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This thesis develops goodnss-of-fit tests for the

Pareto distribution by generating critical value tables for

the modified Kolmogorov-Smirnov, Anderson-Darling, and

Cramer-von Mira statistics. These tables can be used to

test whether a set of observed values follows a Pareto

distribution when the location and scale parameters are

unspecified and must be estimated from the observed sample -.

data. Additionally, the power of each of the three

goodness-of-fit tests is studied and compared. Finally, the

functional relationship between the critical values and the

Pareto shape parameter is determined. Hopefully the material

is presented in sufficient detail to be easily understood by

those with only a passing knowledge of statistical analysis.
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ABSTRACT

Modified Kolmagorov-Smirnov (K-S), Anderson-Darling

(A-D). and Cramer-von Mises (C-VM) critical values are gener-

ated for the three-parameter Pareto distribution. The values

may be used to test whether a set of observations follows a

Pareto distribution when the location and scale parameters

are unspecified and thus must be estimated from the sample.

A Monte Carlo simulation of 5000 repetitions is used to L

generate critical values for sample sizes 5(5)30 (i.e., 5 to

30 in increments of 5) and Pareto shape parameters .5(.5)4.0.

A 5000-repetition Monte Carlo investigation is carried

out by using 5, 15, and 25 observations from eight alternate

distributions to compare the powers of the K-S: A-D, C-VM,

and Chi-square tests. The power values of the tests are

relatively low for a sample size of five. However, the

powers of the modified K-S. A-D. and C-VM tests are consider-

ably better than the Chi-square test at larger sample sizes.

Next to the Chi-square test, the A-D test has the lowest

power in most cases.

A functional relationship is identified between the I
modified K-S and C-VM test statistics and the Pareto shape

parameter. The critical values are found to be a linear

function of the shape parameters between 1.5 and 4.0.

viii
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MODIFIED KOLMOGOROV-SM I RNOV.,

ANDERSON-DARLING, AND CRAMER-VON MISES TESTS

FOR THE PARETO DISTRIBUTION

WITH UNKNOWN LOCATION AND SCALE PARAMETERS

I. INTRODUCTION

Chapter Overview

This chapter introduces the topic of goodness-of-fit

testing and its applications. It states the problem, the

research question, and the objectives of the research.

Background

U 4 Because the Air Force depends on highly complex weapons

systems to perform its missions, factors such as the reliab-

ility and maintainability of equipment continue to receive a

great deal of emphasis. Of particular importance to the Air

Force is the ability to forecast time-to-failure of equipment

components and expected maintenance service times.

In studying such phenomena, analysts often face the

problem of testing agreement between probability theory and

actual observations. When trying to develop a valid statis-

tical model of observed data., the analyst performs four basic

steps (5:332):

1. Collect and plot the raw data to develop a

histogram (frequency distribution graph).

• . .•-.



2. Hypothesize the underlying statistical distribu-

tion of the data by comparing the histogram to probability

density functions of known distributions.

3. Use the observed data to estimate parameters ,]

that characterize the distribution.

4. Test the distributional assumption and parameter

estimates for goodness-of-fit. If the hypothesis (that the I
data follow the assumed distribution) fails, return to step 2

(assume a different distribution) and repeat the process.

Goodness-of-fit tests measure the degree of agreement

between the distribution of an observed data sample and a

theoretical distribution. Three tests widely used for this

purpose are the Kolmogorov-Smirnov (K-S), Anderson-Darling

(A-D), and the Cramer-von Mises (C-VM). Such tests have been L

developed for several well known distributions, including the

normal, exponential, Weibull, gamma, uniform, Laplace, and

others (9119;34;35). However, there are many other distribu-

tions which have not been successfully examined for goodness-

of-fit when the parameters of the distribution are unknown.

One such distribution, which has significant potential for L

Air Force applications, is known as the Pareto distribution.

The Pareto distribution is an important function in

statistical analysis, and several applications have been

identified in the fields of economics and operations

research. For example, the Pareto distribution has played a

major role in investigations concerning the distributions of

1-2
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city population sizes, natural resources, stock price .7.-

fluctuations, and oil field 
locations (28242). Other :

studies indicate that the Pareto can be used to model

phenomena which may be applicable to Air 
Force interests, *.q

such as time-to--failure of equipment components (16),

maintenance service times (22), nuclear fallout dispersion

(18), and error clusters in communications circuits (7). Use

of the Pareto for such practical applications would be ..-

enhanced by an accurate method to test goodness-of-fit of the -

Pareto distribution.

kr

Problem Statement

A test to determine goodness-of-fit has not been deve-

o°loped for the Pareto distribution when the location and scale

parameters are unknown. Such a test would be useful in

determining whether a random sample of data taken from an

observed phenomenon behaves as the Pareto distribution.

Research Question

How can the existing K-S, A-D, and C-VM tests be

modified to produce new goodness-of-fit tests which can be

L applied to the Pareto distribution when the location and

scale parameters are unknown?

,N'.

1-3
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Objectives "

The objectives of this thesis are tos -

1. Generate and document the modified K-S, A-D, and

C-VM critical value tables for the Pareto distribution.

These tables can be used to test goodness-of--fit when r-.

parameters of the distribution are unknown.

2. Compare the powers of the modified K-S, A-D, and

C-VM tests to determine which test can best detect a false ;'2J

Pareto distribution hypothesis. The power of a statistical

test is the probability of correctly rejecting a false

hypothesis.

3. Determine what (if any) functional relationship

exists between the shape parameter and the critical values

generated for the Pareto function. This relationship can

then be used to interpolate critical values corresponding to

parameters not found in the generated tables.

Presentation of Research

The report on this thesis effort is presented in seven

chapters. In this, the first chapter, the general topic of

goodness-of-fit has been introduced and the problem, research

question, and objectives have been stated.

Chapter II describes various types of goodness-of-fit

tests; explains hypothesis testing and test statistics; and

discusses the empirical distribution function.

Chapter III describes applications of the Pareto

1-4
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distribution; presents its various forms; explores parameter

estimation for the Pareto function; and develops the modified

K-S, A-D, and C-VI test statistics for the Pareto.

Chapter IV describes the basic principles and specific

procedures used to satisfy the research objectives.

Chapter V presents the results of the research effort,

including tables of critical values, power comparisons, and

regression coefficients.

Chapter VI further discusses the results of the

research. Observations are made concerning the tables of

critical values, power comparisons, and regression

coefficients.

Chapter VII contains conclusions and recommendations

based on the conduct and results of the research effort.

Finally, the flow charts and computer programs used to

carry out the research are contained in the appendices.

1I
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II . OODNESS-OF-F IT TESTS

Chapter Overview

This chapter briefly reviews the literature to provide

a background for goodness-of-fit tests. It also describes

hypothesis testing and test statistics as they relate to

goodness-of-fit. Finally, it discusses the empirical

distribution function and related statistics, including the

exact and computational forms of the Kolmogorov-Smirnov

(K-S), Anderson-Darling (A-D), and Cramer-von Mises (C-VM)

test statistics.

Introduction

Goodness-of-fit tests measure the degree of agreement

between the distribution of an observed data sample and a ..

theoretical statistical distribution (13:189). For example,

a test for goodness-of-fit may involve examining a random

sample from some unknown distribution to test the hypothesis 
L7

that the underlying distribution is actually a known,

specified function (13s345). If such tests indicate a close

fit, the hypothesized distribution can then be applied in L4

simulation modeling to predict failure and operational

availability rates of Air Force systems and their components.

2-1
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* Background

For years statisticians have attempted to find test

statistics whose sampling distributions do not depend on -

certain parameter values or on the explicit form of the

distribution of the population. Such tests are called

non-parametric or distribution-free tests (39:68).

Two of the oldest and best known distribution-free

tests for goodness-of-fit are the Chi-square and the

Kolmogorov-Smirnov (K-S) tests (13,189;47:2). The Chi-square

test compares frequencies of the observed data with expected

frequencies of the hypothesized distribution. The test is

flexible enough to allow some parameters to be estimated from

the observed data, but it has some limitations. For example,

it is restricted to large sample sizes (1:73). Also, it

requires that the data be arbitrarily grouped, which may

affect the results (13:357). The K-S test compares the

cumulative distribution function (CDF) of the hypothesized

distribution against the empirical distribution function

(EDF) of the observed data sample. The K-S test can be used

for large or small samples; however, it is restricted to LI
distributions which are fully specified (i.e., there can be

no unknown parameters that must be estimated from the sample)

(13:357). The same limitation applies to two other related

methods, the Anderson-Darling (A-D) and the Cramer-von Mises

(C-VM) tests (19:204; 47:3-4).

2-2
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In a significant development, David arnd Johnson (14)

found that if a distribution has only a location and scale

parameter, then the K-S arnd related goodness-of-fit tests are

independent of the true parameter values when the parameters

are replaced by invariant estimators. The estimators must be -.

invariant in the sense that if each x is transformed by

x~ax+b then the estimate T=T(x) is similarly transformed by

T-aT+b (4:4). Therefore, critical values dependent only on L

sample size and significance level can be generated (54s5).

This property also applies to a three-parameter CDF provided

the shape parameter is treated as a constant. A mare

detailed explanation of this principle is included below in

the section on "Using Unknown Parameters".

Based on this discovery by David and Johnson, critical

value tables f or the K-S and related tests have been modified

to allow their use in several cases where parameters are

estimated from observed data. In a modified test, the form[

of the test statistic itself remains essentially the same,

except that estimates are used in place of exact parameters.

However, the critical values for a modified test are

considerably different. The critical value tables are no

longer the same for all distributions. Instead, they are

different for each different hypothesized distribution .!

function. A modified test Is still non-parametric or

* ~distribution-free because the level of significance is still .*

* independent of any untested assumptions regarding the 2

,--3
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distribution of the underlying population. In fact, the form

of the hypothesized distribution is the hypothesis being

tested (113s 357). ..-. "*.a- ...

There are numerous cases for which modified tests have

already been developed. For example, Lilliefors developed a

modified K-S test for the normal (34) and exponential (35)

distributions; Ream (43) developed another set of modified

tests for the normal distribution; Woodruff, Moore, and

Cortes (53) developed a modified K-S test for the

three-parameter Weibull distribution; Bush (9) modified the

A-D and C-VM tests to expand the goodness-of-fit tests for

the Weibull distribution; Viviano (49) modified the K-S, A-D,

and C-VM tests for the gamma distribution; and Yoder (54)

.1 developed a modified K-S, A-D, and C-VM test for the logistic

distribution. The modified K-S, A-D, and C-V, tests have

also been developed for the uniform, normal, Laplace,

exponential, and Cauchy distributions (19). Using a

different technique, Woodbury (52) too developed a set of

modified tests for the uniform distribution.

Hypothesis Testing and Test Statistics

A fundamental concept in statistical testing is the

hypothesis test. When studying a given phenomenon, it is

often desirable to determine the distribution of the popula-

tion being studied. In many cases, however, it is not ".

practical to observe the entire population. Instead, a

2-4
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-. ..-. relatively small sample of the population is usually

selected, and observations are made from the small sample.

" Hypothesis testing is the process of inferring from a

sample whether to "accept" a certain statement (the null

hypothesis) about the population from which the sample is r

drawn. Actually, "acceptance" of the null hypothesis does

not imply that the null hypothesis is true, but that there is

insufficient evidence from the data sample to reject the

hypothesis. The null hypothesis, denoted HO, is the hypothe-

sis to be tested. The alternative hypothesis, denoted H1 , is

equivalent to stating that H0 is not true (13:75-76).

Another key concept in statistical testing is the test

statistic, a function of random variables which is used to

0. help make the decision in a hypothesis test. In order to be L

useful for data analysis, the test statistic chosen should

possess certain desirable properties. Most importantly, the

statistic should assign real numbers to points in the sample L

so that the points are arranged in an order which reflects

their ability to distinguish between a true H0 and a false H0 .

(13:77). For example, the test statistic normally assigns

larger values to situations that indicate most strongly that

H0 ought to be rejected, while smaller values of the test

statistic usually indicate insufficient evidence to reject

HO . In this type of "one-tailed" test, if the value of the

test statistic for a given set of data is greater than a

certain "critical value", the analyst would reject H0

2-5
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(13:77). The critical value is chosen so that when the null

hypothesis H 0 is true, the chance of erroneously rejecting H0

is some specified probability (e.g., .01 or .05) (2:193).

There are two types of errors that can be made in

applying the decision criterion. The Type I error results in

rejection of H O when HO is true. The Type II error results

in acceptance of H O when HO is false. The probability of

committing a Type I error, denoted by C9, is called the level

of significance of the test. The probability of a Type II

error is denoted j, The power of a statistical test,

denoted 1 - , is the probability of correctly rejecting a

false Ho (1379).

Sto Statistics Based on the Empirical Distribution Function L

One class of test statistic used in goodness-of-fit

testing compares an observed sample distribution function and

an hypothesized theoretical distribution function. These

statistics are based on the empirical distribution function

(EDF), and in many cases are easily calculated and

competitive in terms of power. The K-S, A-D, and C-VM test

statistics are of the EDF type (45:730).

When analyzing phenomenon such as time-to-failure of

equipment components, H(x), the actual distribution function

of the phenomenon, is rarely known. Often an educated guess

of the form of the distribution is made, and the guess is

used to approximate the true distribution function. One way

2-6. .'
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to make a "good guess" is to observe several values from

random samples of the phenomenon and construct a graph that

can be used to estimate the entire unknown distribution

function Hx). One widely used method of constructing such a

graph is the empirical distribution function Sx), which

equals the fraction of observed values that are less than or

equal to x (47:1), i.e.,

number of values . x
S(x) = ()-

total number of values

For a sample consisting of n observations, the EDF, which may

be denoted Sn (x) to indicate the particular sample size, is a

step-shaped function where each step is of height 1/n and

occurs only at the sample values. As n becomes larger, Sn(X)

should better approximate H(x), provided that H0 is true.

When the n observations are arranged in ascending order,

i.e., letting x(l), x( 2 ),..., x(n) be the "order statistics"

(15:4; 20:70), then Sn x) is defined (47:1) as:

0 for all x < x(1 )

Sn(x) = for x(i) < x < x(i+l), i1,2,...,n-1 (2)

1 I for all x > x(n)

Like a CDF, Sn(x) is a nondecreasing function that ranges

from zero to one in height; however, Snlx) is determined

empirically (from an observed sample), thus its name (13:70).

2-7
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In a typical test for goodness-of-fit, a random sample .... ,

from an unknown distribution is examined to test the null A

hypothesis that the unknown CDF H(x) is in fact a known,

specified function F(x), i.e., HO: H(x) - F(x). The random

sample is compared with the hypothesized distribution F(x) in

some way to determine whether it is reasonable to conclude

that F(x) is the true CDF of the random sample. Using the

EDF Sn (x) is one way to compare the random sample with F(x).

The fact that Sn(x) is, by definition, the proportion of a

random sample less than x implies that it should serve as a

good estimate of F(x), which is defined as the probability ,

that the random variable X is less than the value x (47:1).

Since the EDF Sn(x) may be useful as ar estimator of the

hypothesized CDF F(x), then Sn (x) can be compared with F(x)

to see if there is close agreement. If the level of

agreement is poor, then the null hypothesis is rejected,

i.e., the true but unknown CDF H(x) is not the same as the

hypothesized function F(x) (13:345).

Based on this approach, the K-S, A-D, and C-VM tests

use criteria that measure the discrepancy or "distance"

between the hypothesized CDF F(x), which approximates H(x)

under HO, and the EDF Sn (x). The definitions of the three

criteria relate to the full range of x, leading to integral

forms of the A-D and C-VM test statistics. Conveniently, all

three test statistics can be expressed in computational forms.. .

in terms of F and Sn at the observed x values (19:204).

2-8

" -... :- .. . i : : .: .L .: -.2 ? i i .S 1 2. -,i . ....i .- -i -° .- -L --.-..i. .-.-i ---.. ... : ... . .-. .- . .



Using Unknown Parameters. In their unmodified forms,

most popular goodness-of-fit tests based on EDF stati3tics,

including the K-S, C-VM, and A-D tests, are meant to be used

only when the null-hypothesized distribution F(x) is fully

specified (i.e., when all parameters are known). However,

cases are rare in statistical practice when H0 is completely

specified; thus, it is more realistic to have unknown

parameters for the null distribution. When unknown

parameters are involved, the K-S, C-VM, and A-D tests are no

longer distribution-free, so that different critical values

will relate to different F(x) in the null hypothesis

(19:204). The reason for this is that the distributions of

these and other EDF statistics depend on the sample size n

and also on the values of the unknown parameters (47:4).

The K-S, C-VM, and A-D tests depend on the probability

integral transformation described by David and Johnson (14).

This transformation, when applied to a random sample from a

distribution of specified parameters, produces ordered values

from a uniform distribution over the interval from 0 to 1.

These values are then used to calculate the EDF test

statistic. As a result, the EDF statistic becomes a function

of ordered uniform random variables. However, when

parameters are unknown and must be estimated from the sample,

the transformation fails to produce ordered uniform random

variables (47:4). Unless appropriately modified, therefore,

any EDF tests based on this transformation will generally be
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restricted to cases where all parameters are specified.

An important exception occurs if the unknown parameters

are location and scale only. David and Johnson (14) showed

that if a distribution can be completely specified by a

single parameter for location and a single parameter for

scale, then goodness-of-fit tests based on the probability

integral transformation are independent of the true parameter

values when invariant estimators are used (38:384). L

Fortunately, the Pareto distribution can be completely

specified by a single location and a single scale parameter

(28:239). The three-parameter form of the Pareto, presented

in the next chapter, can be expressed in terms of a single

location and scale parameter by treating the shape parameter

10 as a known constant. Thus, the value of each EDF test L

statistic for the Pareto will depend only on the sample size

and significance level, but not on the exact values of the

unknown parameters (35:387). As a result, rather than having

to produce a separate set of critical value tables for each

set of location and scale parameters, only one set of tables

is needed for each shape parameter and each sample size n. L

It is this principle, coupled with the fact that the Pareto

possesses the necessary location and scale property, that

allows the generation of valid critical value tables for the

Pareto distribution (47:5).

To accomplish this goal, the existing (unmodified) K-S, .,

A-D, and C-VM test statistics can be modified using an

2-10
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invariant estimator; but first, the unmodified statistics are

discussed in the following sections.

The Kolmogorov-Smirnov Statistic. The K-S statistic in . . ,

its unmodified form is especially useful when sample sizes

are small and when no parameters are estimated from the data.

Often it is a more powerful test than the Chi-square for any

sample size (34:399; 39:76). However, when parameter

estimates must be made from the sample, the Chi-square test

is easily modified by reducing the number of degrees of free-

dom, whereas the existing K-S critical values are overly con-

servative and must be modified using Monte Carlo techniques

(5:357). In this context, the term "conservative" means that

the critical values are too large so that the actual level of "

significance is smaller than the stated level of significance

(13:90).

The K-S test statistic (36:259-260; 5:270; 19:204) is

the largest (denoted "sup" for supremum) vertical distance

between the completely specified hypothesized CDF F(x) and

the observed EDF Sn (x). Therefore, the test statistic is

expressed as:

D = sup IF(x) Sn(X)l (3)

x

which is equivalent to the computational form given by
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D = max (D, D-) (4)

H0 is rejected if D exceeds a corresponding critical value

( 13: 356). '

If there are n observations, xci) is the i-th smallest

observation, and zi --F(x(i) then (39:69):

D+ = sup C(i/n)-z i ]  and D = sup Czi-(i-1)/n3 (5)
l<i<n 1<in

Thus the K-S statistic is the larger of these two values.

The Cramer-von Mises Statistic. Another way to measure

the discrepancy between the hypothesized CDF F(x) and the

observed EDF Sn(x) is to use statistics of the Cramer-van

Mises family, based on the squared integral of the difference

between the EDF and the distribution tested (47:2). One such

statistic is the C-VM statistic itself (46:357):

W2 = nfSn(x)- F(x) ]2dF(x) (6)

which in computational form is (3:766; 45:731):

n
W2 = 1/(12n)3 + I [z. - (2j-I)/2n12  (7)

j=1 .3

where x (1x(2)<" <X(n) are n ordered observations from the

sample and z. =F(x()) for j=1.2,...,n.
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The Anderson-Darling Statistic. Another member of

the Cramer-von Mises family is the A-D statistic. To allow

more flexibility in goodness-of-fit tests, Anderson and

Darling (2:194) introduced the technique of incorporating a

weight function into the K-S and C-VM test statistics. The

result is still another method of testing the hypothesis that

n observations have been drawn from a population with

specified distribution function F(x).

Anderson and Darling (3:767) suggested using a

nonnegative weight function, here denoted 0(u), chosen by the

analyst to accentuate the values of Sn (x) - F(x) in those L2
areas where the test is desired to have greater sensitivity.

This weight function serves to counteract the fact that the

discrepancy between Sn(x) and F(x) becomes smaller in the L..J

tails, since each approaches 0 and 1 at the extremes (47:2).

They found that choosing the weight function 0 in the form of

0(u) = 1/[u(1-u)] has the effect of heavily weighting the

discrepancy in the tails of the two distributions. The

resulting A-D test statistic (2:193; 46:357) is:

A2 = n [Sn(x)-F(x)J 2 e[F(x)dF(x) (8)

where *EF(x)] = [Fx) (1-F(x))]- 1

Thus the C-VI statistic may be considered a special case of

the A-D statistic where OeF(x)] = 1.
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- . In computational form the A-D statistic is (3:765):

nI
A 2 _ -n - (l/n) Z (2j-1)Eln z. + In(1-Zn+l j )] (9)

where x( 1 )<x( 2 )<''<X(n) are n ordered observations from the

sample and z= F(x(J)) for j-1,2,...,n. V

The A-D statistic is designed to be used when the

analyst wants the test to have good power against alterna-

tives in which F(x) and H(x), the true distribution, disagree

near the tails of F(x), and is willing to sacrifice power

against alternatives in which they disagree near the median

of F(x) (3:767). Thus, the A-D statistic is used when the

analyst wants to reject H0 if H(x) differs greatly from F(x),

and especially if the difference is in the tails.

Chapter Summary

The K-S, A-D, and C-VM tests are non-parametric tests of

goodness-of-fit which offer advantages over the older L...
Chi-square test. In their usual forms, the K-S, A-D, and

C-VM tests are restricted to distributions which are fully

specified. However, when location and scale parameters are

replaced by invariant estimators, the three tests can be

modified to produce valid critical values for a given

distribution. Hypothesis testing and test statistics are two

statistical concepts which can be used to modify the existing

tests for the Pareto distribution, which is discussed in

detail in the next chapter.".
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III. THE PARETO DISTRIBUTION

Chapter Overview

This chapter reviews the history and application of the

Pareto Law; presents the Pareto distribution and its three

parameters; explores parameter estimation for the Pareto

function; and develops the modified Kolmogorov-Smirnov (K-S),

Anderson-Darling (A-D), and Cramer-von Mises (C-VM) test

statistics for the Pareto distribution.

History and Application

tot Origin. The Pareto distribution is an important func-

tion in statistical analysis. It is named after Vilfredo

Pareto (1848-1923), a Swiss professor of economics who con-

ducted the first extensive statistical study of the distribu-

tion of incomes. His analysis of nineteenth century income

in various countries led to the development of his first law:

. . . if x signify Esic] a given income and N the
number of persons with incomes exceeding x, and if
a curve be drawn, of which the ordinates are
logarithms of x and the abscissae logarithms of N,
this curve, for all the countries examined, is
approximately a straight line . . . This means
that, if the number of incomes greater than x is
equal to N, the number greater than mx is equal to
N/M 1 5 , whatever the value of m may be. Thus the
scheme of income distribution is everywhere the
same C42:647].
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Therefore, "the logarithm of the percentage of units with an

income greater than some value is a linear function of that £

value with negative slope, provided that this value is

greater than an appropriate positive number" (32:6). This is

known as the 'strong" form of the Pareto Law, with functional

form given by equation (11) below. The "weak" form of the

law pertains to the asymptotic nature of a distribution's

tail and implies that if log [1-Fx(x)] is plotted against log

x, then the resulting curve should be asymptotic to a line

with slope -c as x gets larger (32.6; 28:245).

Early Applications. Since the early days of its formu- '-_

lation, the Pareto Law and its related distribution functions

have been examined primarily for potential applications in

economics and operations research.

Based on his statistical observations, Pareto believed

that any influence that causes an increase in the national

income overall must also increase the income of the poor:

"We cannot be confronted with any proposal the adoption of

which would both make the dividend larger and the share of

the poor smaller, or vice versa" (42:648). Pareto also

believed his law to be universally inevitable, regardless of

economic, social, and political conditions. Economists have

since identified flaws (11:609; 17:171) in the Pareto Law to

the extent that for several years the Pareto distribution

became disreputable (28:233; 7:235) as an economic predictor:
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The general defence of "Pareto's Law" as a law of
even limited necessity rapidly crumbles. His
statistics warrant no inference as to the effect on I
distribution of the introduction of any cause that
is not already present . . . This consideration is
really fatal; and Pareto is driven, in effect, to
abandon the whole claim [42s6543.

Nevertheless, more recent studies have shown the Pareto

distribution can be very useful.

Recent Applications. Several more recent studies have

revived interest in the Pareto distribution by demonstrating

that it can be used to model or predict numerous empirical

phenomena. For example, the Pareto distribution has played a

major role in investigations concerning city population size,

resources, stock price fluctuations, and oil fields (28:242).

The Pareto has also been used to describe property values, LJ

. inheritance, business mortality, worker migration, consumer

prices, and effects of underreported income (32:7; 51).

Fisk (17s171, 174-175) showed that in some cases the

Pareto distribution offers an improvement over the lognormal

distribution, especially at the extremities (tails) of the

distribution. Steindl (44s187-246) cited several examples of

empirical economic data which follow the Pareto distribution,

including the distribution of wealth, jobs by basic salary, .

the growth rate of firms and corporations, and several

others. He also reaffirmed the Pareto Law's usefulness in

economic theory:

:3-3 -.

7 -, °

.... ... ... ... ... .-... ..-. **.*.*%*.*.. . -.... ... .. ~ **~.~ *.* *** ** .



kr.|7k ILI .Z W. .

Empirical laws are rare in economics, and the most
obvious instance of such laws is the regular pat-
tern of certain statistical distributions, such as
the distribution of persons according to income or
of business firms according to sales. A good many
of these distributions conform to the so-called law
of Pareto, i.e. the number of firms (for example)
with sales in excess of X, plotted against X on
logarithmic paper, is a straight line . . . The .
Pareto distribution is encountered in many fields
and often the fit is very good (44:11].

Air Force Applications. Other studies have shown that

the Pareto can be used to model phenomena which may be appli-

cable to Air Force interests, such as time-to-failure of

equipment, maintenance service times, nuclear fallout part-

icles, and error clusters in communication circuits.

For example, Davis and Feldstein (16:299) showed the

Pareto can be used to model survival data based on a

population of items whose times-to--ailure from a well

defined origin are being observed. If each member of the

population has a constant hazard rate based on a

two-parameter gamma distribution, then the time-to-failure

for the population is the Pareto type II of equation (13).

Further, in some cases the Pareto competes with the Weibull 1 .
distribution as a model for failure times of components.

Like the Weibull, the generalized Pareto includes the

exponential, and can therefore be used to test departures M

from the exponential (16:305-306).

Kaminsky and Nelson (30) showed how the Pareto distribu-

tion can be used in situations involving life testing, r
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reliability, and replacement policy. Specifically, they

showed how to use the Pareto to predict the time of future

failures from times of early failures in the same sample.

They found, for example, that if items are put into service

simultaneously, and it becomes necessary to begin replacing

them when a certain percentage remain functional, then it is

possible to predict the replacement time of future failures

from the early failure times. In another example, "if n

items form an n-component parallel system, then we can

predict the time of system failure " (30:145).

The Pareto distribution can also be of use in modeling

queuing systems in which equipment maintenance service times

are conditioned upon a random parameter. Harris (22:307)

0 showed that if the conditional service distribution is

exponential and the random parameter has a gamma density,

then the resultant service times follow the Pareto

distribution. Further, if a system consists of components

which have exponentially distributed times-to-failure with a

gamma parameter density, then the unconditional times to

failure would follow the Pareto distribution (22:312).

Harris also used the Pareto to develop a model which provides

a means of obtaining measures of effectiveness of a large

scale and complicated queuing process (22:308-309).

Freiling showed that the Pareto distribution, in the

K. form of equation (10) with c = 3, can be used to model mass

sizes of nuclear fallout particles (18:4). In addition, he
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compared the usefulness of the Pareto and lognormal

distributions in modeling the size distribution of particle

mass in the fallout from land-surface bursts. For this

specific application, Freiling found close similarities

between the two distributions: "The agreement is such that

if one curve is correct, the other wil1 never be proved wrong

* . . Thus it appears that the differences between the two

approaches are trivial" (18:12). He concluded his study by

noting that, in the case of nuclear airburst debris, the

lognormal distribution has the advantage of having an

"observationally confirmed theoretical basis." If the

observational data is truncated, however, the Pareto

distribution has the advantage of simplifying calculations of

I * particle surface distribution.

In a study of error clusters in communication circuits,

Berger and Mandelbrot (7:224) revealed still another applica-

tion of the Pareto distribution. They proposed a new mathe-

matical model to describe the distribution of the occurence

of errors in data transmission over telephone lines. They

found that the statistics of communications errors can be

described in terms of an error probability depending solely

on the time elapsed since the last occurrence of an error.

Further, they discovered that the distribution of inter-error

intervals closely approximates the Pareto distribution of

exponent less than one. As a result, the relative number of

errors tend to zero as message lengths increase.
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The Pareto Function

Pareto's Law in its original form can be expressed as

N - Ax - c  where A and c are parameters which characterize the

function and N is the number of people having income of at

least x. In a form more commonly used in statistical . .

analysis, Pareto's Law becomes the Pareto distribution:

P(x) = PrCX>x] - (k/x)c for k,c > 0; x > k (10)

where P(x) is the probability that the value of a random var-

iable X (e.g., income) is at least x, k is a lower bound on X

(e.g., some minimum income), and c characterizes the shape of

the graph of the distribution (28:233-234).

