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Preface

This work covers a unique combination of theory and

application in two fields, mathematics and computer science. It

address a subject with a wide variety of uses in an equally wide

variety of fields. Thus the content and particularly the results of

this work should appeal to a large audience.

The subject I'm referring to is the computation of four

generalized inverses. The significance of this treatment is its

improvement over existing methods for computing the generalized

inverses of a matrix. The computational method developed here in

theory and with application provides a simple, direct, and unified

approach for computing four generalized inverse. Probably more

importantly, this treatment emphasizes the properties of each

generalized inverse relative to its computation and its potential use.

For some readers, hopefully this combination will provide the

missing insight needed to recognize a use for this method with the

proper generalized inverse over a current approach.

Naturally, with an effort this size, there are a number of

people who deserve credit and a word of thanks. I am deeply

indebted to my thesis advisor, Dr J. Jones Jr., for his interest,

patience, and total assistance in completing this effort. Certainly Dr.

Jones personifies all the qualities of a great educator and scholar,

especially with his committment and enthusiasm. I also thank Capt

Steve Woffinden for his comments which help make my thesis a

more understandable document.

Craig F. Murray
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- This w examines a new method for computing four

generalized inverses of a matrix. This method, the ST method, is

based on the careful selection of a sequence of matrix multiplica-

tions and partitionings which provide a new foundation for

computing four generalized inverses. Central to this approach is the

partitioning of the two submatrices, R and C, where the product of

their submatrices will give the generalized inverses of interest.

Thus using this new representation, the generalized inverses of a

matrix can be computed in a simple and direct manner.

In this work, four generalized inverses are derived and

computed in a systematic manner from this representation. These

results are strongly tied to the solution of the matrix equation

Ax=b where the general solution is given in terms of this new

representation and computational technique. The computational

technique is presented with an example and also as an algorithm.

Included with the algorithm is an analysis of its computer

implementation. The use of one generalized inverse is used to find

the solution of a Lyapunov matrix equation.

vi
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_~ Intl2rodctio

The classical inverse of a matrix, A, is another matrix, usually

denoted A-1, which satisfies the equation AA - 1 = A- 1A = I . For the

matrix A to have an inverse, in this sense, one important restric-

tion must be met. The matrix must be a nonsingular square

matrix. In many instances, this restriction cannot be met. For

example, in systems theory, data fitting, statistics, and other areas,

rectangular and singular matrices arise which can not be inverted

,... using the classical method to solve the respective problem (3; 5; 7:15;

, -19). Obviously, in these cases the classical inverse can not be

computed so what must be done to solve the respective problems?

In the case of rectangular or singular matrices another inverse, or

more precisely class of inverses can be computed and used to find a

possibly more robust solution. This class of inverses is called the

generalized inverses of a matrix.

The history of this class of matrices referred to as generalized

inverses can probably be succinctly summarized by noting five key

developments. The first of these developments is creditted to
0

Fredholm who, it is believed, introduced the concept of a generalized

inverse in 1903 (3:4). He is also believed to have introduced the term

pseudoinverse to describe his new concept (3:4). Following Fredholm

:. 1
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about 20 years later was the developments set forth by E. H.

Moore. Moore was the first to define a unique generalized

inverse for every finite matrix. Moore called this generalized

inverse the general reciprocal (3:5). While the progress in this new

field continued following the publication of Moore's work, the next

significant development came another 30 years later when

Bjerhammar showed the relationship of a generalized inverse to a

linear system of equations (3:5). This was extended four years later

by Penrose who showed that the generalized inverse, defined by

Moore, was unique. In doing this, Penrose defined this unique

inverse with the following four equations

AXA = A (1.1)

A A. XAX = X (1.2)

(AX)* = (AX) (1.3)

(XA)* = (XA) (1.4)

where X is the unique generalized inverse of the matrix A (3:7).

This unique generalized inverse is popularly referred to as the

Moore-Penrose inverse. After Penrose's work, the next major

development is really a series of developments starting with the

work of Rao who defined a new generalized inverse which did not

satisfy all the conditions that Penrose introduced with Eqs (1.1)

Vthrough (1.4) (23:viii). Instead this inverse satisfied a combinations of

Penrose's equations. Other generalized inverses followed which

satisfied fewer or different combinations of the four equations and

"- 2
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were, at the same time, more robust. The major draw back of

Pt--___ these developments was the lack of a direct, unified, and numer-

ically stable method for computing the generalized inverses whose

existence were proved theoretically. This problem lead to the fifth

- major development when a new method, the ST method, was

*• introduced by J. Jones, Jr. in 1984. This latest development will be

documented in detail in this work emphasizing its computability.

Characterizing the Generalized Inverses of a Matrix

-, From the historical notes on the generalized inverses of

matrices, it should be apparent that the development of this class of

matrices suffered a rather piecemeal and slow growth. This has

lead to an equally diverse nomenclature used to denote these

- inverses. Where the classical inverse of the matrix A was simply

denoted as a A-1 and defined by the equation AA-1 = A-1A = I, the

same can not be said for the generalized inverse of a matrix.

Instead of the single equation found in the classical case, there is a

range of equations for the generalized inverses of a matrix where

each identifies a particular property a given inverse satisfies. This

lead to the wide range of names which are currently used to refer

-- to these inverses. These names include pseudoinverse,

Moore-Penrose inverse, reflective generalized inverse, g-inverse, left

. weak generalized inverse, and right weak generalized inverse.

Additionally, Ben-Israel and Greville in their work (3:18), list about

24 other names used to describe an inverse satisfying some

.'-.
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.','A 1  A2 A.T  A 4

A 1  A 13 A4

A A A

1, 21,

A 1.,'-., A , .4

3,-., 4

Figure 1. The Generalized Inverses of a Matrix

combination of Penrose's four equations. Thus the initial problem to

overcome, when beginning a discussion on the theory of generalized

inverses, is choosing a suitable method for describing the inverses of

concern. One means of overcoming this problem is by adopting a

naming convention which is both simple and direct and also

incorporates the properties of a given inverse. Starting with the

given matrix A, such a method is illustrated in figure I which

graphically depicts a partial class of generalized inverses. This

method builds from the given matrix A up to the inverse satisfying

all four of Penrose's equations, Eqs (1.1) through (1.4). Thus as it

travels from the least restricted generalized inverses to the unique

generalized inverse, AI,2,3,4 , the combinations which arise are

4
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denoted by the trailing subscripts where each subscript refers to

one of the four equations developed by Penrose. The subscripts

listed are equated to the conditions satisfied by a particular

A

A

A A

A 1 :

A 1  A 1,2,4

.:'-A A ,2.5,4.

Figure 2. Subset of Inverses

generalized inverse. To prevent confusion, the simple relationship

between subscripts and the four equations is illustrated below.

Equation Corresponding Subscript
(AXA) = A 1

(XAX) = X 2

(AX)* = AX 3

o (XA)* =XA 4

5

L7 ~ - -- >~Y~~-



-v

Again, the X in each equation denotes the appropriate inverse.

While figure 1 shows most of the possible generalized inverses, this

work will concentrate on the subset of these inverses shown in

figure 2 of the previous page. Again, the subscripts following each A

denote which of Penrose's four equations the inverse satisfies. This

nomenclature will be used throughout this work.

-J.
.Problem

Current methods for computing the generalized inverses of a
0

matrix are cumbersome, and many are also numerically unstable

(19:247). None were found which provide a unified method for

calculating more than one generalized inverse. A new method for

computing these inverses, the ST method, is a direct and numer-

ically stable technique which represents a marked improvement

over previous ones in use. This work will review the theoretical

basis of the ST method, and go on to define both the characteristics

of its computer implementation and how this new method of

computation represents an improvement over past methods.

Scp

In this work, the ST method is considered across the field of

complex numbers. For the treatment of theory, this means

matrices with complex elements will be used. In terms of the

6
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technique's computer implementation, this translates into matrices

of constant elements.

In describing and defining the technique's computer implemen-

- tation, three areas will be examined. First the numerical properties

of this technique will be treated. This will be followed by a time

and space analysis of the algorithm arising from the ST method.

Finally, this technique will be compared to other current techniques

to establish its claimed improvements.

Approach and Presentation

Chapter II begins the review of the theoretical basis of the ST

method for computing the generalized inverses of a matrix with

complex elements. The theory begins with a new computation

representation and continues to present a systematic development

of four generalized inverses. Each theory is developed with as much

detail as possible to insure maximum clarity. An example is given

early during this treatment to motivate and assist the understand-

ing of the theorems presented.

Chapter III applies the theorems developed in chapter II to the

realm of the computer. Here a detailed description of the technique

is given in an algorithmic manner versus the theoretical basis of

chapter II. In this regard, the algorithm for the ST method is

examined to determine its numerical characteristics and analyze its

computer time and space requirements. This is followed by an

introduction to other techniques for computing the generalized

*70i ""



inverses of a matrix, and these are compared to the ST method in

Sterms of numerical stability and computer requirements. Finally,

the ST method is adapted to an existing algorithm available in

many computer math packages to compute an A1,2 ,3,4 generalized

inverse.

Chapter IV concludes the heart of this work by extending the

comparisons developed in chapter III to an actual application of the

ST method. In this regard, the ST method is used to find the

solution of a Lyapunov matrix equation. To do this, additional

theorems are developed to show how the ST method is applied to

4the Lyapunov matrix equation. Finally, an A1,2 generalized inverse

is developed in the common solution for a Lyapunov matrix

equation.

Chapter V completes this work with a summary of its

important points and recommendations for further study in this

area.

; 8
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__II Theory of .eg ra l., Inverses

As mentioned earlier, the theory of generalized inverses has

been introduced under a variety of names, including the pseudo-

inverse and the Moore-Penrose inverse. Common to each approach,

no matter what the name, is an emphasis on the generalized

inverse which satisfies the four equations:

AXA = A (2.1)

XAX = X (2.2)

* (AX)* = AX (2.3)

(XA)* = XA (2.4)

Subsequent to such an introduction, this common approach con-

tinues by introducing a variety of properties arising from the

pseudoinverse or Moore-Penrose inverse satisfying Eqs (2.1) through

(2.4), and then gradually moves toward a more complete discussion

of the other generalized inverses of a matrix. Such an approach

concludes by finally presenting a method for computing the

generalized inverses again, emphasizing the one inverse satisfying
0 Eqs (2.1) through (2.4).

The approach to the theory of generalized inverses presented in

this work will be different. Instead of the common path taken by

- .-.- many authors in the past, this approach presents a systematic

9



development of four generalized inverses with their respective

properties and their computability. Additionally, this discussion of

the generalized inverses of a matrix is strongly oriented toward

solving the system of equations often denoted as Ax=b where the

matrix A does not have a classical inverse. Central to this

orientation is an emphasis on computation which will be presented

hand in hand with theory. This is intended to provide both an

understanding of theory and the application of the theory. Thus

when the equivalent of the psuedo- inverse or Moore-Penrose

inverse is finally reached, its properties and computability arises

more directly. Unfortunately this approach shares one common

problem with its predecessors, the problem of nomenclature. Since

the means of describing a generalized inverse of a matrix varies, as

noted in chapter 1, a few additional comments are devoted to more

'. completely defining the notation used in this work. Other remarks

regarding notation used throughout this work are also included

at this point to prevent confusion and emphasize the important

characteristics of the material which follows. Additionally, since this

work is geared to the practical adaptation of a generalized inverse

to solving real world problems, a section will be devoted to the basic

operations used to compute the generalized inverses, namely

elementary row and column operations. For the reader unfamiliar

with these operations, this review will be helpful for understanding

the computations involved in finding the generalized inverses of

concern here. For the reader familiar with row and column

operations, their mention here should provide an insight to the
*

directness of the computation to be discussed.

100I
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Nottion

The remarks concerning the notation used throughout this

work deal with both the exact expressions used to denote the

generalized inverses of interest and the mathematical expressions

used to derive these inverses. Both are discussed below.
As mentioned in chapter 1, the generalized inverses of a matrix

have been denoted in a variety of ways. In this work the following

representation will be used

Aij,k,1

where the subscripts denote the equations the given generalized

inverse satisfies. Thus a generalized inverse satisfies Eqs (2.1) and

S ' (2.2) would be denoted as

A1,2

A generalized inverse satisfying all four equations would be denoted

* as

A1,2,3,4

This notation provides an easy and direct method for classifying and

describing the generalized inverses of a given matrix.

The second notational concern deals with the mathematical

expressions used throughout this work. First, the symbol, Q, is used

to denote the field of complex numbers, and Gmxn denotes the

vector space of m x n complex matrices over Q. Second, matrices

are represented by capital letters, and the small letters b, w, x, y,

and z denote vectors in this work. Thus, A, would denote a matrix

A of unspecified dimensions. Third, an asterisk denotes the conjugate
.- .. .:...0!!,



transpose of a matrix. Thus the conjugate transpose of A would be

denoted as A*. The final comment on notation again involves the

representation of matrices. When depicting a large matrix with

multiple submatrices, the matrix will be enclosed in brackets, and

the submatrices denoted as capital letters. In some cases, the

submatrices will also be separated by partitioning lines. This

practice is only used in a few cases to emphasize the composition of

a matrix. Normally, the partitioning of a large matrix will be

denoted using the submatrices depicted in capital letters, sufficient

spacing, and the enclosing brackets. When numeric values are listed

as the components of a matrix the meaning of the above

conventions changes slightly. If the value is a zero, then it may

represent the real number zero or the zero matrix. While this may

sound confusing, the context of such an occurrence will clarify its

meaning. Other occurrences of numeric values in matrices do depict

individual matrix elements.

ERw ad Column Operations

In the next section, theorem 2-1 will provide the basis for

computing the generalized inverses of a matrix. To understand how

to utilize this result, in a computational sense, a knowledge of
0

elementary row and column operations is required. Further an
understanding of these operations will help develop an appreciation

for the computationally direct and simple process used to obtain

these generalized inverses. Thus as either a review or quick

12
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Original Matrix

1

IMatrix After Interchanging Pow 1 and Pow 7

Figure 3. Interchanging Rows

overview, the following summary of elementary row and column

operations will help, at a minimum, appreciate the computational

" - aspects of the processes at the heart of this work.

Interchanging Rows or Columns. Given a matrix, any complete

row of elements may be interchanged with the corresponding

elements of any other complete row of the same matrix. The new

matrix is equivalent to the original matrix. Using an arbitrary

matrix, this operation is demonstrated in figure 3 where the first

and third rows are interchanged. The same conceptual operation

can also be performed on columns. Now instead of interchanging the

corresponding elements of two rows, the corresponding elements of

two columns are interchanged. Had this operation been applied to

the matrix in figure 3, interchanging columns one and three would

not have produced a matrix where the first column consisted of a

*! i'- ' three, two, and one. Interchanging columns one and two would not

.-.. \1Z ""< " ' "t , z : .  , .,",".: .," .,< , ---" - .:-,.- ". ,, .,, , '. -,. ,- .,-.' , .,. ' ., ,",¢ ., ' ." , ' ',
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have made a noticeable difference since each column is identical.

............ .... .. ,
7 7j

IMYatrix After Multiplying Row I by Scalar k=75

a Figure 4 Multiplication by a Scalar

Multiplication Q1.4 Row ou Column. Given a matrix, the

elements of any row in the matrix can be multiplied by a scalar.

The resulting matrix is equivalent to the original matrix. Again,

using the same arbitrary matrix, this operation is demonstrated

below in figure 4 where row 1 is multiplied by scalar k=3. This

4same operation may be performed on columns as well as rows.

Thus had the elements of column 1 been multiplied by k=3 the

*resulting column would contained 3, 6, and 9 from top to bottom

respectively.

