10) v
- - c. oK) - G pk P
T, TGk T GOXGRD T g xGRp aD

At this point the linear acceleration of the mass
center Gy as well as the anzular velocity and accel- et
eration of the kth link are known and the inertia -
force and moment acting on this link are computed in
the base coordinate system as follows (see Appendix).

L %, 12) 5

vhere ¥, is the inertia force acting on the kth link
and m, is the mass of the kth link.

W) = -1 )51y} - (1) ()

where M, 1is the inertia moment acting on the kthlink, gg
link, {f4) is the skew symmetric angular velocity ——
matrix, and [If) 1s the time varying inertia matrix r :

13)

V1.3with respect o the translated base coord. systemat G.
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Pigure 3 shows the kth link with all reactive, grav-
ditational, and inertia forces and moments acting on
the link.

Figure 3. Dynamic equilibrium of link k.

Using the D'Alembert's principle, the force and mo-
ment equilibrium (dynamic) equations for the kth link
are written as follows

Y1 "M% -F (14)

. kL. Tk
Tem1 " T " B PgPy X By - PG X (B + E)
(15)

vhere MNy.) and Ix_) are the reaction force and moment
erted by the (k-1)th link on the kth link at point
Pk-1- The weight of the kth link is Wx. The actuator
forces (or torques) are then computed as follows
£ =T - _ actuator torque if the
k-1 ~k-1 k-1 (k-1)th joint is revolute

actuator torque if the
(k-1)th joint is prismatic

(16)

Equations (5-16) constitute a recursive set of rela-
tions for computing all of the actuator forces or
torques. This formulation requires that body vectors
W bre ks gk as well as the time varying inertia
matrix (If) be computed at the current position (eq.
(2)). This process also requires the computation of
the rotation matrix [R,] in equation (3). Computa-
tion of these quantities in equations (2) and (3)
involves a large number of arithmetic operations.

The algorithm is relieved from these excessive compu-
tations as follows. Let us define * superscripted
vectors

* L ] ® ( k)‘ (k G ). * ®
Y e 8 GRY - P60 e ke g o
* * * [ ]

e e N0 4

by premultiplying the corresponding vectors

fe1 ™ N1 %1

s O, 8. o © Pk)- (Pk_ o 2y, a
ke e J6 " TRk k-1% okt Sk,

e Mo Mo V1.4

by the 3x3 rotation matrix {Ry.1])® defined by equa-
tion (3) Equstion (3) 4s also rearrsnged n‘:oum

(%1% = (RCe. u ) 1" a”

In 1ight of the above definitions, all of the equa-
tions (5-16) are premultiplied by the matrix ll{_l)
as follows =

* .
o 12600 B T Gy
eq (5): 9w - {R(

. . (18)
-~ k'Eok) Y1
R(6, v ot . - qu -qu xu
e =% N0k k41 T Uelok T R X Yoy
eq (6): o = *
BBy e v (19)
gok
kt
e (D: (G p) =4, (20)
ot [k
Sok
K *
ea ®): (pk_ 160" = e (21)
[

ok ¥ U-1%,k-1

. * et _ .t * k+1 )
€1 Lg =% 7 e X W X B Gg) )
* —r *
T g X () (22)
*
R(O, ,u_. )a K+l
~" k’~ok ~Pg
* 8 * _ .
eq (10): gp: - R( k.gok)gp:ﬂ UYor
Ty 23
29, X Yoy (23
] * - L. ® K. _
eq (11): !Gk g"l‘f W X @ x (6P )%)
* k. *
& X (Gkok) (24)
* *
eq (12): Fo= 8 (25)
k

eq (13): (M} = -] (10,) {u) - [15,) (o)) (26)
vhere (15,1 = (15,0% = [R_|VIIFIIR, ) s the known

time invariant inertis matrix at the zero reference
configuration of the arm.

e (10 B = RO v L DI - - FD (2D
e (15): T, - [RC&, _ou 41Ty - 1 +

Kk o' _oF ey i+ F
P P) X § = (16 x (W +F)) (28)

’
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.