Accumulated probabilities over the range of values of x

are given by the corresponding cumulative distribution func-

tion (CDF) of X, also known as the "Pareto distribution of

the first kind" (28:234) or the "strong" Pareto law (32:50): ..-

Fx(X) I 1 - (k/x)c for k,c > 0; x > k (11)

The corresponding Pareto probability density function is:

PXW) - ckc/xcl (c/k)(k/x)c + l for c > 0; x > k > 0 (12) --
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Pareto proposed two other forms of the distribution.

The "Pareto distribution of the second kind" (also called the

Pareto Type II or the Lomax distribution), is:

Fx(X) = 1 - K1 /E(x+C)C] (13)

The third form proposed by Pareto, the "Pareto distribution

of the third kind" (or Pareto Type III), has the CDF:

Fx(x) = 1 - k2 e-bx/(x+C)c
]  (14)

which reduces to the Type II form when b = 0.

The basic difference between these various forms is in

the number of parameters. The Pareto distribution of the

first kind, equation (11), represents the "usual formulation"

of the function and is the one most commonly found in the

literature. However, the fact that it consists of only two

parameters (i.e., c and k) may limit its usefulness in

general applications. Hastings and Peacock (26) regard three

types of parameters as basic to any distribution function.

These three parameters are the location, scale, and shape

parameters, which they denote as a, b, and c respectively.

The location parameter (a) represents "the abscissa of a P -

location point (usually the lower or midpoint) of the range

of the variate." The scale parameter (b) is "a parameter --

which determines the scale of measurement of the fractile x".
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Finally, the shape parameter (c) "determines the shape...

of the distribution function within a family of shapes

associated with a specified type of variate" (26:20).

Kulldorff and Vannman (33z218) Introduced a more general

form of the CDF than the two-parameter form shown in equation

(11). By using the parameter notation of Hastings and

Peacock, and the functional form of Kulldorff and Vannuan,

the generalized (threw-parameter) form of the Pareto distri-

bution is illustrated in Figure 1 and can be written ass

FWx 1nl El1+ (x-a)/b3J' for x >a; b,c >0 (15)

where again a is location, b is scale, and c is shape.

Zn the special case when a - b, if we let k -a -b as

in Figure 2, then from equation (15):

F(x) I 1 rl + (x-a)/b3]l- I E l + (x-k)/k3- L
=I ElC + Cx/k) - (k/k)3-c = I -(1 + x/k -)-

I (x/k)-c I 1 - x~

where k,b,c > 0 and x > k =a. The last expression is the

"usual formulation" given by equation (11).

Another form commonly found in the literature (26:102;

51:1) is the one-parameter form (Figures 3 and 4) given by:

F(x) I 1 - - for x > 1; c > 0 (16)
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F (x 1 1 (X-&)/bJ-c
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b= b=
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Fig 1. Three-Parameter Pareto Curves (Eon 15) for Several

Values of Location a and Scale b with Shape c =2.

F(x) 1 -(k/x)c

k1J

F 0.5-
k=2

k =3

k4

Fig 2. Two-Parameter Pareto Curves (Eon 11) fo- Sever-al
Values of k with Shap~e c =2and a =b k.



F(x) 1 -

c 2.0
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=. 50

= 25

0 12 345
Fig Z. One-Parameter Pareto Curves (Eqn 16) for Several

Values of Shape c with k =a =b =1.

20

C

10
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r>act'le x

Fig 4. Probability Density (Eqn 12) of the One-Parameter
Pareto with k I (Reprinted from 26:103).
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- .Equation (16) is simply a special case of (15) found by

setting a = b - 1. As such, it represents the least general

form of the Pareto distribution.

The greater general ity inherent in the three-parameter

form, equation (15), allows the Pareto distribution to be

more useful in practical applications. For example, in some

situations the random variable represented by x may be

positive by its very nature, making the assumption a -0 more

realistic than a = b (33:218). In the special case where

a = 0, the three-parameter Pareto distribution becomes:

F(x)= 1 - 1 + (x-a)/b3-c I 1 + (1 + 'r

= 1 - (b/b + x/b) - c = 1 - [(x+b)/b3- c

1 - [b/(x+b)]c = 1 -bc/[(x+b)c3

This last expression can be written as equation (13) by

simply setting bc K1 and b = C.

Therefore, equations (11), (13), and (16) each represent

special cases of the three-parameter form given by equation

(15). Since (15) is a more general and hence more useful

form of the Pareto distribution, this thesis uses the

functional form in (15) to develop the goodness-of-fit tests

for the Pareto distribution. Selecting the more general form

as a basis for the test statistics will ensure the widest

possible application of the goodness-of-fit tests.
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Parameter Estimation k

As explained in Chapter II, the development of modified

Kolmogorov-Smirnov, Anderson-Darling, and Cramer-von Mises

tests depends on the use of an invariant estimator for the W -

unspecified location and scale parameters (38:384). This

section begins by briefly examining several published studies

on various estimation techniques for Pareto distributions.

It concludes by discussing the best linear unbiased estimator

(BLUE), which is the invariant estimator used in this thesis.

Various Estimators. The two methods of invariant

estimation most commonly used in modified goodness-of-fit

tests are the maximum likelihood estimator (MLE) and the best

linear unbiased estimator (BLUE). Various techniques for

estimating the parameters of the Pareto distribution can be

found in the literature. However, as Kulldorff and Vannman

(33:218) point out, few studies consider the general

three-parameter form of equation (15). Instead, most studies

consider only "special cases", such as a = b, corresponding

to equations (11) and (12).

Numerous examples of "special case" estimators can be

cited. Moore and Harter (41; 23:69,86) developed a biased,

single-order-statistic MLE for the Pareto shape parameter

when location is specified. Harris (22:308, 310-311)

considered estimation for the two-parameter form given by

3-13 -<i2
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equation (12): "As a first try, we can appeal to the

techniques of maximum likelihood estimation. However, this

particular method does not yield sufficiently simple

equations (for even numerical methods)" (22:310). As a

result, Harris resorted to the method of moments instead.

Johnson and Kotz (28:234-240) presented MILEs for the

two-parameter form in equation (11), as well as several other

estimation techniques. Hastings and Peacock (26:102) gave

the MLE for the one-parameter form of equation (16). In his

dissertation, Koutrouvelis (32:97-115) attempted to estimate

the parameters of the upper tail of Pareto distributions, but

found it too difficult to calculate the Pareto MLEs, even

with a computer. Instead, he developed a new method of

estimating parameters based on the asymptotic theory of L.

quantiles using only data consisting of sample values greater

than some specified value. Wingo (50) wrote a FORTRAN

program to calculate the MLEs from a reduced log-likelihood 1

function for the two-parameter form in equation (12). Davis

and Feldstein (16:299-300, 305) developed MLEs from

progressively censored data for the Pareto Type III, equation

(14). Bell, Ahmad, Park, and Lui (6:4-7) presented the MLEs,

the minimum variance unbiased estimators (MVUEs), and the

*. minimal sufficient statistic (MSS) for the two-parameter

form, equation (11). Several other estimation studies are

cited by Koutrouvelis (32:55) and Johnson and Kotz

. -~ (28:235-240). Unfortunately, none of these studies provide
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the invariant estimators of the three-parameter form in ,

equation (15) as needed for this thesis.

Parameter estimation for the general case given by equa-

tion (15) went virtually ignored until Kulldorff and Vannean

(33) derived the BLUEs of the unknown parameters on the basis

of a complete Pareto sample with shape c > 2. In a follow-up

paper, Vannman (48) derived the BLUEs for shape c < 2.

Later, Kaminsky (29:7-8, 12-14) and Kaminsky and Nelson 1

(30:148) extended the work of Kulldorff and Vannman by"- "

deriving, for equation (15), the best linear unbiased

predictors of future observations from censored samples. -

Most recently, Charek (12) examined minimum distance

estimation for the three-parameter Pareto.

Best Linear Unbiased Estimator (BLUE). The BLUE derives

its name from its main properties as an estimator. It is a

"linear" estimator because it can be expressed as a linear

function of a random sample. It is "unbiased" because its

bias term is zero; and the expected value of the estimator is

equal to the true parameter value. It is considered the I

"best" estimator because it has the minimum variance among

all other linear unbiased estimators (27:227). However, for

the purposes of this thesis, the most important property of

the BLUE is invariance under transformation of parameters.

The BLUE is a subset of a larger class of estimators
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known as least-squares estimators. In general, least squares

estimators do not possess the invariance property. However, -

when a least-squares estimator is also a linear function,

then the invariance property holds (40:349-350). Therefore, :.-..-

in addition to its other properties, the BLUE is also an

invariant estimator. It is this property of invariance under

parameter transformations that allowed, for example, Green

and Hegazy (19:205) and Woodbury (52) to use the BLUE in

producing modified goodness-of-fit tests based on the

findings of David and Johnson (14).

Intuitively, the property of invariance implies, for

example, that if a parameter 0 is estimated, and .2 is also

estimated from the same data, then the estimate of e2 should

be the square of the estimate of $ (37:434). Generally, the

invariance property requires that if f($) is a single valued

A A
function of a parameter 0, and 0 is the BLUE of 0, then f(0)

A A
is the BLUE of f(), i.e., f(0) f($) (8:94).

The studies by Kulldorff and Vannman (33; 48) derived

the BLUEs of equation (15) for b when a and c are known; for

a when b and c are known; and for a and b when c is known.

The last case, which corresponds to invariant estimation of

location and scale when shape is known, is used in this

thesis to develop the modified K-S, A-D, and C-VM tests. The

next two subsections use the findings of Kuldorff and Vannman

to derive computational forms of the BLUEs for the Pareto

location and scale parameters, assuming shape is known.
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BLUEs for Shape c> 2. For the case where c >2,

Kulldorf 4 and Vannman (331224-226) found that the BLUEs of

location a and scale b can be written in terms of the

specified shape parameter c and the order statistics (15:4)

x( 1 ) S x( 2 ) i i < n where x(l) is the smallest and xc,.)

the largest value in the observed random sample of size n.

Thus the BLUEs for a and b are, respectively:

A
a =X(1  -Y/C(nc-1)(nc-2)-ncD3 (17)

A
b - Y(nc-1) / Cnc-1)Cnc-2)-ncDJ

A
W x(1 )-a3(nc-1) (18)

In the special case when it is known that a =b, as in

equation (11), the BLUE reduces too

k El- 1/(nc)Jx(1 ) (19)

However, before equations (17) and (18) can be used to find

the BLUEs for the general case, the following terms must

first be calculated:

B, - F(n-i+1) F-(n+1-Vc . -

B ~ -+-/ ~+ o 1,2,",n (20)

n-1
D (c+1) X B. + (c-l)Bn (21)

ii I1
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n-1
V(c+1) X B + (C-1)Bn X (n.) -Dx(j) (2

imi 1 x''i) (2

After these value% are calculated, they can be substituted __

A A A
*into equations (17) and (18) to -find the SLUEs a and b.

From equations (17) to (22), it is obvious that the use

A A
of the BLUEs a and b involves the computation of all the

* coefficients Bi for i - 1,2,**,n. Therefore, in order to

derive a computational form of the BLUEs, the first task is

to simplify equation (20). Each Bi is the ratio of a product

*of gamma functions. Banks and Carson (5) note that "the

*gamma function can be thought of as a generalization of the

factorial notion which applies to all positive numbers, not

just integersN (5:144). For any real m > 0:

PC) (m-i) F-MI) (23)

* By definition 1(1) =1, so that whenever m is an integer,

equation (23) becomes:Lii

F (0) ( m- 1) (24)

Applying these gamma definitions in equation (20) reveals:



Inn-1.-i F-(n+1-2/c) F-(n) F-n+1-2/c)
r(n-1+1-2/c) F-n+1) F-(n-2/c) I-(n+1)

n (n-1) !Fj(n-2/c) n

I 1 2/(cn) (25)

Similarly, B2 is found from equation (20) as follows:

](n-2-1) F"(n+1-2/c-) -(n-1) F'(n+1-2/c)
B2  T (n-2+1-2/c) F-(n+1) = F(n-1-2/c) F-n+1)

(n-2)' (n-2/c) P'(n-2/c)

(n-2)! (n-2./c) (n-1-2/c) F(n-1-2/c)
n(n-1) (n-2)! S (n-1-2/c)

(n-2/c) (n-1-2/c)
n(n-1)

El ( 2/(cn)J El -2/c(n-1)3 (26)

Continuing in this manner, it turns out that:

Bn Cl 2/(cn)3Cl 2/c(n-1)3.. C- 2/c(1)3 (27)

The calculations can be simplified as follows:

Let g, - 2/ (cn), 92 = 2/ Ec(n-1)3,, gn 2/c.

Also let b1  I -gj, b2  - 2  bn
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Then B 1  bl, B2 = b 1 b 2 , . , Bn  b 1b 2 "b..

In general, then, each B i can be expressed in computational

form as:

Bi [7! b. (28)
j=1

where b. = 1 - g. and g. = 2/ cln-j+1) for j = 1,2,*,i.

From these results, if we let B0  1, then another way to

write Bi is (48:705):

B i = [1 -2/ c(n-i+1)] Bi1- for i = 1,2,*",n (29)

As mentioned earlier, once all of the B i are computed from

equation (28) or (29), then D and Y.can be computed from

equations (21) and (22). Finally, these values for Be, D,

and Y are substituted into equations (17) and (18) to find
A A

the BLUEs a and b.

BLUEs for Shape c . 2. For the case where c < 2, the

variance of the Pareto distribution does not exist, so a

different approach must be used to derive the BLUEs. In this

case, Vannman (48:706-707) found that the BLUEs of loc,'ion a

and scale b can still be found provided that shape c satis-

fies 2/n < c < 2 , where again n is the sample size. Here

the BLUEs ak and bk are based on the first k order

statistics only, where k is chosen so that 2 < k < n+1-2/c:
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ak =x( 1 ) bk*/Cnc-i) (30)

and

bk (i/Uk (c+i) X B. X( 1 )

+ E(n-k+i)c -13 Bkx)

-C(nc-i)/(nc)J (nc-2-Uk) X (1) 3 C1)

where

Uk (nc-2) (nc-c-2) -ncC (n-k)c -2] Bk(2

Whenever possible, k should be chosen to achieve highest

*e efficiency, which occurs when k =n - E2/c3, where 'C2/cJ"

denotes the integer portion of 2/c. Vannman (48:707) also

points out that in the case where 2/c is an integer, and k is

selected for highest efficiency so that k =n -2/c, then

equation (31) can be simplified to:

(c+i) (c+2) (nc-1) n-2/c nc-23bk r riX()xl(nc-2)(nc-c-2) i=i 1 Xi

By substituting this result for bk in equation (30), the

BLUE for a, based on the first n-2/c order statistics, can be

written in the following computational form:
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" _ (c+1) (c+2) n-2/c nc-2
a"k = x(1) (nc-2)(nc-c-2) i=1 c x() c+2

(34)

Once ak has been computed, it is easy to use equation (30) - :*

to find a computational form of the BLUE for b: r

bk = bn_2/c (no-1) (x(1)- ak 35)

Equations (34) and (35) give the BLUEs for location a . -

and scale b provided all of the following conditions apply:

1) shape parameter c is specified

2) 2/n < c < 2

3) 2/c is an integer

When sample size n = 5, 10, 15, 20, 25, or 30, then all three

of these conditions hold for sthae parameter c = .5, 1, or 2.

Therefore, for these values of n and c, it appears that

equations (34) and (35) apply. There is, however, one

important exception. As explained earlier, k must be chosen

so that 2 < k < n+1-2/c. In the case where n = 5 and c =

.5, notice that n+1-2/c =2. Thus k cannot be selected as

before, since it would need to satisfy 2 < k < 2, which is

not possible. As a result, the above equations fail to

provide BLUEs for the special case c = .5 and n = 5; thus,

when c = .5, this thesis will use n = 6 instead of n = 5.

As explained in the next chapter, this thesis uses

sample sizes of n = 5, 10, 15, 20, 25. and 30, with shape
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parameters of c =.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4. The

preceding subsection presented the BLUEs to be used for c

2.5, 3, 3.5. and 4. This subsection has thus far shown that

equations (34) and (35) provide the BLUEs f or c =.5, 1, and

2, except for the special case c = .5 and n =5. The one

remaining case to be addressed is when c =1.5.

When the shape parameter c 1.5, equations (34) and

(35) do not apply since condition 3) fails to hold, i.e., 2/c

is not an integer. To ensure highest efficiency, k is

selected so that k =n - 2/c3, where "12/c3" denotes the

integer portion of 2/c. Thus:

k n-E2/cJ n [-1.3333 = n- (36)

According to Vannman (48:707), substituting this value of k

into equations (30) to (32) gives the desired BLUEs:

=k an-* x "(1) -bn....i(ncl1) (37)

bk =(l/Un-i) ((c+1) n-2 Bi X(i) + (2c-1) Bni1 x(n-1.)L

- E(nc-1)/(nc)3 (nc-2-Un-1.) X(j)) (38)

where

(nc-2) (nc-c-2) -nc (c-2) Bn-I
Uk n-I1

(nc-i) (c+2)
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Summary of BLUEs. For shape parameter c = .5, 1, or 2,

this thesis uses equations (34) and (35) to calculate the

BLUEs for location parameter a and scale parameter b; x..

however, the case c = .5 and n = 5 is omitted, since then

the BLUEs cannot be found. When c = 1.5, the BLUEs are given

by equations (37) to (39). For c = 2.5, 3, 3.5, or 4,

equations (17), (18), (21), (22) and (29) are used to

calculate the BLUEs for a and b. Once the BLUEs have been

computed, the K-S, A-D and C-VM test statistics can be

modified to accomodate unspecified location and scale

parameters. An example will help to illustrate the

calculations involved.

Example 1. In Table I the data listed under the xi

column was generated from a Pareto distribution of shape

parameter c = 2.5, using equation (47) in the next chapter.

A A [
Suppose it is desired to find the BLUE estimators a and b

based on this particular random sample of size n = 10. Since

in this case it is known that c = 2.5, the BLUEs will be

computed from equations (17) and (18). One procedure to

accomplish this is as follows:

Step 1. Arrange the x i sample values in order from

smallest to largest. The resulting order statistics (20:70)

are listed under the x(i) column of Table I.
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Table I

CALCULAT ION OF BLUES

1 1ix() C i1B Bix(i)

1 1.7986 1.0095 .9200 1.0000 .9200 .9287
2 1.0684 1.0586 .9111 .9200 S8382 B8873
3 1.3725 1.0684 .9000 .8382 .7544 .8060
4 1.1779 1.1267 e8857 .7544 .6682 .7529
5 1.4743 1.1779 .8667 .6682 .5791 .6821
6 1.0095 1.3725 .8400 .5791 .4864 .6676
7 4.8304 1.4743 .8000 .4864 .3891 .5737
8 1.0586 1.7986 .7333 .3891 .2854 .5133
9 1.1267 3.9974. .6000 .2854 .1712 .6844
10 3.9974 4.8304 .2000 .1712 .0342 .1652

n-1
D =(c+1) I Bj + (c-1)B =17.873-3

i=1 in

n-i
Y =(c+l) i B. x~i + (c-I)B - =, 4.9407

A
a =X( 1 ) -YfC(nc-1)(nc-2)-ncDJ .9625
AA
b =(x ( 1 )-a) (nc-i) =1. 128

Step 2. Compute each B~ for i=1,2,*"",n using equation

(29). Thus:

For i=1, B1 = 1-2/2.5(10-1+1)3Bo (1-2/25.0)(1.000) =.9200

*For i=2, B2 = t-2/2.5(10-2-1)3B1  (1-2/22.5)(.9200) =B.382

4'

For i=10. B1 0 = tl-2/2.5(10-10+1)J89= (1-2/2.5)(.1712) =.0342
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Table I lists all of the values of C1  I 2/c(n-i+1) and Bi

C1 Di- as computed from equation (29).

Step 3. Use the B~ to compute D from equation (21)z

D =(c+l)(B +B +-+B 9 ) + (c-1)B1

=(2.5 + 1) (.9200+ .8382+""+ .1712) + (2. 5 -1) (0342)

=(3.5) (5.092) + (1.5) (.0342) =17.8733

Step 4. Use the x( 1 ), D, and Bi values to compute Y

from equation (22). Table I lists the values of Dix j 2

Y = (c+1)EB~x ( 1 ) + B2 x(2 )+ --- Bgx(9 ),J + (c-1)Bl0 x(j0 ) -Dx(1 )

= (3.5) (.9287+ .8873+ *'" .6844)

+ (1.5) (.1652) - 17.8733(1.0095)

=(,3.5) (6.496) + .2478 -18.0431 =4.9407

Step5. Ue Y nd to ompue a romequaion 17)

AA

a =~j - /r(nc-1)(nc-2)-ncDJ

=1.0095 -(4.9407)/E(25-1)(25-2) -25(17.8733)3

-1.0095 -4.9407/105. 1675 =.9625

Step 6. Uea to compute b from equation (18):

A
b =(x( 1 )-a) (nc-i) =(1.0095 -. 9625) (25 -1) =1.128
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In this example, then, the BLUEs for a and b arm a = .9625
* A

and b - 1.128. (The xi values were actually generated from a

Pareto distribution with a = b = 1 and c - 2.5). Once the

"- BLUEs have been computed, the test statistics can be

appropriately modified.

Modified Test Statistics

At the end of Chapter II, the standard forms of the

Kolmogorov-Smirnov (K-S), Anderson-Darling (A-D), and

Cramer-von Mises (C-VM) test statistics were presented. To

use these "unmodified" statistics with their existing

critical value tables, all parameters must be specified.

When unknown location and scale parameters are involved, the

.0 test statistics must be modified to generate new critical

value tables before they will produce accurate results. This

section shows how to calculate the modified test statistics

using an ordered sample and the BLUEs described in the

* preceding section. The notation and approach are adapted

from Littell, McClave, and Offen (36:259-260).

Hypothesized Pareto CDF. Before computing the modified

* test statistics, the hypothesized Pareto CDF must be calcu-

lated for each value of the random sample. Let xlX2l"*'Ixn

be a random sample from the Pareto distribution with unknown .. .

location and scale parameters a and b, and known shape c;

and let X(i) denote the ith order statistic (20:70). The !--1
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! I

appropriate BLUEs for location a and scale b (computed from

the previous section), the specified shape c, and the n

ordered Pareto deviates, x(j), are substituted into equation

(15) to calculate the hypothesized Pareto CDF:

A A A A-c
Pi F(x(i);abc) = 1 - C1 + (x(i)-a)/b3c (40)

for i = 1,2, " ,n. Note that for a given shape c (e.g.,

c=2.5 or c=4) and sample size n (e.g., n=10 or n=30), a

specific, fixed pair of location and scale values (e.g.,

a=b-1 or a-0, b=1) is used to produce the random Pareto L .
deviates needed to compute the hypothesized CDF. This can be

done without loss of generality because, as discussed in

Chapter iX, the use of invariant estimators (in this case the

BLUEs) for location and scale ensures that the distribution

of the test statistic depends only on the shape c and sample

size n, and is independent of location and scale (36:260). I.

Example 2. In Example 1, the BLUEs for location a

and scale b were found from a sample of size nilO generated L

from a Pareto distribution having shape c-2.5. In this

example, the same sample of values x 1 ,x2 , .,x1 O will be used

to compute the hypothesized Pareto CDF from equation (40). "

Table I contains the values obtained while making the . .

calculations. The columns for xi and x(i) are duplicated

A A
from Table I. The BLUEs a and b are as derived in Example 1.
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Table II

CALCULATION OF HYPOTHESIZED PARETO CDF b

i x i  iMi N P

1 1.7986 1.0095 .0470 .0417 .9030 .0970
2 1.0684 1.0586 .0961 .0852 .8151 .1849
3 1.3725 1.0684 .1059 .0939 .7990 .2010
4 1.1779 1.1267 .1642 .1456 .7119 .2881
5 1.4743 1.1779 .2154 .1910 .6460 .3540
6 1.0095 1.3725 .4100 .3635 .4607 .5393
7 4.8304 1.4743 .5118 .4537 .3925 .6075
8 1.0586 1.7986 .8361 .7412 .2500 .7500 -
9 1.1267 3.9974 3.0349 2.6905 .0382 .9618
10 3.9974 4.8304 3.8679 3.4290 .0242 .9758

M i = x(i) - a = X(i) - .9625
A

Ni = Mi I b = Mi I 1.128

0 = (1 + N )- = (1 + N -)
iL

Hypothesized Pareto CDF: Pi = 1 - 0 i

Modified K-S Statistic. After computing all n of the

values of P1 from equation (40), the modified Kolmoqorov-

Smirnov test statistic is found from equation (4) by

substituting P1 in place of z i in equation (5). Thus the

modified test statistic in computational form is:

D = max (D+ , D-) (41)

wvhere

D+  sup C(i/n)-P i 3 and D = sup rPi-(i-1)/nJ (42)

r
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Table III

CALCULATION OF MODIFIED K-S TEST STATISTIC

i Xli I  Pi i/n 1i-1)/n Di Di- .

1 1.0095 .0970 .1 .0 .0030 .0970 k
2 1.0586 .1849 .2 .1 .0151 .0849
3 1.0684 .2010 .3 .2 .0990 .0010
4 1.1267 .2881 .4 .3 .1119 -. 0119
5 1.1779 .3540 .5 .4 (.1460) -. 0460
6 1.3725 .5393 .6 .5 .0607 .0393
7 1.4743 .6075 .7 .6 .0925 .0075
8 1.7986 .7500 .8 .7 .0500 .0500
9 3.9974 .9618 .9 .8 -. 0618 (.1618)
10 4.8304 .9758 1.0 .9 .0242 .0758

Di + = (i/n) - Pi = i/10 - Pi

D = sup [(i/n)-Pi = .1460

Di Pi -(i-1)/n P1 -(i-1)/10

D- = sup EP1 -ti-1)/nJ = .1618

K-S Statistics D max (D+ , D-) = .1618

Example 3. Once the hypothesized Pareto CDF is

computed, the values can be used to calculate the modified

K-S test statistic. Table III continues the previous

examples by showing the computations involved in calculating

the modified K-S test statistic. As before, the calculations

are based on the n-10 order statistics introduced in example

1, and the values Pi of the hypothesized Pareto CDF as

computed in example 2.
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Table IV

CALCULATION OF MODIFIED A-D TEST STATISTIC
J1

P. Pn+l-j L. M. N. (2j-1)N.

1 .0970 .9758 -2.3330 -3.7214 -6.0544 -6.0544 --*

2 .1849 .9618 -1.6879 -3.2649 -4.9528 -14.8584 A
3 .2010 .7500 -1.6045 -1.3863 -2.9908 -14.9540
4 .2881 .6075 -1.2444 -.9352 -2.1796 -15.2572
5 .3540 .5393 -1.0385 -. 7750 -1.8135 -16.3215
6 .5393 .3540 -.6175 -. 4370 -1.0545 -11.5995
7 .6075 .2881 -. 4984 -. 3398 -. 8382 -10.8966
8 .7500 .2010 -.2877 -. 2244 -. 5121 -7.6815
9 .9618 .1849 -.0389 -. 2040 -. 2429 -4. 1293
10 .9758 .0970 -.0245 -. 1020 -. 1265 -2.4035

n
(2j-1)N. = -104.1559j=l a ;"

LlIn P M ln(-P.) N.L.+M1-aPnf+l-j a a a

n
A 2 = -n - (1/n) . (2j-1)[ln P. + ln(l-Pn+l_.j )3

= -10 - (1/10)(-104.1559) = .4156

Modified A-D Statistic. The modified Anderson-Darling

test statistic is computed by substituting P. from equation

(40) in place of z. in equation (9). Thus the computational

form of the modified A-D test statistic is:

n
A2 =-n (1/n) I (2j-1)Eln P. + ln(i-P ) (43)1- a 1-nl1-i

Example 4. Table IV shows the calculations

involved in finding the value of the modified A-D test

statistic. The P. values are as computed in example 2. '-
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Table V

CALCULATION OF MODIFIED C-VI TEST STATISTIC

2-1 (2j-1) (2j-1),';-j F~j 2 - Pj _ , PjJ 32i
2n 2n 2n

1 .0970 .05 .0470 .0022
2 .1849 .15 .0349 .0012
3 .2010 .25 -. 0490 .0024
4 .2881 .35 -. 0619 .0038
5 .3540 .45 -. 0960 .0092
6 .5393 .55 -. 0107 .0001 .
7 .6075 .65 -.0425 .0018
8 .7500 .75 .0000 .0000
9 .9618 .85 .1118 .0125
10 .9758 .95 .0258 .0007n

= .0339

j-1

IW2 = E1/(12n)] + E [P. - (2j-1)/2n] 2

= (1/120) + .0339 - .0423

Modified C-VM Statistic. The computational form of

the modified Cramer-von Mises test statistic is found from

equation (7) by substituting P. for z.-

n -

W2 [1/(12n)1 +" EP. - (2j-l)/2n]2  (44)

Example 5. Table V shows the calculations

involved in finding the value of the modified C-VM test

statistic. The P. values are as computed in example 2.
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*Chapter Sumr.. .. ~ t .-y 2.. .%

Several applications for the Pareto distribution have

been found in economics and operations research. It has

*. played a major role in investigating the distributions of

city population size, natural resources, stock price

fluctuations, and oil field locations. Other studies show

the Pareto can be used to model phenomena which may apply to I
Air Force interests, such as time-to-failure of equipment

components, maintenance service times, nuclear fallout

dispersion, and error clusters in communications circuits.

There are three basic forms of the Pareto distribution,

each of which is a special case of the three-parameter form.

The greater generality of the three-parameter form allows the

Pareto distribution to be more useful in practical applica-

tion. Various methods have been explored for estimation of

Pareto parameters; but the best linear unbiased estimator ,

(BLUE) is the only estimator known to possess the required

invariance property for the three-parameter form.