* Multiply A ow Qr Column and Add. Using the same matrix
from the previous illusrtation, a row is again multiplied by a scalar

and the resulting new row is now added to one of the remaining

* rows of the matrix. As before, the addition is performed

14



Original 1=atrix

0: 0

M'atr tix After hIvultiplving Row I bT/ Scalar k.'=(-7)

and then Adding Row I to Row 5

Figure 5. Multiplication by a Scalar and Addition

on only corresponding elements of each row. The results of

multiplying row 1 by k=(-3) and then adding this new row to row

" -3 are shown in figure 5. Note, row 1 is unchanged by this operation

* -. and row 3 is eliminated. The same operation can be performed on a

column basis. Using column operation and the same original matrix

from figure 5, column I could be used to eliminate the elements of

column 3 by multiplying its elements by k=(-l) and then adding

corresponding elements of columns 1 and 3. Had this same operation

been performed on the re.epective columns of figure 3, only the

second element in column three would have been. eliminated.

Thea Generalized Inverses of1a Matrix (10)

The systematic development of the four generalized inverses

begins with the construction of a new and equivalent represen-

15
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tation of the arbitrary matrix A which has dimensions m rows and

. .n columns. The starting point of this systematic development is

then the matrix A augmented with two identity matrices of

*. appropriate dimensions and shown in the following equation

r IO

Using this representation, the the four generalized inverses of

interest will be developed in theory and in practice. This

representation and consequently the generalized inverses derived

from it will also be closely tied to the general solution of a system

of equations. This is all accomplished through seven theorems and

one example. Theorem 2-1 begins by developing the new

representation from Eq (2.5). This is immediately followed by an

example which demonstrates how each of the four generalized

inverses of interest is computed from this new computational

framework. Theorem 2-2 extends this example by introducing how

the general solution of a system of equations also arises from this

computational framework in terms of the generalized inverses.

Theorems 2-3, 2-4, 2-5, and 2-7 develop the existence of each of the

generalized inverses computed from this new representation. Finally

theorem 2-6 develops the general solution of a system of equations

in a manner similar to theorem 2-2 but where the submatrix M is

not defined based on the rank of A.

STheorem 2-1 For any given matrix A Q 9 mxn, there exist two

16
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.

nonsingular matrices, R Q Qmxm and C E Qnxn, such that the

following pair of equivalent matrices can be constructed

Il0 T1
i anid C)10 I2. A

Proof. For any matrix A Q 9 mxn there exist nonsingular

44,. matrices R Q Qmxm and C Q Qnxn such that

PA Ii ] 2

where Ir is an identity matrix of dimension equal to the rank of

matrix A. Eq (2.7) is a well established result, and this result is used

as it arises in the following matrix multiplications

A 1 1 : A R. ]: AC'R

Now matrices R and C are now defined as follows

TI

* *Using these new forms of R and C, the desired result is obtained

from Eq (2,8) giving the following

17
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At this point, the definition of matrices R and C in Eq (2.8) may

seem somewhat arbitrary, but these new forms will play an

important role in computing the various generalized inverses of the

given matrix A E Qmxn. This representation, developed in theorem

2-1, will allow the partitioning of A into the matrices S, T, M, and N

using a scheme reminiscent of the classical approach to matrix

inversion. These new matrices are then the foundation for comput-

ing the four generalized inverses of A as discussed above. The

following example will help illustrate how the S, T M, and N

matrices are obtained, and also how these matrices will form the

. foundations for computing the generalized inverses of interest.

Example 1. Given the matrix A where

I ."00 , 2. 0 0 i1"'I ' 4 .: 1 ()r"A = / . . .... .. .. ... ...... ... .. ..( 11

5 001.)(0 1 000015.0: 0 20.000

Augment A with an identity matrix, beside and below it, to give

the representation of Eq (2.12):

I 1 ; i. 1 1 . (

j 1:1 ft- -!_: 12M

1 8 -

Ni



Now using elementary row and column operations, reduce A to the

following form where I is an identity matrix of dimension equal to

the rank of A and the identity matrices of Eq (2.5) are not shown:

From this point on, the identity matrix 1, arising from the reduction

of A, will be referred to as Ir as introduced in theorem 2-1. The

form of Eq (2.12) should look familiar. It was the starting point of

theorem 2-1, and it was eventually transformed it to an equivalent

representation which exhibited the submatrices S, T, M, and N.

This representation, Eq (2.10), will be obtained in this example by

-: ~using elementary row and column operations to reduce the matrix

A to the identity matrix Ir. As A is reduced, the desired submatric-

es will arise on the two augmented identity matrices similar to the

classical method, where the original matrix is augmented with an

identity matrix and then original matrix is reduced to an identity

matrix. In the classical case, the result of the row operations on the

identity matrix produce the classical inverse, but here both row

and column operations will produce four new submatrices, two of

which will be used to compute the generalized inverse of interest.

The process begins by first performing the desired row

operations to eliminate the second row of A as illustrated in Eq

* (2.13). As the second row of A is eliminated, the results of this row

. operation begin to define the submatrices of interest. Next,
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1.0 2.0 3.0 4.0 0.0 0.2
0.0 0.0 0.0 0.0 1.0-0.2
1.0 0.0 0.0 0.0
0.0 1(.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

performing the required column operations, A is reduced to Ir as

shown in Eq (2.14):

1.0 0.0 0. 0 0.0 0.0 .2
0.0 0.0 0.0 0.0 1..0 -0.2
1 .1) -2.0 -3.) -4.00.0 !0 0.C 0.0(2.14)

0.0 0.0 1.0 0.0
0.).0 0 .0 0.0 1

The augmented version of A, Eq (2.12), has now been transformed to

the equivalent representation exhibiting the submatrices S, T, M,

and N. These are illustrated more explicitly in Eq (2.15):

1..0 0.0 0.0 0.1'. 0 ).( .0.2

r 0T 0.0 0.0 0.0 0.0 1.0-02
. .o y1. C -2.0 -3.0 -4.0 ,

0.0 1.0C - 0 .0 .
0.0 0.0 1.0 0.0

000.0 1.0

where
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I

N 1.00 0 0.000)(1.000
.0.000 1.000 0.000

0.0(0 0.000 1.000

T= [0000 0.200

vI- C)000i-0.:.2-001

With the S, T, M, and N matrices computed, the next objective

* of this example is to form the generalized inverses of A using these

new submatrices. To do this one simple rule is required. The

generalized inverse is equal to the product of the submatrices S and

T. Using this rule and the notation introduced earlier, the A1, 2

generalized inverses will be computed directly from the result in Eq

(2.15).

The AI,2 generalized inverse is formed from the product of the

matrices S and T. Thus, the multiplication in Eq (2.16) directly and

simply obtains the A1,2 generalized inverse of A:

-.I . ,,) 0.000 0. 20,,"" = / 0 000 0 , 0 .00 0

• "" 0.00 0, 0. ()0 00 ...
('1.000J 0.000 0 000

where A1,2 satisfies the first two conditions defined by Penrose:

21
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A(ST)A = A (2.17)

(ST)A(ST) = ST (2.18)

While the AI,2 generalized inverse was computed directly from

Eq (2.15), obtaining the AI,2, 3 and AI,2,4 generalized inverses, as one

might expect, requires a little more work. Both inverses are still the

product of S and T, but now the form of S and T change depending

on which inverse is desired. For A1,2 3 each row of T is

orthogonalized to the rows of M. For the AI, 2,4 generalized inverse,

each column of S is orthogonalized to the columns of N. When both
orthogonalization processes are performed, S and T appear as shown

y, ,below (To orthogonalize the rows or columns, the Gram-Schmidt

1.000 0.000 0.000: 0.000 0.038 0.1f92.
C0.000: 0.000 0).000 0,000 1.000-0.200

0.033- 0.077-0.176 -4. 000
,O.067 1.0C,0 0.000 0.000
,0.100-,3.231 1.000 0. )00:0
). 133-0 . 1)8-0.706 . 000

orthogonalization process, was used. A more detailed explanation of

this process is offered in chapter 3).

Computing the A1,2,3 generalized inverse requires a step back

from the fully orthogonalized representation shown above to Eq

(2.15). To computed the A,2,3 inverse requires the orthogonalized T
*

submatrix and the original S submatrix from Eq (2.15). When
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performed, the multiplication appears as illustrated in Eq (2.19):

1 00(: 0.038i 0. 1912

' A, 3 = 0.000 [0.038 0.191 0.000 0.000 (z.19)S0.000 0.000 0.000
.000 0.000 0.000.

where S is the original S submatrix from Eq (2.15) and T is now an
orthogonalized version of the T from Eq (2.15). This A1,2,3 generalized

inverse satisfies Eqs (2.17) and (2.18) plus the additional Penrose

condition detailed in Eq (2.20):

(ST)(A)* = (ST)A (2.20)

(*'" The process for computing the A, 2 4 generalized inverse

proceeds in a similar manner. Instead of the orthogonalized version

the the T submatrix and the original S submatrix, the opposite of

each is used. The resulting multiplication follows in Eq (2.21)

~1 .2. = (: (: 1 j.000 0.0 1
0.100 0.000 0.020
0 . 13 J 0.00000C'27

Again, along with Eq (2.17) and (2.18), the A1,2,4 generalized inverse

satisfies Eq (2.22):

(ST)(A) = (ST)A (2.22)
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With three out of a possible four choices used, there is only one

logical combination of the S and T submatrices left for computing

the final generalized inverse of interest, the A,,2,3,4 inverse.

The A1,2 ,3,4 inverse is obtained in a similar manner using the S

and T submatrices, but now both orthogonalized versions are

multiplied together. In this example the result is obtained by

C)0 0330 0 0006]
. *I0 067 0.003 00 131 .

. 1  0'. 1 [0038 0.192 = 0.004 0.0191

0[ 13;3 0.005 0.026]

The A 12 3 4 inverse satisfies all the conditions satisfied by the lower

inverses plus one last condition making it the unique inverse:

(A(ST))* A(ST) (2.24)

A second more detailed example is provided in appendix A. This

example was taken from pages 340 and 341 of Noble's Aplied

Linear Aligerbr text, reference 21. All four generalized inverses are

* computed and each of the four conditions are tested to verify the

results.

Theorem 2-1 defined a new starting point for computing the

generalized inverses of a matrix, In this respect, theorem 2-1
.,

provided both a new method of representing a matrix and a new

means of partitioning a matrix to a form well suited for computing

• " the generalized inverses of interest. Using this result, example 1 took
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a 2x4 matrix and reduced it to the form developed in theorem 2-1,

the new starting point for computing the generalized inverses of

concern. The process of reducing the matrix to the desired form

was computationally simple and direct using only elementary row

and column operations. From this starting point, the process was

expanded to compute four generalized inverses where each inverse

satisfies one or more of the four conditions. Combined, theorem 2-1

and example 1 provide a starting point and insight into how the

result and process can be put to further use. Theorem 2-2 will

begin to expand on this by extending the new representation and

computational technique to the framework of the equation Ax=b .

Theorem 2-2. The system of equations defined by

Ax b

where

A Qmxn

X Qnxl

b cQmxl

has a solution x if and only if Mb 0 and the general solution of

Ax=b can be given by

Xgeneral solution = STb + Nz, Vz (2.25)

where S, T, M, and N are the matrices defined in theorem 2-1 and

.. z is an arbitrary variable of appropriate dimensions.
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Proof. In theorem 2-1, matrices R and C were partitioned as

R and C [S N] (2.9)

Additionally R and C are nonsingular as defined in theorem 2-1. By

using this partitioning along with matrix multiplication, theorem 2-1

provided the following relationship

, c' = Vi (210)

From these matrices and their submatrices, the following chain of

"-* .i implications arise

Ax = b has a solution x,
if and only if RAx Rb has a solution x,

if and only if RACy - Rb has a solution y and x Cy,

% if and only if RA- R h as a solutio n =

a .d E= N ]

26S%-
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if ;-I [l if I V Tb has a solut ii v :

and x = [SW + Nz],

if and only if Ir W = Tb, 0 = Mb, and x = [SW+Nz]

Thus from the above chain of implications, Mb=0 is a consistency

condition and determines if the the equation

x = SW+Nz (2.26)

has a solution. Further, Eq (2.26) can be rewritten in the following

form to capitalize on the results of theorem 2-1, and obtain the

results stated in theorem 2-2:

x = S(Tb) Nz (2.27)

Corollary I. By choosing b=0 in theorem 2-1, the columns of N

form a basis for the null space, qi(A), where Ax=b has the general

solution

Xgeneral solution =STb +Nz, Vz (.8
1!

* * Again, z must be of appropriate dimensions and M*b=O is a
Wi

" consistency condition,
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Proof. By choosing b=O , the columns of N span 11(A). Also the

columns of A come from the nonsingular matrix C. Therefor the

columns of N are linearly independent and hence form a basis for

With a growing understanding of the ST method from theorem

2-I and 2-2, nothing yet has been said about how the product of

the S and T submatrices satisfies combinations of the four equations

defined by Penrose. The next three theorems plus theorem 2-7 will

* prove the existence of each generalized inverse of concern in this

work relative to the results of theorem 2-1 and theorem 2-2.

Theorem 2-3. From the representation developed in theorem

2-1 and the process described in example 1, the matrix ST is a Al

generalized inverse of A where A, 6 Qnxm and A 6 qmxn The

generalized inverse A, satisfies the following conditions:

(ST)A(ST) = ST = Al

Proof. Using the R and C matrices defined earlier in Eq (2.7),

o the matrix multiplication of RAC can be written slightly differently

than its form in Eq (2.8). The RAC multiplication can now be

extended with the four submatrices S, T, M, and N providing

* " "'-""Ir ' Tl A [S IN4] C-7,

28
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r1 + Frl

I " I I .
r r0 1

[ r-r 0 0 M

nl + mr

n_ N 0

Figure 6. Matrix Dimension Table

The next step is to begin a long chain of multiplications and

substitutions which can be deceiving when using matrices without

clearly depicted dimensions. Figure 6 depicts the correct dimension

of each matrix appearing in the subsequent multiplications.

Reference figure 6 if any confusion arises regarding the conformity

of a multiplication or substitution. Now applying the multiplications

introduced in Eq (2.29)

1A 

25' r N, 1 [ 23N

A.

0
T T IA,:! TAD. I71
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7

Next to see that

(ST)A(ST) = ST = A1

. holds, the result from Eq (2.31) are substituted back into Eq (2.29)

giving

11, o [TMA A--4IrI

This relationship implies.:..

TAS =Ir

Thus

(ST)A(ST) = S(TAS)T = S(Ir)T = ST = A1

While the A1 generalized inverse was not computed in example

1, it will be used here as an intermediate step to reaching the A1,2

* generalized inverse. Thus the next step will be to show ST also

satisfies the second condition introduced in Eq (2.2). Once this is

proved, ST, in this case, will be an A1,2 generalized inverse by

* definition since it satisfies Penrose's first two conditions.

30•0
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Theorem 2A. The ST matrix obtained in theorem 2-3 is also an

A2 generalized inverse satisfying

A(ST)A = A (2.17)

Proof. Recalling from above

Since R and C are nonsingular, it follows that

V

4N

Using the new definition

I Ir .] .. .. F ,4

Eq (2.33) can be expressed as

Now consider the following using the previously defined properties of

R and C

31
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.i

F-IC-1

.: t:: i . = [C; P",] '

"" ' " :;

- [; I '] ['

= S(Ir )T = ST

6A

Using thiese and previous results to substitute for A and ST gives

"-- A(ST)A = (IBC-)(CB*R)(R-IBC - l)

= CIB(C R )B(RRi)BCR
,°,,.::::= RlBB*BC-I

= C-

Finally combing this result on top of the previous result, the proof

of theorem 2-4 follows with

(ST)A(AT) = (CB*R)(R-IBC-l)(CB* R)

_- CB*(RR-I)B(C-IC)B*R

= CB*PR

-ST
3

32
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Once again, since the same ST matrix was used to obtain the

generalized inverses A, and A2 in theorem 2-3 and theorem 2-4

respectively, ST satisfies both conditions and is then by definition an

A1,2 generalized inverse. The same type of argument will be used to

prove the existence of the AI,2 ,3,4 generalized inverse. This begins

with theorem 2-5 below and concludes with theorem 2-7. Theorem

2-6 interrupts the process to provide the additional results needed

to prove the existence of an A1,2,4 generalized inverse.

