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ABSTRACT

Fibrous layers of the lamina propria influence dynamic behavior of the

M tympanic membrane by producing strong anisotropic extensional stiffness, while

the mucous and epidermal layers are primarily responsible for curvature

dependent structural damping and relatively weak isotropic bending stiffness.

These mechanical properties are combined with curvilinear shell equilibrium

equations to formulate a comprehensive dynamic continuum model of the tympanic

*. - membrane. The resulting model contains several small parameters that are

exploited to construct closed form asymptotic solutions for the general

problem. Using the geometry and ultrastructure of the cat eardrum coupled

with the outer ear, ossicular chain and tympanic cavities, the asymptotic

I solution reproduces the manifold of experimentally observed frequency and

excitation dependent vibrational shapes. Demonstration of the model's ability

to duplicate experimental results concludes part I. However, since the model

; I is based on the actual geometry and ultrastructure, future investigations may

use the model to address questions related to tympanoplasty, tympanosclerosis,

*- " tensor tympani cogency, as well as energy transmission and tympanic cavity

-r. coupling. -
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CHAPTER1

INTRODUCTION

1.1 The Spirit of Mathematical Physics

"Since the seventeenth century, physical intuition has served as a

vital source for mathematical problems and methods. Recent trends and

fashions have, however, weakened the connection between mathematics and

physics; mathemathcians, turning away from the roots of mathematics in

intuition, have concentrated on refinement and emphasized the postulational

side of mathematics, and at times have overlooked the unity of their science

with physics and other fields. In many cases, physicists have ceased to

appreciate the attitudes of mathematicians. This rift is unquestionably a

serious threat to science as a whole; the broad stream of scientific

development may split into smaller and smaller rivulets and dry out. It

seems, therefore, important to direct our efforts toward reuniting divergent

"- . trends ... "

I m R. Courant, 1953 . -

• 1.2 Mathematical Modeling of the Eardrum

In the spirit of mathematical physics described by R. Courant, a

mathematical model must have an intimate connection to the physical reality

it is intended to describe. Dynamic behavior of the eardrum is governed by .*.

the conservation laws (mass, momentum, energy), and the thermodynamic entropy

inequality. When applied to the tympanic membrane (TM), these physical laws

' can be used to derive mathematical expressions describing its behavior.

Unfortunately, including all of the detailed anatomy, geometry, and ultra-

t structure of the eardrum when deriving the model is an immense, and perhaps

imprudent, task. To create a moderately tractable mathematical model of the

tympanic membrane it appears necessary to consider a simplified, idealized, -'.

. . ":*:".%*':.c -.":> 2
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system. The degree to which the mathematics associated with the simplified

system describes behavior of the eardrum, depends upon how well the ideal-

ization represents the actual physics. The simplification process and its

associated reduction in physical content, raises the question: What physical

axioms should be included in a tympanic membrane model? Part of the answer FIR
,= lies in how the model is to be used.

Many potential applications of the TM model can be found in clinical

areas. Most current clinical methods used in assesment of hearing function

rely on external acoustic stimuli such that the test results contain tympanic

membrane factors. A mathematical model can help clinicians evaluate the

eardrum, and can also be used to remove tympanic membrane factors from the

data permitting a more direct examination of the inner ear. In addition - -

to the audiological applications, it is desireable to have a model that can

assess tympanosclerosis conditions and impairments caused by tympanoplasty.

From a function and failure point of view, the model should also be capable of

estimating dynamic stress and deflection fields under a wide variety of

stimuli. To address energy transmission and noise related damage, coupling of

the TM to the outer ear, ossicular chain, and tympanic cavity must be in-

cluded. Deriving a model with these features requires detailed study of the

geometry and ultrastructure of the eardrum. The ability to describe a range

of geometries and fine structures will give the model the flexibility to

describe individual diversity and differences between species.

Prior to actual formulation of the model, Chapter 2 reviews histori-

cally popular tympanic membrane models. This review is followed by two

chapters discussing importance of various physical aspects of the drum.

Chapter 5 contains the model derivation, while Chapter 6 discusses perturba- '

tions on the model caused by the Eustachian tube and middle ear air chambers. -.

:. •. . . * * -
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To provide completeness and qualitatively describe the function of the TM, the

.p following section briefly reviews the macroscopic anatomical construction of

the hearing system.

S1.3 Macro-Anatomy of the Hearing System

The hearing system in man and most mammals is generally discussed in

* terms of five broad subregions; the external ear, the middle ear, the internal

* ear, the ascending neuronal chain, and the auditory cortex. These subregions

- interact with each other in a nearly sequential way. External acoustic waves

• iare first encountered by the pinna and external auditory meatus of the outer

ear as indicated in Figure 1.1. The acoustic signal felt by the tympanic

membrane differs both spatially and in amplitude spectrum from the external

, stimuli due to action of the outer ear (Rodgers, 1981; Stinson and Shaw, 1982;

m.a .,.-

Tympanic Membrane Saa
(Earrum)Vestibular Nerve

Cochlear Nerve
" .. To

Pinna Auditory Cortex

,Cochlea
z Apical Turn

Annular Ring Helicotrema
Position -. l

/ Cochlea Basal TurnAuditoryMeatus L_

.ustachain Tube

" Primary Round Window
Tympanic Basilar 4embrane

Cavity Organ of Cort.

Scala Vestibuli Cochlear duct r
Scala Tympani

Fig. 1.1 Schematic of the Human Ear
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Hudde, 1982). The eardrum is generally considered part of the middle ear with

its external surface bounding on the external ear canal. The modified acoustic t

signal acting on the tympanic membrane causes stress and deflection of the

membrane, coupling the acoustic signal to mechanical motion. The stresses in

the membrane interact directly with the malleus bone of the middle ear. ..

Stresses in the eardrum at its connection to the malleus provide the force

imparted on the ossicles by the eardrum.

Milieus Super ior Ligament

head of Milieus Tensor Tympani Tendon

Epitympanic -Tensor Tympani Muscle
Recess

Stapedius muscle
Lateral LigamentOvlWno

Anterior Ligament

N-- -..-. _- --St pe

Primary Tympanic Cavity

outer Ear CanalO Wndov

- - ~ Eustacain Tube
Annular Ring Us

""~~ymai Meb Prar ypat a c

(Eardrum)

Fig. 1.2 Schematic of the Human Middle Ear

In addition to its coupling to the ear canal and malleus, the tympanic

*membrane interacts with the air (and fluid) within the primary middle ear air

cavity. The spatial distribution of pressure within the primary cavity of the r
Smiddle ear is dependent upon the spectrum of the stimuli, function of the

. . . . - .h
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Eustachian tube, tensor tympani muscle action, and fluid in the cavity. For

normal ears subject to acoustic stimuli well below 5 KHZ, the primary air

chamber acts essentially as a closed cavity with homogeneous pressure and den-

sity. As shown in Chapter 6, for high frequencies the pressure distribution

PO within the middle ear air chambers is not uniform.

In humans the eardrum is shaped like a shallow convex cone. The "cone"

is inclined to the ear canal cross section and attached to the wall of the

canal along the annular ring. Near the umbo (apex of the cone) the malleus is I
, ,-_ integrally attached to the tympanic membrane by woven fibers and tissue.

Attachment of the malleus to the tympanic membrane becomes looser towards the

S annular ring (Graham, 1978).

These features of the tympanic membrane allow it to perform its primary

function cf converting acoustic stimuli into mechanical force and motion of

the ossicles. The first ossicle, the malleus, is supported by three

- igaments, a muscle, and the eardrum as depicted in Figure 1.2. The superior,

a:!terior and lateral ligaments are passive supports having relatively low

bending stiffnesses and high axial stiffnesses. In contrast, the tensor tym-

" r i when stimulated is capable of forcing the malleus inducing deformation

and prestress in the tympanic membrane. Deflection of the malleus relative

- to its size is very small such that the malleus instant center of velocity

is essentially stationary at a given frequency.

Attached almost rigidly to the malleus is the incus, the second

ossicle. The incus is supported by the passive posterior ligament in addi- P

tion to its strong connection to the malleus. Despite their apparent rigid

attachment, the malleus-incus joint can partially decouple under specific

strong overstimulation providing an apparent internal safety mechanism.

El p .
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The tip of the incus forces the final ossicle, the stapes. The stapes

is supported by a synovial joint at the incus tip and is bonded to the oval

window membrane of the cochlea. A second primary muscle of the middle ear,

the stapedius muscle forces the stapes transverse to the line of incus action

providing active control of input from the stapes to the cochlea. When the ,

stapedius muscle, is relaxed motion of the stapes is nearly rectilinear,

imparting a piston like motion to the round window. Excitation of the

stapedius kinetically constrains the stapes to a rocking motion, reducing the

spatially averaged displacement of the oval window.

The cochlea is the final mechanical element in the auditory system

and performs the conversion from mechanical motion to a discrete set of

, frequency and amplitude coded neural signals. The interpretation of neural

*° signals generated in the cochlea is performed by the auditory cortex. To

close the loop, feedback is sent from the neural system to active devices

including the tensor tympani and stapedius muscles of the middle ear.

This brief description of the macro-anatomy of the hearing system is -

.l presented as an orientation for studying details of the mechanics of the

*I tympanic membrane. Comments and descriptions of the system have been kept

brief. In addition to the references mentioned, F. Netter (1900) has pro-

duced several very clear illustrations of the human hearing system.

. ~I~i

............................-. *



CHAPTER 2

5 a A CRITICAL HISTORICAL REVIEW OF TYMPANIC MEMBRANE MODELS

2.1 Introduction

!* ',2-Significant efforts to quantitatively describe the behavior of the "

M middle ear in animals and humans dates back to the early eighteen hundreds.

Prior to that time the gross anatomy and structure was known, however the

", description of the mechanics of the middle ear function in mathematical terms

had not yet begun. Early theoretical modeling of the entire middle ear

system, including the tympanic membrane, was started essentially without the

aid of quantitative experimental data and with very little qualitative data.

Despite this lack of experimental results and detailed anatomical

;.i descriptions, pioneer researchers quickly came to the (perhaps obvious)

conclusion that the tympanic membrane plays a major role in the function of

the middle ear. In fact, the tympanic membrane is responsible for a large

percentage of the static force ratio apparent in the entire middle ear

system.

The geometrical shape and structure of the eardrum is complex and has

forced researchers to limit the degree of the actual physics contained in

mathematical models of the system. Models of TM are created by considering

- a finite number of restoring, dissipation, and inertia mechanisms coupled

with kinematics of the deformation. Various models currently in existence

' .address different degrees, or levels, of physical content. The content of

. 'the model dictates its ability to reproduce experimental results, and more

". importantly, to predict untested behavior of the real physical system.

Models appearing in the literature over the last century can be grouped into

five basic catagories depending on the type of physical mechanisms contained

%*in the model.

,, ,-''',_.:. - ,.g w_.:,*.-- ."..,',.* , "... "..'*-,".. .. ....," *.., ,.
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The groups are:
1. Lumped Parameter Models
2. Curved Lever Models
3. Stiff Plate Models
4. Membrane Models
5. Shell Bending Models

Even the simplest lumped parameter models are able to describe some of the

behavior of the tympanic membrane, however distributed parameter models are

necessary to describe actual stresses, vibrational shapes, and effects of

. structural changes on the system. To gain a global understanding of the

*. catagories, each type of model will briefly be discussed pointing out some

of their fundamental strengths and weaknesses.

2.2 Lumped Parameter Models

Lumped parameter models of the middle ear and the tympanic membrane

are the earliest and simplest mathematical representations of the hearing

mechanism. Perhaps due to their simplicity, the lumped (or discrete system)

models have aged with the least controversy and have been the outstanding

choice when incorporating eardrum models in comprehensive hearing models to -

date. The recent emergence of continuous (distributed parameter) systems of

equations as the clear leader in the understanding of cochlear mechanics has

initiated a move away from the discrete models toward a more realistic des-

cription of the physics (Steele 1976; Holmes and Cole 1983). It seems clear '

that detailed descriptions of the tympanic membrane will also require

continuum modeling in order to overcome some of the shortcomings of discrete

models.

Historically, the first lumped parameter models considered the tympanic .

membrane to act like a piston in a cylinder forcing a pushrod connected to the

manubrium. The result of such a simple model is an algebraic equation relat- r

ing the average sound pressure level at the tympanic membrane to the force

developed at the manubrium tip (Esser, 1947). More recent models have

.-. 7..,'
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incorporated average transverse inertia terms as well as dissipation terms in

order to more accurately reproduce the experimental data. In many of the

common lumped parameter models the tympanic membrane is represented as a

second order ordinary differential equation (or a system of n first order

differential equations). One of the more widely used models is an electrical

anology presented by Zwislocki (1962) as outlined in Figure 2.1.

L LC a
L, R, '"

me, %*Cvl &I

Electric anaog of the normal car. Block diagram of the middle-cu mechanism. 7]L
Figure 2.1 Zwislocki's (1962) circuit model of the middle ear.

The mooel has the ability to reproduce some experimental data including com-

ponents of reactive and resistive acoustic impedance over a range of forcing

frequencies. Improvements in the discrete models have been presented by many

researchers including Zwislocki, Moller, Nuttall, Fischler, Rubenstein, and

°°Tr .0 O W" % "

-. -L-2 6 9,' '.

_....-

= % )% ..- ,

Figure 2.2 Nuttall's (1974) modification of the lumped parameter
circuit model.

* * S .
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Stuhlman. These improvements essentially amount to increasing the degrees

of freedom of the ordinary differential system. As an example, Figure 2.2

indicates the lumped parameter system suggested by A. Nuttall (1974) modeling

tympanic muscle effects on middle-ear transfer characteristics. To improve

the ability of the lumped parameter models to reproduce experimental data

above 4 KHz, Shaw (1977, 1982) modeled the TM as two coupled pistons doubling

the degrees of freedom over original models. The lumped parameter models are

able to reproduce some of the global features of the so-called middle ear

transfer function, however they have no hope of predicting transmission

alterations caused by tympanoplasty applied directly to the membrane structure

and are not suited to describe vibrational modes or shapes of the eardrum.

The numerical values of parameters (resistance, inductance, capacitance) used

in the lumped parameter models are usually selected on the basis of fitting

experimental test data curves. This method of selecting the parameter values

can optimize the ability of the model to reproduce experimental data, but may

remove any real physical meaning attached to the numerical values. Without a

physically based derivation of the parameter values, it is very difficult (or

impossible) to predict alteration of the values related to changes in the

system. When using the discrete models it is usually necessary to conduct a

series of tests on systems that have been altered and attempt to correlate

changes in the parameters necessary to reproduce the results.

In an effort to describe the vibrational shape(s) of the tympanic mem-

brane in terms of its physical features and sound pressure(s) applied, the

discrete models must be expanded to higher dimensions. The obvious step is to

consider a series of continuum models, each model in the series containing .

varying degrees of the actual physics of eardrum. The earliest of the UEI

continuum models was presented by Helmholtz, published in the middle eighteen

hundreds.

........... .'. ...
• '..'''.._., -. . "....* . *. . .. . -". -.". " -"- . ,"'. .... .. €. *; ¢ .** -' ,*.* .-Y.'![''.% . *'L . -- ..*_''*-
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2.3 Curved Lever Models

The pioneer continuum type model of the tympanic membrane was presented

by Helmholtz in a paper entitled "The Mechanism of the Ossicles of the Ear and

Membrana Tympani" in which he presented the 'curved membrane' theory of the

mechanism of the tympanic membrane. No explicit model was presented, in fact

a complete mathematical representation and solution of the mechanism remains

,_ open; however, a physical mechanism describing action of the ear drum was

given. The theory rests on the convex cone shape of the tympanic membrane.

