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%
‘j It is difficult to propagate a diffraction-limited laser j
" 5 5
beam through the atmosphere, since the atmosphere contains “_
» 4 '..
random index of refraction fluctuations. Two parameters that b
characterize the atmosphere for optical propagation are the fiﬁ
. atmospheric isoplanatic angle, @ , and the refractive ;j
turbulence structure parameter, an. This dissertation deals E:
X with improved methods for measuring IR and an profiles using
optical techniques.
.3
By apodizing the receiver telescope aperture, one can e
improve the weighting function for isoplanatic angle pfi
measurement substantially over previous systems. We find iﬁﬂ
#'«
that the weighting function is not significantly affected by by

inner scale changes with altitude and that the error in

isoplanatic angle measurement from strong low altitude

turbulence (z < 1 km) with this weighting function is small.
Data collected with the improved isoplanometer shows temporal ﬂ;f
trends in the isoplanatic angle on the order of 90 seconds
that have not been observed before. —

Direct inversion of the amplitude covariance function

({including aperture averaging effects) to yield refractive

s turbulence profiles is known to be ill-posed. I suppress

;f this condition using Tikhonov regularization and reproduce :

i: refractive turbulence profiles from actual Cn2 data with some ;gi
success.
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I. INTRODUCTION

If one wishes to propagate a spatially and temporally
coherent electromagnetic wave through the atmosphere or any

random medium without distortion, one must somehow

compensate for the random phase and amplitude perturbations

induced by the medium. Adaptive optics is the field of

physics that attempts to compensate for propagation through
the atmosphere, principally by deforming mirrors and :
unconventionally by using nonlinear optical materials. In i:i
order to successfully conjugate the effects of the GE&T
atmosphere, knowledge of certain atmospheric parameters is ﬁﬁz
crucial. These parameters are the isoplanatic angle (eo), i;:
. the spatial coherence length of the atmosphere, (r,. p,) and Sﬁs
A vertical profiles of the refractive turbulence structure Efﬁ
parameter, an. This dissertation deals with the theory and | E:;
measurement of the isoplanatic angle and the refractive Z}S
turbulence structure parameter. Currently, reliable systems E;ﬁ
exist for the measurement of the spatial coherence length of i;i
the atmosphere [Refs. 1, 2]. Ei
The isoplanatic angle is an angular measure of spatial ‘E
coherence in the atmosphere. Walters of [Ref. 1] has g:i
developed three generations of instruments (known as 'ifg
isoplanometers) to measure the isoplanatic angle. This work ;;f
ok

-------------- D «* s PN - S . et L. LTl . . - e - ‘-_ R A
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has to do in part with the development and test of a fourth
generation isoplanometer having an improved weighting
function. This instrument is optimized for night use and

provides temporally high resolution data (1 second samples),

able for the first time to measure trends with periods less
than five minutes. Two fourth generation isoplanometers are

currently operating at different locations. e

S .
[ QPR

Of the three parameters noted, the most important is the
refractive turbulence an profile. Both the isoplanatic

angle, 0,7 and spatial coherence length, r, are functions of

2

Cn . Hence, knowledge of the an profile not only gives a

th

picture of turbulence with altitude, but also gives the

measures of spatial coherence, r, and eo' Unfortunately,

I

3
high vertical resolution profiles of an are difficult to {C%

L
measure. Several measurement techniques exist, each having
its strengths and weaknesses. These techniques will be
discussed later. This research attempts remote measureﬁent h;;

of C 2 by direct inversion of the stellar scintillation 3?}

n
amplitude covariance function. Mathematically, the problem f;ﬁ
is ill-posed meaning that noise in the data makes inversion ? }
impossible. Different regularization technigues exist to ¢

make the problem tractable. This work is an extension of

[Refs. 3, 4] using the Tikhonov regularization technique

(Ref. 5] to invert the covariance function for two finite

but arbitrary equal apertures.

10
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II. BACKGROUND

A. GENERAL DESCRIPTION OF TURBULENCE

Turbulence has certain characteristics that differen-
tiate it from other flow patterns. In [Ref. 8], Lumley
briefly describes these characteristics as I will do here.
The first quality of turbulence almost goes without saying;
turbulence is irregular. This "quality" has a profound
effect on how one approaches a mathematical model or
description of turbulence. Fluid dynamics for years relied
on the application of Newton's laws to fluids. With the
Navier-Stokes equations in hand, one in principle should
be able to solve any problem. However, in the case of
irreqular flows, the randomness makes this approach
impotent and we are left with having to use statistical
methods.

Diffusivity is a property responsible for rapidly
mixing and spreading basic physical quantities like
momentum, mass and heat. This property is present in all
turbulent flows,.

Turbulent flows are always characterized by large

Reynolds numbers. The Reynolds number, Re, is given by

Re = —
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where v is the velocity, L is a characteristic dimension of

the entire flow and v is the viscosity. As the Reynolds
number moves beyond a certain critical value, Re .,
(nominally Re, ~ 100, for pipe flow) [Ref. 9], the flow
becomes unstable giving way to turbulence. The value of the
critical Reynolds number depends on the type of flow. Rec
for the atmosphere is approximately 2000 [Ref. 14].

Another important property of turbulence is that it is
characterized by three dimensional vorticity fluctuations.
The vorticity fluctuations find their origin in the velocity
field. 1In order to support the random vorticity fluctua-
tions, the random velocity field must also be three
dimensional. Lumley's example of a two dimensional
atmospheric cyclone is worth noting. Large scale cyclonic
behavior responsible for weather patterns is itself not
turbulent. This does not mean, however, that the cyclone is
not made up of smaller scale turbulent bodies.

Within every turbulent flow is a mechanism that
dissipates energy. The dissipation occurs at small scale
sizes and is a function of the viscosity of the fluid. The
dissipated energy is internalized into the fluid typically
as heat. Clearly, if one increases the rate at which energy
is added to a fluid, the dissipation rate, ¢, must also rise
proportionately to conserve energy. This occurs after the

energy increase has reached the smallest scale sizes.

12
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The last two properties in Lumley's list are rather

A RN N
D

"'-rr“rvr'. .l
'l .

obvious but still should be noted. First, turbulence lies
within the continuum model of fluid mechanics. The scale

sizes in turbulence are typically much larger than molecular

£ 4y

A

sizes. Thus, molecular diffusion does not significantly

v, we

affect turbulent flows. And lastly, turbulent flows in -

fluids are indeed flows. In principle, as I mentioned

A |

previously, the Navier-Stokes equations provide the general
equations for fluid flows. For turbulence, one is concerned
with the statistics of the Navier-Stokes equations.
Unfortunately, the solution to this set of equations is not
known since the number of unknowns exceeds the number of
equations. This is known as the "closure" problem of the
Navier-Stokes equations [Ref. 10].

As was mentioned earlier, turbulence is an irregular or
random process. Finding exact scale sizes, dissipation

rates, etc., is virtually impossible. However, it is

". ot l KRR R
. 4 . . 3 . . « €
ate b i a 1ad

i possible to extract order of magnitude values by dimensional

LI
7
I ]

analysis. This technique is used in the turbulence field to

Sy e m e e .
(3 e e | LOR % 4
’

e
‘'
-

mathematically model the phenomenon. Other techniques

include asymptotic invariance (the model should behave

roe

properly as the Reynolds number approaches infinity) and
local invariance (depending on the time and length scales in b
the turbulence, one may be able to assume that the

turbulence is everywhere similar). These three techniques,

-----
......................
------------------------------------
...................................................
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in varying degrees, find their way into the treatment of
turbulence.

All mechanical processes must have an energy source. In
turbulence, the source is principally shear flows within the
mean flow. This is true for turbulence outside the
atmospheric boundary layer. The boundary layer is formed
by the interaction of the flow and the earth's surface given
the no slip condition [Ref. 8]. Buoyancy can also be an
energy source. With an energy source available, a laminar
flow can become turbulent. The laminar portion of the flow
is modeled by the linearized theories valid for small
perturbations much like the classical or quantum harmonic
oscillator. The turbulent portion of the flow is mathe-
matically treated using an asymptotic theory valid for high
Reynolds numbers. This inevitably leads to chaos in the
transition region.

In turbulence there are a number of different length
scales. A description of all the different length scales is
a key component of similarity theory [Ref. 10]. However,
two important ones are covered now. First, the outer scale,
typically noted as Lo' is the size of the turbulence at
onset (on the order of meters). The outer scale, given by
L. = Re v/v, is a function of the Reynolds number, viscosity

o]

and velocity of the fluid as mentioned earlier. 1In the

outer scale, viscosity does not play a role in the

.
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dissipation of energy since inertial terms dominate the
equations of motion. However, at the inner scale or
microscale (on the order of millimeters), viscosity
internalizes the energy of the turbulence as heat. Clearly,
from what has already been said, the key parameters at the
inner scale are the dissipation rate and viscosity. Using
dimensional analysis, Kolmogorov formed length, time and
velocity scales valid at the microscale [Ref. 11]. These
are called the Kolmogorov microscales and their exact

expressions can be noted in [Ref. 8].

Now, we can construct a physical picture of the

formation and dissipation of turbulence. The onset of

turbulence occurs at the outer scale. If the Reynolds =
P
number at the outer scale is again greater than the critical E '

Reynolds number for turbulence formation, the turbulence at ﬁ?ﬂ

the outer scale will again break down. The formation of ﬁ&j

continually smaller eddies occurs until Re < Re, and the

turbulence is at the inner scale. Hence, energy from the ¥5§
ordered flow moves through the turbulence "cascade"™ to the {;E
inner scale where it is dissipated in random processes. The f%
region of scale sizes between the inner and outer scale is fﬁi

known as the inertial subrange. The energy transfer from

one scale size to the next is adiabatic in the inertial
subrange. Hence, the entropy increase occurs at the inner

scale. This view of turbulence is appealing since it is so

15 el
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closely related to the second law of thermodynamics. We
might expect that the inertial subrange has a well defined

spectrum. It does, and this will be covered later.

B. STATISTICAL DESCRIPTION OF TURBULENCE

l. Random Variables

Since turbulence is irregular and random, it is most
effectively described statistically. Hence, variables like
the velocity V(t), become random variables having a mean and
higher statistical moments. 1In many stochastic processes,
the statistical moments do not change with time or are
stationary. However, with atmospheric turbulence this is
not the case. The nonstationarity of turbulence makes the
meaning of long term averages, etc., questionable. In
addition, the replacement of ensemble averages by time
averages (ergodic assumption) presents additional
difficulties. This complicates the description of
turbulence considerably.

2. Homogeneity and Isotropy

Along with stationarity, most well-behaved random
variables are homogeneous and isotropic. Homogeneity means
that statistical quantities do not change with a Galilean
transformation of coordinates. This implies that
mathematically, functions describing statistics at ?l_and ?E

depend only on the difference ?12 =T —'?2. Isotropy

implies a symmetry in rotations of ?H and Y}. Hence, if the
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statistics are homogeneous and isotropic, functions %&:
depending on T; and T, can be represented by |T; - Tol.

Unfortunately, the atmosphere provides neither
homogeneous nor isotropic random variables. However,
Tatarski in [Ref. 6] adopts the idea of local homogeneity
and isotropy. Over some region R, comparable to the outer
scale Lo' the statistics of the random variables do not
change with translations and rotations.

In a similar manner, Tatarski handles the non-
stationary problem. He notes that the functions can be
stationary over time increments or stationary increments.
Hence, it is possible to tolerate slow drifts in the mean
and other moments.

3. Structure Functions

Another way to cope with the non-stationary problem

is to define a function in terms of a difference. Tatarski

defines the structure function for temperature as

Dy (F),F,) = < [T(F,) - T(FPI12 > . (2.1) T

< > denotes an ensemble average. We should note that the

structure function depends upon the vectors ?} and dé. If ;Ef
we assume homogeneity and isotropy, this reduces to ~——

Dp(r) = < [T(ry - T(x1? > (2.2)

5)

17
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where r = |T, - ?1!. Also, in differencing T(r;) and T(r,),

effects of a changing mean are removed.

