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Preface

This work covers a unique combination of theory and
application in two fields, mathematics and computer science. It
address a subject with a wide variety of uses in an equally wide
variety of fields. Thus the content and particularly the results of
this work should appeal to a large audience.
The subject I'm referring to is the computation of four
generalized inverses. The significance of this treatment is its
improvement over existing methods for computing the generalized
inverses of a matrix. The computational method developed here in
theory and with application provides a simple, direct, and unified
approach for computing four generalized inverse. Probably more
importantly, this treatment emphasizes the properties of each
generalized inverse relative to its computation and its potential use.
For some readers, hopefully this combination will provide the |
missing insight needed to recognize a use for this method with the |
proper generalized inverse over a current approach. ‘
Naturally, with an effort this size, there are a number of
people who deserve credit and a word of thanks. | am deeply
indebted to my thesis advisor, Dr J. Jones Jr., for his interest,
patience, and total assistance in completing this effort. Certainly Dr.
Jones personifies all the qualities of a great educator and scholar,
especially with his committment and enthusiasm. | also thank Capt
Steve Woffinden for his comments which help make my thesis a

more understandable document.

Craig F. Murray
ii
|

Y ‘..-;“." PR T M *.-’\! “- o _\{'._‘\.J.g
e e e L N




LS AN

o
XS

Preface . . . . . . . .. . i

List of Figures . . . . ... .. ... . . . .. . .., \%
Abstact . . . . ..., vi
I Introduction . . . ...... ... .. . ... ... ]
Background . ....... ... ... ... ... l
Characterizing the Generalized Inverses of a Matrix . . .. 3
Problem . . . ... .. ... 6
SCOPE . . e, 6
Approach and Presentation . . .. ................. 7
. Theory of Generalized Inverses . . ... ............... 9
Notation . . . ... ... ... ... . ... 11
Elementary Row and Column Operations . . . .. ... .. .. 12
The Generalized Inverses of a Matrix. . . ... ... ... ... 15
ll. The ST Computation. . . . .. ...... ... .. .. ... . .. ... 42
The ST Method: A Synthetic Approach . . . ....... ... 43
The ST Method Adapted to Singular Value Decomposition. 65
IV. Application to the Lyapunov Matrix Equation . . . . . ... .. 72
The Lyapunov Matrix Equation. . .. ... ... ... ... ... 72

The Common Solution . . . . .. ................... 82



Y
3 Appendix B. Generalized Inverse Program. . . ... ... .. ... 96
i)
3
;A

Q“L’&& Appendix C:  Graph of an A}, Versusan Ajy34 ... ... .. 18

Bibliography . . . . . ... ... 119

¢ n '\?"
L E AL
SR M
L]

v

FT T T SRR S S P T T T S A S O S R
e Ca s T L IR ey Sa WL DR YRS ‘j-_“"}"\.".
C PP S DPINE S VS e At ) .{JL.A'A} Y Ve® D




T o, BTREAE TR SRR TN AT N VAT TR R TN W W R A e T R TR TR T R T e e T e S e

Figur.ev Page
1. The Generalized Inverses of a Matrix. . . ... ......... 4
2. Subset of Inverses. . ... ........ ... . . ... .. ... .. 5
3. Interchanging Rows . . . ........ ... ... .. ..... ... 13
4. Multiplication by aScalar. . . . .......... .. ... .... 14
5. Multiplication by a Scalar and Addition . . . . .. ... ... 15
6. Matrix Dimension Table . . . . ... ........ ... ..... 29
7. Dimensions of Augmented Matrix and Identities . . . . . . . 44

&} 8. Partitioning and Dimensions of Submatrices ... .. .. .. 45
9. Five Step Summary. . . . .. .. ... .. ... . 47

10. Underdetermined Case . . . .. ......... .. ......... 48

11. Algorithm Comparison . . . ... ............ ... ..., 63

- ’.._(’4_",.."‘..‘-'“‘ - s I
e wt T, T, S «
et L e T

A =
Y




hed TEELTVE VR RO TR ML TV TLETTE TER ISR TR TN TN T W S TR VLY e W W TR RN TR T WL W L rr:v:"wj

1

AFIT/GOR/MA/85D-2

N el
- This werk examines a new method for computing four
generalized inverses of a matrix. This method, the ST method, is
based on the careful selection of a sequence of matrix multiplica-
tions and partitionings which provide a new foundation for
computing four generalized inverses. Central to this approach is the
partitioning of the two submatrices, R and C, where the product of
their submatrices will give the generalized inverses of interest.
Thus using this new representation, the generalized inverses of a

. Q' matrix can be computed in a simple and direct manner.

In this work, four generalized inverses are derived and

j‘ computed in a systematic manner from this representation. These

( results are strongly tied to the solution of the matrix equation
Ax=b where the general solution is given in terms of this new
representation and computational technique. The computational
technique is presented with an example and also as an algorithm.
Included with the algorithm is an analysis of its computer
implementation. The use of one generalized inverse is used to find

the solution of a Lyapunov matrix equation.
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I Introduction

The classical inverse of a matrix, A, is another matrix, usually
denoted A”l, which satisfies the equation AA™!l = A"1A =1 For the
matrix A to have an inverse, in this sense, one important restric-
tion must be met. The matrix must be a nonsingular square
matrix. In many instances, this restriction cannot be met. For
example, In systems theory, data fitting, statistics, and other areas,
rectangular and singular matrices arise which can not be inverted
using the classical method to solve the respective problem (3; 5; 7:15;
19). Obviously, in these cases the classical inverse can not be
computed so what must be done to solve the respective problems?
In the case of rectangular or singular matrices another inverse, or
more precisely class of inverses can be computed and used to find a
possibly more robust solution. This class of inverses is called the
generalized inverses of a matrix.

The history of this class of matrices referred to as generalized

inverses can probably be succinctly summarized by noting five key
developments. The first of these developments is creditted to
Fredholm who, it is believed, introduced the concept of a generalized

inverse in 1903 (3:4). He is also believed to have introduced the term

o PPl i st
praoo Yo

pseudoinverse to describe his new concept (3:4). Following Fredholm
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about 20 years later was the developments set forth by E. H.

Moore. Moore was the first to define a unique generalized

inverse for every finite matrix. Moore called this generalized
inverse the general reciprocal (3:5). While the progress in this new
field continued following the publication of Moore's work, the next
significant development came another 30 years later when
Bjerhammar showed the relationship of a generalized inverse to a
linear system of equations (3:5). This was extended four years later
by Penrose who showed that the generalized inverse, defined by
Moore, was unique. In doing this, Penrose defined this unique

inverse with the following four equations

AXA = A (L1)
XAX = X (1.2)
(AX)* = (AX) (1.3)
(XA)* = (XA) (1.4)

where X is the unique generalized inverse of the matrix A (3.7).
This unique generalized inverse is popularly referred to as the
Moore-Penrose inverse. After Penrose's work, the next major
development is really a series of developments starting with the
work of Rao who defined a new generalized inverse which did not
satisfy all the conditions that Penrose introduced with Egs (1.1)
through (1.4) (23.viii). Instead this inverse satisfied a combinations of
Penrose’s equations. Other generalized inverses followed which

satisfied fewer or different combinations of the four equations and
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were, at the same time, more robust. The major draw back of
these developments was the lack of a direct, unified, and numer-
ically stable method for computing the generalized inverses whose
existence were proved theoretically. This problem lead to the fifth
major development when a new method, the ST method, was
introduced by J. Jones, Jr. in 1984. This latest development will be

documented in detail in this work emphasizing its computability.

From the historical notes on the generalized inverses of
matrices, it should be apparent that the development of this class of
matrices suffered a rather piecemeal and slow growth. This has
lead to an equally diverse nomenclature used to denote these
inverses. Where the classical inverse of the matrix A was simply
denoted as a A™! and defined by the equation AA™! = A71A = I the
same can not be said for the generalized inverse of a matrix.
Instead of the single equation found in the classical case, there is a
range of equations for the generalized inverses of a matrix where
each identifies a particular property a given inverse satisfies. This
lead to the wide range of names which are currently used to refer
to these inverses. These names include pseudoinverse,
Moore-Penrose inverse, reflective generalized inverse, g-inverse, left
weak generalized inverse, and right weak generalized inverse.

Additionally, Ben-Israel and Greville in their work (3:18), list about

24 other names used to describe an inverse satisfying some




% R T M RTIRT T RTIARTRTTRATRATRERT R ‘Tl""_"

Figure . The Generalized Inverses of a Matrix

combination of Penrose's four equations. Thus the initial problem to
overcome, when beginning a discussion on the theory of generalized
inverses, i1s choosing a suitable method for describing the inverses of
concern. One means of overcoming this problem is by adopting a
naming convention which is both simple and direct and also
Incorporates the properties of a given inverse. Starting with the
given matrix A, such a method is illustrated in figure 1 which
graphically depicts a partial class of generalized inverses. This
method builds from the given matrix A up to the inverse satisfying
all four of Penrose's equations, Egs (1.1) through (1.4). Thus as it

travels from the least restricted generalized inverses to the unique

generalized inverse, A,z 4, the combinations which arise are
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denoted by the trailing subscripts where each subscript refers to

one of the four equations developed by Penrose. The subscripts

listed are equated to the conditions satisfied by a particular

Figure 2. Subset of Inverses

Equation
(AXA) = A
(XAX) = X

(AX)* = AX
(XA)* = XA

SRR
Yt
A

AT A

generalized inverse. To prevent confusion, the simple relationship

between subscripts and the four equations is illustrated below.

Corresponding Subscript

1

2
3
4

......
-----
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Again, the X in each equation denotes the appropriate inverse.
While figure | shows most of the possible generalized inverses, this
work will concentrate on the subset of these inverses shown in
figure 2 of the previous page. Again, the subscripts following each A
denote which of Penrose's four equations the inverse satisfies. This

nomenclature will be used throughout this work.

Problem

Current methods for computing the generalized inverses of a
matrix are cumbersome, and many are also numerically unstable
(19:247). None were found which provide a unified method for
calculating more than one generalized inverse. A new method for
computing these inverses, the ST method, is a direct and numer-
ically stable technique which represents a marked improvement
over previous ones in use. This work will review the theoretical
basis of the ST method, and go on to define both the characteristics
of its computer implementation and how this new method of

computation represents an improvement over past methods.

Scope

In this work, the ST method is considered across the field of
complex numbers. For the treatment of theory, this means

matrices with complex elements will be used. In terms of the
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technique's computer implementation, this translates into matrices

of constant elements.

In describing and defining the technique's computer implemen-
tation, three areas will be examined. First the numerical properties
of this technique will be treated. This will be followed by a time
and space analysis of the algorithm arising from the ST method.
Finally, this technique will be compared to other current techniques

to establish its claimed improvements.

Approach and Presentation

Chapter Il begins the review of the theoretical basis of the ST
method for computing the generalized inverses of a matrix with
complex elements. The theory begins with a new computation
representation and continues to present a systematic development
of four generalized inverses. Each theory is developed with as much
detail as possible to insure maximum clarity. An example is given
early during this treatment to motivate and assist the understand-
ing of the theorems presented.

Chapter IlI applies the theorems developed in chapter II to the
realm of the computer. Here a detailed description of the technique
Is given in an algorithmic manner versus the theoretical basis of
chapter II. In this regard, the algorithm for the ST method is
examined to determine its numerical characteristics and analyze its

computer time and space requirements. This is followed by an

introduction to other techniques for computing the generalized




)
] inverses of a matrix, and these are compared to the ST method in
A

g Qu‘;h terms of numerical stability and computer requirements. Finally,

the ST method is adapted to an existing algorithm available in

\
many computer math packages to compute an A1 234 generalized ;

inverse.
Chapter IV concludes the heart of this work by extending the
comparisons developed in chapter Il to an actual application of the
ST method. In this regard, the ST method is used to find the
| solution of a Lyapunov matrix equation. To do this, additional ‘
theorems are developed to show how the ST method is applied to
: the Lyapunov matrix equation. Finally, an Al,2 generalized inverse
is developed in the common solution for a Lyapunov matrix |
equation.
d. Chapter V completes this work with a summary of its

important points and recommendations for further study in this

area.
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Il Theory of Generalized Inverses

As mentioned earlier, the theory of generalized inverses has
been introduced under a variety of names, including the pseudo-
inverse and the Moore-Penrose inverse. Common to each approach,
no matter what the name, is an emphasis on the generalized

inverse which satisfies the four equations:

AXA = A (2.1
XAX = X (2.2)
(AX)* = AX (2.3)
(XA)* = XA (2.4)

Subsequent to such an introduction, this common approach con-
tinues by introducing a variety of properties arising from the
pseudoinverse or Moore-Penrose inverse satisfying Egs (2.1) through
(2.4), and then gradually moves toward a more complete discussion
of the other generalized inverses of a matrix. Such an approach
concludes by finally presenting a method for computing the
generalized inverses again, emphasizing the one inverse satisfying
Egs (2.1) through (2.4).

The approach to the theory of generalized inverses presented in
this work will be different. Instead of the common path taken by

many authors in the past, this approach presents a systematic
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;" X o development of four generalized inverses with their respective
! ‘:.‘ii.? properties and their computability. Additionally, this discussion of
_:: the generalized inverses of a matrix is strongly oriented toward
_,j‘: solving the system of equations often denoted as Ax=b where the
’ matrix A does not have a classical inverse. Central to this
‘ o orientation is an emphasis on computation which will be presented
; hand in hand with theory. This is intended to provide both an
understanding of theory and the application of the theory. Thus
3 when the equivalent of the psuedo- inverse or Moore-Penrose
f’g inverse is finally reached, its properties and computability arises
) more directly. Unfortunately this approach shares one common
: problem with its predecessors, the problem of nomenclature. Since
: the means of describing a generalized inverse of a matrix varies, as
:; Tere. noted in chapter 1, a few additional comments are devoted to more
2 “"-" completely defining the notation used in this work. Other remarks
regarding notation used throughout this work are also included
at this point to prevent confusion and emphasize the important
" characteristics of the material which follows. Additionally, since this
;_‘: work is geared to the practical adaptation of a generalized inverse
";ZE to solving real world problems, a section will be devoted to the basic
gf operations used to compute the generalized inverses, namely
elementary row and column operations. For the reader unfamiliar
v with these operations, this review will be helpful for understanding
! the computations involved in finding the generalized inverses of
x concern here. For the reader familiar with row and column
., . operations, their mention here should provide an insight to the
,: 3-;5;:‘ directness of the computation to be discussed.
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e The remarks concerning the notation used throughout this |

b

3; work deal with both the exact expressions used to denote the ]

[}, - )

‘. generalized inverses of interest and the mathematical expressions

i |

e used to derive these inverses. Both are discussed below. [

-t L . : .

* ' As mentioned in chapter |, the generalized inverses of a matrix |
i

” have been denoted in a variety of ways. In this work the following

K representation will be used

o

i

L}

':3.. Ap gkl

' where the subscripts denote the equations the given generalized

. i inverse satisfies. Thus a generalized inverse satisfies Eqs (2.1) and

}5\ (2.2) would be denoted as

0y

9. Cx‘(": |

(o, 3 Ap |

\2 A generalized inverse satisfying all four equations would be denoted

:“:3: as

4

A23.4

,« This notation provides an easy and direct method for classifying and

.* describing the generalized inverses of a given matrix.

< The second notational concern deals with the mathematical

‘t expressions used throughout this work. First, the symbol, G, is used

10 to denote the field of complex numbers, and ¢™MX1 denotes the

°

o vector space of m X n complex matrices over . Second, matrices

"‘— are represented by capital letters, and the small letters b, w, %, vy,

‘:' and z denote vectors in this work. Thus, A, would denote a matrix

Rt “ . . . v . . .

QSR A of unspecified dimensions. Third, an asterisk denotes the conjugate

-

«':,._:
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transpose of a matrix. Thus the conjugate transpose of A would be
denoted as A*. The final comment on notation again involves the
representation of matrices. When depicting a large matrix with
multiple submatrices, the matrix will be enclosed in brackets, and
the submatrices denoted as capital letters. In some cases, the
submatrices will also be separated by partitioning lines. This
practice is only used in a few cases to emphasize the composition of
a matrix. Normally, the partitioning of a large matrix will be
denoted using the submatrices depicted in capital letters, sufficient
spacing, and the enclosing brackets. When numeric values are listed
as the components of a matrix the meaning of the above
conventions changes slightly. If the value is a zero, then it may
represent the real number zero or the zero matrix. While this may
sound confusing, the context of such an occurrence will clarify its
meaning. Other occurrences of numeric values in matrices do depict

individual matrix elements.

Elementary Row and Column Operations

In the next section, theorem 2-1 will provide the basis for
computing the generalized inverses of a matrix. To understand how
to utilize this result, in a computational sense, a knowledge of
elementary row and column operations is required. Further an
understanding of these operations will help develop an appreciation
for the computationally direct and simple process used to obtain

these generalized inverses. Thus as either a review or quick

12
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g Original Matrix
o,
») 331
X 113
Matriz After Interchanging Row 1 and Row 2
i
%:: Figure 3. Interchanging Rows
L
5
® . :
e overview, the following summary of elementary row and column
- : . - . :
22;:: operations will help, at a minimum, appreciate the computational
Nl
bt aspects of the processes at the heart of this work.
Q.-
b2y N
3N Interchanging Rows or Columns. Given a matrix, any complete
"7{‘ row of elements may be interchanged with the corresponding
_ elements of any other complete row of the same matrix. The new
. 7-.35 matrix is equivalent to the original matrix. Using an arbitrary
28 matrix, this operation is demonstrated in figure 3 where the first
) _ , .
3 and third rows are interchanged. The same conceptual operation
hx'l.
:;}: can also be performed on columns. Now instead of interchanging the
o
Lo corresponding elements of two rows, the corresponding elements of
ol . : . :
¥ two columns are interchanged. Had this operation been applied to
}};L the matrix in figure 3, interchanging columns one and three would
T
B not have produced a matrix where the first column consisted of a
o
W) "Y“C three, two, and one. Interchanging columns one and two would not
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have made a noticeable difference since each column is identical.