If we imagine that the membrane consists of a number of curved radial fibers

connecting the malleus to the annular ring, then it is possible to describe a

'lever type' action of each of the radial fibers acting on the malleus. To

illustrate this, Figure 2.3 shows a single radial curved fiber attached

" rigidly to the annular ring exposed to a pressure differential P. If the

" i fiber is essentially inextensible then inward displacements of the manubriumw

,. ? will be accompanied with an increased radius of curvature of the fiber, and

outward displacements of the manubrium will be accompanied with a diminished

radius of curvature. These changes in curvature alter the distance between

the endpoints of particular radial fibers causing the manubrium to move

": accordingly (Fig. 2.3). The kinematics described converts large displacement

i (low force) motions of the membrane into small displacement (high force)

motions of the manubrium and hence inherits the name curved lever model.

The original curved membrane theory presented by Helmholtz assumed that

the radial fibers were inextensible and that changes in curvature of the

radial fibers was opposed by elastic behavior of the circumferential fibers.

_ This premise of Helmholtz's curved membrane theory is reasonable only if the

radial stiffness is much greater than the circumferential stiffness.

°.7.1
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Experimental data indicates that the bending modulus of the drum material in
, I

the radial direction is the same order of magnitude as the bending modulus in %K

the circumferential direction (yon Bekesy, 1948; Klrikae, 1960). Due to the

fiber composite structure, this bending stiffness observation does not imply

the same conclusion for membrane type stiffnesses (see Chapter 3). The

membrane stiffnesses may be more orthotropic than the bending stiffnesses. -

Several authors have argued that the relatively isotropic bending stiffness

discounts the curved membrane theory (Funnell and Laszlo, 1978; Khanna and

Tonndorf, 1972). It should be pointed out that axial stiffnesses are

appropriate to use in such an arguement, not bending stiffnesses. Secondly,

the restoring mechanism in the curved lever theory need not be restricted to . -.

extension of the circular fibers, but is more likely connected to the total

.4

Fi.

- Figure 2.3. Using a static force balance, and assuming small deformations,

the force per unit length on the mallus due to one radial

fiber has the form Fm Pfcos(a)(auoV- +Z/]

ax2

! "S
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deformation through a general anisotropic constitutive law. Hence, histor-

ical arguments used to justify neglecting radial curvature and anisotropic

construction are not valid these items may indeed play a first order role.

In the middle 1940's, prior to Lim's work, Esser (1947) formalized

Helmholtz's curved membrane theory into an axisymmetric set of equilibrium

." equations relating the stress to the curvature, thickness, and applied pres-

- sure. The static equations used by Esser are axisymmetric pressure vessel

equations and are given by:

d (rham) hot =0
dr (2.3.1)

LAho d (Cos a) + ha 1Cos a P

S. where P is the applied pressure, ot is the tangential stress, am is the .. '.

meridian stress, h is the thickness a is the local angle of a normal from the

membrane surface, and r is the radial position coordinate.

Since the stresses depend on the deformation, and since a also depends

. on the deformation, the equations are nonlinear. Esser considered several

simplified forms as assumed stress states in order to estimate the effective

static "lever ratio" of the membrane as predicted by Helmholtz. Essers'

" . approximate solutions indicate that curvature may indeed play a role in the

function of the tympanic membrane. Although the results of Esser may be

written in terms of a "lever ratio", it should be noted that dynamic effects,

quasilinearities in stress, nonsymmetric shape, and kinematic coupling were

.. not considered. (For an indication of the mathematics involved in expanding

the equations to the case of "Thin Elastic Membranes" see Pujara and Ladner,

" .. 1978, or Yang and Feng, 1970.) Omission of these factors makes the "model"

. inadequate for comprehensive study, and should simply be viewed as evidence
' . o . -I.,

,°"'"- "
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of the importance of curvature and membrane type stress.

The curved membrane theory was rekindled by Tonndorf and Khanna (1972) t ..

.' with their suggestion that the restoring force may be due to shearing of the r.. .
' 

-

radial fibers over the circumferential and parabolic fibers rather than the

original extensional restoring force. The modified theory maintains the

* "lever type" action of the membrane and allows both sets of primary fibers to

have similar elastic moduli imbedded in a base material having a much lower -

stiffness. One difficulty with the modified theory is that the circular
..-

fibers must slide a distance of approximately two diameters over the radial

fibers during a typical deformation if both sets of fibers are indeed inex- .

tensible (Tonndorf and Khanna, 1972). This distance seems large when one

considers that almost no material exists between the two sets of fibers (Lim,

1968 a,b, 1970). Calculations done in Chapter 3 indicate that the membrane

. indeed contains an internal lever system, however, the restoring mechanism may

be dominated by tension and bending terms rather than the shear or extensional

mechanisms mentioned above. The experimentally based results of Chapter 3

also show that the membrane stress induced in the radial fibers by a positive

pressure is extensional rather than compressive, discounting the original

curved lever mechanism postulated by Helmholtz.

2.4 Membrane Models

The "curved membrane" model initialized by Helmholtz includes kinema-

tics associated with curvature and normal membrane type stresses. Elementary

stresses in the plane of a thin material surface are considered of the mem-

brane type if their resultant bending moment is zero on every normal cut

°Re
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through the surface; mathematically this means:

i i h z dz ds 0 (2.4.1)
S -h12 --

where a is the stress tangent to the middle surface, z is the distance from

the neutral surface, h is the thickness, and s is an arbitrary curve in the

middle surface. With this definition, a mathematical model is considered a

membrane model if membrane type stresses are the only stresses considered when

P" formulating the model. Simple membrane models assume that the membrane stress B

is uniform through the thickness, and that variations in the stress resulting

from deformation are small relative to some initial stress. More detailed

k; lmembrane theories, such as presented by Yang and Feng (1970), are able to

describe changes in membrane stress due to applied pressures and resulting
deformation. Membrane equations or theories used to model the tympanic..-'-

membrane have addressed simple linear membrane theory for "small" deformations

and "large" initial prestress.

Early attempts to model the tympanic membrane as a vibrating membrane,

having only membrane type stress as the restoring mechanism, are represented N

by Franks' (1923) flat membrane model. The differential equation considered

by Frank was the simple linear membrane equation subject to a fixed circular

boundary condition and radial manubrium constraint

ahV 2u + P hp a2u , (2.42)
. a~t2  ,.-_

.~ .where u is deformation normal to the membrane surface, p is the mass density,

o is the in-plane tension, P is the applied normal pressure, h is the thick-

S-"ness, t is time and V2 is the Laplace operator.

A numerical solution of the curved membrane problem, subject to the

relatively complex boundary conditions imposed at the manubrium and annular

ring, was not practical at the time, forcing Frank to simplify the problem

'L2Z
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such that an analytical solution could be found. For simplicity Frank elected - -

to consider a round, flat, isotropic membrane having the manubrium attached

along one radial segment pivoting at the annular ring. His results can be

used to suggest areas of maximum deflection and estimate possible vibrational

shapes at low forcing frequencies; the restrictive assumptions however,

prevent the model from being of much practical use.

Proceeding along the same lines as Frank, Funnell (1975) relaxed

assumptions on the circular shape and manubrium attachment in order to model

the cat eardrum (as well as several other mammals). Funnell also assumed a

flat isotropic membrane operator, however he imposed more realistic boundary

conditions at the malleus and annular ring. A solution of the membrane .* '

equations subject to boundary conditions was estimated using a finite element -

600 Hz 4001 Hz 5176 Hz

Figure 2.4 Experimentally recorded time averaged vibration shapes of the
the cat eardrum (retouched from Khanna and Tonndorf, 1972).

approximation. The tension used in the model was adjusted such that the cal- ,

* culated vibrational shapes corresponded to the shapes observed in experiment .:

,..-.-.... ................ :..... ..... ..... .. ...............-............... .... ....-
*~* -p. . *



-17-

selected frequencies. Using this method, Funnel was able to reproduce a
atqu .unrerue

U transition from the fundamental vibratory shape into a rather complex shape

similar to that observed experimentally (Fig. 2.4). The amplitude and trans-

mitted force predicted by the plane membrane model corresponded in a gross

Iqualitative way to experimental results, however, the connection "was not of

the quality desired in a tympanic membrane model" (Funnell, 1975). The

"* vibrational shapes corresponded quite well to the observed shapes; it should

be noted however, that the shapes are generally insensitive to the particular

- model and restoring forces selected. The qualitative shape of vibration at

low frequency is influenced strongly by the boundary shape and constraints,

and is less sensitive to the type of restoring forces.

- The qualitative picture obtained using plane membrane models is quite

informative, but we must remember that the model neglects initial curvature of

I I the drum, ignores bending stiffness, and disregards bending dissipation. In

- addition to these primary factors, the membrane type models discussed neglect

S,,quasilinear stress terms, anisotropic construction, rotary inertia, and simi-

lar terms that could be included in the membrane type equation(s).

S'-" 2.5 Shell Bending Models

In addition to membrane type restoring forces, it is clear from exper-

Si. imental observation that bending terms also play a role in deformation of the

tympanic membrane. The fact that the eardrum maintains its shape after it

- - has been removed from its supporting structure can not be explained usingm

- membrane stresses alone, and requires inclusion of bending type restoring

forces (Gram, 1968). The bending mechanism, however, may be secondary in the

vibrating drum due to pressure induced membrane stress and tensor tympani pre-

stress.

: I:
• .°-.1
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If a surface with thickness undergoes a change in curvature, then inIr
general nonuniform strain is induced across the thickness. For materials

having some elasticity, the strain will be resisted by stress such that "

strain energy will be stored or released due to the changes in curvature. -

If a particular model contains terms describing this energy, then the model is

said to contain "bending type" restoring forces. For example, the Kirchhoff

plate equation given below is the simpliest of the plate bending theories

- D V2V2u + P = ph 2u (2.5.1)
at 2 .. .. ,

where D is the bending stiffness, u is the deflection normal to the plate, P

is the applied pressure, h is the thickness, p is the mass density, t is time

and V2 is the Laplace operator. In the form given, the Kirchhoff plate equa-

tion assumes the plate is flat, isotropic, uniform, undergoes small amplitude

deformations, has no membrane type stresses or deformations, and moves at low

frequencies. Some of these assumptions can be relaxed by considering the Von

Karman plate or shell equations containing bending and membrane type restoring

forces. Early models of the tympanic membrane have neglected one or the other

of the two primary restoring mechanisms. Some membrane type models have

already been discussed. In addition to the models containing purely membrane

type stresses, models have been formulated containing purely bending type

terms. In reality both effects exist in the tympanic membrane, but for the

sake of mathematical simplicity, researchers have historically considered the

most degenerate forms that seemed reasonable. Following experimental obser-

vations by Bekesy that indicated larger bending effects than had previously

been considered, Gram (1968) modeled the eardrum as a simple flat, isotropic

Kirchhoff plate. He computed an approximate solution subject to simply

supported edge conditions and simple support at the manubrium using the

i- , .- -
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Rayleigh-Ritz method. From the results of his model, he calculated the .
stiffness of the plate that would be required in order for the model results

to match the experimental impedance data. In order to match the data, the

model plate required a stiffness two orders of magnitude larger than the

actual stiffness measured in experiment (Bekesy, 1948; Kirikae, 1960). This

discrepency strongly suggests that the model is not appropriate for the ear-

,- drum.

The first attempt to include both the "curved cone" shape of the drum

along with bending type restoring forces was presented by Funnell and Laszlo

(1977) in the form of a finite element approximate solution of a thin shell

model of the cat eardrum. The finite element method is clearly an effective

way for estimating solutions to some particular differential system of equa-

tions and constraints, however the ability of the approximate solution to

I describe the behavior of the physical system under study depends on the

original set of differential or integral equations used. Funnell and Laszlo

elected to use a static (or low frequency) thin shell functional in which

* shell bending stresses were the primary restoring forces considered in the

original equations. The functional used contained membrane type terms,

*. however, Funnell and Laszlo did not impose any prestress and did not consider

the fibrous ultrastructure such that the membrane restoring forces were of

second order. The use of bending stress as the physical mechanism storing

*. strain energy during the deformation had often been considered secondary to

other mechanisms in earlier models. Helmholtz's original curved membrane

theory postulated tension in the circumferential fibers as the dominant

restoring force, and Tonndorf and Khanna's version of the curved membrane

theory considers internal axial shear as the dominant storage mechanism. This

change in the model content is somewhat masked by the fact that Funnell and

F .1
.. . .. . . .... • ... :.... "
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Laszlo were the first to apply a computationally intensive method (finite

element) to the eardrum problem.

The restoring force(s) considered in a particular model alter the

mechanism by which the tympanic membrane interacts with the manubrium and the

annular ring, and thus may alter predicted transmission characteristics of the ? _,

* drum. The curved membrane models predict the tympanic membrane will force the

manubrium through a membrane stress in the radial fibers while the shell

bending model forces the manubrium through transverse shear and moment terms.

This difference in the mechanism of force transmission may be the primary

A.,A

-°--

*Figure 2.5 Vibration pattern calcuated by Funnell and Laszlo, 1977. The
contour lines are lines of constant vibration amplitude, equally
spaced on an amplitude scale. Only displacements shown corres-
pond to the component of displacement measured in the holographic
experiments of Khanna and Tonndorf. The small triangle repre- r
sents the point of maximal vibration amplitude, corresponding to
0.32 P~m for a low-frequency pure-tone input of 100 dB SPL. (From
runnell and Laszlo, 1977.)

- . . -. . .- . .* : :. ***~. ~ .. ***** ."
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difference between the model types. In a purely small deformation bending

model it is not possible to have the internal 'lever action' of the membrane

that is inherently contained in membrane type models. Although the force .rl

transmission values are expected to differ considerably when the restoring

PP mechanism is changed, the fundamental vibrational mode shape will qualitatively I_

remain unchanged. Figure. 2.5 shows a numerical plot of deformation of the

- tympanic membrane of a cat when forced at low frequencies (Funnell and Laszlo,

1977).-

An apparent shortcoming of the isotropic thin shell model is that

natural asymmetric modes of vibration (realized as peaks on the "Malleus tip

vs. TM amplitude graph") appear with spacing of (2n) 2 (n = 1,2,3). The (2n) 2

:spacing is wider than that seen experimentally (Manley and Johnstone, 1974).

The thin shell model with no damping is also unable to reproduce decreases

U. in malleus motion with frequency and average phase shift observed experiment-

ally (Manley and Johnstone, 1974; Moller, 1972).

Despite some inconsistencies with experimental work, the vibrational

shape calculated by Funnell and Laszlo is very similar to the shape that has

been observed experimentally for low forcing frequencies. At higher frequen-

cies, when inertia is added the bending shell model does not reproduce the

complicated vibrational shapes observed in vibrating eardrums. It is expected F

that this behavior is directly tied to the anisotropic membrane stress and

construction of the drum, and cannot be reproduced using a simple isotropic

shell bending model. lop'

2.6 Stiff Plate Models

"ls In the early 1940's George von Bekesy recorded the first measurements of

the vibrating human eardrum using a capacitive probe on fresh cadaver specimens.

A-d"O..
........................................ ".* .- i
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His measurements, at frequencies below 2000 Hz, indicated that the tympanic

membrane has a vibrational shape similar to a flat plate rotating around a

" pivot near the head of the malleus. Displacement of the eardrum in the stiff

plate mode is sketched in Figure 2.6. The shape von Bekesy inferred from his

data is now known to be incorrect, however it is worth mentioning due to its

historical significance and influence on middle ear research.

HEAD OF MALLEUS

AXIS OF-
ROTATION

IO N

10

(tower fold)

Figure 2.6 Stiff plate vibration pattern of the human tympanic membrane
as reported by von Bekesy (1941).