- Kolmogorov showed [Refs. 6, 8] by dimensional
u:\.
&: analysis that the structure function for temperature
-3

fluctuations in the inertial subrange is given by

T2r2/3 ,

Dp(r) =¢C (2.3)
where CT2 is the temperature structure parameter. In EM
propagation, one is more concerned with index of refraction

than temperature. So, we can define an index of refraction

structure function, Dn(r), similar to (2.2) and (2.3),

l

r

- . 2.2/3

r D (r) =cC “r , (2.4)
_:

o where an is the refractive turbulence structure parameter.

‘ In order to model the turbulence correctly, one must use
"
tf gquantities that are not affected by position in the fluid.
EI We refer to such quantities as "passive additives".
FE Temperature is not a passive additive since it changes with

vertical displacements. However, potential temperature, 6,

given by ¢ = T - rz where T is the adiabatic lapse rate and

z is altitude, is a passive additive since it is corrected
for changes in altitude.
Figure 2.1 taken from [Ref. 14] shows the behavior

of Dp(r) as a function of log(r). Clearly, if r < 1, the

18
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inner scale, DT(r) = 0 and for r > Lo’ DT(r) approaches 2°T2

asymptotically as the fluctuations become uncorrelated.
Hence, the structure function has a well defined slope in
the inertial subrange.

4. Covariance Functions and Spectra

Along with structure functions, covariance functions
(or correlation functions if normalized) and spectra are
useful in describing random processes. Conveniently,
covariance functions and spectra form a Fourier transform
pair. The covariance between two random variables S and T

is given by
BST = <[T(r1) - <T(rl)>][S(r2) - <S(r2)>]>, (2.5a)

where the average value of T, <T(r)> has different defini-
tions if T is continuous or discrete. Often one uses the

autocovariance function
BTT = <[T(rl) - <T(rl)>][T(r2) - <T(r2)>]>. (2.5b)

If the random variable T is homogeneous or locally

homogeneous B becomes

TT

BTT = <T(rl)T(r2)> - <T(rl)>2 . (2.6)
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If we choose <T>»=0 this reduces to

Bpp = <T(r;)T(r,)> . (2.7)
There is a relationship between structure functions and

covariance functions given by, [Ref. 6],

Dp(r) = 2[BTT(0) - BTT(r)] . (2.8)

As mentioned earlier, the covariance function and
the power spectral density form a Fourier transform pair.
The power spectral density gives one insight into how
different frequency components contribute to the variance.

For one dimensional spectra, the transform pair is

W(K) = f e 1K 5r) ar (2.9)
and
B(r) = 2_1 f 1K wik) ar . (2.10)

But, before these relations hold, we must realize again

that the functions involved are random. A random function

21




B A Ant ek St Ak S d Ak S ACHir il S Y S ari st et Ui U

...............

f(r) can be decomposed using Fourier-Stieltjes integrals

given by

£(r) = “/”eixr de (K) (2.11)

where d¢ (K) is a random complex amplitude. The Fourier-

| Stieltjes integral must be used since the random

fluctuations are uncorrelated over non-overlapping intervals R

[Ref. 12]. Hence, f(r) does not have a derivative and is

RN
| non-Riemann integrable. i_‘*
With the substitution of the Fourier-Stieltjes ﬁﬁi

integral, the covariance function is o]

\V"Ji
[i(K[rl+r] - K'r,] . O
B(ry+r,r;) = e <de(K)de (K')> . (2.12) iy
Rt
.‘i’.‘!
If the medium is homogeneous, B(r +r, rl) = B(r), since an

average must not depend on the location within the medium.

For the double integral to only depend on r, the following

must be true,
| <d¢(K)d¢*(K')> = §(K-K'})W(K)dKdK"' . (2.13)

*
We note that <d¢ (K)de¢ (K')> is in the form of a mutual

\ coherence function (MCF), which represents the overlap of

22
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d¢ (K) and d¢ (K). Since the d¢'s are uncorrelated except at

-~ -
.

K = K', we get the Dirac delta function with the spectrum
W(K) giving the amplitude. Substituting (2.13) into (2.12)

and integrating over K' gives (2.10).

RRRNRE)  Of

Since we are dealing with fluctuations of the random

R X

variable T, the mean value is assumed zero giving

2 j[ W(K)dK . (2.14)

-

Q
it

From (2.8) and (2.10) we see immediately that

2 |

D(r) = “/ﬂ[l - cos(rK)] W(K)dK , (2.15)

RADARENS Zhdih g g s |
T : g
ST SR

4

since B(r) is an even function.
Tatarski [Ref. 6] develops an expression for W(K)
based upon the form of the structure function for

turbulence. The one-dimensional spectra W(K) is given by

éé WK) = 2 g0 (2.16) :;
; where o is a constant and ¢ is the dissipation rate. 5{
- Z[j:fi
ii 23 ?
: i;
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Vector fields like the velocity, v(r), are expressed
in three dimensions. Hence, their spectra are three
dicensional. We will let O(K) denote this power spectral

density. ¢(K) is given by

0 (K) = ///d:;?e_ix.?B(?) . (2.17)

The covariance function is defined similarly. B(T) is given

B(T) = —1 5 /ffd3?eix" o (K) . (2.18)
(27)

Equation (2.18) is also developed from a Fourier-Stieltjes

by

approach requiring homogeneity. For spherical coordinates,

a3t = r2 sinedrdeds

and the 8 and ¢ integrals in (2.17) can be completed giving

¢ (K) = ;:%; J[ B(r) sin{(rK)rdr . (2.19)
0

A similar relation for the covariance function can also be

found. Tatarski uses the relation
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-1 dw(K)

(2.20)

to evaluate the three dimensional spectrum in terms of the
one dimensional spectrum. This gives

$(K) = acn2K‘11/3

(2.21)
for the passive additive, index of refraction, where a is a
constant. This is known as the Kolmogorov spectrum (since
Kolmogorov did the original work), valid in the inertial
subrange. Spectra have also been developed for the pro-

duction and dissipation regions of turbulence [Ref. 13].

C. EM PROPAGATION THEORY IN TURBULENCE

Clifford [Ref. 15] covers Tatarski's work [Ref. 6] for
weak turbulence. This treatment is analogous to any
application of first order perturbation theory. The
following is Clifford's treatment in a more condensed form.

1. Solving the Wave Equation

Consider a sinusoidal wave of the form e '“t where
the atmosphere has zero conductivity and unit magnetic

permeability. For these conditions, Maxwell's equation in

Gaussian units become:

v ¢« H=20 R (2.22) :1
tole
£
N .
oo
RS
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e MV

v xE= ikH, (2.23)

v x § = -ikn’F , (2.24) K

25 =

v e (n"E) =0, (2.25) ;‘

ks

(R

LIS,

where k is the wavenumber of the electromagnetic wave and n ?52
ot

is the index of refraction. We generate the wave equation )
— o

for E in the usual way by substituting (2.24) into the curl ‘qj

of (2.23) giving

-v“E + v(v ¢« E) = kK“n“E . (2.26)

e e e Tt el
ERETERCRTRAY. (i S '-.:_'-.n.l
LIRS PR ML SN
(LA e, 0, et

We can expand (2.25) and solve for V * E. Substituting into

(2.26) gives

AT 40 53N
R T A
Aty Ji

T
b

[ I B
y »

B
[l v
o
J‘J.‘I

v2E + k%n%E + 29(E * v logn) =0 . (2.27)

If we assume that depolarization effects are negligible s

2ata

(i.e. assume isotropy), the last term of (2.27) can be

SIS e e

| A R A T
g j."“‘ R
aadita ety a

neglected. Clearly, one need only consider a single scalar

.

p -
o equation, since all the components follow in the
-

v
1

4

PO PR P ]

mathematics. Thus, the scalar wave equation becomes
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V'E + k'n"E = 0 . (2.28)
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Clifford now applies the method of small pertur- A
bations. This means that E can be expressed as a series of o

decreasing values, e

e IR
|;.ll'v .
.'l."l‘

.,
Iy

E = Eo + El + E2 + eee . (2.29)

¥

EO corresponds to the unscattered wave, El to single
scattering, E, to double scattering and so on. In some 1
situations the series may diverge, particularly if an is
large or the path length long. This leads to the phenomenon éf
of saturation. Clifford uses the first order approximation ;j

giving g

and

(2.30)

All terms of order two have been neglected. Clifford like

Tatarski assumes a unit amplitude wave propagating in the z

direction. This allows us to use the standard Green's i:

function solution for El(?Wr

1 —
ikijr-71"'| sy
"~ E. (T) = -+ a3 (2k2n, (t")eik2'] . (2.31) .-
[ 1 37 F— 1
. Vol
i.f.
27
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For laser propagation, most of the monochromatic light will
be scattered into a small forward cone. Hence, backscatter
is negligible. Clifford now applies the Fresnel

approximation to El(?) giving

where p are the coordinates transverse to the propagation
direction z.

2. The Rytov Approximation

At this point both Clifford and Tatarski apply the
Rytov approximation which assumes that the solution of the

stochastic wave equation is of the form
E = aeS (2.33)

where A is an amplitude and s is a complex phase. The Rytov
solution involves the perturbed wave equation (2.30) divided

by EO. Tatarski gives this equation as

v2E 2

2
3 + k

2.2

n?(T) = v2 log E + (v log E)2 + k%n%(T) . (2.34)

This combination of solution and wave equation is known as

the method of smooth perturbations. The name comes from the

---------------------------------
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fact that we require the perturbations to be small over the
distance of a wavelength. This condition is less restrict-
ing than those for the method of small perturbations.

From (2.33), the ratio of E/E0 where E = EO + El is

E
E 1 A .
=— =1+ <= = — expl[i(S - 8,)] . (2.35)

Taking the natural logarithm of (2.35) and expanding in a

power series gives Clifford's result,

E, &
= *a- ti(s -85 . (2.36)
0 0

Thus, the Rytov approximation has allowed us to obtain
amplitude and phase information from the Green's function
solution to the wave equation., Tatarski and others have

developed the convention

Ay
x = an(A/Ag) = = (2.37)
0
and
S -5, =5, .

This is convenient since an experiment measures the log

amplitude x. It is trivial to obtain the forms for Al/A0

and (S - SO) from (2.32). But it is not so trivial to move
29
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on from there. The problem is completing the integral over
the random function nl(?ﬁ. If one considers the plane wave
propagating in a layered media, where at a given 2z, there
exists statistical homogeneity, we can expand nl(?) in a
two-dimensional Fourier-Stieltjes integral. We also assume
that each layer is uncorrelated so that an integral along
the path is a sum of incoherent additions. 1In the notation

of Clifford, nl(?l') becomes
ny (T =/""(f<°rz')e“"° ' (2.38)

where dv(K,z') is the complex Fourier-Stieltjes amplitude.

Substituting this into the relations for Al/A0 and (S8 - So)

gives
x (1) 2 z Tt —
T2 kS dazr Kz f 25, iK% | cos [k (7-3")
§,(r) 27 (z-2") sin L2(z-z') '
0]
(2.39)
where d3?“ = dz'sz'. x (T) refers to the cosine of the

bracketed quantity while Sl(?) to the sine. One can perform
the ?' integrations leaving the Fourier-Stieltjes integra-
tion and the z' integration. Now we can construct the
two-dimensional covariance functions exactly as before.