L% I S T el
Sk I SR,
R I N

Original Matrix

al
Lo |

] [0
Y BN
Lo I SN N |

Matriz After Multiplving Row 1 by Scalar k=3

Figure 4 Multiplication by a Scalar

Multiplication of a Row or Column. Given a matrix, the

elements of any row in the matrix can be multiplied by a scalar.
The resulting matrix is equivalent to the original matrix. Again,
using the same arbitrary matrig, this operation is demonstrated
below in figure 4 where row 1 is multiplied by scalar k=3. This
same operation may be performed on columns as well as rows.
Thus had the elements of column | been multiplied by k=3 the
resulting column would contained 3, 6, and 9 from top to bottom

respectively.

Multiply a Row or Column and Add. Using the same matrix

from the previous illusrtation, a row is again multiplied by a scalar
and the resulting new row is now added to one of the remaining

rows of the matrix. As before, the addition is performed

14
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and then Adding Row 1 to Row 3

Figure 5. Multiplication by a Scalar and Addition

on only corresponding elements of each row. The results of
multiplying row | by k=(-3) and then adding this new row to row
3 are shown in figure 5. Note, row 1 is unchanged by this operation
and row 3 is eliminated. The same operation can be performed on a
column basis. Using column operation and the same original matrix
from figure 5, column 1 could be used to eliminate the elements of
column 3 by multiplying its elements by k=(-1) and then adding
corresponding elements of columns | and 3. Had this same operation
been performed on the resepective columns of figure 3, only the

second element in column three would have been. eliminated.

The Generalized Inverses of a Matrix (10)

The systematic development of the four generalized inverses

begins with the construction of a new and equivalent represen-
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tation of the arbitrary matrix A which has dimensions m rows and
n columns. The starting point of this systematic development is
then the matrix A augmented with two identity matrices of

appropriate dimensions and shown in the following equation

3

r \‘l
{“ IJ (2 5)
1 G o

Using this representation, the the four generalized inverses of
interest will be developed in theory and in practice. This
representation and consequently the generalized inverses derived
from it will also be closely tied to the general solution of a system
of equations. This is all accomplished through seven theorems and

one example. Theorem 2-1 begins by developing the new

representation from Eq (2.5). This is immediately followed by an
example which demonstrates how each of the four generalized
inverses of interest is computed from this new computational
framework. Theorem 2-2 extends this example by introducing how
the general solution of a system of equations also arises from this
computational framework in terms of the generalized inverses.
Theorems 2-3, 2-4, 2-5, and 2-7 develop the existence of each of the
generalized inverses computed from this new representation. Finally
theorem 2-6 develops the general solution of a system of equations
In a manner similar to theorem 2-2 but where the submatrix M is

not defined based on the rank of A.

Theorem 2-1. For any given matrix A € C'MXN there exist two

|

R SR R o]
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nonsingular matrices, R ¢ C™M*™M and C ¢ ("X such that the

BRSNS following pair of equivalent matrices can be constructed

Iy 0T
mfom 2 6]

SRCERY

G &1
\ [ and
y oy

" |

’ Proof. For any matrix A ¢ G there exist nonsingular

(2 matrices R ¢ ¢IXM and C ¢ CNXN syuch that

Ewl
.
e
i
i}
ey
o =
-
| PV )
(x|
|

where [ is an identity matrix of dimension equal to the rank of

matrix A. Eq (2.7) is a well established result, and this result is used

as 1t arises in the following matrix multiplications

bl R e R

Now matrices R and C are now defined as follows

EaAC R

oo

[ Sy

@S e

-

)
péHJamlié[sm (2.9

-

YOS

Using these new forms of R and C, the desired result is obtained

.lt..l‘."1 .
o
1

e w
.“."“

from Eq (2.8) giving the following
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(2.10)
n

At this point, the definition of matrices R and C in Eq (2.8) may

a'..:'. [F:.A&'Ll: P }

seem somewhat arbitrary, but these new forms will play an
important role in computing the various generalized inverses of the
given matrix A ¢ ¢C'™X1 This representation, developed in theorem
2-1, will allow the partitioning of A into the matrices S, T, M, and N
using a scheme reminiscent of the classical approach to matrix
inversion. These new matrices are then the foundation for comput-
ing the four generalized inverses of A as discussed above. The
following example will help illustrate how the S, T M, and N
matrices are obtained, and also how these matrices will form the

e foundations for computing the generalized inverses of interest.
Example 1. Given the matrix A where

w o TLO0OD 2000 T.000 4000 -
a:i‘-- Y 2000 2000 4f 2.11)
b

SO0 10000 1500020000

Augment A with an identity matrix, beside and below it, to give

the representation of Eq (2.12):

Pir 0 S0 40 10 o
SO PRO 200 00 10

(AT AR A N

(2 12)

,..,-...v.'
s
—
[’
H

-
g

i bt o 00

o Tt 0n

- Ut ) T
Iy L R R I .
N 4
AN
At




——

Now using elementary row and column operations, reduce A to the

PP
P b b

v
h
7
7

following form where | is an identity matrix of dimension equal to

the rank of A and the identity matrices of Eq (2.5) are not shown:

- S
PR et

t

From this point on, the identity matrix I, arising from the reduction

-

of A, will be referred to as Ir as introduced in theorem 2-1. The

A A 2 N

form of Eq (2.12) should look familiar. It was the starting point of
theorem 2-1, and it was eventually transformed it to an equivalent
representation which exhibited the submatrices S, T, M, and N.
This representation, Eq (2.10), will be obtained in this example by

3 - using elementary row and column operations to reduce the matrix

A to the identity matrix I.. As A is reduced, the desired submatric-

es will arise on the two augmented identity matrices similar to the
N classical method, where the original matrix is augmented with an
identity matrix and then original matrix is reduced to an identity

e matrix. In the classical case, the result of the row operations on the
identity matrix produce the classical inverse, but here both row

y and column operations will produce four new submatrices, two of

which will be used to compute the generalized inverse of interest.

-
el

The process begins by first performing the desired row

operations to eliminate the second row of A as illustrated in Eq

A

(2.13). As the second row of A is eliminated, the results of this row

operation begin to define the submatrices of interest. Next,
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40 00 02

00 00 00 00 10-02
1.0 0.0 00 00
Q0 1.0 00 00
0O 00 10 Q0
00 00 00 10

performing the required column operations, A is reduced to I, as

shown in Eq (2.14):

10 00 00 0000 02]
D00 00 00 10-02
|0=-20-30-40
o0 b0 00 0n

(2 14)

00 00 10 00

G0 30 00 10

The augmented version of A, Eq (2.12), has now been transformed to
the equivalent representation exhibiting the submatrices S, T, M,

and N. These are illustrated more explicitly in Eq (2.15);

10100 00 Goloo 02
00100 00 00|10-02
1O=20-20-40 i 15)
OOl to 00 00
G000 1.0 00
DOP00 00 10

where

Ly oo

oo

e
(=

00

i CHO00 |
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e
A

Qi -2.000-2.000-4.000
1000 0000 0000

N =] SRS
Q000 1.000 G000
QOG0 0000 1.000
T = [0.000 0200]

w1

(1.000-0.200]

With the S, T, M, and N matrices computed, the next objective
of this example is to form the generalized inverses of A using these
new submatrices. To do this one simple rule is required. The
generalized inverse is equal to the product of the submatrices S and

SN

° T. Using this rule and the notation introduced earlier, the A,

Kt

generalized inverses will be computed directly from the result in Eq
(2.15).

The A1,2 generalized inverse is formed from the product of the
matrices S and T. Thus, the multiplication in Eq (2.16) directly and

simply obtains the A1,2 generalized inverse of A:

1 0000 G000 0200
- OO0 g oo e e 0000 0000
by 2= BT = | 0,000 0.200] = PV DU
= (3 000 0000 Oo00p
0000 0000 Qoo

where A, 5 satisfies the first two conditions defined by Penrose:

AN
{
A,.3

21

e m ey

»
RS SR I L T A T % A, “ e
T I W RIS A R A ,}‘_ e e T WL TR "




Az Mo b ol Ao e il ala i al oAl ol asd aah SRR AL abh ath aih st o d LB RSk ekl

o
H_ﬁ
:'}:
S A(STIA = A (2.17)
RN
TR
o (ST)A(ST) = ST (2.18)
.:-.'
i
g While the A, , generalized inverse was computed directly from
" Eq (2.15), obtaining the A1,2,3 and A1,2’4 generalized inverses, as one
LN
N might expect, requires a little more work. Both inverses are still the
product of S and T, but now the form of S and T change depending
:} on which inverse is desired. For A;,z each row of T is
2
o orthogonalized to the rows of M. For the A, , generalized inverse,
)
B8 each column of S is orthogonalized to the columns of N. When both
e orthogonalization processes are performed, S and T appear as shown
* {‘;x‘;\. below (To orthogonalize the rows or columns, the Gram-Schmidt
°
(1000 0.000 0000 0.000 0038 0.192]
w Q000 0000 Q000 0000 1.000-0.200
" 0.033-0.077-0.176 -4.000
= DOET 1000 Q000 0000
o 0.100-0.231 1.000 0.000
b |0.133-0.308-0.706 1.000

A

orthogonalization process, was used. A more detailed explanation of

this process is offered in chapter 3).
ol
d Computing the A,z generalized inverse requires a step back

.
a®
-

from the fully orthogonalized representation shown above to Eq

Canlenl

(2.15). To computed the A, , = inverse requires the orthogonalized T

» v: .t‘f_‘l;.'-'.

& xg__ submatrix and the original S submatrix from Eq (2.15). When

5 ;
v i
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3
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* . . . . .

?é . performed, the multiplication appears as illustrated in Eq (2.19).
SRS

o 1000 0.038 0.192

% Ay 2 3= 57 =299 0,028 0.192] - |0-000 0.0001 5 g,

R 22720 710,000 0.000 0.000

0.000 0.000 0.000

;!

s

2 where S is the original S submatrix from Eq (2.15) and T is now an
RS

‘*" orthogonalized version of the T from Eq (2.15). This A1’2,3 generalized
o inverse satisfies Eqs (2.17) and (2.18) plus the additional Penrose

o condition detailed in Eq (2.20):

i

°

N (STXA) = (ST)A (2.20)

. ". The process for computing the A1’2, 4 generalized inverse

2'.: proceeds in a similar manner. Instead of the orthogonalized version
the the T submatrix and the original S submatrix, the opposite of

each is used. The resulting multiplication follows in Eq (2.21)

-

- 0.037 0.000 0.007

) b e (O0BT | oy (0000 0013 (z.20)

L4 f2a= R o002t 0.000 (020 -

‘. 'C'.133J D000 0027

<

~

® Again, along with Eq (2.17) and (2.18), the A, 4 generalized inverse
.:’ -

2 satisfies Eq (2.22):

)
s .

AR (STIX(A) = (STA (2.22)

I
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With three out of a possible four choices used, there is only one

logical combination of the S and T submatrices left for computing

the final generalized inverse of interest, the A,z 4 inverse.

The A,z 4 inverse is obtained in a similar manner using the S

and T submatrices, but now both orthogonalized versions are

multiplied together. In this example the result is obtained by

0033 D001 0006
" D067y a2s o 199 = 0003 00131 ) g
1 2 34=37=| """ 0,038 0.192) = (PUO3 U013 o
B ':'.]':'U OUU"J Uulg
0133 0.005 0026

The Ay, 4 inverse satisfies all the conditions satisfied by the lower

inverses plus one last condition making it the unique inverse:
(A(ST))* = A(ST) (2.24)

A second more detailed example is provided in appendix A. This
example was taken from pages 340 and 341 of Noble's Applied
Linear Algerbra text, reference 21. All four generalized inverses are
computed and each of the four conditions are tested to verify the
results.

Theorem 2-1 defined a new starting point for computing the
generalized inverses of a matrix. In this respect, theorem 2-1
provided both a new method of representing a matrix and a new
means of partitioning a matrix to a form well suited for computing

the generalized inverses of interest. Using this result, example | took

24
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a 2x4 matrix and reduced it to the form developed in theorem 2-1,
the new starting point for computing the generalized inverses of
concern. The process of reducing the matrix to the desired form
was computationally simple and direct using only elementary row
and column operations. From this starting point, the process was
expanded to compute four generalized inverses where each inverse
satisfies one or more of the four conditions. Combined, theorem 2-1
and example | provide a starting point and insight into how the
result and process can be put to further use. Theorem 2-2 will
begin to expand on this by extending the new representation and

computational technique to the framework of the equation Ax=b .

Theorem 2-2. The system of equations defined by

Ax =Db
where

A ¢ CMXN

X € Cnxl

b e mel

has a solution x if and only if Mb = 0 and the general solution of

Ax=b can be given by

Xgeneral solution - 10 * Nz, vz (2.25)

where S, T, M, and N are the matrices defined in theorem 2-1 and

Z Is an arbitrary variable of appropriate dimensions.




s Proof. In theorem 2-1, matrices R and C were partitioned as

and C2 [@N] (Z.9)

T
Il

0 Additionally R and C are nonsingular as defined in theorem 2-1. By
using this partitioning along with matrix multiplication, theorem 2-1

&= provided the following relationship

{Z 10}

From these matrices and their submatrices, the following chain of

e implications arise

" Vd‘ -

- B

e Ax = b has a solution x,

R
Y
3
.

if and only if RAx = Rb has a solution x,

:, if and only if RACy = Rb has a solution y and x = Cy,

D - =
9 . &

R if and only if [I_" ';}] [f} - {I“T‘I] b has a solution v = [T‘"'*'I]
' | Y

:3:: and x = [2 II]{:} .
[} &

ak s v
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if and only if Iy A Th has a solution w=|"
' 0 Il b ) z

and x = [SW + Nz},
if and only if I, W = Tb, 0 = Mb, and x = [SW+Nz]

Thus from the above chain of implications, Mb=0 is a consistency

condition and determines if the the equation
X = SW+Nz (2.26)

has a solution. Further, Eq (2.26) can be rewritten in the following
form to capitalize on the results of theorem 2-1, and obtain the

results stated in theorem 2-2:

x = S(Tb}*Nz (2.27)
n

Corollary 1. By choosing b=0 in theorem 2-1, the columns of N

form a basis for the null space, N(A), where Ax=b has the general

solution
Xgeneral solution ~ STb + Nz, Vz (2.28)

Again, z must be of appropriate dimensions and M*b=0 is a

consistency condition.

27
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Proof. By choosing b=0 , the columns of N span m(A). Also the
columns of A come from the nonsingular matrix C. Therefor the

columns of N are linearly independent and hence form a basis for
n(A).

With a growing understanding of the ST method from theorem
2-1 and 2-2, nothing yet has been said about how the product of
the S and T submatrices satisfies combinations of the four equations
defined by Penrose. The next three theorems plus theorem 2-7 will
prove the existence of each generalized inverse of concern in this

work relative to the results of theorem 2-1 and theorem 2-2.

Q.‘ Theorem 2-3. From the representation developed in theorem

2-1 and the process described in example |, the matrix ST is a A,
generalized inverse of A where A; e C"*™M and A ¢ C™M*N. The

generalized inverse A, satisfies the following conditions:
(STIA(ST) = ST = A,

Proof. Using the R and C matrices defined earlier in Eq (2.7),
the matrix multiplication of RAC can be written slightly differently
than its form in Eq (2.8). The RAC multiplication can now be

extended with the four submatrices S, T, M, and N providing

RaC = {Il', :f.::} - [ITI] 415 N 2 29)

28
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Figure 6. Matrix Dimension Table

The next step is to begin a long chain of multiplications and
substitutions which can be deceiving when using matrices without
clearly depicted dimensions. Figure 6 depicts the correct dimension
of each matrix appearing in the subsequent multiplications.
Reference figure 6 if any confusion arises regarding the conformity
of a multiplication or substitution. Now applying the multiplications
introduced in Eq (2.29)

T . TL'L‘I‘L IR Fal

s (3 M] = &I {2.30)

[m] A 13 ] [HJ SR o

(T L2 TAD A

Ta ) oy o [TAS TAN 25t
I‘IL"‘I f':l'x ] '[ I‘.'A"’I 1"'\‘1 Iv—“ I"'."‘I o I“‘I
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Next to see that

(ST)A(ST) = ST = A, |
holds, the result from Eq (2.31) are substituted back into Eq (2.29) !
giving !

!h 0] [TAS TAN] (z.32)

(0 0] [BA&3 WIAN] _

This relationship implies
TAS = I,
L
Thus

(ST)IAGST) = S(TAS)T = SUr)T = ST = A,

While the A, generalized inverse was not computed in example

I, it will be used here as an intermediate step to reaching the A,

generalized inverse. Thus the next step will be to show ST also

satisfies the second condition introduced in Eq (2.2). Once this is

proved, ST, in this case, will be an A, generalized inverse by

~ s definition since it satisfies Penrose's first two conditions.