. -
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T *
fr ™ Ter " Yo,k-1
eq (16): - (29)

f N

-..u
k-1  ~k-1 -~o0,k-1

Zquations (18-29) are then used instead of equations
(5-16) for the recursive computation of actustor
forces (or torques). In modified equations the com-
putaution of the body vectors and inertis matrices of
1inks at their current position is not required;
only the vectors and inertia matrices defined in the
gero reference position are used.

The efficiency of the above formulation is
directly relsted to the total number of arithmetic
(1.e. multiplications m, additions a) and trig-
onometric (t) operations. The formulation presented
in this section has the following computational com~

plexity.
r- (136 m+ 118a + 2t)+p(139m + 118a + 2¢)

vhere r is the number of revolute joints and p is
the number of prismatic joints. For a 6-R manipula-
tor, the computational complexity equals 816 m +
708 & + 12 t. As a comparison, the Newton-Euler
formulation of the reference [4) requires 851 m

4+ 739 a + 12 t computations.

In a numerical example, the above inverse dyna-
mic formulation is used to compute the actuator
torques which maintain a specified trajectory for a
6-R manipulator (Fig. 4). Tables 1 and 2 contain
kinematic and dynamic description of this manipula-
tor in its zero reference position shown in Fig. 4.

Figure 4. The zero reference position of
an industrial manipulator (Table 1).

The trajectory of the hand is specified as follows.
The point h of the hand 1s to move on a circle of
radius 6" in a plane psrallel to the base YZ plane
and its center located on the base X axis at x = 34".
The axial unit vector y, makes an angle of 3 radians

vith the intersacting X axis, while the treq

sverae
unit vector u, remains tangent to the ad
circle. Therefore ove-sentioned

lh-M

Yh s 6 sin ‘J (30)
zh = 6 cos ¥
cos % 0
u = { -gin % sin ¥ and v - cos ¥ (31)
~sin % cos ¥ -ain ¢

Angle ¥ changes from 0 to 27, where V= 0 indi-
cates the top point on the circle. For a smooth
start and stop of the hand on the trajectory, the
Y(t) variation is selected according to the follow-
ing cam type scheme [22-23]. The total time T for
the trajectory is divided into a half-cycloidal
start (Cl1) of duration T), s constant velocity seg-
ment of duration T2, and a half-cycloidal stop (C2)
of duration T3. The transfer ¥ are determined to
insure continuity of ¢, vhile ¥ is already continu-
ous. This leads to the start segment angle change
¢1 = 27 T1/(T + T2), constant velocity segment angle
change ¥2 = 41 T2/(T + T2) and stop segment angle
change y3 = 27 T3/(T + T2). For T} = T2 =1T3 = 3
sec., the following equations for ¥, ¥, ¥ are ob-
tained.

0<t<3
. 2
w-%sinﬂ?t
val T op it G2)
9 66053
1 nt
V=g -3 3
J<tp<é6
oo (33)
V=3
V343 -3
6<t<9
v 2
“’"11'_8"1“%(9")
i'-!'-lcoa!w-t) Rt
66 3

veFel-6 458070 -¢)

Then the velocity and acceleration specifications of
the hand are as follows
-V
W, - 0 (35)
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Table 1 Link and joint information for a PUMA type manipulator in zero-position

X Iﬁf‘x"ih u c a b

" Joint 0.k 0,k+1 0,k+1 0,k+1
1 R (0,0,1) (0,5,0) (0,5,0) (0,10,0)
2 R (0,1,0) (8,2,0) (9,-2,0) (17,0,0)
3 R (0,1,0) (0,0,-9) (0,0,-8) (0,0,-17)
4 R (0,0,1) (0,0,-1) (0,0,1) (0,0,0)
5 R (0,-1,0) (0,-1,0) (0,1,0) (0,0,0)
6 R (0,0,-1) (0,0,-3) (0,0,-2) (0,0,-5)

ut = (0,’1,0)

v, = (0,0,-1)

Table 2 Mass and inertia information for the manipulator of Table 1 in zero-position

Wy (1) (1

k )
(1b) (lb-in-sec) YY k

a (1..)