0i Theorem 2-5. If MT*=O, then the matrix ST is an A1,2,3

generalized inverse of the matrix A.

Proof. It must be shown that the following equations hold for

any given A Q Qmxn and A1,2,3  Q Qnxm

A A1,2,3 A A (2.37)

A1 23 A A,, 1,2 ,3 =A1 2,3  (2.38)

(A A1,2,3)* (A A1,2 ,3 ) (2.39)

Let A- = ST. It is sufficient to show that AA- is symmetric since by

the results of theorem 2-4 it is already know that

A A-A A' ,,A-A A- =A-

: 33
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r'7

- Then in order to show any matrix is symmetric, it is sufficient
show that

(A A-)(A A* = (A A-) (2.40)

In other words, A is symmetric if and only if A -A*. Now to show

that (AA-) is symmetric, begin by showing (AA-)(AA-)* is symmetric.

First note that (PQ)*= Q*P* holds for matrix multiplication of P and

Q. Then taking the transpose of (AA-)(AA-)* as with P and Q gives

[(AA-)(AA-)*]* = ((AA-)*)*(AA-)* = (AAD(AA-)* (2.41)

Here the transpose of the transpose of (AA-)(AA-)* remains

'a..'" unchanged. Hence the left hand side of Eq (2.40) is symmetric and

consequently so is the right hand side of this equation.

Next, assume that MT*=0 holds by hypothesis. By making use

of theorem 2-2 which guarantees the existence of a solution x to

the equation Ax=b when MT*=0 (MT*=0 was the consistency

condition for a general solution of xgeneral solution = STb + Nz ).

Apply the results of this theorem to the columns of T*. Let b be the

columns of T* where b may vary as only one to all the columns of

T*. Then by theorem 2-2, there exists a matrix X such that AX=b

holds where b ranges over the columns of T*, A is fixed, and X

arises from each solution of AX=b. Now T*=AX implies that

((T)*)* T = (AX)*= XA* (2.42)

34
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Since A- ST

A-= S(X*A*) (2.43)

then for Z = SX*

(SX*)A* = ZA* (2.44)

Finally it follows from the earlier equation that

(A A-)A A-)*= A A-(A-)*A* (2.45)

= A(A-(A-)*A*

= A(STA*A*)

= ASX*A*A*A*

= AZ(A A*A*)

- AZ(A A-A)*

=AZA*

= A(ZA*)

=AA-

So from Eqs (2.42) through (2.45), equality holds for

(A A-)(A A-)*=(A A-) (2.46)

* and by this equality symmetry also holds.
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Theorem 2. Recall the definition of the nonsigular matrices R

and C

I-A and C [2 N] (2.9)

and the result of theorem 2-1, namely:

RC 0 = 0 1 (2 10)

6C 0

Then the equation Ax = b has a solution if and only if N*b = 0 and

- ""~- the general solution of Ax b is given by

Xgeneral solution-TSb + M*z, Vz (2.47)

Proof. Recalling the matrix multiplication which lead to the
form of Eq (2.10) in theorem 2-1, now, the transpose of this sequence

* of multiplications is taken prior to the actual multiplication. Thus

from the original multiplication sequence

P-1. [A I' [ C] 01 FA RI C Ci) = [PA: P3-

0 W and by taking the transpose of Eq (2.8) the following is obtained

* 366 -'7 7, ; '¢ ; ': ,, ",', -Y " ., ''\" ': - ''., " : ; ' '- : .- -: -:. ' --'. - . •.-,.",----
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0.1 1 0 0 I F o* 0

Extending the results of theorem 2-1 to the form of Eq (2.48)

provides the following equality

1: AK . 0 0!I*(2.4 9)

P ; 0 T*Illvl*O 0

where now

"= [T* M*] (2.0)

Since R and C are nonsingular matrices by hypothesis, the following

series of implications can be made

A x=b has a solution x

if and only if C*A*x = Cb has a solution x

if and only if C*A*R*y C*b has a solution y where x =R*y

' - -The last implication can be rewritten using Eq (2.49). Thus the lastL implication becomes
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Ir = v b (2 5,2.h.) "K r " ..

where y is now defined as

1 71

with x consequently rewritten as

= [T* TA* 1

Now the last implication as rewritten in Eq (2.52) can be simplified

as follows
1

[Ir >1]" v = .1)

0 H] [.-, =L ... 1.. I.I*1:u] .~q

[W 0] = [S*b Nab] (2.55)

For the simplification in Eq (2.53) through Eq (2.55) to hold, the[' following equalities must be true

W - S*b and N*b - 0
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where

x = T*W + M*z

Finally using the new definition of W provides the desired result

Xgeneral solution = T*S b + M*z, Vz (2.56)

M

.o..ll.ry-2. The columns of M* form a basis for the null space

* of A*, referred to by -n(A*).

Proof. The proof for corollary 2 is the similar to that of

Q- corollary 1, but follows from the representation of the general

solution of x given in theorem 2-6.

From theorem 2-6 the last two remaining generalized inverses

can be obtained. First, using the results established in theorem 2-6,

the A,2, 4 generalized inverse will be obtained in the following

theorem. The final generalized inverse of interest will be obtained

using the definition of an A,2,3, 4 generalized inverse established

earlip;.

Theorem 217 (12). If N*S=O then the matrix ST is an A1,2,4

generalized inverse of A.
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Prof. To prove ST is an AI,2 ,4 generalized inverse, it must be

'4?-' shown that ST satisfies the following equations

AAI,2,4A = A (2.57)

SA 1,2,4 AA1,2,4 = AI,2,4  (2.58)

(A, 2 A)* = (AI, 2 4 A) (2.59)

By the results of theorems 2-3 and 2-4 it follows that AI,2,4

satisfies Eqs (2.57) and (2.58). To show Eq (2.59) holds it must be

shown that (AI,2,4A)* is symmetric. This proceeds in a manner

similar to the proof of theorem 2-5. First let A-=ST and then

show Eq (2.60) is symmetric:

(AA)*(AA) = (A-A) (2.60)

Using the definition of symmetry mentioned in theorem 2-5, the

transpose of the left hand side of Eq (2.60) is taken as follows

((A-A)*(A-A))* = (A-A)*((A-A)*)* = (AA)*(AA) (2.61)

However, this symmetry it does not establish equality. To show

equality let N*S=0, and then by using the results of theorem 2-6,

there must exist an X such that A*X=S. Using this result and the

previous definition of A leads to the following

(A-A)(A-A) = (A*A-)(A-A)
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= (A*A-*)(A*XTA)

= (AA*)(XTA)

= (AIXTA)

= (A*XT)(A)

= (A-A)

Therefore, the ST matrix also satisfies Eq (2.59) and is thus an A,,2,4

generalized inverse.

* The final inverse, the A,2,3 ,4 generalized inverse is obtained

from theorems 5 and 7 using the defintions illustrated in figure 2

earlier. Therefore, if MT*=O and N*S=O, the ST matrix must satisfy

'A Eqs (2.1) through (2.4). Then by definition, the matrix ST is an

A1 4 generalized inverse.
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III The ST Computation

Chapter 2 reviewed the theory behind the ST method for

computing the generalized inverse of a matrix, and briefly introduced

this technique through an example. This chapter will examine the

computer implementation of this technique in greater detail and also

discuss an interesting adaptation of the ST method which will make

it more immediately useful and available.

In respect to the ST method, the algorithm behind this

computational technique will be examined from several perspectives,

including time and space complexities plus numerical accuracy

considerations. To rounded out the discussion and put it in the proper

perspective, the ST method will be compared to other techniques

currently used to computed various generalized inverses. The intent

of this comparison is to try to determine what possible advantages or

potential disadvantages the ST method may possess in relation to
,

these other techniques.

While determining the potential advantages and dis-

advantages, the discussion on comparisons will also serve to introduce

the adaptaion of the ST method to a well known algorithm. This

adaptation is based on a singular value decomposition algorithm. The

ST method will be used to short cut a method used for computing an

A1,2,3 ,4 inverse based on the results of the singular value

42
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decomposition algorithm. This discussion will conclude the chapter

* ,. with a detailed explanation and an example of this modified

computational technique for finding an A,,2,3,4 generalized inverse.

The ST Method: A Synthetic Approach

The ST method can be described as a five step technique for

finding four generalized inverses of a given matrix. Of these five

steps, two steps form the computational heart of the technique.

These steps, step 2 and step 4, utilize a modified Gauss-Jordan and

C the modified Gram-Schmidt orthogonalization algorithms respectively.

A brief overview of each step will be given. Following the overview,

the computations surrounding step 2, the modified Gauss-Jordan

algorithm, and step 4, the modified Gram-Schmidt orthogonalization

I: algorithm, will be examined in detail. Based primarily on steps 2

and 4, the time and space complexity of the ST method will be

discussed. Next some of the subtleties involved in implementing the

ST method will be addressed from a very general view. Included in

this discussion will be numerical accuracy considerations. Finally, this

technique will be compared to others used to compute various

V generalized inverses.

• Algorithm Overview. The example in chapter 1 used a new

representation defined by theorem 1-1, namely Eq (2.10), as the

starting point for computing four generalized inverses To obtain this

" representation, step I begins by augmenting the matrix of concern,
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'/A J I

1 0

SFigure 7. Dimensions of Augment Matrix and Identities

say matrix A, with an identity matrix beside it and an identity

~matrix below it. If the given matrix A is of dimension mxn, then the

identity matrix augmented beside A must be of dimension mxm. The

identity matrix augmented below A must have dimensions nxn. Thus
A--'-,1 the result of step I is a square matrix with dimensions (mn)by

(nem) as depicted in figure 7. This matrix representation was shown,

by theorem 2-1, to be similar to the representation which will now

be obtained in step 2. Before leaving step 1, note the zero matrix in

the lower right-hand corner of figure 7. While it is not involved in
the actual computation and is never changed, it has a potential use

which will be pointed out later.
mari.Now to obtained the next representation os the augmented A

matrix, step 2 utilizes a slightly modified Guass-ordan algorithm or

reducing A to an identity matrix with dimensions equal to the rank

of A. Applying this algorithm, the representation ow figure 7 becomes

the oamiilar representation illustrated in figure 8. Important to note

from figure 8 is how the submaWrices S, T, M, and N arise. First,
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Figure 8. Partitioning and Dimensions of Submatrices

S0_these submatrices are the consequence of reducing of A to Ir where r

is the rank of A. Second, the partitioning of what was originally the

two identity matrices is determined by r. Thus the respective

-:. - dimensions of these submatrices are Snxr, Trxn, M(m-r)xn, and

Nnx(n-r) as illustrated in figure 8. As mentioned earlier, this repre-

" * sentation forms the foundation for computing the four generalized

inverses of interest in this work, and its validity is based on the

theory reviewed in chapter 2.

In the representation of figure 8, the computation of the first

generalized inverse of interest follows directly in step 3. Here the A1,2

inverse is computed simply from the product of the S and T

submatrices.
Computing the next two inverses, A12 3 and A, 2 4 , require

the use of the modified Gram-Schmidt orthogonalization algorithm.

* Again using the representation of figure 8, each row in T is
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orthogonalized to every row in M. Now taking the product of the

* .-- ' original S submatrix and the new T submatrix gives the A,,2,3

generalized inverse. This process is defined as step 4A. Step 4B again

uses the same orthogonalization process but now it is applied to each

column of S. Each column of the submatrix S is orthogonalized to

every column of N. The product of the new S and old T submatrices

produces the A1,2,4 generalized inverse. Since both inverses are

directly based on the results of step 3, the two separate computations

were labeled as steps 4A and 4B.

The final inverse the A1,2,3,4 generalized inverse, follows from

both steps 4A and 4B. This step is naturally labeled step 5, and is

composed simply of the product of the orthogonalized S and T

submatrices.

- -The relationship of these five steps along with their important

characteristics is summarized on the following page in figure 9.

Modified Guass-Jordan Algorithm. The Guass-Jordan

algorithm is well documented (22:71, 27:417; 24; 1; 17), and the details

of this method will not be discussed. Instead, the aspects of this

method with particular importance to the ST method will be

addressed. In particular, this includes the addition of a column

operation to reduce a given matrix, and a change to what might

normally be used as a pivoting scheme for reducing the given matrix.

These two issues are discussed below as they pertain to the modi-

fications of the Guass-Jordan algorithm adopted for the ST method.
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STEP 1: AUGMENT A
Augment A with an identity matrix beside

- and below it to form:

:.. r [ I IO

STEP 2: REDUCE A

Reduce A to an identity matrix with
dimension equal to the rank of A to form:

+ 010o

IN 01

STEP 3: FORM A 1,2 INVERSE

Form A1 ,2 from the product of the sub-
matrices S and T. A1,2 satisfies the
followi ng conditions:

A A1 ,2 A -A
A1.,2 A A1 ,2 = A1 ,2

STEP 4As FORM A,,2, INVERSE STEP 4B: FORM A 1,2,4 INVERSE
Form A1 , 2 ,3 from the product of the sub- Form A1 , 2 ,4 from the product of the sub-
matrices S and T where each row of T is matrices S and T where each column of S is
orthogonalized to the rows of the sub- orthogonalized to the columns of the sub-
matrix M. A1 ,2,3 satisfies the following matrix N. A1 ,2,4 satisfies the following
conditions: conditions:

A A A1 ,2,3 A = A A A1 ,2 ,4 A= A
A1 ,2 ,3 A A1,2,3 = A 1,2,3 A1 ,2 ,4 A A 1 2, 4 = Al, 2 ,4

(A A1, 2 ,3 )=(A A1 ,2 ,3 ) (Aj , 2 ,4 A)* = (A1, 2 ,4 A)

STEP 5- FORM A 1,2,3,4 INVERSE
SForm A1 ,2 ,3 ,4 from the product of S

in step 4Band T in step 4A. A1,2,3,4
satifies the following conditions:

AA1 , 2 ,3 ,4 A - A
SA1 ,2,3,4 A A1 ,2,3,4 = A1 2,3,4

* , (A A1 , 2 ,3, 4 )* = (A A1 ,2, 3 ,4 )
(A 1 ,2 ,3 ,4 A)* = (A 1,2,3,4 A)

Figure 9 Five Step Summary
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Figure 10. UnderdeterminE I Case

Typically the Guass-Jordan algorithm is used to reduce a

* square matrix to row-echelon form. In this application, matrices are

. 'not square and row-echelon form is not always sufficient. Thus the

Guass-Jordan method was modified to reduce a non square matrix to

the form described in step 2 or likewise, derived in Eq (2.10). In some

cases, the row-echelon form produced by a typical implementation of

the Gauss-Jordan method would be sufficient for non square

matrices, but given the case of a matrix with dimension mxn where

n is greater than m, the desired form would not be reached. This

underdetermined case is illustrated in figure 10. In figure 10 part of

• the original matrix was reduced to an mxm identity matrix, but this

left the remaining (n-m) columns non-zero, For the ST method to

work, the remaining columns in the underdetermined case must be

• reduced. This problem is eliminated by was using both row and

column operations to reduce a given matrix, Row operations are used

to first reduce the matrix to an upper triangular form with rank

equal to that of the original matrix. Next applying column operations,

-;. 48
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the remaining elements above the diagonal are eliminated. This

provides the desired form. While it would have been possible to flag

the underdetermined cases for special treatment, this was not done.

Instead, in the interest of generality and numerical accuracy

considerations, which will be elaborated on later, a method using

both row and column operations was adopted.