For shape parameter c - .5, 1, or 2, the BLUEs are

computed from equations (34) and (35). When c = 1.5, the t A

BLUEs are given by equations (37) to (39). For c = 2.5, 3,

3.5, or 4, the BLUEs are computed from equations (17), (18), J
(21), (22), and (29). The BLUEs are used to compute the

* hypothesized distribution function from equation (40). The

modified K-S, A-D, and C-VM test statistics can then be found

using the methods presented in the next chapter.
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IV. METHiQ.D LO9"

Chapter Overview

This chapter describes the basic principles and specific

procedures used to satisfy the research objectives of this

thesis. Foremost is the Monte Carlo method used to generate

the critical value tables of the modified K-S, A-D, and C-VM

goodness-of-fit tests for the three-parameter Pareto

distribution when only the shape parameter is specified.

Basic Principles

This section deals with some of the basic principles

used to generate critical values. It begins with an overview..

of the Monte Carlo method in general. Next is discussed the

inverse transform technique used to generate random Pareto

deviates. Then the selection of critical values is

discussed. Finally, the use of plotting positions to

determine percentiles is explained.

The Monte Carlo Method. Mathematics can be divided

into theoretical and experimental categories. The primary
h

distinction is that "theoreticians deduce conclusions from

postulates, whereas experimentalists infer conclusions from

observations" (21:1). The Monte Carlo method is a branch of

experimental mathematics involving experiments using random

4-1
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-. numbers. It has been used extensively in statistical

analysis, operational research, nuclear physics, and several k

other fields where there are problems not easily solved by

theoretical mathematics alone (21:2).

An important feature of the Monte Carlo method is its

usual reliance on computers to simulate random processes

(10:2). Also known as the method of statistical trials, it

is basically a system of techniques which allows the modeling

of random processes conveniently by digital computer. Before

the advent of the computer, a study of a random process was

considered to be complete when it was reduced to an analyti-

cal description. The computer has now made it convenient in

many cases to solve an analytical problem by reducing it to a
I random process and then simulating that process (10:vii).

Thus a basic principle of the method involves simulating

statistical experiments through computational techniques, and

then analysing numerical characteristics observed from these

experiments (10:ix). For this reason, the Monte Carlo method

can be defined as "the construction of an artificial random

process possessing all the necessary properties, but which is

in principle realizable by means of ordinary computational

apparatus" (10:2).

The Monte Carlo method is typically used to solve

problems of two basic types. A detmrAiinistic problem has no

direct association with random processes. In this case the

Monte Carlo method is often used when the problem can be

4-2
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formulated in theoretical language but cannot be solved by

theoretical means. Usually the approach is to recognize the

underlying problem structure as resembling some apparently --

unrelated random process, and then solve thw deterministic

problem numerically by an appropriate Monte Carlo simulation. - -

In the case of a probabilistic problem, the Monte Carlo

method is directly concerned with the behavior and outcome of

random processes. The approach is to observe random

variates, chosen so that they directly simulate the physical

random processes of the original problem. The desired

solution is then inferred from the behavior of the random

numbers (21:2-4). The latter Monte Carlo approach was used

in this thesis to generate the critical value tables for the

goodness-of-f it tests.

The main weakness in the Monte Carlo method is that the

answers it produces are to some degree uncertain since they

are inferred from raw observational data consisting of random

numbers. This weakness must be accounted for because:

Whenever one is inferring general laws on the

basis of particular observations associated with
them, the conclusions are uncertain inasmuch as
the particular observations are only a more or
less representative sample from the totality of
all observations which might have been made.
Good experimentation tries to ensure that the A
sample shall be more rather than less representa-
tive . . . [Monte Carlo answers] can nevertheless
serve a useful purpose if we can manage to make
the uncertainty fairly negligible, that is to say
to make it unlikely that the answers are wrong by
very much E21:4-53.
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Thus there is usually no cause for concern if the uncertainty

is negligible for practical purposes. .

One way of reducing uncertainty is to base the Monte ..

Carlo analysis on a larger number of observations. However,

economic and time constraints must be considered. "Broadly

speaking, there is a square law relationship between the

error in an answer and the requisite number of observations;

to reduce it tenfold calls for a hundredfold increase in the

observations, and so on" (21:5). Therefore, to avoid using

an inordinate amount of computer time, and to conserve

financial resources, this thesis follows the common practice

(9;43;49;52;54) of using 5000 repetitions rather than, say,

10000 in performing the Monte Carlo analysis.

The Inverse Transform Technique. To apply the Monte

Carlo method to the problem at hand requires random samples

from the Pareto distribution. The most practical way to

obtain such samples is to use a computer program to produce a

group of n numbers that seem to come from a Pareto popula-

tion. In terminology adapted from Conover (13:323-324,360),

these n numbers are called "random Pareto deviates" because

they are deliberately generated to resemble observations on

independent Pareto random variables. Previous AFIT theses

(9,-43;49; etc.) involved distributions for which computer

programs to generate random samples were already available

from the International Mathematical Statistics Library
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(IMSL). IMSL does not contain a similar subroutine for the

Pareto distribution; therefore, a computer program needed to

be written to generate random Pareto deviates. - -

One common method of using a computer to generate ran-

dam samples from a given distribution is to first generate a

uniform random sample on (0,1) and then transform it into a

new sample having the desired distribution. This method,

called the inverse transform technique, uses the fact that

the random variable R = F(X) is uniformly distributed on

(0,1), where X is a random variate (5:293-298). Thus, every

variate is related to the uniform variate on (0,1) through

its own inverse distribution function (26:22). Therefore, a

set of uniformly distributed random numbers is required to

generate a random sample from the Pareto distribution. -

Conveniently, most random number generators are

designed to generate random numbers which are uniformly

distributed on the interval (0,1) (5:293). Hence, the .

inverse transform technique can be directly applied to a set

of these random numbers to generate random Pareto deviates.

However, the technique requires that for each random number

r, the equation r = F(x) must be solved for the correspond-

ing value of x F-1 (r). Therefore the technique is

practical only when the CDF F(x) has an inverse which can be

computed explicitly (5:294). Fortunately, the inverse

transformation for the Pareto distribution can easily be

expressed in closed form.
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The inverse transform technique can be accomplished by

the following four-step procedure (5:294-295): R

Step 1. Compute the cumulative distribution

function (CDF) of the desired random variable X. In this

case, the CDF is the three-parameter Pareto CDF, given by fr..

equation (15) and repeated here for convenience:

F(x) = 1 - It + (x-a)/b] - c for x > a; bc > 0 -

Step 2. Set FX) = R on the range of X, where

X represents a random Pareto variable. This then becomes:

1 - [1 + (X-a)/b -c = R for x > a (45)

Since X is a random variable (with the Pareto distribution in

this case), then R is also a random variable. In fact, R has

a uniform distribution over the interval (0,1) (5:295).

Step 3. Solve F(X) in terms of R to find X =

F-1 (R). In this case the inverse is found by solving

equation (45):

1 - El + (X-a)/b]- c = R

[1 + (X-a)/b - c = 1 - R

tb/b + (X-a)/b - c  1 - R -- '-

(b + X - a)/b = (1 - l / c

b + X - a = b(l - R)-l/c

Therefore X = (a - b) + b(1 - R)-/c = F-'(R) (46)
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Equation (46) is called a "random variate generator" (5:295)

for the Pareto distribution. As explained in the discussion

following equation (40), a specific, fixed pair of location

and scale values can be used to generate the required

deviates without loss of generality. For this thesis, the

Pareto deviates were generated using location and scale para-

meters of 1. Substituting a=b=l into equation (46) gives:

X = a b + b(l R)- /c

=1I- 1 + 1(1 -R)-
1/c

= (1 - R) -  (47)

Since R is uniformly distributed from 0 to 1, then so is l-R;

thus R can replace 1-R in equation (47) to yield the

particular random variate generator used to produce the

random Pareto variates for this thesis:

X = R -1/c = (l/R)1/c (48)

Step 4. Generate n uniform random numbers

R1,R2"',Rn and compute the n random Pareto deviates from

equation (48). The random numbers used for this thesis were

generated on the AFIT VAX/VMS computer system using the IMSL

subroutine GGUBS. Like most ran~dom number generators *

(5:293), GGUBS is designed to generate random numbers which
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are uniformly distributed on the interval (0,1). Therefore,

the inverse transform technique was applied to these random .

numbers to generate random Pareto deviates. -1

In step 3 of the inverse transform procedure, the

choice of the location and scale values is arbitrary, and I

was used here for convenience. It should be noted, however,

that the deviates can be easily transformed into deviates

from a different Pareto distribution (i.e., one having the

same shape c but different location a' or scale b'). The

transformation stems from the fact that all variates having

the same shape can be expressed in terms of the variate

having location 0 and scale 1, as follows (26:21-22):

Xa,b = b (0 ,1  a (49)

where Xa,b denotes a Pareto variate with location a and scale

b and XO, 1 is a Pareto variate with location 0 and scale 1.

The transformation to the different variate is then found by

expressing the given variate in terms of the 0,1 variate,

since:

la,b b X0,1 + a implies 10 1 = (a b - a)/b

Thus Xab , = b' X + a = b'[(Xa,b - a)/b + a' (50)X~b O, -a/]ra

Therefore, given a variate having a specific pair of
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7 7.. . .
.. . . . . . . . .. . . . . . .°



values for location and scale, equation (50) can be used to

transform the variate to one having a different pair of

location and scale parameters. For example, the transfor-

mation from a variate having location and scale a=b=l to one

having location a'=2 and scale b'=3 is given by: ...

1 3X 0 ,1 + 2 = 3(X 11,1 - 1)/13 + 2 = 3X1 , 1 - 1
X2,3

The random Pareto deviates generated by the inverse

, transform technique were used ultimately to compute values of

* the modified K-S, A-D, and C-VM test statistics. However,

these test statistics can only be useful if their distribu-

tion functions are at least partially known (13:31). Thus,

many test statistics were computed to determine the empirical

distribution. Critical values were then identified using a

plotting positions technique. Before examining the plotting

positions technique, it may be helpful to understand how

critical values are chosen.

Identifying Critical Values. The use of random

deviates to generate critical value tables is based an the

concept of hypothesis testing mentioned in Chapter II. Each

group of n Pareto deviates represents a simulated sample from

a parameter-specified Pareto distribution. This makes the

null hypothesis "Ho: H(x) = the Pareto CDF" true for each

sample of n random Pareto deviates. For each of the three
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tests (K-S, A-D, and C-VM), equations (41) - (44) were used

to compute 5000 independent values of the test statistic

under the condition that H0 is true (13:361). These 5000

values were then arranged in ascending order to form sets of

5000 order statistics. To determine critical values from

these 5000 statistics (15000 total for all three tests), it

is necessary to identify somehow the "critical region", i.e.,

the set of all values of the test statistic that would result .

in the erroneous decision to reject the true null hypothesis

(13:78). Once the critical region is identified, then the

critical values can be selected according to a desired "level

of significance", or (X, which is the maximum probability of

rejecting a true null hypothesis. Since the use of random

Pareto deviates to compute the test statistics ensures that

H0 is true, Ot can be found by determining the probability

that the test statistic will assume a value that falls within

the critical region (13:78).

Since H 0 is true and a2 is the maximum probability of

rejecting HO, then the minimum probability of correctly

accepting H 0 is 1-- . This value of 1-a0 represents a

certain percentile of the 5000 ordered test statistic values.

For example, the 99th percentile is some number that the test

statistic will exceed with probability .01 or less and will ,

be less than with probability .99 or less (13:29). It is

this percentile relationship that is used to select critical-

- . values from the 5000 test statistics.

4-10

-2o. -..



One possible method of using the percentiles to deter-

mine critical values is to simply select the test statistic

value corresponding to the desired percentile level and make

that the critical value. For example, under this method, out

of a set of 5000 ordered test statistic values, the critical

value for the 90th percentile would simply be the 4500th

value (52:6). This method has some disadvantages, however,

especially when the test statistics, which represent a

discrete distribution, are used to determine critical values

for a continuous distribution. More recently, the plotting

position technique has become popular as a more accurate . "

method of selecting critical values for continuous

distributions (43:7).

The Plotting Positions Technique. The plotting posi-

tions technique is one popular method of determining percen-

tiles of the distribution underlying a se of n ordered 1.

sample values (24:1619; 25:317). The technique involves

using a large number of discrete values of the ordered test

statistics and locating them on a continuous spectrum by

representing the spaces between them as piecewise linear

functions. This makes it possible to linearly interpolate

the desired percentiles between discrete values of the test

statistics, thus obtaining more accurate critical values

(43:7; 52:.6).

Each ordered value may be assigned a plotting position
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which is its cumulative probability, thus allowing each order

statistic to be mapped onto a probability scale from 0 to 1.

, k - m  
'

As seen from equation (2), the distribution function of these

n observations is a step function which jumps from (i-1)/n to

i/n at the ith order statistic of the sample. However, if

the plotting position i/n is used, the largest value cannot

be plotted, while if (i-1)/n is used, the smallest value

cannot be plotted (24:1615). Therefore, numerous alternative

plotting conventions have been proposed, most of which have

been summarized by Harter (24), who presents various

arguments for and against each. Harter also conducted a

Monte Carlo analysis of plotting positions for several

distributions and concluded that . . . the optimum choice of

Ee plotting positions depends not only on the purpose of the

investigation, but also (definitely) on the distribution of

the variable under consideration" (25:342).

While Harter made no specific recommendation for the Li

Pareto, he did observe that, "As samples increase above a

sample size of 20, the differences among the positions

determined by any method of estimation decrease to the point L2

where they are practically unimportant" (24:1621). He also

noted that "in practice, plotting positions differ little

compared with the randomness of the data" (24:1622). Since

this thesis employed 5000 independent values of each test

statistic, well in excess of the 20 cited by Harter, use of a

single plotting convention seems justified.
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The plotting convention selected for this thesis is the .

median rank., which is closely approximated by the plotting .'

position (24:1617): V

Yi= (i-0.3)/(n+0.4) (51)

where i -1,*',n and for this thesis, n-5000. Thus each Yi

value lies in the interval (0,I). The median ranks position

yields median unbiased estimates of xi for a specified F(x i )

and of F(x i ) for a specified xi (24:1625). Also, in highly

skewed distributions, the median ranks position tends to be

more accurate than other conventions (31:300). Another

advantage is that values of the median ranks have been

tabulated for sample sizes of 1 to 50., i.e., n = 1(1)50

(31:486-489). - -P"..

A detailed illustration showing how to use plotting

positions to determine critical values was presented by Ream

(43:11-23), and will only be summarized here. In graphical

terms, the technique effectively plots the 5000 ordered test

statistic values X( 1 ),X( 2 ),''",X( 5 0 0 0) along the abscissa_ ,

(horizontal) axis and the 5000 plotting position values

Y1,Y2,...,Y 5 0 0 0 computed from equation (51) along the

ordinate 'vertical) axis. These values are assigned to [ ___

*. positions 2 to 5001 on their respective axes. On the

vertical axis. the interval 0,1 is completed by entering

the endpoints YO = 0 at the 1st position and Y5 0 0 1 = 1 at the
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5002nd position. The corresponding endpoints on the

horizontal axis are found by linear extrapolation. Thus, in

using the computer to program this technique, the arrays

corresponding to the horizontal and vertical axes are each

composed of 5002 entries, i.e., the original 5000 values and

two extrapolated endpoints.

To map the collection of 5000 discrete values onto a

fully continuous line between 0 and 1 requires extrapolation

of the endpoints of the plotting axes. The first point on

the horizontal axis, X(o), is computed by linearly extrapola-

ting from the second and third points (i.e., the first and

second order statistics), subject to a non-negativity

restriction. Extrapolation is performed by using the

standard linear slope-intercept formula Y = mX + b to

compute the endpoints X(o) and X(5 0 0 1)- To find the first

endpoint on the horizontal axis, the slope is calculated by:

Y2 -Y1 ""-m= (52)

X(2 ) -X-.)

and the intercept is:

b Y 1 - m X(1 ) (53)

Then the lower endpoint X(o) is found by:
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X(o) -(Yo b)/m -(0-b)/m -- b/rn

The nonnegativity restriction means that whenever -b/rn < 0,

then X(Q) is simply set to 0. Thus:

pX(o) -max (0,-b/n) (54)

The higher endpoint X(5001 ) is found in the same way as

the lower endpoint. The slope is

Y5 0 0 0 - V4 9 9 9 (55)
X(50 00) - X(4 999)

K and the intercept is.-

b Y 4 99 9 -mX( 4 9 9 9 ) (56)

.Then the second endpoint X( 5 0 0 1 ) is extrapolated by:

X(501 (Y50(), b)/m =(1-b)/m (57)

Once the endpoints are added to the abscissa and

ordinate axes, the 5002 discrete points on the graph are

connected" by straight lines, thus producing a completely

continuous, piecewise linear function. The range of this. -

continuous function is the interval £0,1] and contains the

5000 median rank values as well as the endpoints 0 and 1.
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Its domain contains the set of 5000 test statistic values and

their 2 extrapolated endpoints.

As shown in Figure 5, the desired critical value for a

given percentile is found by linearly interpolating between

two of the 5002 points used to construct the now continuous

graph. For example, to find the 95th percentile (C = .05),

the largest plotting position Y. is found such that Y. < .95;

thus Y jI. is the first position greater than .95. Then the

critical value corresponding to the 95th percentile is found

by linearly interpolating between the points (X(,), Y.) and

(X(j+1 ), Y,+ 1 ) using the formulas:

Yj+l Yj -2"-
U = (58).x(.j. - x.+ [,.

b = - m X(j) (59)

C = (p - b)/m (60)p

where Cp is the critical value for the the lOOpth percentile.

For this thesis, critical values were calculated for p = .80,

.85, .90, .95, and .99, corresponding to the levels of

significance C e .20, .15, .10, .05, and .01.

The specific plotting position procedure performed for

this thesis is described in step 7 of the next section.
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PLOTTING
POSITIONS

Y5 0 0 1  =1

Y5000

(X (.+ l) -

Vj+1

.. - . -L
p . . . . . . . . . . . . . . . . . ... .:-:: P.).

(X( j )Yj)

V2 -

Y 0 0 9%'% MP 
4 ' VI-II

X(0 ) X( 1 ) X(j) p (j+l) X(50 00 ) X( 5 0 0 1 )

VALUES OF K-S, A-D, OR C-Vl TEST STATISTIC

Fig 5. Using Test Statistics X(.) and Plotting Positions Y.

.3.

to Find Critical Value Cfor the 100 Cp)th Percentile
(p .99, .95, .90 .85. 80).
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U7.

Specific Procedures

By applying the basic principles and techniques -
"

described in the previous section, the K-S, A-D, and C-VM

tests were modified to produce new goodness-o--fit tests for

the Pareto distribution.

The research effort was performed in three stages, each

corresponding to one of the three research objectives listed t,.

in Chapter I. The first stage consisted of a nine-step Monte

Carlo simulation procedure to produce critical value tables

for the modified K-S, A-D, and C-VM tests. The second stage

"- of the research compared the powers of the three modified

tests using eight alternative distributions. Finally, a

4. regression analysis was performed to determine the functional

relationship between the critical values and the shape

parameters. Computer programs were written to accomplish the

first two stages. The third stage was performed manually by

using a hand calculator to compute linear relationships by

the method of least squares.

Stage 1: Generating Critical Value Tables. During the

'first stage, critical value tables were generated using Monte

Carlo simulation. A FORTRAN computer program was written for

this purpose and is contained in Appendix A. The accom-

panying flow chart illustrates the logic flow of the program.

The following nine steps outline the procedure used:
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Step 1I Generate the Data. Random deviates f or

a given sample size n were generated from a specified Pareto

distribution by using the IMSL routine GGUBS to generate n

random numbers, and then applying the inverse transform

technique (equation 48). b A

Step 2 - Order the Data. Next, the n random

deviates XlX2,'''xn were converted to order statistics

X(1)X(2),"*,X(n) by arranging them in ascending order using

the IMSL subroutine VSRTA.

Step 3 - Estimate the Parameters. The ordered

Pareto deviates were then used to find the best linear

unbiased estimates of the scale and location parameters as

explained in the "Summary of BLUEs" section of Chapter 111.

f . Step 4 - Compute the Hypothesized CDF. The L .

estimated parameters found in step 3 were used with the n

ordered Pareto deviates from step 2 to calculate the

hypothesized cumulative distribution function (CDF) Pi for

i=1.2,-",n (equation 40 in chapter III).

Step 5 - Calculate the Test Statistics. Based on

the hypothesized CDF and the BLUEs, the modified K-S, A-D.

and C-VM statistics were next calculated using equations

(42), (43). and (44).

Step 6 - Generate 5000 Statistics. Each of these

five steps were repeated 5000 times to generate 5000

independent K-S. A-D, and C-VM statistical values
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Step 7 - Find the Critical Values. For each of

the three tests, the 5000 statistics were ordered as in step

2. Using the median ranks plotting position technique

(equation 51), the 80th, 85th, 90th, 95th, and 99th

percentile% of the distributions of each test statistic were

calculated by linear interpolation. These percentiles

correspond, respectively, to the .20, .15, .10, .05, and .01

levels of significance and served as the critical values for

the modified K-S, A-D, and C-VM goodness-of-fit tests. The

specific step-by-step process was to:

a. Use the IMSL subroutine VSRTA to order the

5000 test statistics, thus forming the 5000 order statistics

x X
(11, (2), , 15000)"-'2 -

b. Use equation (51) to compute the 5000 L_.

plotting positions Y 1 ,Y2 ,',Y 5 0 0 0. Also, set YO = 0 and

Y5 0 0 1 = 1.

c. Use equations (52), (53), and (54) to find L

X(O). Similarly, use equations (55), (56), and (57) to find

. X ~(5001)'"...

d. For a given p, find the largest Y such that

Y < p; then use equations (58), (59), and (60) to find the

critical value Cp representing the 100(p)th percentile.

Repeat this step for p = .80, .85, .90, .95, and .99. V

Step 8 - Repeat for Sample Sizes. To evaluate

the effect of sample size on the critical values, steps I

through 7 were repeated for each sample size n. This thesis
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followed the common practice (9:15) of using sample sizes of

n equal to 5., 10, 15, 20., 25, and 30. "

Step 9 - Repeat for Shape Parameters. Steps 1

through 8 were repeated for specified shape parameters 0.5,

1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0. The critical values

were then arranged into tabular form and appear in Chapter V,

Tables VI VIII.

Stage 2: Comparing Power. The second stage of the

research compared the powers of the modified K-S, A-D, and

C-VM tests against the Chi-square to determine which test can

best detect a false Pareto distribution hypothesis. As

explained in Chapter II, the power of a statistical test is

t0 the probability of correctly rejecting a false null

hypothesis. The null hypothesis that a set of sample

deviates follows a Pareto distribution with a specified shape

parameter was tested against the alternative hypothesis that

the sample deviates follow some other distribution:

HO: Sample deviates follow a Pareto CDF with shape c

HI: They follow some other distribution

For this thesis, the power study was conducted for both c = 1

and c = 3.5 in the null hypothesis.

The Chi-square portion of the study was per'ormed as

described by Banks and Carson (5:352-356) using five
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equiprobable (ie, p = .20) class intervals (or cells) with
expected frequencies of 3 observations per cell for n = 15

and 5 per cell for n = 25. The endpoints of each cell were

computed from the Pareto CDF (equation 15) as follows:

F(e i ) = 1 - 11 + (ei  a)/b3- c (61)

where el, 02, e3 , e4 represent the right endpoints (maximum

value) of the first four cells. Since F(e-) is the

cumulative area from 0 to ei, then F(e i ) = ip = .2i, so

equation (61) leads to: pet

.2i = I - El + (ei -a)/b
- c

.I + (ei - a)/b]- c = I -. 2i

1 + (ei - a)/b = (1 -2 - / c

b + e i - a = b(1 -. 20 - 1 c

ei = a - b + b(l - .2)-1/c

After substituting the BLUEs for location and scale into this

last expression, the right endpoints were found by:

A A A
e= a - b + b(1 - .2i'/c (62)

Assuming a true Pareto null hypothesis, the four endpoints

el,...,e 4 essentially divide the real line into five

equiprobable class intervals. Given a random sample, the
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number of observations occuring within each cell were

counted. The Chi-square test statistic was then computed by
I. *

(5:350):

5
X =I (0i _ E)2 ]/E (63)

where 0i is the number of observations occuring in cell i and

E = n/5 is the expected frequency in each interval. The

distribution of this test statistic approximately follows a

chi-square CDF with s-i-k degrees of freedom (13:194) where s

is the number of cells (i.e., s = 5) and k is the number of

parameters estimated from the sample (i.e., k = 2). L-
Using the IMSL subroutines GGWIB, GGAMR, GGBTR, GGEXN,

* and GGNML, random deviates from different distributions of

* sample size n were generated. The alternate distributions

used were, respectively, the Weibull at shape parameter 3.5,

the Gamma at shape parameter 2.0, the Beta at parameters P = ."..

2 and Q = 3, the exponential with mean = 2, and the normal

* distribution. Also tested were three sets of Pareto deviates

generated by a FORTRAN subroutine. The first Pareto deviate

set was generated using a b = c = 1.0; the second set used

a = 2, b = 3, and c = 3.5; the third used a = 10, b = 5, and

c = 2.0. Five thousand random samples of size n were

* 44
generated for each of the alternate distributions.

The K-S, A-D, C-VM, and Chi-square test statistics were --

then calculated under the null hypothesis that the random

4-23
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deviates follow the Pareto distribution with specified shape

c = 1.0 or 3.5. To determine whether to reject the null

k
hypothesis, the calculated K-S, A-D, and C-VM statistics were

compared to the corresponding critical value obtained in

stage one. The computed Chi-square test statistic was

compared against two sets of critical values. The first set

was taken from a standard table of Chi-square critical values

(13:432) based on 2 degrees of freedom. The second set of

critical values was generated by using equations (62) and

(63) and applying the 9-step, 5000-repetition Monte Carlo

procedure described in the previous section.

This procedure of comparing test statistics against

critical values was repeated 5000 times for each distribution

and test. The number of times each statistic exceeded the

respective critical value was counted for each sample size.

This total, representing the number of rejections of the null

hypothesis, was divided by the total number of tests

performed (5000), to yield an hypothesis rejection quotient.

For a random sample generated from the hypothesized Pareto

distribution, the quotient represents the rate of erroneous

rejection of a true null hypothesis; thus, it is expected to

be approximately the level of significance a, which is the

probability of committing a Type I error (13:78). In those

cases involving random samples generated from an alternative

distribution, the quotient represents the power of the test.

since it approximates the probability of correctly rejecting
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"- .-.. a false null hypothesis (13:79).

A FORTRAN program, written to compute the hypothesis

rejection rates and accomplish the power study, is contained

in Appendix B. Figure 7 in Appendix B shows how the program

used the following 9-step process:

Step 1. Use IMSL or inverse transform to

generate n random deviates from a selected distribution. .. J

Step 2. Assume the null hypothesis that this set

of n deviates follows the Pareto of given shape c = 1.0.

Then perform steps 2-5 of the previous section to compute the

* values of the Chi-square (eqn 63) and modified K-S, A-D, and

- C-VM test statistics (eqns 42-44).

Step 3. For a given level of significance a,

compare the test statistic value against the appropriate

critical value found in the previous section. If the test

statistic value equals or exceeds the critical value, H0 is

rejected.

Step 4. Repeat steps 1-3 5000 times, each time

using a different seed to generate the deviates.

Step 5. Count the number of times H0 was

rejected and divide by 5000 to obtain the power.

Step 6. Repeat steps 1-5 for each alternative

distribution considered.

Step 7. Repeat steps 1-6 for sample sizes n = 5,

* 15, and 25.
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, -"_ Step B. Repeat steps 1-7 for i = .05 and .01.

Step 9. Repeat steps 1-8 using hypothesized

Pareto shape c = 3.5. The power values were then arranged

into tabular form and appear in Chapter V, Tables IX and X.

Stage 3: Determining Functional Relationship. The

third and final stage of the research was to determine what

(if any) functional relationship exists between the shape

parameter and the critical values generated. This relation- .

ship can then be used to interpolate critical values

* corresponding to parameters not found in the generated

L-A
tables.

To accomplish this stage, shape parameters and critical

values were examined for linear relationships. In an attempt

to "fit" the data to a line, a linear regression was

performed using the method of least squares (13:263-271),

which minimizes the sum of the squares of the deviations of

the actual data points from the straight line of "best" fit

(5:359-363). Where applicable, the correlation coefficient

(13:250-251) was also found.

Linear regression is a caiability available on many

hand calculators currently on the market, so it was

unnecessary to write a separate computer program to perform

this function. For each level of significance and sample

size, critical values from Tables VI - VIII were paired

against a corresponding Pareto shape parameter. The '.
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regression and correlation coefficients were then obtained

manually by using the linear regression keys on a Texas -

Instruments TI-55-II calculator. The results are contained

in Chapter V, Tables XI and XII.

Chapter Summary

The research for this thesis was performed by applying

the Monte Carlo method using 5000 repetitions to generate

critical value tables and a power study.

In stage 1, random Pareto deviates were generated by

using the inverse transform technique, and 5000 test

statistics were computed for each test. The median ranks

platting positions techniqup was then used to select critical .*.-.

values from the 5000 test statistics. In stage 2, the powers

of the modified K-S, A-D, and C-VM tests were compared

against the power of the Chi-square test. The calculations

were performed by computer programs written to accomplish a

9-step Monte Carlo procedure. Stage 3 involved manual

calculations based on the method of least squares to find

linear relationships between shape parameters and critical

values.

The results of this research are presented in the next

chapter.
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V. RESULTS AND APPLICATION

W- X

Chapter Overview

This chapter shows the results obtained from carrying

out the methodology described in Chapter IV. In response to

the three research objectives listed in Chapter 1, tables of

critical values for the modified K-S, A-D, and C-VM tests are

presented. Also included are tables comparing powers of the

K-S, A-D, and C-VM statistics against the Chi-square. Tables

of regression coefficients are presented as well. The use of

the tables is explained, and an example is described.