zz)x xy' k uxz)k uyz)k

~N Oy A wN

10 .230 . 005 «230

16 . 069 1.453 1.39%4

12 1.405 1.585 .034

1 .00l .001 .0001
1 .001 .0001 .001

6 .069 .069 .01

0
0
0
|
0
0

o © o o o o
© © © o ©o ©

0
gh-,6i:coaw‘ (36)
-6 § sin ¢

-V
o, - t 0 ‘ (37)

0

0
. , -s@z.mwsb'co-wt (38)
6yl cos v~ 6% sin v

After solving the inverse kinematics problem for
the joint Q, Q, Q. the joint actuator forces or
torques are computed by using equation (18-29). Fig-
ures (5-7) show the variations of Q, Q, and Q along VI.

the trajectory (0 < t < 9 gec). 1In Figures 5 and
5b, the joint variable q, (i.e. 6;) makes a complete
rotation (27), while the other joints (q - Q3

q5 = q¢) return to their starting values. The joint

variable q3 (83 ) experiences very small changes using

the execution of this particular trajectory. The
computed drive torques for the joint actuators are
plotted in Figures Ba and 8b. The joint actuators

2 and 3 are most affected by the gravitational load-
ing. The values of the joint torques at the begin-
ning and the end of the trajectory correspond to
their static equilibrium values,

In the various numerical examples, it was ob-
served that the inverse dynamic computations of the
joine drive torques took approximately 0.003 CPU
seconds per set vhen these were programsed in double
precision Fortran on an IBM 308l.

The details of the inverse dynamics in the zero
reference position representation by using the La-
grangian formulation are presented in reference [17].
Although these are too involved to present here, the

¢ development 1s analogous to that in reference [8].
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A. DIRECT DYNAMICS (SIMULATION

Direct dynamics or simulstion is the problem of
determining the position, velocity and acceleration
of the hand when the values of the joint actuator
forces (or torques) are known us functions of time.
It is now discussed in the context of the gero ref-
erence position description.

In general the equations of motion fora 6 D.O.F.
manipulator can be written as

@) (@) + (Cagap. ) + B@Y = {£) (39

where

u(Q) = 6 x 6 non-singular, symmetric inertia
matrix

C(q1Qj. Q) = 6 x 1 vector containing "centri-
fugal" and "Coriolis" effects

E(Q) = 6 x 1 vector containing gravity and end-
effector loading effects

f =6 x 1 vector of actuator forces (or torques)

In the problem of direct dynamics, the joint
forces f are known. Also, at the current integration
step, the manipulator state variables Q and G are
available. The linear system in equation (39) is
solved for Q The joint accelerations Q are then
integrated Eumergcally to compute the next etate
variables Q and Q. The Newton-Euler formulation is
utilized to define the matrix H and vectors C and g
in equation (39). The formulation to define these™
quantities 15 similar to that of the problem of the
inverse dynamics in section 3, except for the follow-
ing modifications.

1. Since the position, velocity and accelera-
tion of the hand are not known, the recureive process
to compute the angular velocities and accelerations
of the links and the linear accelerations of their
mass centers starts from the base link (lst link) to
the hand (7th link).

2. The joint accelerations Q are not known.
Therefore the terms which are affected by the joint
accelerations are defined as linear functions of d
These terms for the kth link are: , F ’ Hk'
U{- Tk and the derived actuator force (or *otque)

(29). In other words these vectors in data stor-
lge have the dimensions of 3 x 7 (fy has the dimen-
sions | x 7). The columns 1-6 represent the coeffi-
cients of 'q'l to 'q'6 , and the seventh column repre-
sents the constant terms.