Theorem 2-4. The ST matrix obtained in theorem 2-3 is also an

- A, generalized inverse satisfying

A(STIA = A (2.17)

Proof. Recalling from above

v = |Ir O (z 7
o0

oot I Of e (Z 33
ol on i -
‘.':s:‘-'\.“
(e,
Using the new definition
j‘Ir ':] A - S ot
’ P lf) Lo
) bl 4]
"o Eq (2.33) can be expressed as
3
¥ .
« - S Y B B - - .
3 A=F ! {I'r] ”} i ! =R ! [ C ! (2 35
. o

T
©oe

Now consider the following using the previously defined properties of
- R and C




Using t' ese and previous results to substitute for A and ST gives

AST)A = R™'BCTICB"RYRIBC™Y)
- R7IBCI)B*(RR)BC!
- R"IBB"BC”!
- Rle!
= A

Finally combing this result on top of the previous result, the proof

of theorem 2-4 follows with

(ST)A(AT) = (CB'RXR™!BCIXCB'R)
- CB'(RR™B(CIC)B'R
- CB'R
- ST
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Once again, since the same ST matrix was used to obtain the

generalized inverses A; and A, in theorem 2-3 and theorem 2-4
respectively, ST satisfies both conditions and is then by definition an
A1,2 generalized inverse. The same type of argument will be used to
prove the existence of the A1’2,3, 4 generalized inverse. This begins

with theorem 2-5 below and concludes with theorem 2-7. Theorem

2-6 interrupts the process to provide the additional results needed

to prove the existence of an A, , , generalized inverse.

Theorem 2-5. If MT*=O, then the matrix ST is an A1,2,3

generalized inverse of the matrix A.

Proof. It must be shown that the following equations hold for

any given A ¢ C'MXI and Algz € ¢gnxm

AR,z A=A (237)
Aoz AAjgss = Az (2.38)
(A Ajy3) =(AA,z) (2.39)

Let A = ST. It is sufficient to show that AA™ is symmetric since by

the results of theorem 2-4 it is already know that

AAA=A
AAA = A
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N Then in order to show any matrix is symmetric, it is sufficient
e show that
_
" (AAXAA) =(AA) (2.40)

N In other words, A is symmetric if and only if A = A*. Now to show

“, that (AA) is symmetric, begin by showing (AAXAA)" is symmetric.

-

First note that (PQ)"= Q*P* holds for matrix multiplication of P and

- Q. Then taking the transpose of (AAXAA™)" as with P and Q gives

\ .
i (AAYXAAYT = (AATYTAAT - (AAXAAY®  (2.4D |
° ‘
- |
: Here the transpose of the transpose of (AAXAAT)" remains |
2 ~HN, unchanged. Hence the left hand side of Eq (2.40) is symmetric and :

e

LT consequently so is the right hand side of this equation.

; Next, assume that MT =0 holds by hypothesis. By making use

ﬁ; of theorem 2-2 which guarantees the existence of a solution x to

R the equation Ax=b when MT"=0 (MT"=0 was the consistency

E? condition for a general solution of Xgeneral solution - STb + Nz ).

. Apply the results of this theorem to the columns of T". Let b be the

- columns of T where b may vary as only one to all the columns of

T*. Then by theorem 2-2, there exists a matrix X such that AX=b

.‘:‘ holds where b ranges over the columns of T*, A is fixed, and X

iy arises from each solution of AX=b . Now T'=AX implies that

'\~.,

7

. (T = T = (AX)" = X"A" (2.42)

5

:::; 34
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o N Since A" = ST
L AN

:':. B‘n E"'B

N A” = S(X*AY (2.43)

then for Z = SX*

(SXMA* = za* (2.44)

T 7~

" e

Finally it follows from the earlier equation that

PR )

’ -.‘“- LAPUR PN l‘\lv‘l' ‘_
Ol \-‘\"v"‘"".k“:".e‘- ‘cl‘r‘-

(AADAA) = A A (A)A" (2.45)
= A(AT(A)*A"
= A(STA™"A™)

. = ASX"ATAT"A"

i = AZ(A"ATAY)

¥ = AZ(A A"A)"

e = AZA"

= A(ZA)

= AA

So from Egs (2.42) through (2.45), equality holds for

W a L

.
TP

(A AXA A=A A (2.46)

. and by this equality symmetry also holds.

35
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\‘ Q:m Theorem 2-6. Recall the definition of the nonsigular matrices R
and C
»::
\ Rz [I’- 'I} and C2 [2N] (2.4)
s *

e
!
" and the result of theorem 2-1, namely
2 J
- |
a2 R&C R| _ . ‘
8 cool (£.10) |
0 |
Then the equation Ax = b has a solution if and only if N‘b = 0 and

R Q‘.* the general solution of Ax = b is given by

Y
L P x

, Xgeneral solution™] > b+ Mz, Vz (2.47)

)
Proof. Recalling the matrix multiplication which lead to the

[ form of Eq (2.10) in theorem 2-1, now, the transpose of this sequence
6 of multiplications is taken prior to the actual multiplication. Thus
.' . . . . .
:; from the original multiplication sequence

e rolfa1]fco] | [rar)[co] _ [Rac R 5 )
y OB EIRDE 1oafjol Co '
-
188
[\
W

e - and by taking the transpose of Eq (2.8) the following is obtained
AT St
.
. 36
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Extending the results of theorem 2-1 to the form of Eq (2.48)

provides the following equality

M0 IC:*}
ik, E . i - i

LR ol e |
where now

Y = [T MY (2 50)

250

Since R and C are nonsingular matrices by hypothesis, the following

series of implications can be made

A*x=b has a solution x

if and only if C'A*x = C'b has a solution x

if and only if C*A"R"y = C™b has a solution y where x =R*y

The last implication can be rewritten using Eq (2.49). Thus the last

implication becomes
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where y is now defined as

t
g W
i 7

with x consequently rewritten as

v
B

, .
’ l.(l. L{l. &

"‘[T*II*]{ ]

NG %4

Now the last implication as rewritten in Eq (2.52) can be simplified

as follows

Ir O oyt _ o
[ 0 f.]} ¥= [N*} b (2,53
Iy 0] | %W » ' o
[CJ [f]} l 7 ] = [#*% M) 12 54)

[W 0]=[S" N'b] (2.55)

For the simplification in Eq (2.53) through Eq (2.55) to hold, the

following equalities must be true

W=5band Nb =0
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where
x=TW:+Mz
Finally using the new definition of W provides the desired result

Xgeneral solution™ T'S'b + Mz, V2 (2.56)

Corollary 2. The columns of M* form a basis for the null space
of A* referred to by n(A*).

Proof. The proof for corollary 2 is the similar to that of
o corollary 1, but follows from the representation of the general

solution of x given in theorem 2-6.

From theorem 2-6 the last two remaining generalized inverses

can be obtained. First, using the results established in theorem 2-6,

the A, 4 generalized inverse will be obtained in the following

theorem. The final generalized inverse of interest will be obtained
using the definition of an A,z 4 generalized inverse established

earliey.

- Theorem 2-7 (12). If N*S=0 then the matrix ST is an A, 4

generalized inverse of A.
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Proof. To prove ST is an A1’2’4 generalized inverse, it must be

shown that ST satisfies the following equations

Ahpp A = A (257)
AioaBhing = Apg | (2.58)
(App,4A% = (A5 4A) (2.59)

By the results of theorems 2-3 and 2-4 it follows that A, 54
satisfies Eqs (2.57) and (2.58). To show Eq (2.59) holds it must be

shown that (A, 4A)* is symmetric. This proceeds in a manner

similar to the proof of theorem 2-5. First let A™=ST and then
show Eq (2.60) is symmetric:

(ATA)MA™A) = (A"A) (2.60)

Using the definition of symmetry mentioned in theorem 2-5, the

transpose of the left hand side of Eq (2.60) is taken as follows
((A"APA A)* = (A"A(AA)* = (A"A)MATA) (2.61)

However, this symmetry it does not establish equality. To show
equality let N*S=0, and then by using the results of theorem 2-6,
there must exist an X such that A*X=S. Using this result and the

previous definition of A™ leads to the following

(AA)(A"A) = (A*AT"(A™A)

40




= (A*A™*)(A*XTA)
R = (A*A™*A*)(XTA)

= (A*)NXTA)
= (A*XTX(A)
= (A"A)
Therefore, the ST matrix also satisfies Eq (2.59) and is thus an A1,2,4
generalized inverse.
[ |
The final inverse, the A, 3.4 generalized inverse is obtained
from theorems 5 and 7 using the defintions illustrated in figure 2
. earlier. Therefore, if MT*=0 and N*S=0, the ST matrix must satisfy
\' Egs (2.1) through (2.4). Then by definition, the matrix ST is an
Alsz4 generalized inverse.
.2
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Il The ST Computation

Chapter 2 reviewed the theory behind the ST method for
computing the generalized inverse of a matrix, and briefly introduced
this technique through an example. This chapter will examine the
computer implementation of this technique in greater detail and also
discuss an interesting adaptation of the ST method which will make
it more immediately useful and'available.

In respect to the ST method, the algorithm behind this
computational technique will be examined from several perspectives,
including time and space complexities plus numerical accuracy
considerations. To rounded out the discussion and put it in the proper
perspective, the ST method will be compared to other techniques
currently used to computed various generalized inverses. The intent
of this comparison is to try to determine what possible advantages or
potential disadvantages the ST method may possess in relation to
these other techniques.

While determining the potential advantages and dis-
advantages, the discussion on comparisons will also serve to introduce
the adaptaion of the ST method to a well known algorithm. This
adaptation is based on a singular value decomposition algorithm. The

ST method will be used te short cut a method used for computing an

A| 53 4 inverse based on the results of the singular value
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decomposition algorithm. This discussion will conclude the chapter

with a detailed explanation and an example of this modified

computational technique for finding an A, , generalized inverse.

The ST Method: A Synthetic Approach

The ST method can be described as a five step technique for
finding four generalized inverses of a given matrix. Of these five
steps, two steps form the computational heart of the technique.
These steps, step 2 and step 4, utilize a modified Gauss-Jordan and
the modified Gram-Schmidt orthogonalization algorithms respectively.
A brief overview of each step will be given. Following the overview,
the computations surrounding step 2, the modified Gauss-Jordan
algorithm, and step 4, the modified Gram-Schmidt orthogonalization
algorithm, will be examined in detail. Based primarily on steps 2
and 4, the time and space complexity of the ST method will be
discussed. Next some of the subtleties involved in implementing the
ST method will be addressed from a very general view. Included in
this discussion will be numerical accuracy considerations. Finally, this
technique will be compared to others used to compute various
generalized inverses.

Algorithm Overview. The example in chapter | used a new
representation defined by theorem I-1, namely Eq (2.10), as the
starting point for computing four generalized inverses. To obtain this

representation, step | begins by augmenting the matrix of concern,

43




X1
W St
a5t

3y Mg

= £y
AR AT Y SRS

-

YL WA
q

]
b
®
‘Al
-
‘o
»

IRR T ((e4 11
1

[E4]

1o

A
|

Figure 7. Dimensions of Augment Matrix and Identities

say matrix A, with an identity matrix beside it and an identity
matrix below it. If the given matrix A is of dimension mxn, then the
identity matrix augmented beside A must be of dimension mxm. The
identity matrix augmented below A must have dimensions nxn. Thus
the result of step | is a square matrix with dimensions (m+n) by
(n*m) as depicted in figure 7. This matrix representation was shown,
by theorem 2-1, to be similar to the representation which will now
be obtained in step 2. Before leaving step 1, note the zero matrix in
the lower right-hand corner of figure 7. While it is not involved in
the actual computation and is never changed, it has a potential use
which will be pointed out later.

Now to obtained the next representation of the augmented A
matrix, step 2 utilizes a slightly modified Guass-Jordan algorithm for
reducing A to an identity matrix with dimensions equal to the rank
of A. Applying this algorithm, the representation of figure 7 becomes
the famiilar representation illustruated in figure 8. Important to note

from figure 8 is how the submairices S, T, M, and N arise. First,
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Figure 8. Partitioning and Dimensions of Submatrices

these submatrices are the consequence of reducing of A to I, where r

is the rank of A. Second, the partitioning of what was originally the

two identity matrices is determined by r. Thus the respective

- dimensions of these submatrices are SNXI Trxn p{m-xn 54
NPX(N-T) 55 illustrated in figure 8. As mentioned earlier, this repre-

sentation forms the foundation for computing the four generalized

inverses of interest in this work, and its validity is based on the

theory reviewed in chapter 2.

In the representation of figure 8, the computation of the first

generalized inverse of interest follows directly in step 3. Here the A,

inverse is computed simply from the product of the S and T

submatrices.
Computing the next two inverses, A1 23 and A1 24> require

the use of the modified Gram-Schmidt orthogonalization algorithm.

- Again using the representation of figure 8, each row in T is
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orthogonalized to every row in M. Now taking the product of the

NP R

o
AN
e

;( P original S submatrix and the new T submatrix gives the Ajaz
- generalized inverse. This process 1s defined as step 4A. Step 4B again
x uses the same orthogonalization process but now it is applied to each
\ column of S. Each column of the submatrix S is orthogonalized to
j every column of N. The product of the new S and old T submatrices
l produces the A, , 4 generalized inverse. Since both inverses are
I directly based on the results of step 3, the two separate computations
.- were labeled as steps 4A and 4B.

The final inverse the A1,2,3,4 generalized inverse, follows from
both steps 4A and 4B. This step is naturally labeled step 5, and is
; composed simply of the product of the orthogonalized S and T
SR submatrices.
_J ' . The relationship of these five steps along with their important
1 characteristics is summarized on the following page in figure 9.
y’ Modified Guass-Jordan Algorithm. The Guass-Jordan
algorithm is well documented (22:71; 27:417; 24; 1; 17), and the details
E\ of this method will not be discussed. Instead, the aspects of this
f. method with particular importance to the ST method will be
addressed. In particular, this includes the addition of a column
t operation to reduce a given matrix, and a change to what might
l. normally be used as a pivoting scheme for reducing the given matrix.
t These two issues are discussed below as they pertain to the modi-
Et; fications of the Guass-Jordan algorithm adopted for the ST method.
° -
o 46
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_, . STEP 1: AUGMENT A B
'.l. “:\‘(*‘.« . . . . .
! M Augment A with an identity matrix beside
’ ~ and below it to form:
¥ ;x
‘e [A I
b 110
f;:
L. '
‘ .
7 STEP 2: REDUCE A R
Ko Reduce A to an identity matrix with I
o dimension equal to the rank of A to form:
K I_r’_o T
- 0/0[M
:‘,::; SIN|O
b ™
o
;ﬁ STEP 3: FORM A 1 2 INVERSE
T Form Ay 2 from the product of the sub-
.- matrices S and T. Ay 2 setisfies the
ol following conditions:
X Ahy 2 A=A
‘ (o At2AA 2 =A1 2
I . 0 L
STEP 4A: FORM A 12,3 INVERSE STEP 4B: FORM A 1,2 4 INVERSE
s
- Form Ay 2 3 from the product of the sub- Form Ay 2 4 from the product of the sub-
‘ matricesSand T where each row of T is matrices S and T where each column of S is
orthogonalized to the rows of the sub- orthogonalized to the columns of the sub-
< matrix M. Ay 2 3 satisfies the following matrix N. Ay 2 4 satisfies the following
.j:} conditions: conditions:
o AAi23 A=A AA1 24 A=A
£3 A1,23 A A 23 =A1 23 A12,4 AAI 24 =M1 24
. (AA123)*=(A A 23) (A1,2,4 A% =(A) 24 A)
\ STEP 5. FORM A1,2,3,4 INVERSE
.
® Form Ay,2,3 4 fromthe productof S
et instep 4Band T in step 4A. Ay 2,34
o satifies the following conditions’
. AM 234 A=A
N A1234 AAL 23 4=A1234
p (AAy 234)*=(AA1234)
SRR (A1,23,4 A)*=(A1 234 A)
o L . "]
£
s Figure 9 Five Step Summary
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Figure 10. Underdetermined Case

Typically the Guass-Jordan algorithm is used to reduce a
square matrix to row-echelon form. In this application, matrices are
not square and row-echelon form is not always sufficient. Thus the
Guass-Jordan method was modified to reduce a non square matrix to
the form described in step 2 or likewise, derived in Eq (2.10). In some
cases, the row-echelon form produced by a typical implementation of
the Gauss-Jordan method would be sufficient for non square
matrices, but given the case of a matrix with dimension mxn where
n i1s greater than m, the desired form would not be reached. This
underdetermined case is illustrated in figure 10. In figure 10 part of
the original matrix was reduced to an mxm identity matrix, but this
left the remaining (n-m) columns non-zero. For the ST method to
work, the remaining columns in the underdetermined case must be
reduced. This problem is eliminated by was using both row and
column operations to reduce a given matrix. Row operations are used
to first reduce the matrix to an upper triangular form with rank

equal to that of the original matrix. Next applying column operations,
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the remaining elements above the diagonal are eliminated. This
\:‘.i" provides the desired form. While it would have been possible to flag

the underdetermined cases for special treatment, this was not done.

Instead, in the interest of generality and numerical accuracy

i considerations, which will be elaborated on later, a method using

both row and column operations was adopted.