Critical Value Tables

Table VI contains critical values for the modified

Kolmogorov-Smirnov Test. The modified Anderson-Darling

critical values appear in Table VII. In Table VIII, the

modified Cramer-von Mises critical values are presented.

Critical values are presented for each level of significance

S= .20, .15, .10, .05, and .01; sample sizes n = 5, 10,

15, 20, 25, and 30; and Pareto shape parameters .5., 1, 1.5.

2, 2.5, 3, 3.5, and 4. It is important to note that for

shape c = 0.5, the presented critical values correspond to

sample size n = 6 instead of n = 5. As explained in Chapter

11 , this exception is necessary since the BLUEs could not be

computed for the case where c .5, n = 5. P.

•* -: 5 -1.



Table VI

CRITICAL VALUES FOR THE MODIFIED KOLtIOGOROV-SMIRNOV TEST .

-=Pareto Shaoe Parameter c 4.&.4

ci n 0.5* 1.0 1.5 2.0 2.5 3.0 3.5 4.0

..400 .3. .289 .286 .293 .286 .29,3- .297
10 .255 22 .2117 .219 .=2 25 .228 .231

.20 13 .204 .184 .184 .185 .187 .191 .192, .197
20 .175 .160 .160 .163 167 .168 .170 .171
25 .155 .144 .146 .148 .149 .153 .154 .155
30 .142 .173 .133 1375 .138 .1319 .142 .141

5* .426 .. 296 .294 .293 .298 .306 309

10 .2683 .230 226 .228 .232 .236 .239 .242

.15 15 .214 .191 .191 .193 .196 .199 .203 .207
20 t.184 .167 .168 .172 .175 .176 .178 .179
25 .163 .1503 .152 .155 .157 .160 .161 .163
30 .149 .138 .142 .142 .145 .146 .150 .149

5* .467 .3Z!41 .305 .306 .707 . 314 .33 .327
10 .284 .241 .2-6 =29 .245 . 251 .253 .258

.10 1- .227 .200 .201 .204 .208 .212 .216 .219
20 .196 .176 .176 .182 .185 .187 .188 .191
25 .173 .15e .160 .164 .166 .171 .170 .173
30 .159 .145 .149 .151 .153 .155 .161 .159

5* .525 .-68 .321 Z23 .328 .735 .749
1 250 .354 .24 .2 .265 .272 .277 .282,

. 0 .248 .216 .217 .212 .227 .231 .238 .239
20 .21-' 188 .191 .197 .201 .206 .205 .209
25 .189 .170 .174 .177 .180 .186 .189 .192
30 .173 .156 .162 .165 .167 .169 .175 .174

5* .609 .407 .378 .363 .361 .769 .382 .391

10 .348 .297 .290 .300 .308 .314 .322 .3216

.01 1 .289 .247 .251 .258 .265 .266 .274 .282
20 .247 .211 .221 .23 .233 .237 .238 .249
25 .222 .101 .201 .208 .210 .220 .218 .225

.204 .180 .187 .189 .196 .199 .207 .207

.NOTE 3 For shaoe c .50.5. critical valUes corresoond to
samole size n =6 instead of n =5.
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Table VII

CRITICAL VALUES FOR THE MODIFIED ANDERSON-DARLING TEST

Pareto Shape Parameter c

C1 n 0.5* 1.0 1.5 2.0 2.5 3.0 3.5 4.0

5* 1.344 .736 .568 .546 .503 .494 .499 .497

10 .780 .587 .544 .535 .541 .545 .540 .551
.20 I 706 .589 .562 .559 .562 .568 .581 .588

20 .684 .582 .571 .586 .591 .586 .599 .604
25 .664 .588 .591 .585 .600 .608 .624 .621
30 .674 .598 .607 .600 .606 .621 .638 .625

5* 1.668 .835 .628 .602 .545 .532 .538 .537
10 .875 .646 .594 .589 .588 .601 .597 .610

.15 15 .789 .645 .621 .612 .626 .630 .650 .659
20 .764 .639 .629 .646 .656 .659 .661 .673 L,
25 .750 .653 .655 .652 .660 .672 .692 .694"
30 .756 .665 .679 .665 .678 .688 .708 .690

5* 2. 100 .966 .709 .671 .606 .585 .590 .599

10 1.031 .726 .675 .655 .654 .678 .677 .691

.10 15 .917 .727 .7,5 .704 .705 .707 .748 .756
20 .862 .132 .718 .734 .740 .747 .751 .755
25 .853 .748 .742 .766 .750 .769 .788 .801
30 .862 •756 .777 .768 .774 .776 .822 .791

5* 2.903 1.237 .849 .791 .702 .683 .684 .687

10 1.311 .886 .808 .783 .788 .805 .818 .835

.03 13 1.154 .891 .849 .853 .836 .852 .899 .927
20 1.053 .874 .866 .898 .902 .917 .917 .925
25 1.055 .915 .910 .940 .904 .926 .952 .987
30 1.070 .913 .952 .947 .960 .937 .999 .990

5* 4.877 2.076 1.145 1.100 .932 .883 .913 .903

10 1.872 1.303 1.102 1.113 1.100 1.147 1.169 1.200
.01 1.705 1. 250 1.229 1.154 1.256 1.316 1.269 1.358

20 1.535 1.245 1.255 1.318 1.326 1.353 1. 330 1.398
25 1.543 1 .312 1. 286 1.358 1.253 1.427 1.450 1.441
30 1.631 1.337 1.361 1.368 1.401 1.413 1.500 1.475

*JTEo For shape c = 0.5. critical values correspond to
sample size n 6 instead of n = 5.
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Table VIII'

k
CRITICAL VALUES FOR THE MODIFIED CRAMER-VON MISES TEST •

Pareto Shape Parameter c

C1 n 0.5* 1.0 1.5 2.0 2.5 3.0 3.5 4.0

.212 .103 .078 .078 .077 .079 .082 . 083
10 .121 .083 .081 .082 .086 .088 .089 .092

.20 1 .108 .086 .086 .086 .090 .092 .096 .098
20 .104 .085 .086 .091 .094 .094 .097 .099
25 .101 .086 .090 .090 .094 .097 .101 .102
30 .100 .086 .091 .092 .095 .097 .102 .101

5* .251 .112 .083 •084 •084 .085 •089 .092
10 .135 .093 .090 .091 .096 .099 .099 .102

.15 15 .120 .094 .094 .097 .100 .103 .108 .111
20 .115 .095 .096 .102 .105 .106 .108 .110
25 .112 .097 .101 .102 .105 108 .112 .115
30 .112 .096 .102 .105 .106 .109 .116 .114

5* .304 .123 .093 .093 .093 .096 .100 .103
10 .154 .105 .102 .104 .108 .114 .113 .119

i.0 15 .139 .109 .109 .114 .116 .120 .126 .130
20 .133 .109 .111 .118 .120 .123 .,25 .129
2 .130 .112 .115 •120 .121 .127 .130 ,13
30 .129 .110 .121 .121 .124 .127 .135 .131

3$  .381 .139 .113 .111 .111 .112 .119 .120
10 .184 .127 .125 .126 .131 .139 .142 .147

.513 .172 .1311 .134 .140 .142 .144 .156 .161-:-'

20 .163 .133 .136 .145 .148 .155 .153 .161
25 .157 .139 .142 .149 .148 .157 .162 .168
30 .159 .137 .151 .150 .156 .154 .169 .166

5* .508 .174 .157 .148 .149 .150 .157 .163

10 .251 .191 .174 .182 .194 .199 .202 .209

.01 I .255 .192 .193 .198 .207 .222 .222 .238
20 .233 .195 .21 .22 .20 .25 .26 .3
25 .245 .199 .206 .224 •215 .238 .240 .250
30 .247 .202 .217 .218 .230 .243 .251 .251

*NOTEi For shape c = 0.5. critical values correspond to
sample size n = 6 instead of n = 5.
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:"' Power Comparison Tables

Tables IX and X display the results of the power a

analysis. For sample sizes n = 5, 15, and 25, the tables

*" indicate relative power of the K-S, A-D, and C-VM tests to

reject a null hypothesis when the hypothesis claims that a

-" random sample of data follows a Pareto distribution. For

sample sizes n = 15 and 25, the power of the Chi-square test

is also included. Table IX shows power values when the null .

hypothesized Pareto CDF has shape parameter c = 1.0. In

Table X, the hypothesized shape parameter is c = 3.5. Both

*, tables examine power performance against eight different . _

distributions, including three variations of the Pareto

distribution having different sets of parameters.

The power tables are divided into two levels of L.

- significance, Cc = .05 and .01. In Table IX, the first column

corresponds to a Pareto distribution with shape c = 1.0.

.- Thus, the values in the first column of Table IX approximate

the level of significance C, since they represent rejection

." rates of the null hypothesis when H0 is true. Similarly in

*Table X. the second column represents a true null hypothesis

since the underlying data was generated from a Pareto

distribution with shape parameter c = 3.5. Aside from these

two exceptions, all other colums represent power values since L.1I

they indicate rejection rates of the null hypothesis when H0

is in fact false. A note following the tables indicates

' ..-..- parameters of the alternate distributions....

." 5-5
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" '" Table IX

POWER TEST FOR THE PARETO DISTRIBUTION k
Ho1 Pareto Distribution at Shape c a 1.0
H1: The data follow another distribution

Level of Significance = .05

AI ternate Distributions*

n Test Par.1 Par.2 Par.3 Weibl Gamma Beta Expon Norml

K-S 0.046 0.061 0.050 0.288 0.123 0.227 0.074 0.311
5 A-D 0.048 0.014 0.022 0.007 0.006 0.008 0.009 0.007

CVM 0.050 0.063 0.051 0.283 0.127 0.224 0.076 0.307

K-S 0.048 0.145 0.107 0.979 0.657 0.933 0.290 0.979
15 A-D 0.052 0.126 0.083 0.966 0.644 0.898 0.266 0.965

CVM 0.052 0.173 0.121 0.974 0.697 0.915 0.329 0.973
2 043 0.118 0.086 O.260 0.480 0.738 0.235 0.878

K-S 0.052 0.248 0.138 1.000 0.927 1.000 0.503 1.000

25 A-D 0.049 0.250 0.128 1.000 0.937 0.9983 0.528 1.000
CVi 0.050 0.256 0.143 0.999 0.926 0.996 0.504 1.000
x 2 0.045 0.178 0.105 0.999 0.823 0.996 0."77 0.999

Level of Significance = .01

K-S 0.010 0.021 0.021 0.171 0.067 0.115 0.034 0.172
5 A-l 0.009 0.002 0.004 0.000 0.000 0.000 0.000 0.001

CVM 0.010 0.019 0.019 0.155 0.059 0.098 0.030 0.160

K-S 0.015 0.059 0.035 0.941 0.448 0.852 0.150 0.937
15 A-D 0.011 0.038 0.021 0.875 0.356 0.716 0.103 0.878

CVM 0.016 0.062 0.034 0.906 0.439 0.777 0.139 0.910
x2 0.006 0.031 0.016 0.645 0.172 0.400 0.064 0.669

K-S 0.010 0.086 0.039 0.999 0.774 0.992 0.250 0.998
25 A-l 0.009 0.080 0.032 0.997 0.778 0.982 0.247 0.997

CVi 0.010 0.100 0.046 0.997 0.792 0.982 0.274 0.998
V2  0.011 0.061 0.033 0.964 0.594 0.884 0.172 0.971

$ Key to Alternate Distributions:

Par.1 - Pareto (a=l, b=1. c=I) Gamma - Gamma (shape = 2)
Par.2 - Pareto (a=2, b=3. c=3.5) Beta- Beta (P=2. Q=3)
Par.3 - Pareto (a=tO b=5. c=2) Expon - Exponential (mean = 2)"I
Weibl - Weibull (shape 3.5) Norml - Normal distribution
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Table X

POWER TEST FOR THE PARETO DISTRIBUTION
Hoi Parsto Distribution at Shape c a 3.5
HI: The data follow another distribution

Level of Significance = .05

Alternate Distributions $

n Test Par.1 Par.2 Par.3 Weibl Gamma Beta Expon Norml

K-S 0.120 0.048 0.051 0.160 0.065 0.108 0.051 0.136
5 A-D 0.182 0.054 0.072 0.153 0.052 0.098 0.045 0.153

CVM 0.122 0.051 0.050 0.212 0.074 0.148 0.055 0.208

K-S 0.312 0.048 0.072 0.673 0.211 0.428 0.060 0.690

15 A-D 0.389 0.046 0.100 0.813 0.262 0.605 0.065 0.82
CVI 0.332 0.043 0.080 0.814 0.278 0.602 0.076 0.826
X 2 0.136 0.037 0.044 0.707 0.169 0.480 0.060 0.717

K-8 0.472 0.045 0.086 0.928 0.387 0.763 0.084 0.942
25 A-D 0.559 0.051 0.122 0.983 0.531 0.924 0.092 0.985

CVM 0.511 0.049 0.099 0.980 0.527 0.907 0.098 0.982
x 2 0.245 0.036 0.048 0.940 0.317 0.784 0.071 0.948 ---

Level of Significance = .01

K-S 0.075 0.009 0.017 0.033 0.011 0.026 O.005 0.034
S A-D 0.096 0.012 0.026 0.014 0.004 0.012 0.003 0.011

CV-M 0.064 0.011 0.014 0.053 0.015 0.041 0.010 0.056

K-S 0.198 0.011 0.027 0.379 0.067 0.177 0.014 0.412

15 A 0.261 0.009 0.038 O578 0.081 0.317 O.012 0.603
CVM 0.224 0.011 0.031 0.609 0.101 0.347 0.017 0.630

x2 0.078 0.015 0.013 0.576 0.094 0.346 0.026 0.582

K-S 0.341 0.010 0.040 0.794 0.167 0.479 0.021 0.807

25 A-D 0.402 0.008 0.052 0.912 0.209 0.6e5 0.016 0.915
CVM 0.377 0.011 0.046 0.922 0.246 0.706 0.023 0.924

2 0.130 0.009 0.011 0.878 0.148 0.614 0.022 0.882

* Key to Alternate Distributions:

Par.1 - Pareto (a-1, b=1. c=1) Gamma - Gamma (shape = 2)
Par.2 - Pareto (a=2. b=3. c=3.5) Beta- Beta (P=2. Q=3)
Par.3 - Pareto (a=10. b=5, c=2) E':pon - Exponential (mean 2)
Weibl - Weibull (shaoe = 3.5) Narml - Normal distribution
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Linear Regression Tables

Tables XI and XII indicate the linear relationships

existing between critical values and Pareto shape parameters.

Table XI pertains to Kolmogorov-Smirnov critical values,

while Table XII pertains to Cramer-von Mises critical values.

No consistent linear relationship was identified for

Anderson-Darling critical values.

The two tables contain linear coefficients and ..

correlation values for each combination of sample sizes n

10, 15, 20, 25, and 30 and levels of significance C = .20,

.15, .10, .05, and .01. No consistent linear relationship

could be found for sample size n = 5. Further, the linear

relationships apply only for values of the shape parameter c

in the range 1.5 < c < 4.0. Critical values for c < 1.5

failed to display any consistent linear trend.

Each combination of sample size and significance level

has its own linear coefficients and correlation value. In

each case, the relationship between critical value Y and

shape parameter c is given by the simple linear regression

equation Y = b0 + b1c where b0 corresponds to the Y-axis

intercept and b, represents the slope of the described line.

" The correoation value R2 indicates the percent of total

variation explained by the regression line. Thus, R2 is a

measure of the strength of the linear relationship, with

values near 1 indicating a strong linear tendency (13:250).
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Table XI

COEFFICIENTS AND R2 VALUES OF THE RELATIONSHIP*
BETWEEN KOLOGOROV-SIIRNOV CRITICAL VALUES AND ,..PARETO SHAPE PARAMETERS FOR 1.5 . C _ 4.0

Level of Significance ____

n Coeff .20 .15 .10 .05 .01 ,-.

b 0  .2080 .2154 .2222 .2359 .2704
10 b I  .0057 .0067 .0090 .0117 .0144

R2  0.998 0.997 0.993 0.997 0.993

bo .1752 .1804 .1896 .2042 .2339
15 b, .0051 .0065 .0074 .0091 .0117

R2  0.977 0.993 0.999 0.990 0.987

b0  .1544 .1630 .1699 .1828 .2102
20 bI .0044 .0042 .0054. .0068 .0091

R2  0.973 0.969 0.964 0.960 0.935

b0  .1403 .1461 .1535 .1623 .1885
25 bI .0038 .0043 .0050 .0075 .0091

R2  0.980 0.991 0.963 0.994 0.964

b0  .1302 .1362 .1418 .1542 .1728

30 bI .0030 .0034 .0047 .0053 .0090 '-

R2  0.944 0.947 0.946 0.967 0.979 ,

8 Relationship between K-S critical values Y
and Pareto shape parameter c is approximately

Y = b0 + b I c where 1.5 < c < 4.0
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Table XII

COEFFICIENTS AND R2 VALUES OF THE RELATIONSHIP*
BETWEEN CRAMER-VON MISES CRITICAL VALUES AND

PARETO SHAPE PARAMETERS FOR 1.5 < C < 4.0

Level of Significance

n Coef ..20 .15 .10 .05 .01

.0741 .0825 .0915 .1089 .1556
10 b .0045 .0050 .0067 .0095 .0137

R2  0.986 0.970 0.973 0.985 0.981

b0  .0769 .0832 .0964 .1170 .1643
15 b I  .0053 .0069 .0083 .0106 .017B

R2  0.982 0.996 0.993 0.965 0.980

b 0  .0805 .0905 .1031 .1252 .1833
20 bI .0047 .0051 .0065 .00B9 .0135

R2 0.966 0.957 0.978 0.957 0.974

b ..0806 .0910 .1045 .1264 .1831
25 bl .0055 .0059 .0072 .0102 .0166

R2  0.979 0.989 0.992 0.978 0.932

b0  .0834 .0936 .1116 .1372 .1907

30 b, .0047 .0055 .0054 .0074 .0161

R2 0.964 0.945 0.999 0.872 0.967

Relationship between C-VM critical values Y
and Pareto shape parameter c is approximately

Y = b 0 + b1 c where 1.5 < c <4.0

5-10
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Use of Tables

This section explains how to use the research results

contained in Tables VI - XII.

Using Critical Value Tables. The critical values

contained in Tables VI - VIII can be used to test whether a

random data sample of size n = 5, 10, 15, 20, 25, or 30

follows a three-parameter Pareto distribution having speci-

fied shape parameter c - .5, 1, 1.5, 2, 2.5, 3, 3.5, or 4.

* Given a random sample of observed data, the following steps

outline basic elements of the procedure used in testing

goodness-of-fit (13:357-367):

Step 1. Determine n, the number of observations

contained in the random data sample.

Step 2. Identify the null and alternative

hypotheses to be tested. In this case, the hypothesized

shape parameter c must also be specified. Thus, the

hypotheses are:

Ho: The sample observations follow a Pareto
distribution of specified shape c.

HI: At least one of the observations does not
follow the Pareto of shape c.

Step 3. Determine the desired probability of

commiting a Type I error, i.e., the probability of

erroneously rejecting the null hypothesis when H0 is true.

This probability is the level of significance, LX (13:78).

"/.. ::1,1: : -2-.. -".-...-2 i .--'.-"--..-,..-.-,....-.-. ... ,.. .. ..-,.. . i .. ,- --- ' --
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Step 4. Order the n observations from smallest

• """ to 1largest.

Step 5. Assume H0 is true and estimate the

unknown location and scale parameters using an invariant

estimator. If the BLUE is selected as the estimator, and the

sample size is small, the estimates can be computed manually

. from equations (34) and (35) for c .5, 1, or 2; equations

(37) to (39) for c = 1.5; or equations (17), (18), (21),

"" (22), and (29) for c = 2.5, 3, 3.5, or 4. For larger sample

sizes, or if several samples are involved, use the FORTRAN

subroutines BXVALS, BLCLE2, and BLCGT2 in Appendix A.

Step 8. Use the estimates of location a and

scale b, the hypothesized shape c, and the n ordered sample

4A observations to compute the hypothesized Pareto CDF from

equation (40). Subroutine HYPCDF in Appendix A can be used

if manual calculations are not practical.

Step 7. Select the type of test to be performed

and compute the corresponding test statistic. Use equation

(42) for the modified Kolmogorov-Smirnov test, equation (43)

-for the modified Anderson-Darling test, or equation (44) for

the modified Cramer-von Mises test. Subroutine TESTAT in

Appendix A can be used to compute test statistics for all

three tests. •

Step S. Identify the critical value from Table

VI, VII, or VIII, based on test type, level of significance,

sample size, and hypothesized shape parameter.

5-12
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Step 9. Reject the null hypothesis if the value

of the test statistic exceeds the critical value. If the

test statistic does not exceed the critical value, conclude -

that there is insufficient evidence to reject the null

hypothesis (13:76). _ -

Using Power Comparison Tables. Tables IX and X

can be used to draw conclusions regarding the relative

ability of a test to correctly reject a false null

hypothesis. This information can then be used to select the

best test for a given situation. The higher the power value,

* the better are the chances against commiting a Type 11 error

because the probability of erroneously accepting a false null

4A thypothesis is lessened (13:78).

Using Linear Regression Tables. Tables XI and XII

can be used to estimate critical values for shape parameters

which are not specifically listed in Tables VI and VIII,

provided the hypothesized shape parameter c satisfies 1.5 < c

< 4.0. Given the sample size and specified level of "

significance, the linear slope and intercept values contained

in Table XI can be substituted into the regression equation

y - bO + b I c to find the Kolmogorov-Smirnov critical value

y. If the Cramer-von Mises test is involved, the values ,,,.

should be taken from Table XII.

5-13
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Exaple

Suppose a maintenance unit wants to model the failure I
rate of a certain equipment component. Based on 10 indepen-

*... .' .,

dent random samples., the unit observes the following failure

times of the component (expressed in months following initial

use): 1.178, 1.127, 1.373, 1.068, 1.059, 1.010, 1.474,

4.830, 3.997, 1.799. The unit desires to test the hypothesis .\-.

that the component failure times follow the Pareto

distribution with shape c = 2.5. One specified requirement

is that the test be designed so that the probability of erro-

neously rejecting a true null hypothesis must not exceed .05. L-
Since there are 10 random observations in the data

sample, n = 10 for this example. The required level of

t* significance is C = .05. The hypotheses are:

HO: The observed failure times follow the Pareto
distribution of shape c = 2.5.

Hi: At least one of the observations does not
follow the Pareto of shape 2.5.

The next step is to arrange the random sample in

ascending order: 1.010, 1.059, 1.068, 1.127, 1.178, 1.373,

1.474, 1.799, 3.997, 4.830. These values are input into

subroutine BXVALS which yields Bi values of .920, .B38, .754,

.668, .579, .486, .389, .285, .171, and .034. These values

are then input into subroutine BLC6T2, which computes the *"'*

A A
parameter estimates a - .963 and b = 1.128. Subroutine

5-14
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HYPCDF~... 1 n use comp...e aums

HYPCDF is then used to compute 10 values of the hypothesized

Pareto CDF: .097, .185, .201, .288, .354, .539, .608, .750,

.962, and .976. r

The values of n, c, and the hypothesized Pareto CDF are -

input into subroutine TESTAT, which computes the test

statistics K-S = .162, A-D = .416, and C-VM - .042. From
• • -- -.

Table VI, the K-S critical value for aE = .05, n = 10, and c =

2.5 is .265. Since the test statistic does not exceed the

critical value, there is insufficient evidence to reject the

null hypothesis. The same conclusion is reached from the A-D

and C-VM critical values (Tables VII and VIII).

Now suppose the unit wants to test the null hypothesis

that a set of n = 25 observed service times follows the

* Pareto distribution of shape c = 3.35. The analyst computes

the K-S or C-VM test statistic as before, but the critical

values are not listed for c = 3.35. Therefore, the next step

is to determine the appropriate regression coefficients from

Table XI or XII. For n = 25 and ci = .05 the K-S coeffi-

cients are b0 = .1623 and b I = .0075. The K-S critical value

is Y = bo+b, c = .1623 + .0075 (3.35) = .1874. j

Chapter Summary

This chapter presented the results of the research

conducted in response to the three objectives listed in

Chapter I. Tables of critical values for the modified K-S, -"

A-D, and C-VM tests were presented. Also included were r

5-15 .::
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tables comparing powers of the K-S, A-D, and C-WI statistics

against the Chi-square. Tables of regression coefficients

were presented as well. The use of the tables was explained,

and an example was described.

The research results are further analysed and discussed

in the next chapter.
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VI. ANALYSIS A DISCUSSION£

Chapter Overvi ew f.

This chapter discusses the results presented in Chapter

V. Observations are made concerning the tables of critical

values, power comparisons, and regression coefficients,

including an explanation as to how the computer programs were A

verified and validated.

Critical Values

The critical value tables generated for this thesis are

located in Chapter V. For the K-S test (Table VI), the crit-

ical values for a given level of significance and shape para-

meter decrease as the sample size increases. Further, the

size of the decrease becomes smaller at larger values of n.

This trend suggests that the K-S critical values may converge

to a lower limit as the sample size increases. However, the

use of sample sizes larger than 30 would have required much

more computer processing time, and thus was beyond the scope

of this thesis. The A-D critical values (Table VII) exhibit

a different pattern. The values for each combination of

significance level and shape parameter generally decrease

from n = 5 to 20 and increase from n = 20 to 30, suggesting a

convergence between 15 and 20. Similarly, the C-VM critical

values (Table VIII) appear to converge between n = 25 and 30,

6-1
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since the values consistently decrease until n 30, then

begin to increase. -

An important observation is made when the table of

modified K-S values is compared to a standard (unmodified)

K-S table (13:462). For each value of n in Table VI, the

critical values for shape 1 or 2 at a .05 significance level

are nearly the same as the critical values for a .20 signifi-

cance level using the standard table. Thus the result of ,

using the standard K-S table when location and scale para-

meters are estimated would be to obtain an extremely conser-

vative test in the sense that the actual significance level 1.
would be much lower than that given by the standard table.

Power Comparison

The power comparison tables generated for this thesis

are located in Chapter V. Values in Table IX pertain to a

null hypothesis for which the Pareto shape parameter is 1.0,

whereas in Table X the hypothesized shape parameter is 3.5.

Both tables are divided into two sections based on a level of

significance of .05 or .01. It is obvious from the tables

that none of the three tests developed in this thesis is very

powerful when the sample size is only five. Nevertheless,

they at least provide some means of testing goodness-of-fit

for sample sizes which are too small to use the Chi-square

test. For sample sizes of 15 or 25, the powers improve

dramatically. -
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For each alternative distribution the three tests

tended to be more powerful than the Chi-square. Two sets of

Chi-square critical values were examined. The first set of

values was taken from a standard table of Chi-square critical

values corresponding to 2 degrees of freedom (13:432). After

completing' 5000 Monte Carlo repetitions, it was discovered

that the tabled Chi-square value for a level of significance

of .05 displayed a probability of a Type I error (i.e., ii

rejecting H0 when true) of .10, which was twice the claimed

level of significance of .05. Similarly, the probability of

Type I error for a claimed level of significance .01 was, in L.

fact, .02. This discrepancy was due to the fact that the

tabled Chi-square values represent only an approximation of

the actual asymptotic distribution of the Chi-square, so that

the actual value lies somewhere between Chi-square with 2

degrees of freedom and Chi-square with 4 degrees of freedom

(34:401-402). Since the Type I errors were twice their

expected value, a second set of Chi-square critical values

was generated using Monte Carlo simulation in the same manner

as was used to generate critical values for the K-S., A-D, and

C-VM tests. As apparent from Tables IX and X, the second set

of Chi-square values display Type I error rates which is much

closer to the claimed level of significance of .05 or .01. -

Therefore, these values were used in the power comparison

tables rather than the less accurate values stemming from the

standard Chi-square table.
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' -. The modified K-S, A-D, and C-VM tests are especially

powerful when the sample data are taken from the Weibull, the ad

Beta, or the normal distribution. On the other hand, the

three tests display relatively low power in their ability to

distinguish against the exponential or the Pareto with

different shape parameters. In general, the K-S test has

higher power tham the others when the hypothesized shape

parameter is 1.0. When the shape parameter is 3.5, the C-VMI

test tends to be more powerful. Next to the Chi-square, the

A-D test appears to have the lowest power in most cases.

Regressi on Anal ysi s

The regression tables generated for this thesis are

also located in Chapter V. Table XI contains regression

coefficients and correlation values for the modified

Kolmogorov-Smirnov test, while Table XII contains regression

values for the Cramer-von Mises test.

It is apparent from Tables VI and VIII that for a given

significance level and sample size except n = 5, the K-S and

C-VM critical values decrease from shape parameter 0.5 to

1.5, then steadily increase for shapes 1.5 to 4.0. Using the

method of least squares, a simple linear regression analysis

was performed on the critical values. The correlation of L

regression on the shape parameter interval 0.5 to 1.5 was in

most cases less than .80. However, the regression

relationships on the shape interval 1.5 to 4.0 showed very

6-4
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.'...' strong correlation (.97 or higher in most cases). Therefore,

regression coefficients corresponding to the interval 1.5 < c

< 4.0 were included in Tables XI and XII. .. :-'

No consistent linear trend could be identified for the

Anderson-Darling critical values. In general the values seem :

to decrease on the interval 0.5 < c < 2.5 and then increase

on 2.5 < c < 4.0. However, when least squares regression

was applied to the two intervals, the correlation values J

tended to be less than .80 in most cases. Therefore, it was

decided not to include a regression table for the A-D test.

Verification and Validation

The critical values were computed by the CRITVAL

1- program and associated subroutines contained in Appendix A.

The power study was conducted using the POWER program and

subroutines in Appendix B. The purpose of verification was

to ensure that the concepts and equations developed in this ..

thesis were reflected accurately in the computer code. The

five verification techniques suggested by Banks and Carson

(5:379) were implemented as follows: L-..