From a modeling point of view, the stiff plate concept, if correct,

would mean the tympanic membrane would admit nicely to a discrete or lumped

parameter model. In fact, belief that the drum vibrates as a stiff plate

gave rise to simple discrete modeling concepts like the drum effective area,

as a fraction of the actual frontal area, to be used as a hydraulic lever

area. Existence of the shape suggested by von Bekesy requires the eardrum to
o-.

bend and deform drastically in the lower part and has directed past research-

ers to look for a 'lower fold' that is now known not to exist. If such a

fold did exist it would place significant structural constraints on the

tympanic membrane. Inspection of the membrane structure itself would suggest

that a 'lower fold' is not expected. It is assumed that von Bekesy arrived

~ .. * . A . *21
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at the stiff plate theory on the basis of experimental data that was not as

point sensitive as he expected.

2.7 Concluding Remarks

Of the four model types discussed, the lumped parameter models have

' commanded the vast majority of attention in the literature and have provided

tools for interpreting some clinical data. The lumped models, however, are by

nature unable to describe detailed vibrational behavior of the drum and are

*often linked to the actual physics only through parameter curve fitting. In

the interest of gaining a more complete understanding of the middle ear

function, higher order discrete systems or continuous system models must be

addressed. Mathematically, the only complete continuum formulation to date is

the bending shell model presented by Funnell and Laszlo that uses standard

small deformation isotropic shell theory. The highly anisotropic fiber

construction of the drum has motivated others to formulate partial models

based on restoring mechanisms other than the shell bending device. Complete

mathematical representations of the tension of shear (other than bending) 2

models has not been presented and, hence, results from such models are not

* . available for evaluation.

One important point that appears to be lacking in the literature is a L- ,

systematic evaluation of possible restoring mechanisms along with inertial and

damping devices within the actual tympanic membrane. Analysis and discussion

-- contained in the following four chapters will center around determining the

primary mechanisms governing action of the tympanic membrane and deriving

mathematical descriptions of the physics. As a starting point, the ultra-

structure of the eardrum is studied in order to estimate its mechanical pro-

perties. Once the properties are known, restoring and dissipation is

.................................-....-.
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addressed followed by formulation of dynamic equilibrium equations to complete

the model. A special closed form asymptotic solution of the model is deter-

mined in Chapter 5 by using natural small parameters appearing in the system

equations.

g-

p.
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CHAPTER 3

TYMPANIC MEMBRANE ULTRASTRUCTURE AND STIFFNESS DECOMPOSITION

3.1 Introduction

The human tympanic membrane can be divided into two regions having

distinct tissue ultrastructures. Pars tensa represents a majority of the drum

with the exception of a small triangular region superior to the short process

of the malleus that consists of pars flaccida (Fig. 3.1). The annular

ligament provides a distinct border between the external auditory meatus and L

the pars tensa. Bordering the pars flaccida however, the annular ligament

terminates making the pars flaccida integral with the external auditory

* meatal skin (Lim, 1970). For adults the major diameter of the annular ring

ranges from 9.0 to 10.2 mm and the minor diameter ranges from 8.5 to 9.0 mm.

Shrapnell's Membrane Head of Maleus

Pars Flaccida

Short Process of the Malleus

Minor Diameter I
•I Umbo

Pars Tensa eb

Annular Ring

Depth

Major Diameter

Figure 3.1 Sketch showing gross anatomical regions of the human tympanic -
membrane.

S *S •S ,... . . . . . . .
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Tympanic membranes of other mammals including cats, guinea pigs,

rabbits, and squirrel monkeys have gross anatomical properties similar to that

of human, although the size and shape of the membranes vary as well as the

fraction of total area accounted for by pars flaccida (Funnell, 1975). The

shape of the pars flaccida region is generally triangular or half elliptical,

depending on the particular mammal, with the base of the triangle or half

ellipse contacting the skin of the outer ear canal. The pars tensa of the

rabbit has approximately four times the surface area as the pars flaccida,

approximately eight times for the cat, and fifteen times for the squirrel

monkey. An exception reported by Lim (1968b) is the sheep having a pars tensa "

of approximately twice the area of the pars flaccida.

Correcting some historical misconceptions, Lim (1968a, 1968b, 1970) has

shown by light and electron microscope investigations that the pars flaccida

is generally thicker than the pars tensa. The pars flaccida of the rabbit is

20 to 30 times thicker than the pars tensa and the sheep pars flaccida is 10

to 20 times thicker than the pars tensa (Lim, 1968b). Historically, the

thickness of the pars flaccida was believed thinner based on experimentally

observed large static deflections of the pars flaccida (Shrapnell, 1832).

This misinterpretation of experimental observation resulted from not knowing

or understanding mechanical stiffness properties of the membrane tissues. It

was later discovered that the ultrastructure of pars flaccida and pars tensa

regions are quite different resulting in different mechanical properties -

(Nishiyama, 1937; Lim, 1968a,b).

From a modeling point of view, if we wish to accurately predict defor-

mation and behavior of the tympanic membrane the mechanical properties must be

* known. Viewing the eardrum as a general Von Karman composite shell, there mdy

.- exist as many as 36 independent mechanical stiffness constants at each point

- . . .- °o. '... *. ** . *. **)
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in the drum. Due to the membrane's small size, fragile cellular structure,

. and post-mortem changes, current testing technology is not able to measure all

of the mechanical stiffnesses. Even if such an ability did exist, individual

diversity of ultrastructure including scar tissue, tympanoplasty, and normal

differences would also need to be measured and understood. Rather than

attempting to develop an advanced mechanical testing ability, analytical

* estimation of the mechanical properties based on the local membrane ultra-

structure seems to be a much more tractable and reasonable task. Study of the

fine ultrastructure of the pars tensa and pars flaccida allows estimation of

their mechanical stiffnesses based on properties and geometry of the tissue

* components.

To derive estimates of mechanical properties of the tympanic membrane

at various locations, we must study its ultrastructure. Figure 3.2 shows a

! cross sectional view of the pars tensa of a squirrel monkey (Lim 1968a).

STRATUM CORNEUM

:! L -STRATUM GRANIOSUlM

EPIDERMAL LAYER -"-TAU SPINOSIM

STRL MALPIUGfl

Z' STRATUM DASALE

•CONNECTIVE TISSUE LAV;R

LAMINA PROPR IA UTRRADIATE COLLAGENOUS LAYER
:.,!.INNER CIRCULAR COLLAGENOI L

-WBMUOSALCONNECTIVE TISSUE LA'r:Rt

MUCOM-IAL 'C-- ,-.-MUCOSAL EPITHELIUM

• "Figure 3.2 A schematic of a radial cross sectional view of the pars tensa

of the squirrel monkey (from Lim, 1968a).
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The pars tensa region of the tympanic membrane is constructed of several

layers of tissue bonded together in a laminate structure. The three primary

layers are the outer epidermal layer, the middle lamina propria, and the inner

mucous layer. (The following descriptions are condensed from Lim, 1968a.)

Epidermal layer

The epidermis is divided into the stratum corneum, the stratum

granulosum, and the stratum Malpighii. The stratum corneum is a thin layer

consisting of degenerate compressed cellular structures. Directly inside of

the stratum corneum, two layers of keratohyalin granules form the stratum

granulasum. The outer part of the stratum Malphigii is stratum spinosum

consisting of several layers of squamous cells. Cells in the stratum spinosum

are not as compressed as in the stratum granulosum having more intercellular . .

space. The squamous cells are bordered by abundant desmosomes which Lim

(1968a) suggests act as "tightening apparatus which bound each cell together".

-" The stratum basale is the innermost layer of the epidermis and consists of a *

single layer of cells separated from the connective tissue by a membrane.

Lamina propria 0

The lamina propria contains the strong fibers of the tympanic membrane

separated from the epidermus and mucous by connective tissues. The subepi-

dermal connective layer consists of loose typical collagen fibrils, loose

protocollagen fibrils, fibroblasts, and nerve fibers. Neurosecretory

granules, neurofilaments, and neurovesicles exist in the nerve fibers. Tissue

of the connective layer blends between radial fibers of the outer radiate

collageneous layer. Between the radial and circular fiber layers, a thin

parabolic fiber layer exists in humans (Lim, 1970). The subepidermal. '

* connective layer and the radial fiber layer are generally more developed than

,". ,~~ " f,",o
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the parabolic and circular fiber layers. The radial and circumferential fibers

consist of fine fibrils having rectangular or square cross sections. The fine

fibrils are mixed with typical collagen fibrils. In general, the fine rectan-

. "gular fibrils dominate in both the radial and circular layers, however, in

humans more collagen fibrils are found in the circular layer. The rectangular

fibrils do not show tropocollagen banding and are finer in size (approx. 50A

vs. 200 - 400A for typical collagen). Some indirect evidence suggests the

fine fibrils are reticulin based (Ciges, 1965) or keratin based (Hamiton, 1967). L

The circular fiber layer borders on the innermost lamina submucosal connective

tissue layer. Content and structure of the submucosal layer is similar to the

subepidermal layer, except that the submucosal layer is thinner.

Mucous Layer

The innermost layer bordering on the tympanic cavity is the mucous

layer composed mostly of simple squamous epithelial cells. Near the annular

* ring some cuboidal cells and cilia are found. No tonofilaments, kerato hyalin

granules or secretory granules are found in this thin layer.

S These comments on the ultrastructure of the pars tensa are very con-

densed. Quantitative content and size of the various layers changes with

position on the tympanic membrane and with species. In addition to local

-- structure, blood vessel (Politzer, 1892) and nerve fiber (Wilson, 1907)

networks have been documented macroscopically. More detailed descriptions of

the cellular structure including brief historical accounts and photomicrographs

can be found in Lim (1968a,b, 1970).

The ultrastructure of the pars flaccida differs from that of the pars

tensa primarily in the lamina propria. Lim (1968b) has shown that a lamina

propria does exist in the pars flaccida, however, contains no organized fiber

H
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structures similar to the radial or circular fibers found in the pars tensa.

The fine "rectangular" fibrils of the radial and circular fibers are not found

in the pars flaccida. Larger collagenous fibers are organized into a thin

cloth within the lamina propria of the pars flaccida imbedded in a substantial

amount of extracellular amorphous ground substance. This ground substance and '

lack of a middle fibrous layer make the thicker pars flaccida more translucent

than the pars tensa. The lamina propria of the pars flaccida also contains

abundant elastic fibers not found in the pars tensa.

Both the pars tensa and pars flaccida consist of relatively stiff

fibers imbedded in relatively flexible base materials. The geometry, orienta-

tion, and fiber fractions dictate mechanical behavior of the material(s). In

general, for a fiber composite material of this type, the first order linear

constitutive law has the form

N =Q c B k --2

(3.1.1) "'"
M=Be+Dk ,M _.

where N is the normal force vector, M is the moment vector, Q is the membrane

stiffness matrix, B is the membrane-bending coupling matrix, D is the bending

stiffness matrix, e is the strain vector, and k is the curvature vector. -.

We would like to determine constants appearing in the matricies in -

terms of the ultrastructure of the tympanic membrane. To simplify the

equations, define a local cartesian coordinate system (x,y) coincident with

the direction of the radial and circular fibers. Since the inner circular

fibers are approximately orthogonal to the outer radial fibers, selecting the

local x axis to coincide with a radial fiber will result in y running approx-

imately along a circular fiber (Fig. 3.3).

-e•. r. e.. .
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C

R

Figure 3.3. Sketch of the fiber arrangement of the human tympanic membrane.
R: radial fibers; P: parabolic fibers; C: circular fibers (based
on Shimada and Lim, 1971).

As a first approximation it is assumed that the radial and circular

fibers represent a majority of the stiff fibers. The material is idealized

SIR P mechanically as consisting of a set of locally orthogonal radial and circular

fibers imbedded in a base tissue. Mechanical properties of the fibers and

base material are independent and combine to give global stiffnesses in eq.

(3.1.1). Based on this idealization, the bending stiffnesses, membrane stiff-

nesses, and torsional stiffnesses will be estimated in the local circumferen- .-

tial and radial directions using the geometry and properties of constituent

components.

3.2 Membrane Stiffness

The membrane stiffness represents the resistance to tensile deformation

- in the plane of the membrane. This stiffness is analogous to Young's modulus
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for isotropic materials multiplied by the thickness. For the idealized

material, Appendix A approximates the membrane stiffness in the direction of .'

* the i fiber as (i may represent only the radial direction or the circular .

direction)

2 2
Eb(A wdi) + Ei -dj

oi. Eb (hXi .i E (3.2.1)" :'"
.__T " -T- i = d. 4-

b1

where the subscript b represents the base material, d is the equivalent fiber

diameter, h is the total thickness, X is the center to center fiber spacing, --

E is the elastic moduli for the constituent, and v is Poission's ratio for the

constituent.

Using estimates for the cat (Funnell, 1975) h = 40 x 10-4cm, di =

8 x 10-4 cm, Eb = 108 dyn/cm 2 , Ei = 1010 dyn/cm 3 , Y = Yi = 0.3, we find for

sparse fiber spacing that Qi-sparse - 4.4 x I) dyn/cm. For tight spacing

with the fibers touching each other Qi-tight 6.9 x 106 dyn/cm. In the

radial direction, most of the membrane is packed very tightly with radial

6-
10 -.

5 ."radial direction "

S0 --- c ircumferential direction

' 4

0 .25 .50 .75 1.0

Normalized radial position

(rla)

Figure 3.4 Estimated membrane stiffness vs. radial position.
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fibers (Shimada and Lim, 1971). In the circular direction, however, spacing

5 is relatively tight near the annular ring but becomes very sparse near the

umbo. Hence, membrane stiffness is highly anisotropic particularly near the

- .. umbo. Figure 3.4 graphically shows estimates of the axial stiffnesses in the

pL. radial and circumferential directions for various positions on the tympanic

membrane. If we were to calculate the effective elastic moduli in the radial

direction near the umbo based on the total thickness the result would be

E* = 8.6 x 109 dyn/cm 2 . No experimental data of the membrane in pure axial
m
tension has been reported, and hence, we have no data to compare to this

. stiffness. The numerical values used to calculate the axial stiffness are

physically consistent with the types of materials in the actual drum. In

* .fact, it will be shown in the following section that the above values repro-

duce elastic moduli derived from bending stiffness tests.

3.3 Bending Stiffness

By applying the Kirchhoff hypothesis for bending of shells, it is pos-

sible to derive the bending stiffness of the idealized drum material in terms

- of its construction and constituent materials. By integrating the curvature

- ,induced stress over the cross section (see Appendix A) the bending stiffness

for the i direction is estimated to be

3 3 4
Eb [h2 + h, rdi .a 2 d 2  7}

Di TL 3 64Xi i i (3.3.1)

+ E i 17rdi + a 2d 2T1... =v -64xi ai i T'-,,

In addition to the parameters defined in (3.2.1), ai is the distance from the

i layer to the neutral surface in the i direction, hi is the thickness above

the neutral surface, and h2 is the thickness below the neutral surface.

- - . - *** j.-**-.*
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Fibers of the eardrum are much stiffer than the supporting cellular

structure forcing the neutral surface to be centered in the middle fiberous p. -

layer. Hence, for the eardrum eq. (3.3.1) approximately reduces to -

3 3 4 4
Eb h2  h di + Ei di

1 b 3 " 4 *(3.3.2) L

Using parameter estimates from the previous section we find for a

tightly packed fiber spacing, representative of the radial direction near the

umbo, that the bending stiffness is approximately 1.37 dyn-cm. This stiffness

remains essentially constant as the fiber density is changed because it

depends primarily upon the base material parameters. Insensitivity of the

bending stiffness to fiber densities explains why von Bekesey (1949), and

Kirikae (1960) experimentally measured a homogeneous bending stiffness value

across the pars tensa. The fact that the bending stiffness is approximately

homogeneous has been misinterpreted by some researchers as indicating that the

drum acts isotropically. -"

Despite the nearly homogeneous bending stiffness, comparison to analy-

tically estimated membrane stiffnesses indicates that the pars tensa is highly

anisotropic. To illustrate this, if the material is treated as a single

phase material then Young's modulus can be extracted from the bending stiff- F

ness using D. = Ed h
2/12(1-v 2 ). For D. : 1.37 dyn-cm and v = 0.3 we find

Young's modulus from the bending stiffness to be E - 2.35 x 108 dyn/cm 2. This

elastic modulus value is essentially identical to the moduli experimentally

obtained by several researchers (von Rekesey, 1949; Kirikae, 1970). All of

the experimental values were obtained by measuring the bending stiffness D.

and calculating Ed from D. just as was done here making the bending stiffness r
d° °

estimate of eq. (3.3.1) directly comparable to experimental values. The

.- .. .- ,

. . . . . . . . . . . . . . . .
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elastic modulus E* obtained from the membrane stiffness, however, is not

directly comparable to experimentally derived moduli values. If the eardrum

were isotropic then E* would be identical to E*. For the model eardrum ultra-d m
structure the membrane based moduli E* greatly exceeds the bending based

m

m oduli E* (Fig. 3.5).