The addition of column operations to the existing Guass-Jordan

algorithm required an accopanying change to the pivoting scheme

normally employed with this algorithm. Typically, a satisfactory

pivoting scheme for most cases would simply search each column

below the diagonal for the best pivot element before attempting to

eliminate the remaining elements (22:187-188; 24:38). This pivoting

scheme works well when only row operations are used to reduce a

matrix, but ignores the subsequent column operations which are

required for the ST method. Since column operations possess the

same potential problems found in row operations, namely subtracting

numbers of similar size, any pivoting scheme used must also be able

to look ahead for the subsequent column operations (27:593). One

immediate technique would be adopting a complete pivoting scheme

where the entire matrix is searched for the best pivot element. The

obvious problem with this approach is the computational expense of

searching the entire matrix. Since complete pivoting schemes

3normally only provide two to four times better results at a high cost

(24:39) this method was not used. Instead a compromise was designed

which uses at the most two column searches and a single row

search. Thus, from a given diagonal element, a column search is

conducted below the diagonal element followed by a row search to
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the right of the diagonal element. If the pivot element was chosen

1 -- " from the row search, a third search is conducted on the new

column. This scheme is employed during the row reduction operations

as the given matrix is reduced to an upper triangular form. The

intent is to provide a good computing framework for the following

column operations when the form of the matrix is less flexible. Here

less flexible means it is difficult to pivot during column operations

without loosing a zero element. The alternative of pivoting during

column operations with loosing zeroes would begin to approach the

computational burden of complete pivoting since the matrix would

have to be rearranged back to the form of Ir at some point. Thus this

scheme avoids the expense of complete pivoting but at the same time

provides a good basis for the column operations.
S .. Spreading the numerical operations between both the rows

and columns has the added advantage of reducing the number of

operations performed on the elements in each of the two augmented

identity matrices. Instead of concentrating the changes on a single

identity matrix like the unmodified Guass-Jordan method does, this

reduction technique spreads the arithmetic operations across two

*identity matrices in an almost equal fashion. The result is less opera-

tions on individual elements of the submatrices S, T, M, and N. Since

repeated simple arithmetic operations accumulate round-off error,

i . and subsequent round-off errors are the result of the current error,

the error in each submatrice should accumulate more slowly(27:593).

In summary, one change, column operations, was added to

the Guass-Jordan algorithm to adapt it for the ST method. An

so



accompanying pivoting scheme was developed to account for the

',, column operations. The combined result is an effective routine which

is, at the least, as numerically accurate as the well published version

of the Guass-Jordan method.

Modified Gram-Schmidt Orthogonalization Algorithm. Steps 4A

and 4B require, depending on the rank of the matrix of interest,

specific rows of the T and M matrices and columns of the S and N

matrices to be orthogonal. To orthogonalize the required rows or

columns, the modified Gram-Schimdt orthogonalization process was

used. This is a modified version of the original Gram-Schmidt

algorithm and differs only in the order calculations are

performed (24:151).

The use of the modified Gram-Schmidt, in the ST method,

differs a little from its typical description since the orthogonalization

process depends on the rank of the matrix of interest. Thus algorithm

is first described below in its most general representation. Its

application to the ST method is then explained and demonstrated

with an example.

The modified Gram-Schmidt orthogonalization algorithm is

described with the following short segment of a pseudocode. In this

desciption, the purpose is to orthogonalize each vector denoted with

the small letter a and subscripts. The algorithm is as follows:

U o,
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Given the vectors ai for i=1,2,3,...,M

For k=l to M do

For j=k+l to M do

a, = aj-[(ajak)/(akoak)]ak

End of j loop

End of k loop

The algorithm description also serves to point out two useful features

* of this algorithm; its use of storage and its simple and direct nature.

In respect to storage, the modified vectors replace themselves so no

* temporary storage is needed for intermediate results which reduces

0- its storage over the original Gram-Schmidt process. Second, the

process is completely described in a few short lines which attests to

its simple and direct nature.

Since the ST method requires that each individual row of the

T submatrix be orthogonal to the M submatrix, the change to the

basic algorithm described above involves only the loop indices. For the

ST method and the T and M submatrices, the outer loop is limited by

the rank of the original matrix. The inner loop is controlled by the

number of rows in the augment matrix A. In terms of the algorithm,

this restricts the actual number of arithmetic operations performed

over the case where a set of vectors or rows for matrices are fully

orthogonalized. For the case of the T and M submatrices, each row in

* , T is fully orthogonalized to the rows of M, but the rows of T are not
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orthogonalized to each other. The same applies to the orthogonaliza-

* tion of each column of S to the entire N submatrix. The following

example demonstrates the orthogonalization process used for the ST

method.

Exampj2 , 2. Given the following reduced matrix with

dimension 6x4 and a rank of 2:

.00 0 ) ( '. 0 C ) 0 -00 0.'7 7 - -- -" -(

(f,l 1 1t r. o C) 0 7-C10 200 1..... ........ 0' 0 0
.. 0.n 0 . 0 .0 0 0 1.00 0.00 -1.00 0.00 1.00 0.00

1r I" I
:

. I
:  r I 0 .0) .0 0.0 0.00 1.00 1.00 0.00 0.00

- -,, 0 0. 0 0.00 0. 0"- , -1.00 1.00 1 0(: .00 0.00 0.00
2 0.0 0 0.00 0.00 oC 1.00 0 .00 - u.0 0.10 1.00

JC,: :,.00 0. ...0 1.. .

1.00 .

Orthogonalize each individual row in T to all the rows of M. Here the

orthogonalization process begins with the bottom row in M so the
10

identity matrix, Ir will be preserved. If the process were started with

the first row in T and worked down, the Ir form obtained in the

previous step would be lost. This is because oper,.ions are not per-

formed on only the rows of T or M, but on the entire matrix.

Therefore care must be taken to preserve the work done to this

[ 4 , point. Thus with the outer loop index set to 6 (the fourth row in M),
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I'

and the inner loop is initialized to 5, the algorithm iterates down to 1.-. 'J

*1.' "' .-) This results in the following changes to the T and M submatrices

qhh

r

orthogonal to each row above it including the two rows in T. The

next pass of the outer loop will begin at the third row of M and

orthogonalizes it to each row above it. The resulting matrix is:

T 1 .. i . - .. .0 .i i. 1.'1- i

i ii. + 1O 'I' 1 1: .:9 i OIi0* ( 0i~i** iiJ i

The process is repeated again for the second row of M orthogonalizing

it to each row above it as the inner loop iterates from 3 to i. The
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resulting matrix after this iteration is

"1
. ,7 1 -C 17 7 0 :"-¢ .',7

T. 5f . F, . 1 t -i -.

,,0 U0-0 .4 0 (J 6 C 1 0, .,1. - 0 - 2 ¢0, 0 1.00 11 00. 0i 0

,"-'. -. , ~ ~~~1. I  Oi:.- i :i I C.(-:'. O 0

Finally, the first row in M is orthogonalized to each row above it,

namely the two rows in T. The orthogonalizaLon process is stopped at

this point by the rank of the original matrix. The final T and M

submatrices are

-0 ~ C: F, Ci A - 7. C

2 -0 . 0C.:: C1. I 0 . 0:' 0 - 0.:: : 5
O .I ' f- 7 ,;.,] ,7 -: . 1 ' O .(16 C' 8: C -0 o 1

-:-,. '-.'0 7 "-. 1) 0 1 .. '0 1 .01 .0 0 0 0 .) 0 ; -:
, -,(.1.00 .0 0.00 0.00 0 O .0

*The same process is performed for the submatrices S and N but on a

column basis. This time the algorithm only completes two outer

iterations to meet the orthogonalization requirement. Again the

orthogonalization process is stopped by the rank of the original
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matrix. The final matrix with the results of both orthogonalization

processes and the unchanged identity matrix is shown below. Step 5

follows directly from this final form as the product of the orthogon-

alized S and T submatrices

1 (q 00 :''i.' II. 0 .0 05-:I.... . . .. . . . -., .11 -0.11 0.0 fC )
Cu 1 .'t I ' ' . " (0 ";' " -:. " '. .

C. C)- 0 0.' C ,~ I F I '* 0 r
0.00 U T - ': ( ' . . -O1 (i.) 1.. 0 0. 0. R 0 - C0F. 0(

If. 1)IT 1 ..... ......... ... . 0. 4. ( c:... . ........ ..

-0 0S-.1 1.0 0.00
,1.16 1.0Ll1. 0 7 (). 6-.7 -2.0C

:.,,, 0.01 0.17 1 O:

S--, One remaining aspect of this technique not yet discussed is it's

numerical accuracy. As described above, the modified Gram-Schmidt

process is a numerically stable technique (24:152). This is based on

completely orthogonalizing every vector or row in this case to every

other vector or row. In the ST method, the orthogonalization process

is not complete, but instead limited by rank. In terms of the arith-

metic operations performed, this means the modified Gram-Schmidt,

as adapted for the ST methods, performs less arithmetic operations

than the general case which is described above as numerically stable.

Thus the accuracy of the Gram-Schmidt orthogonalization possess in

this application should be, at the least, as good as the above reference

suggests.
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i and S Complexities. Two measures of any

algorithm are its speed and its storage requirements, and these

measures are often referred to as an algorithm's time and space

-' complexities respectively (25:24-39). For the ST method, the speed or

time complexity analysis will be limited to the two dominating

processes, the modified Guass-Jordan algorithm and the modified

Gram-Schmidt orthogonalization algorithm. For storage requirements

or the space complexity, oniy the augmented matrix will be

considered. These limitations are imposed to make the analysis more

general and consequently more accurately compared to other existing

algorithms.

The time complexity of the ST method is based on counting

numerical operations performed in the two dominating processes. This

*;..':-_ is even further limited by using only floating-point operations as is

commonly done (17:-78).

Thus the basis of the modified Guass-Jordan reduction

becomes two, three level loops. Summarized by the row operations

performed on a matrix with dimensions mxn, the loops consist of

For k=1 to M

For j=k+l to M

For i~k+l to (M*N)

For column operations the loops are identical with the exception of

the outer loop limits. The limit for the outer two loops is N. Using a

common approximation for the above, the total row and column

. .-:. loops are equated to m 3/3 or n 3/3 floating-point operations
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respectively (17:80). The total operation count for the matrix

reduction is then simply the sum of each which is (m3 n3 )/3.

For the modified Gram-Schimdt orthogonalization process, the

time analysis is the same. Each orthogonalization process contains a

three-deep nested loop as illustrated above for the row reduction

operations. In the worst case, with a matrix rank of one, the

operation count for the row orthogonalization is n3/3, and for the

column orthogonalization the count is m 3/3. Again the combined

count is simply the sum of each which is (m 3 n 3 )/3.

Combining the operation count for the Guass-Jordan and

Gram-Schmidt provides an overall operation count of (2/3)(m3 n 3).

This applies to the computation of an A1,2,3,4 generalized inverse.

Computing a lower inverse would require less operations down to a

minimum of (m3 n3 )/3 for an A, 2 generalized inverse. No other

operations performed by the ST method would appreciably change

the cubic derived above. While including these other operations might

change the coefficients or add a lower term to the overall operation

count, the cubic nature of the two dominating processes will still

prevail as the methods chief computational burden and also serve as

a good comparative reference.

The space complexity is based on the number of memory

locations occupied by the augment matrix. While the actual imple-

mentation used considerably more (extra storage was used for

validation and demonstration purposes), the heart of the algorithm

requires only enough storage for the original matrix, two identity

matrices, and the resulting generalized inverse. The analysis flows
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very directly from this perspective. For the original matrix, a block

l " of memory determined by the dimensions of the matrix is needed. If

given a matrix with dimensions m by n, then m times n memory

locations are needed. Since the original matrix is augmented by two

square identity matrices, an additional m 2 +n2 locations are needed.

The resulting generalized inverse needs n times m locations since it

has dimensions n by m based on the original matrix. Combining the

space requirement for the original matrix, the two identity matrices,

and the generalized inverses results in (m+n)2 locations.

Other Algorithm and Computation Considerations. Lumped

under this section are the subtleties and hidden insights enclosed in

_. the computer implementation of the ST method which might not be

v. .'- obvious from the desciption above or its documentation. Each is

addressed individually and with no specific order in the paragraphs

which follow. These should be helpful to any future implementations

of this method for computing the generalized inverse of a matrix.

The simplest data structure for implementing the augmented

matrix is a square two dimension array. For a matrix with

dimensions mxn, such an array would be dimensioned (m+n) by

(m+n). Although this representation is the simplest, it also poses one

problem regarding storage. In the space analysis the complexity was

determined to be (m+n)2 . Using this scheme the original matrix and

the two identities matrices will require (mn)2 locations alone. To

keep the storage to the minimum found in the space analysis, the

* -, computed generalized inverse could be stored in the unused lower

.. ... right corner of the (mn) by (m~n) array. This was eluded to earlier
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(on page 44) when discussing the composition of the augmented

* ' matrix after it was reduced. While this may require a little extra

effort during the final phase of the program to place the product of S

and T back into the lower right corner of the large array, the trouble

may be offset by the ease of manipulating only one data structure

and still using minimum storage. A second alternative would be to

store the computed generalized inverse on top of the identity matrix

which was denoted as Ir , There are also problems with this approach,

namely taking the transpose of the inverse while storing and retriev-

ing it from this area, but again the convenience may out weight the

trouble of manipulating only one data structure.

The use of a conditional statement with a floating-point

representation introduces a problem when the condition is testing for

* , equality. In the ST method, this problem arose during the matrix

reduction process of step 2 when testing for zeroes. Since a given

matrix element may never exactly equal a floating-point zero, due to

small numerical errors, the question must be asked how should the a

condition be setup to test for a floating-point zero? One method

represents a zero relative to the scale of the machine used, and then

bases the condition on the absolute value of this relative zero (24:43).

Taking the machine used for the original development which had 16

decimal digits of accuracy, a zero was represented as 5x,0 - 16. Thus

the absolute value of any matrix element less than 5xl - 16 was

considered zero. Use of a different machine would require an

adjustment to this representation of zero, Additionally, different size

matrices would require adjustments to the amount of error allowed

in a zero
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There are certainly few if any applications where all four

generalized inverses, discussed in this work, are needed together.

Thus only certain parts of the ST method, as implemented in

appendix B, are needed for a given application. This reduces the

complexity of a potential program significantly from what is included

in appendix B. As mentioned above under the time complexity

analysis, this results in a range of operation counts from (1/3)(m 3+n3 )

to (2/3)m3 +n3 ) floating point operations. The same applies to the other

routines included in appendix B supporting the computation of a

given generalized inverse. These include the multiplication, printing,

and input routines. In any given application, these routines could be

reduced significantly to support the given application's requirements
lessening the computational burden of the ST method.

Another aspect of applying the ST method concerns the
(o
• -" environment where the application would actually reside. Consider

an environment with a large mathematical software package. Such a

package could be used to piece together an effective ST implement-

ation with minimal modifications. For example, by calling a

Gauss-Jordan algorithm followed by any necessary column reductions

and a call to a matrix multiplication routine, an A1,2 inverse could be
computed with little effort. There are certainly many other possibili-

ties which are made possible due to the modular nature of the ST

method.

One final topic concerns algorithm validation. Two methods

were used to validate this effort. The most useful was testing the

*¢ computed inverse against the one to four conditions it is suppose to

S" " satisfy. These conditions, Eqs (2-1) through (2-4), provide a reliable

61

O ..



means of testing the algorithm. The second method was simply to

compare the computed results to a known correct result. Appendix A

provides a detailed example showing the use of both of these

methods. The conditions are tested as each inverse is computed, and

the final unique AI,2,3, 4 generalized inverse matches the known

solution found in the referenced text. Of the two methods used, the

most useful and informative was using the four conditions. This

method also provides insight into possible numerical inaccuracies

since the results can be compared to the correct solution. This is the

same as taking the classical inverse and then multiplying it and the

original inverse together. The resulting identity gives an indication of

how accurate the computed inverse is just as using the four Penrose

conditions does for a generalized inverse.