1. Have the code checked. The code was checked

by two individuals knowlegeable of FORTRAN programming. One

of the individuals, Charek, was also very familiar with the I

logic required for computing parameter estimates for the

Pareto distribution, since he too has conducted extensive

S '-- research in this area (12).
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2. Make a flow diagram. Flow diagrams

illustrating the logic involved in generating critical values

served as the basis of the program and were closely followed *-.

during the actual writing of the program. The diagrams are

included in Appendices A and B.

3. Examine a wide variety of output. The

output of each subroutine and the results of each individual

computation was checked through extensive use of print

statements. Each computational stage was checked at least

once against manual calculations to ensure the expected

values were produced. A pre-production run involving 50

replications was thoroughly examined for reasonableness prior

to the final production run of 5000 replications.

we 4. Print the input parameters. During the test

runs, input parameters were printed before and after each

calculation to ensure against any inadvertant alteration of

parameters.

5. Make the code self-documenting. Extensive

comments have been incorporated into the programs and

subroutines to allow easy interpretation of the logic. At

the beginning of each program component, every variable is

defined and the purpose explained.

Validation of the computer programs was provided in the

results of the power study. For each hypothesized shape

parameter and sample size, the K-S, A-D, and C-VM tests

6-6
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displayed a Type I error rats equal to or very near the

claimed level of significance. This fact validates the

critical values as well as the power comparison values.

Chapter Summary

The results of this thesis are presented in Tables

VI-XII. The results of the power study show that the three

tests developed in this thesis offer tests which can be used

with small sample sizes and are more powerful than the

Chi-square at larger sample sizes. The programs used to

generate the tables were thoroughly verified and validated.

Conclusions and recommendations for further study are

presented in the next chapter.
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VII. C A RECOMMENDAT I ONS

Conclusions

The following conclusions are based on the results

contained in this thesis:

1. The first research objective listed in Chapter I

has been successfully fulfilled. Tables VI-VIII contain -

critical values of the modified Kolmogorov-Smirnov (K-S),

Anderson-Darling (A-D), and Cramer-von Mises (C-VM) tests.

The validity of these critical values has been verified by a

Monte Carlo power study which has shown that all three tests

achieve the claimed level of significance when the null

hypothesis is true. Therefore, each table of critical values

can be used to test whether a random sample of data follows

* the three-parameter Pareto distribution with specified shape

parameter.AL

2. The second research objective has also been

completed successfully. The results of the power study are

contained in Tables IX and X. It appears that none of the

three tests developed in this thesis is very powerful when

the sample size is only five. For sample sizes of 15 or 25,

however, the powers improve dramatically. For each of the I

alternative distributions considered, the three tests tended

to be more powerful than the Chi-square, as expected. The

three tests are especially powerful when the sample data are
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taken from the eibull, the Beta, or the normal distribution.

In general, the K-S test has higher power than the others

when the hypothesized shape parameter is 1.0. When the shape

parameter is 3.5, the C-VM test tends to be more powerful.

Next to the Chi-square, the A-D test appears to have the

lowest power in most cases. --

3. Successful completion of the third research

objective has revealed a strong linear relationship between ,.

shape parameters and critical values for the K-S and C-VM"

tests. Linear coefficients and correlation values are

contained in Tables XI and XII. However, no consistent L,-

- functional relationship could be identified for the A-D test.

Recommendations L4

Based on observations made during the investigation for . - -

this thesis, the following research areas are proposed for

further study,

1. Apply the techniques used in this thesis to

generate modified K-S, A-D, and C-VM tests for other

distribution functions. .2

2. Investigate whether other types of goodness-of-fit

tests can be modified through Monte Carlo techiiques. For

example, if the S statistic of Mann, Scheuer, and Fertig (38) ,

can be modified for the Pareto distribution, a power study

can be conducted to determine whether the S statistic is more

powerful than the K-S, A-D, or C-VM tests.
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3. Derive the maximum likelihood estimators of

location and scale for the three-parameter Pareto.

4. Compute critical values for sample sizes and Pareto

shape parameters not specifically included in Tables VI-VIII.

For example, the tables can be expanded to include all sample

sizes from 3 to 100 and shape parameters from 0.25 to 10.

5. Increase the accuracy of the critical values by

using various techniques (5:406-442) of experimental design

(e.g., increased repetitions, multiple batch runs, replica-

tions, antithetic random number seeds, analysis of variance,

etc.) to reduce the inherent uncertainty and to determine the

amount of variance involved.

6. Apply more sophisticated regression techniques to

-- determine the functional relationship between Pareto shape

parameters and Anderson-Darling critical values.

7. Apply the results of this thesis to earlier studies

(Chapter III) involving the Pareto distribution. For

example, Berger and Mandelbrot's (7) conclusion that the

Pareto can be used to model errors in communications circuits

can now be tested for goodness-of-fit.

8. Further investigate potential applications of the

Pareto distribution as an accurate model of actual phenomena.

The tests developed in this thesis contribute to the useful-

ness of the Pareto distribution which, in many situations,

should be considered as a viable model when simulating or

testing the underlying distribution of a given population.
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Program
CR!TVAL

Subroutine STEP 1
PARDEV Generate n Random

Pareta Deviates -

Subroutine STEP 2
PARDEV Order the Random

Pareto Devi atesC

Subroutines STEP 3
BXVALS Compute BLIEs for
BLCLE2 Location and ScaleD

iL BLCGT2| -- ---- -"

STEP 4.
Subroutine Determine Hypothesized

HYPCDF Distribution Function
P. for iil,**,n

STEP 5
Subroutine Calculate Modified
TESTAT K-S, A-D, and C-VM

Test Statistics

. . .,.

Fig b. Procedure for Generating Critical Values

A-., -
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Main Program SE
DO Loop 60 Repeat 5000

STEP 7
Subroutine Determine 80th, 85th,

CRTVAL 90th, 95th, and 99th
Percenti les

Main Program STEP 8

DO Loop 80 Rpa o

Main Program SE
DO Loop 90 Repeat for

C* -

Fig 6 (Continued). Procedure for Generating Critical Values
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-' I c*2** Classroom Support Computer (CSC) - VAX 11/785 - VMS 4.1 $ g_
2 C
3 c$**$$$ CRITVAL PROGRAM FOR PARETO GOODNESS-OF-FIT TESTS $$$$$$ .
4 c

B c** B E G I N C R I T V A L M A I N P R O G R A M
9 c** *

11 c
12 c Ref: Appendix A, Figure 6.
13 c

15 c
16 c Purpose:
17 C 1. Generate critical value tables for the modified
18 c Kolmogorov-Smirnov (K-S), Anderson-Darling (A-D),
19 c and Cramer-von Mises (C-VM) tests for the three-
20 c parameter Pareto distribution when location and
21 c scale parameters must be estimated from sample data.
22 c 2. Provide extensive commentary to help novice prog-
23 c rammers develop similar goodness-of-fit programs. ...

24 c Thus, diagnostic print routines have been retained as
25 c part of the commentary rather than deleted.
26 c
27 c-------==
28 c
29 c Variables:
30 c dseed = random number seed
31 c c = shape parameter
32 c n = sample size
33 c nshp = shape parameter counter (8 different values)
34 c nsiz = sample size counter (6 different values of n)
35 c noct = percentile counter (5 different percentiles)
36 c nst = number of test statistics to be used
37 c it = iteration counter (5000 repetitions required)
38 c KS = array of values of modified K-S test statistic
39 c CVM = array of values of modified C-VM test statistic
40 c AD = array of values of modified A-D test statistic
41 c alpha = level of significance
42 c

44 c P
45 c Input:
46 c nst = number of repetitions (input at computer terminal)
47 c dseed = random number seed (input at computer terminal)
48 c
49

A-4 ","-. " -.
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50 c
51 c Subroutines:

52 c
53 c PARDEV - Generates n ordered Pareto deviates
54 c BXVALS - Calculates B values and summations of B and Bx
55 c BLCLE2 - Finds BLUEs for location and scale when c <= 2
56 c BLCGT2 - Finds BLUEs for location and scale when c > 2
57 c HYPCDF - Computes the Hypothesized Pareto CDF
58 c TESTAT - Calculates the K-S. A-D. and C-VM test statistics
59 c CRTVAL - Determines critical values from plotting positions i-.

60 c
61 ==- -- - - - -=

62 c
63 c Calculate:
64 c
65 c nc n c
66 c
67 c Plotting Positions (Eqn 51):
68 c
69 c Y(i) = (i - 0.3)/(nst + 0.4) for i = 1.....nst(=5000)
70 c
71 c
72 c

73 c Output:
74 c
75 c KScrit = 3-D array of critical values for modified K-S test
76 c ADcrit = 3-D array of critical values for modified A-D test
77 c CVcrit = 3-D array of critical values for modified C-VM test

c79 c -----------------------------------

80 c
81 c Declare Variables:
82 c
83 common dseed.xncnc, BD,ablu,bblu.P.pctBsumlBxsuml,
84 1 Bxsum2, Bxsm2c,KS,ADCVM,itnsi,nshp.npct.nst,
85 1 KScrit.ADcrit,CVcrit.Y
86 integer n,nsiz,nshp.it,ngctnst
87 real x(30),ablu,bbluB(30),D, KS(5OO.6,S),AD(5000.6,8).
88 I CVM(5000.6,8),c,nc.Bsuml.Bxsum1,B.:sum2,B':sm2cP(30),
89 1 KScrit(6,8,5),ADcrit(6.8,5).CVcrit(6.8.5).r(O).pct.
?0 1 Y(5002).alpha
91 double precision dseed

c
93 c 2* Open Output Files to Store Computed Critical Values: *2
04 open (unit=7,file='CRIT',status='new')
95 c
96 c 2* Number of Test Statistics to be Used on Each Run: ]-
97 print,'The Monte Carlo analvsis will require'
98 print*,' 5000 test statistics.'
09 print*,'Enter the number to be used for this run:'
100 read*,nst
101 c
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- - - errr- - u=T -

L

102 c * Calculate 5002 Plotting Positions on the Y-axis: S
103 c
104 Y(0) = 0.0
105 do 10 i 1nst I "
106 Y(i) = (i - 0.3)/(nst + 0.4)
107 10 continue "-
106 Y(nst + 1) 1.0
109 c
110 printS,'
111 print*'SELECTED MEDIAN RANKS PLOTTING POSITIONS' r
112 print,' TO BE USED TO FIND CRITICAL VALUES:'
113 printS.'
114 printS.' Y(5001) = '.Y(5001)
115 printS,' Y(5000) = ',Y(5000)
116 printS,'99PCT: Y(4950) = '.Y(4950)
117 printS,'95PCT: Y(4750) = '.Y(4750)
118 print*.'9OPCT: Y(4500) = '.Y(4500)
119 printS,'SGPCT: Y(4250) = '.Y(4250)
120 printS.'BOPCT: Y(4000) = '.Y(4000)
121 print*,' Y(0001) = '.Y(1)
12 printS,' Y(000) = ',Y(O)
123 printS,' =
124 c
125 c 55 Plotting Positions Computation Complete 5-
126 c
127 printS,'Enter random number seed or "I." for default:'I ' 128 readS, dseed
129 if (dseed .eq. 1.) dseed = 123457.d00
130 printS,' '
131 print,'STANDBY . . . COMPUTATIONS IN PROGRESS'
132 c
133 nshp = 0
134 c

135 c --- Begin DO Loop 90 for Shape Parameter Values c = .5(.5)4 ---

136 c
137 do 90 shape = 0.5.4.0,.5
13 c = shape
139 nsho = nshp + 1
140 c
141 c Write Headings for Output Data:
142 write(7,52)
143 write(7.51)
144 write(7,52)
145 write(7,54)
146 write(7,52)
147 write(7,56)
148 c
149 nsiz = 0
150 c
151 c --- Begin DO Loop 80 for Sample Sizes n = 5(5)70 ---
152 c
153 do S0 nsamo = 5,70,5
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154
155 if (c.eq.O.5) and. (nsamp.ea.5) then

156 c the BLUEs do not exist, so we must let:

157 n 6

158 else
159 n = nsamp

160 end if
*161 c

162 nsiz = nsiz + 1 
L A

163 nc = n C
164 c
165 wr ite (7.58)
166 c

167 c _- Begin DO Loop 60 for 5000 Iterations ---
168 c
169 do 60 it = 1,nst
170 c

171 c 2* Perform Steps I & 2 of Fig 6: 2.
12 c
173 call PARDEV
174 c

175 c $$ Perform Step 3 of Figure 6: -
176 c l177 call BXVALS

178 c

179 if (c .le. 2.0) then

180 call BLCLE2 J.
181 else

182 call BLCGT2
183 end if

1814 c".. --

185 c* Perform Step 4 of Figure 6: ".

186 c ,

187 call HYPCDF
188 c
189 c 2* Perform Step 5 of Figure 6: *-
190 c
191 call TESTAT

192 c I
193 60 continue
194 c
195 c --- End DO Loop 60 for 5000 Iterations --.

196 c * Completes Step 6 of Figure 6 *'
197
198 c 2* Perform Step 7 of Figure 6: *l

199 c
200 c --- Begin DO Loop 70 for Percentiles ---

201 c
202 do 70 noct= 1,5

204 c
205 call CRTVAL
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206

207 -- Write CRTVAL Output to File -- ..

208 write(7,62),I.-pct,n,cKScrit(nsiz,nshp,npct),
209 1 ADcrit(nsi:znshpnpct).CVcrit(nsiz,nshp,npct)210 c
211 print*,'

212 print*.' CRITICAL VALUES FROM MAIN PROGRAM'
213 print*,' pct =',pct.' n='.n,' $* c=',c
214 print*,' K-S =',KScrit(nsizmnshp,npct),
215 1 1 A-D a',ADcrit(nsiznshpnpct),

" 216 1 CVM -',CVcrit(nsiznshp,npct)
• 217 print*,'

218 ""'

219 70 continue

220 c
221 c --- End DO Loop 70 for Percentiles ---

222 c
223 80 continue
224 c
225 c --- End DO Loop 80 for Sample Sizes n = 5(5)30 ---

226 c $3 Completes Step 8 of Figure 6 $*
227 c
22s 90 continue

229 c
230 c --- End DO Loop 90 for Shape Parameter Values c =.5(.5)4

- . 231 c *$ Completes Step 9 of Figure 6 - .

* 232 c
233

*234 c
235 c OUTPUT INSTRUCTIONS: The remainder of the main program
236 c consists of commands to format the output data and write
237 c the data and headers to a file which can be printed out
238 c in hardcopy.
239 c
240
241 c
242 c $$$ Write KS Critical Value Tables to File by Alpha Level: *,.
243 c
244 write(7,52)
245 write(7,130)
246 write(7,52)
247 write(7.132)
248 write(7,52)
249 write(7,200)
250 write(7,201)
251 write(7,52)
252 c
253 nact 0
254 c
255 c ---Begin DO Loop 105 to Sort Critical Values by Alpha Level---
256 c F

. 257 do 105 npct : 1,5

A,
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258 c
" *. 259 if (npct .ne. 5) alpha - .25 (.05$npct)

I. ) if (nDct .eq. 5) alpha = .01
261 c .,

262 nsiz = 0
263 n 0
264 c
265 c --- Begin DO Loop 107 to Sort Output by Sample Size ---
266 c
267 do 107 nsiz = 1.6
268 c
269 n = 5 * nsiz
270
271 Write(7,120),alpha,n,KScrit(nsiz.l,npct),KScrit
272 1 (nsiz,2,npct),KScrit(nsiz,3,nct),KScrit(nsiz,
273 1 4,npct),KScrit(nsiz.5,npct),KScrit(nsiz,6,npct),
274 1 KScrit(nsiz,7,npct),KScrit(nsiz,8,npct)
275 c
276 107 continue

277 c
278--- End DO Loop 107 After Sorting by Sample Size ---

279 c
280 write(7,201)
281 c
282 105 continue

283 c
284 c -- End DO Loop 105 After Sorting Output by Alpha Level ---
285 c
2e6 c
287 c $S Write AD Critical Value Tables to File by Alpha Level: $.

288 c
289 write(7.52)
290 write(7,140)
291 write(7, 52)
292 write(7,142)
293 write(7.52)
294 write(7.200)
295 write(7.201)
296 write(7.52)
297 c
298 noct 0
299 c
300 c ---Begin DO Loop 115 to Sort Critical Values by Alpha Level---
301 c
302 do 115 npct = 1,5 i

303 c
304 if (npct no. 5) alpha = .25- (.05*npct)
305 if (npct .eq. 5) alpha = .01
306 c

307 nsiz 0
308 n 0
309 c
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' - 310 c -- Begin DO Loop 117 to Sort Output by Sample Size --
I.- ,. .- 311 c .,,,.

312 do 117 nsiz , 1,6

313 c r
314 n = 5 * nsiz
315
316 Write(7,120).alpha.n,ADcrit(nsiz,I,npct),ADcrit
317 1 (nsiz.2,npct).ADcrit(nsiz,3,npct),ADcrit(nsiz,
318 1 4,npct),ADcrit(nsiz,5,npct),ADcrit(nsiz.6,npct),
319 1 ADcrit(nsiz,7,npct),ADcrit(nsiz,B,npct)
320 c
321 117 continue
322 c
323 c --- End DO Loop 117 After Sorting by Sample Size ---
324 c
325 write(7,201)
326 c
327 115 continue
-328 c
329 c --- End DO Loop 115 After Sorting Output by Alpha Level
'330 c
331 c
332 c M Write CVM Critical Value Tables to File by Alpha Level $'
333 c
334 write(7,52)
335 wri te (7,150)
336 write (7,52) "
337 write(7,152)
338 write(7,52)
339 write(7,200)
340 write(7.201)
341 write(7,52)
342 c
343 npct a 0
344 c
345 c ---Begin DO Loop 125 to Sort Critical Values by Alpha Level~--

346 c -,':,'.
347 do 125 npct = 1,5
348 c
349 if (npct ,ne. 5) alpha - .25- (.05$npct)
350 if (npct .eq. 5) alpha = .01
351 c
352 nsiz - 0
353 n = 0
354 c '

* 355 c --- Begin DO Loop 127 to Sort Output by Sample Size ---
356 c
357 do 127 nsiz - 1,6

- 358 c
359 n 5 niz

_ 360
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361 Write(7,120),alphan,CVcrit(nsiz,1,npct).CVcrit
362 1 (nsiz,2,npct),CVcrit(nsiz,3,npct), CVcrit(nsiz,
363 1 4,noct),CVcrit(nsiz,5,npct),CVcrit(nsiz,6,npct),
364 1 CVcrit(nsiz,7,npct),CVcrit(nsiz,8,npct) U-.
365 c
366 127 continue
367 c

* 368 c --- End DO Loop 127 After Sorting by Sample Size --- -."-
369 c

I 370 write(7,201)
371 c
372 125 continue
373 c
374 c --- End DO Loop 125 After Sorting Output by Alpha Level
375 c

- 376 c Specify Format for Hardcopy Output Data and Headers:
377 c
378 51 format(' **2**$2***2******2*2*****2**2****2')
379 52 format(' ')

380 54 format(' 2* PARETO CRITICAL VALUES FOR SHAPE C = 2*')
381 56 format(' alpha',3X,'n',4X,'c',7X,'KS',SX,'AD',BX.'CVM')
382 58 format( ------------------------- )
383 62 format(' ',T3,F3.2,15,F6.1,3F10.4)
384 120 format(' , T3,F3.2,15,FB.3,7F9.3)
385 130 format('1'.36X.'Table VI') T O EET
386 132 format(20X,'CRITICAL VALUES FOR THE MODIFIED K-S TEST')
387 140 format('1'.36X,'Table VII')
388 142 format(20X,'CRITICAL VALUES FOR THE MODIFIED A-D TEST')
389 150 format('I'.35X.'Table VIII')
390 152 format(19X.'CRITICAL VALUES FOR THE MODIFIED C-VM TEST')
391 200 format(' alpha',3X,'n',4X,'c=.5',5X,1.0',6X,'1.5',6X,
392 1 '2.0',6X,'2.5',6X,'3.0',6X,'3.5',6X,'4.0')
393 201 format(81('-'))
394 c
395 close(7)
396 c
397 end
398 c
399 c====-========
400 c END MAIN PROGRAM
401 c***22*$S****2SS2* SSS**S2S**2 SSS*S2S22***S**$*****22**2**S2**2S 222.2 -*2

4014
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402 Subroutine PARDEV
403
404 c$* $$
405 c$$ B E G I N S U B R O U T I N E P A R DEV
406 c$* *;
407
408 c
409 c Raft Appendix A, Fig 6, Steps I & 2.
410 c

412 c
413 c Purpose: For a specified sample size n, generate n random
414 c deviates from a Pareto distribution with location and

- 415 c scale parameters set to one (a = b a 1) and the shape
416 c parameter c set to some specified positive value.
417 c

419 c

421 c r - array containing n random numbers
422 c c = shape parameter
423 c x = array containing n Pareto deviates
424 c n = sample size
425 c dseed a random number seed
426 c

*427 c==
I g

===u==in===a
z

u
g

u==~
i

s
t

uam 
I

u
I

=======u==u 
t I

=uuu
t

===
I

=ua
I  I

==u

428 c
429 c Input: dseed = random number seed (from MAIN program)
430 c c = shape parameter - .5(.5)4 (MAIN DO Loop 90)

* 431 c n = sample si:e 5(5)30 (MAIN DO Loop 80)
432 c • •

434 c
435 c IMSL Subroutines:
436 c
437 c GGUBS - generates random numbers uniformly distributed on (0.1)
438 c VSRTA - arranges a set of numbers in ascending order .. -

439 c
440 c=::==zrn==u=:u===u:u:u:u============z==========u==u====== :::::
441 c
442 c Calculate:
443 c
444 c x(j) , (l/r(j)) $$ (1/c) for . " 1,2,...,n (from eqn 48)
445 c446 c-.-----=i ---= ----.u=====-..=====.====.====.=========. _

447 c
448 c Output: x = array of n ordered Pareto deviates
449 c

* 450
451 c -,
452 c Declare Variables:
453 c
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... 454 common dseed,x,nqc,nc,B,D.ablubblu.PPct.Bsuml,Bxsuml,
455 1 Bxsum2,Bxsm2cKS.ADCVM .it.nsiz.nshp,npct,nst,
456 1 KScrit,ADcrit.CVcrit,Y
457 real x(30),ablubbluB(30),DKS(5000,6,8),AD(5000,6,8),
458 1 CVM(5000.6.8),c.,nc.Bsuml,BxsumI.Bxsum2, Bxsm2c,P(30),
459 1 r(30),KScrit(6.8,5),ADcrit(6,8,5),CVcrit(6,8,5),
460 1 Y(5002)
461 integer nnpct .
462 double precision dseed
463 c t
464 c-- Begin DO Loop 10 to Generate n Random Pareto Deviates ---
465 c
466 do 10 j 1,n
467 c
468 c Use IMSL subroutine to generate random numbers:
469 call GGUBS(dseed,n,r)
470 c
471 c Use eqn 48 to transform them to Pareto deviates:
472 x(j) = (1.0/r(j))*(1.0/c)
473 c
474 10 continue
475 c
476 c--- End DO Loop 10 after Generating n Random Deviates ---
477 c $ (Completes Step I of Figure 6) $i
478 c
479 c Use IMSL subroutine to place the deviates in ascending order:

S 480 call vsrta(xn)
481 c $$ (Completes Step 2 of Figure 6) .
482 c
483 return
484 end
485 c
486 :::::::::::::::::::::::::::::::::::::::::::::=::::::=::::::::
487 c END SUBROUTINE PARDEV
488
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489 Subroutine BXVALS
"* * - 490 $..

491 c** $$
492 c$$ B E G I N S U B R 0 U T I N E B X V A L S
493 c. -
494 $ . . "
495 c
496 c Ref: Appendix A, Fig. 6, Step 3.
497
498 :
499 c
500 c Purpose: For a given sample size n, calculate the B values
501 c used to find the BLUEs of location and scale. Also
502 c find the sum of the first n-1 values of B(i). Then,
503 c compute the three values equal to the sums of the
504 c first n-i, the first n-2, and (for c = .5, 1, or 2)

505 c the first n -2/c values of B(i)n(i).
506 c
507 c-=-=I = =

508 c
509 c Variables: c = shape parameter "
510 c n = sample size
511 c x array containing n ordered Pareto deviates
512 c B * array containing n values of B
513 c Bsuml = sum of B(i) values for i = 1,2,...,(n-1)
514 c Bxsuml = sum of B(i)x(i) for i = 1,2,...,(n-1)
515 c Bxsum2 = sum of B(i)x(i) for i = 1,2,...,(n-2)
516 c Bxsm2c = sum of B(i)x(i) for i = 1,2,...,(n-2/c) .
517 c
513c====== =

519 c
520 c Input: c = shape parameter = .5(.5)4 (from MAIN DO Loop 90)
521 c n = sample size = 5(5)30 (from MAIN DO Loop 80)
522 c nc = nic (from MAIN program)
523 c x = ordered Pareto deviates (from PARDEV)
524 c

* ~525 c - - -

526 c
527 c Calculate:
528 c
529 c B(i) E l1 - 21c(n-i+1)] $ B(i-1) (eqn 29)
530 c
531 c Bsuml B(1) + B(2) + ... + B(n-1)
532 C
533 c Bxsuml a B(1)tx(l) + ... + B(n-l)Sx(n-1)
534 c
535 c Bxsum2 B(1)tx(1) + *.. + B(n-2)*x(n-2)
5 536 c
537 c Bxsm2c B(1)*x(1) + .. + B(n-2/c)x(n-2/c)
538 c
539c = m = ~= ==r

540 c
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541 c Output:
542 c B = array containing n values of B
543 c Bsuml = sum of first (n-1) B values
544 c Bxsuml - sum of first (n-i) B~x values
545 c Bxsum2 = sum of first (n-2) Bx values

* 546 c Bxsm2c = sum of first (n-2/c) B*x (if 2/c is integer)
*547 c

548
549 c
550 c Declare Variables:
551 c
552 common dseed,x,n,c,nc,B,D,ablu,bblu,P,pctBsuml,Bxsuml,
553 1 Bxsum2,Bxsm2c,KS,AD,CVM, it,nsiz,nshp,npctnst,
554 1 KScrit,ADcrit,CVcrit,Y
555 real x(30),ablu,bblu,B(30),D,KS(5000,6,B),AD(5000,6,8),
556 1 CVM (5000,6,8),c,nc,Bsuml,Bxsuml,Bxsum2,Bxsm2c,P(30),
557 1 KScrit(6,8,5),ADcrit(6,B,5),Cycrjt(6,8,5),Y(5002)
558 integer n
559 double precision dseed
560 c
561 c Calculate the first B value (eqn 25):
562 c
563 (1) 1.0 - 2.0/nc
564 c
565 c --- Begin DO Loop 10 to Find the 2nd thru nth B values ---
566 cS o 567 do 10 =,n 

568 B(j) = B(j-I) S (1.0- (2.0/(c*(n-j+I))))
569 10 continue
570 c
571 c --- End DO Loop 0---
572 c
573 Buml = 0
574 c
575 c --- Begin DO Loop 20 to Sum the First n-i Values of B

576 c
* 577 do 20 k-l, (n-I)

578 Bsuml = Bsuml + B(k)
579 20 continue
580 c
581 c --- End DO Loop 20 ---
582 c
583 BxsumI = 0
584 c
585 c --- Begin DO Loop 30 to Sum the First n-1 Values of Bx --- ,

586 c
587 do 30 1.1, (n-1)
588 Bxsuml = B:suml + (B(1)*'<(1))
589 -T0 continue
590 c
591 c --- End DO Loop 30 ---
592 c
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593 Bxsum2 = Bxsuml - (B(n-l)*x(n-1))
. 594 c

595 c Find Bxsm2c When 2/c is an Integer (c=.5, 1, or 2) ---
596 c
597 Bxsm2c = 0
598 c
599 if (c .eq. 1.0) then
600 Bxsm2c = Bxsum2
601 else if (c .eq. 2.0) then
602 Bxsm2c = Bxsuml
603 else if (c .eq. 0.5) then
604 Bxsim2c = Bxsum2 - (B(n-3)*x(n-3)) - (B(n-2)$x(n-2))
605 end if
606 c
607 return I
608 end
609 c
610 c==z - ----------- = ="-=

611 c END SUBROUTINE BXVALS
612 ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: * $** "

I . . .
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613 Subroutine BLCLE2
-. 614

615 cU*

616 c* B E G I N S U B R 0 U T I N E B L C L E 2
617 c*"
618
619 c
620 c Ref: Appendix A, Figure 6, Step 3.
621 c

623 c
624 c Purpose: Given an ordered sample of size n and specified shape
625 c c<=2, calculate the BLUEs of location a and scale b.
626 c
627- . -

628 c
629 c Variables:
630 c x - array containing n ordered Pareto deviates
631 c c = shape parameter
632 c n = sample size
633 c B = array of B values used to calculate the BLUEs .
634 c nc = product of n and c
635 c Coef1 coefficient used to compute BLUE of location a
636 c Coef2 = coefficient used to compute BLUE of location a
637 c Coef3 = coefficient used to compute BLUE of scale b
638 c Bxsum2 = sum of B(i)$x(i) terms for i = 1,...,n-2
639 c Bxsm2c = sum of B(i)*x(i) terms for i = 1,....n-2/c
640 c ablu = BLUE of the location parameter a
641 c bblu = BLUE of the scale parameter b
642 c U = value used to compute BLUEs when c = 1.5
643 c Termi = terms used to compute U (i=1,2,3)
644 c
645
646 c
647 c Input: x = array of n ordered Pareto deviates (from PARDEV)
648 c c = shape parameter = 0.5, 1.0, 1.5. or 2.0
649 c n = sample size = 5(5)30 (from MAIN DO Loop 80)
650 c nc = n*c (from MAIN program)
651 c B = array containing n values of B (from BXVALS)
652 c Bxsum2 = sum of first n-2 values of B (from BXVALS)
653 c Bxsm2c = sum of first n-2/c values of B (from BXVALS)
654 c
655 c~in

e
======~=============== =========u,." -."= -==

656 c
657 c Calculate (if c = 0.5, 1, or 2):
658 c
659 c Coefl = [(c+1)$(c+2)) / E(nc-2)$(nc-c-2)]
660 c Coef2 = (nc-2) / (c+2)
661 c
662 c ablu = x() - Coefl * [Bxsm2c - (Coef2*x(1))] (ean 34)
663 c bblu = (nc-i) * (x(1) - ablu] (eqn 35)
664 c
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667 c Calculate (if c = 1.5):
668 c
689 c Terml = (nc-2) S (nc-c-2)
670 c Term2 = nc * (c-2) * B(n-l)
671 c Term3 = (nc-I) * (c+2)
672 c Coef3 = E(nc-l)/nc3 * (nc-2-U)
673 c U = (Termi - Term2) / Term3 (eqn 39)
674 c
675 c ablu = x(1) - bblu / (nc-i) (eqn 37)
676 c bblu Cl/U) S C(c+l)*(Bx;sux2) + (2c-l)*B(n-1)*x(n-1)
677 c - Coef3 * x(1)3 (eqn 38)
679c .uuui u m a =u

681 c Output:
682 c ablu = BLUE of location parameter a
683 c bblu aBLUE of scale parameter b
685
687 c Declare Variables:
688 c
689 common dseed~xqn,c-gnc,B,D,ablu,bblu.P,pct.Bsuml,Bxsuml,
690 1 Bxsum2.B,4sm2c1KS,AD,CVM~it~nsiz,nshp,npct,nst,
691 1 KScrit,ADcrit,CVcritY
692 integer n
693, real x(30),abluqbblu,B(30),Dc,nc,Bsuml,Bxsuml,Bxsum2,
694 1 Bxsm2c,P(30) ,Terml,Term2,Term3',CoeflCoe-F2qCoef3,U,
695 1 KScrit(6,8,5)qADcrit(6,8q.5),CVcrit(6,8,5),Y(5002)
69?6 cdouble Precision diseed I
698 if ((c.eq.0.5) .or. (c.eq.1.0) .or. (c.eq.2.0)) then
699 Coefl = ((c+1.0)*(c+2".0)) / C(nc-A. 0) *(nc-c-2.0))
700 Coef2 -(nc-2.0) / (c+2.0)
701 ablu = x(l) - Coefl * (Bxsm2c - (Coef2*x(l)))
702 bblu - (nc-1.0) $ (xd1) - ablu)
703 c
704 else if (c .eq. 1.5) then
705 Terml = (nc-2.0) 8 Cnc-c-2.0)
706 Term2 = nc * (c-2.0) * B(n-I)
707 Term3 = (nc-1.O) * (c+2.0)
708 U = (Termi - Terni2) / Term3[
709 Coef3 = ((nc-1.0)/nc) * (nc-2.0-U)
710 bblu -(1.0/U) *( (c+1.0) S (Bxsui2)
711 1 + (2.0*c-1.O)*B(n-1)*x(n-1) -Coef3 S x(1)
712 ablu x(1) -(bblu /(nc-1.0))
713 c
714 end if
715 c
716 return
717 end
718 C
719c=====z=====
720 c END SUBROUTINE BLCLE2
721
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722 Subroutine BLCGT2- i. 723 c$$$$*$$*g*t*:***$*$$*t$***$ €¢$**s, : $$$$$$$s $$*:*$$*$ *- :-s

724 cs*
725 c** B E G I N S U B R 0 U T I N E B L C G T 2
726 c**
727
728 c
729 c Ref: Appendix A, Figure 6, Step 3.
730 c
731 C: ml f= l :umfz==mza I mE aI ===z============:====== .