C 5
LMhid-10 h/d-5

h/d-2.5
0

0

00

>404

0 60

Thickness cm(10- , "'

5. Figure 3.5. Approximate membrane stiffness/bending stiffness vs. total
thickness. Circle indicates TM range, dashed line represents
isotropic limit.

If the tympanic membrane were treated as isotropic or even single phase

anisotropic then matching the bending stiffness to experimental values would

underpredict the membrane stiffness. This fact strongly indicates that a

single phase constitutive law, isotropic or orthotropic, may not be reason- v

.* : able for the tympanic membrane.

3.4 Torsional Stiffness

The torsional stiffness may be estimated using results of Appendix A

, " in a way similar to the bending stiffness. From Appendix A
!i i ".--:,

':. - . :. -
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S 1 Eb 2X1 (h +3' h d 212 tIT ('T- h - -642 )

4 (3.3.3)
+"E 1  ( d + a I d I

2(1+v1 ) 32 1 1 "

Using parameters from Section 3.2 the torsional stiffness is approximately

S12 0.19 dyn - cm. If the material were single phase then Young's moduli

* determined by E* h3/12(1-V 2 ) - (D1 v1 2 + S12 ) would be E* - 1.3 x 108 dyn/cm 2. , '

This modulus differs from the bending derived modulus by a factor of 2, and

differs from the membrane derived modulus by an order of magnitude. This, -

again, discredits use of the single phase constitutive laws for the eardrum.

3.5 Conclusions

In addition to membrane, bending, and torsional terms some coupling

between these terms may exist in the tympanic membrane. Selecting a locally 62
orthogonal coordinate system approximately coincident with the fiber direc-

tions eliminates most of the coupling. Since the fibers are not exactly -
" '.-

orthogonal and since the radial and circular fibers are on different levels,

some coupling will exist. The ultrastructure, however, suggests that the

coupling is small and that it may not be necessary to include such terms to

model primary action of the drum. For this reason, the coupling moduli will

not be estimated here.

Example stiffness calculations are done in Sections 3.2, 3.3 and 3.4

for the pars tensa of a cat. By using different parameters, the equations may

also be applied to the pars flaccida. The stiffnesses are local and change

-. depending on the local ultrastructure of the tympanic membrane. By changing

. parameters the model ultrastructure is changed geometrically and materially.

Parameter selection allows the stiffness formuli to estimate mechanical pro-

perties for other mammals including guinea pigs, sheep, and humans.
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In conclusion it is stressed that the fiberous tympanic membrane ultra-

" structure has anisotropic mechanical properties. Evidence of isotropic

bending stiffness should not be misconstrued as evidence of isotropy. In

-. fact, estimation of membrane and torsional stiffnesses indicates very aniso-

tropic properties. The anisotropy is primarily seen in membrane stiffness

terms. Modeling the tympanic membrane as isotropic, or single phase anisotro-

pic may induce order of magnitude errors in the membrane terms even if the

bending stiffness is matched exactly. The stiffnesses derived herein, may

aid in development of a consistent tympanic membrane model by allowing direct

nondimensionalization of anisotropic curvilinear shell equations accompanied

with direct deduction of primary terms.

% ..

.. . . . . .. . . * ...
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3.6 Appendix A: Approximate Stiffness Decomposition

Bending, membrane, and torsional stiffnesses of the tympanic membrane

can be estimated based on mechanical properties of the lamina propri, mucous, , >-

and epidermal layers. To derive approximate expressions for stiffnesses in %

terms of constituent components, consider an idealized ultrastructure consist-

ing of locally orthogonal fibers imbedded in a base material as shown in

Figure 3.6. The composite shell is constructed of a set of fibers running . ....

parallel to the x axis having diameters dl and spacing X1 , and a set of fibers

running parallel to the y axis having diameters d2 and spacing X2. The

Circular fibers

d

2L
11 Ia~se ,materi.al

Y

Figure 3.6 Local orthogonal fiber composite model of the tympanic membrane

material (Fiber spacing and size not to scale.)

............*... . . . .. " ****....*-*.-*.-.- ........
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relatively stiff orthogonal set of fibers is imbedded in a base material

- having thickness h. The force and moment equilibrium equations must hold

regardless of the presence of the fiber reinforcement in the drum. Hence, in

order to formulate continuous shell equations that approximate behavior of the

discrete composite structure, we need to determine material constants or

*. stiffnesses that will represent the discrete system. One way to estimate the

stiffnesses would be to determine the behavior of one unit element of the grid

and substitute the resulting parameters into equilibrium equations. (Fig.

-. .. 3.7). Renton (1970), Lightfoot (1964) and Yettram (1964) have applied this .-.

M Xl

SN

z-.S

.-.

1L

112 2

NX N X
231 13 2

Figure 3.7 Equilibrium of a grid element. Nij denotes forces and Mij .
denotes moments on each cross sectional face.

..........-. "
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approach to estimate parameters of plates for finite difference gridworks.

When discretizing a continuous plate into a finite gridwork particular atten-

tion should be paid to the effect of Poisson's ratio. Obviously, if material

coupling between the x and y directions is removed then increased stiffness i

due to Poisson's ratio will be lost. This fact can beseen by inspecting

cross product terms in the orthotropic plate equations. For a homogeneous

" orthotropic plate, the coefficient of the product moment term (representing

torsional resistence) is

Dx vxy + Dy vyx + Sxy + Syx

where Dx is the bending stiffness in the x direction, Dy is the bending stiff-

ness in the y direction, Vxy is the first Poisson ratio, vyx is the second

Poisson ratio, and Sxy are torsional stiffnesses.

For a discrete gridwork the coefficient multiplied by Poisson's ratio

will approach zero as dn/Xn approaches zero. Hence, if we have a plate with d
uniform bending stiffness D, and we have a gridwork with the same bending

stiffness D then the overall torsional stiffness of the plate will exceed that

of the gridwork. The same comments apply to the effect of Poisson's ratio on

axial stiffnesses, such that the deflection of a gridwork having axial stiff-

ness and bending stiffness identical to that of the plate, may deflect quite

differently from the plate under identical loads. With these comments in mind

we would like to find the appropriate stiffnesses for use in an equivalent

continua representation of the discrete composite plate.

In order to estimate the bending stiffness in the x direction, suppose .

we assume that the Kirchhoff hypothesis is reasonable, such that the bending

moment may be obtained as an integral of the stress over the section.

mX2  h2
M Lim O ZdZ dy (3.6.1)

2 1

• " , , '~~ ~~~~~... . .. . . . ... . . . . . . . . .. . . . . . . . .- , " . . . . . . , . . . . . " , - ' * * * * * ~ *. .. . . - " . ' " . . .. , , . - - .- . . " : , - =
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IN Assuming linear Kirchhoff type strain, the integral may be estimated in the

! following way
M f0 Eb Z2Wxdz + f Eb,,b Z2w dz
=1 yy2 0 1-vb 1-b

S+ E2 z2(W + 21 W )dz}dy (3.6.2)
2 1-V2  yy

4

-..i { Eb [(h' + h ) X2  """2 + a2 d2 w)

7r22 )  (w x vbwy2j 1F b ~(X~~y

4
+ E2  (wd2 + a d 2 W + ,-. W

where~~~~~~ w is trnves - 2  T+ad .JwXI1wyy )
LA where w is transverse deformation and x, y, z subscripts on w denote partial

differentiation. It has been assumed that each of the constituent components

behave in a linear elastic manner. The subscripts appearing on the material

constants indicate: 1-fibers in the first direction, 2-fibers in the second

direction, b-base material. Figure 3.8 indicates definitions of thickness and

spacing parameters.

In addition to the above form the bending moment can be written as

-. - M = 02(Wxx + v2 w ) defining the bending stiffness D and Poisson's ratio as
2wx V1wyy 2

3 3 4
= Eb h2 + hd 2  22

1Vb 2 T2

+ 2  lrd+ a d2 l_ (3.6.3)
2 2 2

3 3 4

1.Ebvb -h2 + h, d2  a2 d 2 } (3.6.4)

b 2 2

. E2 121  .d2 + a2 d- T

b 2
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Interchanging subscripts 2 and 1 in (3.6.3) and (3.6.4) defines Dand v1 2.

Poisson's ratio for the fiberous layer ia2 1 may be estimated based on volume

fractions and relative stlffnesses of the materials as

2 2
ird2  r Ebvb) + Ebvb + ird1 E, v Ebvb '3.6.5)

2 2 2 1 2 1

Interchanging subscripts 2 and 1 will give U12 '

Ax1

bNeutral surface

Figure 3.8 Schematic of a cross section indicating linear Kirchhoff type
strain and middle surface location.

Torsional stiffnesses, may be approximated in a similar way by integrat-

ing the shear stress over the cross section. The twisting moment is
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mX2 h2M Lira 1 f I rxy zdz dy

(3.6.6)

., = "$S21 Wxy •

Performing the integration for Kirchhoff type strain gives

2 b (3.6.7) h2"'.

, - ... . + E 2 ,, d 2 + a 2 d 2 ]. .

2(1+v2) 32

Once again an interchange of subscripts gives S12 b

The axial membrane stiffness may be derived by integrating the membrane

stress over the thickness of the material. In the x direction the in-plane

membrane force is
,- mU2 h2  .

N =Lim f M f h2 dz dy
m++ mX2  n (3.6. )-

= 02(u + W + V y +

where u is deformation in the x direction, v is deformation in the y direction

and 02 is the membrane stiffness. Upon integration .'.

22 2 2, 2

N 1 = Eb (hX2 -d 2 ( + + 1 + _w
xx + VbUy z x ".

2 1-

(3.6.9)

E-* 2

+ ~~7~~(u w2  11i21(v 41w)}4 x x y:yi1iV2

Finally the in-plane shear is estimated by integrating the shear stress

over the thickness

* -- . .-

*. ..- ... . . . . . . .--- - ..
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.2 m h2  '"
N Lim 1 f T y dz dy ( )

xy m+- 2 m 0 -h1  y (36.10)I2
=2 2(Uy +v x +w wW) .

2(Uy vx wx wY)

Performing the integration we find

2 221 Ix 1- - -T 2(1+v (.. :-:2 2( +Vb) 2TT;)T . :..

Interchanging subscripts I and 2 will provide Q12" . hsben.-,-

With these stiffnesses the equivalent continua problem has been formu-"-.

lated. All of the expressions are approximate and are valid only for a limited

range of parameters and conditions. When applied to dynamic problems, the

expressions are reasonable only for low frequency vibrations where material

wave propagation is negligible. An alternative to the "strength of materials"

approach presented herein is presented by Tiersten and Jahanmir (1977) modeling

composites as interpenetrating continua.

. 9%

A.ii~
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CHAPTER 4

SIMPLE EVIDENCE OF MEMBRANE STRESS AND DAMPING IN THE TYMPANIC MEMBRANE

4.1 Introduction

In order to formulate a simple yet physically realistic model of the

I : tympanic membrane we must study its structure and behavior in order to identify

the important features. The problem is to properly identify all of the

dominant mechanisms. There are two basic schemes of searching for important or

primary features when formulating a model. The first method is to write a

complete, and relatively large, set of equations describing behavior of the

*- eardrum and subsequently use known behavior to nondimensionalize and simplify

the model. For the eardrum, this would involve writing von Karman type shell

equations for the fiber composite structure in general curvilinear coordinates

coupled witb acoustic models of connecting fluids and ossicular chain constraints.

The curvilinear geometry, fiber composite structure, and internal damping of the

tympanic membrane would make even a numerical solution impractical at this time.

Although it is possible to formulate a relatively complete model, many features

.3may be of secondary importance. If such terms could be located apriori, then

the modeling task could be greatly simplified. While the first method of

.- searching for primary terms requires a relatively complete formulation, the

_ second method attempts to exclude selected physical features by estimating

their contribution prior to formulation of the model. In the interest of sim-

plicity, importance of several physical features of the tympanic membrane will

be estimated for consideration in an eardrum model. Actual experimental results 0

• "will be used to make the analytical estimates.

Since the tympanic membrane is a thin fiber composite shell it is natural

to think of it in terms of dynamical shell theory. When formulating a shell

model, the physics may be divided into three catagories. 1) Inertia: transverse,

it ,yi 1

F........................ .*~---*
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rotary, shear, axial ... 2) Restoring forces: shear, bending, axial, external

... 3) Damping: transverse, bending, shear .... This chapter addresses

existence of dominant mechanisms in each of these catagories beginning with a

discussion of inertia.

I Using holographic interferometry the vibrational shape of the tympanic

membrane has been recorded under various experimental conditions (Khanna and

Tornndorf, 1972; Tonndorf and Khanna, 1972; Dancer, 1975; Ogura, 1974). The

displaced shapes can be used to estimate magnitudes of shear, transverse, and

rotary inerta mechanisms. Most of the membrane motion is transverse to its

resting position indicating that transverse inertia dominates other inertia

types (for frequencies in the audible range). The only possible exception is

* in the area of taught radial fibers separating the anterior from posterior

* regions where connection of the malleus induces larger than average tangential

accelerations. However, since the audio excitation frequencies represent

" speeds much slower than the sound speeds of shear and dilatational waves,

. local material accelerations represent much less kinetic energy change than

I. global accelerations (Graff, 1970). Therefore, rectilinear momentum, primar-

ily tranverse, represents the primary inertia in the vibrating tympanic mem-

brane.

Determination of the dominant restoring mechanisms is not as simple as -

the inertia mechanism. Based on some kinematic considerations, however, it is

- possible to estimate the strain energy density stored by bending, the potential

energy density stored by membrane stress, and the potential energy stored by

shear mechanisms. In order to estimate the energy density stored in membrane -

". type action it is necessary to first determine the magnitude of an in-plane --

stress existing in the eardrum. There are several ways to infer the magnitude

N - .

.. ° oO-, . •. ..-* . 4 • - .. . . . . -- - - . -. °°-o•. ° ••. 4.. . •, °o ,4 .* *%°., - ° .o.°. . -o , ° °-. .-. . . -°•'
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of the membrane stress based on experimental results - three methods will be

S. presented here and compared.

4.2 Approximate Global Static Equilibrium

, Consider an idealized boundary that supports the tympanic membrane

through membrane type forces as indicated in Fig. 4.1. In reality, there will

'" exist some transverse shear and bending moment at the boundary accompaning the

. membrane stress, however the intent here is to estimate the membrane stress

if it dominates over the bending stresses. To obtain an order of magnitude *..

approximation, consider a cone of diameter 2a, and apex angle 2a forced by a

* . vpressure P, tympani force FT ossicular moment M and membrane stress 0m.
e Summing moments about the manubrium instant center of velocity we find

* Ftb + Pra 3  Mm (4.2.1)
m 0.17 azh sin a

(a,e)

A.'-'-.
-. ,

PL
F b

F

Figure 4.1 Approximate global equilibri um of the tympanic membrane.

.-17m...-.
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where the moment Mm may include reverse inertial terms representing an inte- -

grated mass of the hearing system as well as damping and compliance terms.