Bx(‘o',Z) is

BX(BUZ) = <x(p) + 0, 2) X (p7,2)> . (2.40)
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Tatarski finds the spectrum from (2.40) to be

L
2
2 s 2 K“(L-2
FX(K,z'-zn=0) = Fx (K,0) = 2nk fO(K) sin [—(_fk_—)] dz
0
(2.41)

and ?ﬁﬁ
g
L 5 o]
= 21k? 2 | K (L-z) N
F (K,0) = 2k [ ex) cos [ o ] dz , 2
0 o
L.
where L is the path length and ¢ (K) is the three-dimensional Eﬁ}
Kolmogorov spectrum. Qﬁi
L.«;,
3. The Huygens-Fresnel Approach i;;
As we have seen, Tatarski and Clifford use the ;}?
differential equations approach to solving the turbulence ;;;
-
problem. Since we have linear operators, etc., the ﬁ;ﬂ
identical problem can be formulated in terms of integral ;ﬁ:
R
equations. This is Huygens-Fresnel theory applied to E#}
propagation in turbulence. Lutomirski and Yura [Refs. 16, f{ﬁ
IR
17] develop an extended Huygens-Fresnel theory by adding a ﬁ;;
random phase term to the Huygens-Fresnel integral. 1In fact, g;j
it is oquivalent to applying the Rytov approximation to the fﬁ
integral equation. After applying the paraxial approxima- lff
tion, the extended integral equation becomes {'i
L
L (ik | F-F" 1) = 23
E(r) = 2;" / = — EE@e V(TN 42, (2.42) 9
S le-r* | Py
—
’..:a'..j
L]
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- where v is a complex phase (equivalent to Sl' Yura's %i
ii notation), the primes denote aperture coordinates and the fx
ﬁf non-primes denote image plane coordinates. The Huygens-
Eﬁ Fresnel integral is developed in standard texts like
ii [Ref. 18]. We should note that (2.42) reduces to the
: Green's function solution of Tatarski and Clifford in the
geometrical optics limit (i.e., ¥ = k‘fnl(z)dz). This is
FI not surprising since the kernal of the Huygens-Fresnel

integral is a Green's function.

Yura now finds the average intensity <I(r)>,

2 JUKUT-T I-IT-E")] o )
<I(r)> =< v /f E (r")E(T"')

IT-T' | |- ]
n b1+ 2 42 v
\ X e dr'd“r > . (2.43) -
: ]
-~ ]
ii The only functions in (2.43) that depend on time are -]

the complex phases %' and ¥". Hence, evaluating the

ensemble average, if we assume ergodicity, becomes an effort

A, v
. T,
A'.‘LL

in evaluating the average of the ¥'s. We now change

variables to those of Yura [Ref. 17] and Walters [Ref. 14],

. '..l‘
. I . e
B . .

' WY TORI

+

[ .
e aan

ol = (T'4T") /2, B =TTV, T=T . ,
/
."'_1
With this change of variables, the Fresnel approximation iﬁé
. o
becomes s
F.-
i
e
e
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e +T T . (2.44)

N =

dr-r'| - |IT - T"|) =

where z' = 2" = 0. This gives a very physical result for

the average intensity

~i k‘é’- _p‘-

2. e,
I(r)> = (52) fd—p' My (5 IM_ (5, 2)e . (2.45)
where
- - e
M (57) = fs(—p-+ + et - e 2 a%s*t  (2.46)
and
M (5 2) = <el¥ (T/DIHTELTIL, (2.47)

Since z >> r' or r", the exponential in (2.46) can be
approximated as unity. This makes M, the autocovariance of
the aperture (or if normalized, the aperture mutual

coherence function (MCF)). Mg is the atmospheric mutual

coherence function. This allows us to treat the propagation
problem in two distinct parts; the effects of the atmosphere
and the effects of the receiver optics.

The trick now is to find the atmospheric mutual
coherence function. Yura assumes that the amplitude

fluctuation, x, and phase fluctuation, s, that compose V¥ are

Gaussian variables, which implies that exp(¥'+¥") is log-
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normally distributed. Using a property of log-normally

distributed random variables and some results of Fried's

g work in [Ref. 19], Yura represents the atmospheric MCF in
= terms of the wave structure function D(p), giving

b +y

<e( "*)> = exXp(-
p(-D(e)/2) , (2.48)

i where D(p) = Dx(p) + Ds(p). Now we can apply the results of

Tatarski's work, since we have forms for FX(K,O) and FS(K,O)

which can be related back to their structure functions.

it From this, D(s) becomes -j

L
N D(p) 3.44k220_1/392 d/acnz(z)dz i p < Py (2.49) -
. 0 [ -

and .::..

- 2 5/3 - 2 -fﬁ
D(p) = 2.91k%p f C,°(z) dz ; » > VAL , (2.50) R
0 o

v

where EO is the inner scale and VAL is the Fresnel zone -~
1

size. Based upon (2.49) and (2.50), Yura represents (2.48) <]
A

as

FoTe S T T :
‘, F L et e S
> ey PRSP P,

s
7
e’
2ed d

<e(¢'+¢"*)> 5/3

= MCF(p) = exp (%ﬁ) , (2.51)
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:
ﬁ where o is the transverse distance for the MCF to decline i;?
i by e”l. vYura has developed forms for pj, including inner and PR
i outer scale effects [Ref. 17]. We should remember that »,
é is a distance in the aperture of the optical system. It is
i nominally on the order of a few centimeters during the day.
4. The Modulation Transfer Function Approach
Fried in [Refs. 19, 20] uses the modulation transfer
i function (MTF) rather than the MCF., This application of the
% MTF and MCF are closely related since both represent the
E effects of the atmosphere in different planes (i.e.,
i aperture and image planes). The MTF is the modulus of the
i complex optical transfer function from the linear systems
approach to optics. This points to the fundamental
i difference between Fried and Yura's approach. Fried's work
- is done in the coordinates of the image plane, i.e., spatial
frequencies, while Yura works in the aperture. Both are
. equivalent by the Wiener-Khintchine theorem since a lens
produces the Fourier transform of the incident electric
. field in the image plane. The transformation between the
5 two planes is
o + ARK ,
.

where R is the focal length of the optics and K is the spatial

frequency of the scintillations. This allows us to move

between the aperture and image planes. Thus, the MTF(K) is
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MTF(K) = exp[-3.44(ARx/r0) ) (2.52)

L) LIV IR

AR
e 't ‘e

r

where ry is the 1/e distance of the MTF and is given by

r0-5/3 = (%f%%é) k? sec(s) v/'dzcnz(z) ' (2.53)
0

where ¢ is the zenith angle [Ref. 21].

Explicitly in the MTF and implied in the MCF is a low
pass filtering of the scintillation spatial frequencies by
the atmosphere and optics. This linear systems view is

extremely powerful. It allows us to decompose the turbulent

T T T oo 7
et N . o D PN

propagation problem into a product of atmospheric and

optical system filtering functions. We will use this idea
and the Wiener-Khintchine theorem later to our advantage. B

5. Measures of Spatial Coherence

As mentioned in the introduction, o and ry
represent two measures of the atmosphere's ability to X
maintain the spatial coherence of a propagating wave.
Nominal values for ry are approximately 3-10 cm for ground
to space measurements, From (2.53), we see that turbulence

close to the aperture of an optical system contributes most -{

L4
to Lo since an is largest in the boundary layer [Ref. 2].
Fried in [Ref. 21] derives the theoretical equation
for another measure of spatial coherence in the atmosphere. [‘{
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This is ' .e isoplanatic angle, 99+ Isoplanatism is the
dependence of the optical transfer function of a system on

the position of the source. Since, Yura and Fried's

approaches break the propagation problem into MCF's and

MTF's for the atmosphere and optics, the atmospheric

turbulence does not affect the OTF of the optical system. ;}?

It affects the OTF of the atmospheric part, hence the term E;E
anisoplanatism. This means the atmospheric OTF is dependent f’j

O

on the particular propagation path through the turbulence. ?ﬁﬁ

The isoplanatic angle is an angular measure of &fﬂ

spatial coherence. 1If we consider two paths through i;’

g

Rt

turbulence in the atmosphere, the isoplanatic angle relates o

the mutual coherence e_l point between the two paths. Fried ;f?

)

- : — = . g

defines the function S(r,6) given by bf“

i

S(r,8) = 2.905 kZJ[ denz(lr[l—(%)]ls/3 + [ev)]5/3 ﬁﬁg

path E ]

S

1 2 N

- S =12+ 2001 () Tve + {ov}2]15/6 - 21qrn-(H1)? R

b

- 2re[l—(%)]vc + {Ov}2|5/6) ’ (2.54) I

where L is the path length, v is a position along the path P

s L
N and ¢ is the cosine of the angle between r and 6. In the 3ﬁi
- o S
- limit as r/8 +» = (or two rays crossing at infinity), NN
;;.‘%
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lim S(T,F) = 2.905 k2 fdvcnz(ev)5/3 ) (2.55)
r/e +> ®
path

Fried defines eo as

0,773 = 2.905 k2 fdvcn2 v/3 (2.56)
g path

: R
' Interestingly, ry is given by the other limit of the E':.':
{ function S(T%,®), :3}?
3 3
8 — Y
. lim S(_r.le) = 2.905 kz fdvcnz{r[l - (%)]}5/3(2.57) i.'~’1
r/e » 0 path _~1
where ﬁ
-5/3 _ ,2.905, 2 f 2., _ ,V,,5/3 [«-1
o = (g5 ) k dvC “[1 - (§)] (2.58) o
path *{

and the (1 - V/L)S/3 term is a spherical wave weighting

. £ 5 e e
w, Lol S
I LA -"v'l' :
L L AL
RN .
AR
N

function. Clearly, we can change variables from v to z by e
AR

correcting for zenith dependencies, i.e., A
A

v + Z sec ¢ , i

ot

[

! s
. Pl T
) Tt
Nt .
' 2l
LY Py £ )

where ¢ is the zenith angle. Now one can immediately see

"'v ‘e
e S be

the relationship between ro and 6,. The isoplanatic angle

measurement looking up is the same as the ry or MTF

P
[ >
adaca s’a
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measurement looking down from space.
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Walters has shown 90 relates back to o and the

Huygens-Fresnel picture. The relationship is given by
8y = po/L . (2.59)

Using the Huygens-Fresnel picture, one can gain a physical
insight into ro and 8, measurements. Consider a source on
the earth propagating spherical waves ipto space. 6, is the
angle such that the MCF of the field at two different points
on the wavefront is e ! its original value. This picture
can be reversed where two points in space emit spherical
waves that sum at a point on the earth. This gives the
corresponding r, measurement. One of the advantages to the
Huygens-Fresnel approach is this reciprocity.

Based upon the isoplanatic angle weighting function,
turbulence between 8-15 km is weighted heavily. Hence,
turbulence near the tropopause tends to make the isoplanatic
angle small (i.e., 3-5 urad). Large isoplanatic angles are
in the neighborhood of 13-20 urad. The largest isoplanatic
angles (20 wrad) are very small, consequently adaptive
optics concepts that compensate for the atmosphere have a
monumental task since the correction is only good for an
angle 89

6. Intensity Fluctuations

Tatarski in [Ref. 6] obtains the variance of the

intensity fluctuations from
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(2.60)

where BX(O) is the covariance function at » = 0. He
evaluates the integral over K in BX(O) for point sources and
point receivers giving results for plane and spherical
waves. In reality, we do have point sources, stars.
However, real point receivers do not exist. Fried [Ref.
22], obtains o2 for finite apertures. He finds that the

aperture averaged variance is

2 _ 27 D
0ot = = fodo MTF(0)B (o) (2.61)
a("D)
4 0

where D is the diameter of the optics and o is a constant
depending on the type of aperture. Bx(p) can be represented
by the two-dimensional Hankel transform of the spectrum
because isotropy imposes cyclindrical symmetry.

Substituting this into (2.61) gives

| D
i o2 = 2122 /pdp MTF () (27 fJo(Kp)FX(K,O)KdK]. (2.62)
' 0 0

The p integration is trivial since we have the Hankel

"W

transform of an MTF or autocorrelation. This transform
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yields the intensity spectrum for the finite aperture

involved, I(K). Hence, the normalized variance is PN

2 @™ -'-:'..';
= 2n [ KdKFx(K,O)I(K) ' (2.63)
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Again we see the filtering of spatial frequencies by

£, "r
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the atmosphere in FX(K,O) and by the optics in I(K).
Aperture averaging is the filtering done by the optical

system. Equation (2.63) has limits for point apertures and

infinite apertures. In [Ref. 6], Tatarski shows that for E4:
point apertures, (2.63) behaves as 25/6, while for infinite ;
apertures it behaves as zz. This implies that all other \:
apertures fall between these two z dependencies. Eié
Over the years, research has modified and shown the ;%;
limits of Fried's initial aperture averaging work [Ref. 22]. tig
Yura [Ref. 24]) suggests a form for the covariance function E;:

for arbitrary z. This modified Fried's results slightly.