: The addition of column operations to the existing Guass-Jordan

N | T T e e

algorithm required an accopanying change to the pivoting scheme

normally employed with this algorithm. Typically, a satisfactory

pivoting scheme for most cases would simply search each column

PR N

below the diagonal for the best pivot element before attempting to
eliminate the remaining elements (22:187-188; 24:38). This pivoting
scheme works well when only row operations are used to reduce a

matrix, but ignores the subsequent column operations which are

-
@ [

- required for the ST method. Since column operations possess the
same potential problems found in row operations, namely subtracting
; numbers of similar size, any pivoting scheme used must also be able
to look ahead for the subsequent column operations (27:593). One
immediate technique would be adopting a complete pivoting scheme
where the entire matrix is searched for the best pivot element. The
obvious problem with this approach is the computational expense of
searching the entire matrix. Since complete pivoting schemes

normally only provide two to four times better results at a high cost

o - F APt A

(24:39) this method was not used. Instead a compromise was designed
which uses at the most two column searches and a single row
search. Thus, from a given diagonal element, a column search is

..'.’d'_" \
v e

Ve conducted below the diagonal element followed by a row search to
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1\h:-f: the right of the diagonal element. If the pivot element was chosen

‘r: \;.;....., from the row search, a third search is conducted on the new

[ column. This scheme is employed during the row reduction operations

:é as the given matrix is reduced to an upper triangular form. The

' intent is to provide a good computing framework for the following

:.__j column operations when the form of the matrix is less flexible. Here

}E, less flexible means it is difficult to pivot during column operations

;' ; without loosing a zero element. The alternative of pivoting during

_j column operations with loosing zeroes would begin to approach the

331 computational burden of complete pivoting since the matrix would

" . have to be rearranged back to the form of I, at some point. Thus this

‘\‘ scheme avoids the expense of complete pivoting but at the same time

ft» provides a good basis for the column operations.

& (. Spreading the numerical operations between both the rows

and columns has the added advantage of reducing the number of

operations performed on the elements in each of the two augmented
. identity matrices. Instead of concentrating the changes on a single

'.Z;- identity matrix like the unmodified Guass-Jordan method does, this

" reduction technique spreads the arithmetic operations across two

;-:;. identity matrices in an almost equal fashion. The result is less opera-

x tions on individual elements of the submatrices S, T, M, and N. Since

repeated simple arithmetic operations accumulate round-off error,

: and subsequent round-off errors are the result of the current error,

T the error in each submatrice should accumulate more slowly(27:593).
" In summary, one change, column operations, was added to

£ - the Guass-Jordan algorithm to adapt it for the ST method. An

.
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\..4. accompanying pivoting scheme was developed to account for the
column operations. The combined result is an effective routine which ‘
is, at the least, as numerically accurate as the well published version

of the Guass-Jordan method. |
|

Modified Gram-Schmidt Orthogonalization Algorithm. Steps 4A i
and 4B require, depending on the rank of the matrix of interest,
specific rows of the T and M matrices and columns of the S and N
matrices to be orthogonal. To orthogonalize the required rows or
columns, the modified Gram-Schimdt orthogonalization process was

used. This is a modified version of the original Gram-Schmidt

JASeH algorithm and differs only in the order calculations are
IR performed (24:151).

The use of the modified Gram-Schmidt, in the ST method,
differs a little from its typical description since the orthogonalization
process depends on the rank of the matrix of interest. Thus algorithm
is first described below in its most general representation. Its

application to the ST method is then explained and demonstrated

with an example.

,: The modified Gram-Schmidt orthogonalization algorithm is
1; described with the following short segment of a pseudocode. In this
v desciption, the purpose is to orthogonalize each vector denoted with
p, -

e the small letter a and subscripts. The algorithm is as follows:

b .

F-:..:-

® ..

S

E}'.:? '

2 S|
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Given the vectors a; for 1=1,2,3,.. .M

For k=1 to M do
For j=k+! to M do

aJ' = aj—[(aj.ak)/(ak‘ak)]ak

End of j loop
End of k loop

The algorithm description also serves to point out two useful features
of this algorithm; its use of storage and its simple and direct nature.
In respect to storage, the modified vectors replace themselves so no
temporary storage is needed for intermediate results which reduces
its storage over the original Gram-Schmidt process. Second, the
process is completely described in a few short lines which attests to
its simple and direct nature.

Since the ST method requires that each individual row of the
T submatrix be orthogonal to the M submatrix, the change to the
basic algorithm described above involves only the loop indices. For the
ST method and the T and M submatrices, the outer loop is limited by
the rank of the original matrix. The inner loop is controlled by the
number of rows in the augment matrix A. In terms of the algorithm,
this restricts the actual number of arithmetic operations performed
over the case where a set of vectors or rows for matrices are fully
orthogonalized. For the case of the T and M submatrices, each row in

T 1s fully orthogonalized to the rows of M, but the rows of T are not
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s orthogonalized to each other. The same applies to the orthogonaliza-
o S o tion of each column of S to the entire N submatrix. The following

N example demonstrates the orthogonalization process used for the ST
N

&5 method.

')

o Example 2. Given the following reduced matrix with

2 dimension 6x4 and a rank of 2:

»
£ 4

o r 1
o P00 0o o0 Qooioaa 000 033 Qo0 000 Q00
‘:‘:; QOO Lo oo QO0i3 00 Qo0-200 000 000 000
. D00 000000 0.00)1.00 000 -1.00 000 100 000
& GO0 Q0000 o0000 00 100 100 000 0.00
S D00 0001000 0.00-1.00 100 1.00 0.00 0.00 0.00
15¢ . GO0 000 D00 000 Lo 000 .00 000 0.00 1.00

L “RT A
. \;’ - . 00 O O] 100 900

: OO0 000|000 .00

' 000 o0 300-200

LOg =33 1-1.00 100

- - -
J

"
; ;‘; Orthogonalize each individual row in T to all the rows of M. Here the
"',_3 orthogonalization process begins with the bottom row in M so the

)

F identity matrix, I, will be preserved. If the process were started with
R the first row in T and worked down, the I, form obtained in the

° previous step would be lost. This is because oper.. .ions are not per-
o,

’:;Z'-j formed on only the rows of T or M, but on the entire matrix.

e i

NS Therefore care must be taken to preserve the work done to this

ha'
[ o
2
e
.
| - -
[
4
.

point. Thus with the outer loop index set to 6 (the fourth row in M),

o &
-‘ . 4"
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b . and the inner loop is initialized to 5, the algorithm iterates down to 1.
?‘: ARy This results in the following changes to the T and M submatrices

‘;"
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P 000 Oan O35 000 O 000
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After the first iteration of the outer loop, the last row in M is
orthogonal to each row above it including the two rows in T. The

R next pass of the outer loop will begin at the third row of M and

i v orthogonalizes it to each row above it. The resulting matrix is:
.",:

-

D

‘-'_'
D - ~

R OOR-001E 020 000 000 006

N GoA0 1.40-0 80 000 0.00-0 80
-

— 20 Oeg-0d0 D00 1 00-0 20

A,
S
—
Zo
| DS —

S0=00Gn Qa0 Y o0 O O0-0 20

- =0 S0 T a0 D00 000 050
4

) t* Voaaoy oo o0 OO0 QoD 100
L - L g
L

LA

L 3

[ ] ‘l
3t v

.

.fh‘(

The process is repeated again for the second row of M orthogonalizing

it to each row above it as the inner loop iterates from 3 to 1. The

-
YRR
L} L ..“-.-"-1
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resulting matrix after this iteration is

r 1
O04-008 01Z-012 000 004

QAT 1. 25-0 270 27 QR0-0487

T ] — | 025 0.50-0 250

28 1 00-0 25

. e

I"’ﬂj - OOE0-040 OED 100 D 00-0 20

TOO 100 000 000 080

P00 Q00 OOl Q00 000 100

Finally, the first row in M is orthogonalized to each row above it,
namely the two rows in T. The orthogonalization process is stopped at
this point by the rank of the original matrix. The final T and M

submatrices are

r )

O0s-00% 0 11-011

=

ORT OAT-016 O L&

008 0ns

0T o
L,l . .!',\ Il N

2% 0.50-025 025

0.20-040

i1 50

1060

060 1.00
100 000

1.00-0 25
0.00-0 20

000 50

100 000 000 OO0

(.00

1.0

AL B
R e!

Ly
Ly

The same process is performed for the submatrices S and N but on a
column basis. This time the algorithm only completes two outer
iterations to meet the orthogonalization requirement. Again the

p orthogonalization process is stopped by the rank of the original
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- . matrix. The final matrix with the results of both orthogonalization

- o

AN rocesses and the unchanged identity matrix is shown below. Step 5
. <

- follows directly from this final form as the product of the orthogon-
& alized S and T submatrices

(A

| -~ -
- L0000 G.0n QOO 0OS-005% 0 11-0.11 O0% 005
_*: Coog 1,00 GO0y 0eT 0aE3-016 018 0&83-067
N 000 000 QOO 025 O S0-0 25 025 1.00-0 25
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j Ue N . . .
. - One remaining aspect of this technique not yet discussed is it's
- numerical accuracy. As described above, the modified Gram-Schmidt
e process is a numerically stable technique (24:152). This is based on

. completely orthogonalizing every vector or row in this case to every
"

N other vector or row. In the ST method, the orthogonalization process
N

% i1s not complete, but instead limited by rank. In terms of the arith-
q

: metic operations performed, this means the modified Gram-Schmidt,
;

o as adapted for the ST methods, performs less arithmetic operations
M than the general case which is described above as numerically stable.
C

o Thus the accuracy of the Gram-Schmidt orthogonalization possess in
- this application should be, at the least, as good as the above reference
L4

{ suggests.

q z .
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Time and Space Complexities. Two measures of any |

algorithm are its speed and its storage requirements, and these
measures are often referred to as an algorithm's time and space
complexities respectively (25:24-39). For the ST method, the speed or
time complexity analysis will be limited to the two dominating
processes, the modified Guass-Jordan algorithm and the modified
Gram-Schmidt orthogonalization algorithm. For storage requirements
or the space complexity, oniy the augmented matrix will be
considered. These limitations are imposed to make the analysis more
general and consequently more accurately compared to other existing
algorithms.

The time complexity of the ST method is based on counting
numerical operations performed in the two dominating processes. This
1s even further limited by using only floating-point operations as is
commonly done (17:78).

Thus the basis of the modified Guass-Jordan reduction
becomes two, three level loops. Summarized by the row operations

performed on a matrix with dimensions mxn, the loops consist of

For k=1 to M
For j=k+] to M
For i=k+1 to (M+N)

For column operations the loops are identical with the exception of
the outer loop limits. The limit for the outer two loops is N. Using a
common approximation for the above, the total row and column

loops are equated to m3/3 or n3/3 floating-point operations
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respectively (17:80). The total operation count for the matrix
reduction is then simply the sum of each which is (m3+n3)/3.

For the modified Gram-Schimdt orthogonalization process, the
time analysis is the same. Each orthogonalization process contains a
three-deep nested loop as illustrated above for the row reduction
operations. In the worst case, with a matrix rank of one, the
operation count for the row orthogonalization is n3/3, and for the
column orthogonalization the count is m3/3. Again the combined
count is simply the sum of each which is (m3+n3)/3.

Combining the operation count for the Guass-Jordan and

Gram-Schmidt provides an overall operation count of (2/3Xm3+n3).

This applies to the computation of an A,z 4 generalized inverse.

Computing a lower inverse would require less operations down to a

minimum of (m%+n3%)/3 for an A, generalized inverse. No other

operations performed by the ST method would appreciably change
the cubic derived above. While including these other operations might
change the coefficients or add a lower term to the overall operation
count, the cubic nature of the two dominating processes will still
prevail as the methods chief computational burden and also serve as
a good comparative reference.

The space complexity 1s based on the number of memory
locations occupied by the augment matrix. While the actual imple-
mentation used considerably more (extra storage was used for
validation and demonstration purposes), the heart of the algorithm
requires only enough storage for the original matrix, two identity

matrices, and the resulting generalized inverse. The analysis flows

S8
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very directly from this perspective. For the original matrix, a block

. PORIERy: P s e
TR AN AR - iz
a'n‘)'l‘l“ J... n'n"a‘r

:3;‘;," of memory determined by the dimensions of the matrix is needed. If
given a matrix with dimensions m by n, then m times n memory
locations are needed. Since the original matrix is augmented by two

square identity matrices, an additional m?+n? locations are needed.

The resulting generalized inverse needs n times m locations since it

has dimensions n by m based on the original matrix. Combining the

space requirement for the original matrix, the two identity matrices,

o and the generalized inverses results in (m+n)? locations.

_ Other Algorithm and Computation Considerations. Lumped

: under this section are the subtleties and hidden insights enclosed in

‘1:. the computer implementation of the ST method which might not be

:Ij o_*.'}-.\ obvious from the desciption above or its documentation. Each is

:-, . addressed individually and with no specific order in the paragraphs

g which follow. These should be helpful to any future implementations

of this method for computing the generalized inverse of a matrix.

- The simplest data structure for implementing the augmented

matrix is a square two dimension array. For a matrix with

: dimensions mxn, such an array would be dimensioned (m+n) by
(m+n). Although this representation is the simplest, it also poses one
problem regarding storage. In the space analysis the complexity was

." determined to be (m+n)?, Using this scheme the original matrix and

\ the two identities matrices will require (m+n)? locations alone. To

> keep the storage to the minimum found in the space analysis, the

a. - computed generalized inverse could be stored in the unused lower

‘\ “l‘. right corner of the (m+n) by (m+n) array. This was eluded to earlier
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o (on page 44) when discussing the composition of the augmented
'\“:’-\.
o iy

"Thly matrix after it was reduced. While this may require a little extra
effort during the final phase of the program to place the product of S
and T back into the lower right corner of the large array, the trouble
may be offset by the ease of manipulating only one data structure
and still using minimum storage. A second alternative would be to

store the computed generalized inverse on top of the identity matrix

which was denoted as .. There are also problems with this approach,

namely taking the transpose of the inverse while storing and retriev-
ing it from this area, but again the convenience may out weight the
trouble of manipulating only one data structure.
The use of a conditional statement with a floating-point
representation introduces a problem when the condition is testing for
'). equality. In the ST method, this problem arose during the matrix
reduction process of step 2 when testing for zeroes. Since a given
matrix element may never exactly equal a floating-point zero, due to
small numerical errors, the question must be asked how should the a

condition be setup to test for a floating-point zero? One method

represents a zero relative to the scale of the machine used, and then
bases the condition on the absolute value of this relative zero (24:43). i

Taking the machine used for the original development which had 16

decimal digits of accuracy, a zero was represented as 5x1071¢. Thus
the absolute value of any matrix element less than 5x1071¢ was
considered zero. Use of a different machine would require an
adjustment to this representation of zero. Additionally, different size
matrices would require adjustments to the amount of error allowed

N
SO In a zero

P 2 e,
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There are certainly few if any applications where all four
\ﬁ generalized inverses, discussed in this work, are needed together.
Thus only certain parts of the ST method, as implemented in
appendix B, are needed for a given application. This reduces the
complexity of a potential program significantly from what is included
in appendix B. As mentioned above under the time complexity
analysis, this results in a range of operation counts from (1/3)m3+n3)
to (2/3)m3+n3) floating point operations. The same applies to the other
routines included in appendix B supporting the computation of a
given generalized inverse. These include the multiplication, printing,
and input routines. In any given application, these routines could be
reduced significantly to support the given application's requirements
lessening the computational burden of the ST method.
SNt Another aspect of applying the ST method concerns the
environment where the application would actually reside. Consider
an environment with a large mathematical software package. Such a
package could be used to piece together an effective ST implement-
ation with minimal modifications. For example, by calling a

Gauss-Jordan algorithm followed by any necessary column reductions

and a call to a matrix multiplication routine, an A 5 inverse could be

computed with little effort. There are certainly many other possibili-
ties which are made possible due to the modular nature of the ST
method.