Algorithm Comparison. When comparing two or more

.lgorithms which perform the same basic function, but do so by

different methods, it can be difficult to find a common basis for

comparison. This especially true in this case where there are many

methods for computing a generalized inverse. Here, the comparison

process is particularly complicated by the wide variety of notation

used to describe such computational techniques. Additionally each

description is normally only developed to provide an overview of the

method versus the detail needed for an indepth comparison. To

overcome these difficulties, six general categories were chosen to

compare algorithms Each category is described below.

The first category deals with the initial representation of the

o-" i ~matrix. This category was chosen since the process of augmenting the
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initial matrix is central to the ST method. Thus any comparison
* : involving the ST method should include this particular aspect. From a

survey of several different methods, the second category was chosen

as factorization methods. This category was chosen since, in one way

or another, all algorithms examined performed some factorization of

I Method 1 _--

Characteristic T::1,)
(21 : 142) (27 : 1.T

Inta ~trion [[tf] I] [A
, ;.epr e:-Sen t.ati,-n 110

ROW AND ROW SINGULAR VALUE

C:_-:OLUhI:' OPS. OPERATIONS DECOMPOSITION
~MULTIFPLE

i Lo icaI Flo- DIRECT DIRECT MULILE

T i mr e 1 o l -n - :l e . it .V . , . 7 .: . . . .. .. " " r '

,S-' ',,on -ip1e.- itv 2n,'rn -+ j'
:-p ,:e ;-O-il lx t . '.rn+n)4 Mn .n+n,,

i.Retric ted b- -y ,Comput.es
" 4 inverse ra nk 1 inverse

Figure II. Algorithm Comparison

the initial matrix in the process of computing a generalized inverse.

The third category deals with an algorithm's general structure.

Here general structure means the logical flow of the algorithm. In

other words, does the algorithm require extensive logic to piece

together the individual parts of the computation or does it flow

directly from start to finish. The fourth and fifth categories are
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respectively the time and space complexities of an algorithm. The

final category deals with the flexibility of the algorithm. In this

regard flexibilities concern what range of problems can the method

handle or what constraints are levied on the problem's input.

*' Using these six categories, the ST method is compared to two

representative methods for computing a generalized inverse. The

comparison is summarized in figure 11 (Each method is defined and

referenced to where it was obtained in the figure). The figure shows

a number of general results. First, the ST method has the most

complex initial representation, but this representation appears to lead

to an advantage in the other characteristics especially in flexibility.

-. The ST method is the only one of the three which can compute four

generalized inverses without any restrictions. Method 2 seems to be a

best in terms of storage, computations, and factorization, but is

restricted by the rank and dimensions of a given matrix. Method 3

begins with the simplest initial representation but quickly becomes

-: very complex. This algorithm will be examined in greater detail in

the discussion of the adaptation for the ST method.

In summary, it hard to say one method is absolutely better

than the other, but certainly the ST method is by far the most

flexible. It can be used in more situations than the other two and

does not suffer significantly in terms of the other categories of

comparison due to this advantage in flexibility. Ignoring all other

possibilities and using the six categories above, the ST method would

probably offer the best choice for computing a given generalized

inverse.
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' ' ., Th S1 Method Adapted tQ Singular Value Decomposition.

The ST method will be adapted to the results of a singular

value decomposition algorithm to obtain an A1,2,3,4 generalized

inverse. This will begin by first reviewing an algorithm for singular

value decomposition to provide the proper perspective for the ST

adaption. Next the representation developed for the ST method will

be derived from the results of the singular value decomposition

algorithm to compute the AI,23,4 generalized inverse. Finally this

o approach will be compared to another method which uses the results

of a singular value decomposition algorithm to directly compute an

A1,2,3,4 generalized inverse.

The Singular Value Decomposition Alorithm. Given a matrix

Amxn, singular value decomposition factors the matrix into the

product of two orthonormal matrices and a diagonal matrix. This

product is defined as
.4.

[ • " = C' Z C.t

To understand how the ST method is adapted to the results of the

singular value decomposition, the Q1, Q2, and 2 matrices, as shown

above, will be developed with a simple example. Then the S and T

submatrices will be derived from these three matrices. The process
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: .begins by first choosing the matrix A as

11

Next, find the matrix. This is begun by first forming AtA and then

computing I AtA-NI I with the goal of finding the characteristic root

of AtA as follows

A .t[ A -- [:7 4 4 ] = -- -5

A 41

44 With a characteristic root of N 25, the process continues by finding

the associated characteristic vector

Using the characteristic vector, the Q2matrix is defined followsmatixisoefne asfolw

- L ]

*e The next step is to form Q1. This begins by forming AAt and then
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computing I AAt-Nl I to finds its characteristic roots similar to what

was done to find Q2. In this case the process produces the following

F;'4...I ]

4" 1 16

II',
t  -,", = 1 4-5\ = )14

i i i

Notice at this point that X~ 25 is a common solution for both

I AAt-XM I= 0 and I AtA-X 1=0 . The next step uses this common

solution to obtain the characteristic vector for AAt as shown below

which is solved for x as the following pair of equations

9x, + 12X2 = 25x,

12x, N 16X2  25x2
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which becomes

-16x 1 + 12x 2 = 0

12x 1 - 9x 2 = 0

Reduced, these equations simply become x1  (3/4)x2. Then by

choosing x2 as 4, x1 is equal to 3 and the characteristic vector

becomes

1 7i

-' '44

o N' Normalizing x provides the following

I r-

Now QI is constructed using the normalized x. The first column of Qi

is x leaving one additional column to be filled to make the product QI

and I conform. This second column is filled with a vector making QI

* an orthogonal matrix. In this case, QI is defined below showing this

choice
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The last matrix to be found by singular value decomposition is 2. This

matrix is the product of QI, A and Q2 as shown below

- - -c, I I-r

4 4J

The diagonal elements of 2 display the singular values for the original

matrix A. In this case, the decomposition process provides only one
(.:  singular value of A which is simply 5. This will become important as

the S and T matrices are obtained.

rin&he S nd I Submatrices. With the Qi, ., and Q2
matrices, the S and T matrices of the ST method can now be

obtained in a very direct manner. First a matrix is formed using the

* Qi, X and Q2 matrices and partitioned as shown below,

I J
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This representation should look very similar to the representation

developed in the ST method. In fact, by only dividing each diagonal

element in the - matrix using row operations, the ST method is

.41 obtained. This is equivalent to saying divide each row of Ql by the

corresponding singular values. For this example, there is only one

diagonal element or singular value in 2 so the resulting matrix in the

ST representation becomes

4

* .1 7i

4L '7

L
I

As described many times before, the AI, 2,3,4 generalized inverse

simply becomes the product of S and T. For this example, A1 2 4 is

.174 D~ J

This adaptation of the ST method is certainly simpler than the more

publisized technique defined by

0 /where
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' IV Application 12 1Lo th L3Jl Matrix Eqation

To avoid the pitfalls associated with the computation of a

generalized inverse, potential applications were modified to

circumvent matrices not suitable to the classical method of matrix

inversion. Further, some potential applications probably never even

considered the use of a generalized inverse, especially the less known

generalized inverses like the A1,2,3 . One such application, which

probably falls somewhere between these two possibilities, will be

adapted to use an A1,2 generalized inverse. This application, the

Lyapunov matrix equation, will be solved using an A1,2 generalized

inverse. The solution will be developed in detail in order to show how

the A1,2 generalized inverse fits this application.

lThe LyW2Q Matrix Equain

The necessary and sufficient conditions needed to show the

Lyapunov equation, Eq (4.1), has a solution will be established. This

AX-XB*C = 0 (4.1)

where
., *- ',ACmxm

A QMX
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I

B B cnxn

c Qmxn

solution will be defined in terms of an AI,2 generalized inverse. Two

steps will be required to accomplish this goal. First, the solution of

the Lyapunov matrix equation must be defined in terms of two pairs

of equations. Each pair of equations will trap the solution of the

Lyapunov matrix equation, if a solution exists. Establishing each pair

of equations will require the use of several identities which will be

developed in the bulk of this section. Second, once the two pair of

equations are established, their solution, and consequently the

solution of the Lyapunov equation, will be expressed using an AI,2

generalized inverse. Thus a general common solution of the pairs of

equations will be defined to express the solution of the Lyapunov

matrix equation.

Theorem 4-1. Let Eq (4-1) have a solution X, then the following

matrices are simialr

I J L

* Proof. Let X be a solution of Eq (4.1), then the following holds

'. r -. A ,_-]I r I aI,:., ,L: , 0 : , . " 4
"4.
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A AI+ C)E. (4:

* C

'0B

Using the given, namely that Eq (4.1) has a solution, the two matrices

of Eq (4.2) are similar. Note this holds for any X since the matrices

which appear in the left hand side of Eq (4.3) as shown below in Eq

(4.6) are inverses

.. With theorem 4-1, it has been shown that there exists an X

such that the matrices of Eq (4.2) are similar and consequently Eq

(4.1) has a solution. The next step is to extend this result. To do this,

define the matrix R as follows

K ;t: = 'A .4.7)

then

[e -

Next find the determinant of [R-M] as follows

740e
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1% T

C~ C'L~I'

IR _,TI =i

- " ".I; ]3-; I '
.g ".-- ,>-s-..

S.-1

This shows that I R-M I factors into a pair of polynomials, namely

the characteristic polynomials of the matrices A and B, The degree of

fA(X is less than or equal to m and the degree of gB(X) is less than or

-; equal to n. Also, fR(R) is equal to zero since every matrix satisfies its

own characteristic equation.

Now using the results of theorem 4-1, namely

p-, I A ' (4 11)

let fN) be defined as follows for N replaced by R

, "4 1

where U, V, M, and N are polynomials in the matrices A, B, and C

"-'2; Any polynomial, fA(R), commutes with R where the coefficients are,.(R):

complex or real, this results in the following
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- ". This implies the following identities

* AU"CV = UA (4.16)
BV=LVA (4.17)

. AM+CN = UCAMB (4.18)

BN = VC+NB (4.19)

* Again recalling the results of theorem 4-1 in the form of Eq (4.11)

I -T." [A C. [1 (4.11)

i)I II] F, ) j jJ D

* This equation holds for any solution X of Eq (4.1)

'I:

AX-XB+C = 0 (4.1)

Thus for any polynomial fA() given by Eq (4.12)
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f ." (:4. 12

and under the similarity transformation as defined and proved

earlier for Eq (4.2), it follows

N 0
T' H-,.':V II - V ):+q -::

[' '-~'. rv,-:KH fi N

L ';r ,:': I]I

N'+

where fA(B) is not equal to zero and * is not of concern. Next by

matching the terms of Eq (4.20), namely the respective terms of the

equality

T T-'. . . .. . v . ",. T -.7-" 1 f
* I "t' - L $',,"E,,

The follwing pair of linear equations are obtained
0

U-XV 0 (4.22)
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4. -(U-XV)X*M-XN = M-XN = 0 (4.23)

As it will be proved below, any solution of Eq (4.1) must satisfy the

above pair of equations (4.22) and (4.23). In other words, the pair of

all solutions for equations (4.22) and (4.23) trap the solutions of the

Lyapunov matrix equation, Eq (4.1).

Theorem 4-2. If N-1 exist, and X is a common solution of

equations (4.22) and (4.23), then X is also a solution to Eq (4.1).

Proof. Let X be a common solution to Eqs (4.22) and (4.23),

then using the identities defined in Eqs (4.16) through (4.19), derive

the Lyapunov matrix equation as follows

- 0 = (XN-M)B

" XNB-MB

-- XMB UC-AM-CN

= X(BN-VC)-AM-CN UC

= X(BN-VC)-AXN-CN UC

= XBN-AXN-CN (UC-XVC)

= (XBN-AXN-CN) (U-XV)C

= (XB-AX-C)N

Iheorem 4- Let V-i exist and let X be a common solution of

Eqs (4.22) and (4.23), then X is also a solution of Eq (4.1).
*

Pro. Let X be a common solution to Eqs (4.22) and (4.23), then
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using the identities defined in Eqs (4.16) through (4.19), derive the

Lyapunov matrix equation as follows

0 = (U-XV)A

= UA-XVA

= XVA-(UA)

= XVA-(AU+CV)

= X(VA)-AU-CV

= XBV-AU-(CV)

= XBV-AU-(UA-AU)

= XBV-UA

XBV-AU-CV

-AU+XBV-CV

= -AXV+XBV-CV

= (-AXBX-C)V

In addition to the two Eqs (4.22) and (4.23), a second pair of

equations can be used to trap the solution to the Lyapunov matrix

equation. The common solution of at least one pair will define the

solution to the Lyapunov matrix equation. The second pair of

equations are

VX+N 0 (4.24)

UXM -0 (4.25)

These equations are derived in a manner similar to Eqs (4.23) and

""" (4.24). First, the equations arise from the results of theorem 4-1, but
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with two terms rearranged. Now the similarity transformation
- defined for the matrices of Eq (4.2)

and (4 2")
Lio[ V I

becomes equivalently

FT T7 I - Fr TH K,,) I [0 E, ,) L0  !,(4. 26)

0 Now this similarity transformation is used in place of Eq (4.20) with

fB(R) substituted for fA(R). Now similar to Eq (4.20) it follows

r" T 1.1F r F; (. .7'-  C 0K :- . l I = L~ ", .... .f 1 1 { (.27

0 1V N-

*..;...1 = 1 ",,, ~ I'-V ]

Here fB(B) is equal to zero which provides the final key needed to

," obtain the Eqs (4.24) and (4.25). For a more complete derivation of
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Eqs (4.24) and (4.25) see (6:13-14). Like theorems 4-2 and 4-3, Eqs

(4.24) and (4.25) tie once again back to the Lyapunov matrix

equation. Theorems 4-4 and 4-5 show this with the given conditions.

Theorem 4-4. If V- 1 exist, and X is a common solution of

equations (4.24) and (4.25), then X is also a solution to Eq (4.1).

Proo. Let X be a common solution to Eqs (4.24) and (4.25),

then using the identities defined in Eqs (4.16) through (4.19), derive

the Lyapunov matrix equation as follows

0 = (VX+N)B
= VXB (NB)

= VXB+BN-VC
= VXB-BV-VC

S= VXB-VC-(BV)X

= VXB-VC-(VA)X

= V(XB-C-AX)

Theorem A-5. If U- 1 exist, and X is a common solution of

- equations (4.24) and (4.25), then X is also a solution to Eq (4.1).

Proof. Let X be a common solution to Fqs (4.24) and (4.25),

0 then using the identities defined in Eqs (4.16) through (4.19), derive

the Lyapunov matrix equation as follows

: .:0 = A(UX+N)
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= AUX AM

AUXM(AM)
,:- , -- (AU)X+(UC+MB-CN)

= (UA-CV)X UC MB-CN

= UAX+UC-(CV)X+MB-CN

= UAX+UC-CN MB-CN

= UAX+UC+(M)B

= UAX+UC+(-UX)B

= U(AX-XB C)

, S

As stated earlier, the first step in developing a solution for the

Lyapunov matrix equation was deriving an intermediate expression

for its solution. The two pairs of equations, (4.22), (4.23) and (4.24),

(4.25), comprises this intermediate expression. Now, a common

solution for each pair must be obtained.

Common Solution. Now that the solution of the Lyapunov

matrix equation has been expressed by an alternate representation,

the final step is to find the solution in terms of this representation.

For Eqs (4.22) through (4.25), this means finding the common solution

for these pairs of equations. In Odell (31), a common solution for n

equations is derived using an A,2,3,4 generalized inverse, Here n will

be fixed at two and an AI,2 will be substituted in place of the AI, 2,3,4

* E generalized inverse used by Odell.