732 c
733 c Purpose: Given an ordered sample of size n and a specified
734 c shape c > 2, calculate the best linear unbiased
735 c estimates (BLUEs) of location and scale.
736 c .

738 c
739 c Variables: x = array containing n ordered Pareto deviates
740 c c = shape parameter
741 c n = sample size
742 c nc = product of n and c
743 c B - array of B values used to calculate the BLUEs
744 c Bsuml = sum of B(i) terms for i = 1,...,n-1
745 c Bxsuml - sum of B(i)gx(i) terms for i = 1.....n-1
746 c D = value used to calculate the BLUEs
747 c YV = value used to calculate the BLUEs
748 c ablu = BLUE for location parameter a
749 c bblu = BLUE for scale parameter b
750 c
751 C::::::::::::=:::::::::::::::::"""

752 c
753 c Input: x - array of ordered Pareto deviates (from PARDEV)
754 c c = shape parameter 2.5. 3.0, 3.5, or 4.0
755 c n = sample size - 5(5)30 (from MAIN DO Loop 80)
756 c nc = n*c (from MAIN Program)
757 c B = array of B values (from BXVALS)
758 c Bsuml = sum of first (n-i) B values (from BXVALS)
759 c BxsumI sum of first n-i B*x values (from BXVALS)
760 c

762 c
763 c Calculate:
764 c
765 c D = [(c+1) Bsuml] + [(c-i) * B(n)] (eqn 21)
766 c
767 c YV = (c+1)$Bxsuml + (c-1)*B(n)*x(n) - DIx(1) (eqn 22)
768 c
769 c ablu x(1) - YV/[(nc-1)$(nc-2) - D*nc] (eqn 17)
770 c
771 c bblu (nc-i) I x() - ablu I (eqn 18)
772 c 7 -
773 c:::::::::::::::::::::---------:: ---------
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774 c
775 C Output: ablu = BLUE for location a
776 c bblu a BLUE for scale b
777 c
778 == ==

779 c
780 c Declare Variables:
781
782 com~mon dseedXqn,c.nc1B,D,ablu~bblu.P,pct,Bsumi.Bxsumi.
783 1 Bxsum2,Bsm2cKS,AD.CVM.it.nsiznshp,npct~nst,
784 1 KScrit.ADcrit,CVcrit.Y
785 integer n
786 real x(30),ablu,bblu.B(30),DKS(5000.6,8).AD(50O0,6.8),VV,
787 1 CVM(5000,6,8) !c,nc,Bsumfl,BxsumlBxsum2qBxsm~c,P(30),
788 1 KScrit(6.8.5).ADcrit(6,8,5),CVcrit(6,8,5),r(30).
7e9 1 Y(5002)
790 double precision dseed
791 c
7 92 D =((c+1.0) * Bsuml) + ((c-1.0)) * B(n))
793 YV ((c+i.O)*Bxsumi) + ((c-i.0)*B(n)*x(n)) - (D*x(1))
794 ablu = x(i) - YV/((nc-i.0)S(nc-2.0) -(D*nc))

795bblu = (nc-i.') (x(1) -ablu)

796 c
797 return
798 endZ.
799 c

801 c END SUBROUTINE BLCGT2
802

J
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803 Subroutine HYPCDF
804 c***$2*$$**$$*$$ 2*$2*$*$$ 2**2**$*222*** $$$$$ "-
805 c*2 $
806 c** B E G I N S U B R 0 U T I N E H Y P C D F
807 c-.

809 c
810 c Ref: Appendix A, Figure 6, Step 4.

811 c -

813 c
814 c Purpose: Given an ordered sample of size n, a specified
815 c shape c. and the BLUEs of location a and scale b,
816 c compute the hypothesized Pareto distribution
817 c function P(i) for i = 12...,n.
818 c
819 c = =:= =::::::=-----------::::::: "-
820 c
821 c Variables:
822 c x = array containing n ordered Pareto deviates
823 c n = sample size
824 c c = shape parameter
825 c ablu = BLUE of location a
826 c bblu = BLUE of scale b
827 c P = array containing n points of the
828 c hypothesized Pareto CDF
829 c 7
830 c
831 c
832 c Input:
833 c x = array of n ordered Pareto deviates (from PARDEV)
834 c c = shape parameter = .5(.5)4 (from MAIN DO Loop 90)
835 c n = sample size = 5(5)30 (from MAIN DO Loop 80)
836 c ablu = BLUE of location a (from BLCLE2 or BLCGT2)
837 c bblu = BLUE of scale b (from BLCLE2 or BLCGT2)

838 c
83 9 c-=
840 c
841 c Calculate:
842 c
843 c P(i) = 1 - 11 I 11 + (x(i) - ablu)/bblu] ]**c (eqn 40)

844 c

846 C . .

847 c Output: P = array of n points of the hypothesized CDF... _
8348 c- ""

850 c-..-i
851 c Declare Variables: "-'.•
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852
853 common dseedx~n,cgnncqB,Dqablu,bblu,pctqBsumlqBxsuml.
854 1 Bxsum2,Bxsm2cqKS .AD,CVM,it,nsiz,nshpngct~nst,
855 1 KScritADcritCVcrit.v --

856 integer n
857 real x(30).ablu.bblu,B(30),D.KS(5000,6,8).AD(5000,6.8).

858 1 CVM(5000,6,8),c,nc.Bsuml,Bxsuml.B8Nsum2,Bxsm2c.P(30),
859 1 KScrit(6.8,5),ADcrit(6.8,5),CVcrit(6,8,5).r(30r),

861 double precision dseed .-
862 c
863 do 10 i 1,n

864 P(i) =1.0 -(1.0 + (xi) -ablu)/bblu) (-c)I
865 10 continue

867 return
*868 end

869 c
870

*871 c END SUBROUTINE HYPCDF
872
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873 Subroutine TESTAT
874
875 c$"
876 c$$ B E G I N S U B R O U T I N E T E S T A T
877 c**

878
879 c
880 c Ref: Appendix A. Figure 6. Step 5.
881 c

884 c Purpose: Given a sample size n. and the hypothesized Pareto
885 c distribution function P(i). compute values of the
886 c test statistics of the modified K-S, A-D. and CVM.
887 c goodness-of-fit tests.
889.
891 c Variables:
892 c n a sample size
893 c nshp = shape parameter counter (8 values, 1-8)
894 c nsiz = sample size counter (6 values, 1-6)
895 c it = iteration counter (1-5000)
896 c P = array of n values of the hypothesized Pareto COF
897 c - - -- - -- --
898 c DP = positive differences between EDF and CDF points
899 c DM = negative differences between EDF and CDF points
900 c DPLUS = maximum positive difference (largest DP value)
901 c DMINUS = maximum negative difference (largest DM value)

I 902 c KS = values of the modified K-S test statistic
903 c ---
904 c AL = value used to calculate the A-D test statistic
905 c AM = value used to calculate the A-D test statistic
906 c AN = AL + AM
907 c AAA = values to be summed for A-D test statistic
908 c SAAA a sum of AAA values
909 c AD = values of the modified A-D test statistic
910 c-- - - - - - - - - - - - - - - - - - - - - - - - - - - -
911 c ACV = squared quantities in the C-VM formula
912 c SACV = sum of the ACV values
913 c CVM = values of the modified C-VM test statistic
915 c======= --- =====-----------
917 c Input:
918 c n = sample size 5(5)'0 (from MAIN DO Loop 80)
919 c P = array of n values of hypothesized CDF (from HYPCDF)

* 920 c it = iteration counter (from MAIN Do Loop 60)
- 921 c nsiz = sample size counter (from MAIN DO Loop 80)

922 c nshp = shape parameter counter (from MAIN DO Loop 90)
924

. 926 c Calculations for K-S test statistic (eqns 41 & 42):
927 c

" 928 c DP(i) = ABSE (i/n) - P(i) I
. 929 c DM(i) = ABS[ P(i) - (i-1)/n I

930 c
931 c DPLUS = max [ DP(i) I for i=1.2....,n
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9 c DMINUS may E DM(±) I for i-l.2,..%,n
93Z c
934 c KS =max (DPLUS.DMINUS)

937 c

938 c Calculations for A-D test statistic (eqn 43):
039 c

940 c ALA3) - in (P(j))
941 c AMPS = In (U - P(n+l-j))
942 c AN(j) = AL(j) + AM( 3)
943 c
944 C AAA(j) =(22j - 1) 2AN(3 )
945 c SAAM = AAAM1 + AAA(2) + .. + AAA(n)
946 c
947 c AD - -n - (1/n) * SAAA
948 c
949 c -----------------------------------------------------------------
950 c
951 c Calculations for C-VM test statistic (eqn 44):
952 c
953 c ACV(k) = C PMk - (2*k - 1)/(2$n) 3**2
954 c SACV = ACV(1) + ACV(2) + ... +- ACV(n)
955 c
956 c CYM =(1/(12*n)) + SACV
957 c
958 c =-------------------------------------

*960 C
*961 c Declare Variables:

962 c
* 96Z common dseed,n,c,nc.Bqablubblu.P,pctqBsumlBxsuml,

964 1 Bxsum2.,Bxsm2c,KS.AD,CVMq it,nsiz,nshp~nact~nst, L.
*965 1 KScrit4ADcritCVcrit.Y

966 integer n,nsiz,nshp,it
967 real x<(30).abluqbbluB(30),DqKS(5000,6,8),AD(5000.6q8),
968 1 CVM(5000,6,8),cqncBsuml,Bx-sum1,B:sum2,B .sm2cP(30),
969 1 KScrit(6.8,5),ADcrit(6,8,5)qCVcrit(6,8q5)qr(3-0),
970 1 DP(30.),DM(30),DPLUSDMINUS,AL(30).AM(30),
971 1 AN(30) AAA(3"0).SAAAACV(30e) .SACVV(5002)

*972 double precision dseed
9 73 c
974 DPLUS =0

975 DMINUS =0
976 c
977 do 5 ik = 1,30
9713 DP~ik) = 0
979 DM(ik) = 0
980 5 continue
981 c
982- c ------- Compute the K-S Test Statistic (eqns 41 & 42): --- r
9 83 c
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984 do 10 i = ,n
985 DP(i) - ABS( (i/real(n)) PQN)
986 DM(i) - ABS( PNi) - (i-1)/real(n)

987 10 continue
988 c
989 DPLUS =MAX( DP(1),DP(2),DP(3)qDP(4),DP(5),DP(6)sDP(7),
990 1 DP(8),DP(9)qDP(10),DP(I1),DP(12)qDP(13),DP(14),
991 1 DP(15),DP(16)qDP(17)qDP(18),DP(19)tDP(20),
?92 1 DP(21),DP(22)q.DP(23),DP(24),DP(25),DP(26),
993 1 DP(27),DP(28),DP(29),DP(30))

*994 c
995 DM'INUS =MAX( DM(1).D(2).DM(3),DII(4).DM(5),DM(6).DM(7),
996 1 DM(8) ,DM(9) .DM(10) ,DM(11) 1DM(12) ,DM(13) ,DM(14),
997 1 DM(15),DM(16),DM(17).DM(18).DM(19),DM(20),

998 c 1 DM(21),DM(22)qDII(23),DM(24).DM(25)qDM(26),
999 1 DM(27)qDPI(28).Dtl(29),DM(30)

1001 KS(it.nsizqnhhp) =MAX(DPLUS.DMINUS)

1002 c
1003 C --------- Compute the A-D Test Statistic (eqn 43)t: ---

1004 c
1005 SAAA 0
1006 c
1007 do 20 j 4 n
1008 c
1009 AL(S) = log (P(j))
1010 AII(j) = log (1.0 - P(n+l-j))

1011 AN(S) = AL(j) + API(,)
1012 AAA(j) = (2.O*j - 1.0) *AN(j)
1013 SAAA = SAAA + AAA(j)
1014 c
1015 20 continue
1016 c
1017 AD(it,nsiz,nshp) =-n - (1.0/real(n)) *SAAA
1018 c
1019 c --------- Compute the C-VM Test Statistic (eqn 44): ----

*1020 c
*1021 SACV =0

1022c
1023 do 30 k lqn
1024 ACV(k) (PWk - (2.0*k -1.0)/(2.0*real(n)) )19*2
1025 SACV =SACV + ACV(k)
1026 30 continue
1027 c
1028 CVM(it.nsiz~nshp)= SACV + (1.0/(12.0*real(n)))
10249 c
1030 return
1031 end

1032 c

1034 c END SUBROUTINE TESTATr
10.35
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1036 Subroutine CRTVAL
1037 c Re***A*sndi**A, Fgue6Step 7. "'""""
1038 c**
1039 B E :G I N SUBROUTINER AL U.R0 .T .R
1040 c**
1041

*1042 C
1043 c Ref: Appendix A, Figure 6, Step 7.
1044 c

* 1045
1046 c
1047 c Purpose:
1048 c
1049 c Given a set of 5000 values of test statistics from the
1050 c modified Kolmogorov-Smirnov (K-S), Anderson-Darling (A-D),
1051 c or Cramer-von Mises (C-VM) test, select critical values
1052 c by using median ranks plotting positions to compute
1053 c specified percentile levels.
1054 c
1055--"-
1056 c
1057 c Variables:
1058 c c = shape parameter
1059 c n = sample size
1060 c oct = percentile value
1061 c nshp = shape parameter counter (1: c=.5; 2: c=1.0:
1062 c 3: c=1.5; 4: c=2.0; 5: c=2.5; 6: c=3.0;

_ 1063 c 7: c=3.5: 8: c-4.0)
1064 c nsiz = sample size counter (1: n=5 or 6; 2: n=10;
1065 c 3: n15: 4: n=20: 5: n=25; 6: n=30)
1066 c npct = Percentile counter (0: pct=O; 1: pct=.80;
1067 c 2: pct=.85: 3: pct=.9: 4: pct=.95; 5: pct=.99)
1068 c nst = total number of statistics used
1069 c it a iteration counter (5000 repetitions required)
1070 c KS = 3D array of 5000 modified K-S test statistics
1071 c KS1 = ID array of 5000 K-S test statistics
1072 c CVM = 3D array of 5000 modified C-VM test statistics
1073 c CVI = ID array of 5000 C-VM test statistics
1074 c AD = 3D array of 5000 modified A-D test statistics
1075 c AD1 = ID array of 5000 A-D statistics
1076 c STAT = ID array of test stats (KS, AD, or CVM)
1077 c KScrit = array of critical values for the K-S test
1078 c CVMcrit = array of critical values for the C-VM test
1079 c ADcrit = array of critical values for the A-D test . '

1080 c CRIT = either the KS, AD, or CVM critical value array
, 1081 c Y a array containing 5002 plotting positions
* 1082 c slpm = array of slopes used to find critical values

1083 c bi = array of intercepts used to find critical vals
1084 c
1085c= ==== =========---------------=
1086 c r
1087 c Input:
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"OB c Y a array of plotting positions (MAIN DO Loop 10)
i. e 1089 c c = shape parameter (from MAIN DO Loop 90)
1090 c n = sample size (from MAIN DO Loop 80)
1091 c nshp = shape parameter counter (from MAIN DO Loop 90)
1092 c nsiz = sample size counter (from MAIN DO Loop 80)
1093 c npct = percentile counter (from MAIN DO Loop 70)
1094 c nst = number of test statistics used (from MAIN Prog)
1095 c KS = array of 5000 K-S test statistics (from TESTAT)
1096 c CVM a array of 5000 C-VM test stats (from TESTAT)
1097 c AD a array of 5000 A-D test statistics (from TESTAT)
1098 c
1099 ,-a---=-=i=---------------=-=-----=-=---uui-..u-
1100 c
1101 c IMSL Subroutine: VSRTA - orders the test statistic values
1102 c
1103 czuu===nin--==, ininuinminuu:. uuinu== i== == = ==
1104 c
1105 c Calculate Endpoints of Test Statistics (Eons 52 - 57):
1106 c
1107 c slpm(O) = ( Y(2) - Y(1) ) / (STAT(2) - STAT(1)

1108 c bi(O) = Y(1) - slpm(O) * STAT(1)
1109 c STAT(O) - max ( 0. - bi(O)/slpm(O)
1110 c
1111 c slpm(6) = (Y(5000) - Y(4999))/(STAT(5000) - STAT(4999))
1112 c bi(6) = Y(4999) - slpm(6) * STAT(4999)
1113 c STAT(6) = (1.0 - bi(6)) I slpm(6)
1114 c
1115 c--------------
1116 c
1117 c Calculate Critical Values (Eqns 58 - 60):
lls c
1119 c slpm(npct) = ( Y(j+I) - Y(j) ) / (STAT(j+I) - STAT(j) )
1120 c bi(npct) = Y(j) - slpm(npct) * STAT(j)
1121 c CRIT(npct) = (pct - bi(npct)) / slpm(npct)
1122 c
1123 c U U = =inT= - : : : : :.

1124 c
1125 c Output:
1126 c
1127 c KScrit - array of critical values for modified K-S test L
1128 c ADcrit - array of critical values for modified A-D test
1129 c CVcrit - array of critical values for modified C-VM test
1130 c
1131 cauauininawa= ainaain=n== ===-
1132 c .-.M
1133 c Declare Variables:
1134 c
1135 common dseed.x,n,c,nc.B.D, ablubblu.P.pct.Bsuml,Bxsuml,
1136 1 Bxsum2,Bxsm2c,KS,AD.CVMit,nsiznshp,npctnst,
1137 1 KScrit,ADcritCVcrit,Y
1138 integer n.nsiz,nshpitnpctnstntest -

1139 real x(30).,ablu,bblu.B(30),DKS(5O0,6,8),AD(5000,6,.).
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1140 1 CVMl(5000.6,8).c,nc.Bsuml.Bxsuml.Bxsum2.,Bxsm2c.P(30),
1141 1 KScrit(6,8,5).ADcrit(6.8,5),CVcrit(6,8.5),r(30),
1142 1 Y(5002).STAT(5002),CRIT(6,8,7).slpm(7).bi(7),pct, i-i
1143 1 KSI(5000),CVI(5000),ADI(5000) .
1144 double precision dseed , -,

1145 c
1146 if (npct .eq. 1) pct = .80
1147 if (npct .eq. 2) pct = .85
1148 if (npct .eq. 3) pet = .90
1149 if (npct .eq. 4) pct = .95
1150 if (npct .eq. 5) pet - .99
1151 c
1152 c $$ Store the 3 Sets of 5000 Test Stats into ID Arrays: $"
1153 c
1154 do 16 ncnt - 1.nst "
1155 KSI(ncnt) - KS(ncnt,nsiz,nshp)
1156 ADl(ncnt) a AD(ncnt,nsiz,nshp)
1157 CVI(ncnt) = CVM(ncnt.nslz,nshp)
1158 16 continue
1159 c
1160 c 2$ Use IMSL Subroutine to Order the Test Statistics: *-
1161 c L._-

1162 Call VSRTA(KSI,nst)
1163 c print$°'ORDERED KS STATISTICS FROM CRTVAL:'
1164 c print$,'n='.n,' c=',c
1165 c do 2 jks = 1,nst
1166 c print$,'KS STAT n'.KSI(jks)
1167 c 2 continue
1168 c
1169 Call VSRTA(ADInst)
1170 c print$,'ORDERED AD STATISTICS FROM CRTVAL:'
1171 c printS,'n-',n,' c='.c
1172 c do 4 jad = 1,nst
1173 c print$,'AD STAT =',ADI(jad)

1174 c 4 continue
1175 c
1176 Call VSRTA(CVI,nst)
1177 c print*,'ORDERED CVM STATISTICS FROM CRTVAL:'
1178 c print*,'n=',n,' c=',c
1179 c do 6 jcv = 1,nst

1180 c print*$'CV STAT =',CVl(jcv)
1181 c 6 continue -

*1182 c
1183 c --- Begin DO Loop 20 to Rotate Through KS, AD, and CVM ---
1184 c
1185 do 20 ntest = 1,3
1186 c
1187 c --- Begin DO Loop 30 for 5000 Data Points ---

1188 c
1189 do 30 j = lnst
1190 c
1191 if (ntest .eq. 1) then
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1192 STAT(j) - KSI(j)" .. 1193 else if (ntest .eq. 2) then"";':'
1194 STAT(S) = AD1 (j) .. _.

1195 else if (ntest .eq. 3) then
1196 STAT(.) = CV1(j)
1197 end if
1198 c ,
I 199 30 continue
1200 c
1201 c End DO Loop 30 for 5000 Data Points
1202 c
1203 c *8 Extrapolate Left Endpoint of the Test Statistics: i"
1204 c
1205 if (STAT(1) .eq. STAT(2)) then
1206 c
1207 c printS, '$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'
1208 c print*,'TWO LEFT ENDPOINT STATS EQUAL'
1209 c if (ntest .eq. 1) print*,'FOR KS TEST'
1210 c if (ntest .eq. 2) print*.'FOR AD TEST'
1211 c if (ntest .eq. 3) print*,'FOR CVM TEST'
1212 c print$,'n=',n,' c=',c,' act=',pct
1213 c print*,'STAT(1)='.STAT(1)
1214 c print*,'STAT(2)=',STAT(2) '
1215 c printS, '%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%'
1216 c printS,'
1217 c- 1218 difO - STAT(3) - STAT(1)

1219 if (difO .eq. 0.0) difO = .00001
1220 slpm(O) - (Y(3) - Y(1)) / difO
12.1 else
1222 difO = STAT(2) - STAT()"
1223 slpm(O) = (Y(2) -Y(1)) / difO
1224 end if
1225 c
1226 bi(O) w Y(1) - slpm(O) * STAT(1)
1227 STAT(O) = max( 0.0, - bi(O)/slpm(O)
1228 c print*.'
1229 c print*,' = = - = =
1230 c if (ntest .eq. 1)print*,'FOR KS TEST STATISTICS'
1231 c if (ntest .eq. 2)print*,'FOR AD TEST STATISTICS'
1232 c if (ntest .eq. 3)print*,'FOR CVM TEST STATISTICS'
1233 c print*,'LEFT ENDPT X(0000) ='.STAT(O)
1234 c printS ..-- FIRST X(0001) =',STAT(1)
1235 c print$,'BOPCT STAT X(4000) -',STAT(4000)
1236 c print$,'85PCT STAT X(4250) =',STAT(4250)
1237 c printS,'9OPCT STAT X(4500) =',STAT(4500)
1238 c print,'95PCT STAT X(4750) =',STAT(4750)
1239 c printS.'99PCT STAT X(4950) =',STAT(4950)
1240 c printS' ----- LAST X(5000) =',STAT(5000)
1241 c
1242 c *5 Extrapolate Right Endpoint of the Test Statistic: *"
1243 c
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* 1244 if (STAT(nst-1) .eq. STAT(nst)) then
1245 ci . 1246 c pit,'sssssssssssssss
1247 c printWTWO RIGHT ENDPOINT STATS EQUALs'
1248 c if *(ntest .eq. 1) printt,'FOR KS TEST'
1249 c if (ntest .eq. 2) print*,'FOR AD TEST'
1250 c if (ntest .eq. 3) print*,'FQR CVII TEST'
1251 c print*.'n'1,n,' c-P,c,' pct-',pct
1252 c print*, 'STAT(4999)=' .STAT(nst-1)
1253 c print*, 'STAT(5000)='.STAT(nst)
1254 c pit, %7~7/X..%/f~/f////7/Y7
1255 C print*,'
1256 c
1257 dif 8 STAT(nst) -STAT(nst-2)

1258 if (dif6 .eq. 0.0) dif6 a.00001
1259 ulpm(6) (Y(nst)-V(nst-2)) /dif6
1260 else
1261 dif6 - STAT(nst) - STAT(nst-1)
1262 slpm(6) = (V(nst)-Y(nst-1)) / dif6
1263 end if

51264 c
*1265 bi(6) - Y(nst-1) - slpm(6)*STAT(nst-1)

1266 STAT(nst.1) = (1.0 - bi(6)) / slpm(6)
*1267 c printWRGHT ENDPT X(5001) -',STAT(nst+1)

1268 c
1269 c 25Interpolate Critical Values Between Test Stats: 53 ~* 1270 c
1271 c -- Begin DO Loop 50 to Find Max Y(k) < pct: -

1272 c
*1273 do 50 kj - 1,nst

1274 k - nst+1 - k
*1275 c

1276 if (YO,.) .le. pct) then
1277 c
1278 if (STAT(k) .eq. STAT(k+l)) then
1279 c
1280 c printS. 'S$$ $$$$$$$$$SS$$$$'$
1281 c prlnt*,'TWO ADJACENT STATS EQUAL:'
1282 c if (ntest .eq. 1) printf,'FOR KS TEST'
1283 c if (ntest e*q. 2) print*,'FOR AD TEST'
1284 c if (ntest .eq. 3) print*,'FOR CVM TEST'

*1285 c print$,'n-',n,' co',c,' pctz',pct
1286 c printW.STAT(k)-',STAT(k)
1287 c print*,'STAT(k+1).',STAT(k+1)

IF 1288 c printS, %%%////%%%%///././... ... /////'L
1289 c print*,'

-1290 c
-1291 dif =STAT(k+1) - STAT(k-1)

1292 if (dif .eq. 0.0) dif =.00001
1293 slpm(npct) = (Y(k+1)-Y(k-1)) /dif
1294 else
12.95 dif aSTAT(k-1) - STAT(k)
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1296 slpm(npct) a (Y(k+l)-Y(k)) / dif
1297 end if
1298 c
1299 bi(npct) = Y(k) - slpm(npct) $ STAT(k)
1300 CRIT(nsiz,nshp,npct)
1301 1= (pct-bi(npct))/slpm(npct)
1302 GOTO 75
1303 c
1304 end if
1305 c
1306 50 continue
1307 c
1308 c -- End DO Loop 50 Upon Finding Crit Val --

1309 c
1310 c $$ Associate the Critical Values with Test Type: $
1311 c
1312 75 if (ntest .eq. 1) then
1313 KScrit(nsiz,nshp,rpct) = CRIT(nsiznshpnpct)
1314 c print*,'n:',n,' ** c:',c.' pct=',pct
1315 c printW,'CRTVAL KS Crit Val -',KScrit(nsiz,nshp,npct)
1316 else if (ntest .eq. 2) then
1317 ADcrit(nsiz,nshp,npct) = CRIT(nsiz,nshp,npct)
1318 c print$,'CRTVAL AD Crit Val -',ADcrit(nsiz,nshp,npct)
1319 else if (ntest .eq. 3) then
1320 CVcrit(nsiz,nshp,npct) = CRIT(nsiznshp,npct)
1321 c printS,'CRTVAL CV Crit Val =',CVcrit(nsiz,nshp,npct)
1322 c print*, ' '
1323 end if
1324 c
1325 20 continue
1326 c
1327 c --- End DO Loop 20 After Rotating Through KS, AD, and CVM ---
1328 c
1329 return
1330 end
1331 c
1332 c===========:=====:a ::=:======:=:=:======:=:=:::=:::===::: ==.'-=.
1333 c END SUBROUTINE CRTVAL
1334 c$$$$$$ $$$ $$ $ $ $$$$$$$$$$$ISI$_

A-31A- 1 ' -.