One final topic concerns algorithm validation. Two methods

were used to validate this effort. The most useful was testing the

computed inverse against the one to four conditions it is suppose to

WA
;’:";f‘, ‘
v

satisfy. These conditions, Eqs (2-1) through (2-4), provide a reliable
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:: - means of testing the algorithm. The second method was simply to

; N }-Lj: compare the computed results to a known correct result. Appendix A
o provides a detailed example showing the use of both of these

Mr methods. The conditions are tested as each inverse is computed, and
? the final unique A1,2,3,4 generalized inverse matches the known
solution found in the referenced text. Of the two methods used, the
o most useful and informative was using the four conditions. This
B method also provides insight into possible numerical inaccuracies
since the results can be compared to the correct solution. This is the
i same as taking the classical inverse and then multiplying it and the
. original inverse together. The resulting identity gives an indication of
1_{ how accurate the computed inverse is just as using the four Penrose
n conditions does for a generalized inverse.

ol " Algorithm Comparison. When comparing two or more

E algorithms which perform the same basic function, but do so by
' different methods, it can be difficult to find a common basis for
comparison. This especially true in this case where there are many
k_‘ methods for computing a generalized inverse. Here, the comparison
."- process is particularly complicated by the wide variety of notation
used to describe such computational techniques. Additionally each
description is normally only developed to provide an overview of the
. method versus the detail needed for an indepth comparison. To
overcome these difficulties, six general categories were chosen to

( compare algorithms. Each category is described below.

f - The first category deals with the initial representation of the
_; f matrix. This category was chosen since the process of augmenting the
- 62
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initial matrix is central to the ST method. Thus any comparison
involving the ST method should include this particular aspect. From a
survey of several different methods, the second category was chosen
as factorization methods. This category was chosen since, in one way

or another, all algorithms examined performed some factorization of

— . ~
! Method 1 < 3
o o AR o,
Characteristic = e K
i21:142} {27:135)
Intial Mlatrix Al A :
- f_‘:l .I.AJ. I -ll
Represeritation {I Lo [ & &)
Facborizstion ROW AND ROW SINGULAR YALUE
e DI Sty - -
AL = ! COLUNN OFS. COFEEATICHE DECONFOSITION
. o . WMULTIFLE
Logical Flowr DIEECT DIRECT DECISIONS
Titme Complexity 243t en 4¢3 = 2/3mi s}
Space Lomplexity Yol apd im+n)e
Flexikalittr Cormputes Eestricted by Computes
=) 8% 4 inverse ranl 1 inwerse

Figure 1l. Algorithm Comparison

the initial matrix in the process of computing a generalized inverse.
The third category deals with an algorithm's general structure.
Here general structure means the logical flow of the algorithm. In
other words, does the algorithm require extensive logic to piece

together the individual parts of the computation or does it flow

directly from start to finish. The fourth and fifth categories are




:‘:'.j
[)
|
5;2 ‘ respectively the time and space complexities of an algorithm. The
-- ;:.«.; final category deals with the flexibility of the algorithm. In this

- regard flexibilities concern what range of problems can the method
H handle or what constraints are levied on the problem's input.
~ Using these six categories, the ST method is compared to two
:;:-. representative methods for computing a generalized inverse. The
, :; comparison is summarized in figure 11 (Each method is defined and
referenced to where it was obtained in the figure). The figure shows
o a number of general results. First, the ST method has the most
v: complex initial representation, but this representation appears to lead
«:3 to an advantage in the other characteristics especially in flexibility.
:\j The ST method is the only one of the three which can compute four
:E :j generalized inverses without any restrictions. Method 2 seems to be a
}" L best in terms of storage, computations, and factorization, but is
»¥ b‘"'-"' restricted by the rank and dimensions of a given matrix. Method 3
* begins with the simplest initial representation but quickly becomes
:':::l very complex. This algorithm will be examined in greater detail in
; the discussion of the adaptation for the ST method.
: {: In summary, it hard to say one method is absolutely better
than the other, but certainly the ST method is by far the most
o flexible. It can be used in more situations than the other two and
1 does not suffer significantly in terms of the other categories of
comparison due to this advantage in flexibility. Ignoring all other
3}: possibilities and using the six categories above, the ST method would
! :»;‘*é probably offer the best choice for computing a given generalized
| Ry inverse.
S dog
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The ST Method Adapted 1o Singular Value Decomposition.

The ST method will be adapted to the results of a singular
value decomposition algorithm to obtain an A1’2,3,4 generalized
inverse. This will begin by first reviewing an algorithm for singular
value decomposition to provide the proper perspective for the ST
adaption. Next the representation developed for the ST method will

be derived from the results of the singular value decomposition
algorithm to compute the A1’2’3’4 generalized inverse. Finally this
approach will be compared to another method which uses the results
of a singular value decomposition algorithm to directly compute an

A1,2,3,4 generalized inverse.

The Singular Value Decomposition Algorithm. Given a matrix
AMXD, singular value decomposition factors the matrix into the

product of two orthonormal matrices and a diagonal matrix. This

product is defined as

; - = -t
A= ’.h I

L &

To understand how the ST method is adapted to the results of the

singular value decomposition, the Q, Q,, and 2 matrices, as shown

above, will be developed with a simple example. Then the S and T

submatrices will be derived from these three matrices. The process
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begins by first choosing the matrix A as

S
[ =
i
Next, find the Q, matrix. This is begun by first forming A'A and then
computing | A'A-Al | with the goal of finding the characteristic root
of AtA as follows
|aF -] = (280 = 0
T o
o
With a characteristic root of A = 25, the process continues by finding
the associated characteristic vector
st b7 = FC
%= (1]
Using the characteristic vector, the Q, matrix is defined as follows
'.:.l - !_1]
¢ The next step is to form Q;. This begins by forming AA' and then
AL
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computing | AA'-MN | to finds its characteristic roots similar to what

was done to find Q,. In this case the process produces the following

sal = [¥l[ma1= |2 12
[4][ ! Lz 15}

9-n 12
'A"l"'u“';At _"I"” = ’1—' 1f: —']‘,| = I;:l
ES T
L R R A T T e Ty - 3
Ple e-a

T-EEh =
Ao = 25
(,.' .u.
Notice at this point that A = 25 is a common solution for both
| AAY-AI 1= 0 and | A'A-N =0 . The next step uses this common
solution to obtain the characteristic vector for AA! as shown below
AR 1= T vu) B - TR IR <1
{1'11"‘1 ] PO L: 1?5.] [;::} - .'_.\,.'l:’;z}
which is solved for x as the following pair of equations
9%, + 12%, = 25%,
12%) *+ 165 = 25%,
»‘-...-,-
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which becomes

ros
/
vy
S

-16x, + 12, = 0

12x1 - 9%, = 0

Reduced, these equations simply become x, = (3/4)x2. Then by

choosing X, as 4, x; is equal to 3 and the characteristic vector

becomes
<[]
T
.‘\., Normalizing x provides the following

[Ea Y [ =i AT

2]
i
o e ey
SaRii>]
R —|

Now Ql is constructed using the normalized x. The first column of Ql
is X leaving one additional column to be filled to make the product Ql
and 2 conform. This second column is filled with a vector making Ql

an orthogonal matrix. In this case, Ql is defined below showing this

choice
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The last matrix to be found by singular value decomposition is 2. This

N matrix is the product of Ql, A and Q2 as shown below

;,f. The diagonal elements of I display the singular values for the original
‘o
-2 matrix A In this case, the decomposition process provides only one

(3_ ' singular value of A which is simply 5. This will become important as

the S and T matrices are obtained.

Deriving the S and T Submatrices. With the Ql, 2, and Q2

matrices, the S and T matrices of the ST method can now be

b Wt

obtained in a very direct manner. First a matrix is formed using the

YN

t

aN

Ql, Z and Q2 matrices and partitioned as shown below.
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This representation should look very similar to the representation

developed in the ST method. In fact, by only dividing each diagonal
element in the £ matrix using row operations, the ST method 1s
obtained. This is equivalent to saying divide each row of Q1 by the
corresponding singular values. For this example, there is only one
diagonal element or singular value in 2 so the resulting matrix in the

ST representation becomes

r 1 1

L.l 2 oa
fe T ‘ 1 BRI
et ! 3
RN I -
En ;
| 1

|

As described many times before, the Ay, 3 4 generalized inverse

simply becomes the product of S and T. For this example, A5z 4 is

T4
& wc

o e ey

s o
Syomg T b

This adaptation of the ST method is certainly simpler than the more

publisized technique defined by

. T .
sy oo g B L

where
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IV Application to the Lyapunov Matrix Equation

£~

l" ;‘
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3¢
b =

b To avoid the pitfalls associated with the computation of a

i

it generalized inverse, potential applications were modified to

} circumvent matrices not suitable to the classical method of matrix
ke inversion. Further, some potential applications probably never even
:' . considered the use of a generalized inverse, especially the less known
%E: generalized inverses like the A, , 7. One such application, which

‘ probably falls somewhere between these two possibilities, will be
k¢ adapted to use an A,, generalized inverse. This application, the

i

: Lyapunov matrix equation, will be solved using an A, , generalized
LM S %Y ’

» Q' inverse. The solution will be developed in detail in order to show how
: the Ao generalized inverse fits this application.

.

%

§

'

b The Lyapunov Matrix Equation

(]

3 The necessary and sufficient conditions needed to show the
N

3 Lyapunov equation, Eq (4.1), has a solution will be established. This
4

[

W AX-XB+C = 0 4.1

¢ where

.s Pt mxm

ARG AeG
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L
\ solution will be defined in terms of an A, , generalized inverse. Two
. steps will be required to accomplish this goal. First, the solution of
fal)
the Lyapunov matrix equation must be defined in terms of two pairs
2 of equations. Each pair of equations will trap the solution of the
.- Lyapunov matrix equation, if a solution exists. Establishing each pair
j of equations will require the use of several identities which will be
0 developed in the bulk of this section. Second, once the two pair of
. equations are established, their solution, and consequently the
solution of the Lyapunov equation, will be expressed using an A,
generalized inverse. Thus a general common solution of the pairs of
R Y
0_ e equations will be defined to express the solution of the Lyapunov
matrix equation.
:<
e Theorem 4-]. Let Eq (4-1) have a solution X, then the following
N matrices are simialr
3
. A S ana |® O 4.2}
A & E?-j L0 E.'.j -
‘:
¢ Proof Let X be a solution of Eq (4.1), then the following holds
- TS A I PR B R I S
3 BT I R 43)
¢« -
SN A
CRR O
>
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Using the given, namely that Eq (4.1) has a solution, the two matrices
of Eq (4.2) are similar. Note this holds for any X since the matrices
i which appear in the left hand side of Eq (4.3) as shown below in Eq

(4.6) are inverses

1w e
{I 1and [I d (4.6)
e 0o J ! J

". With theorem 4-], it has been shown that there exists an X
such that the matrices of Eq (4.2) are similar and consequently Eq
(4.1) has a solution. The next step is to extend this result. To do this,

define the matrix R as follows

‘ YN Q o . ,

AT
"I.{.

LA
£

- 4.7)
0 B '

&
en]
1}3
—————————y
"
SEDSES——"

ag "V
T ..w.

then

LA

PN

f. - -
i F o 11‘ - } &0 '
- HRE 9 ‘ - _:,‘AIII
L

bt g o 6 |

-
L
or

v
(Rl
| IO ——— }

:.'
\

'_:'5; ' Next find the determinant of [R-A[] as follows
L%
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R-pll = |7 -
,:; AL | | l 0 Benl l 9
e a-nl T | | .
e = | d~h -, 4 4)
\ ! 0 E-—E’*-I; { fHE-Il
\;_
k
o Lamaly {B-nll = £, (80 @ gpinl = fplnd id.10)
-
-
¢ This shows that | R-Al | factors into a pair of polynomials, namely
x the characteristic polynomials of the matrices A and B. The degree of
\ fo(N) is less than or equal to m and the degree of gg(N) is less than or
} equal to n. Also, fp(R) is equal to zero since every matrix satisfies its
' 3 own characteristic equation.
0
% , Now using the results of theorem 4-1, namely
X °
LN e
o [ -x [u cl 1 a0 (411}
- 01 Lo.'j:f Eilo 1 | 0B
2
. let f,(N) be defined as follows for A replaced by R
. r
- foRy - [ (4123
& U ow
’.-
‘ where U, V, M, and N are polynomials in the matrices A, B, and C.
; Any polynomial, f,(R), commutes with R where the coefficients are
,».—: ' complex or real, this results in the following
I 75
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This implies the following identities
AU+CV = UA
BV = VA
i AM+CN = UC+MB
,)n'*;»"‘..

(o BN = VC+NB

Again recalling the results of theorem 4-1 in the form of Eq (4.11)

This equation holds for any solution X of Eq (4.1)

AX-XB+C = 0

Thus for any polynomial f,(M\) given by Eq (4.12)

l By

= f4(RIR

BN

] 413
e 14)

{4.15)

(4.16)
(4.17)
(4.18)
(4.19)

i4 11}

(4.1)




-~ foiR = [” Inl} (4.12)

:;, and under the similarity transformation as defined and proved
¥

earlier for Eq (4.2), it follows
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-~ where f,(B) is not equal to zero and * is not of concern. Next by

matching the terms of Eq (4.20), namely the respective terms of the

equality

[

RBSCRUSRCT ST [ foldh 0 Tt
VISH ]| % 1B

p————

The follwing pair of linear equations are obtained

f"lkl"."..t:.r.' :
e
e
aya'n

LA A

U-XV =0 (4.22)
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(U-XV)X+M-XN = M-XN = 0 (4.23)

']
c A

As it will be proved below, any solution of Eq (4.1) must satisfy the
above pair of equations (4.22) and (4.23). In other words, the pair of
all solutions for equations (4.22) and (4.23) trap the solutions of the

Lyapunov matrix equation, Eq (4.1).

Theorem 4-2. If N'! exist, and X is a common solution of
equations (4.22) and (4.23), then X is also a solution to Eq (4.1).

Proof. Let X be a common solution to Eqs (4.22) and (4.23),
then using the identities defined in Eqs (4.16) through (4.19), derive

the Lyapunov matrix equation as follows

0 = (XN-M)B
= XNB-MB
= XMB+UC-AM-CN
= X(BN-VC)-AM-CN+UC
= X(BN-VC)-AXN-CN+UC
= XBN-AXN-CN+(UC-XVC)
= (XBN-AXN-CN)*(U-XV)C
= (XB-AX-C)N

Theorem 4-3. Let V-1 exist and let X be a common solution of
Egs (4.22) and (4.23), then X is also a solution of Eq (4.1).

.....
-

Proof Let X be a common solution to Eqs (4.22) and (4.23), then
78
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using the identities defined in Eqs (4.16) through (4.19), derive the

e X

( &gi.f Lyapunov matrix equation as follows

:

o 0 = (U-XV)A

- UA-XVA

5 - RVAUA

; = XVA-(AU+CV)

P = X(VA)-AU-CY

= XBV-AU-(CV)

- XBV-AU-(UA-AU)

R - XBV-UA

' = XBV-AU-CV

= - -AU+XBV-CV

- & - -AXV+XBV-CV

: e = (-AX+BX-C)V

> ]

4 In addition to the two Egs (4.22) and (4.23), a second pair of
i equations can be used to trap the solution to the Lyapunov matrix
:'; equation. The common solution of at least one pair will define the
,_ solution to the Lyapunov matrix equation. The second pair of
equations are
féf

;:- VX+N = 0 (4.24)
UX+M = 0 (4.25)
R

: :;77.( These equations are derived in a manner similar to Eqs (4.23) and

(4.24). First, the equations arise from the results of theorem 4-1, but
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with two terms rearranged. Now the similarity transformation

“,gl; defined for the matrices of Eq (4.2)
& [:1 R V- 4
{n E} and [[) Es} (4 2)
becomes equivalently
fhowifs ol Ta o .
1 A.‘ 1-1 " 1 Y - Fary A (4:];4
ir) I } {;ﬁ_ﬁx E J [i] I} [El E '
Now this similarity transformation is used in place of Eq (4.20) with
fp(R) substituted for f,(R). Now similar to Eq (4.20) it follows
{o o<l ERE IR LTl ST Y S
<o | s S LT I TSN _ i &S U I"&'l I e L.
| l!ﬁi:l I i iR 0 Ij i !n:i:n IJ l'--.-lr MJ l»:i:n I] “.27)

[ x]u m-ux
O 1|V M-V

My x:'r-.-q—I_.r::--:j:c+::e<:::'_r-a—’».r:::-::‘:x}

Ty % SR AR
W I"I_ Wi

ff ! R T
l 1 Y ¢ ’v‘-::, Y i I Y - ‘ IE-. I.{;."‘;».l 1l
[l;;;u I { TgH o j l ¥ fE_sz.':l}
Here fg(B) is equal to zero which provides the final key needed to
PS v obtain the Eqs (4.24) and (4.25). For a more complete derivation of
Py
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*: - Eqs (4.24) and (4.25) see (6:13-14). Like theorems 4-2 and 4-3, Eqs
RO P02l

s u iy (4.24) and (4.25) tie once again back to the Lyapunov matrix

__ equation. Theorems 4-4 and 4-5 show this with the given conditions.
;. Theorem 4-4. If V! exist, and X is a common solution of
5 equations (4.24) and (4.25), then X is also a solution to Eq (4.1).

3'
) " Proof. Let X be a common solution to Eqs (4.24) and (4.25),
.: then using the identities defined in Eqs (4.16) through (4.19), derive
~, the Lyapunov rnatrix equation as follows

o

% 0 = (VX+N)B

. a

%- = VXB+NB)

R T4 - VXB*BN-VC

Yo

e = VXB-BV-VC

F = VXB-VC-(BV)X

)

= VXB-VC-(VA)X

. = V(XB-C-AX)

L |

N

\: Theorem 4-5. If U! exist, and X is a common solution of

.‘ equations (4.24) and (4.25), then X is also a solution to Eq (4.1).
L Proof. Let X be a common solution to Fqs (4.24) and (4.25),
?r then using the identities defined in Eqs (4.16) through (4.19), derive
" the Lyapunov matrix equation as follows

¢ -
SRS

2 0 = A(UX*N)
o 81
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= AUX+AM
e - AUX+AM)
= (AUJX<UC+*MB-CN)
= (UA-CV)X+UC*MB-CN
= UAX+UC-(CY)X+MB-CN
= UAX*UC-CN*MB-CN
= UAX+UC+(M)B
= UAX*UCH{-UX)B
= U(AX-XB+C)

As stated earlier, the first step in developing a solution for the
Lyapunov matrix equation was deriving an intermediate expression
APy for its solution. The two pairs of equations, (4.22), (4.23) and (4.24),

(4.25), comprises this intermediate expression. Now, a common

solution for each pair must be obtained.