Also, writing the moment as an operator on malleus displacement then L

M = K[,0,. ], where 0 is the instantaneous rotation of the malleus.
m m

The tensor tympani force and perhaps some of the moment M can be

viewed as inducing a prestress ap such that am is the sum of a prestress and

a deformation induced stress. To estimate the magnitude of the membrane

s0istress a*, dimensions representative of a cat are combined with observed de-m

formation to obtain the following

am*  ap+ 1.2 3 . cm (4 .2 .2 )

The estimate in (4.2.2) was done at 100 db SPL using deformation rotation

1.5 x 10-5 rad. measured by Khanna and Tonndorf (1972) and h = 40 x 10-' cm,

a 0.45 cm, b = 0.25 cm, a = 0.64 rad, and from Funnell (1977) K - 28 x i03

dyn - cm. The membrane stress estimate of (4.2.2) is insensitive to any errors

in the malleus spring constant. Also, the prestress ap induced by the tensor

tympani or tendons has been left arbitrary for now.

4.3 Radial Fiber Strain

To verify the estimate of radial stress based on global static equili-

brium (4.2.2), strain in the fibers can be estimated from experimental results

and combined with the membrane elastic moduli to obtain a comparative value. -

The strain of a radial fiber for small deformations can be written as a sum of |

strain due to endpoint motion and strain induced by transverse deformation

r e) + (q) where the superscript e represents endpoint motion and the

superscript q represents quasilinear stress induced by the transverse deforma-

tion.

-"r o

* * . . .
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To estimate strain due to endpoint motion consider boundaries defined

p, by a cone shape such that any planar cut through the umbo perpendicular to the

plane of the annular ring will yield a triangular cross section. The cross

section is allowed to change with e so the cone may be distorted. This shape

is used to estimate endpoint motion only, so curvature of the drum does not

come into the calculation. Fig. 4.2 illustrates the approximate boundaries

under consideration.

" alleus instant

Y center of velocity

Ub

c a

Figure 4.2 Membrane boundaries used to estimate radial fiber strain.

Strain on a radial fiber due to endpoint motion is given by

2 2
(e) 1 CS - Ci (." "e r (4.3.1) ,".

1

- ..- where C. and C are initial and final fiber lengths, respectively. Noting
1 S

that b and L are constant during the deformation, and 0 is small gives

i(e) b {0,2 cos o + * sin ao} (4.3.2)

r bz+ - 2bco &o .

r .:..
..- ... ".' % . k .,..
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, where * and ^a0 are projections onto the plane of the triangle containing the

radial fiber of interest, while X, a0and b are shown in Fig. 4.1. Also I 5

Cos y 0 o CS Y(4.3.4)

and

y=ARCCOS (ao + b2 - a2 )
2 aob I. -

We must add to (4.3.2) the strain due to transverse deformation. Since the

drum is initially convex, strain caused by positive endpoint motion will be

positive, and strain due to inward transverse deformation will be negative.

If we denote u(r) as the transverse deformation then

(q) 21 f 21(au)2 dr.

ar S2 -YS-ar (4.3.5)

Approximating u(r) for low frequency vibration (less than 1000 Hz) as
(q) 9uSj)]2, isin ((r - S/ gives e - 6.9 where u is

si 1(/(S2 - " ) r IL0IS2 o

the maximum transverse deflection of the drum relative to a cone deformed to

meet the endpoint deformation.

In addition to the values representing the cat geometry given in Sec-

tion 4.2, at 100 dB SPL the maximum transverse displacement after correcting

for endpoint motion is approximately uo  0.21 x 10-4 cm. Using typical

values we find that the strain associated with endpoint motion is approximat-

ely e (e) _ 1.17 x 10-5 and the strain induced by transverse deformation is . -

approximately e(q) -2.3 x 10-8. Hence, the compressive strain induced by

transverse deformation and change in curvature is two orders of magnitude less

than the tensile strain induced by motion of the endpoints. This observation

discredits simple Helmholtz curved lever theories of membrane action. The

. . . .. . . . . . .
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curved lever theories require existence of a compressive stress in the radial

fibers under the conditions estimated here. The fact that a tensile strain

*, exists, not a compressive strain, suggests the curved lever mechanism is a

secondary effect and does not dictate drum function.

To verify the fiber strain estimate, the membrane stiffness estimated

;4 by equation (3.2.1) can be used to estimate the stress o*. Doing so, we find'-

1.1 x 105 dyn/cm2 + ap. This result is essentially identical to that

obtained by global equilibrium (4.2.2) and hence seems very reasonable.

S-" Since the membrane stress appears as an integral of the deformation,

- plus a prestress, it will be a quasilinear term in the tympanic membrane oper-

ator. If the prestress a p greatly exceeds the quasilinear term, then the

system equations could be linearized (in terms of the membrane type stress)

around the prestress. As discussed later, some dynamical and static experi-

mental results indicate that the eardrum behaves as if a prestress dominates.

4.4 Restoring Potential Energy Densities

Knowing an approximate value of the membrane stress in typical radial

fibers allows us to estimate the potential energy density stored in membrane

type deformation. Again, using the cat as an example, the radial fiber along

which the maximum deflection occurs at low vibration frequencies has a shape

similar to a sine bay. As a rough estimate, transverse deformation from the

resting position for a radial fiber is written u(r,t) u 0 (t)sin(7r(r-S 1)/(S 2-S1))'

Using this, the average potential energy per unit surface area (Ur) stored along
mI

S". the radial fibers due to membrane type forces is approximately

2
" .. Ur m Uo (4.4.1). ~ m (S2 _ S )Zr -' ''

2 1

At 100 dB SPL using estimates for the cat and stress om of Section 4.2 we find
am

1* ~. . . . . . . . . . .. .
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Ur 3.02 x 10-6 dcm + Up (4.4.2)

where Ump is due to prestress in the tympanic membrane and U - U is induced

Ymp m mP

by deformation alone.

The strain energy stored in bending may be calculated for the same vibra-

tional shape and amplitude as

2

B W3 DR Uo (4.4.3)B (S Sl )4 : ....
2 1

Thus, using identical values for a cat at 100 dB SPL

UB 4.51 x 10- 7 dncm (4.4.4)

Based on these estimates at 100 dB SPL, the membrane type potential energy is at

least an order of magnitude larger than the bending strain energy. If a substan- 1
tial prestress exists in the eardrum, or is imposed externally, then the membrane

type term may be several orders of magnitude larger than the bending term. The

ratio e of the two terms provides a measure of their relative importance and is
B

defined by 2
au 2

B (4.4.5)
B mh< au >z

m 3r

where

S
<f> f 1 2 f(r) dr (4.4.5)

2 I1

The above comparison was applied to bending in the radial direction only;

the same type of analysis may be applied in the circumferential direction. In ., ,..,.

order to estimate potential energy density due to membrane action in the
•. -°

4. °,•

, S•• ,
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circumferential direction, it is necessary to estimate stress in the circumferen-

tial direction. This can be done by considering local dynamic force balance of

the membrane. Local principle radii of curvature plays a primary role in relating

radial stress to circumferential stress. Upon estimating bending and membrane

energy densities stored due to deformation in the circumferential directions, it

is found that both are small in comparison to membrane energy in the radial

direction.

These simple energy density calculations are based on holographic

interferometry measurements made by Khanna and Tonndorf (1972), and hence are

based on accepted behavior of the drum. The only analytical approximation that

may contain any appreciable error is the estimated quasilinear radial stress a
m

The radial (or meridian) stress used was estimated using two distinct methods re-

sulting in the same value of stress. Both methods determined the component of

i meridian stress superimposed on any resting tension or prestress. A numerical

.. value of prestress could not be obtained by either method. If a prestress exists

S. then the radial membrane type restoring mechanism may dominate by several orders

of magnitude rather than just one order of magnitude. .

' 4.5 Simple String Analogy-.-"

" -The question of prestress can be partially resolved by study of the vibra-

AX tional shape of the membrane along with motion of the malleus. To address this

• question, suppose we look at behavior of a very simple string subject to a radial

'~ stress a , supported by a spring on one end, and fixed at the other end. This
m

string, in a very crude way, represents a bundle of radial fibers connected to a m

moving manubrium and fixed at the annular ring. (See Fig. 4.9, Appendix A). The

string analogy is by no means complete but will suffice to illustrate several

I .points.

C. . . . . . . .** -~~~ - ,.C ** * **. C.*
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The problem of interest is to allow the forcing fequency to vary and

observe response of the string (analogous to TM) and associated motion of the

spring (analogous to malleus motion). Solution to the linear string problem with -

a spring constraint can be solved exactly. For the case of no damping, response

of the string is shown in Figs. 4.3 and 4.4. In terms of infering tympanic

membrane radial prestress, peaks on the MAX TM AMPLITUDE/MALLEUS AMPLITUDE VS.

*) FREQUENCY graph correspond to even numbered natural frequencies of vibration.

- Valleys on the graph correspond to odd natural modes of vibration. Since theIm L
,-*. natural frequencies are directly related to the stress a , measurement of the .

m

*, peaks allows calculation of the radial tensile stress a
m

STRING IOW" HZ I00 0

- I

IN 1.36 3.12 tie 024 0.3
POSITION (CM11

Figure 4.3 Undamped vibrations of a string with one end supported
by a transverse spring for the case of no damping.

.......
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If damping and circumferential interactions are added to the simple :
string, then peaks on the TM/MALLEUS amplitude graph will be reduced to small

* r .: spikes.

cu00

CL

b-°"

," .. .

, 3. "U'

FRQEYINu Hi (X10'1)

Figure 4.4 String analogy. Endpoint amplitude I maximum amplitude
! for no damping vs. frequency.

Depending on the frequency, the point of maximum displacement on the

tympanic membrane moves. To illustrate this, at 1000 Hz the string has a maximum

displacement approximately half way between the fixed end (annular ring) and

* moving spring (malleus). At 4000 Hz the maximum amplitude position moves toward

the spring. Very similar behavior is seen when measuring vibratory behavior of

real tympanic membranes. Manley and Johnstone (1974) have recorded displacement

of the tympanic membrane of guinea pigs for several fixed points over a wide

range of frequencies illustrating this behavior (see Fig. 4.5).

% °
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continuous line, filled circles; of F as dotted line, open
triangles; and of G as dashed line, filled squares. Data for E
from one individual, for F is a mean of three individuals, and -

for G is a mean of two individuals. The trends in all cases were
* the same. From Manley and Johnstone (1974).

By careful inspection of Manley and Johnstone's data, keeping in mind.

that the position of the maximum displacement moves with frequency, it is .

possible to locate the first four peaks on the TM/Malleus amplitude graph. %>,

They appear approximately at w 1.86 KHZ, w 3.9 KHZ, w. 5.1 KHZ, and
2 4l

,......'.-..
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* 8 7.4 KHZ. These peaks correspond roughly to even modes of vibration of the

radial fiber on which data was taken. If we match the value of w 2 measured for

the guinea pig to the result for the simple string problem we find w - 1.86 KHZ,
S S S -*'

w - 3.7 KHZ, w - 5.6 KHZ, w - 7.4 KHZ. The superscript s indicates the string
4 6 8

analogy. This agreement is outstanding. Any differences are smaller than

* ,experimental accuracy of the measured frequencies. Similar results can be

obtained for the cat eardrum. A graph for the cat by Khanna and Tonndorf (1972)

is shown in Fig. 4.6.

U -- :

t
I6 p",e, ,,.,

I -

S. -

z00 4 OW "M '0 2000 40

Figure 4.6 Maximum TM amplitude vs. malleus amplitude.
(From Khanna and Tonndorf, 1972)

t By matching peaks on the TM/Malleus amplitude experimental graphs to the

' , string problem it is found that the radial stress must be of order 106 dyn/cm2
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for the cat. As an indirect confirmation of this stress, Funnell (1975) used a

prestress of 4 x 106 dyn/cm 2 in a single phase plane membrane model to produce

complex vibratory shapes observed in cats. This value of stress is an order of ,.0i

magnitude larger than the quasilinear stress previously obtained in (4.2.2)

indicating that there exists a prestress in the cat eardrum of order 106 dyn/cm 2 . :.

Since the tensor tympani plays a role in determining the prestress, the value may

be sound pressure level dependent. The 106 dyn/cm 2 is based on results at 100 dB

SPL.

In addition to the location of the peaks, a second item of importance is

spacing of the natural frequencies. By experimental observation it is seen that

peaks on the TM/MALLEIJS amplitude graph have spacing of "2n" where n = 1,2,3,...,

corresponding to a natural frequency have spacing of "n". This spacing can be

reproduced by a mathematical model if the model contains a dominant membrane type --

restoring mechanism. If the mathematical model contains only bending restoring -

mechanisms, then the spacing of the peaks would be approximately (2n)2 . Spacing

based on n2 is not seen experimentally discrediting plate or shell 'bending

models' of the tympanic membrane.

4.6 Perforation Tests

As additional evidence of existence of a tension field in the tympanic

membrane, perforation tests are often mentioned (Kirikae, 1960; Funnell, 1975).

A perforation test is done by cutting the membrane and measuring post cut defor-

mation. Due to tissue damage caused by the cut along with post cut tissue

distortion, it is questionable to attempt to derive a numerical value of stress

from such observations. To address this question suppose we assume for the

moment that no tissue distortion exists and apply a "no distortion" model to the

slit test problem.

Modeling the slit as a Mode 1 crack, deformation (v) perpendicular to the

[t. .. .'***.*"*
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original cut is estimated using results from Theocaris and Pazis (1983)

h 2 t) + vkr 1

kl= a 0(wa) (4

where oo is the prestress, * is the angular coordinate; r is the radial coor- ..

dinate, G is the modulus of rigidity, E is Young's modulus, v is Poisson's

ratio, and a is the crack length. Using material parameters derived in

Chapter 3 for a fiber composite cat eardrum drum, and slit test results by

Kirikae (1960) we have v 0.05 mm, a ~ 0.25 mm, E - 8.6 x 109 dyn/cm 2. These

values yield a prestress of ao - 4.9 x IO7 dyn/cm 2 . This value is much larger

than the value inferred from vibrational behavior of the drum and is believed

to be in error due to tissue distortion. Kirikae observed that the slits

opened slowly over a time of approximately ten seconds. The initial deforma-

tion may have indeed been elastic and due to membrane type stress. The
',., ,.'

subsequent slow deformation due to tissue degredation causes calculations,

such as the one above, to be in error. More detailed real time records of

post cut tissue deformation may allow future researchers to obtain stress

values from slit test data. The data presently available, however, can only ":

be used to make qualitative comparisons and indicate higher stress in the

radial fibers than in the circular fibers (as expected from calculations in

Sections 4.2 and 4.3).

L 4.7 Dissipation and Damping
p

Evidence of damping within the structure of the tympanic membrane is

indicated by several experimental results. Moller (1965) recorded a phase

shift in average displacement of the eardrum relative to the stimuli for

anesthetized cats having immobilized ossicular chains. If the ossicular chain
-il. ..,-.,,4

".%'%"

-
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is fixed then the phase shift seen in acoustic impedance measurements is inde-

pendent of the cochlea and ossicular chain. Hence, damping indicated by the

phase shift must be in the tympanic membrane, fluid of the tympanic cavity,

or air in the outer ear. The absence of appreciable flow within the outer
i'- I..

ear and tympanic cavity suggests that structural damping within the tympanic

membrane plays a primary role.

In addition to the phase shift data, the vibrational amplitude of the

tympanic membrane can be used to infer internal damping within the eardrum.

Accompanying the phase shift Moller (1965) observed a rapid decrease in

acoustic impedance for cats with immobilized ossicular chains. This impe-

dance decrease infers an average amplitude decrease that would not be as pro-

nounced without damping.