To understand why an A1,2 generalized inverse can be used in
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place the Ai,2,3,4 generalized inverse used by Odell, examine the
necessary and sufficient condition needed for a common solution to

exist. Given the pair of equations

AIX =B (4.28)

A2X B2  (4.29)

By Odell [31:272], the following must hold for Eqs (4.28) and (4.29) to

have a common solution

AIA=L1.,3,4 ) B I = Bl  (4.30)

(A2 -A2A1Aj)(A2-A2A1A)( 1,2,3,4 ) (B2 -A1 A1B1) - (4.31)

(B2-A1 A1B1 )

Examining the conditions expressed for these two equations reveals

that an AI,2 inverse will satisfy both conditions. This is a result of

2. the partial definition of an A1,2 generalized inverse which was
.4

*expressed earlier in the form

AXA =A (2.1)

remembering X here is an AI, 2 generalized inverse. For Eq (2.1) to

hold, AX must equal an identity matrix of appropriate dimensions.

.:f. Applying this result to the condition stated in Eqs (4.30) and (4.31)

shows that the AI, 2 satisfies these conditions since the following
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equations also hold

AIAI( 1,2)Bl = B1  (4.32)

(A2-A2AIAI(1,2))(A2-A2AIAI(1,2))(I,2) (4.31)

(B2-AIAIBI) = (B2-AIAIBI)

since

AjA( 1,2) I

(A2-A2AIA I(1,2))(A2 -A2AIA I(12))(I, 2) =

by the definition of an A1,2 generalized inverse.

Thus using an A, 2 generalized inverse, Odell's result can now

be stated for a pair of equations and in terms of Eqs (4.24) and (4.25).

Thus given
, -

VXN =0 (4.24)!!,

UX+M= 0 (4.25)

The common solutions for these equation, by Odell (31,272), is found

from

X = VI, 2 N+(I-VI 2V) (4.34)

X = V1 2 N (I-VI 2V)[(U-UV 2V)1 2(M-UV1 2 N)] + (4.35)

(IN IV)[I-(U-UVI2V)I (-UV12V)]
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if and only if the following holds

VV1,2 N = N (4.36)

(U-V1,2 V)(U-V 1,2 V)1,2 (M-UVN) - (M-UVN) (4.37)

This result can also be extended for Eqs (4.23) and (4.24) where

the unknown is on the left hand side. In this case, the necessary and

suficient conditions, which determine whether or not Eqs (4.22) and

(4.23) have a common solution, are rearranged to account for the

form of Eqs (4.22) and (4.23). Specifically, the second characteristic of

an A1,2 generalized inverse is utilized to obtain the new expressions

for the necessary and sufficient conditions and also the form of the

common solutions for Eqs (4.22) and (4.23). This characteristic of the

A1,2 generalized inverse was stated earilier as

XAX =X (2.2)

Now, applying Eq (2.2) to the conditions needed for a common

solution to exist for Eqs (4.23) and (4.24) provides a similar result to

that developed for Eqs (4.30) and (4.31). This result can be stated as

V1,2 VU = U (4.38)

(N-NVVI,2)(N-NVVI, 2 )1,2(M-NUVI, 2 ) = (4.39)

(M-NUVI, 2 )

Now if Eqs (4.38) and (4.39) hold, then the common solution for Eqs
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(4.22) and (4.23) can be obtained from the following

X = UV1,2+(I-VV1,2 ) (4.40)

X = UVI,2 (I-UV1,2 )(M-NUVI,2 )(N-NVV1,2)I,2 + (4.41)

(I-VV,2)(I-(N-NVV1,2)(N-NVV1,2 )1,2)

Probably the most interesting result from the above application

of a generalized inverse to the Lyapunov matrix equation is the

potential savings obtained by substituting the A1,2 generalized inverse

over the AI,2,3,4 generalized inverse It should be apparent at this

point, that an A1,2 is easier to compute than an A1,2,3,4 (see appendix

C for a quantitative comparison of an A1,2 versus an A1,2,3,4 ). Thus if

an A1,2 satifies the needs of an application, it would certainly be

more desirable than an A1 2 3 4 for computational reasons. This is

certainly the case for the application discussed above which leads

gback the comments made in the introductory remarks to this

chapter regarding the use of a generalized inverses. Namely, the use

* of a lesser generalized inverse was probably not considered for solving

for the common solution of multiple equations, as needed above,

primarily due to the lack of stable and direct methods for computing

such an inverse. The ST method provides the necessary stable and

direct computational technique needed to make the A1,2 of use in

this application.

8
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V. Conclusions And Recommendations

The ST method provides a simple, direct, and numerically stable

technique for computing four generalized inverses of a matrix. It also

provides a unified approach for computing these inverses over other

techniques which normally only apply for computing a single

generalized inverse. The ST method also highlights the computational

differences between each gereralized inverse. This combined with the

-:: properties of a respective inverse provides insight into the use and

cost of computing a generalized inverse for a given application. Thus,

by takng into account the cost of computing an inverse and its

properties, the ST method may help reveal where a lesser generaliz-

ed inverse will satisfy the requirements over a more computational

expensive inverse. This was certainly the case for finding the

*: solution of the Lyapunov matrix equation. In summary, the ST

* method is a simple, direct, and unified technique for computing a

generalized inverse.

There are two areas where the ST method, in particular its

computer implementation, can be extended. First, further study is

warranted in extending the ST method to unbound precision. The

next logical extention would be to address matrices with single or

multiple parameters. Both are recommended because the ST method

is a good computational framework for large problems, and these

potential applications deal with matrices of this type or require

these capabilities.
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", ) Appendix A: Example I_

The purpose of example 1 was to introduce the ST method in a

simple and direct manner. With the details of the ST method now

well established, example 3 extends example I by taking a more

complete look at the steps comprising the ST method. This includes

the intermediate results of the row and column operations and the

use of Penrose's four equations to test the computed generalized

inverses. The matrix A in this example was taken from Noble

(21:145,146). The example begins with the given matrix A of

dimensions 6 x 4:

. :' I O1;11- 1 cI- 0 .0 - 01
FOCI I 1 cI 1000 0:003

cc .II- - 1 O .nn 0001-i . OO
I CI rin - i coo -2 con

First augment A with an identity matrix of dimensions 6 x 6

beside A and an identity matrix below A with dimensions 4 x 4
roviding

* !- ! '1 '::' ! O:'0 2c -,:0 1 !. .L-- - . c':' . 0 000 c c r
- r,, I 0 - 1 OF 0:cc' 1, CICI CIO .I- F' -i -

", " } 00; - 1 2-c,,- i I-i' .: -IO~ ' -H- J L-'-i- cc 1 '_H 0I-c ',i-,-, ,-:-:-

nn i Fi I-CN !lIq - ~ l-:N r OO FlIF3C OFy ' I FIFn A(-Ir NOC I

* " 1 . . ..... ..... . ..
1 A 1 -1i - 1 . -, _i - n Io r )O I I I F _ LI 1 -F 1 O I

t n .. 11 111 i-1110 1 1

UUL[ ii ci'::' :ci
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Using this augmented representation of A, the next step is to

reduce the original matrix to a square identity matrix with

dimensions equal to the rank of A. The reduction process uses a

modified Guass-Jordan algorithm with a pivoting scheme which will

perform, at the most, three pivots to locate the best diagonal element

for both row and column operations. The following matrix shows the

result of the first pivot call where three pivots were performed to

locate the best diagonal element for reducing both the elements below

the diagonal and the elements across from it:

f:', 00 - 1 000 1 .000 00:0 Oi:0: .000
-1 . 1 .000 000 - 1 0 C C 000 1. 000 . . 000 000 .000

I 0 - ._ 0-g 3.0-0 -1J .1 _- . I'-I1I Ig000 .01-0 .0001 0171. .1000:-

-_ III 1 1 000 - 1 000 .00 .000 .00I0 .0001 1.00 000 .000C
1. 000 - 1. 000 000 1. 000 000 .000 .000 .000 1.000 .000

-2. 000 . -- - 1.00: 1 . 00 o - 00 .000 .000 .r000 1. 000

.- IIl . .00 0 1 00 1.000
I .00o . 001 1 . -!-I1 C

/- 1 -t - t iI 0:": 1 71 I 1

With the best diagonal element established, the first column, of the

now shift matrix A, is eliminated with row operations. The result is
shown in the following matrix:

J-1, :3:3: - .11: Ic .;IL C1 ::3 io occ
3:L_ -- I 1 ci I. 1ot1 nn1 - 6 L. 1 o11 Huu in II

,'. .%:I iJ l -In t .12iJ i I F II-i- !I il-I "-11-0 I .O _ilI 1 III0 I I-_IFI FI - I- i~llO
' ,'-' ' i-l* 3-l 'l ,=. ":""' 00 l-li: c-c-i- . '-!l-lf- -""- c i II.. l- i-I-1-f -i-i-

Ucc - F , , . -I - - -I CFIF1 1 -1 - 11 11 0 I 1. 1-1 III
1 .. "- .. . . -._. - -- I1 C F --- ---

1311113 OCO 1 000 31313

"." ~ ~~~ ~~I-1 i 1t I' 17 1-irl-40 I-I1-11-1 Ii-11 Ii-t1 I !I-1! 1 ti-11 !i-r -11-

FIIF'1 - 101_-71 1 ;7 -';iA F I-liII-I II-O !!!I- 6 _IIO I-1I _I-1_

F,*t 11 - i 11 1

Tn

~The pivot process continues, but now the pivot is performed around
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the second diagonal element. This pivot call resulted in one pivot

which is shown below:

3..000 .000 1.000 -1.000 .000 .000 1.000 .000 .000 .000
.000 -1.000 .3.. 6 .67 .000 1.000 .333 .000 .000 .000
000 -1.000 .333 .567 1.000 .000 -. 667 . 000 .000 .000

.000 .000 .000 .000 1000 .000 1.000 .000 .000 .000

.000 1.000 -.333 -.667 .000 .000 -. 333 .000 1.000 .000
000 1. 000 - .3:33 -. 667 .000 .000 .667 .000 .000 1.000

.000 .000 .000 .000

.000 .000 000 1. 000

.0100 .000 1.0OO0 .000

1.000 .000 .000 .000

Again, the next step is to reduce the elements of only A below the

diagonal element with row operations which produces

6r
3 . oo 1000 . 000 -1.000 .000 .000 1.000 .000 .000 .000

con -1 r00 :-:333 .0 0 1 . .'00 .000

ono0 000 .000 .OC00 1000-1.000-1.000 .000 .000 .000
... 00 000 0-00 .000 000 .000 1.000 1.000 .000 .000-000 0 0: 0:1 .000 000 1.00.000 .0 00 1.0 000 . '000

.000 .000 .000 .000 .000 1.000 1.000 .000 .000 1.000
000 1.000 .000 .000
000 .000 .000 1.000
000 .000 1.000 .000

1 .000 .000 .000 .000

The next potential diagonal element is zero, and all possible pivot

candidates are also zeroes. This means all rows below the last

diagonal element have been reduced and no further row operations

are needed. This also denotes that the T submatrix is almost defined

since it is a function of the row operations. The only remaining

operations which may impact T is dividing by the diagonal element

after the column operations have been completed. This will be more

apparent in a later matrix.

Since the pivots performed prior to each set of row operations

were designed to look ahead to provide a good computational basis for
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the column operations, no futher pivoting is performed during the

column operations. Instead, the column operations are performed

directly on the remaining non zero elements. The result of the first

set of column operations on row one of A is shown below:

3 000 000 000 000 000 .000 1.000 .000 .000 .000
.000 -0c0 .33.3 .667 .000 1.000 .333 .000 .000 .000
000 '000 000 .000 1. 000- 000-1.000 .000 .000 .000
000 .000 .000 .000 .000 .000 1.000 1.000 .000 .000
000 000 .000 .000 000 1. 000 .000 000 1.000 .000

.000 .000 .000 .000 .000 1.000 1.000 .000 .000 1.000

1000 1.000 .000 .000
.000 .000 .000 1.000
000 .000 1.000 .000

1.000 .000 -. 333 .333

The next set of column operations reduce the remaining non zero

elements of row two across from the second diagonal element. This is

shown in the following matrix

3 .000 . o00 . 000 .000 .1000 .000 1.000 .000 .0)0 .000

.000 - 1.000 .000 .000 .000 1 .000 .333 .000 .000 .000
000 .000 .000 .000 1.000-1.000-1.000 .000 .000 .000
.000 .000 .000 .000 .000 .000 1.000 1.000 .000 .000
.000 .000 .000 .000 .000 1 .000 .000 .000 1.000 .000
.000 .000 .000 .000 .000 1. 000 1.000 .000 .000 1.000
.000 1.000 .333 .667
.000 .000 .000 1.000
S000 .000 1 .000 .000

1 .000 .000 -.3-3 .333

With only diagonal elements remaing in A, the final step needed

to reduce A to the desired identity matrix is to divide through by the
0

diagonal elements. With all row and column operations complete,

the submatrices are now defined, and the representation, derived in

theorem 2-1 as equivalent to the augment matrix A, is obtained. This

* . representation is shown in the next equation along with the sub-

matrices o, T, M, and N highlighted with the partitioning lines:
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1.000 000 .000 .000 .000 .000 333 .000 .000 .000
_.000 1.000 .000 .000 .000-1.000 -. 333 .000 .000 .000' IIiT  1.000 .000 .000 1.000-1.000-1.003 .000 .000 .000

I T 000 .000 000 .000 1.000 .000 1.000 1.000 .000 .000
U F 1A 00 .000 .000 .000 .000 1.000 000 . 000 . 000 . 000

S I N 0 .000 .000 .000 .000 .000 1.000 1.000 .000 .000 1.000
.000 1.000 .33. .667
.000 .000 .000 1.000
.000 .000 1 000 .000

1.000 .000 -. 333 .333

Using the above matrix, an A1,2 generalized inverse is computed

directly from the product of the S and T submatrices. This product is

shown in the following matrix

1000 -1.000 - 333 .000 .000 .000
100-0 0 F00 .00 .000 .000 . 000

0)00 000 .000 .000 .000 000
000 .000 .333 .000 .000 .000

Applying the two equations an A1,2 generalized inverse satisfies

provides the original matrix and the computed inverse as follows for

each respective equation.

AA1,2A = A

-1.:00 .000 1.000 2.000
.1 . 10' 1 .000 .000o -1I.000c

.000 -1.000 1.000 3.000
.000 1 .00 -1.000 -'3.000

I .000 -1.000 .000 1.000
I .000 000 - .000 -2.000

A1,2A A1,2 = A1,2

oooI co~ Ec:3 00 0 .000nir
.000 .000 .000 .000 .000 .0cI-of I/f

L 000 nO0 3::3 .00 .O 00 C0O J
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again The next inverse of concern, an A1,2 ,3 generalized inverse, is

again computed from the product of the S and T submatrices, but

after each row in T has been orthogonalized to every row of M.

Example 2, in chapter 3, provides more details regarding the

orthogonalization technique used. Thus an A1,2,3 generalized inverse is

computed from the following framework which shows the

orthogonalized T and M submatrices and the previous S submatrix:

' [1.000 .0 000 .000 Of .055 -. 056 .111 -. 111 .056 -. 056
.000 .000 .000 000 -. 222 -. 278 .056 -. 056 .278 .222

"1 .000 1000 .000 .000 1.000 -.250 -. 250 .250 .25_ .500

I. T .000 .000 .00 .000 .000 -. 200 .600 1.000 .200 -. 400
* ii .000 .000 .000 .000 .667 -. 333 .000 1.000 -. 333. o0o .UL 000 1 o ooo . o000 1.oo0 1.000 .000 .000 1.000

-IN . .000 1.000 333 .667
.000 .000 '000 1.000
.000 .000 1.000 .000

1. 000 .000 - .333 . 333

The product of S and T in this case provides the following matrix

- - .'o 056 -. 0'56 278', . 2
000 .000 .000 .000 O0 .000

.000 .000 .000 .000 .000 .000
.056 -. 056 111 -. 111 .056 -. 056

This A1,2,3 satisfies the previous two equations and in addition the

equation

t,0 (AA 1,2,3 )* 1 (AA, 2,3 )
',
* 44 -

''  where the product of the A1,2,3 and the original matrix A is the

symmetric matrix shown below
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.167 333 -.167 .167 -.333 -.167
167 -. 167 333 -.333 .167 -. 167

-. 167 .167 -. 333 .33 -.167 .167
167 -. :3:3- .167 -. 167 :333 167- i - .... - 1
.333 -. 167 -. 167 .167 .167 .333 .