Common Solution. Now that the solution of the Lyapunov

matrix equation has been expressed by an alternate representation,

the final step is to find the solution in terms of this representation.
For Eqs (4.22) through (4.25), this means finding the common solution

for these pairs of equations. In Odell (31), a common solution for n

S'f‘u‘.'.

equations is derived using an A, ,z 4 generalized inverse. Here n will

_ ,,1-,
L B

be fixed at two and an A;, will be substituted in place of the A; 57 4

ja" S LA

generalized inverse used by Odell.

ARl
]

A A
oy

To understand why an A, , generalized inverse can be used in

FEFEEY,

82
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place the A1,2,3’4 generalized inverse used by Odell, examine the

necessary and sufficient condition needed for a common solution to

exist. Given the pair of equations

AX = B, (4.28)
AX = B, (4.29)

By Odell [31:272], the following must hold for Eqs (4.28) and (4.29) to

have a common solution

ArAy2,3,4)B1 = By (4.50)

Examining the conditions expressed for these two equations reveals

that an A, , inverse will satisfy both conditions. This is a result of

the partial definition of an A;, generalized inverse which was

expressed earlier in the form
AXA = A (2.1)

remembering X here is an A, generalized inverse. For Eq (2.1) to

hold, AX must equal an identity matrix of appropriate dimensions.

Applying this result to the condition stated in Eqs (4.30) and (4.31)

shows that the A,, satisfies these conditions since the following




£

®

ad

. . equations also hold

0 ‘&}Ir

.

: (Ax-AxArAy ) AxArALA 2)) ) (4.3

:’ since

AAi2) = !

D

° (Ay-AAA ) Ay AxA A ) ) 2) = ]

\ by the definition of an A1,2 generalized inverse.

Thus using an A, , generalized inverse, Odell's result can now
{o

i {‘--f‘-‘-’* be stated for a pair of equations and in terms of Eqs (4.24) and (4.25).

Thus given

S VX+N = 0 (4.24)

3

o UX+M = 0 (4.25)

F

®

% The common solutions for these equation, by Odell (31,272), is found

t from

W

)

(‘\

0 X = VNV VIU-UV V) M-UV N+ (4.35)
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if and only if the following holds

(U-V, VIU-Y, ,V); ,(M-UVN) = (M-UVN) (4.37)

This result can also be extended for Eqs (4.23) and (4.24) where
the unknown is on the left hand side. In this case, the necessary and
suficient conditions, which determine whether or not Eqs (4.22) and
(4.23) have a common solution, are rearranged to account for the

form of Egs (4.22) and (4.23). Specifically, the second characteristic of

an A, , generalized inverse is utilized to obtain the new expressions

for the necessary and sufficient conditions and also the form of the
common solutions for Eqs (4.22) and (4.23). This characteristic of the

A, 5 generalized inverse was stated earilier as

XAX = X (2.2)

Now, applying Eq (2.2) to the conditions needed for a common
solution to exist for Eqs (4.23) and (4.24) provides a similar result to

that developed for Eqs (4.30) and (4.31). This result can be stated as

Vi,VU = U (4.38)

Now if Eqs (4.38) and (4.39) hold, then the common solution for Eqs
85
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(4.22) and (4.23) can be obtained from the following

(I'Wl’z )(I-(N-val,2 )(N'val,z )1,2)

Probably the most interesting result from the above application

of a generalized inverse to the Lyapunov matrix equation is the

potential savings obtained by substituting the A1,2 generalized inverse
over the A1’2’3,4 generalized inverse. It should be apparent at this
point, that an A1,2 is easier to compute than an A1,2,3,4 (see appendix
C for a quantitative comparison of an A1,2 versus an Al,2,3,4 ). Thus if
an A1,2 satifies the needs of an application, it would certainly be

more desirable than an A,z 4 for computational reasons. This is

certainly the case for the application discussed above which leads
back the comments made in the introductory remarks to this
chapter regarding the use of a generalized inverses. Namely, the use
of a lesser generalized inverse was probably not considered for solving
for the common solution of multiple equations, as needed above,
primarily due to the lack of stable and direct methods for computing

such an inverse. The ST method provides the necessary stable and

direct computational technique needed to make the A, of use in

this application.

W WWWRTWITEY el VTR W AGTRET TR SRST R R R |
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V. Conclusions and Recommendations

The ST method provides a simple, direct, and numerically stable
technique for computing four generalized inverses of a matrix. It also
provides a unified approach for computing these inverses over other
techniques which normally only apply for computing a single
generalized inverse. The ST method also highlights the computational
differences between each gereralized inverse. This combined with the
properties of a respective inverse provides insight into the use and
cost of computing a generalized inverse for a given application. Thus,
by taking into account the cost of computing an inverse and its
properties, the ST method may help reveal where a lesser generaliz-
ed inverse will satisfy the requirements over a more computational
expensive inverse. This was certainly the case for finding the
solution of the Lyapunov matrix equation. In summary, the ST
method is a simple, direct, and unified technique for computing a
generalized inverse.

There are two areas where the ST method, in particular its
computer implementation, can be extended. First, further study is
warranted in extending the ST method to unbound precision. The
next logical extention would be to address matrices with single or
multiple parameters. Both are recommended because the ST method
1s a good computational framework for large problems, and these
potential applications deal with matrices of this type or require

these capabilities.
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Appendix A: Example 3

The purpose of example 1 was to introduce the ST method in a
simple and direct manner. With the details of the ST method now
well established, example 3 extends example | by taking a more
complete look at the steps comprising the ST method. This includes
the intermediate results of the row and column operations and the
use of Penrose's four equations to test the computed generalized
Inverses. The matrix A in this example was taken from Noble
(21:145,146). The example begins with the given matrix A of

dimensions 6 x 4;

-1 000 B T T I e 1 1N ]
-oaon 1 000 R NS BTN
A =t Q0D 1000 2 000
(4] = g
Q0D 1. 000 -1, 000 =3 000
100 -1 000 g 1. 000
a0 ono -1 oon -2 000

First augment A with an identity matrix of dimensions 6 x 6

beside A and an identity matrix below A with dimensions 4 x 4

providing
i>—'. A oo 00D 2oaooy o 000 aon Qo 00D ‘DDD-
-1 000 1 D00 O =1 000 oo P ooD  O00 00D oo D00
T TN T I T e N % X U N Iy Q0 N} i
i 1 (I I S I B N e RN Y g oo onno1 nna O G
i ! ! ooy - o0 ood 1 oD NN onh LTI O N T I T D
r-(fl - 10D N~ NG =2 000 I DTN LH] e 00 o 1 000
‘ AR ] REA] 0 (WA
oot oon D (K
REIxN] o001 oong s
I anin} ooy 1 000

‘)\;\"J‘:}\ ™ * -l"‘.‘ h)

AR

R L L
-.'__.'_‘._"\x‘ e

. -‘.. '..

-
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-

*
»

-----

LS
. "

. '-,_r-\ o Y



T W P N T TR U RN I A PRGN BN TN SN ENEW TR LT ENENM SR VIFURE TR TR IV BICRTT IS T xy

-
o
[
i
]
1
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]
‘.‘l‘-.
bl . . . .
e - Using this augmented representation of A, the next step is to
RN . : : . : :
* PR reduce the original matrix to a square identity matrix with
{. dimensions equal to the rank of A. The reduction process uses a
4. -
) modified Guass-Jordan algorithm with a pivoting scheme which will
' perform, at the most, three pivots to locate the best diagonal element
|
e for both row and column operations. The following matrix shows the
‘(\_’
0 . . .
o result of the first pivot call where three pivots were performed to
a0 . .
L locate the best diagonal element for reducing both the elements below
the diagonal and the elements across from it:
“}é [ So0o0 -1 Qo0 1. 000 oo ol oo 1,000 ano o oon ,GDG-
-1.000 1,000 000 -1.000) 000 1000 000 000 000 000
® =0 R 110 I I B T BN ) 00 00D oo 000 oD
Jt{ =20000 1 00D -1 0o BT T T 0 T T T T SN ¥ X A N 1
{uj 1000 -1, 000 OO0 1000 oo0 L oo0 QoD L ooD 1000 ooD
'}:. =2, 000 JRLA L O T 1 O 1 N N (R {1 S O 11
h i‘-‘ R i R 1,000
: '_ O LA AR R} RN
1i e xS T xS T N 2 1
. R PG00 0 000 oo
; !
With the best diagonal element established, the first column, of the
SO now shift matrix A, is eliminated with row operations. The result is
3.
\“ shown in the following matrix:
AR
by
A
L
-; ERN A BN N g LI TR 1 1 O L T T TR o (% mm-
. . R BET 0D oo oD 33 aon oD [RiRin}
d}l 300 Gty S0 1 Gon R o Looa AN N
}:_ RN Qo nlninl oo ann R I A I A R AL Raisl
“' DD - BET -~ TIE j.oo00 [EININ] oo - REE SOOI 1L 00D QoD
{§{ g - Bhy o~ 3351 000 (A oo L RBT 000 Q00 1. 000
- booann R BTN BN
o Pooooan §ooan o0 000
'S ! oo Oon 1 o0 I
"\ 1 ] 0o O
‘ ,,2 {
L I
@ o
L SR
‘-‘: .,-'A ..l""
" Yt
:; The pivot process continues, but now the pivot is performed around
e
N
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the second diagonal element. This pivot call resulted in one pivot

which is shown below:

2,000 000 1,000 -1.000) Q00 Q00 1,000 Q00 Q00 Qa0
Qoo -1.000 L3333 JGET D 000 1,000 333 000 00D 000
D00 =1, 000 L3333 BE?IT.000 000 - 667 000 000 000
a0 .a0a 000 20al Q0o o0t 000 1,000 Q00 Qoo
oo 1000 -.333 -.667( 000 QOO0 -.333  .000 1.000 000
oo 1000 - 333 ~.667) 000 00D 667 000 000 1,000
ooo 1,000 000 0o
oaa RN a0 1,000
gt R BT Y L]

1.000 RN oo Qoo

—

Again, the next step is to reduce the elements of only A below the

diagonal element with row operations which produces

" Z.00o 000 1,000 ~1.000) 000 000 1.000  .0O0 000 . OOQ ]

a0 -1, 0 R RETY 000 1. 000 3ER 000 ooD  aaf
Ry RN RUEY] 00 . 000-1.000-1.000 000 000 000
Ry R R Qo | 000 000 1,000 1.000 000 000
Qa0 ] Ll oo 000 t.0Q0 000 Q0D 1,000 00
R BRI oo OoD g L 0DD 1.000 1,000 Q00 000 1,000

LK R RN 1] R Qo

L Xy Looo 1,000
000 g 1400 000

1,000 Ralniy] ] .Daa

The next potential diagonal element is zero, and all possible pivot
candidates are also zeroes. This means all rows below the last
diagonal element have been reduced and no further row operations
are needed. This also denotes that the T submatrix is almost defined
since it is a function of the row operations. The only remaining
operations which may impact T is dividing by the diagonal element
after the column operations have been completed. This will be more
apparent in a later matrix.

Since the pivots performed prior to each set of row operations

were designed to look ahead to provide a good computational basis for

90
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the column operations, no futher pivoting is performed during the
column operations. Instead, the column operations are performed
directly on the remaining non zero elements. The result of the first
set of column operations on row one of A is shown below:

(2000 00D 000 Q00| 000 000 1.000 000 000 .000]

.oQo -t 000 333 B6Y( 000 t.000 335 000 .0O0  .O0G
Do 000 000 D001 000-1.000-1.000 000 000 000

N 000 000 000 000} 000 000 1.000 1.000 000 OO0
: 000 000 000 000|000 1.000 000 000 1.000 000
\ 000 000 000 000|000 1.000 1.000 000 000 1.000
. 000 1,000 Qo0 000
" 000 000 000 1.000
Mo 00D 00D 100D 00D

A 1000 000 - 333 533
) L d
1%
e

A

° _ .
Q. The next set of column operations reduce the remaining non zero
] ;,\ elements of row two across from the second diagonal element. This is
‘e
SRR shown in the following matrix

(e

i' KV
e [ 3000 000 OO0 .O0O| 00D .DOO 1.000 000 000 .000]

:-‘,j 000 -1.000 000 000 000 1.000 333 000 000 00O
i 000 000 000 .000|1.000-1.000-1.000 .000 000 00O
g pujaal Ry .00 0001 000 000 {000 1,000 QD0 000
~ 000 000 000 .000| .0O00 1.000 .0OO0 000 1.000 .00
)

000000 000 000|000 1.000 1000 000 000 1.000

b 000 1000 333 667
. 000 000 000 1,000
N 000 000 1000 000

3 | 1,000 000 -.333 333 |

.
5
PO . . . . .
:2;. With only diagonal elements remaing in A, the final step needed
“' . . . . 13 3 .«
»_\.g to reduce A to the desired identity matrix is to divide through by the
[ : .. :
5 diagonal elements. With all row and column operations complete,

! the submatrices are now defined, and the representation, derived in
-‘ . : . : :
o theorem 2-1 as equivalent to the augment matrix A, is obtained. This

° o . : . .

7 ?E'F?? representation is shown in the next equation along with the sub-

i Iﬂ “,“ : 3 . . . . . . .

.»'2' matrices o, T, M, and N highlighted with the partitioning lines:

‘.::‘,

3 91
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[ 1000 000 000 .OOO) .0OD OO .333 000 .00O 000 ]
e 000 1,000 | 000 000| 000-1.000 - 333 000 000 GO0
RGONIN 000 000 | 00D 000|1.000-1.000-1.000 00O 000 00O
i 000 000 {000 .0O0{ 000 000 1.000 f.000 000 000
000 000 | 000 030|000 1.000 000 000 1.000 000
000 0001 000 .0O0| 000 1.000 1.000 .000 000 1.000
000 1.000 | .32 667
000 000 | 000 1.000
000 000 | 1.000 000
| jo00 000 f-o233 0 23 |
Using the above matrix, an A, , generalized inverse is computed
¥
directly from the product of the S and T submatrices. This product is
shown in the following matrix
[000 -1000 - 232 oon 000 000
b.oon L R a0 NI NN
000 Q00 Qo0 003 000 .00g
NEIE] L L33 oo il D00
s
e Applying the two equations an A, generalized inverse satisfies
J ?
provides the original matrix and the computed inverse as follows for
each respective equation.
AA1,2A = A
[ 1.000 o001 000 2. 000
-1.000 0 1,000 Joon -1 000
000 -1.000 1000 3.000
000 1.000 -1.000 =3, 000
| 1,000 -1.000 oon 1,000
| 1000 000 -1.000 -2.000
AlpA A = A
'!'""’I'?
N oo -1 000 - 233 o0 ann Ruiniy]
R 000 000 00D 000 000 000

[
g,uﬂu o 00 o (A X!
{,GHU NN 333 QoG 0 o0

92




The next inverse of concern, an A,z generalized inverse, is
=

1

X

)

3
\

s
»

oy again computed from the product of the S and T submatrices, but
{\ after each row in T has been orthogonalized to every row of M.
A '.\. . 0 . .
N Example 2, in chapter 3, provides more details regarding the
) orthogonalization technique used. Thus an A, , ; generalized inverse is
)y
§ :
A . .
h v computed from the following framework which shows the
<
22 . . . .
> orthogonalized T and M submatrices and the previous S submatrix:
’_ L]
8 1,000 000 ) 000 000} 0S8 -.0S6 111 - 111 056 —.056 ]
o 000 1,000 | D00 000|-.22% - 278 .0SG -.056 278 222
o 000 000 000 .000{1.000 -.250 - 250 2S00 250 .S00
000 000 | 000 000|000 -.200 600 1.000 200 -.400
Lo oo D00 .o 00| 000 Be? - 333 000 1.000 -.333
‘_ : 000 000 | oDo 000) 000 1.000 1.000 000 000 1.000
gxiz ' ) 000 1000 333 EB7
;t“. oo 000 ) 000 1,000
S L0003 oo 000
kT4 | t.oo0 ooo |-.oz3z 33
o PV TRy }
. YT
3;;
e The product of S and T in this case provides the following matrix
i)
b -.I2F -.378  .0S6 -.0S6 278 .22
2 oo o0 .o0g Ralaly] Lnoo Loog
N 000 000 Al 200 Do R
AW 0e6 - 056 111 - 11 056 - 056
193
kS
K\t
®
o This Aoz satisfies the previous two equations and in addition the
> ey
}.‘ equation
o
b
®
o
b ) x =
(AA 5 3) = (AR 5 3)
g4
S
oy
A
Q. Zew where the product of the A,z and the original matrix A is the
1Sy
SO symmetric matrix shown below
o
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ECCREIN < AeT - 167
1By 233 - 187 Lr
167 -.1a7 233 -.333
- 167 16" -.333 0 338
- /7 -.333 IR L e L
-.333 -.1|Y - EY BT

I
— A ot et G0
o CTh G O
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ottt

- 167
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To obtain an A, 4 generalized inverse, the S and N submatric-

es are orthogonalized like the T an M submatrices were

orthogonalized for the A, , s generalized inverse above. The product of

the orthogonalized S submatrix and the non orthogonalized T

submatrix form the A,, , generalized inverse. The following matrix

shows the computation framework needed to compute this inverse:

The product of S and T in this case produce

—n
[}
]

o) - fR47 - 235 00
R 412 o9 i
Ry L2555 176 oo
!l. 000 0SY 2ad4 Qo0

R aN]
o0
R
Rt

o]

Q00

300
RAaN]
Qa0

which satifies the first two equations and the equation

(Bioq A =Apq A

1.000 00D .00 QOO 000 000 U333 000 000 OO0 ]
000 1,000 aoa 000y 000-1.000 -.333 0 000 000 0G0
000 000 000 Qoo . 000-1 0001 000 000 000 000
0on oo Nalninl noal .aoo 000 1.000 1,000 Q00 000
0o Qoo 000 Q00| 000 1. a0 000 000 1,000 000
oD 000 00 oo 000 1. 000 7. 000 000 040 1,000

~. 05y (647 (266 Ge?
IS -4 -0 Qoo
. -, 235 | 1.000 o
JEZ4 - 059 | - 397 333




f:l':%. NN The product of A1’2’4 and A again produce a symmetric matrix:
k. .
‘»g!» "‘ f‘: k;p

s

P [ 647 -.412 -.235 -.059

<L -.412 353 .059 -.235

o -.23% 059 176 204

o |--059 -.235 204 824

1R

1

)

W

*" The final generalized inverse an A,z 4, is computed from the
=, b et b |

RO

) - . . .

s orthogonalized version of both S and T. For this example, the

[ 4

computational framework needed to compute this inverse is

}‘::.