However, a more serious problem was found by Dunphy and Kerr

- [Ref. 25] and by Homstad, et. al [Ref. 26], if turbulence is i;_
F; very strong. Experimental work has failed to show the f?
ﬁf theoretical aperture averaging effects in strong turbulence. th
- 41 :
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g The trend is towards less aperture averaging than expected i?
| in strong turbulence. Azar, et. al. [Ref. 27] and Clifford, g;

ﬁ et. al. [Ref. 28] explain that the covariance function for EE
iﬁ strong turbulence is governed by two transverse scale sizes. §§
The short size determines the initial fast drop in the ;?

covariance function, while a second scale characterizes the ;;

long tail. The long tail of the covariance function reduces %gf

the effects of aperture averaging. The aperture averaging ?;

controversy will arise again when we look at isoplanometer }3

data. 7

ga

- 7. Problems in the Theory 53
: The theory for wave propagation presented so far has E;
been for weak turbulence or single scattering. We have . . ;ﬁ

g neglected the effects of multiple scattering. When the path 5;
é lengths are long or the turbulence is strong, the linear :
; theory breaks down. Experiments show that for intensity li

variances of 02 =~ .3, the normalized variance saturates to 1 F;
[Ref. 28]. Multiple scattering destroys the spatial

N coherence of the wave. The linear theory assumes a coherent

j wave incident on the perturber whose strength is dependent s
; on an (or the temperature gradient). If the spatial ﬁf
- coherence is degraded such that it is less than the Fresnel S

L

zone size, VAL , the wave is partially coherent across the
perturber. This implies that interference can no longer

completely modulate the wave. Hence, the variance of the

42 o
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fluctuation intensity tends to saturate or approach a
constant. Other theories have evolved to handle propagation
in strong turbulence or multiple scattering. Many of the
theories find their basis in techniques developed for
quantum mechanics. Stroebehn in [Ref. 29] reviews iterative
Green's function solutions that give an exact answer to the
multiple scattering problem. But the solution, in practice,
cannot be computed. He also summarizes the concept of
Feynman diagrams originally developed for quantum electro-
dynamics, and other more sophisticated theories developed

for strong turbulence.
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ITI. REMOTE MEASUREMENTS OF THE ISOPLANATIC ANGLE

e
)

A. TECHNIQUE R
Loos and Hogge [Ref. 23] extend Fried's work of [Ref.

22] by completing the Hankel transform of the MTF for a "top

=
.
R 1o 28 SR N
v e
had ..L_n‘g_d_‘_

i hat" aperture function. Loos and Hogge [Ref. 23] and
¥

{: Walters [Ref. 30] realized that by measuring the normalized ;Ef
%. variance of the intensity fluctuations of stars one could t%ﬁ
[ o7
b obtain the isoplanatic angle to within a constant. Walter's N

(W
v technique is as follows. The normalized variance of ]
& intensity fluctuations is tgﬂ
B L
’ ;_-.‘
F "s2 2 2 y 2 ’ 2 k2 ok
= = 4(4r7) (.033k"7) C_“(z)dz .lﬁKdKO(K)sin (=52)1 (K) , B
L- g2 n 2k e
{: 0 0 o
g (3.1) ;-;Zj-:‘i
P where K is the spatial frequency of the amplitude 4

scintillations, L is the path length over which an is non-
zero, I (K) is the intensity spectrum of the receiver optics

and ¢(K) is the K-ll/3

portion of the Kolmogorov spectrum
for turbulence in the inertial subrange. The similarity to

the isoplanatic angle given by

. . R N
PUPRA

L
= 2.905 k2[sec ¢1%/3 fdzcnz(z)zs/3 . (3.2)
0

-5/3
%

J_“A_-A_J—J_,J‘J

1
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r" 0

is obvious. The trick is to make the weighting function R,

W(z),

2
W(z) = deKo(K)sinz(K—z-%)I(K) , (3.3)
0

behave as 25/3. Mathematically this means that

23/3 o AW(z) , (3.4)

where A is a proportionality constant. Hence, the

isoplanatic angle becomes

2
g

-5/3 _ p¢, S
eo = A (‘S—z_) [4 (3-5)

where A' is a new proportionality constant taking account

the four's and Pi's, etc. of (3.1).

Previously we noted that the weighting function integral
5/6

behaves as 22 for infinite apertures and 2z for point

apertures [Ref. 6). Luckily, the isoplanatic angle
5/3

weighting function, 2z , lies within these two limits. ;}b
-

Hence, theoretically it should be possible to mimic this e
behavior. T
The power of this isoplanatic angle measurement tech- {?

2 . . e

nique is that no explicit knowledge of the C_“ profile is E;%
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n in the free atmosphere is difficult to

required. C

measure remotely with high vertical resolution (as we shall
see later). Hence, integrated parameters like r, and 60
depending on an are usually measured independent of a an
profile. Another important advantage that naturally evolves
from this technique is the filtering done by the aperture
averaging. The averaging aids in suppressing the high
spatial frequency scintillations that are most affected by

passage through the atmosphere and are most liable to cause

saturation.

B. THE FIRST ISOPLANOMETERS

Walters developed the first isoplanometers to operate
during the day and night [Ref. 30]. The optical receiver is
an Celestron 14 Schmidt-Cassegrain telescope obscured so
that a 11 cm diameter clear aperture remains. The theory at
the time of instrument development was based on a "top hat"
aperture function. Walters found that the 11 cm aperture

gave a good approximation to the 25/3

weighting function.
Since these instruments are designed to operate at both
day and night, they have a very small field of view to
suppress the Rayleigh scattered background encountered in
daytime viewing. Hence, high quality telescope drives and

mounts are required for accurate tracking. 1In short, the

first three generations of isoplanometers require full-time

support. In [Ref. 30], Walters shows that these instruments

operate properly within the weak turbulence limits.
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C. APERTURE APODIZATION FOR WEIGHTING FUNCTION IMPROVEMENT

k‘

l. Weighting Functions for the Top Hat Aperture

L, T ey Y
.

One can compute numerically the integral over K in
(3.3) giving the theoretical weighting function for a
certain I(K). In reality, the limits to the K integral are
not 2ero and infinity. The spatial frequencies of the

scintillations are truncated by the inner and outer scales

of turbulence. Hence, the upper and lower limits of i’ﬂ
b A
integration become ]
)
K = gl =" A
max L b
0
and
_ 2
Kmin = T S
o {
St 1
N ':;
where L, is the inner scale and Lo is the outer scale. For D
3 : . :g'_'-‘j
the following computer simulations, 9 = 5 mm and Ly = 10 m. I
4

The integration over K is done by a brute force application

of Simpson's rule over 512 points for a given value of z.

B
VoS A
RURLPL .
gt et T

Y TR P

The 2z stepsize is log (az) = .05.

Figure 3.1 shows the error from 25/3 for a 10 cm top ;5”
hat aperture as a function of z for a 500 nm electromagnetic o
wave. I(K) for the 10 cm top hat is the Airy pattern, i:

(ORI
" I .
B A R N | et
Vala'a'a'an b aineas A S D

23 (32) 2
I(K) = 5 — , (3.6)
4 (f—)
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where D is the diameter of the receiver optics. The curve
in Figure 3.1 is normalized so that the integrated error
between 2 and 20 km is zero. This ensures that the error is

5/3 giving erroneous

not consistently above or below z
results when this weighting function is integrated into a
measurement system. The normalization interval 2 to 20 km
results from the fact that turbulence, hence an, is large
enough in that region to contribute to the isoplanatic angle

5/3

integral given the 2z dependence. Clearly, C 2 is largest

n
in the boundary layer [Ref. 2], however the weighting is
very small there causing little change in the isoplanatic
angle. Actual profiles of an, like that provided by Dr. E.
Good from the Air Force Geophysics Laboratory, Hanscom AFB,
MA in Figure 3.2, bear out t*is assumption. The particular
profile shown will be used extensively in Chapters IV and
VIII of this dissertation. A more complete description of
the profile will be provided at that time.

In [Ref. 24], Loos and Hogge plot the two
theoretical limits for point and infinite apertures as a
function of z. They also plot the aperture averaged
weighting function for a 35 cm telescope. They note that

the large aperture is on the 22 side of 25/3. In Figure 3.1

we see two different slopes present. If W(z) = 22, the

slope would be +1/3, while if W(z) = 25/6, the slope would

be -5/6. At low z, the slope in Figure 3.1 is 0,26, while
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at high z the slope is -0.63. As the diameter gets larger

the slope of the low z portion moves closer to 1/3.

Clearly, these figures cnly show the general influence of

LR .1' _'l' o

P
PR A
' " ’

the limits. Figure 3.3 shows the movement of the peak

=y iy
’ a

[ o
‘."| 0
Ay

towards higher z with increasing aperture size. Thus, we

T
R |

2 .
see more z~ behavior as expected.

The question arises as to why, with increasing

aperture size, one sees more 22 behavior. The answer is

straightforward. From [Ref. 23], we see that as D, the
diameter of the optics goes to infinity, I(K) = &§(K-0). As
finite D increases, the width of the Airy disk narrows due
to the Hankel transform. Eventually, the Airy disk becomes
a good approximation to the é-function, hence, the 22
behavior.

Figure 3.4 shows the wavelength dependence of the

weighting function. To first order, the normalized variance

given by (3.1) is wavelength independent. This can be shown

by expanding sinz(Kzz/Zk) in a Maclaurin series giving

)y + ... (3.7) E%ﬁ}
2k 4k

£(z) = sin (5—50 & (K Z
2 . . w0
The k™ cancel in (3.1) removing the wavelength dependence. Ll
9
We also see from (3.7) how the 22 weighting function tfj
mentioned above comes about. The weighting function, (3.3), Qiﬁ
]
F
.
- j:: ,:]
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is itself not wavelength independent, hence we see the e

behavior persent in Figure 3.4. As the wavelength increases

CXaad ¢

s
.
v

the weighting function moves laterally towards lower z.

Toe
o

3
"l

'JZ
‘e

The calibration constant, A', from (3.5), for the

10 cm top hat aperture is nominally 1.0 x 1010. We would

L
[ e ]
5
A

expect that this constant should get larger as more aperture -ﬁﬂ

averaging is included since the normalized variance will

Syt 'y
et r
B

AR 39,

decrease.

2. Improved Weighting Functions
5/3
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The error from 2z

¢

r‘
WAl T/ S I bt + (5 4

in Figure 3.1 at 100 m is about

a factor of three. 1In the weighting function given by

(3.3), the only variable that depends on the measurement

system is I(K). The remainder is due to the amplitude

‘
L

fluctuvation spectra FX(K,O). For some time, different

groups have been modifying telescope apertures or image

P
3

.. e
M » )
e ettt
.5 o
R ety

LAY e Y Yy v,
PR " (X,

,.'- 'o
W
P <

planes to measure an profiles [Refs. 31, 32, 33]. The

modification of aperture functions by masks, etc., is called

5/3

aperture apodization. Since the 2z weighting function

e e e e . .,
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e % e e te AEAD
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)
adis

lies between the theoretical limits, we hope that through

‘4

aperture apodization we might improve the isoplanometer

weighting function. 3}5
. To obtain intensity spectra from different aperture fif{
o functions, one can Hankel transform the MTF or autocorrel- !F:
3 LI

ation of the aperture or Hankel transform the aperture i?f
‘ function and square the resultant amplitude spectra. The fﬁi
k
]
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results are equivalent by the Wiener-Khintchine theorem.

Bateman [Ref. 34) compiled many different Hankel transform
pairs. Using this list and different combinations of Bessel
functions, I began constructing different weighting
functions. Appendix A is a synopsis of the some apertures,
spectra and resultant weighting functions. We found that
combinations of Bessel functions are most desirable for
spectra, since they represent apertures that can be
implemented easily on a telescope.