APPENDIX B
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Computer;T

POWER

Subroutines STEP 17
PARETO 66W19 Benerate n Random
GGAMR 669TR Deviates from Alternate
GGEXN GGNPIL DistributionsI

Subroutines STEP 2C

VSRTA SLCGT2 CmueK-S, A-0, C-Vt,
DXVALS HYPCDF & X2Test Statistics
BLCLE2 TESTAT (Figure 6, Steps 2 -5)

D

Subroutine Compare Test Statistics
COMPAR Against Critical Values;E

Determine if Ho Rejected

Main Program STEP 4
DO Loop 40 epeat 5000

Ti ms

A

Fig 7. Procedure for Determining Power Values
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Main Program DvdNubrof H0

Re ects by 5000 to
Determi ne Power of Test

Main Program SE
DO Loop 80 Rpa

Main Program SE
DO Loop 70 aetf

Main Program SE
DO Loop 80 Rpa

IMain Program SE
DO Loop 90 eet+

Fig 7 (Continued). Procedure for Determining Power Values
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I c$*$*U Classroom Support Computer (CSC) - VAX 11/785 - VMS 4.1 *$*

2 c

3 c$:$*s: POWER PROGRAM FOR PARETO GOODNESS-OF-FIT TESTS $*$$$
4 c

6
7 c**
8 B E G I N P O W E R M A I N P R O G R A M
9 c**
10
11 c
12 c Ref: Appendix B, Figure 7.
13 c
14 c= :::=:::------::::-:=
15 c
16 c Purpose: Test the null hypothesis that a set of sample data
17 c follows the Pareto distribution with hypothesized shape c
18 c against the alternate hypothesis that the data follow some
19 c other distribution. The goals are to:
20 c
21 c 1. Compare powers of the modified Kolmogorov-Smirnov (K-S),
22 c Anderson-Darling (A-D), and Cramer-von Mises (C-VM) tests
23 c against the Chi-Square test to determine which test can
24 c best detect a false Pareto distribution hypothesis.
25 c
26 c 2. When the Pareto null hypothesis is true, confirm that
27 c the hypothesis rejection rates under the modified K-S, A-D, j
28 c and C-VM statistics are low enough to satisfy a claimed level
29 c of significance.
30 c
31 c 3. Provide extensive commentary to assist novice programmers
32 c to conduct similar power studies in statistical analysis.
33 c Diagnostic print statements have been retained as commentary LA
34 c to contribute to this goal.
35 c
36 c '
37 c
38 c Variables:
39 c dseed = random number seed L _
40 c alpha = level of significance (.01 or .05 used here)
41 c n = sample size
42 c c = null-hypothesis Pareto shape parameter
43 c nshp = null-hyp Pareto shape counter (I:c=1.0, 2:c=3.5)
44 c nalf = significance level counter (I:a =.05, 2:a =.01)
45 c nsiz = sample size counter (1:n=5, 2:n=15, 3:n=25) P 6
46 c nalt = alternative distribution counter (8 in all)
47 c nrep = number of repetitions to be used
48 c it = iteration counter (5000 repetitions required)
49 c KS = array of values of modified K-S test statistic
50 c CVM = array of values of modified C-VM test statistic
51 c AD = array of values of modified A-D test statistic '
52 c X2 = array of values of Chi-square test statistic
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.,. 53 c nrKS = number of hypothesis rejects under the K-S test
* 54 c nrAD = number of hypothesis rejects under the A-D test

55 c nrCV = number of hypothesis rejects under the CVM test
56 c nrX2 = number of hypothesis rejects under Chi-square
57 c58 = :: :: : :: :: : :: :: : :: :: : :: :: :: : :: : m: :: :: : :: ::"'>'u'

59 c
60 c Input:
61 c nrep = number of repetitions (input at computer terminal)
62 c dseed a random number seed (input at computer terminal)
63 c

65 c
66 c Subroutines

67 c
68 c PARETO - Generates n random Pareto deviates
69 c BXVALS - Calculates B values and summations of B and Bx
70 c BLCLE2 - Finds BLUEs for location and scale when c <= 2
71 c BLCGT2 - Finds BLUEs for location and scale when c > 2
72 c HYPCDF - Computes the Hypothesized Pareto CDF
73 c TESTAT - Calculates the K-S, A-D, and C-VM test statistics
74 c COMPAR - Compares test stats vs. crit vals and counts rejects
75 c
76 c ------------------- ---------------

77 c
- 78 c IMSL Subroutines:

79 c L
80 c GGWIB - Generates random Weibull deviates
81 c GGAMR - Generates random Gamma deviates
82 c GGBTR - Generates random Beta deviates
83 c GGEXN - Generates random Exponential Deviates
84 c GGNML - Generates random Normal Deviates
85 c VSRTA - Arranges data in ascending order
86 c

88 c
89 c Output:
90 c
91 c KSpwr(nshp,nalf,nsiznalt) = power values for K-S test
92 c ADpwr(nshp,nalfnsizqnalt) = power values for A-D test
93 c CVpwr(nshp,nalf,nsiznalt) = power values for C-VM test
94 c X2pwr(nshpnalfnsiz,nalt) = power values for Chi-square
95 c

97 c :V
98 c Declare Variables:
99 c
100 common dseed,x, nc,ncBD,ablu.bbluP.Bsuml.Bxsuml..
101 1 Bxsum2,Bxsm2c,KS.AD,CVM,it.nsiznshp,nrep,
102 1 nalt.nalf,nrKS.nrAD,nrCVnrX2,X2
103 integer nmnsiz~nshp,it.nrepqnrKS(2 ,2..8).nrAD ('s...8)
104 1 nrCV(2,2,3,e),nrX2(2.2,3,8)

* . * .. * . .
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105 real x(25),ablu,bblu,B(25),D.KS(2,2,3,8),AD(2,2,3,8),
106 1 CVM(2,2,3,8),c,nc,Bsuml,Bxsuml,Bxsum2,Bxsm2c,
107 1 P(25).r(25),alpha,KSpwr(2,2, 3,8),ADpwr(2,2,3,8),
108 1 CVpwr(2,2,3,8),X2crit(2,2,3),X2(2,2,3,8),
109 1 X2pwr (2, 2, 3, 8)
110 character test(4)*3,altcdf(8)$12
111 double precision dseed >
112 C J

113 test(l) = IK-S'
114 test(2) a 'A-D"
115 test(3) - 'CVM'
116 test(4) - 'CHI'
117 c
11 altcdf(1) - 'Pareto c=1.0'
119 altcdf(2) = 'Pareto c=3.5'
120 altcdf (3) a 'Pareto c-2.0'
121 altcdf(4) = 'Weibull'
122 altcdf (5) = 'Gamma'
123 altcdf (6) = 'Beta'
124 altcdf (7) - 'Exponential'
125 altcdf (8) = 'Normal'
126 c
127 c ** Open Output File to Store Computed Power Values: .
128 open (unit=7,file'X2ALL' .status='new')
129 c
130 c *$ Number of Repetitions to be Used on Each Run: ,-
131 print*,'The Monte Carlo power analysis will require' I.
132 print*,' 5000 repetitions.'
133 print$,'Enter the number to be used for this run:'
134 read$,nrep
135 c
136 print*,'Enter random number seed or "1." for default:'
137 readt,dseed
138 if (dseed .eq. 1.) dseed = 123457.d00
139 print*,'
140 printS,'STANDBY . . . COMPUTATIONS IN PROGRESS'
141 c
142 c --- Begin DO Loop 90 for Null-Hypothesis Pareto Shape c ---
143 c L
144 do 90 nshp = 1,2
145 c
146 if (nshp .eq. 1) then
147 c a 1.0
148 write(7,51)
149 write(7,56)
150 write (7,58)
151 write(7,62)
152 else if (nshp eq. 2) then
153 c = 3.5
154 write(7,52)
155 write(7,56)

" *. 156 write(7.59)
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157 write(7,62)
--.- 158 end if

159 c
160 c --- Begin DO Loop 80 for Alpha Significance Levels ---

*161 c
162 do 80 nalf =1,2

*163 c
164 if (nalf .eq. 1) then
165 alpha = .05
166 write(7,64)
167 else if (nalf .eq. 2) then
168 alpha = .01
169 write(7,66)
170 end if
171 c
172 write(7,54)
173 write(7,74)
174 write(7.68)
175 write(7,72)
176 write(7,76)

*. 177 write(7,72) L'"
•178 c

179 nsiz = 0

180 c-191 c printS,'============ :=== ====:' ".

182 c printt,'Numbers of Rejects After do 80/Before do 70'
183 c print$,'c =',c,'alpha =',alpha,'n=',n,'CDF: ',altcdf(nalt)
184 c printS,'KS Rejects a ',nrKS(nshp.nalf.nsiznalt)

" 185 c print*,'AD Rejects = ',nrAD(nshp,nalf,nsiz,nalt)
186 c print*,'CV Rejects = ',nrCV(nshpnalf,nsiz,nalt)
187 c prints, =* 188 c -...

189 c Begin DO Loop 70 for Sample Sizes ---

190 c
-191 do 70 n =5,25, 10

192 c
- 193 nsiz = nsiz + I.

194 c
195 nc = n $ c
196 c
197 c -- Begin DO Loop 60 for Alternate CDFs --

198 c
199 do 60 nalt 3 1.8
200 c
201 c ,

* 202 nrKS(nshpnalf,nsiz,nalt) = 0
* 203 nrAD(nshpnalfqnsiz,nalt) = 0

204 nrCV(nshp,nalf,nsiz,nalt) = 0
205 nrX2(nshp,nalf,nsiz,nalt) = 0
206 c
207 c -- Begin DO Loop 40 for Repetitions -- r
208 c
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209 do 40 it= 1,nrep:i:" 210 c.- ,

211 c $ Perform Step 1 of Figure 7: U
212 c
213 if (nalt .eq. 1) call PARETO
214 if (nalt .eq. 2) call PARETO
215 if (nalt .eq. 3) call PARETO
216 if (nalt .eq. 4) call GGWIB(dseed,3.5,n,x)
217 if (nalt .eq. 5) call GGAMR(dseed,2.,n,l,x)
218 if (nalt .eq. 6) call SGBTR(dseed,2.,3.,n,x)
219 if (nalt .eq. 7) call GGEXN(dseed,2.,n,x)
220 if (nalt .eq. 8) call GGNML(dseed,n,x)
221 c
222 c U Perform Step 2 of Figure 7: -
223 c
224 call VSRTA(x,n)
225 call BXVALS
226 c

. 227 if (c .eq. 1.0) call BLCLE2
228 if (c .eq. 3.5) call BLCGT2
229 c
230 call HYPCDF
231 call TESTAT
232 c
233 c UPerform Step 3 of Figure 7:
234 c
235 call COMPAR
236

237 40 continue "'
238 c
239 c -- End DO Loop 40 for Repetitions --

240 c ** Completes Step 4 of Figure 7 .
241 c
242 c $ Perform Step 5 of Figure 7: .
243 c
244 c print*, ' == =
245 c print*,'Numbers of Rejects Prior to Power Calculation'
246 c print*,'c =',c, 'alpha =',alpha,'n=',n,'nalt=',nalt
247 c print*,'KS Rejects = ',nrKS(nshp,nalf,nsiz,nalt)
248 c print*,'AD Rejects = ',nrAD(nshp,nalf,nsiz,nalt)
249 c print*,'CV Rejects = ",nrCV(nshp,nalf,nsiznalt)
250 c print*,'X2 Rejects = ',nrX2(nshp,nalf,nsiz,nalt)
251 c printS '== u= = = =.
252 c
253 KSpwr(nshp,nalf,nsiz,nalt) =
254 1 nrKS(nshpnalf,nsiz,nalt)/real(nrep)

- 255 c
256 ADpwr(nshp,nalf,nsiz,nalt) =
257 1 nrAD(nshp,nalf,nsiznalt)/real(nrep)~25e c :

259 CVpwr(nshp,nalf,nsiz,nalt) = -

• 260 1 nrCV(nshpnalf.nsiznalt)/real(nrep)
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261 c
*.J 262 X2pwr(nshp,nalf,nsiz,nalt)=

283 1 nrX2(nshp,nalf~nsiz,nalt)/real(nrep)
264 c
265 pit,**2*******2$*8***
266 print*.' POWER VALUES FROM MAIN PROGRAMI'
267 print*,' Null-hyp c =',c,'alpha =',alpha
268 print*,' n=',n,' Alternate CDF: ',altcdf(nalt)
269 c pitq'n = = n i U A
270 c print*,' KS Rejects = ',nrKS(nshp,nalf,nsiz,nalt)
271 c print*,' AD Rejects a ',nrAD(nshp,nalfqnsiz,nalt)
272 c print*,' CV Rejects a ',nrCY(nshp,nalf,nsiz,nalt)
273 c print*,' X2 Rejects = ',nrX2(nshp,nalf,nsiz,nalt)
274 cprn , um n u u:

275 print*,' KS Power -'.KSpwr(nshp,nalf,nsiznalt)
*276 print*,' AD Power =',ADpwr(nshp,nalf,nsiz,nalt)

277 print*,' CV Power =',CVpwr(nshp,nalf,nsiz~nalt)
278 print*,' X2 Power =',X2pwr(nshp~nalf,nsiz~nalt)
279prn, ***tS****S****S*$S*g'
280 print*,'
281 c
282 60 continue
283 c
284 c -- End DO Loop 60 for Alternate CDFs -

- -285 c **Completes Step 6 of Figure 7 8
286 c
287 c -- Write Power Results to File -

288 c
289 write(7, 110) 1n~test(1) ,KSpwr(nshp,nalf,nsiz, 1),
290 1 KSpwr(nshp,nalf,nsiz,2),KSpwr(nshp~nalf,nsiz,3),
291 1 KSpwr(nshp~nalf~nsiz,4),KSpwr(nshp~nalf,nsiz,5),

*292 1 KSpwr(nshpmnalf,nsiz,6),KSpwr(nshpqnalf,nsiz,7),
293 1 KSpwr(nshp,nalfgnsiz,8)

*294 c
295 write(7.110),n,test(2).ADpwr(nshp,nalf,nsiz.1),
296 1 ADpwr(nshp,nalfgnsiz,2).ADpwr(nshpqnalf,nsizq3),
297 1 ADpwr(nshp,nalf~nsiz,4).ADpwr(nshp~nalf~nsiz.5),

*298 1 ADpwr(nshp~nalf.nsiz,6),ADpwrnshpqnalf,nsiz,7),
299 1 ADpwr(nshpqnalf~nsiz,B)
300 c
301 write(7.110),n,test(3").CVpwr(nshp,nalf,nsiz.1 ).
302 1 CVpwr(nshp,nalf~nsiz,2),CVpwrcnshp,nalf,nsiz,3),
303 1 CVpwr(nshp,nalf,nsiz,4),CVpwr(nshp~nalf,nsiz,5),
304 1 CVpwr(nshpgnalf,nsiz,6),CVpwr(nshp,nalf~nsiz,7),
305 1 CVpwr-(nshp,nalf,nsiz,S)

*306 c
*307 wr'ite(7 .110),n,test(4),X2pwr(nshp,nalf,nsiz,l),

308 1 X2pwr(nshp,nalfgnsiz,2).X2pwr(nshp,nalfqnsiz,3),
309 1 X2pwr(nshp,nalf..nsiz,4),X2pwr(nshp,nalf,nsiz,5),
310 1 X2pwr(nshp,nalf,nsizq6),X2pwr(nshp~nalf,nsiz,7),
311 1 X2pwr(nshp,nalf,nsiz,a)
312 c
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S-313 write(7,72)
314 c
315 70 continue

*316 c
317 c -- End DO Loop 70 for Sample Sizes --
318 c Completes Stop 7 of Figure 7 *

-319 c
*320 so continue

*321 c
-322 c --- End DO Loop 80 for Alpha Significance Levels--
*323 c St Completes Step 8 of Figure 7 S
*324 C
*325 write(7,74)
*326 c

327 90 continue
328 c

*329 c -- End DO Loop 90 for Null-Hypothesis Pareto Shape Parameter--
330 c
331
332 c
333 c Specify Format for Hardcopy Output Data and Headers:

*334 c
*335 51 4ormatV'1,36X,'Table XVII')

336 52 format('1',35X,'Table XVIII')
337 54 f ormat(' ')

338 56 format('0',22X,'POWER TEST FOR THE PARETO DISTRIBUTION')
10 39 58 foruuat(22X,'Hot Pareto Distribution at Shape c = 1.0')

340 E9 format(22X.q'Ho: Pareto Distribution at Shape c = 3.5')
341 62 format(22X,'Ha: The data follow another distribution')
342 64 format('0',28X,'Level of Significance = .05')
343 66 format('0',28X.'Level of Significance = .01') *-

344 68 format(35X,'Alternate Distributions')
345 72 format(B0('-')) L

*346 74 format(80(''1))
. - 347 76 format(2X-' n. 3X'Test'.4X,'Par.1'.X,'Par. ' .3X.'Par.3' .3X,

348 1 'Weibl'. 3X. 'Gamma' ,3X,'Beta' !4X,
349 1 'Expon',3X,'Norml')
350 110 format(' ',13,A7,F9.7;,7FS.3)
351 c
352 close(7)

*353 C
S- 354 end

• 355 c

* 356 c= --- End DO Loop 70 for- Sample Sizes == - -------------

, 357 c END MAIN PROGRAM
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359 Subroutine PARETO
360
'361 **s
362 c1 B E G I N S U B R 0 U T I N E P A R E T 0
363 c$-

364
365 c
366 c Ref: Appendix B. Fig 7, Step 1.
367 c
36e ============
-69 c
370 c Purpose: For a specified sample si:e n, generate n random
371 c deviates from a Pareto distribution with parameters of
372 c location, scale, and shape set to specified positive
T773 c values.
374 c
375 c==: =
776 c
377 c Variables:
37e c r = array containing n random numbers
37, c ac = actual shape parameter of Pareto deviates
380 c x = array containing n Pareto deviates
381 c n = sample size
382 c dseed = random number seed
383 c

385 c
386 c Input: dseed = random number seed (from MAIN oroaram)
387 c n = sample size = 5.15, or 25 (MAIN DO Loop 70)
38e c nalt= alternate CDF counter (MAIN DO Loop 60)
1389 c
390
791 c
392 c IMSL Subroutines:

93 c"
394 c GGUBFS - qenerates random numbers distrib uniformly on (0.1)
705 c VSRTA - arranges a set of numbers in ascending order
396 c

798e c -
399 c Calculate:
400 c
401 c x() (1/r()) ** (1/ac) for j = 12....n (from eon 48)
402 c
403 c x(a'.b') = b' $ C C(';ab) - a ) / b) + a' (from eon 50)
404 c

405 c : : : : : : : : : : : : : : . . =
406 c
407 c Output: = array of n random Pareto deviates
408 c
409----------- - -=

410 c
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* 411 c Declare Variables:
412 c

* 413 common dseed.,',,ncnc.B,D.ablu.bb]u.P.Bsum.Bxsum.
414 1 Bxsum2, B;:xsm2c.KSAD.CVM. it,nsiz.nsho.nrep,
415 1 nalt.nalf.nrKSonrAD.nrCV.nrX2.X2
416 integer n.nsiz.nsho.it.nreonrKS(2.2.3.8).nrAD(2,2.3,8), .-- :-
417 1 nrCV (2. 2,3. 8)
418 real y (25). ablu. bblu. B (25). D. KS (2.2.3. 8), AD (2,2.,7.,8),
419 1 CVM (2,23. 8) , °c. nc. Bsuml. Bxsuml, Bxsum2. Bxsm2c.
420 1 P (25).r(25).alpha.KSawr (2 .2. 3,8).ADpwr(2, 2,3.8),
421 1 CVpwr(2.2.3,8).ac
422 double precision dseed
423 c
424 if (nalt .eq. 1) ac = 1.0
425 if (nalt .eq. 2) ac = 3.5 -
426 if (nalt eq. 3) ac = 2.0 
427 c
42e c--- Begin DO Loon 10 to Generate n Random Pareto Deviates ---
429 c
430 do 10 i = 1,n
431 c

* 432 c Use IMSL subroutine to generate random numbers:
. 433 r(i) = GGUBFS(dseed)

434 c
435 c Use eqn 48 to transform them to Pareto deviates
436 c with location a = l and scale b = 1:
437 x(j) = (1.0/r(j))**(1.0/ac) "
439 c Use eon 50 to transform to Pareto deviates with

440 c a = 2. b = 3 for the second alternate CDF:
441 if (nalt ,eq. 2) x(j) = 3. * x(j) - 1.
442 c
443 c Use eon 50 to transform to Pareto deviates with
444 c a = 10, b = 5 for the third alternate CDF:
445 if (nalt .eo. 3) x(j) = 5. * x(j) + 5.
446 c
447 10 continue

, 448 c
449 c--- End DO Loon 10 after Generating n Random Deviates ---

. 450 c ..
451 return

452 end
453 c
454 c: : : : : : :: : : : : : : :::=:-: ::----:-:-: : ::---
455 c END SUBROUTINE PARETO*. 456 c*$$**$ $ ***SS **k **:***s *:**g**S*$$$$$*S***,SSS*:*,:*:**kt:** -.'--
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457 Subroutine BXVALS
* " 458 ,_,,.,

459 0
460 c** B E G I N S U B R 0 U T I N E B X V A L S
461 c, ,.
462
463 c
464 c Ref: Appendix B, Fig. 7. Step 2.
465 c
466467 c-" -
468 c Purpose: For a given sample size n. calculate the B values
469 c used to find the BLUEs of location and scale. Also
470 c find the sum of the first n-1 values of B(i). Then.
471 c compute the three values equal to the sums of the
472 c first n-I. the first n-2. and (for hypothesized
473 c c = .5. 1. or 2) the first n -2/c values of B(i)x(i).
474 c
475 475 ::::::::::::::::- ::::-:::--:::::-:::: --476 c" l 1"

477 c Variables: c = null-hypothesis shape parameter

478 c n = sample size
479 c x = array containing n ordered deviates
480 c from an alternate distribution
481 c B = array containing n values of B
482 c Bsuml = sum of B(i) values for i = 1,2.....(n-1)
483 c Bxsuml sum of B(i)x(i) for i = I.2....,(n-1)
484 c B>:sum2 = sum of B(i),(i) for i = 1,2.....(n-2)
485 c Bxsm2c = sum of B(i)x(i) for i = 1,2... (n-2/c)
486 c
487 :: : : : : : ::: : :-=
488 c
489 c Input: c = null-hyp shape parameter (from MAIN DO Loop 90)
490 c n = sample size = 5. 15. or 25 (from MAIN DO Loop 70)
491 c nc = n*c (from MAIN program)
492 c = ordered deviates of alternate CDF MAIN)
493 c

405 c
496 c Calculate:
497 c
498 c 9(j) = l -2/c(n-i+1)) $ 9 -i) (eqn 29)

- 499 c
- 500 c Bsuml = B(1) + B(2) + ... + B(n-1)

501 c
502 c Bxsuml = B(I)$(1) + ... + B(n-1)$×(n-I)

* 503 c
504 c B-sum2 = B(1)x'(I) + + B(n-2)$x(n-2)

*505 c
506 c Bxsm2c = B(1)$(I) + ... + B(n-2/c)$x(n-2/c)
507 c r i

* 508 :: : :: : : : :- =

--.. -" .- -.'..
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509 .
510 c Output:
511 c B = array containing n values of B
512 c Bsuml = sum of first (n-1) B values
513 c Bxsuml = sum of first (n-i) B*x values
514 c Bxsum2 = sum of first (n-2) B*x values
515 c Bxsm2c = sum of first (n-2/c) B~x (if 2/c is integer)
516 c
517 c------------: :: ::
518 c
519 c Declare Variables:
520 c
521 common dseedx,,n.cqncBDq ablubblu.P,Bsum1.BxsumI,
522 1 Bysum2.Bxsm2cKS.AD.CVM,itnsiz,nshp,nrep,
523 1 naltnalf.nrKSnrADnrCV.nrX2,X2524 integer, n~nsiz~nshp~it~nrep~nrKS(2,2,3,B),nrAD(2,2,3,B),,..--

525 nrCV (2. 2. 3w, 8)
526 real '.(25),ablubbluB(15),DKS(2. , 8).AD(2.2.3,8),
527 1 CVM(2.2.3,8),cnc.BsumlBxsuml.Bxsum2,Bxsm2c,
528 1 P(25).r(25).alpha.KSpwr(2,2.3.8),ADpwr(2,2,3.8),
529 1 CVpwr (2. 2, 3, 8)
530 double precision dseed
531 c
532 c Calculate the first B value (eon 25):
533 c
534 B(1) = 1.0 - 2.Olnc

I 536 c --- Begin DO Loop 10 to Find the 2nd thru nth B values ---

537 c
538 do 10 = 2.n
59 B(s) = B(j-1) 9 (1.0- (2.0/(c*(n-j+I))))
540 10 continue
541 c
542 c --- End DO Loop 10 ---
543 c
544 Bsuml =0
545 c "'''-.

546 c --- Begin DO Loop 20 to Sum the First n-i Values of B ---
547 c
548 do 20 k=1. (n-i)
549 Bsuml = Bsuml + B(k)

550 20 continue
551 c
552 c --- End DO Loop 20 ---
553 c 44
554 Bxsuml 0
555 c
556 c --- Begin DO Loop 30 to Sum the First n-I Values of Bx ---
557 c
558 do 30 1=1. (n-i)
559 Bssuml = Bsuml + (B(l)*., (l)) r
560 30 continue
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561 c
562 c --- End DO Loop 30 ---
56 c
564 Bxsum2 = Bxsuml - (B(n-t)$x(n-1))
565 c
566 c -- Find Bxsm2c When 2/c is an Integer (c=.5. 1. or 2)--
567 c
568 Bxsm2c = 0
569? c
570 if (c .ea. 1.0) then
571 Bmsm2c - xsum2
572 el se, if (c .ea. 2. 0) then
573 Thmsm2c =Bxsuml
574 el se i f (c .*eg. 0. 5) then ---

155Bxsm2c Bmsum2 - (B(n-3)*Y.(n-3)) -Bn2*~-)

576 end if
577 c
578 return
579 end

580 c-
582 c END SUBROUTINE BXVALS
587
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584 Subroutine BLCLE2
585

• 586 c*2
587 c,, B E G I N S U B R O U T I N E B L C L E 2 *
588 c* *.
5839
590 c V,
591 c Ref: Appendix B, Ficure 7, Step 2 (continued).
592 c
593 =
594 c
595 c Purpose: Given an ordered sample of size n and null-hypothesis
596 c c<=2, calculate the BLUEs of location a and scale b.
597 c
598 7=======i============== =

600 c Variablesi
601 c x = array containing n ordered deviates from a CDF
602 c c = null-hypothesis Pareto shape parameter
603 c n = sample size
604 c B = array of B values used to calculate the BLUEs
605 c nc = product of n and c
606 c Coefl = coefficient used to compute BLUE of location a
607 c Coe+2 = coefficient used to compute BLUE of location a

608 c Coef 3 = coefficient used to compute BLUE of scale b
609 c Bxsum2 = sum of B(i)*x(i) terms for i = 1 ... n-2
610 c B,:sm2c = sum of B(i)*(i) terms for i = I.....n-2/c
611 c ablu = BLUE of the location parameter a
612 c bblu = BLUE of the scale parameter b
613 c U = value used to compute BLUEs when c 1.5
614 c Termi = terms used to compute U (i=1.2,3)
*6 6 16: : : : : : :=: : - =-:- - -: : : :-:-- - - -

-

618 c Input: = array of n ordered deviates (from MAIN Program)
619 c c = null-hyp shape - 1.0 (from MAIN DO Loop 90)
620 c n = sample size = 5, 15, or 25 (from MAIN DO Loop 70)
621 c nc = n*c (from MAIN program)
622 c B = array containing n values of B (from BXVALS)
623 c Bxhsum2 = sum of first n-2 values of B (from BXVALS)
624 c B,:sm2c = sum of first n-2/c values of B (from BXVALS)
626
628 c Calculate (if c = 0.5, 1.0, or 2.0):
629 c
630 c Coefl = [(c+I)$(c+2)J / E(nc-2)$(nc-c-2)]
61L Coef2 = (nc-2) / (c+2)

633 c ablu = x() - Coefi * [Bxsm2c - (Coef2())] (eon 34)

634 c bblu = (nc-i) * x(1) - ablu] (eqn 35)674 c .. '
636
6Z8 c Calculate (if c =1.5):
6' 63 9 c
640 c Terml = (nc-2) * (nc-c-2)

* 641 c Term2 = nc * (c-2) * B(n-1)
642 c Term3 = (nc-i) * (c+2)
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643 c Coef3 E(nc-l)/nc) (nc-2-U)
644 c U =(Terml - Term2) /Term3 (eqn 39)
645 c
646 c ablu =x(l) -bblu / (nc-i) (eqn 37)

*647 c bblu =(1/U) * (c+l)*(Bxsum2) + (2c-l)*B(n-1)*x(n-1)
648 c - Coef3 S x(I)] (eon 38)

652 c Output:
653 c ablu = BLUE of location parameter a
654 c bblu = BLUE of scale parameter b
656 c==== =------------

657 c
658 c Declare Variables:
659 c
660 common dseed..x~n,c,nc,B, D,ablubblu,P,Bsuml,Bxsuml.