[ 1000 000 | 000 000} 0S6 -.0S6 111 - 111 056 - 056 ]

000 1,000 | 000 .000|-.222 -.27%  0S6 - 0S6 278 222

)
1

o § v

[ )

il

[ ] 0 Oad Qi 00 ET 000 - 230 - 250 290 250 500
.00 00 Rl 000 000 - 200 800 1,000 200 -.400
.oad .0ao Qo0 oo 000 68T -.333 000 1.000 -.333
LD 000 o0 000 00D 1,000 1,000 000 000 1. 000

S =17 i . 286 Ny

25 -~ 412 | -.071 1. .000
4 = 233 RULY o0
4

-.059 i-.357 333 |

—

The A inverse is

N
%
e

-. 147 - 176
.ava RV
g .04

S - 028

—-.029 B <] 147
g - 127 078
L0200 - 049 - 064G

-. 028 e -.050

P
Pl ot e iy
Fate

Do W e
DO R 2 X
[ 5 M W T O

]

-
“a,
]

A_a 2
at
/n, a ". "."’l"’uj.

where all four previous equations are satisfied.
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Appendix B: Generalized Inverse Program

c***&*l*******!%!***&%*****!**l*l****l****!ﬁ*!i*ll***%***i**

DATE: 11/11/85

VERSION: 1.0

TITLE: GENERALIZED INVERSE COMPUTATION AND VALIDATION
LANGUAGE: FORTRAN 77

USE: COMPUTE AND CKECKS THE COMPUTATION OF FOUR GENERALIZED
INVERSES.

CONTENTS:
MAIN PROGRAM - INPUTS MATRIX
- REDUCES MATRIX WITH MODIFIED
GUASS-JORDAN
- CONTROLS TO COMPUTE GENERALIZED

INVERSES
IPIVOT - PERFORMS A THREE STEP PIVOT
MULT - MULTIPLIES TWO MATRICES PLACING THE
RESULT INTO AN OPTIONAL THIRD MATRX
GROW - GRAM-SCHMIDT COMPUTATION FOR ROWS
GCOLUMN - GRAM-SCHMIDT FOR COLUMNS
PRINTA - GENERAL MATRIX PRINT ROUTINE

FUNCTION:
COMPUTES THE A 2, A} 2.3 A| 2 4 Ay 23,4 GENERALIZED

INVERSES AND VALIDATES EACH THE FOUR CONDITIONS DEFINED
BY PENROSE. *

»*

X XK XK XK X X x X x X X b X X X X X X X X X X X X

x

OO0 OO0
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DATE: 11/11/85
VERSION: 1.0

RETURNS: NONE

OOOOOOOOOOOOOOOO0O0O0O0O0

PROGRAM GINVERSE

NAME: GINVERSE (MAIN PROGRAM)

DESCRIPTION: CONTROLS THE REDUCTION OF THE INPUT MATRIX TO
AN IDENTITY MATRIX AND ALSO CALLS ALL NECESSARY
SUBROUTINES TO COMPUTE A GIVEN INVERSE

PASSED VARIABLES: A,ST,HOLD,R,C,ASIZE,RANK
FILES READ: MATRIX INPUT

SUBROUTINES CALLED: IPIVOT,MULT,GROW,GCOLUMN,PRINTA
CALLING SUBROUTINE: NONE

C***!*!**I*I*i**************ﬂi******l*

P C ARRAY TYPE AND DIMENSIONS/ DECLARATIONS

C********&*l*ﬁ**l*****%**i***&i*!%l!**

DOUBLE PRECISION
DIMENSION

DOUBLE PRECISION
DIMENSION

DOUBLE PRECISION
DIMENSION

DOUBLE PRECISION
DIMENSION

DOUBLE PRECISION
DIMENSION

A
A(1:10,1:10)

ST
ST(1:10,1:10)

ORG
ORG(1:10,1:10)

HOLD
HOLD(1:10,1:10)

SR
SR(1:10,1:10)

g,‘_‘ C*************************

4-\)- <

ke C VARIABLE TYPE DECLARATIONS

c**************l***!*****!

RS M AN e S 20 A

97

‘r'-*"-’ " "-."'\w.*.-\.-\. \." \C "4.; TR

C********************'l!**********¥****l*ll!****l***%****l***

X X X X X X X X X X X x X X X

F6 36 3 2 I I I I I I I I I I IE I I I I IE I I I IE I I I IE I I I I IE IE I I I I IE I I I I IE I I I I I I I I I I I I I




&
2 INTEGER R
i 3g INTEGER C
L INTEGER ASIZE
. INTEGER MINRC
- INTEGER RANK
8 INTEGER |
\ INTEGER J
INTEGER K
v INTEGER TEST
T INTEGER OPTION
. INTEGER FORMATT
INTEGER HEADER
_ INTEGER SELECT
- INTEGER TEST
INTEGER PIVOTRLT
¢ CHARACTER FILENAM* 10
” DOUBLE PRECISION MULTIPLIER
PARAMETER(ZERO=5.E-15)
‘ 0"!_ (C 9 %€ 9 96 36 36 36 36 36 26 36 36 96 3 3 3 %€ %
; C DATA INITIALIZATION
e Cl*****%i*****%****
Q
- 1000 FORMAT(1X,' SELECT OUTPUT OPTION')
I’ 1001 FORMAT(1X, OUTPUT TO SCREEN - SELECT 1)
4 1002 FORMAT(IX,” OUTPUT TO PRINTER - SELECT 2')
: 1003 FORMAT(1X)
¥ 1004 FORMAT(1X, SELECTION: ")
3 1005 FORMAT(12)
1006 FORMAT(1X, SELECT FORMAT OPTION')
4 1007 FORMAT(IX, XXXX - SELECT 1"
o 1008 FORMAT(IX, XXXXX - SELECT 2)
1009 FORMAT(IX, XXXXX - SELECT 3')
- 1010 FORMAT(IX,” XXXXXX - SELECT 4)
(s 1011 FORMAT(IX," SELECT INPUT FILE')
) 1012 FORMAT(IX, CHOOSE FROMLIST OR SELECT A NEW FILE:")
- 1013 FORMAT(1X, 1) X.CASE 1)
<n< 1014 FORMAT(IX,  2) XCASE2)
RS 1015 FORMAT(1X,’ 3) X.CASE 3"
é 1016 FORMAT(IX,  4) X.CASE 4)
¥ 98
i)
]
B e e b g e e e e e T D DT D T e e
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Ok
A

1017 FORMAT(1X,' 5) X.NOBLES MATRIX')

N 1018 FORMAT(1X, 6) NEWFILE’)

ROV 1019 FORMAT(1X," INPUT FILE NAME IN APPROPRIATE FORMAT: *)

] 1020 FORMAT(A10)

o 1021 FORMAT( 1 %%%xx GENERALIZED INVERSES FOR FILE;",A10, ***w*xx)
o 1022 FORMAT(1X, ***%* ST METHOD LANGUAGE: FORTRAN 77')

e 1023 FORMAT(I2)

Ly 5% g 0=
ey

-
o

WRITE(9,1000)
WRITE(S,1001)
- WRITE(9,1002)
WRITE(9,1003)
WRITE(9,1004)
READ (9,1005) OPTION

i WRITE(9,1003)
® WRITE(9,1006)
WRITE(9,1007)

o WRITE(9,1008)

N WRITE(9,1009)
e WRITE(9,1010)
o e WRITE(9, 1003)

N WRITE(9,1004)

READ (9,1005) FORMATT

® WRITE(9, 1003)
WRITE(9,1011)
WRITE(9,1012)

N WRITE(9,1013)
25 WRITE(9,1014)
® WRITE(9,1015)

WRITE(9,1016)
i WRITE(9,1017)
WRITE(9,1018)
. WRITE(9,1003)
WRITE(9,1004)
¥ READ (9,1005) SELECT

‘1‘.
.
®
[ a8
L.
7
po
3
g
o
-

IF (SELECT.EQ.1) THEN

P OPEN(1,FILE="X.CASE 1",STATUS="0LD")
Tre FILENAM="X.CASE 1"
END IF

IF (SELECT .EQ.2) THEN
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OPEN( 1 FILE="X.CASE 2" STATUS="0LD")
o FILENAM="X.CASE 2"
3}@' END IF
IF (SELECT.EQ.3) THEN
OPEN( 1 FILE="X.CASE 3", STATUS="0LD")
FILENAM="X CASE 3"
END IF
IF (SELECT.EQ.4) THEN
OPEN(1,FILE="X.CASE 5", STATUS="0LD")
FILENAM="X.CASE 5"
END IF
IF (SELECT EQ.5) THEN
OPEN(1,FILE="X.NOBLES MATRIX",STATUS="0LD")
FILENAM="X NOBLES MATRIX"
END IF
IF (SELECT.EQ.6) THEN
WRITE(9,1003)
WRITE(9,1019)
READ (9,1020) FILENAM
OPEN(1 FILE=FILENAM,STATUS="0LD")
END IF
(e . WRITE(9,1003)
WRITE(9,1003)
IF (OPTION.EQ. 1) THEN
WRITE(S,1021) FILENAM
WRITE(9,1022)
ELSE
WRITE(9,1021) FILENAM
WRITE(9,1022)
END IF

C READ SELECTED FILE

READ (1,1023) R
READ (1,1023) C
ASIZE = R+C
DO 2001 I=1,ASIZE
DO 2000 J=1,ASIZE
READ (1,%) A(l,J)
D ORG(1,J) = A(l,J)
e 2000  CONTINUE
2001 CONTINUE

PALARA Wl SR S E BfE 2t il n“*
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-TE L, X

AN C AUGMENT A WITH THE APPROPRIATE IDENTITY MATRICES

DO 2011 1=1,R
DO 2010 J=C+1,ASIZE
TEST =J-C
IF (TEST.EQ.I) THEN
AL = 1.0
ELSE
A(l,J) =00
END IF
2010 CONTINUE
2011 CONTINUE

DO 2020 I=R+ 1, ASIZE
DO 2021 J=1,C
TEST = I-R
IF (TEST.EQ.J) THEN
ALY = 1.0
ELSE
i ALY = 0.0
Qe END IF
2020 CONTINUE
2021 CONTINUE

C DETERMINE THE MINIMUM RANK

IF (RLT.C) THEN
MINRC =R
ELSE
MINRC = C
END IF
CALL PRINTA(1,1,ASIZE,ASIZE, 1 ,OPTION,FORMATT,R,C,A)
IF (OPTION.EQ.1) READ (9,*) XX

C*!**#*!***********************X***************l*ﬁ******l***

Ci**l****l*ll%l*l*l&***&*l**ﬁ*l***%******)‘********%***&ll&li
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Rt C MATRIX REDUCTION

C************!**

DO 3020 I=1,R-1
PIVOTRLT=IPIVOT(R,C,MINRC,ASIZE,I,A)
IF (PIVOTRLT.EQ.1) THEN
DO 3010 K=I+1,R

MULTIPLIER = A(K,1)/A(LLD)

AK,1)=0.0

DO 3000 J=1+1,ASIZE

AK,J) = A(K,J)-(A(1,J)*MULTIPLIER)

3000 CONTINUE
3010 CONTINUE
ELSE
GO TO 3021
END IF

3020 CONTINUE
3021 CONTINUE
=1
3030 IF ((ABS(A(1,1)).GT.ZERO).AND.(I.LT.C)) THEN

DO 3050 J=1+1,C
MULTIPLIER = A(1,J)/A(L,1)
A(1,J)=0.0
DO 3040 K=R+1,ASIZE
A(K,J) = A(K,D)-(AK,)*MULTIPLIER)
3040 CONTINUE
3050 CONTINUE
I =1+1
GO TO 3030
END IF

RANK = 0
=1

102




3060 IF ((ABS(A(I,1)).GT.ZERO).AND.(1.LE.MINRC)) THEN
i RANK = RANK+ |

. MULTIPLIER = A(1,1)

2 DO 3070 J=1,ASIZE

N A(1,J) = A(LJ)/MULTIPLIER

= 3070  CONTINUE

48 [ =1+1

b GO TO 3060

2 END IF

- CALL PRINTA(1,1,ASIZE,ASIZE,2,0PTION,FORMATT,R,C,A)

IF (OPTION.EQ. 1) READ (9,%) XX

c*********%******%**********%***l*ll*i*l*%ilil**&********&i*

C**********************************l*********i*l********l*%*

. R
SETAOLN Y

;-:

l}- o
. JECS

}i ) C*****ﬁ***********************l****

s C COMPUTE THE FOUR GENERALIZED INVERSES

o C

» C A2

e ’

i C A3

e ¢ A24

N c A1,2,3,4

. » ] »

C

;: C!**************************!******

‘.

a Cx*»xx COMPUTE A, , CENERALIZED INVERSE
L~ !

-,, CALL MULT(R+1,1,C,1,C+1,R,RANK,A,A,ST)
* o CALL PRINTA(1,1,C,R,3,0PTION,FORMATT,C,R,5T)
-7 IF (OPTION.EQ.1) READ (9,%) XX

o 103
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C  CHECK Ay 5 USING
C D (AA 2 A=A

CALL MULT(1,1,R,1,1,R,C,0RG,ST,HOLD)

CALL MULT(1,1,R,1,1,C,R,HOLD,0RG,HOLD)

CALL PRINTA(1,1,R,C,4,0PTION,FORMATT,R,C,HOLD)
IF (OPTION.EQ. 1) READ (9,*) XX

C 2) (A|,2AA|’2)=A|’2)

CALL MULT(1,1,C,1,1,C,R,ST,0RG,HOLD)

CALL MULT(1,1,C,1,1,R,C,HOLD,ST,HOLD)

CALL PRINTA(1,1,C,R,5,0PTION,FORMATT,C,R,HOLD)
IF (OPTION.EQ.1) READ (9,*) XX

Cx*xxxCOMPUTE A1,2,3 GENERALIZED INVERSE

DO 4010 1=1,R
DO 4000 J=C+1,ASIZE
SR(1,J-C) = A1, J)
4000 CONTINUE
4010 CONTINUE

CALL GSROW(RANK,R,C,ASIZE,A)

CALL MULT(R+1,1,C,1,C+1,R,RANK,A,A,ST)

CALL PRINTA(1,1,C,R,6,0PTION,FORMATT,C,R,ST)
IF (OPTION.EQ. 1) READ (9,%) XX

C ' CHECK A|’2’3 USING (A Al,2,3)* = (A A|’2'3)

CALL MULT(1,1,R,1,1,R,C,0RG,ST,HOLD)
CALL PRINTA(1,1,R,R,7,0PTION,FORMATT,R,R,HOLD)
IF (OPTION.EQ.1) READ (9,%) XX

104
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Crxx**COMPUTE A, 2,4 GENERALIZED INVERSE

CALL GSCOL(RANK,R,C,ASIZE,A)

CALL MULT(R+1,1,C,1,1,R,RANK,A,SR,ST)

CALL PRINTA(T,1,C,R,8,0PTION,FORMATT,C,R,ST)
{F (OPTION.EQ. 1) READ (9,%*) XX

C CHECKAj 5 4USING (A; 5 4A* = A} 5 4 A)

CALL MULT(1,1,C,1,1,C,R,ST,0RG,HOLD)
CALL PRINTA(1,1,C,C,9,0PTION,FORMATT,C,C,HOLD)
IF (OPTION.EQ. 1) READ (9,*) XX |

Cxxx*xCOMPUTE A, 5 3 4 GENERALIZED INVERSE

CALL MULT(R+1,1,C,1,C+1,R,RANK,A,A,ST)
CALL PRINTA(1,1,C,R,10,0PTION,FORMATT,C,R,ST)
IF (OPTION.EQ. 1) READ (9,%*) XX

- C CHECK A{ 5 3 4 USING CONDITIONS APPLIED TO
Aj,2 Aq,2,3 and Ay 5 4

C CHECK A"2,3'4 USING (A A',2'3’4)“ = (A A|'2,3’4)

CALL MULT(1,1,R,1,1,R,C,0RG,ST,HOLD)
CALL PRINTAC(1,1,R,R,11,0PTION,FORMATT,R,R,HOLD)
IF (OPTION.EQ.1) READ (9,*) XX

C CHECK A|,2’3’4 USING (A|’2’3’4 A)* = A|.2’3.4 A)

CALL MULT(1,1,C,1,1,C,R,ST,0RG,HOLD)
CALL PRINTA(1,1,C,C,12,0PTION,FORMATT,C,C,HOLD)
IF (OPTION.EQ.1) READ (9,*) XX
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Ci%*******l**************li***i*&********l*******ﬁ**l!*i***