Before moving on to the aperture function that

5/3

approximates the z quite well, it is interesting to look

5/3 produced by a simple annulus

at the error from z
aperture. Figure 3.5 is an error plot for an annulus with a
10 cm outer diameter and a 4 cm obscuration diameter. The
two peaks correspond to the influence of the inner (lower 2
peak) and outer (higher z peak) diameters of the two Bessel
functions involved. This leads one to believe that by using

>/3 dependence could

combinations of Bessel functions the z
be mimicked. Figure 3.6 is the error for a Celestron C8
telescope aperture. It is interesting to note that the
inner diameter affects the weighting function at high z,
while the outer diameter affects performance at low z. We
saw this before with the two theoretical limits of the
weighting functions.

After some effort, an aperture function was

identified for a 8" Schmidt-Cassegrain telescope that
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produces a weighting function that approximates the 25/3

dependence. The aperture is the double annulus shown in

Figure 3.7 producing the error from 25/3 shown in Figure 3.8
for a 500 nm electromagnetic wave. Over the altitude range
critical for isoplanatic angle measurements (2-20 km), this
weighting function does very well. f
The weighting function for the double annulus »
aperture function is given by ;;
v
2 23, (—5) e
. 2,K 2 1 2 A
(l-ej+ey-e3) 0 2 v
2 .
g
e.KD e, KD 2
23 (——) 23, (X2, 23, (——) e
_62 1Y 2 + 1'2 _ e2 1' 2 (3.8) ;
1 c,KD KD 3 ¢ ,KD oo R
2 2 2 2
where €¢,, €,, €3 are constants that ratio the inner ;:
diameters to D, the outer diameter of the optics. ¢(K) is T
the K™ 1173 gependence of the Kolmogorov spectrum. Figure ;E:
3.9 shows a comparison of the amplitude spectra squared P

1

’ =
;J P TRCLPUS NN, W R R

»
Catata®aLl

(intensity spectra) for the 20 cm double annulus and a 20 cm
top hat aperture. It is interesting to note that the
increased higher spatial frequencies present in the double

annulus spectrum are responsible for the improvement in the

TR - PR S
oL r EACTE AT SR NN ) SR SN
LA e AT R A

R O e Tl

weighting function.
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- 3. Double Annulus Calibration

The calibration constant, A', for the 20 cm double

[
A

s
"v.

annulus aperture function is approximately a factor of four

larger than the 10 cm top hat. This is due to the increased

-
<,
-

(A4

aperture averaging. The double annulus weighting function
shows the same wavelength dependence as the top hat, Figure
3.10. An increase in the wavelength of the EM radiation
shifts the weighting function to lower z. One interesting
point is that the normalized variance has no wavelength
dependence as we have shown. However, the isoplanatic angle
certainly does (3.2). Clearly, all the wavelength
dependence for the isoplanatic angle is in A' and it should
behave, to first order as kz. Figure 3.11 shows the A'
wavelength dependence. At wavelengths greater than 800 nm,
A' behaves as k2 but diverges below 800 nm. Clearly, this
is important depending on the temperature of the stars used
for isoplanatic angle measurement.

Based upon the factor of four increase in the
calibration constant, one might expect that an instrument
with this weighting function would be able to withstand a
factor of four more turbulent intensity before saturating.

However, [Refs. 25, 26, 27) show that the aperture averaging

effects may be degraded in strong turbulence making the 10

cm and 20 cm devices saturate at the same relative {f@
normalized variance. This issue will be resolved later by ' ;z%

experiment. AR
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is

area of the 10 cm top hat.

intensity by a factor of two.

.....................

The 20 cm double annulus has approximately twice the

This implies that the telescope

will collect twice the photons increasing the average

The variance of the shot

noise current will also increase by a factor of two.

Mathematically, the isoplanatic angle for the 10 cm system

02+02
o ~2/3 - 4! s n
o 10 2
I
where g is the variance of the signal and onz is the

variance of the noise.

For the 20 c¢m double annulus system,

this same equation becomes

-5/3
eO

= 4A

10 2 *

The proportionality constant, A', for the 20 cm system is

approximately a factor of four larger than for the 10 cm

system.

In practice, we measure the shot noise experi-

mentally and remove it from the variance in software.

Hence, its effect

is negligible at night. The 10 cm

isoplanometer uses a pellicle to split the light beam in the

detector subassembly.

a factor of two.

equivalent to the

‘‘‘‘‘‘‘‘‘

This reduces the average intensity by
The 20 cm system, without the pellicle, is

10 cm system.
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4. Double Annulus Improvements

The single greatest advantage the double annulus
aperture function isoplanometer would have over the previous
systems is that the 35 cm telescope is no longer required.
This fact alone means saving approximately $8000.00 per
system, not to mention that an isoplanometer based on an 8"
telescope can be set up and operated by a single individual.
The weighting function itself is a significant improvement
over that of the top hat. We will see in the next chapter
just what this improvement means in terms of isoplanatic

angle measurement.
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W Y, TR s e Y TN VT T T

IV, APODIZED ISOPLANOMETER SENSITIVITY ANALYSIS

Two questions might be asked based on the double annulus
weighting function of Figure 3.8. First, at 100 m there
remains a factor of 1.75 error. an at low altitudes is

5/3

large, so deviations from z may cause significant errors

in the isoplanatic angle measurement. Second, in the
numerical calculations of the weighting functions, a fixed
inner scale was used for all z. Clearly, the inner scale is
a function of altitude which may drastically change the
weighting function. These two issues are addressed in this

chapter.

A, WEIGHTING FUNCTION PERFORMANCE IN STRONG TURBULENCE

Consider an isoplanometer viewing a star directly

2

through a convective plume. Clearly, the values of Cn will

-12 -2/3

be very large; on the order of 10 m near the ground.

From Figure 3.8, one can immediately see that the weighting
function for the double annulus has its greatest error in

5/3

this region. Even though the z weighting is low near the

earth, the an values in strong turbulence may be large
enough to cause significant error in isoplanatic angle
measurements. Based on this concern, I performed a

sensitivity analysis on both the 10 cm top hat and double

annulus aperture weighting functions.
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1. The an Profile

The most realistic way to test the weighting

functions is to use real an data. Figure 3.2 shows Good's

an data between 500 m and 40 km. Good obtained this

profile by differential temperature measurement between two

balloon-borne microthermal probes. From these differences

one can construct the temperature structure function DT and

obtain an as a function of z. an and CTz are related by
the expression, [Ref. 6],
c 2 = c 2(79p/1% x 10792, (4.1)

where P is the pressure in millibars and‘T is the
temperature in Kelvin. Direct measurement of an in this
manner yields very high vertical resolution, on the order of
tens of meters. AFGL averaged raw data to give the 500 m
resolution in Figure 3.2.

For purposes of this analysis, the region of

greatest interest lies below 500 m. Walters [Ref. 2], plots

an versus altitude for 1 to 1000 m. Walters measured this

particular data set at midday in a desert location and it ﬁﬁ§
represents very strong turbulence conditions. To account j3£
F 9

for convective plumes in low altitude turbulence, I doubled _ i
-":.'-,:1

the Walters an values. This gives one an profile from 1 m NG
to 40 km. R
3
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2. The Analysis L
.4
For convenience, I segmented the profile into four -

regions, 1 to 10 m, 10 to 100 m, 100 to 500 m, and 500 m to
40 km. Over each of these regions, I numerically evaluated

three integrals,

Theoretical = /an(z)zs/3dz ' -]
o

(4.2) E*f

e

Top Hat Aperture = '/‘an(z)wTH(z)dz ' i
3 2 )

Double Annulus Aperture = jfcn (z)WDA(z)dz . i~1

Based on Figures 3.1 and 3.8, we would expect the weighting

function integrals to be smaller than theoretical at low z. f

2
;T

4

Table 1 shows the results of this analysis. Table 2

r

DA I 11'-.
«

oy l.’_'. '
AP ve Ll PR
PR A, N
. e AP A A
'.'.'. ' A s’
A

contains the relative errors for each segment and the total

>
Y S T )

path. The integrated values in Table 1 show that even the

strongest turbulence at low z accounts for only a small

»
a4

‘

percentage (about 2%) of the integrated path effect.

ot

- 0
- Lt

. PRAEREAE

y « » e
*, g el

a
N}
watd b’ o

Clearly, the errors over the total path for both the top hat
aperture and the double annulus are within the limits of the

theory. As one might expect, this analysis is extremely

. . I N A
[N PN PRI P
L e o f ‘.
PN ‘0
falta PRSP A

sensitive to the choice of A, a proportionality constant, ¥
where -

l\:‘_ o

i

z2/3 AW(zZ) . (4.3) i;j
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TABLE 1

CONTRIBUTIONS TO THE ISOPLANATIC ANGLE INTEGRAL FOR
STRONG TURBULENCE ANALYSIS

Theoretical Top Hat Double Annulus

-11 12 -12

1-10 m 2.61 x 10 3.44 x 10 5.80 x 10

10 10

10-100 m 8.19 x 10 2.28 x 10~ 3.77 x 10

8 9

8.67 x 10
-7

100-500 m 1.18 x 10~ 5.50 x 10~

7

500 m-40 km 3.89 x 10 3.88 x 10~ 3.91 x 10

TABLE 2

RELATIVE ERROR FROM THEORETICAL FOR STRONG
TURBULENCE ANALYSIS

Top Hat Double Annulus

1-10m .87 .78
10-100 m .72 .54
100-500 m .69 .26

4

500 m-40 km 7 x 10° 6 x 10

1 m-40 km .02 3 x 10
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In building an isoplanometer, the better one can define A or
A', the better the instrument should operate.

This analysis shows that an isoplanometer should
perform well, based on its weighting function in strong
turbulence. However, we must note that in very strong
turbulence, saturation has already reduced the reliability

of the isoplanatic angle measurements.

B. INNER SCALE EFFECTS

The inner scale, n, is given by

no= () ' (4.4)

where v is the kinematic viscosity and ¢ is the energy
dissipation rate. Clearly, the kinematic viscosity and the
dissipation rate are both functions of altitude. In com-
pleting the weighting function integral (3.3) numerically, I
used the same inner scale for all values of z. This could
mean that the weighting function does not accurately model

the 25/3

behavior required for isoplanatic angle
measurement.

1. Constructing the Inner Scale as a Function of
Altitude

From (4.4), we see that the inner scale depends

strongly on the kinematic viscosity v, given by
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where @ is the viscosity coefficient and » is mass density. . .
The U.S. Standard Atmosphere [Ref. 35] has vertical profiles

of the kinematic viscosity. Hence, this portion of the

>

inner scale is well understood. :%?
The dissipation rate is another story entirely. éﬁ
Turbulence in the free atmosphere is intermittent, Efﬁ
temporally and spatially, unlike boundary layer turbulence. EE;
This is compounded by the fact that measurements in the free Eﬁi
atmosphere are difficult to make. Using [Refs. 36-41], I &fﬁ
g

constructed what might be called a "nominal" dissipation iﬁﬁ
rate profile. This profile, by no means, represents the ;;?
output of any theoretical model on my part. It is a ?i?
synopsis of the data and model results given in [Refs. Eﬁg
36-41]. The "nominal” dissipation rate profile is shown in E%E
Figure 4.1. Some controversy exists as to the behavior of &:&
the dissipation rate at higher altitudes [Ref. 38]. It is ?i%
generally agreed that € can reach values comparable to that 55%

observed in the surface layer. My profile shows light-

3

moderate turbulence near the surface, ¢ = 40 cmz/sec (or

1.6) at 100 m and decreases to .38 cmz/sec3 (or

log ¢

log ¢ -0.42) at 55 km. As a point of reference, we might

note that the dissipation rates in convective storms are on e

3 4 3 )

the order of 107-10 cm2/sec [Ref. 40]. The units on
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;3 dissipation rate indicate a "specific" dissipation rate @?
:'.'\: h )
Ii where system mass is removed.