Supporting the global impedance implications, Manley and Johnston (1974)

directly measured displacements of various points on the tympanic membrane of

guinea pigs using the Mossbauer technique. Their results show a very clear

decrease in malleus amplitude over the entire audible frequency range. For

frequencies up to 20 KHZ they also show that the ratio of peak tympanic mem-

brane displacement to malleus displacement does not display the same decrease

and in fact shows a discrete number of increasing peaks. The decrease in

* malleus displacement with increasing frequency that is accompanied by a sub-

"- stantial decrease in tympanic membrane vibration amplitude directly indicates

existence of internal structural damping within the eardrum.

To include damping and dissipation in the model of the tympanic membrane

it is necessary to determine the type of damping. Most continuum plate or

shell models that include damping use a "transverse type" mechanism having a

dissipative force proportional to the transverse velocity. This type of

... ..................
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damping however, has no direct physical connection to the structure of the

eardrum. It may be possible to crudely equate the energy dissipation caused

by the transverse velocity term to that observed in the eardrum, but such an

endeavor violates the physics of the problem by introducing nonphysical terms

in the model.

Rather than blind use of a transverse velocity type dissipation, the

structure of the eardrum suggests a "bending type" dissipation. To show how

the tympanic membrane structure gives rise to a bending type damping, suppose

-_ we look at behavior of a three layer lamina representing the membrane (Lim,

- - 1968a, 1968b, 1970).

p Undeforned state

~ ~ Ipidersial layer

Deformed state

Neutral surface 
L pror

Nucous layer

Figure 4.7 Bending dissipation in the epidermal and mucous layers.

Bending of the tympanic membrane causes the mucous and epidermal layers

to change shape (maintaining similar volume as indicated in Fig. 4.7). Since

the mucous and epidermal layers are water intensive cellular structures, the

force required to change their shape will increase with the speed of displace-t r;
ment. By looking at changes in curvature induced by deformation it is found

-p

L |



-62-

that linear bending type dissipation for small deformations is proportional to

two spatial and one time derivative of the deformation (denoted uxxt). The

"bending type" damping (uxxt) differs from transverse type" (ut) damping

essentially by changing the slope on the amplitude vs. frequency graph.

To illustrate the difference consider two strings, one with transverse

damping and one with bending type damping. Asymptotic behavior of the strings

can be found using a multiscale method. In order to compare the results note

that Fig. 4.8 has a log frequency scale, so equally spaced natural frequencies

will become grouped together in the high frequency range indicating that

forcing near a natural frequency is appropriate for comparison to the graph at

high frequencies. At low frequencies the eigenvalues are separated by sub-

stantial distance on the graph (. 1 KHZ) indicating that results of forcing

at frequencies away from natural frequencies are appropriate for comparison to

the graph. With this observation the results of Appendix A can be combined to

indicate behavior in Fig. 4.8. The "bending type" dissipation has the correct

Similar shapes at low frequency

o 0.0

" * 0.01 N

Transverse type dissipation .

0.001 L

Bending type dissipation '

1.0 10.0 100.0

Log Frequency (KHz)

Figure 4.8 Qualitative malleus amplitude vs frequency for two dissipation
mechanisms. Solid curves represent data from Manley and
Johnstone (1974) for a guinea pig at 1T Ii "% ;

'4 . * ** 4 * * * . ... .4 ....- ""-" ". . .-"- , ... "--. " .-. ... " .",- . . . . -. .''. -.-'-' .'. " . -" . - -" "-, "', , '-, -'-'--
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shape to match the data, while the "transverse velocity type" dissipation

indicates excessive malleus motion at high frequencies.

4.8 Concluding Remarks

Some simple analogies have been applied to address dominant mechanisms

governing behavior of the tympanic membrane. At 100 dB SPL membrane type

restoring forces dominate over bending and shear restoring forces. At lower

- sound pressure levels,evidence indicates existence of a prestress maintain-

ing dominance of the membrane terms. Membrane stresses clearly dominate for

SPL's near or above 100 dB. This observation indicates that a curvilinear

membrane shell formulation may be sufficient to describe primary behavior of

the restoring forces.

In addition to the restoring mechanism, it was determined that bending

type damping is more reasonable than transverse type damping. The magnitude

of damping may be determined by comparison to malleus amplitude vs. frequency

curves or phase shift data. "r' d-

Behavior of a string constrained by a linear spring at one end and

" fixed at the other end was used to illustrate concepts and ideas. The string

-- is not to be misconstrued as a TM model - it is presented simply as an explan-

atory device. Readers interested in details of the string problem should see

Ae-
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4.9 APPENDIX 4.1: LINEAR STRING PROBLEM

Consider vibration of a string supported by a spring on one end and

clamped on the other. Including small bending and small transverse damping,

0" t

Figure 4.9 Simple string subject to a spring constraint and a fixed end.

the string motion is described by

u + C u ~ + u ~1 u PO sin wt
xx 8 xx T t C~Z 'F.T

where the boundary conditions are

u(0't) =0

and (4.9.1)
u (X,t) = K u(2.,t) ,

where T is the tension, c is the sound speed, P is the pressure amplitude,-
0

*w is the forcing frequency, and u is the transverse displacement. For the

case of no damping eB = CT 0, a direct expansion may be applied to find an

asymptotic form for'small endpoint motion <<.L.... 1). Ignoring transients,
T- k

the result is

U(X,t,e) 2c2sinwt{-Po sin nitx
, n2 (4.9.2)

+ n sin n."x ox) (W w
ni-. n

igre . Sipl stin sujc to a spr..... tai........e. ed." -

. . . . . . . . . . .. . . . . . . . . . . .
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where T = -4  '

and P = poc2('l)n1 n=1 z-wz )

Also, k = spring const., Po = amplitude of applied pressure, T = A = tension,

c = YrTP = sound speed, X = length, w = forcing frequency, wn = nwc/t = natur-

al frequency, 1 >> e = small endpoint motion parameter.

Since the endpoint motion is small it is advantageous to remove the

~ .endpoint motion from the boundary conditions and place it in the differential

" equation. To do so let

u = V - £ V (I-t) x , (4.9.3)

so

v"X+ + eT vt " 1 (vtt - x vx(£,t)) = g(x) sin wt
ttxx B xxt IA t Z7 "

where
v(O,t) = 0

and .-, ~( 4 .9 .4 ) .: .
v(zt,t) = 0

For small e we can use a direct expansion for the displacement as follows:

v(x,t;e) = Vo(X,t) + C vl(x,t) + ... . (4.9.5)
0 1

Using a multiscale analysis for w = wn we find for bending damping (cr = 0)

3

" i"vB) gc (l-exp (-IBnt)J cos wnt sin nrx
--W (4.9.6)

- where

g*= < -g(x), sin ax >

By a similar method for w = wn and E, 0, the result for transverse damping

L L.•
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*1.S

~(T) g* (1-eXp(_,ITC2,)) COS Watsnfw

wheeT n (4.9.7)

g= < -g~x). sin nw >

If W W then both v~T and v)have W-2 dependence very similar to

*the undamped case. Motion at the spring is given by

= v~~t) ~ v(4.9.8)
and so

u(X't) =e v x (it,t)z

Thus, the spring motion to order e is given directly as the spatial derivative

* Of v as
0

u(Z't) - a£ x. + 0(e 2 ) *(4.9.9)
ax
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, *..~ CHAPTER 5

FORMULATION OF A DYNAMIC FIBER COMPOSITE MEMBRANE SHELL MODEL OF THE
TYMPANIC MEMBRANE

5.1 Equilbrium Equations

S.C The previous chapter uses the tympanic membrane ultrastructure and

experimental test data to argue that membrane type stresses represent the

primary restoring force in the eardrum. If we neglect bending terms and

include only membrane stresses, then conservation of linear momentum written

in component form gives the following curvilinear membrane force equilibrium

' iequations (Novozhilov, 1959).

1 H N) + H N + 3L(HIN1 H-2 N} + P =0 (5.1.1)
HH {-' 21 8 2  12 121 aq 2 1

H H + N H2N + !(H2N N11 (5.1.2)

HH q (H1 2 21 2 12) - 1 + P2  0.(5.1.2
1 2 2 1 qq 2

-1 {..__H (e N + 2N)) + ae N + O N ))} (5.1.3)
H H2  q 2 1 1 212 q 2 2-1-21

N1 -N2 +P = 0

1 2

where Nij are the products of membrane stresses with local thickness, Ri are

radii of curvature, qi are the curvilinear coordinates, Pi are generalized

D'Alembert pressures, H. are coordinate metrics, and 0. are transverse defor-1 1

mation gradients. As written, damping and inertia terms are contained in P.

The force equilibrium equations when combined with an appropriate con-

S". stitutive law describe dynamic behavior of general curvilinear membranes. For

"" the eardrum, coupling to the ossicular chain appears as a boundary condition

along the malleus-tympanic membrane attachment. This boundary condition is

not simple and in its full form contains terms describing dynamics of the

ossicular chain and cochlea. The boundary condition at the malleus couples

* * . .. . . .. .. .* . .
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the membrane equations to the middle and inner ear. In addition to the

malleus boundary condition, the tympanic membrane is supported around its

outside periphery at the annular ring providing a second boundary condition.

Since we are interested in describing both steady and transient dynamic

behavior, initial displacement and velocity fields must also be prescribed.

Any initial tympanic cavity pressure or dynamic changes in the middle ear

pressure are contained in P3 -

Rather than application of a numerical method, it is desirable to find

an approximate closed form solution describing dynamic displacement of the

tympanic membrane. To do so, we begin by determining geometrically dependent

terms in the equilibrium equations for a general eardrum shape. The shape of

the eardrum can be described as a "perturbed cone" where departure from the

perfect cone shape is given by cg(r,e). The resting position is defined by

f(r,O) = ar + eg(r,e) as shown in Figure 5.2. Definition of the eardrum

shell surface in this manner introduces the natural small parameter e. :"

2: -2

.21

12 2

2. 1. 1  -

Figure 5.1 Equilibrium of an element of composite material. I

'r " ".

* ~ *. .1-i.§~~~z5~ ~k2 ~L- :
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Boundary ofn

------ allmaa instant
center of velocity

-Initial nmabrane bM atcmn

* Angle

Halleus rotationFTLgmn

Tensor tympani tendon

Figure 5.2 Geometrical sketch-of the tympanic membrane.

*Selecting polar coordinates q, r and q=8 defines the position

* **vector r.

-. r =r case i + r sine 4+ (cir + eg)k (5.1.4)

d-where i, j, are in the plane of the annular ring and k denotes the axial

* direction. On the surface, tangent vectors to coordinate lines are

ar egk(5.1.5)
= cose i +sine 4+ (a + r- )

r2-.....- rsine i + r cos

Using these the coordinate metric normalizers are

H = r + 0(e2)

and H, = (1+ai2)"/2 + ecigr + 0(C2),(516

H caige + 0(C2124
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After finding unit normals to the surface, principal radii of curvature are

determined to be

-1 + £ r(l+a 2) + 0(c.) ,
S nogrr no a .-

R2= r(l+a 2) + 0(.) , (5.1.7) -
noa

and
I n (1+a2 )-1/2 agr +(C2)02(i+Cg2) z+....

Also, letting w(r,e,t) denote the deformation normal to the inital position

(transverse deformation), then

= 2W {(1+a2)1/ 2  g a + O(e2)} (5.1.8)
ar r ((5+.1.8)

and -w''.'

S_ w {._ + o(C2)} j
2 r9_ 1 0e)

The membrane stresses in the tympanic membrane are related to strains

and curvatures through a constitutive law. The most general linear consti-

tutive law for membrane stresses in a composite has the form (Jones, 1979)

N :Q E + B k , (5.1.9)

where Ni is the membrane force, Qij is the membrane stiffness, ei is the

strain, Bij represents coupling to changes in curvature, and ki is the change

in curvature. Since the TM ultrastructure is not symmetric through its cross

section, B will be nonzero a complication not encountered with isotropic

materials. The curvatures are

k = -1 - 2 aHI-

W q HH 3q
1 1 12 2

k 1 ae2- l aH2, (5.1.10)
2 WaT-- RI-H--,

2 q2  H 2

* and k (I )02 + 1 I @ 1) .. .-.,

2 H1 3q1  H2 .2

"-"-". ' -,"-"-;.-, ,F !,;,Z'.,..."- -'L.-. .'', *. .'.' ,...., -. . " -.". "" *. "." -. ." . -"".- ""." . "" - """""- ." .1 .- "
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Defining uI(r,e ) and u2 (r,e) as deformations tangent to the surface then

eH

2 + Ul 1 LHU
2 1 HI q1  H1H2 aq2  2

e2 +1 3u2 + 1 _LH2u
ad2 2 2 aq2  HIH 2 aq1  1i ~and .%

' + 1 au. 1  3ul 1 8H2u + 1 H1 u'
12 1 2 + U 1 H Ul - 2 HH2Tqo Hi2 eq2 H1 H2 aq 1 q2

To insure existence of a single valued deformation field associated with

the stress forms we need to satisfy the following compatibility condition

(Novozhilov, 1959).

H C L[ 2 H ) -' H2£ 1 a (H 2y)]aq 3q, 2 q 1

- Hy)]

aq2  H2 3q2  H2 Hq2  2

2aq1  H, aq1  2 H aq 1  H a 12 4

3 (H[_2) H e22

2 aq2  W2aq2  I 1 H3 2 1r a(H2 12)
2 2 q

With this result, the general formulation is complete.

L- ,5.2 Ultrastructure Simplifications

The middle plane spacing of the fibers within the tympanic membrane

indicates that the bending - membrane coupling coefficients Bij are relatively

small. For a symmetric laminate composite B is identically zero. In addition

to small bending - membrane coupling, the membrane shear stiffness Q and

6 , shear couplings Q2 3 , Q ,'are small for the eardrum material. Neglecting
2'13'
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:.'

these terms in (5.1.9) gives

0 QI11- 12 j 1 (5.2.1) h
[N 2  L 021 02

Moreover, N12 = 0, Mij x 0, and B - 0. If we also neglect in-plane inertia

then P1 = 0 and P2 = 0. With these simplifications the equilibrium equations ,

(5.1.1) - 5.1.3) reduce to
3H2 N2 = 0 (5.2.2)

-) (H2N1) _- 0, ,.,"'

3r ar~

3 (H N) - H N1  0 (5.2.3)
d. . -. -,

and

(H2eN 1  
+  -a(He NI 0.N2+p=0 , (5.2.4)

HIH 2 Dr 1 1 1H612N2 - R 2

Using (5.1.6) the first two equilibrium equations can be combined to show that

the membrane forces have the form

N = N2(r) + 0(e)

2 2

(5.2.5)
r

N 1 N 2(n)3n + C()+ ()
r 0 r." -.

where C1(e) is a constant of integration. Using this in the third equilibrium

equation (5.2.4) gives

(+ H)) +r .el} - N2 + P3 (5.2.6)

77 N " 2 ar T- N R N
1 1 1 2 1

+ O(C) =0.

Nondimensionalizing r by the average radius a, and w(r,o) by the experimentally

observed maximum transverse deformation shows that the ratio of the average

circumferential force N2 to the average radial force Ni provides a second

natural small parameter c = "N' . Representing w(r,e,t) by an expansion in
2 1

-~~~~~~~~7 r.. . .. . .--.. .. . . .. . . .. . .
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I we have

w(r,e,t;) = wo(r,O,t) + K w (r,e,t) + ..

-.. Substitution into the reduced equilibrium equations (5.2.2, 5.2.3, 5.2.6)

yields the following sequence of problems when making use of relations (5.1.8).