C *
RS C  DATE: 11/11/85 "
. C  VERSION: 1.0 *
2 C
4 C  NAME IPIVOT x
1 C  DESCRIPTION: FINDS PIVOT ELEMENTS AND SWITCHES ROWS AND/
. C OR COLUMNS, *
: C  PASSED VARIABLES: R,C,MINRC,ASIZE,RANK,A *
[ C  RETURNS: FUNCTION VALUE x
2\ C  FILES READ: NONE *
C  SUBROUTINES CALLED: NONE *
. C  CALLING SUBROUTINE: GIINVERSE »
~ C *
‘\.:: C*************************l***l***************l*************
o
s FUNCTION IPIVOT(R,C,MINRC,ASIZE,CD,A)
hY{
1 DOUBLE PRECISION A
o3 DIMENSION A(1:10,1:10)
SRS INTEGER R

Q\-W INTEGER C
- INTEGER ASIZE
N INTEGER MINRC
N DOUBLE PRECISION LARGEST

DOUBLE PRECISION EXCHANGE

X INTEGER SWITCH
- INTEGER SD
o INTEGER SR
- INTEGER SC
% INTEGER |
o8 INTEGER CD
b INTEGER K
4 INTEGER COUNT
o INTEGER ROW
" ; INTEGER LASTSD
i PARAMETER(ZERO=5.E-15)
34
g SD=CD
3 R SR =CD
X SC = CD
N SWITCH = 0
°® 106
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hd
o
b ROW = CD
B o LASTSD = 0
RS S COUNT = 0
i 1000 IF ((SD.LE.MINRC).AND.(SWITCH.EQ.0.0)) THEN
o8 IF (LASTSD.NE.SD) ROW=SD
kS IF (LASTSD.EQ.5D).AND.(SC.Q.CD) 6O TO 1021
i LASTSD = SD
3§; IF (SC.EQ.CD) LARGEST=ABS(A(SD,SD))
syt
B DO 1020 K=SD+ 1 R
- IF (ABS(ACK,ROW)).LE.LARGEST) GO TO 1010
ol LARGEST = ABS(A(K,ROW))
\:;: SR =K
b SC = ROW
o 1010 CONTINUE
7 1020 CONTINUE
3% 1021 COUNT = COUNT#1
o o IF ((LARGEST.GT.0.0).AND.(COUNT.GT. 1)) SWITCH=1
. e IF ((SWITCHEQ. 1).AND.(COUNT.GT. 1)) GO TO 1050
£ DO 1040 1=5D+1,C
= IF (ABS(A(SD,))LE.LARGEST) GO TO 1030
o) LARGEST = ABS(A(SD, 1)
0 SC = |
o SR = SD
a ROW = |
5 1030 CONTINUE

1040 CONTINUE

AR

1050 CONTINUE
IF ((SWITCH.EQ.0).AND.(SC.EQ.CD).AND.(SR.EQ.CD)) SD=SD+1

,_--‘
ety
O B

GO TO 1000

3 END IF

j:i
Wy

N IF ((SC.EQ.CD).AND.(SR.EQ.CD).AND.(LARGEST.GT.0.0)) THEN
[ ] el .. -

3 - o SC SD

G SR = SD

._ END IF
o 107
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R Y R

IF (SC.NE.CD) THEN

SEERORN DO 1060 1=1,ASIZE
ey EXCHANGE = A(1,5C)

A(1,5C) = A(1,CD)

A(1,CD) = EXCHANGE
a 1060  CONTINUE
i END IF
g

. IF (SR.NE.CD) THEN

DO 1070 I=1,ASIZE

- EXCHANGE = A(SR,!)

} A(SR,1) = A(CD, )

: A(CD, ) = EXCHANGE

- 1070 CONTINUE
I} END IF

o
S
k. IF (ABS(A(CD,CD)).GT.ZERO) THEN
IPIVOT=1
\'.' -".‘n';‘a ELSE
| Qe IPIVOT=0
= END IF
5 RETURN
3 END
-E c********************!*********!*l*********!l***************
"j C***l*i*!****************l*********%**l*****!********&******
®
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R
" w DATE: 11/11/85
VERSION: 1.0
o NAME: PRINTS
3 DESCRIPTION: PRINTS HEADER VARIABLE HEADER, FORMAT AND

MATRIX DATA BASED ON VARIABLES PASSED
PASSED VARIABLES: STR, STCER,EC HEADER,FORMATT,R,C,A
RETURNS: NONE
FILES READ: NONE
SUBROUTINES CALLED: NONE
CALLING SUBROUTINE: GINVERSE
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SUBROUTINE PRINTA(STR,STC,ER,EC,HEADER,OPTION,FORMATT R,C,A)

DOUBLE PRECISION A

DIMENSION A(1:10,1:10)
INTEGER R
INTEGER C
INTEGER STR
INTEGER STC
INTEGER ER
INTEGER EC
INTEGER HEADER
INTEGER OPTION
INTEGER FORMATT
INTEGER I
INTEGER J

PARAMETER(ZERO=3.E-13)

1000 FORMAT(1X,'Initial matrix with augmented identity matrices’)
1001 FORMAT(1X,'Reduced matrix with S, T, M, and N submatrices’)
1002 FORMAT(1X,'Al,2 generalized inverse’)

1003 FORMAT(1X,'Check A1,2 against the following conditions:’)
1004 FORMAT(1X, (AALL2A)=A)

1005 FORMAT(1X, (A1,2 A ALL2)=AL2)

1006 FORMAT(1X,'A1,2,3 generalized inverse’)

1007 FORMAT(1X,'Check A1,2,3 against (A A1,2,3)* = (A A1,2,3))
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FORMAT(1X,'A1,2,4 generalized inverse’)

FORMAT(1X,'Check A1,2,4 against (A1,2,4 A)* = (A1,2,4 A))

FORMAT(1X,'A1,2,3,4 generalized inverse’)

FORMAT(1X,'Check A1,2,3,4 with (A A1,2,3,4)* = (A A1,2,3,4))
FORMAT(1X,'Check A1,2,3,4 with (A1,2,3,4 A)* = (A1,2,3,4 A))

FORMAT(1X)

FORMAT(12(F5.2,1X))
FORMAT(12(F6.2,1X))
FORMAT(12(F6.3,1X))
FORMAT(12(F7.4,1X))

IF (OPTION.NE.1) GO TO 2000

IF (HEADER.EQ.1)
IF (HEADER.EQ.2)
IF (HEADER.EQ.3)
IF (HEADER.EQ.4)
IF (HEADER.EQ.4)
IF (HEADER.EQ.4)
IF (HEADER.EQ.5)
IF (HEADER.EQ.6)
IF (HEADER.EQ.7)
IF (HEADER.EQ.8)

IF (HEADER.EQ.9)

WRITE(9,1000)
WRITE(9,1001)
WRITE(9,1002)
WRITE(9,1003)
WRITE(9,1013)
WRITE(9,1004)
WRITE(9,1003)
WRITE(9,1006)
WRITE(9,1007)
WRITE(9,1008)
WRITE(9,1009)

IF (HEADER.EQ.10) WRITE(9,1010)
IF (HEADER.EQ.11) WRITE(9,1011)
IF (HEADER.EQ.12) WRITE(9,1012)

G0 70 2010

IF (HEADER.EQ.1)
IF (HEADER.EQ.2)
IF (HEADER.EQ.3)
IF (HEADER.EQ.4)
tF (HEADER.EQ.4)
IF (HEADER.EQ.4)
IF (HEADER.EQ.S)
IF (HEADER.EQ.6)
IF (HEADER.EQ.7)
IF (HEADER.EQ.8)
IF (HEADER.EQ.9)

WRITE(10,1000)
WRITE(10,1001)
WRITE(10,1002)
WRITE(10,1003)
WRITE(10,1013)
WRITE(10,1004)
WRITE(10,1005)
WRITE(10,1006)
WRITE(10,1007)
WRITE(10,1008)
WRITE(10,1009)

IF (HEADER.EQ.10) WRITE(10,1010)
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:Z:.;: IF (HEADEREQ.11) WRITE(10,1011)

,' L

:'.33: %4;}! IF (HEADEREQ.12) WRITE(10,1012)

- 2010 CONTINUE

wey

o IF (OPTION.EQ.1) THEN

oS WRITE(9,1013)

>y ELSE

o WRITE(10,1013)

2 END IF

oo

o DO 2060 1=STR,ER

-~ DO 2020 J=STC,EC

‘ . IF (ABS(A(I,J)).LT.ZERO) A(1,J) = 0.0

N 2020 CONTINUE

YN

P IF (OPTIONNE. 1) GO TO 2030

5 IF (FORMATT.EQ.1) WRITE (9,1014) (A(1,J),J=STC,EC)

;.' % IF (FORMATT.EQ.2) WRITE (9,1015) (A(1,J),J=STC,EC)

Ei IF (FORMATT.EQ.3) WRITE (9,1016) (A(1,J),J=STC,EC)

" ‘m.x IF (FORMATT.EQ.4) WRITE (9,1017) (A(1,J),J=STC,EC)
(

\.. 3 » L

%, GO TO 2040

!

o 2030 CONTINUE

3 IF (FORMATT.EQ.1) WRITE(10,1014) (A(1,J),J=STC,EC)

g IF (FORMATT EQ.2) WRITE(10,1015) (A(1,J),J=STC,EC)

o IF (FORMATT.EQ.3) WRITE(10,1016) (A(1,J),J=STC,EC)

T IF (FORMATT.EQ.4) WRITE(10,1017) (A(1,J),J=STC,EC)

Wl

2040  CONTINUE

3 2060 CONTINUE

..‘,-"j

NS RETURN

o END
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g C -
o ol C  DATE 11/11/85 x
- C VERSION; 1.0 x
A 3; C *
;' S C NAME: MULT *
o C  DESCRIPTION: MULTIPLIES ANY TWO MATRICES OR SUBMATRICES ~ *
- C AND PLACES THE RESULT IN AN OPTIONAL THIRD ~ *
4 C MATRIX OR SUBMATRIX. *
C PASSED VARIABLES: XR, XC, D1, YR, YC, D2, CONFORMITY, M| *
93 C M2, AND M3 *
S C RETURNS: NONE x
- C FILES READ: NONE *
2 C  SUBROUTINES CALLED: NONE *
e C CALLING SUBROUTINE: GINVERSE *
. *
‘.‘ gl*******-)(»*il**********i****&******i*%*********i****i*******
\ SUBROUTINE MULT(XR,XC,D1,YR,YC,D2,CONFORMITY,M1,M2,M3)
3N
R DOUBLE PRECISION M1,M2,M3
\ °.. DIMENSION MI(1:10,1:10)
o DIMENSION M2(1:10,1:10)
» DIMENSION M3(1:10,1:10)
- INTEGER XR,XC,D1,YR,YC,D2,CONFORMITY
DOUBLE PRECISION ROW
L DIMENSION ROW(1:10)
R INTEGER DXR
hos. INTEGER DXC
e INTEGER DYR
L INTEGER DYC

INTEGER IXR
- INTEGER JYC
° INTEGER KXC
" INTEGER KYR
. INTEGER |
0 INTEGER J
o INTEGER K
?«‘ S,
I, DXR = XR-1
25 DXC = XC-1
. DYR = YR- 1
PY 112
': \
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DYC = YC-1
DO 1040 1=1,D1
. IXR = 1+DXR
§ DO 1020 J=1,D2
o JYC = J+DYC
o ROW(J)=0.0
) DO 1010 K=1,CONFORMITY
; KXC = DXC+K
' KYR = DYR+K
) ROW(J) = ROW(J)*+(M1(IXR KXC)*M2(KYR JYC))
1010 CONTINUE
1020 CONTINUE

DO 1030 J=1,D2
M3(1,J) = ROW(J)
1030 CONTINUE
1040 CONTINUE
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RETURN
END
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SIS C *

ps v’ C DATE 11/11/85 x

i C VERSION: 1.0 *

N C *

5 C  NAME: GSROW *

o C  DESCRIPTION: ORTHOGONALIZES THE ROWS OF THE SUBMATRICES

G C T AND M x

o C PASSED VARIABLES: RANK, R, C, ASIZE, A x

& C RETURNS: NONE *

A C FILES READ: NONE *

, C SUBROUT INES CALLED: NONE *

! C CALLING SUBROUTINE: GINVERSE *
C *
C!****************l*****************************************

2 SUBROUTINE GSROW(RANK,R,C,ASIZE,A)

v DOUBLE PRECISION A

.- DIMENSION A(1:10,1:10)

A * INTEGER RANK,R,C,ASIZE

N 1o DOUBLE PRECISION DOT I

= DOUBLE PRECISION DOT2

iy INTEGER |

- INTEGER J

s INTEGER K

3

1 PARAMETER(ZERO=S.E-15)

%

.

= DO 1040 I=R,RANK+1,-1

o DOT2=0.0

’ DO 1000 K=C+1,ASIZE

e DOT2 = DOT2+(A(I,K)**2)

7 1000 CONTINUE

\ DO 1030 J=i-1,1,-1

N DOT1=0.0

% DO 1010 K=C+1,ASIZE

S DOT 1 = DOT 1 +(A(1K)*A(J,K))

s 1010 CONTINUE
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IF ((ABS(DOT 1).GT.ZERO).AND.(ABS(DOT2).GT.ZERO)) THEN
DOT! = DOT1/DOT2
DO 1020 K=C+1,ASIZE
A(J,K) = A(J,K)-(DOT 1 *A(1,K))
1020 CONTINUE
ENDIF
1030 CONTINUE
1040 CONTINUE

RETURN
END

C***********************&l*i*lllKli!i!*&*******l************
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C *
C DATE: 11/11/85 x
. C VERSION: 1.0 *
R C »
2 C  NAME GSCOLUMN x
.;'*2_:- C  DESCRIPTION: ORTHOGONALIZE THE COLUMNS OF THE SUBMATRICES *
ey C S AND N *
% C PASSED VARIABLES: RANK, R, C, ASIZE, A *
K C RETURNS: NONE *
o C FILES READ: NONE x
An C SUBROUTINES CALLED: NONE *
- C CALLING SUBROUT INE: NONE x
o *
;::: g**************************************X********************
=
35 SUBROUTINE GSCOL(RANK,R,C,ASIZE,A)
) '-j*
5 DOUBLE PRECISION A
o DIMENSION AC1:10,1:10)
e Q INTEGER RANK,R,C,ASIZE
i DOUBLE PRECISION DOT1
oo DOUBLE PRECISION DOT2
) INTEGER |
‘ INTEGER J
e INTEGER K
il
Redn
¢ . PARAMETER(ZERO=5.E-15)
R DO 1040 1=C,RANK+1,-1
o, DOT2=0.0
c DO 1000 K=R+ 1,ASIZE
o DOT2 = DOT2+(A(K, 1)**2)
o 1000 CONTINUE
153 DO 1030 J=I-1,1,-1
o DOT 1=0.0
e DO 1010 K=R+1,ASIZE
Ve RRE DOT 1 = DOT 1 +(A(K,*A(K,J))
3 1010 CONTINUE
)
° 116
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- IF ((ABS(DOT 1).GT.ZERO).AND.(ABS(DOT2).GT.ZERO)) THEN

RO DOT1 = DOT1/DOT2
e Glo DO 1020 K=R+1,ASIZE
- A(K,J) = AKK,D-(DOT 1 *A(K, 1))
W 1020 CONTINUE

o ENDIF

» 1030 CONTINUE

S 1040 CONTINUE

1

s RETURN

b END

,,’
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2 Starting with the A, and continuing through the A,z 4,
169 ’ 16y
Y . . . e . . .
o each successive inverse satisfies either more or a different combina-
v , . . . . . .
" tion of Penrose's equations. This relationship between each generaliz-
= ed inverse is also reflected in the computer time needed to compute
! : " : L.
iy an inverse. To meet the additional constraints, successive inverses
require the same or more computer time. This relationship was
,r originally mentioned in chapter 3 and its practical aspects mentioned
o . :
again in chapter 4 where an A, was used in place of an Aj5z 4
. b At Rt ]
generalized inverse. The following graph emphasizes this realtionship
by highlighting the differences in computing time between an A,
( TR .
: (. and an A1’2,3 4 over a range of square matrices.
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s Abstract

!

i
B This work examines a new method for computing four

) : . . : .
:. ; generalized inverses of a matrix. This method, the ST method, is

& based on the careful selection of a sequence of matrix multiplica-

Sy
tions and partitionings which provide a new foundation for
ey computing four generalized inverses. Central to this approach is the
'C partitioning of the two submatrices, R and C, where the product of
[ . . oy s : . .

o their submatrices will give the generalized inverses of interest.

° : . . : :

" Thus using this new representation, the generalized inverses of a
33
'_-_?4 matrix can be computed in a simple and direct manner.

D! In this work, four generalized inverses are derived and %5?-
i computed in a systematic manner from this representation. These )
a4
R results are strongly tied to the solution of the matrix equation
30
" Ax=b where the general solution is given in terms of this new
f representation and computational technique. The computational

.' . 3 » .

o technique is presented with an example and also as an algorithm.

' § Included with the algorithm is an analysis of its computer

® ' _ _ . ‘ _ |
) implementation. The use of one generalized inverse is used to find |
W . . . |
' .:{ the solution of a Lyapunov matrix equation. |
W ;-
®
.
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