- -L . !
- Based on the Standard Atmosphere kinematic viscosity - 52
. Iy
- profile and my "nominal® dissipation rate profile, one can JﬁF

")
<

now construct the behavior of the inner scale with altitude. ' v

.
.
4

Figure 4.2 shows the inner scale profile., Clearly, the o

inner scale changes dramatically with altitude. At 55 km,

|
.

R I
(h

n is on the order of a meter. As expected, the inner scale

follows the kinematic viscosity since kinematic viscosity

R SRR

>

increases three orders of magnitude between 100 m to 50 km. TE

2. Weighting Function Dependence on the Inner Scale

A crude approximation to the inner scale effect can

. be obtained by increasing the inner scale for all z while N
- numerically evaluating the weighting function integral.
Figure 4.3a shows how the double annulus aperture weighting ‘ is
é function changes with an inner scale of 10 cm. The

deviation in W(z) caused by the change in inner scale from S

mm to 10 cm is not catastrophic, however, a more complete
analysis needs to be done. fﬂ

Since the upper limit of the K integration depends

Y‘ "'.
mtatals

a1

on the inner scale, we see that increasing inner scale size

.

. w
»

*x

corresponds to lowering the upper limit of integration. We

.
et

. - e ., . v
LT
. PRYRY N
sl s
e :

expect that W(z) will not change significantly at lower z,

’
*
L)
)

due to the modest increase in the inner scale. However, as

£ .
P
U
o

e
PR}

the inner scale increases, the upper limit of integration

.
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will decrease. At some critical Kmax' the upper limit will giﬁ
begin eliminating integrand producing a dramatic change in R
the weighting function. &ﬁ

Figure 4.3b shows the error from 25/3 for the double é&é
annulus aperture weighting function with the z dependence in ?ﬁf
the upper limit of integration. As expected, we see little ;;:
change at lower altitudes. At 40 km, the inner scale is now §i§
large enough to begin removing part of the integrand. The ??E
deviation from z°/3 begins when the inner scale reaches 15 E§§
cm, and by 25 cm, the error from 25/3 is a factor of three. iﬁs

The inner scale behavior of the weighting function éi
is not a problem in a measurement system, since values of ;;;
an at 40 km are approximately 10°22 m'2/3. Disturbances é?ﬁ
to the electromagnetic wave propagating through the medium o
occur at lower z where an is larger. &EZ
C. SENSITIVITY ANALYSIS CONCLUSIONS ;

Based on the results of sections A and B, the o
isoplanatic angle weighting function appears very robust. &ﬁf
The only real theoretical problem, in terms of measurement, 72;'

is saturation of the normalized variance. One might ask
about outer scale effects. Nominally, the outer scale, ;gf
except very near the surface, remains on the order of 10 m ;:f
[Ref. 42]. This can be seen from the Reynolds number. The ﬁif
Reynolds number is, (as shown in the Background section), Eﬁ;
a7
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where v is the velocity, L is a characteristic size of the

s a0,
'll
4
A
PR

0
‘
)

flow and v is the kinematic viscosity. The onset of

turbulence occurs at Reynolds numbers of 2000 or greater. L

.
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A
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~ry
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in the free atmosphere remains about the same and v

increases with altitude. Thus, velocity is the parameter

|
»
¥ ORI,

responsible for large Re. Since L does not vary

considerably, LO’ the next scale size smaller, should not

vary considerably either. Near the earth, L has an

AN

immediate fixed boundary condition that reduces its size.
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V. INSTRUMENT QUALIFICATION %1

X

Currently, many DoD agencies require isoplanatic angle 3§
measurements at night. Based on this need, we fabricated a ‘ Ei
fourth generation isoplanometer. What follows is a brief ;EE
description of the hardware, detailed analysis of instrument EE
qualification and a comparison with the 10 cm "top hat" ;i
isoplanometer. :;a
A. HARDWARE o
1. Telescope :;.

The double annulus aperture function of Figqure 3.8, g&

was developed for use on an 8" Schmidt-Cassegrain telescope. ' E;
The Celestron C8 is a reasonably priced and readily %?

available Schmidt-Cassegrain telescope with a high quality

. '.."'
.
Yy

v .
- n

3 2T

() ‘_' K] i "
LN (4

.

worm-gear drive for star tracking. The choice of Bessel

functions as a spectral basis set has the advantage of

1
2

%
Lo ‘v‘_ %

B

simple obscuration implementation. The aperture obscuration

»

is two disks made of flat black rubber adhered to the
Celestron corrector plate with rubber cement. This allows
removal at a later date without damage to the optics or o
coatings. With the exception of the obscuration, all of the i
equipment associated with the telescope (tripod, mount, ’ L

etc.) is furnished by Celestron.

80
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2. Detector

The detector subassembly is a modification of the

L AR,

already existing 10 cm "top hat" isoplanometer detector

vy

3 developed by Walters [Ref. 30]. Walters engineered and

. implemented the modifications to the fourth generation

' detector subsystem, associated signal conditioning hardware
and software. The detector subassembly screws into the rear

i of the telescope. Incident radiation is directed over one
of two paths. To acquire stars and focus the telescope, the
light enters a wide angle eyepiece. Otherwise, the light

] passes through a pupil (on the order of millimeters), and is

incident on a photomultiplier tube that senses the intensity

fluctuations (stellar scintillations). The image is

. slightly defocused to remove the effects of any inhomogen-
- : eities on the surface of the photomultiplier. The photo-

multiplier is chosen to have good red response, which causes

. a slight improvement in the weighting function at low alti-

R

>y

-~ - ‘.
-\ "
.

tudes, Figure 3.10 and suppresses any Rayleigh backgound.

L4 0
e,

We should note that the pupil in this instrument can -
““

g,

el

E be much larger than the previous isoplanometer, since it is

intended for night use only. The 10 cm isoplanometers use a

S

chopper to make reference background measurements necessary

PR

- Zor daytime operation. This feature is not required on the

A

' i) .o .
. L
. P et
. Ao de s e Ty
. M) . B
P et T .

v
PR

S S

Sand ol ol el

fourth generation system for the same reason as above. A

v

da‘a’a 4 o 4 4

:
2

-5 schematic diagram of the detector subassembly is shown in

L
i
*

Figure 5.1.
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3. Signal Conditioning and Isoplanatic Angle Extraction

The first fourth generation isoplanatic angle
measurement system (A system), uses a Hewlett-Packard K
HP 3421 Data Acquisition unit to sample the output of a
signal conditioning unit. The signal conditioning unit -
performs two functions. It low pass filters the incoming
signal below 500 Hz and calculates the mean and rms values

of the input voltage data from the photomultiplier. The $={

Data Acquisition Unit, with an internal voltmeter, detects o

the voltage on each channel once/second and relays the

.
*, % v fe
.

1.
.

v«
. c'- .

- o 2
LA (P

information to a Hewlett-Packard 217 Computer.

v 'I‘
)

s

[

Once the data is in the computer, the normalized

2

SP—
"l 0’ "l .
.
ata

variance of the signal is calculated from the mean and rms

A
'3
-~

o78

values of the voltage. Obtaining the isoplanatic angle is

then a simple matter of applying the constant A' to the

normalized variance. The average intensity (in volts) and

isoplanatic angle (in urads) are plotted on a graphics

monitor. A real-time plot of the average intensity can be :233
very helpful during data acquisition in determining the

occurrence of clouds and monitoring stellar tracking errors.

The isoplanatic angle is very robust to drifts in the

average intensity since we normalize the variance. ;IS
On later systems (B systems), the HP 3421 is b1

-a

replaced by an Infotek A-D converter that resides within the }2{
RS

s\‘L .

HP computer. The computer samples the A-D converter so that -:ii
e

o

BN
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one isoplanatic angle measurement is made per second. The

[
.l""

By
-',:' [N :'.

computer does not store all the isoplanatic angle data.
Instead, the computer calculates ten second averages and
stores the averages every 15 minutes.

The fourth generation isoplanometer uses software
that has evolved and become more "friendly" with each field
experiment. Currently, the zenith angle dependence of the

isoplanometer angle is removed within the main program.

B. ZENITH ANGLE QUALIFICATION TESTS
It is an interesting problem to know if your instrument
is really measuring the isoplanatic angle. One could fly

balloons and obtain a direct measurement of the an profile

5/3

and integrate with 2z weighting, however, Walters [Ref.

30], has developed a much less costly and simpler technique.

The isoplanatic angle is

o_2
>/3 A (5 (5.1)
S

8g = [sec ¢]8/3

including the zenith angle dependence. For increasing path

length (higher zenith angles), the normalized variance will

€« r e v, e )
. ’l. .l st """,'r

e e ta ot . M AY AP )
R .

R DAY s J0Y L ad

increase since the light is encountering more integrated

.
o N 8

g

turbulence. Hence, a plot of GSZ/S2 versus log (sec ¢)

1

e "]

should have an 8/3 slope if the instrument is truly ﬁfi
.oy

measuring the isoplanatic angle to within a multiplicative N
~ TN

constant. P
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Walters used this technique to qualify the 10 cm "top
hat" isoplanometer (really 11 cm) [Ref. 30]. The following
is an application of the above technique to the fourth
generation system, but first a caution. Clearly, if the
atmosphere is horizontally homogeneous (i.e., composed of
onionskin layers), the technique should be effective.
However, if the atmosphere is irratic and the turbulence is
not uniform over the night sky, this technique will not be
as reliable,

We (D. L. Walters and myself) obtained qualification
measurements for the fourth generation system at two
different locations. The first data set is from McDonald
Observatory in western Texas. The night was ideal for
instrument qualification using the zenith angle technique.
The isoplanatic angles were on the order of 15y rad. In
Figure 5.2 each point represents one 10 sec average of the
normalized variance, while each group of points is 400
seconds of data on a given star. Figure 5.2 shows very good
agreement with theory on this test. The least-squares fit
has a slope of 2.60, which is not a significant error from
8/3. The least-squares fit does not include the two data
sets at high zenith angles since the normalized variance is
saturating.

The second set of data is from Albuquerque, New Mexico,

acquired when atmospheric conditions were less than optimal.
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During the daylight hours, large thunderstorm cells formed,

dissipating at night into a layer of cirrus. About 0200,

the cirrus cleared and we obtained the data set in Figure
5.3. The least-squares fit includes the three observations
at lower zenith angles. The slope of the least-squares fit
is 2.48, less than the 8/3 theoretical. Based on the
conditions that night, the results are v'_y good.

More interesting in Figure 5.3 is the behavior of the
normalized variance at large zenith angles (last two data
sets). We note that the normalized variance is no longer
changing for these data sets. Clearly, the path is long
enough to induce saturation in the normalized variance. For
the fourth generation isoplanometer this occurs at f??
normalized variances of about .06 to .07. The 10 cm
isoplanometer saturates at normalized variances of .2 to .3.
The aperture averaging has lowered the normalized variance

between the two instruments the predicted amount. Remember,

- the calibration constant A' for che 10 cm isoplanometer is ;}f
- : . . By
- approximately 1 x 1010, while A' for the fourth generation RN
. \;
Kk isoplanometer is 4 x 1010. Hence, for a given isoplanatic [;:

p angle, the normalized variance for the new system will be a e

factor of four lower than the 10 cm system. Thus, the

S T T TR
R A A

!E double annulus system is saturating at an equivalent b
normalized variance. We still have not resolved whether the L
increased aperture averaging aids in forestalling :ﬁ:
Fy
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saturation. The fourth generation system saturates at its
nominal "saturation®™ normalized variance, however, it may
take four times the turbulence to make it saturate. The
fourth generation system seems to take reliable data at

slightly larger zenith angles than the 10 cm system.

Resolving this question requires simultaneous observations

.
L )

v 1'_1'_: . N

with both instruments on the same stars for a zenith angle

[y

P
oy orow .,
s

check. This test has not been possible due to instrument

T, Ay, v
s Lﬁz'
R & R

availability.

v e T

A AR Y
P2 SO T
Sl

C. APODIZED AND 10 cm ISOPLANOMETER COMPARISON

P

Even though simultaneous zenith angle tests were 4}1
impossible in Albuquerque due to instrument availability and é;&
atmospheric conditions, we did obtain simultaneous data on iﬁg
Vega on August 25, 1985. The data is contained in Table 3. E&?
The mean isoplanatic angle for the 10 cm isoplanometer data iﬁié
is 6.7 + .17; while the double annulus averaged 6.8 + .15, f:;f:}iZ;

This shows very good agreement between the two instruments BESE

and removes the ambiquity of the multiplicative constant in

the zenith angle test. Table 3 also shows an unstable :;f;
night. The isoplanatic angles range from 4.5 prad to 9.0 E?ﬂ
urad over a one hour period. v
._'..\:.