0(1)

-32WO a3 W 21 + q S( < r < S 0 < e< 2w (5.2.8)

arz 3F-2t ZT3

where
wo(S 2,O,t) : y[wo],

wo(S2, ,t) = 0

" yo is an operator describi, a the malleus boundary condition including ossicular

and cochlear dynamic terms. Assuming e/K = 0(l), then the order K problem on

the same domain is -'

- .• 0(r)"--'

a 2W 1 ,a- w-  - ' a w " a3w t
* S Fr3t r r araT FzT 67-5t

(5.2.9)
"' .. { _i 1o + ) aZW o _ (1+a2)r}

rN1 3r r4N ae= R.
I2

e + gr {I + P + 8 a w
K 2 R N N a.=t

where

w1 (S1,et) = 0 , L

and
w (S 8,t) 0

1i 29

and
ph , h

Z7..
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*: where a D'Alembert reverse inertial pressure has been included transverse ,

to the resting position. The boundary r = S (0) represents projection of -

the malleus boundary onto the (r,O) plane, and r = S (8) represents pro- NO
2

jection of the annular ring boundary onto the (r,O) plane. The c terms

represent first order linear bending type damping (see section 4.1).

If the radial membrane force N were known then the 0(1) problem

could be solved directly.

As e + 0 and the shell becomes a cone we find N1 + aN1(6)/r. It can

also be shown by looking at equilibrium equation (5.2.2) that N1 + aN (B)/r

as K 0. Hence it seems very reasonable to let-%
N, = aNl(O) (5.2.10)

r

for small K and small e. Using this form it is straightforward to estimate

N using the orthotropic constitutive law approximations of Chapter 3.

The form of equation (5.2.8) suggests that it may be appropriate to

model the tympanic membrane as a set of coupled radial fibers. This

alternative approach is outlined in Appendix A.

5.3 Asymptotic Solution For wo

Consider the case when the damping and sound speed are constant to _

first order such that and c appear as constant coefficients. To homogenize

the boundary conditions in (5.2.8) introduce a transformation on the depen-

dent variable F

(r-S2(6)) y@W (5.3.1) 5 ';;
Wo(r,e,t) = Uo(r,e,t) + (r0S2()) y" w](5..1

0 0 (

The first order problem becomes

33Uo = 1 (a2 Uo + r-S2  t "-..(5.3.2@2u° g __ y + q (5.3.2),. .
arat 7 aV- - --"

'1• 2

...........................* ** ** * * ** *" * * ** *
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with homogeneous boundary conditions

I 
VUo (S1,e,t) = 0

Uo (s2 =

where y is a third small parameter representing small motion of the malleus

and * is an operator describing middle ear and cochlear connections.

Looking for an asymptotic solution for small y , consider a direct

: .. expansion of uo(r,e,t)

uo(r,e,t; ) = vo(r,et) + y v(r,e,t) + .. (5.3.3)

Substitution of this into (5.3.2) leads to the following sequence of problems

0(M

a2VO + 8 3VO 3va o o + q , s (o) < r < S 0 < 0 < 2n (5.3.4)

where

vo(S ,e,t) : 0

Vo ( 2 ,,t) = 0

0(y) 
-

a2Vl + 3Vl = 1 2Vl + r-S2  a2 [Vol (5.3.5)-:ar- £  ar @t =C-at CZ(S S ) atz  ,

where

v ( S , O , t ) : 0

r:. v (S ,Ot) 0 .

. .2...

.-. ... .°
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For the case of harmonic forcing q = qo(r,e) sin wt, the solution to (5.3.4)

* is easily found by eigenfunction expansion to be

v 0= { c2 qn sin(wt + *n)

n=l [l- _w 1 z] + (Cw)z (5.3.6) -

+ce n sin 1 +--1 wn) 2 ,t + ] sin[nir(r- S l]
n wnt Cn s-s

21

where g is the damping coefficient, c is the sound speed, cn, n are constants
nn

determined from the inital conditions,

/2
- (0)= Arctan (" > , w (e) = nrc
n _w -"2) n T-

and \n (5.3.7)

, q (0)= S 1 qo(re) sin [nw(r
5  )] dr.

1 2 2 1 2

To solve the O(y) problem in (5.3.5) it is necessary to find the malleus

deformation. To determine the malleus motion, define the differential operator

L relating angular deformation of the malleus * to the moment transmitted

through the tympanic membrane (see Fig. 5.2).

L [.] = M(t) (5.3.8)

Expanding the moment M M0 + y M1 + O(y
2) allows direct calculation of the

change in moment A M as an integral of forces on the malleus imparted by tym-0

panic membrane fibers.

A M0 (t) = A f (N1 x O).m ds (5.3.9)

Si

Where N is the tension vector in the direction of a radial fiber at the

malleus, 0 is the position vector from the malleus instant center of velocity

.. • -". . . . -" " " " " " " "- - -% % - - - " " "- -"-" " "," ° "- -"- . . . . . . . "" "%%
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to S 1 and m is a unit vector 
along the instantaneous axis of 

rotation of the

malleus (see Appendix B). This gives M explicitly in terms of V allowing
0 0

direct calculation of the malleus motion by solving the differential system

IL *(t) : L-'[Mo(t)] (5.3.10)

From the malleus angular deformation we can determine the deformation at a

particular point on the malleus

y *oV (0 x • € (5.3.11)

where * is the instantaneous rotation of the malleus and s is the unit normal
in the direction of the component being calculated. With this result, the

O(y) problem has the same form as in (5.3.6) where q is replaced by q*, given

as

q* r'S2  32 €o (5.3.12)
. .* = 

- w °

Knowing %o' Vo and V1 determines wo to O(y
2 ).

wo(r,O,t) Vo(rO,t) + y V (r,6,t) + r'S2  Y o + 0(y2 ) (5.3.13).. S -S 0
1 2 .. ~

The above expression is a closed form asymptotic solution to the general tym-

- panic membrane problem. It is coupled to the ossicles by membrane stresses

and includes effects of middle ear and cochlear dynamics through the very

general operator L. The outer ear and middle ear air chambers are indirectly P

' included as perturbations on the excitation pressure field.

5.5 Qualitative Numerical Results '

Representing the geometry of a cat we selected an annular ring superior

°"K
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radius of 0.35 cm, and anterior radius of 0.30 cm, malleus angle defining

depth of the drum of 0.64 radians, average density of 2.0 grams/cm 3 ,

average thickness of 40 x I0- cm, and nondimensional damping coefficient of

3 x 10-5 . In addition to these parameters the local stiffnesses were esti-

mated using equation (3.6.11) along with ultrastructural observations of the

volume fractions of radial and circumferential fibers. A very small initial

prestress was imposed by rotating the malleus 10- a radians with respect to its

no force position. This initial rotation could easily be imparted by the

tensor tympani or ligament preloads.

Using these values, equation (5.3.13) reproduces vibrational shapes

observed experimentally. Figure 5.3 indicates vibration of the drum when

subjected to a pure 600 Hz tone at 105 dB SPL. The vibrational shape essen-

tially matches that observed experimentally by Khanna and Tonndorf (1972).

The shapes shown in Figure 5.3 are based on a simplified geometry and neglect

the pars flaccida and hence the shapes deviate slightly from the results of

Khanna and Tonndorf. The asymptotic solution given by (5.3.13) is capable of ,

describing behavior for the more complex geometry and material, however the

intent here is simply to look at qualitative behavior leaving detailed

calculations for Part II of this report.

At 600 Hz the drum vibrates in its fundamental shape essentially in

phase with the excitation pressure. As the frequency is increased the mem-

brane vibrational amplitude decreases and begins to lag the excitation. Above

4000 Hz a transition from the simple fundamental vibrational shape'to a

complex shape is reproduced by the asymptotic solution. When forced at higher

frequencies, the vibrational shape of the tympanic membrane is constantly

changing in time. Figure 5.4 shows normalized displacement at 4000 Hz for

two different times during the excitation cycle. Time averaged experimental

. . . . . . . . - .
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600 Hz 6000 Hz

Figure 5.3 Normalized vibrational shapes at 600 Hz and 6000 Hz, 105 dB SPL.

1:

4000 Hz 4000 Hz

• Figure 5.4 Normalized vibrational shapes at 4000 Hz for two distinct times
during the cycle.

* H
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results represent a weighted average of many curves, as shown in Fig. 5.4, 4

over numerous cycles (time averaged holography for example). .

Results that can be obtained from the asymptotic solution are numerous.

The effects of geometrical changes, material alterations, scar tissue, and

middle ear changes represent only a few of the possible topics. In addition - -

to these, many clinical applications may be found. Spatial integrations of

the asymptotic solution can be compared directly to tympanograms end acoustic

impedance data. The comparisons can be used to make the tympanic membrane -

transparent to clinicians or to assess function of the eardrum itself. Part

II of this report will study the asymptotic solution and address some of the " ""'"'.

topics mentioned.

4,.

-- .- i.'

-" .F -

.- *

-- .4.. . 45- ._"___
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5.5 APPENDIX A

A FINITE RADIAL FIBER MODEL

By studying the behavior of the TM under various conditions, it

appears that the radial (or meridian) fibers play the dominant role in the

function of the drum. Any axial stresses in the meridian fibers act

• directly on the malleus, near the umbo in most cases, and thus transmit

force directly to the ossicles. The complicated vibrational shape at high

- -'i frequencies observed experimentally also suggests that the circumferential

fibers play a secondary coupling role while the radial fibers dominate the

shape and transmittance behavior. Assuming that this postulated radial

dominance exists, it is possible to formulate a coupled set of m partial

differential equations, that individually represent the physics of a sec-

tional strip of the TM. Since most of the radial fibers run in the meridian

U direction originating at the umbo, most of the strips will be pie shaped

sections of the membrane. Each radial structure, or pie shaped strip, is

attached to the annular ring on the outside edge and attached to the malleus

on the inside edge. It is assumed that the fiber elements interact with

each other through a membrane type tension term, however the element itself

contains both bending and tension energy storage mechanisms. Dissipation of

energy is assumed to be of the bending type and hence will be proportional

to time rate of changes in the two principle radii of curvature of the drum

"- surface.

We begin the model by defining N coordinates XN originating at the

malleus attachment of each fiber directed outward toward the fiber attach-

ment at the annular ring. The XN coordinates are along straight lines, such

that the middle plane of each radial element in its original static

.

.. . . . . . . . . . . . . . . .
. .. . . . . . . . -- t.. - - - - -- .* . .~~. A
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equilibrium position is defined by UON(XN). For fibers attached at the

umbo, the XN coordinate will correspond to the polar coordinate r; for !

fibers attached on the shank of the malleus, the XN coordinate will cut

across polar coordinate lines.

In order to model one particular element, imagine that we have cut

the fiber and its surrounding tissue from the membrane. The single radial

fiber (or group of radial fibers) imbedded in the tissue slice is under a

meridian stress amn, has thickness hN(XN), and width wN(XN). The static "

equilibrium position of the Nth fiber element is described in global

coordinates as z* = f(r,O), or in local element coordinates as UON(XN).

Figure 5.5 indicates the coordinates for a typical radial element.

Viewing the radial element from the side, it appears as a curved

annular ring -

(X nX

Uon (Xn)  46

Figure 5.5 Sketch of a pie shaped slice of the tympanic membrane.

. * .a a *a fm
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beam under axial tension forced by the applied pressure and adjacent ele-

Sments. The fiber element, if originating from the umbo, will have a

. variable width nearly proportional to the lengthwise coordinate (or r).

Denote the deflection of a point perpendicular to the static equilibrium

-. position as UN(XN,t), and the component of deflection normal to UN(XN,t) 4.

as VN(XN,t). Displacement at the malleus attachment is denoted (UNE(O,t),

- VNE(Ot)).

4,

S-n (Xn

U (X)

n nn

.

stressdistributi deformationia a uir

Xj 
n

Figure 5.6 Side view of a single radial fiber in local coordinates. .';

_': Suppose the element thickness w << a (a=length) and that the initial I

2 ['TI curvature is much larger than the thickness (or in fact the length), such LT

c. that a linear stress distribution due to internal bending moment(s) is a

~~reasonable approximation. For the same reason it is assumed that the axial "

i." .: stress distribution can be approximated as uniform across each section. "-

7."
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Udrsuch cniosth primary forces acting on a differential slice of C

the radial element in X are indicated in Fig. 5.7. '

pressure =P D dissipation *

a8aA
a AA +ddx

m m ax n

reverse inertia FT ti in

r

B bendingb

Figure 5.7 Equilibrium of an element of drum material.

Considering conservation of momentum normal to the membrane surface,

we can derive a differential equation describing the element. Noting that:

a rtnun - un-.1 + Arcsin (i x i '

Artn wn n n -1 T Tr-

a2 Arctan un -.un+ + Arcsin (^n n1)1a

a2  ( ~ a = a (o x a2u
B 32 (mIS 82u + Bt unmnT + B %%

a7 axn ax naxn

F a (pAa'un)
R1 at at



* 'J. 
-. ,.

L -85-

D .Lt(C h W a2 un + c h Un+1 - 2Un + Un-1) (5.5.1)
at m n - T

Tn = n + Uon

T- a x a)ST(u -2u +SXn 3xn n xn  =. nr+l- 2 n  n u n l

Wnn'." .- BT =2 (U 2 - 4Un+ 1 +6un-u 4Unl+ Un. 2)wnfl.-'

.. wn

Momentum gives

a2  hQ IsinQ I 2u)2UTn) + a hsin + sin
ax m s7 x Tx- m 3xn t1 2n n

(5.5.2)
+ h w aun + cth -1 (U -2u 5Ul)B

Sxn n n+1 + nl1)  -T.i

+1..( n+1- 2u
X a2x- na3xn =1 n n-1 )

(9 n at at

Expanding for small deformation, this can be written as

a2 _ D w _n2 ) + c (un+2 4un++ 6u 4U

ax m ax, 7n+ mi n-4 n-1+ Un-2)n axn  Wn --

_ ... UTn) + Tc(UT +w n afUT "
ax.wn -m n axn n+1 n n-1 -7 n - ar*

+ .L2h W a2un + n+ (5.5.3) 9•~ h. wWnZ (Un + Un -  .-,u.

at m n+1 n n+ n -

+1 a(X a)ST (u - 2u 4U)

Xn ax- n - n+1 n n-1)n
n Wn

= PWn + L'.(phw l-""
n at n at..'
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The previous equation reduces to the first order membrane shell model
6A

as the bending stiffness approaches zero. Equation (5.5.3) is not exact, but

* does contain bending terms and circumferential coupling not contained in the ,

first order shell membrane equation.



APPENDIX B

MALLEUS MOMENT AND DISPLACEMENT RELATIONSHIPS

In order to determine the moment imposed by the tymnpanic membrane on

the malleus about its instant center of velocity, the radial tension vector
-* +

T and position 0 are defined as indicated in the diagram below

UT

B~-.

Figure 5.8 Sketch indicating tension vector due to a radial fiber on the
mall eus

- The tension vector is

T =Tcos a (cose 1 + sine +) Tsinak

= [cose i + sine j+ ctk (5.5.4)

t i +t j +t k
1 2 3

*and the position vector is

* 0 =(x-Bcose)(-i) + Bsine O (X-Bcose) sin ak -

*0 =01 +O0j +0 k(5.5
1 2 3

LA
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The resulting moment is

i j k ~,

M =T x 0 t1  t2  t,..

1 2 30 1 0 2  0 3

M M r + M j + M k
1 2 3

where a:
T Ta

M - sin 0 (BcosO-X)sin a - -- Bsine
01a M +a.

(5.5.6)
T(BCOsO-I)

M (a + cose sin am)

M3 =t 1 2 - t 1

The component causing rotation about the instant center of velocity is

M=M . m

= M . (-sin 8 i + cos 8 j)
(5.5.7)

T
M - [sin e sin 8{(x-Bcose)sin am + aB

+ (Bcose-X) cos {a + cose sin am1]

where we have taken the instant centerline to be in the plane of the annular

ring. This assumption could easily be relaxed by including a third component
i n m." ,?.

During a deformation a and T change. To obtain the change in the

moment during the deformation let

a(t) = a + Aa

T(t) = T + AT (5.5.8)

....... ...... ...-. ,
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Substituting into the moment expression and using a >> Aa , T >> AT we obtain

the change in moment

T A'"
* - AM {(-BcosO) cosO- Bsinesin5.