To obtain an AI,2,4 generalized inverse, the S and N submatric-

es are orthogonalized like the T an M submatrices were

orthogonalized for the A1,2,3 generalized inverse above. The product of

the orthogonalized S submatrix and the non orthogonalized T

submatrix form the AI, 2,4 generalized inverse. The following matrix

shows the computation framework needed to compute this inverse:

1.000 000 .000 .000 .000 .000 .333 .000 .000 .000
000 .I000 .000 .000 .000-1.000 -.333 .000 .000 .000

000 000 00 .000-1000-1-000 .0 00.0
[0 O O.-000 000 1 000- 10001 000 .000 1.000 000

" U
I0 1 0 o .000 o:),o . . o 1.0 1.00 .00 .oo 1.0

1 1 N 2i 0 1 76 4 .2y t- .0 667
- --J5 - 42 -07! 1 !.000

.294 -.235, . 000 .000
824 -.059 -.:357 .3:33

The product of S and T in this case produce

r1.000CI - F54- - 2:35 .000 .0013 000

1 000 .412 .059 .000 .000 .000

.000_ - 3-.2]5 .176 .r00l .00 .000_" -j1.10 .5 2,.4 ,:,oo .,oo oo,00

which satifies the first two equations and the equation

-: "1 > (A12'4 A) =A12,4 A
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The product of A1,2,4 and A again produce a symmetric matrix:

6r E47 -.412' -.235 -. 059

-. 412 .353 .05 -. 235
-. ,5 .059 .176 .294
-.059 -. 235 .294 .24

The final generalized inverse an AI,2,3, 4 , is computed from the

orthogonalized version of both S and T. For this example, the

computational framework needed to compute this inverse is

1.00 .000 .000 .000 .056 -. 056 .111 -.111 .056 -. 056
.00: 1.000 .000 .000 -.222 -. 278 .056 056 .278 .222

.000 0 .000 000 .000 1.000 -. 250 -. 250 .250 .250 .500

i .,., .00 .000 .000 .ooo .000 567 -.33 00o 1.000-.33
0 lJI' PIA .00 .000 . 000 .000 .000 1. 000 1.000 .000 .000 1.000

,INi 0] -. 059 .647 .286 .667
-. 235 -. 412 -. 071 1.000

.294 -. 235 1.000 .000
L .824 -.059 -. 357 .333

The A inverse is

- 147 -. 176 2'9 -. 029 .176 .147
.078 .127 - .049 .049 -. 127 -. 078

oe- .049 .020 -.020 -.049 -.069 /
059 -. 029 08 -. 088 .2 -

0 :...:where all four previous equations are satisfied.
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Appendix 5: Gmaie InversePrga

C *
C DATE: 11/ 11/85 N

C VERSION: 1.0
C TITLE: GENERALIZED INVERSE COMPUTATION AND VALIDATION N

C LANGUAGE: FORTRAN 77
C
C. USE: COMPUTE AND CKECKS THE COMPUTATION OF FOUR GENERALIZED *
C INVERSES. N

C
C CONTENTS:
C MAIN PROGRAM - INPUTS MATRIX N

C - REDUCES MATRIX WITH MODIFIED N

C GUASS-JORDAN
C -CONTROLS TO COMPUTE GENERALIZED N

C INVERSES *
C IPIVOT - PERFORMS A THREE STEP PIVOT
C MULT - MULTIPLIES TWO MATRICES PLACING THE *
C RESULT INTO AN OPTIONAL THIRD MATRX *
C GROW - GRAM-SCHMIDT COMPUTATION FOR ROWS *
C GCOLUMN - GRAM-SCHMIDT FOR COLUMNS N

C PRINTA - GENERAL MATRIX PRINT ROUTINE N

C
C FUNCTION: N

C COMPUTES THE A1,2, A 1,2, 3 , A1,2 ,4 , A1,2 ,3,4 GENERALIZED *
C INVERSES AND VALIDATES EACH THE FOUR CONDITIONS DEFINED *
C BY PENROSE.
C *
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0C

C DATE:1 1/ 11/85
C VERSION: 1.0
C

~7.C NAME: GINVERSE (MAIN PROGRAM)
C DESCRIPTION: CONTROLS THE REDUCTION OF THE INPUT MATRIX TO
C AN IDENTITY MATRIX AND ALSO CALLS ALL NECESSARY
C SUBROUTINES TO COMPUTE A GIVEN INVERSE
C
C PASSED VARIABLES: A,ST,HOLD,RC,ASI ZE,RANK *

C RETURNS: NONE
C FILES READ: MATRIX INPUT
C SUBROUTINES CALLED: IPIVOT,MULT,GROWGCOLUMN,PRINTA
C CALLING SUBROUTINE: NONE *

C

PROGRAM GINVERSE

C ARRAY TYPE AND DIMENSIONS/ DECLARATIONS

DOUBLE PRECISION A
DIMENSION A(1IO,1:1O)

DOUBLE PRECISION ST
DIMENSION ST( 1'I0,1:10)

DOUBLE PRECISION ORG
DIMENSION ORG( 1O, 1:10)

DOUBLE PRECISION HOLD
DIMENSION HOLD( 101,1:1O)

DOUBLE PRECISION SR
DIMENSION SR(:1O, 1:1O)

C VARIABLE TYPE DECLARATIONS
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INTEGER R
.. J INTEGER ASZ

INTEGER SZ
INTEGER MINRC
INTEGER RANK
INTEGER I
INTEGER J
INTEGER K
INTEGER TEST

*INTEGER OPTION
INTEGER FORMATT
INTEGER HEADER
INTEGER SELECT
INTEGER TEST
INTEGER PIVOTRLT

*CHARACTER F ILENAM* 10
DOUBLE PRECISION MULTIPLIER

PARAMETER(ZERO=5.E- 15)

C DATA INITIALIZATION

1000 FORMAT(IX,' SELECT OUTPUT OPTION-)
1001 FORMAT(1X,' OUTPUT TO SCREEN - SELECT 1)
1002 FORMAT( iX,' OUTPUT TO PRINTER - SELECT 2')

* 1003 FORMAT(1X)
1004 FORMAT(1X,' SELECTION:)

*1005 FORMAT(12)
1006 FORMAT( iX,' SELECT FORMAT OPTION-)
1007 FORMAT(1X,' XXXX -SELECT 1')
1008 FORMAT(1X,' XXXXX -SELECT 2')

*1009 FORMAT(IX,' XXXXX -SELECT 3')
1010 FORMAT( 1X,' XXXXXX -SELECT 4)
1011 FORMAT(1X,' SELECT INPUT FILE-)
1012 FORMAT( iX,' CHOOSE FROM L IST OR SELECT A NEW FI LE:)
1013 FORMAT(IX,' 1) X.CASE V')
1014 FORMAT(1X,' 2) X.CASE 2')
1015 FORMAT(1X,' 3) X.CASE 3')
1016 FORMAT(1X,' 4) X.CASE 4)
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1017 FORMAT(1X,' 5) X.N0BLES MATRIX-)
1018 FORMAT(1X,' 6) NEW FILE-)
1019 FORMAT(1X,' INPUT FILE NAME IN APPPQPRIATE FORMAT:')
1020 FORMAT(A 10)

1021 F0RMATC1w~ GENERAL IZED I NVERSES FOR F ILE:',A 10, '~ *
1022 FORMAT(lX,*** ST METHOD LANGUAGE: FORTRAN 77)
1023 FORMAT(12)

WRITE(9, 1000)
WRITE(9, 100 1)
WRITE(9, 1002)
WRITE(9, 1003)
WRITE(9, 1004)
READ (9,1005) OPTION

WRITE(9, 1003)
* WR ITE(9, 1006)

WRITE(9, 1007)
WRITE(9, 1008)
WRITE(9, 1009)
WR ITE(9, 1010)
WR ITE(9, 1003)
WRITE(9, 1004)
READ (9, 1005) FORMATT

WRITE(9, 1003)
WRITE(9, 101 1)
WRITE(9, 1012)
WRITE(9, 1013)
WRITE(9, 1014)
WRITE(9, 1015)
WRITE(9,10 16)
WRITE(9, 1017)
WRITE(9, 1018)

S WRITE(9, 1003)
WRITE(9, 1004)
READ (9, 1005) SELECT

IF (SELECT.EQ. 1) THEN

OPLEN I="X.CASE 

END 1"IFSAU='L"
IF (SELECT.EQ.2) THEN
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OPEN( 1 ,F I LE="X.CASE 2" ,STATUS="OLD")
FILENAM="X.CASE 2"

END IF
IF (SELECT.EQ.3) THEN

OPEN( 1 ,F I LE="X. CASE 3",STATUS="OLD')
F ILENAM="X. CASE 3"

END IF
IF (SELECT.EQ.4) THEN

OPEN( 1 ,F ILE='X.CASE 5",STATUS="OLD")
F I LENAM="X. CASE 5"

END IF
IF (SELECT.EQ.5) THEN

OPEN( I ,F ILE='X.NOBLES MATRIX,STATUS="OLD')
F ILENAM="X.NOBLES MATRIX"

END IF
IF (SELECT.EQ.6) THEN

* WRITE(9, 1003)
WRITE(9, 1019)
READ (9,1020) FILENAM
OPEN( 1 ,F ILE=FI LENAM,STATUS'"OLD")

END IF
WR ITE(9, 1003)
WRiTE(9, 1003)
IF (OPT ION.EQ. 1) THEN

WR ITE(9,1021I) F ILENAM
WRITE(9, 1022)

ELSE
.4,WR ITE(9, 1021I) F ILENAM

WRITE(9, 1022)
END IF

C READ SELECTED FILE

READ (1, 1023) R
* READ (1, 1023) C

ASIZE = R+C
DO 2001 I=1,ASIZE

DO 2000 J=1i,AS IZE
READ (1,*) A(I,J)

* -~ORG(I,J) A(I,J)
2000 CONTINUE
2001 CONTINUE
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C AUGMENT A WITH THE APPROPRIATE IDENTITY MATRICES

DO 2011 I=1,R
DO 2010 J=C+ IASIZE

TEST = J-C
IF (TEST.EQ.I) THEN

A(I,J)= 1.0
ELSE

A(I,J) = 0.0
END IF

2010 CONTINUE
2011 CONTINUE

DO 2020 I=R+ 1,ASIZE
DO 2021 J= I,C

TEST = I-R
IF (TEST.EQ.J) THEN

A(I,J) 1.0
ELSE

A(I,J) 0.0
END IF

2020 CONTINUE
2021 CONTINUE

C DETERMINE THE MINIMUM RANK

IF (R.LT.C) THEN
MINRC = R

ELSE
MINRC = C

END IF
CALL PRINTA( 1,1 ,ASIZE,ASIZE,1 ,OPTION,FORMATT,R,C,A)
IF (OPTION.EQ. 1) READ (9,*) XX
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*C MATRIX REDUCTION

DO 3020 1= I,R- I

Pl VOTRLT=I PI VOT(R,C,MI NRC,ASI ZE, I,A)

IF (PIVOTRLT.EQ. 1 ) THEN
DO 3010 K=I+ 1,R

MULTIPLIER = A(K,I)/A(I,I)
A(K,I) = 0.0
DO 3000 J=I+ 1,ASIZE

A(K,J) = A(K,J)-(A(I,J)*MULTIPLIER)
3000 CONTINUE
3010 CONTINUE

ELSE
* GO TO 3021

END IF
3020 CONTINUE

3021 CONTINUE

Il

3030 IF ((ABS(A(I,I)).GT.ZERO).AND.(I.LT.C)) THEN

DO 3050 J=I+ I,C
MULTIPLIER = A(I,J)/A(I,I)

A(I,J) = 0.0
DO 3040 K=R + ,ASIZE

A(K,J) = A(K,J)-(A(K,I)*MULTIPLIER)
3040 CONTINUE
3050 CONTINUE

I =I1

GO TO 3030
END IF

RANK = 0
I=1

* !02



3060 IF ((ABS(A(, )).GT.ZERO).AND.(I.LE.MI NRC)) THEN
RANK = RANK+ 1
MULTIPLIER = A(I,I)
DO 3070 J= 1,ASIZE

A(I,J) = A(I,J)/MULTIPLIER
3070 CONTINUE

4I = 1+1
GO TO 3060

END IF

CALL PRINTA(1,1 ,ASIZE,ASIZE,2,OPTION,FORMATT,R,C,A)
IF (OPTION.EQ. 1) READ (9,*) XX

C COMPUTE THE FOUR GENERALIZED INVERSES
C
C Ai

C A1,2 ,3

C A1,2 ,4

C Ai,2 ,3,4

C

C***** COMPUTE Al 2 CENERALIZED INVERSE

CALL MULT(R+ 1, 1,C, I,C 1,R,RANK,A,A,ST)
*CALL PRINTA( 1,1,C,R,3,OPTION,FORMATT,C,R,ST)
"- IF (OPTION-EQ. 1) READ (9,*) XX
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C CHECK A1.2 USING

C 1) (A A1,2 A) = A

CALL MULT1, 1,R, 1, 1,R,C,ORG,ST,HOLD)
CALL MULT(, 1,R, 1, 1,C,RHOLD,ORG,HOLD)
CALL PRINTA( 1, R,C,4,OPTION,FORMATT,R,C,HOLD)
I F (OPT ION.EQ. 1 ) READ (9, *) XX

-/C 2) (A, 2 A A 1 2 ) = A 1, 2 )

A. CALL MULT( 1, C, 1, 1,C,R,ST,ORG,HOLD)
* CALL MULT( 1,,C, 1, 1,R,C,HOLD,ST,HOLD)

CALL PRINTA( 1, ,R,5,OPTION,FORMATT,C,R,HOLD)

IF (OPTION.EQ. 1) READ (9,*) XX

C*****COMPUTE Al, 2 ,3 GENERALIZED INVERSE

1*4DO 40 10 I= 1,R

DO 4000 J=C+ 1 ,ASIZE
SR(I,J-C) = A(I,J)

4000 CONTINUE
4010 CONTINUE

CALL GSROW(RANK,R,C,ASIZE,A)
CALL MULT(R+ 1 , I ,C, 1 ,C+ 1 ,R,RANK,A,A,ST)
CALL PRINTA( 1,1,C,R,6,0PTION,F0RMATT,C,R,ST)
IF (OPTION.EO. 1) READ (9,*) XX

C HEKA 1 3 USING (A Al 2 ) ( 1 3

CALL MULT( 1, R, 1, 1,R,C,ORG,ST,HOLD)
* 0 CALL PRINTA(, 1, R,R,7,OPTION,FORMATT,R,R,HOLD)

I ~ F (OPT ION.EO. I READ (9, *) XX
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Cw***COMPUTE A13 2,4 GENERALIZED INVERSE

CALL GSCOL(RANKR,C,ASIZE,A)
CALL MULT(R+ 1, 1,C, 1, 1,R,RANKA,SR,ST)
CALL PRINTA(, I, IC,R,8,OPTION,FORMATT,C,R,ST)
IF (OPT ION. EQ. 1 ) READ (9, *) XX

C CHECK A132,4 USING (A,32.4 A)' = A1 .2 .4 A)

CALL MULT( 1,C, 1, 1,C,R,ST,ORG,HOLD)
CALL PRINTA( 1, C, C,9,OPT ION,FORMATT, C, C,HOLD)
IF (OPTION.EQ. 1) READ (9,*) XX

C**COMPUTE A1,2 ,3 .4 GENERALIZED INVERSE

CALL MULT(R+ 1,1,IC, 1 ,C+ I ,R,RANK,A,A,ST)
CALL PRINTA 1 ,1 ,C,R, 1 QOPT ION,FORMATT,C,R,ST)
IF (OPTION.EQ. 1) READ (9,*) XX