\;:'.:‘_1

D. TISOPLANATIC ANGLE MEASUREMENTS WITH SUPPORTING by 1
METEOROLOGICAL DATA "l“:::".:
During September, 1985, the fourth generation system was :;ik

in use on Haleakalea crater, Maui, HI., One night, our data ”ﬁg
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TABLE 3

10 cm AND DOUBLE ANNULUS COMPARISON

Time (Local Standard) 10 em (urad) Double Annulus (urad)

2211 7.5 7.8

2212 9.0 8.9 »
2213 8.3 8.9 P

.r-'ﬁ
2214 8.3 7.9 e
2216 7.6 -—- i
o

2219 6.6 6.3 -
2220 6.9 7.3 <
2222 6.9 6.7 _ '
2224 5.4 5.8 iif
2226 4.7 6.1 - Zi:
2228 6.9 6.5 :
2229 5.7 7.0

2230 7.7 7.3 fiﬁ
2231 7.3 7.1 -
2233.00 6.5 6.8 -
2233. 41 6.9 6.8 .
2234 6.4 6.5 f;
2235 6.6 6.6 L2
2237 6.4 7.3 o
2238 7.4 6.6
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TABLE 3 (CONTINUED)

Time (Local Standard) 10 cm (urad) Double Annulus (urad)

2240 6.3 6.9

~J

.

S
R
A

|n{.
LA

2241 6.3

e |
'R

2242 8.3 7.5

"
A

x
€=
Yp-%y "

]
»

2243 6.7 6.6

s

2246 7.0 7.1
2247 6.9 6.9
2249 7.2 7.0

2250 6.5 6.5
2252 6.2 6.4 LA

2253 6.0 6.0
2255 6.4 5.9
2256 4.5 4.7

2257 4.9 5.3
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collection overlapped a meteorological balloon flight. The
balloon provided altitude, pressure, temperature, dewpoint
depression, relative humidity, wind speed, and direction.
Figure 5.4 shows the real-time computer output on 17 Sep
1985 (Star 17=Vega). The solid line is the time history of
the average intensity, while the points represent 1 second
measurements of the isoplanatic angle. The spikes in the
average intensity occurred when the telescope dome lights
were turned on. Figure 5.4 shows a small isoplanatic angle.
However, no zenith angle correction has been applied to this
data. Figure 5.5 contains this 15 minute set of data after
application of the zenith angle dependence. The isoplanatic
angles are in fact fairly large, approximately 13 urad.
These large isoplanatic angles indicate low turbulence
between 8-15 km. Hence, the wind profile should show low
wind speeds and small shears. The complete set of meteoro-
logical data is contained in Appendix B, the wind shear data
is as follows. The balloon data indicates three shear
layers (2 km, 14 km, 27 km). The wind speed at the 2 and 14
km levels is approximately 4 knots, while at 27 km is 47
knots. These wind speeds are very low and indicate that
very little shear driven turbulence is present. Hence, the
large isoplanatic angles agree with the observed wind

profile data.
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E. QUALIFICATION CONCLUSIONS

Based on the zenith angle tests, the simultaneous
measurements with the 10 cm device and the measurements with
supporting meteorological data, we conclude that the
instrument is indeed measuring the isoplanatic angle
correctly. Currently, two fourth generation instruments are
in operation at different locations worldwide. This data is O
being archived at the Naval Postgraduate School by D. L.

Walters. ]
r

’
.l

.

[ S

F

1
P ST N N

T,
“y
LA

[N

3
v

3

H

.
1%

95

PR R I
A
. R
St
.

..................... .
AR TR A - P R AT T WA Ve e e et T e et R T . S N R UL B PR
1 ataldelaleld o ® o8 s oo P I IS I PR PN PR R oW AR WY PN T PRI fadedad odad




"u"-":"-)-"'

VI. DATA COLLECTED IN MAUI

As mentioned previously, we conducted a trip to Maui, HI
supplying an isoplanometer to the AMOS facility. During
this trip, weather prohibited acquisition of large amounts
of data, however, we did obtain that data mentioned in
Chapter V, along with what I will present here.

In this section, we will see one of the greatest assets
of the fourth generation isoplanometer. That is its ability
to make isoplanatic angle measurements effortlessly each
second. The following plots show trends in isoplanatic
angle data that have not been observed before.

Fiqures 6.1-6.7 are real-time computer output of each 1
second isoplanatic angle measurement. As in Figure 5.4, the
solid line is the average stellar intensity and each point
is an isoplanatic angle measurement. We might note that the
average intensity is much more steady than in Figure 5.4.
This is due to the lack of high thin cirrus clouds. Also,
in Figure 6.2, the steps are caused by changing the voltage
to the photomultiplier. Note that these changes do not
affect the isoplanatic angle measurements. In Figure 6.7,
the deviations in the average intensity are due to the star
beginning to move out of the telescope field-of-view.

Tn these data sets, we see isoplanatic angles ranging

from 16 wrad to 5 Mrad. This, of course, indicates a very
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unstable night. But, what is most interesting are the low
i frequency oscillations present in the data. Figure 6.4 has
oscillations with periods on the order of a one minute,
while Figure 6.5 shows oscillations on the order of three
minutes. Unfortunately, no balloon measurements of meteor-
oclogical data were performed on 20 September. Without
supporting meteorological data, it is impossible to
I ascertain exactly the mechanism responsible for producing
data like this.
Based on the isoplanometer weighting function, it is
i possible to make some general comments on the location of
the turbulence that could produce this type of oscillation.
Since the isoplanometer is weighted 25/3, low altitude
I turbulence (boundary layer to 2 km) is not responsible for
this behavior. Most likely, the turbulence producing the
: oscillations is located in the tropopause. At 10 km, the
i 25/3 weighting and an values are large enough to produce
: the lower isoplanatic angles we see. Researchers in
Albuquerque, NM, indicate that they observe oscillatory
i data, with the second fourth generation isoplanometer, when

the jet stream is moving into the area. As the jet stream

approaches, wind speeds in the tropopause begin to increase.

N Periodically, the gradient Richardson number (ratio of

potential temperature gradient to velocity gradient), will

fall below the critical Richardson number (about Ri = 1/4), E?;j

aadade
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and the flow will give way to shear driven turbulence. The
jet stream is not close enough to supply the energy
necessary to maintain the turbulence. Hence, after a short
period of time, the flow becomes stable and the isoplanatic
angles increase. Once the jet stream has completely entered
the area, the isoplanatic angles no longer oscillate, but
remain low due to constant turbulence. Thus, one can
surmize that the oscillatory isoplanatic angles are caused
by temporally intermittent turbulence.

More research needs to be done in the area of
isoplanatic angle measurement with supporting meteorological
data. Once trends in isoplanatic angle data have been
established for certain atmospheric phenomena, balloon data
may no longer be necessary for an accurate picture of

turbulence in the tropopause.
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VII. REFRACTIVE TURBULENCE PROFILING

In the discussion on the isoplanatic angle, we saw that
by measuring the normalized variance, we avoided the unknown
an profile. Clearly, the integrated parameters like 60 and
Ly do not provide direct information on the distribution of
turbulence with altitude. Many laser system design analyses
require an profiles. However, they are difficult to obtain
by remote measurements. In Chapters IV and V, I presented a
profile measured by microthermal probes on a balloon. This
represents a direct measurement of an, with very high

vertical resolution (on the order of meters), along a single

2

vertical path through the atmosphere. Actively, Cn

profiles are measured by acoustic sounders (up to approxi-
mately 1 km) and pulsed Doppler radars (2-30 km) [Refs. 41,
43]. Active techniques provide good vertical resolution,

but the cost of such instruments is quite high.

In this chapter and the next, we will look at profiling

an passively by direct inversion of the amplitude =

scintillation covariance equation with application of the

2.
deetndcgid

Tikhonov reqularization technique. But before delving into

a rigorous solution, we should make note of the other

. . . 2 :
passive techniques for measuring Cn profiles.
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A. PREVIOUS WORK
The time lagged covariance function of amplitude
scintillations for a point source and two equal circular

aperture receivers is given by [Ref. 44],

B (s") = ank2 /.dz'c 2 /.K dK'e (K")J (K" o' - v(z')t]]

0 0

K'D 2
.2 [rr2z 23, (53=)
X S1in ) S —-K—rD——— ’ (7.1)
2

where p' is the separation between the detectors, v(z') is a
wind profile, t is the time-lag, ¢(K') is the 0,033k’ 11/3
portion of the Kolmogorov spectrum and D is the diameter of
the circular receiving apertures. Often this equation is
written for point receivers. In that case the Jl(x)/x - 1,
For measuring an profiles, we let the time-lag, 1, equal

zero, removing the unknown velocity profile. Hence, Bx(p')

is in the form of a Fredholm equation of the first kind,
Bx(p') = A j(Q(z',o')cnz(Z')dz' ’ (7.2)

where A is a constant and Q(z',p') is the kernel given by
the integral over K'. Fredholm equations of the first kind
are notorious for being ill-posed (i.e., errors or noise in

the data make the solution ill-behaved). In fact, Fredholm

< l‘l Y .-' a -" S
" ”’ o .J‘- % ’-'. ."'.._'-..'o. V

» 'u .! * '.
v, PP
" niin S 'a s oh
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equations of the first kind may have no solution at all.
Peskoff [Ref. 45)] was the first to invert this equation for
point apertures. Shen [Ref. 46] realized that the problem
was ill-posed and used a least-squares technique to minimize
error. As time progressed, other methods for handling the
ill-posed problem appeared. Heneghan and Ishimaru [Ref. 47]
proposed a statistical inversion technique to compensate for
the large errors induced by inversion. However, one should
note that none of these techniques evolved into an actual
measurement system. People began to realize that if the
weighting function, W(z'), (3.3), could be made to peak, an

could be measured directly without inversion using (3.1).

1. Remote Probing with Apodized Apertures

To make W(z') peak requires filtering in the
aperture or image plane [Refs. 31-33]. NOAA [Ref. 32]

fabricated a an

profiling instrument (stellar scintillo-
meter) based upon the filtering technique. By using three
optical weighting functions, it measures values of an at
seven levels between 0-20 km. Unfortunately, the weighting
functions, W(z'), are somewhat broad. The structure we
observe in Figure 3.2 would not be as pronounced if this
profile had been measured by the optical scintillometer.
However, the scintillometer does follow the general trends

2
of Cn

well.
In Appendix A, I show many weighting functions,

W(z), for different apertures and spectra. This was an
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effort to find highly peaked weighting functions for an
optical scintillometer type instrument. Unfortunately, the
quest proved fruitless, but other interesting weighting
functions were found.