I661 1 Bxsum2,Bxsm2c.KS.AD.CVM,it~nsiz,nshp,nrep,
662 1 nalt~nalf,nrKS~nrAD,nrCV,nrX2,X2
663 integer n.nsiznshp~it~nrep~nrKS(2.2.3,8),nrAD(2,. 3q8),
664 1 nrCV (2.2, 3.8)
665 real (5)ablu~bblu.B(2 5),D,KS(2q2',3.8),AD('2,3.8),
666 1 CVM(2,2,3,8),c~nc,BSuIMl.Bxsum4 Bxsum2,Bxsm2c.
667 1 P(25),r(25).aloha.KSpwr(2, 2.3.8) .ADpwr('2.3,8),
668 1 CVo~wr(2. 2,3,8),Tem,Term2,Term3.Coe-FlCoef2.
669 1 Coef3,U
670 double precision dseed
671 c
672 if ((c.eq.0.5) .or. (c.eq.1.0) .or. (c.eq.2.C')) then
873 Coefl = ((c+1.0)*(c+2.0)) / ((nc-2.0)9(nc-c-2.0))
674 Coe+2 =(nc-2.0) / (c+2.0)
675 ablu =x(l) - Coefi (Bxsm2c - (Coef2*x(1))
676 bblu = (nc-1.0) * (x(l) - ablu)
677 c
678 else if (c .eq. 1.5) then
679 Terml - (nc-2.0) * (nc-c-2.0)
680 Term-' = nc * (c-2.0) * B(n-1)
681 Term3 = (nc-1.O) S (c+2.0)
682 U =(Termi - Term2) / Term3
683 Coef3 =((nc-1.0)/nc) * (nc-2.0-U)

E684 bblu - (1.0/U) $( (c+1.0) *(Bxsum2)
685 1 + (2.0*c-1.0)*B(n-1)*x(n-1) -Coef3 Sx(1)
686 ablu = x(l) -(bblu /(nc-1.0))
687 c
688 end if
689 c

5690 return
69?1 end
6 92 c
693 =
694 c END SUBROUTINE BLCLE2

* 695
r
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6 6 Subroutine BLCT2
* 697

698 c** *
699 cS* BE I 2N SU"BR UTINE BLC T2
700 c**$$,

* 70 cg:$ $ $**$::$$g~:**$**t**gg**~~ $$'-

702 c
703 c Ref: Appendix B, Figure 7, Step 2 (continued).
704 c ==
705 cuui u m m:u==im~~~is
706 c
707 c Purpose: Given an ordered sample of size n and a Pareto null
708 c hypothesis with shape c > 2. calculate the best -.-

709 c linear unbiased estimates (BLUEs) of location and
710 c scale.
711 c
712 c= =m === =:== : ==== ===- = : ==
713 c
714 c Variables: x = array containing n ordered deviates
715 c c = null-hypothesis Pareto shape parameter
716 c n = sample size
717 c nc = product of n and c
718 c B = array of B values used to calculate the BLUEs

*719 c Bsuml - sum of 8(i) terms for i = ,.n-
720 c Bxsuml = sum of B(i)*x(i) terms for i = 19....n-1
721 c D = value used to calculate the BLUEs
722 c YV = value used to calculate the BLUEs
723 c ablu = BLUE for location parameter a
724 c bblu = BLUE for scale parameter b
725 c

"726 -i "--"
727 c
728 c Input: x = array o4 ordered deviates (from MAIN Program)
729 c c = shape parameter = 3.5 (from MAIN DO Loop 90)
730 c n = sample size = 5. 15, or 25 (MAIN DO Loop 70)
731 c nc = nit (from MAIN Program)
732 c B = array of B values (from BXVALS)
733 c Bsuml = sum of first (n-i) B values (from BXVALS)
734 c Bxsuml = sum of first n-1 B*x values (from BXVALS)
735 c

* ~736 n n mmi n=

737 c
738 c Calculate:
739 c
740 c D = [(c+1) $ Bsuml] + [(c-1) $ B(n)] (eqn 21)
741 c
742 c YV = (c+l)$Bxsuml + (c-1)$B(n)$x(n) - Dx(1) (eqn 22)
743 c
744 c ablu = x(1) - YV/[(nc-1)*(nc-2) - D*nc] (eqn 17) "" "
745 c
746 c bblu = (nc-i) E [ x(1) - ablu I (eqn 18)
747 c
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749 c
750 c Output: ablu = BLUE for location a
751 c bblu a BLUE for scale b

*752 c
753
754 c %b

* 755 c Declare Variables: .
756 c
757 common dseed~xnoc,nc,BD,ablu,bbluP,Bsuml,Bxsuml,
758 1 Bxsum28Hxsm2c,KS,ADCV1,it~nsiz,nshp,nrep,
759 1 nalt,nalf,nrKS,nrAD~nrCV,nrX2,X2
760 integer n.nsiz,nshp,it,nrepqnrKS(2,2,3,8),nrAD(2,2,3,9),
761 1 nrCV (2, 2,3, 8)
762 real x(25),ablu,bblu,B(25),D,KS(2,2,3,),AD(2.2,3,8),
763 1 CVII(2,2,3,8),c,nc,Bsuml,Bxsuml,Bxsum2,Bxsm2c,
764 1 P(25),r(25),alpha,KSpwr(2,2,3,8),ADpwr(2,2,3,8),
765 1 CVpwr (2, 2, 3,8) ,YV

*766 double precision dseed
767 c
768 D ((c+1.0) * Bsuml) + ((c-1.0) *9(n))
769 V ((c+1.O)*Bxsuml) + ((c-I.O)*8(n)*x(n)) - (D*x(l))
770 ablu ax(1) - YV/((nc-1.0)*(nc-2.0) -(Dnc))

771 bblu z (nc-1.0) *(x(1) -ablu)

772 c
773 return

. 774 endL
775 c
776
777 c END SUBROUTINE BLCST2
778
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779 Subroutine HYPCDF

781781 c€$ $

782 cU$ B E 6 I N S U B R 0 U T I N E H Y P C D F
783 c$ -
784
785 c
786 c Reft Appendix B. Figure 7, Step 2 (continued).
7B7 C ~788

789 c
790 c Purpose: Given an ordered sample of size n, a Pareto null-hyp
791 c of shape c, and the BLUEs of location a and scale b,
792 C compute the hypothesized Pareto distribution
793 c function P(i) for i = 1,2,...,n.
794 cz . --.-_.-,

796 c
797 c Variables:
798 c x = array containing n ordered deviates
799 c n = sample size
800 c c null hypothesized Pareto shape parameter
801 c ablu = BLUE of location a
802 c bblu = BLUE of scale b
803 c P = array containing n points of the
804 c hypothesized Pareto CDF
805 c
806

" 807 c
BOB c Input:
809 c x = array of n ordered deviates (from MAIN Program)
810 c c = null hyp shape = 1.0 or 3.5 (MAIN DO Loop 90)
811 c n = sample size = 5, 15, or 25 (from MAIN DO Loop 70)
812 c ablu = BLUE of location a (from BLCLE2 or BLCGT2)
B13 c bblu = BLUE of scale b (from BLCLE2 or BLCGT2)
814 c

* ~815 c==========muuZ===U=3
816 c
817 c Calculate:
818 c
819 c P(i) 1 - EI + (x(i) - ablu)/bblu] ] (-c) (eqn 40)
820 c

822 c =- -

823 c Output: P array of n points of the hypothesized CDF L I
824 c

825 c nnnn S = U U 3 ===

826 c
827 c Declare Variables:
828 c
829 common dseedx,n,c,ncB,D,ablu,bbluP,Bsuml,Bxsuml,
830 1 Bmsum2,Bxsm2c,KS.AD, CVM,it,nsiznshpnrep,
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831 1 nalt,nalfqnrKS,nrAD,nrCV,nrX2,X2
*~<. 832 integer n,nsiz,nshp,it,nrep,nrKS(2,2,3,8),nrAD(2,2,3,8),

8.33 1nrCV(2,2,3,8)
-834 real x(25),ablu,bbluB(215),D,KS(2,2,3,8),AD(2,2,3,8),
-8:35 1 CVM(2,2,3,8),c,nc,Bsuml,Bxsuml,Dxsum2,Bxsm2c,

836 1P(25),r(25),alpha,KSpwr(2,2,3,8),ADpwr(2,2,3,8),
- 837 1CVpwr(2,2,3,S)
*838 double precision dseed

839 c
*840 do 10 js jlf

841 PMl 1.0 -(1.0 + Wxi) -ablu)/bblu) 2*(-c)
*842 10 continue

- 8434 return

845 end
846 c
847 c~= =--

-. 848 c END SUBROUTINE HYPCDF

tiei
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850 Subroutine TESTAT
851
852 c**
853 c$$ B E G I N S U B R O U T I N E T E S T A T
854 c$"
855

857 c Ref: Appendix B, Figure 7, Step 2.
858 c

860 c
861 c Purposet Given a sample size n, and the hypothesized Pareto

. 862 c distribution function Pi)O, compute values of the
863 c test statistics of the Chi-square and the modified
864 c K-S, A-D, and CVM goodness-of-fit tests.865 c ..

867 c
868 c Variables:
869 c n a sample size
870 c nshp = null-hyp shape counter (1: c=1.0, 2: c=3.5)
871 c nalf = alpha level counter (l:a=.05, 2:a=.Ol)
872 c nsiz = sample size counter (1: n=5, 2: n=15, 3: n=25)
873 c nalt = alternate distribution counter
874 c P = array of n values of the hypothesized Pareto CDF
875 c- -------------------------------------------- ------

876 c DP = positive differences between EDF and CDF points
877 c DM = negative differences between EDF and CDF points ,
878 c DPLUS = maximum positive difference (largest DP value)
879 c DMINUS = maximum negative difference (largest OM value)
880 c KS = values of the modified K-S test statistic
881 c '-.
882 c AL = value used to calculate the A-D test statistic

- 883 c AM = value used to calculate the A-D test statistic
* 884 c AN = AL + AM

885 c AAA = values to be summed for A-D test statistic
886 c SAAA = sum of AAA values

- 887 c AD = values of the modified A-D test statistic
888 c ---------------------------------------------------------- L
889 c ACV = squared quantities in the C-VM formula
890 c SACV = sum of the ACV values
891 c CVM = values of the modified C-VM test statistic
892 c --------------------------

. 893 c ablu = BLUE of location parameter a
894 c bblu = BLUE of scale parameter b
895 c c = null-hypothesized Pareto shape parameter
896 c obs = number of observations in each of 5 cells
897 c rtend = right endpoint of a cell
898 c X2 = array of values of the Chi-square test statistic

- 899 c
900 ======: :=:: :: -
901 c
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*902 c Input%
903 c n = sample size = 5, 15, or 25 (from MAIN DO Loop 70)
904 c P = array of n values of hypothesized CDF (from HYPCDF)
905 c nshp = null-hyp shape counter (from MAIN DO Loop 90)
906 c nalf = significance level counter (from MAIN DO Loop 80)
907 c nsiz = sample size counter (from MAIN DO Loop 70) ".'
908 c nalt = alternate CDF counter (from MAIN DO Loop 60)
909 c ablu = BLUE of location a (from BLCLE2 or BLCGT2)
910 c bblu = BLUE of scale b (from BLCLE2 or BLCGT2)
911 c c = hypothesized Pareto shape (from MAIN DO Loop 90)
912 c
913
914 c
915 c Calculations for K-S test statistic (ecns 41 & 42):
916 c
917 c DP(i) = ABSE (i/n) - P(i) 3
918 c DM(i) = ABSE P(i) - (i-1)/n 3
919 c
920 c DPLUS = max I DP(i) 3 for i-1,2,...,n
921 c DMINUS a mnax [ DM(i) I for i=1,2,...,n
922 c
923 c KS = max (DPLUS,DMINUS)
924 c
925 c-----------------------------------------------------------
926 c

* 927 c Calculations for A-D test statistic (eqn 43):
928 c
929 c AL(j) = In (P(j))
930 c AM(j) = In (1 - P(n+l-j))
931 c AN(j) = AL(j) + AM(j)
932 c
933 c AAA(j) = (2*j- 1) $ AN(j)
934 c SAAA - AAA(1) + AAA(2) + .. + AAA(n)
935 c
936 c AD = -n - (1/n) $ SAAA
937 c

939 c
940 c Calculations for C-VM test statistic (eqn 44):
941 c
942 c ACV(k) = E P(k) - (25k - 1)/(2*n) ]2*2
943 c SACV = ACV(1) + ACV(2) + ... + ACV(n)
944 c
945 c CV' - (1/(125n)) + SACV
946 c
947 c -----------------------------------------------------------
948 c
949 c Calculations for Chi-square test statistic (eqn 62):
950 c
951 c rtend(i) = ablu -bblu + bblu $ (1 - .2*i) *$ (-1/c)
952 c ex n 5.

*953 c
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* . 954 c X2 I C(obs (1) -ex) **2J /am + C (obs (2) -ex) **23 ex
*955 c+ * + C(obs(5)-ex)**2J ex

956 c
957
958 c
959 c Declare Variables:

96 common dseedgxgngcgnc,B,D,ablu,bblu,P,Bsuml,Bxsuml,

in62g1 Bxsur2,Bxsm2c,KS,AD,CVM,it,nuizgnshp,nrep,

964 itegern,nsiz,nshp,it,nrep,nrKS(2,2,3,8),nrAD(2,2,3,8),
951nrCV(2, 2,3,8) , bs (5) ,nrX2 (2, 2,3, 8)

966 rel x(25),ablu,bblu,B(25),D,KS(2,2,3,83),AD(2,2,3,8),
967 1 CVII(2,2,3,8),c,nc,Bsuml,Bxsumi,Bxsum2,Dxsm2c,
968 1 P(25),r(25),alpha,KSpwr(2,2,3,8),ADpw (2,2,3,B),
969 1 CVpw(2,2,3,8),DP(25),DM(25),DPLUS,DIINUS,AL(25),
970 1 AM'(25),AN(25),AAA(25),SAAA,ACV(25),SACV,rtend(4),
971 1 X2crit(2..2,3),X2(2,2,3,8),ex
972 double precision dseed
973 c
974 c ------- Compute the K-S Test Statistic (eqns 41 & 42): ---
975 c
976 DPLUS 0
977 DfIINUS =0 ..

978 do 5ik =,125 .

979 DP~ik) = 0
980 DM(ik) - 0U

981 5continue
*982 c
*983 do 10i =l,n
* 984 c

985 DPWi a ABS( (ireal(n)) -PCi)

986 DMWi = ABS( NOi - (i-1)/real(n)) z
987 c

*988 c if (nshp.eq.1 .and. nalf.eq.2 and. n.eq.5 .and.
989 c 1 nalt Ilt. 3) then
990 c print*,'P(i)=',P(i),'DP(i)='.DP(i),'DM(i)=,DM(i)

*991 c end if
992 c
993 t0 continue
994 c
995 DPLUS =MAX( DP(l),DP(2),DP(3),DP(4),DP(5),DP(6),DP(7),
996 1 DP(8) ,DP(9) ,DP(10) ,DP(I1) ,DP(12) ,DP(13) ,DP(14),

*997 1 DP(15).DP(16),DP(17),DP(18),DP(19),DP(20),
998 1 DP(21),DP(22),DP(23),DP(24),DP(25))
999 c-
1000 DMINUS M ?AX( DM(l),DMC2),DM(3),DM(4),DM(5),DM(6),DM(7),
1001 1 DM(8),Dfl(9),DM(10),DII),DM(12),Dl(13),DI(14), .*

*1002 1 DM(15),DM(16),DM(17),DM(I8),DM(19),DM(20),
1003 1DM(21),DM22),DM'(23),DtIC24),DM(25))

1005 KS(nshp,nalf,nsiz,nalt) = tAX(DPLUS.DMINUS)
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S . 1006
1007 c print*,.
1008 c print$,'$ $ * * $ $ $ $ $ * $ * $ S S * $ S $ $ $ * $'
1009 c printS,' '
1010 c print*,'KS VALUES FROM TESTAT -- ITERATION -',it

" 1011 c printS,'c=',c,'naIf=',nalf,' St n-',n,' SS nalt=',nalt
1012 c print$,'KS Stat-' ,KS(nshp,nalf,nsiz,nalt),
1013 c I t* DPLUS-',DPLUS,' ** DMINUS=',DMINUS
1014 c printS,'
1015 c "*
1016 c Compute the A-D Test Statistic (eqn 43):
1017 c
1018 SAAA - 0
1019 c
1020 do 20 j = 1,n
1021 AL(j) a log (P(j))
1022 AM(j) = log (1.0 - P(n+l-j))
1023 AN(j) = AL(j) + AM(j)
1024 AAA(j) - (2.05j - 1.0) S AN(j)
1025 SAAA = SAAA + AAA(j)
1026 20 continue

* 1027 c

1028 AD(nshpnalfnsiz,nalt) = -n - (1.0/real(n)) * SAAA
1029 c
1030 c Compute the C-VM Test Statistic (eqn 44):

1031 c

~. 10312 SACY = 0. • 1033 c

1034 do 30 k 1,n
1035 ACV(k) U (P(k) - (2.05k- 1.0)/(2.0*real(n)) )*$2

* 1036 SACV = SACV + ACV(k)
1037 30 continue""1038 c
1039 CVM(nshp,nalfnsiznalt) - SACV + (1.0/(12.0*real(n)))

1040 c
1041 c ------ Compute the Chi-Square Test Statistic (eqn 62). -----
1042 c
1043 do 40 in = 1,5
1044 obs(in) = 0
1045 40 continue

• 1046 c

1047 do 50 ki = 1,4
1048 rtend(ki) = ablu-bblu + bbluS(l.-.25ki)$$(-1./c)
1049 50 continue
1050 c
1051 do 60 m - 1,n
1052 c
1053 if( x(m) .le. rtend(l) ) then
1054 obs(l) = obs(1) + 1
1055 else if (x(m).le.rtend(2)) then
1056 obs(2) = obs(2) + 1
1057 else if (x(m).le.rtend(3)) then
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1038 obs(3) z obs(3) + 1
. : 1059 else if (x(m).le.rtend(4)) then

1060 obs(4) = obs(4) + 1
1061 else

-1062 obs(5) = abs(5) + 1
1063 end if S

1064 c
*1065 60 continue r

1066 c
1067 ex-n/ .
1068 c
1069 X2(nshp~nalf,nsiz,nalt) u((obs(1)-ex) **2 e x
1070 1 + (b()e)*Le (b()e)*)e
1070 1 + ((obi(4)-ex)**2)/ex + ((obs(3)-ex)**2)/ex
1071 1 (b()e)*)e 'os5-x*2/x---
1073 c print*,'

*1074 c print*,'++ .... .. +..++..+..+ .. +.. .. '

1075 c print*,'
1076 c print*,'X2 VALUES FROM TESTAT -- ITERATION =',it
1077 c print*,'cU',c,1nalf'1,nalf,' * n'l,n,' ** naltin 1,nalt
1078 c print*,'RT ENDPOINTS OF INTERVALS:'
1079 c print*.rtend(1),rtend(2).rtend(3),rtend(4)
1080 c print*,'x(l)=',x(l),'x(10)in',x(10),'x(25)=',x(25)
1081 C print.'OBSERVATIONS PER CELL:
1082 c print*,'Cell ls',obs(l),'. ** Cell 2:',obs(2)

*1083 c print*,'Cell 3:',obs(3),' tt Cell 4:',obs(4)4. 1084 c printt,'Cell 5:',obs(5)[
1085 c print*,'CHI SQUARE TEST STAT:'

*1086 C print*,'X2 Stat=',X2(nshp,nalf,nsiz,nalt)
*1087 C print*,'
*1088 C
*1089 return

1090 end
1091 c

- 1092
*1093 c END SUBROUTINE TESTAT
* 1094
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-. 1095 Subroutine COMPAR '

.. 1096., 1097 c$$s *.--.-

1098 c*$ B E G I N S U B R 0 U T I N E C 0 M P A R
1099 c*s *2
1100 c¢*$*$2$$$**$$$$$$$$ *$$$$$ $$$$*$$ **€$*$€ *$ $$ $$$ $$ $$ $ -"
1101 c
1102 c Ref: Appendix B, Figure 7, Step 3.
1103 c

1103 c
1106 c Purpose:

1108 c Compare a test statistic, calculated from Chi-square or the

1109 c modified Kolmogorov-Smirnov (K-S), Anderson-Darling (A-D),
1110 c or Cramer-van Mises (C-VM) test, against the appropriate
1111 c critical value. From a series of test statistics, count the
1112 c number of times the null hypothesis is rejected, i.e., the "-"".
1113 c number of test statistic values that exceed the critical
1114 c value. The K-S. A-D, and C-VM critical values were taken
1115 c from Tables VI- VIII of the thesis.
1116 c
1117 == 

1118 c
1119 c Variables:
1120 c c null-hypothesis Pareto shape parameter
1121 c alpha significance level
1122 c n sample size L
1123 c nshp = shape parameter counter (1: c=1.0; 2: c=3.5)
1124 c nalf = significance level counter (1: a=.05; 2: a=.01)
1125 c nsiz = sample size counter (1: n=5; 2: n=15: 3: n=25)
1126 c KS - array of modified K-S test statistics
1127 c CVM = array of modified C-VM test statistics
1128 c AD = array of modified A-D test statistics
1129 c X2 = array of Chi-square test statistics
1130 c1131 c -----------------------------------------------------

1132 c
1133 c Input:
1134 c c = null-hyp shape parameter (from MAIN DO Loop 90)
1135 c alpha = significance level (from MAIN DO Loop 80)
1136 c n = sample size (from MAIN DO Loop 80)
1137 c nshp = shape parameter counter (from MAIN DO Loop 90)
1138 c nalf= significance level counter (MAIN DO Loop 80)
1139 c nsiz = sample size counter (from MAIN DO Loop 70)
1140 c nalt = alternate CDF counter (from MAIN DO Loop 60) -
1141 c KS = array of K-S test statistics (from TESTAT)
1142 c CVM = array of C-VM test stats (from TESTAT)
1143 c AD = array of A-D test statistics (from TESTAT)
1144 c KScrit(nshp,nalf.nsiz) = K-S critical values (Table VI)
1145 c ADcrit(nshpnalfnsiz) = A-D critical values (Table VII)
1146 c CVcrit(nshpnalf,nsiz) = CVM critical values (Table VIII) r
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* . 1147 c X2crit(nshp,nalf,nsiz) = Chi-square critical values
. 1148 c

1149 c============ = u=====m==u=============rn====m====il 1150 c .
1151 c Calculations: none

*1152 c
*1153

1154 c .46"

1155 c Output:
1156 c A
1157 c nrKS = number of times null hypothesis is rejected under K-S
1158 c nrAD = number of times null hypothesis is rejected under A-D
1159 c nrCV = number of times null hypothesis is rejected under CVM
1160 c nrX2 = number of times null hyp is rejected under Chi-square
1161 c

1162 cugi~~nn===uu====m=======
1163 c
1164 c Declare Variables:
1165 c
1166 common dseedx,n,c,nc,B,D,ablu,bblu,P,Bsuml,Bxsuml,
1167 1 Bxsum2,Bxsm2c,KSAD,CVM,it,nsiz,nshpnrep,
1168 1 nalt,nalf,nrKS,nrAD,nrCV,nrX2,X2
1169 integer nnsiz,nshp,itnrepnrKS(2,2,3,B),nrAD(2,2,3,B),
1170 1 nrCV(2,2,3,8).'nrX2(2,2,3,8)
1171 real x(25),ablubblu,B(25),D,KS(2,2,3,8),AD(2,2,3,8),
1172 1 CVM(2,2,3,8),c nc,Bsuml,Bxsuml,Bxsum2,Bxsm2c,J 1173 1 P(25),r(25),alpha,KSpwr(2,2,3,8),ADpwr(2,2.3,8),

1174 1 CVpwr (2, 2, 3, 8), KScri t (2, 2, 3), ADcri t (2, 2,3),
1175 1 CVcrit(2,2,3),X2crit(2,2,3),X2(2,2,3,8)
1176 double precision dseed
1177 c
1178 c print$, ' sss sss $$S ssss$ss$ sssg'
1179 c print*,'Numbers of Rejects at COMPAR Entrance'
1180 c print*,'c =',c,'nalf =',nalf,'n=',n,'nalt=',nalt
1181 c print*,'KS Rejects = ',nrKS(nshp,nalf,nsiz,nalt)
1182 c print*,'AD Rejects = ',nrAD(nshp,nalf.nsiz.nalt)
1183 c printt,'CV Rejects = ',nrCV(nshpnalf,nsiznalt)
1184 c print,'== =
1185 c kii
1186 c --- Input K-S Critical Values from Table VI: ---

1187 c
1188 KScrit (1,1, 1) .3676251
1189 KScrit(1,1.2) .2157919
1190 KScrit(1,1,3) - .1698559
1191 KScrit(1,2,1) = .4074441

1192 KScrit(1,2,2) a .2468265
1193 KScrit(1,2.3) a .2007451
1194 KScrit (2, 1, 1) u .3493998
1195 KScrit (2,1.,2) = .2376525
1196 KScrit(2.,1,3) = .1886063
1197 KScrit(2,2,1) = .3815996

- 1198 KScrit(2.2,2) .2743093
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1199 KScrit(2.2,3) = .2182668 r
1200 c
1201 c --- Input A-D Critical Values from Table VII:
1202 c -
1203 ADcrit(Q.1,1) = 1.236920
1204 ADcrit(1.l.2) = .8907447
1205 ADcrit(1.1,3) - .9147376
1206 ADcrit(1,2.1) = 2.076011 -.
1207 ADcrit(1,2,2) = 1.250242
1208 ADcrit (12,3) = 1.311781
1209 ADcrit (2, 1, 1) = .6840515
1210 ADcrit(2,1.2) = .8985860
1211 ADcrit(2, 1,3) - .9520599
1212 ADcrit(2,2,1) = .9126385
1213 ADcrit(2,2,2) = 1.268849
1214 ADcrit(2,2.3) = 1.449695
1215 c
1216 c --- Input C-VM Critical Values from Table VIII: ---
1217 c
1218 CVcrit (1, 1, 1) = .1389776
1219 CVcrit(1,1,2) = .1312229
1220 CVcrit(1,1,3) = .1386932
1221 CVcrit(1,2,1) = .1738497
1222 CVcrit ( 1,2, 2) = .1923594
1223 CVcrit(1,2,3) = .1988135
1224 CVcrit(2.1,1) = .1186844

4A_ 0 1225 CVcrit (2, 1.2) = .1561372
1226 CVcrit(2,1,3) = .161838
1227 CVcrit (2,2, 1) = .1574178
1228 CVcrit(2,2,2) = .2217665
1229 CVcrit (2,2, 3) = .2403474
1230 c
1231 c Input Chi-square Critical Values
1232 c
1233 X2crit(1,1,1) = 6.000003
1234 X2crit(1,1.2) = 7.333337
1235 X2crit(1.1.,3) = 7.600005
1236 X2crit(1,2,1) = 12.00000
1237 X2crit(1,2,2) = 10.66667
1238 X2crit(1.2,3) = 10.80000
1239 X2crit(2,1,1) = 6.000003
1240 X2crit(2,1,2) = 7.333337
1241 X2crit (2, 1,3) = 7.600005
1242 X2crit(2.2,I) = 6.000003
1243 X2crit(2, 2.2) = 10.46378 4"
1244 X2crit (2.2.3) = 10.80000.
1245 c
1246 c --- Compare Test Statistics vs Critical Values:
1247 c
1248 c print, '$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'
1249 c printS,'BEFORE REJ COUNTER IS INCREMENTED: al
1250 c print*,'c =',c.'nalf =' nalf, n=',n," nalt=',nalt
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1251 c
1252 c print*q'KS Stat -'.KS(nshpqnal+,nsiz,nalt),
1253 c I Crit =',KScrit(nshp~nalf,nsiz)
1254 c
1255 c print*,'AD Stat =',AD(nshp,nalfqnsiz,nalt).
1256 c I 'Crit -'qADcrit(nshp~nalf,nsiz)
1257 c
1258 c print*,ICV Stat =',CVtI(nshp,nalf,nsiz,nalt),
1259 c 1I Crit =',CVcrit(nshp,nalf,nsiz)

1261 c print*,0X2 Stat =',X2(nshp,nalf,nsiz,nalt),
1262 c 1 I Crit. =',X2crit(nshp,nalf,nsiz)
1263 c prt,'ssssssssssssssss'
1264 c51265 if (KS(nshp,nalf,nsizqnalt) .gt. KScrit(nshp~nalf,nsiz)

*1266 1 nrKS(nshp,nalfqnsiz,nalt) =nrKS(nshp,nalf,nsiz~nalt) + 1
1267 c
1268 if ( AD(nshp,nalf,nsiz~nalt) .gt. ADcrit(nshp,nalf,nsiz)
1269 1 nrAD(nshp,nalf,nsiz,nalt) =nrAD(nshp,nalf,nsiz,nalt) + I
1270 c
1271 if (CVM(nshp,nalf,nsiz~nalt) .gt. CVcrit(nshp,nalf,nsiz)
1272 1 nrCV(nshp~nalf,nsiz,nalt) =nrCV(nshp,nalf,nsiz,nalt) + I .
1273 c
1274 if ( X2(nshp,nalf,nsiz,nalt) .gt. X2crit(nshp~nalf,nsiz)

K1275 1 nrX2(nshp,nalfqnsiz~nalt) =nrX2(nshpqnalfqnsiz,nalt) + 1
1276 c

L ~1277 a rnc =======---------==========
1278 c print*,'Numbers of Rejects at COMPAR Exit'
1279 c print*,'c z ,c, 'naif =',naif,' n=',n,' nalt'l,nalt
1280 c print*,'KS Rejects = ',nrKS(nshpqnalf~nsiz,nalt)
1281 c printt,'AD Rejects - ',nrAD(nshp,nalf,nsiz,nalt)

*1282 C printt,'CV Rejects = '1nrCV(nshp,nalf,nsiz~nalt)
1283 c print*,'X2 Rejects = ',nrX2(nshp,nalf~nsiz,nalt)
1284 c ---------~== == s~

1285 c
1286 return

1287 end
1288

12e9======----------
12490 C END SUBROUTINE COMPAR
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