.4C CHECK A1 ,2 ,3, 4 USING CONDITIONS APPLIED TO
A112 A112, 3 and A112 4

C CHECK A, 2 ,3 , 4 USING (A A112,3 ,4)' = (A A1,2 ,3,4)
CALL MULT( ,i I,R, I, 1,R)C,ORG,STJHOLD)
CALL PRINTA( ,1 IRR, I1 ,OPTION,FORMATT,RR,HOLD)
IF (OPTIONFOQ. 1) READ (9,*) XX

C CHECK A, 2 3  USING (Al 2 3  A)' = A1 2 4 A)
CALL MULT( ,1 ,C, 1, 1,CR,ST,ORG,HOLD)
CALL PRINTA( 1,C,C, I 2,OPTION,FORMATT,C,CHOLD)
IF (OPTIONFO. 1) READ (9,*) XX

STOP
END
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AC

, C DATE: I 1/ 11/85
C VERSION: 1.0 N

C
C NAME: IPIVOT N

C DESCRIPTION: FINDS PIVOT ELEMENTS AND SWITCHES ROWS AND/ N

C OR COLUMNS. "
C PASSED VARIABLES: R,CMINRC,ASIZE,RANK,A
C RETURNS: FUNCTION VALUE
C FILES READ: NONE "
C SUBROUTINES CALLED: NONE
C CALLING SUBROUTINE: GI INVERSE
CN

* FUNCTION I Pl VOT(R,C,MINRC,ASI ZE,CD,A)

DOUBLE PRECISION A
DIMENSION A(C1:1O, 1:1O)INTEGER R

INTEGER C
INTEGER ASIZE
INTEGER MINRC
DOUBLE PRECISION LARGEST
DOUBLE PRECISION EXCHANGE
INTEGER SWITCHINTEGER SD
INTEGER SR
INTEGER SC
INTEGER I
INTEGER CD
INTEGER K

INTEGER COUNT
INTEGER ROW
INTEGER LASTSD

PARAMETER(ZERO=5.E- 15)

:, . SD = CD
SR = CD
SC = CD
SWITCH =0
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ROW = CD

LASTSD = 0
COUNT = 0

1000 IF ((SD.LE.MINRC).AND.(SWITCH.EQ.O.O)) THEN

IF (LASTSD.NE.SD) ROW=SD
IF (LASTSD.EQ.SD).AND.(SC.EQ.CD) GO TO 1021
LASTSD = SD
IF (SC.EQ.CD) LARGEST=ABS(A(SDSD))

DO 1020 K=SD 1,R
IF (ABS(A(K, ROW)).LE.LARGEST) GO TO 1010

LARGEST -ABS(A(K,ROW))
SR = K
SC = ROW

* 1010 CONTINUE
1020 CONTINUE

1021 COUNT =COUNT' 1
S.. IF ((LARGEST.GT.O.O).AND.(COUNT.GT. 1)) SWITCH= 1

IF ((SWITCH.EQ. I).AND.(COUNT.GT. I)) GO TO 1050

DO 1040 I=SD+ 1,C
IF (ABS(A(SD,I)).LE.LARGEST) GO TO 1030

LARGEST = ABS(A(SD,I))
SC = I
SR = SD
ROW = I

1030 CONTINUE
1040 CONTINUE

1050 CONTINUE
IF ((SWITCH.EQ.0).AND.(SC.EQ.CD),AND.(SR.EQ.CD)) SD=SD I

* GO TO 1000
END IF

IF ((SC.EQ.CD).AND.(SR.EQ.CD).AND.(LARGEST.GT.O.O)) THEN
SC = SD
SR -SD

END IF
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IF (SC.NE.CD) THEN
DO 1060 I=1,ASIZE

EXCHANGE =A(I,SC)
A(I,SC) = A(I,CD)
A(I,CD) = EXCHANGE

1060 CONTINUE
END IF

IF (SR.NE.CD) THEN
DO 1070 I=1I,ASIZE

EXCHANGE -A(SR,I)
A(SR,I) = A(CD,I)
A(CD,I) = EXCHANGE

1070 CONTINUE
END IF

I F (ABS(A(CD,CD))XGTZERO) THEN
IPIVOT=l

ELSE
IPIv0T=0

END IF

RETURN

END
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C
C DATE: I1/ 11/85
C VERSION: 1.0
"pC

C NAME: PRINTS
C DESCRIPTION: PRINTS HEADER VARIABLE HEADER, FORMAT AND
C MATRIX DATA BASED ON VARIABLES PASSED
C PASSED VARIABLES: STR, STCER,EC,HEADER,FORMATT,R,C,A
C RETURNS: NONE
C FILES READ: NONE
C SUBROUTINES CALLED: NONE
C CALLING SUBROUTINE: GINVERSE
C

SUBROUT INE PRI NTA(STR,STC,ER,EC,HEADER,OPT ION,FORMATT,R,C,A)

DOUBLE PRECISION A
DIMENSION AO: 10, 1: 10)

*INTEGER R
INTEGER C
INTEGER STIR
INTEGER STC
INTEGER ER
INTEGER EC
INTEGER HEADER
INTEGER OPTION
INTEGER FORMATT
INTEGER I
INTEGER J

PARAMETER(ZERO=5.E- 15)

1000 FORMAT( I X,' Init Ial matrix with augmented identity matrices')
1001 FORMAT(1X,'Reduced matrix with S, T, M, and N submatrices')
1002 FORMAT( IX,'AI ,2 generalized inverse')
1003 FORMAT( IX,'Check AI,2 against the following conditions:')
1004 FORMAT(IX,' (AA 1,2 A) = A')
1005 FORMAT( IX,' (AI1,2 AA1,2) =A ,2')
1006 FORMAT( 1X,'A 1,2,3 generalized Inverse')
1007 FORMAT( IX,'Check A 1,2,3 against (A A ,2,3)* = (A A1,2,3)')
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b.

1008 FORMAT( 1X,-A1,2,4 generalized inverse')
• 1009 FORMAT( IX,'Check A1,2,4 against (A1,2,4 A)* = (A1,2,4 AY)

1010 FORMAT( I X,-A 1,2,3,4 generalized inverse')
1011 FORMAT( 1 XCheck Al ,2,3,4 with (A Al,2,3,4)* = (A Al ,2,3,4)')
1012 FORMAT(1X,'Check A1,2,3,4 with (A1,2,3,4 A)* = (Al,2,3,4 A))
1013 FORMAT(1X)
1014 FORMAT( 12(F5.2,1X))
1015 FORMAT( 12(F6.2,1X))
1016 FORMAT( 12(F6.3,1X))
1017 FORMAT(12(F7.4, I X))

IF (OPT IONNE. 1 ) GO TO 2000

IF (HEADER.EQ. 1) WRITE(9,1000)
v. IF (HEADER.EQ.2) WRITE(9,1001)

IF (HEADER.EQ.3) WRITE(9,1002)IF (HEADER.EO.4) WRITE(9,1003)
IF (HEADER.EQ.4) WRITE(9,1013)
IF (HEADER.EQ.4) WRITE(9,1004)
IF (HEADER.EQ.5) WRITE(9,1005)
IF (HEADER.EQ.6) WRITE(9,1006)IF (HEADER.EQ.5) WRITE(9,1005)IF (HEADER.EQ.7) WRITE(9,1006)

IF (HEADER.EQ.8) WRITE(9,1007)

V IF (HEADER.EQ.9) WRITE(9,1009)

IF (HEADER. EQ. 10) WRITE(9,10 10)
IF (HEADER.EQ. 1 ) WRITE(9,1011 )
IF (HEADER.EQ. 12) WRITE(9,1012)

GO TO 2010

2000 IF (HEADER.EQ. ) WRITE(I10,1000)
IF (HEADER.EQ.2) WRITE(0, 1001)
IF (HEADER.EQ.3) WRITE( 10, 1002)
IF (HEADER.EQ.4) WRITE 10, 1003)
IF (HEADER.EQ.4) WRITE( 1O,1 013)
IF (HEADER.EQ.4) WRITE(1 O, 1004)
IF (HEADER.EQ.5) WRITE(10, 1005)
IF (HEADER.EQ.6) WRITE( 10, 1006)
IF (HEADER.EQ.7) WRITE( 10, 1007)

* IF (HEADER.EQ.8) WRITE( 10, 1008)
IF (HEADER.EQ.9) WRITE(10, 1009)
IF (HEADER.EQ. 10) WRITE 10,1010)
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IF (HEADER.EQ.1 1) WRITE(10,101 1)

IF (HEADER.EQ. 12) WRITE(00, 1012)

2010 CONTINUE

IF (OPT ION.EQ. 1 ) THEN
WRITE(9, 1013)

ELSE
WRITE( 10, 1013)

END IF

DO 2060 I=STR,ER
DO 2020 J=STC,EC

IF (ABS(A(I,J)).LT.ZERO) A(I,J) = 0.0
2020 CONTINUE

IF (OPTION.NE. 1 ) GO TO 2030
IF (FORMATT.EQ. I) WRITE (9,1014) (A(I,J),J=STC,EC)
IF (FORMATT.EQ.2) WRITE (9,1015) (A(I,J),J=STC,EC)
IF (FORMATT.EQ.3) WRITE (9,1016) (A(I,J),J=STC,EC)
IF (FORMATT.EQ.4) WRITE (9,10 17) (A(I,J),J=STC,EC)

SGOTO 2040

2030 CONTINUE
IF (FORMATT.EQ. 1) WRITE( 10, 1014) (A(I,J),J=STC,EC)
IF (FORMATT.EQ.2) WRITE(I 0, 1015) (A(I,J),J=STC,EC)
IF (FORMATT.EQ.3) WRITE( 10,1016) (A(I,J),J=STC,EC)
IF (FORMATT.EQ.4) WRITE( 10, 1017) (A(I,J),J=STC,EC)

2 4,0. I

* 2040 CONTINUE

.'-." "''-'2060 CONTI NUE

RETURN
END

• II

* /



C DATE: I 1/ 11/85
C VERSION: 1.0
C
C NAME: MULT
C DESCRIPTION: MULTIPLIES ANY TWO MATRICES OR SUBMATRICES
C AND PLACES THE RESULT IN AN OPTIONAL THIRD
C MATRIX OR SUBMATRIX.
C PASSED VARIABLES: XR, XC, D1, YR, YC, D2, CONFORMITY, M I
C M2, AND M3
C RETURNS: NONE
C FILES READ: NONE
C SUBROUTINES CALLED: NONE
C CALLING SUBROUTINE: GINVERSE
C

SUBROUTINE MULT(XRXC,D 1 ,YR,YCD2,CONFORMI TY,M 1 ,M2,M3)

DOUBLE PRECISION M1,M2,M3
7.. •DIMENSION M 1 ( 1: 1O, : 10)

DIMENSION M2(1:10,1:10)
DIMENSION M3( 1i0,1:10)
INTEGER XR,XC,D 1,YR,YC,D2,CONFORMITY

DOUBLE PRECISION ROW
DIMENSION ROW( 11O)
INTEGER DXR
INTEGER DXC
INTEGER DYR
INTEGER DYC
INTEGER IXR
INTEGER JYC
INTEGER KXC
INTEGER KYR
INTEGER I
INTEGER J
INTEGER K

DXR "XR-1

DXC =XC-1
DYR =YR-I
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DYC = YC- 1

DO 1040 I=1,Dl
IXR = I+DXR

DO 1020 J=1,D2
JYC = J+DYC
ROW(J)=O.O
DO 10 10 K= 1,CONFORMITY

KXC = DXC+K
KYR = DYR+K
ROW(J) = ROW(J)+(M 1 (IXR,KXC)*M2(KYR JYC))

1010 CONTINUE
1020 CONTINUE

DO 1030 J= 1,D2
1030 M3(I,J) = ROW(J)
1030 CONTINUE
1040 CONTINUE

RETURN
END
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,. IV-d

C DATE: I 1/ 11/85 *
C VERSION: 1.0 N

CN
C NAME: GSROW *
C DESCRIPTION: ORTHOGONALIZES THE ROWS OF THE SUBMATRICES N

C T ANDM 
C PASSED VARIABLES: RANK, R, C, ASIZE, A N

C RETURNS: NONE *
C FILES READ: NONE
C SUBROUTINES CALLED: NONE *
C CALLING SUBROUTINE: GINVERSE *
C N

SUBROUTINE GSROW(RANK,R,C,ASIZE,A)

DOUBLE PRECISION A
DIMENSION A(I: 10, 1: 10)
INTEGER RANK,R,C,ASIZE
DOUBLE PRECISION DOT I
DOUBLE PRECISION DOT2
INTEGER I
INTEGER J
INTEGER K

PARAMETER(ZERO=5.E- 15)

DO 1040 I=R,RANK 1,-1
DOT2=O.O
DO 1000 K=C + 1,ASIZE

DOT2 = DOT2+(A(I,K)**2)
1000 CONTINUE

DO 1030 J=l-1,1,-1
DOT 1 =0.0
DO 101 0 K=C IASIZE

;.. DOTI = DOTI +(A(I,K)*A(J,K))
: ..:- 1010 CONTINUE
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IF ((ABS(DOT 1 ).GT.ZERO).AND.(ABS(DOT2).GT.ZERO)) THEN
DOTI =DOTI/DOT2
DO 1020 K=C + IASIZE

-> A(J,K) = A(J,K)-(DOT I *A(I,K))
1020 CONTINUE

ENDIF
1030 CONTI NUE
1040 CONTINUE

RETURN
END

1

C •
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C
C DATE: I 1/ 11/85 N

C VERSION: 1.0 N

C
V' C NAME: GSCOLUMN *

C DESCRIPTION: ORTHOGONALIZE THE COLUMNS OF THE SUBMATRICES N

C S ANDN 
C PASSED VARIABLES: RANK, R, C, ASIZE, A N

C RETURNS: NONE N

C FILES READ: NONE N

C SUBROUTINES CALLED: NONE
C CALLI NG SUBROUTI NE: NONE N

C

* SUBROUTINE GSCOL(RANK,R,C,ASI ZE,A)

DOUBLE PRECISION A
DIMENSION A(: 10, 1:1 O)
INTEGER RANK,R,C,ASIZE

DOUBLE PRECISION DOT I
DOUBLE PRECISION DOT2
INTEGER I
INTEGER d
INTEGER K

PARAMETER(ZERO=5.E- 15)

DO 1040 I=C,RANK + ],-I
DOT2=O.O

* DO 1000 K=R + 1,ASIZE
DOT2 = DOT2+(A(K,I)*2)

1000 CONTINUE

DO 1030 J=1-1,1,-1
DOT I=0.0
DO 1010 K=R + IASI ZE

DOTI - DOTI +(A(K,I )*A(K,J))
1010 CONTINUE
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S

IF ((ABS(DOT I ).GT.ZERO).AND.(ABS(DOT2).GT.ZERO)) THEN
DOTI = DOTI/DOT2
DO 1020 K=R + I,ASIZE

A(K,J) = A(K,J)-(DOT 1 *A(K,I))
1020 CONTINUE

ENDIF
1030 CONTINUE
1040 CONTINUE

RETURN
END
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,%q-p<idi .:_:_ : Graph of an A1,2 Versus a A1,2,3,4

Starting with the AI,2 and continuing through the A,2,3,4 ,

each successive inverse satisfies either more or a different combina-

tion of Penrose's equations. This relationship between each generaliz-

ed inverse is also reflected in the computer time needed to compute

an inverse. To meet the additional constraints, successive inverses

require the same or more computer time. This relationship was

originally mentioned in chapter 3 and its practical aspects mentioned

again in chapter 4 where an AI,2 was used in place of an AI, 2 ,3,4

generalized inverse. The following graph emphasizes this realtionship

by highlighting the differences in computing time between an A1,2

and an AI,2,3,4 over a range of square matrices.
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