/1, +Ta (5.5.9)
'A-t 

= av

The displacement of the malleus at the attachment of a radial fiber

* is defined by vector and is related to malleus rotation @ by

d = (Ox M) (5.5.10)

= (0 cos 8 i + 0 sin 8 j - (0 cos a + 0 sin 8) k}1
3 3 1 2

. The component in the k direction is L

d = {(-Bcose) cos 8 - Bsinesina} (5.5.11)
,. .-..3

" "-i-'

* *o..*. . * * . * . . . . . * . . *
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APPENDIX C

IMPULSE RESPONSE -

If the tympanic membrane is subjected to an impulse of magnitude I at

time t = 0 then the Vo function is defined by

a2 Vo + a 3 Vo - 1 a2Vo = I (t) (5.5.12)

57- -5rzat =C 77

For an eardrum initially at rest V (r,O,O) = 0 and Vo (r,e,O) = 0. Integrating
0 t

(5.5.12) across the impulse in time allows us to reformulate the problem as a

homogeneous operator with nonzero initial conditions. The equivalent problem

is +-.
+ a3Vo 1 2 = 0 (5.5.13)

!*i with initial conditions at time zero plus Vo(r,6,O+) 0 and Vo(r,e, o+)= -Col.

* The general solution to (5.5.13) can be written

cc -C w2t/2= " n~t/2 + )2{n }  r-S1n i (5.5.14)

V = £ Ce n sin{/1+1(;w)2Wt+ E sin (nir-n nt .+
0 n n n n

n=1 2 1

Imposing boundary conditions we find

.00 !>i r-Sl
Vo(r,6,O+) = 0 E n Cn sin { n1 sin (nn SL.

*SO n 0 + W , (K = 1,2,3...) and
n-

O(r,O, + )  -C I =Z Cn I( 2 ) Wn sin (nn r-S)  ) (5.5.15)" .'i n~l S -S .
21 -

Cn may be found by taking the inner product of (5.5.15) with sin (nit r-Si
S 2-S1

For constant I we find

4 C 21
__n_____(5.5. 16)

n 1n, 1(w )2
n. % .
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CHAPTER 6

A CONSISTENT MATHEMATICAL MODEL OF THE EUSTACHIAN TUBE AND
MIDDLE-EAR AIR CHAMBERS

"" 6.1 Importance of Wave Motion in the Middle Ear Air Chamber(s)

In order to formulate a simple model of the middle ear air chamber(s)

that adequately describes action of the chambers, we must determine if it is

reasonable to neglect wave motion within the chambers. As a rough estimate of

the importance of wave motion, we may compare one quarter wavelength of the

.forcing pressure to a length characterizing the primary air chamber. Assuming

- that the sound speeds inside the chambers and outside the external ear have

. similar values, then the wavelength comparison amounts to comparing the period

- of the forcing signal to the time required for a signal to traverse the middle

ear air chamber. If the traversing time is much less than the forcing period,

-- then fluid properties within the primary air chamber will be essentially

uniform and wave propagation can be ignored. On the other hand, if the

?. traversing time is of the same order or greater than the forcing period, then

wave propagation within the middle ear air chamber must be considered.

As a conservative estimate, the time required for a signal to traverse

the primary chamber can be estimated as the distance divided by the sound

speed. If the characteristic length of the primary chamber is taken to be

1.6 cm, and the sound speed is approximated as 350 m/s, the traverse time is

4.6 x 10- 5 sec corresponding to a full wave frequency of 22 KHz and a quarter

wave resonance of 5.5 KHz. Hence, if wave motion in the middle ear air

chamber(s) is neglected, then the forcing frequencies must be limited to

values well below 5.5 KHz for the example chamber size considered here.

6.2 Discrete Middle Ear Air Chamber and Eustachian Tube Model

Suppose we model the middle ear air cavities as consisting of one
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primary cavity, connected to the Eustachian tube, and "n" secondary cavities

as indicated below.

Secondary cavities

atn  :h".- .'..:.e

. -.. 4-

dw th Eutcintb attecneto totermar cavity is denoted.by

*Ue, while fluid velocity into the secondary cavities is denoted Ui(i=2,...,n).,."---

-The volume of each chamber is considered fixed for development of this discrete -

*model. The fluid state is defined by pressure, Pn and density, pn in each ...

chamber volume

As a simple model, consider the case of "slow" TM vibrations such that

*wave motion within the middle ear chambers can be neglected andl the state within,. .-..,

*each chamber is considered uniform."-, ..-.
*a) Primary chamber r-

Conservation of mass may be written for a control volume enclosing the

,,.t * '
• ,- < ...

n ... .. .. ' ., . ,,._. ; . .. ..:. .,.,..._., . . :.,.. ,.., ... . .. .. .. ; .,.. .;. -_.., . ,; . .... _
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primary chamber, traversing the connecting openings at the periphery of the

P primary cavity, as follows: (Potter and Foss, 1975)

f dV +f p IWT dA + fI PuedA (6.2.1)
V1 at a 3t e

-TM

;" n

+ E f P U dA= 0,
i=2 A. i 1

where Ai is the cross section area of the connecting tubes (Fig. 6.1). For

* slow vibrations the properties within each cavity are considered uniform, and

the velocities at the openings are approximated by their average values such

that (6.2.1) may be written

dpl + Pl I WT dA +UA + Z uiAi) =0. (6.2.2)
-. V TMat e i=2

Suppose changes in density are small and denoted by 6(t), then conservation

. . of mass for the primary chamber becomes

P1 = PO + 6(t) •

Combining this with (6.2.2) we find

n
d61 + Po (f awT dA + ueAe + Z  uiAi) " 0 . (6.2.3)

-~~T a*~V1  m t ee i=2

b) Secondary cavities ,

Conservation of mass for one of the secondary chambers may be written

f V P dV - f Pu ndA= 0 (6.2.4)
n n "n -V dt " A n

Again assuming uniform properties this reduces to

dpn - Pn u A 0. (6.2.6)

....... dt Vn ".n n-
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Applying conservation of linear momentum to a slug of fluid connecting

the primary chamber to a secondary chamber we have

dun - = (P pn) An n = 2,3 ... (6.2.6)
- -Un I. n)

*1 dt mn i nj

where Mn = mass = p nAnI , Cn = viscous damping and A = cross sectional area.:p

Combine this with (6.2.4) to obtain

d (L dPn) + CnVn dPn = )... .) (6.2.7)
t Pndt AnI Pn dt pn-

Assuming isentropic fluid behavior then

P= P= constant (6.2.8)

Also assuming changes in density are small relative to initial density p --.-

define

Pn(t) = Po + 6 (t) for 6 n< Po (6.2.9)

Combining results, the first order problem for the perturbations in the density

is

d (Vn d6in) + CnVn d6n
U T' Andn-A t dt

0 P

S po+  1) _ (po+ 6n) 1 1 (6.2.10)

t nn)

::~~P P t n :::

n oY+ L n. ..

Hence the density In the Nth chamber may be described by

d2 6n + Cn d6n= Po Y (6.2.10) "
dtz-~:. Tt--- ~

Note that the density is coupled to the primary chamber through 6

___ .--'-1;.-*•- --
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6.3 Eustachian Tube

Applying conservation of momentum to the Eustachian tube in the same

'. way that it was done for the secondary air cavities we find

due + Ce ue - (P- P'
TF m f e M

- There are two cases of interest; when the tube is open and when the tube is

* - closed.

P1 ' Pl= primary chamber state

C -Viscous dampinge

m = effective fluid mass
P

V= closed volume

p-. Po open state

Figure 6.2 Schematic of the Eustachian tube.

i) Open tube.

If the tube is open then
*- p p .:(22i)":lm - Pe Po(( )Y -1),::::

1 e 
"-0

' Combining this with (6.3.1) gives-

due + Ce Ue Po y Ae61 OPEN (6.3.2)

~mf P Mf '

ii) Closed tube.
Apply conservation of mass to the closed tube to obtain another

* . . . . . . . %'.1
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secondary chamber equation in the following form

d2 6e + Ce d6e = Po Y (6 a

d= mf dj t py-LMf ( e)
0 (6.3.3)

uA = Ve d
6e CLOSED

e-e Pet

6.4 Primary Middle Ear Air Chamber Acoustic Model

If the forcing frequency is of the order 5 KHz or greater, then wave

propagation within the primary middle ear air chamber should be considered.

Since the secondary chambers are usually much smaller than the primary chamber,

thediscrete model of their behavior will generally remain reasonable through-

out the audible frequency range. Hence, in order to extend the middle ear air

chamber model to be valid at frequencies above 5,000 Hz we must derive a new

primary chamber equation that allows variable fluid properties within the

chamber. ..

Equation (6.2.1) for the primary cavity remains valid and may be written . S,

as n

f dV +T dA + ueA + Z Aiu i ) = 0 (6.4.1)
1e e 0=

Introducing the velocity potential * within the primary cavity, acoustic

perturbations will satisfy the wave equation

* at14._ =9¢. 642

The v of the air is i S:

v = 1 V ( 6 .4 .3 ) --'

0

Assuming adiabadic motion,

p -1 , (6.4.4)
~at

-** * .-.. & **0.-
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and1-
aPn= P 1-Y (6.4.5)

Substituting (6.4.5) into (6.4.2) we have

1-Y 1-y
6 1) p - (6.4.6)

and since
1-y 1-y

P Y(A±) y 1 (6.4.7)
0 at O

then

ap PO C2 V 2  . (6.4.8)

0

Using Green's formula we find -.

2 n
O2dV +. L dA + u A + Aiu. = 0 (6.4.9)

V1 YPO Mat i=2

and
I {C_O ,.n + vIdS 0 • (6.4.9)

Cs Y s

But this expression must be valid for arbitrary control surface selections, so

- the boundary condition on the control surface is just
+ V..n + v = 0 (6.4.10)

Surface
A.

The equations presented assume that small perturbation assumptions of "

" t-t acoustics are valid and complete the model.

6.5 Comments on the Lightly Forced or Damped Linear Problem

Suppose behavior of the system can be described by linear operators in

time and space such that the following general form is obtained;

L~u(x)] + XM~u(x)] = F~x,u(n)] (6.5.1)

. ,,-- .',"
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where x is the independent variable, u is the dependent variable, e is a small

parameter, and L, M and F are linear operators. It is assumed that the '.

boundary conditions are natural, and the general problem is self adjoint. To

avoid an order singularity we also require n to be less than the highest order

derivative appearing in oearsL or M ((n) denotes differentiation n times).

The above form is consistent with separated linear plate, shell, or membrane

equations subject to small damping or forcing, and hence is expected to be

reasonable for the tympanic membrane problem.

Suppose we consider an asymptotic expansion of the form

u(x;)= u (X) + Eu (x) + 2u2(x) + ... (6.5.2)

and let

S= A 0 + 1 +cA2X+... (6.5.3)0 1 2
Substitution into the original equation gives the following sequence of problems.

n(1) ,.- ...

LEul + A0 M~u] = 0 , (6.5.4)

Solution of the first order problem will yield a set of eigenvalues

XE'[Xon] and associated etgenfunctions *oE[*on]. Suppose there exists an

eigenfunction expansion theorem for this problem such that the general solution

may be written as an infinite sum of the eigenfunctions.

u (x) = E An,n(x; Xon) (6.5.5)
0 n=1

If the original operator were obtained using some sort of separation of vari-

ables then the "A" coefficients will be general functions dependent on the other

independent variables in the problem. The exact form of the functions can only

be determined by inspecting the problem containing all independent variables.

An example problem to follow will illustrate this.

,- ?.-;.:.:
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The eigenfunction expansion above will automatically meet all boundary condi- N

tions of the problem. Associated with the expansion it is assumed that there

exists an inner product, such that evaluation of the coefficients is direct.

The next order problem can be written

L[uI ] + XoM[ul ] = -XIM[uo ] + F[x,uln)] (6.5.6)

As before using the eigenfunction expansion theorem, completeness of the set

[4'n] allows us to write the solution of (6.5.6) as a sum of the eigenfunctions L

as follows

u, = Bn (x; Xon) . (6.5.7)

Substituting into the above differential equation

'. n=1 {Bn(L[*n] + °M[*n)} (6.5.8)

" X' E A MDOn] + F[x,u n)] . (6.5.9)• n n --
n 1

For a particular mode of the order one problem we know

•r1 B (L[n1 + Xon MD n]) =0: ~~n=1 n"

Hence we must have

Xin __1 AnM[Dn] = F[x,uln) ] = F[ufn) ]  (6.5.9)

U Assuming F is linear, it can be expanded in terms of the eigenfunctions as

F[un)] = £ AnF[*n ]  (6.5.10)

u iin n

Combining the two expressions gives

X-E AEM[n I A F[,n (6.5.11)
I-'n % n n1 n n

n.l na
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Taking the inner product of each side (using appropriate weight for the

operator) <*m, I: An FE'Pn]>

n= n=1 (6.5.12)n Am <4;m, MLkbn]> 2' .

If the problem is self adjoint then the eigenvalue perturbation may be

written

$im =<M, FCb]> (6.5.13)hm-<*m' M[ n]>

Using this, eigenvalues of the full problem to 0(e) are

<*,FC m]> 2)-:: "S
Xm om + ME]> + 0() (6.5.14)

Simple Example Problem

Consider free vibration of a circular, isotropic, flat membrane that is

fitted over a closed chamber filled with gas.

V = closed volume
membrane

Figure 6.3 Circular membrane over a closed air space.

Assume that we are interested in low frequency vibrations of the membrane such . -

that wave motion in the air space can be neglected. As explained earlier this

assumption is valio if the time required for a wave to traverse the air space

is much less than the period of vibration of the membrane.

If damping is ignored then vibration of the membrane may be approxi-

mated by
72u f f udA 1 ut, 0 < r < a 0 < 8 < 2w (6.5.15)

C =PV 0 C2
0 d - t.

I - .".

* %°%. . * * °. * * * *. *,
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where

u(a,e,t) = 0 and u(0,e,t) is bounded

Parameters in (6.5.15) are B = bulk modulus, p = membrane density, Vo = initial

gas volume, and C = membrane sound speed. Separating variables the radial

function is of the form

u(r,o,t) = Am sin (me + im) sin (wt + c)w(r)

where
a

d2w + 1 dw + (a2 Mn2 ) w = B f w2wrdr
T2' 'F F 77 W

(6.5.15)

and

e= B
TV

If e << 1 then the previous analysis applies. Writing the radial function as

, . a straightforward asymptotic series

w = wO + w + -w + ... . (6.5.16)

d2 Wo + 1 dwo + (2 -m
2  =0

dr r dr r 0

wo (0) bounded , (6.5.17)

w (a) =0

The solution to this problem may be written in terms of Bessel functions

won m =C* O (a nmr) + m* * m r) , (6.5.18)
.n nm 

o, On m ( n, r

where the second set of constants must vanish to meet the finite deflection

condition at the origin, and the eigenvalues Bonm are determined by imposing

the second boundary condition at the outside ring.

o' Wonm Cnm

(6.5.19)

= C r )

0 n=1 ni m .n"'

L
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The next order problem is

0(C)

L~w j 2Mw 82MwJ+ F[w
1 0 1 1 0 0

L = r 2 d2  + rd M-i2  (6.5.20) . 3.

M r

a
F r2 f w0 2wrdr

- 0

Noting that the left side is zero for some eigenvalue, perturbation of the

eigenvalues is given by

<.i a a -"-
""~~( dmonr)r 2 f {dm(aonn)2nndnldr"""-

0 0
s2 n O a 0 (6.5.21)

I r2(J(Bnr))2dr

The eigenvalues of the full problem may be written to order epsilon as

82 a 2 +  82  + 0W) (6.5.22)
"nm on. m (

V
o"r

• ° , . , ' ,
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