When the above modifications are incorporated
in equations (18-27), the equations (18-29, 22-24)
are rearranged as follows to change the recursion.

t x .
R (q,eu,) [w +qu . ] 1f the kth joint
= el Tk k-ok™ g revolute

if the kth joint is

t .
R7(q v, )w
- K-okT-k prismatic (40)

t PO . &
R RE(a et (9 + g8 + 98 X U]
%t

t *
R (qk-go,_() ay 3))

tk e . " K. * ') — k.*
2P :Gk taox (Ek X (kak) ) + XX (ckpk) (42)
*
. (qk'“ ) .°k
2. k+l *
P{ lt(q u ).t +..u +2- U‘
~ “k’<ok ~p§ Uok Yy X Yok
(63)
* * * * *
o, " 2l G X G X PG00 +
* ®
@ X (kak+l) (44)

These equations (40-41, 20—21, 42-44) are used for k
from 2 to 7 to compute w*, a* and al for all of the
linke. Equations (25-29) are then used to compute
the six joint actuator forces (or torques) f, as
linear functions of Q3. The system of linear equa-
tione (39) 1s then completely defined by using the
known values of the actuator forces on the right hand
side. On the left hand side on this equation, there
is a 6x7 matrix (the kth row is fy) where the first
8ix columns correspond to the matrix H and the sev-
enth column corresponds to the vectors C and g in
equation (39). To reduce the number of Tarithmetic
overations needed to definc and solve this sytem

of equations, the following observations were util-
ized.

1. ak aG)» Fk and My are functions of'ﬁi.
1ie1, 2,75.., k-1 Therefore the columns k, k+l,
«+.y 6 of the corresponding 3x7 arrays are null col-
umns. The vector and scalar operations on these null
columns are avoided.

2. The inertia matrix [H]g,e 1s a symmetric
matrix and therefore only the lower triangular part
of this matrix needs to be computed. In actual im-
plementation this means that vector and scalar op-
erations on columns k, k+l, ..., 6 of all 3x7 arrays
in equations (25-29) are avoi.led.

3. since [H] 18 a symmetric matrix, an effici-
ent method such as triangular decomposition [24] can
be used to solve the system of equations (39).

The formulation discussed above defines 6 second
order, ordinary differential equations as follows

Q= £(Q. Q. t) (44)

Simulation is basically the numerical solution of the
initial value problem involving 6 second order dif-
ferential equaetions (44). 1In terms of the state
variables (0, Q) this systen becomes a system of 12
first order differential equations. An efficient
predictor-corrector integration scheme is used in

the computer program to compute the state variables

Q and [17].

e number of operations required in the simula-
tion process prior to the integration step equals
2468 multiplications, 1879 additions and 12 trigono-
metric evaluations. In the numerical examples test-
ed, it was observed that each cycle of simulation,
including the integration step, took approximately
0.018 CPU on an IBM 3081 using the double precision
Fortran.

Based upon the zero reference position descrip-
tion of robot arms, the inverse kinematics, inverse
dynamics and direct dynamics (simulation) have been

vl gincorporated into a general purpose FORTRAN computer
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program MASP - Manipulator Analysis and Simulation
Package which 1s listed in reference [17]).

5. CONCLUSION

The inverse kinematics of manipulators by using
the zero reference position method has been discussed
in references [l4-16). In this work the gero ref-
erence position analysis method has been extended to
formulate the problems of dynamics for general mani-
pulators. A computationally efficient formulation
for inverse dynamics based upon recursive Newton-
Euler equations has been developed. This formula-
tion is then rearranged and modified to solve the
problem of direct dynamics (simulation) for general
industrial robots.
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8. APPENDIX

Consider the generalized Euler equations in &
centroidal body system [18 21].

G G
Iy = =180y [0y fydy - 0y gy
Let [R] be the rotation matrix which relates the
coordinates in the body system (subscript b) to those

in the translated base coordinate system (subscript
tb) located at the center of mass G.

RN LD
= - R IR, (5], {u ), - (R] (5], {o),

- -IRIIR ), (RYIRIL]D, (RIS [R1Gg )y

- (I, (RIS (R] (o )y




- - c -
{'."t)tb R )en (L] (wile
G
11y, oy
or simply, in the translated base coordinate system

m) = - 18] (O] ) - (o) o)

Although the forms of the generalized Euler's equa-
tions are similar in the body system and the trans-
lated base coordinate system [18], the inertia ma-
trix is time invariant in the former while {t 15 a
function of time in the latter.

VI.i1
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