2. Binary Star Techniques

Several French researchers [Refs. 48-50] have
developed a technique for profiling an using a spacio-
.i angular correlation function of two stars in a telescope
aperture. The maxima in the correlation function correspond

to levels of turbulent layers through the relationship,

where 04 is the location of a correlation maxima, 8 is the
ﬂ : angular separation of the binary stars and hi is the
altitude of the turbulence corresponding to the maxima. The
group built instrumentation to measure an profiles in this
manner. They report vertical resolution on the order of 2
km, which is very good. However, being dependent on binary
stars is a significant hinderance, esecially when the an

profile vertical resolution depends on their angular

separation,

B. INVERSION WITH TIKHONOV REGULARIZATION
Jarem [Refs. 3, 4] implemented a regqularization
technique for handling the ill-posed direct inversion

problem on the covariance functior for point detectors.
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Jarem defines a set of dimensionless variables for
convenience,

z! _p

L) 'z='L—I p_a-l

K=K'2 ('E

where d is the maximum separation of the detectors. It is

interesting to note that (L/k) is related to the Fresnel

zone size since

Lyl/2  aL1/2 o f
X 27 (2n) 172

where £ is the Fresnel zone size. With the new variables,

2 (K') becomes

-11/3 -11/6 _ (%)_11/60(K). s

®(K') = .033K' = .033(§)'11/6

K

(7.10) ' [:f

If the receiver aperture is given by a "top hat" function,

I(K') becomes el

K'D, ] 2 k}/2p 2
, 2J4 (=57) 23y (—75—)
I(K') = %D = —-——1—/2—— = I(K), (7.11) :
2 Kb
2 E;:
where b is given by j;i
pos
113 =
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b = D(k/L)}/2% . e

Making these substitutions into (7.8) gives ' o

Pk = 20%2E S mrm) [ aze )

- f Ldzan(z')cos(Kz)

Following Jarem, let

3

2 - 3
CN(z)—wk

“11/6 o 2,0 . (7.11b) N

k
(E) n 0

giving

v - 2L 2 - 2 :-.:::.__:
FK') = (E)e(K)I(K) [ dzc*(2) [ dzcy®(z)cos (k2) i

2L

=k Fy(K) (7.12) 7

(On Cn2' lower case n subscript indicates the dimensioned

L]
’
A

variable, while upper case N subscript indicates the

e

., AR
LA et L
. ca T e
LR
o b VR
s p L.
Y WP W .

PR AN

dimensionless variable). Making similar substitutions into

Bx(p') leads to
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Bx(o') = Bx(p) (7.13)
where
K
Bx(p) = % [ dzcuz(z) f dKI (K) e (K) sin2 —%)
- 0
x J,(ak/2p) (7.14)
and
_ k,1/2
a = d(L) .

Another important relation is how the Hankel transform
scales under the change of variables. Beginning with (7.4),

using (7.12) and (7.13) gives

2L
i Fy(®)

27 f‘Bx(o)Jo(aKl/zp)dzodo .
0

Hence, FX(K) is

2
Fok) = B [ paom, (0135 a2y . (7.15)

0

115




et N N b Ani tah A el N S L 9 e S el il sl Al SRl S A A E M G A e At AR T AN AN AT S AN N N gn g

With the relations we have developed, (7.9) becomes

2

= 2
F (K) = G(K) [2T° - ()], (7.16)

where

G(K) = o(K)I(K) .

The solution to the integral equation becomes

ey’ (2)

1 2 iKz
3 .[ Cy  (K)e ""dK (7.17)
or

> -F_ (K) .
2 _ 1 X - 2 iKz
cyllz) = = ]' ['ETKT— + 3T ] e ¥2%ax . (7.18)

This is the ill-posed solution of the integral equation.
Tikhonov proposes using a low pass filter function g(K) such
that the high spatial frequencies contaminated by the

inversion process are removed. We should note that this

process does nothing to errors at low spatial frequencies.

The reqularized solution is of the form ol

-F_ (K) RO
2 = 1 X = 2 iKz o]
cyita) = 5= [‘ETET_ + 2 ] a(k)e'X%ak . (7.19) i
- el
r
116 O
R
ST et
F

...............
w e e - . [ N L P .
YR, W T W U Tl UV Y NP A W L




----------

.,
.- l' .
"1’.

A profiling system would measure Bx(p'). Using the
relations developed, Bx(p') is scaled to Bx(o) and trans-
formed to Fx(K)’ In (7.19), all the quantities are knowns

with the exception of E&z. 5;2 is given by

. 26,2 = /-dzcnz(z) ,

{i which can be defined as a dimensionless form of Fried's r,
by
_ 57 2
RO = ZCN ’
where
@ - 4:66:> Kk -5/6  -5/3 (7. 20)
0 sec ¢ L 0 ! :

where ¢ is the zenith angle. Instruments exist to measure

Ty which immediately gives Rj-

f{ Another unknown, in terms of a practical measurement

= system, is L. In reality, the value of L need only to be
known approximately. The CN2 profile can be normalized by
independent measurements of 6, and rg.

2. Constructing the Filter Function "

Clearly, in any measurement, noise will be present. ]
Hence, the spectrum, FX(K), can be represented by a “"true” O

component and a "noise"™ component, N
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- t n
Fx(K) = Fx (K) + Fx (K} , (7.21)

where the superscript t and n imply true and noise. Hence,

CN2(K) is also composed of a "true" and "noise"™ component.

If we let
cg?(K) = T2 -ty
(7.15) becomes
F (K) = G(K)Cg® (K) . (7.22)

The kernel, G(K), is type I to good approximation in
Tikhonov's representation. Type I implies that there are
no zeros along the real axis and as K + =, B(K) » 0.

For type I kernels, the filter function, g(K) can be

represented by

(G (K) 12

3 (7.23)
[G(K)]1® + M(K)

q(K) =

where M(K) is a smoothing function. 1If the spectral
characteristics of the noise are known, and the spectrum

CNZ(K) unknown, M(K) becomes

M(K) = ak?? (7.24)
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h order stabilizer with regularization

where M(K) is a pt
i parameter a. If the noise spectra and signal (CNz(K))
spectra are known, one can construct an optimal Wiener

- filter with

= S(K)
‘ where S(K) is the signal spectra and N(K) is the noise

spectra.

If the noise process is white, like the shot noise
. in a measurement system, Tikhonov states that P = 1/2 in
(7.24). Following Jarem, we can make an approximation to
the optimal Wiener filter, (7.25). Consider an error

. functional of the form

¢ = /[ch(z) - ¢ %% (2)1%z (7.26)

where CNZ(z) has both signal and noise components and t in
b the second term denotes the "true" component of CNZ(z). By

Parseval's theorem, we can rewrite (7.26) as

.'v. " ’
e,

€ =

2 2t 2
[CN (K) - CN (K)]17dK . (7.27)

.
By

1
2n

8 — 8
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Now, CN2(K) is given by

€2 = [26 2 wa)] [ [G (K) ]2 .28,
N N GTK) [G(K)]Z + M(K) ]

and CNzt(K) is given by (7.16). Substituting (7.16), (7.28)

and (7.21) into (7.27) gives

c Tl o w0+ R P (6 ()12 _
e = |- G (K , - Xy
T (K) [G(K)1° + M(K)

t
Fx (K) | 2

+ —EW dK . (7.29)

Putting (7.29) over a common denominator and performing the

appropriate cancellations leaves

t
_ _ F_“(K) 2
. EG(K)Fx"(K’ - M(K) ()% + ‘%TET‘]]
. = -2_1'- [ 2 2 dK r
o [[G(K)]® + M(K)]
(7.30)
2t

where the second bracket in the numerator is merely CN (K) .

Squaring the numerator of (7.30) gives

. (6 (K)F,"(K) 1% + 2M(K)G(KIF, " (K)Cy 2t (K)
S"ﬁf -

Sy .
. PR . -

[((G(K)]% + M(K)]?2

(M (K)Cy 2t (%) 1 2]
+ > 5 dKk . (7.31)
[1(G(K)]1Z + M(K)]
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Jarem notes that the middle term,

2M (K)G (K)F, " (K)CNZt (K)

[IG(K)12 + M(K)]?

since the noise spectra, Fxn(K) and the signal CNZt(K) are
produced by uncorrelated processes. Hence, the error
becomes

(6 (R)F " (K)12 + M(K)Cy?E(x) 12

1
. = dK . (7.32)
2 _f [IG(K)12 + M(K)]2

We want to construct M(K) so that the error is minimized.
This implies that the derivative of the error functional

with respect to M(K) vanishes or

= 0 . (7.33)

After performing the differentiation, we find that the

minimizing M(K) is given by

U L. R
o RN ". .

.
e,
b

M(K) = —_— . (7.34)

5-"

. . l’
. o
RPN Gray gy

Since our noise process is white, Fxn(K) can be approximated

. 2t
by a constant N, Jarem makes an assumption about CN (K)

AT
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that is invalid for vertical soundings. His data is along a
2 km horizontal path. Hence, Cuzt(z) is basically a
constant making CNZt(K) behave as

A sin K
K L ]

Substituting back into (7.34) gives

N“K

M(K) =
sin2 K

a

The average value of sin2 K is 1/2 making M(K)

M(K) = aK ' (7.35)
where
2
. = 21;_ . (7.36)
A

This corresponds to a stabilizer of order p = 1 and
represents an optimal Wiener filter. It is interesting to
note that M(K) is completely independent of the aperture.
For vertical paths, CNZt(z) varies over five orders
of magnitude. Hence, the assumption of a constant CNZt(Z)

is not valid. However, it does represent a first order
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approximation and is a starting point for numerical
simulation., TIf problems occur in the inversion, one can
model CNZt(z) as an exponential decreasing in z, giving a
new smoothing function M(K). Therefore, we have two N
stabilizers of order p = 1 anc¢ p = 1/2 to attempt successful f*t
inversion. .
For Jarem's inversions, he finds that the regqulari-

-10

zation parameter, a, is nominally 10 for the horizontal

paths. Chapter VIII investigates this inversion technique
on the 500 m vertical resolution data of Good shown in
Figure 3.2. But before moving on to the simulations, I will
investigate two analytical results that we will find
convenient.

In (7.14), the z integration can be completed

analytically. First, interchanging the K and z integrations

gives
1 [ 2 Kz
Bo(o) = = [ dka(K)J,(ak!/20) | azc 2(z)sin?(55E) .
0 = g
(7.37) i

After completing the z integral, we have

| are )3,k o) 1252 - c 21, (7.38) T
0 s

2

A |

B_(p)
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where the sin2 term is expanded using the double angle
relation as before. For test purposes, it is convenient to
input an(z) as a cosine wave. Hence, CNZ(K) becomes a

delta function giving

A |

B, (s) = ].dKG(K)JO(aKl/zp)[ZENZ - §(K-K')] . (7.39)
0

2

If the cosine wave has no offset, 2Cy° is zero and the K

integral has an analytic result,

% 1/20) ’ (7.40)

By(p) = T G(K')Jq(aK'

where K' is the wavenumber of the input cosine wave. Thus,
(7.40) is an analytical check for softwave.

3. Noise Computations

Detectors in an instrumentation package that measure
Bx(p') will add shot noise to the signal. From [Ref. 51],
the average, rms shot noise current is given by

iNz(v) = 2eTav (7.41)

where Av is the frequency bandwidth, T is the average

)

current from the detector and e is the electron charge.




depends on the intensity of the starlight and quantum
efficiency of the detectors. To find the irradiance of a
given star on the telescope aperture, we can use the

following [Ref. 52] relation,
I
log (T;) = .4(Magl - Magz) ’ (7.42)

where Il’ I, are the stellar intensities on earth and Mag,
and Mag, are the magnitudes of the different stars. Using
the sun as a reference, we find that the star a Auriga
(Capella) has an irradiance of 1.05 x 10~8 w/m? on the

telescope for Planck radiation between 0.4-0.6 um (visible).
-10

For the apodized aperture, the detector sees 2.15 x 10 W.
The quantum efficiency is [Ref. 53]
n -
Q.E. = —=— , (7.43)
q

where N,- is the number of photoelectrons emitted by the
detector/second and nq is the number of incident quanta/
second on the detector. Hence, nq can be found using the

following relation,

£ (7.44)
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where P is the power/wavelength interval of the starlight on
the detector, h is Planck's constant and v is the frequency

of the incident light. For the illustration of Capella, nq

is 5.4 x 108 quanta/second given A = 500 nm. If we consider

a detector with a quantum efficiency of 10%, I is 8.66 x

0—12

1 A. Hence, the variance of the current due to shot

27 ,2

noise is 1.39 x 10 °' A“ given a bandwidth of 500 kHz.

Thus, we can construct a theoretical signal-to-noise ratio

given by
- -12
SNR = I = 8.66 x 10_14 = 232.63 . (7.45)
in 3.72 x 10

We can use this figure for constructing Gaussian white noise
in Chapter VIII. As pointed out earlier, the shot noise
increases with Tl/z. Since the signal is proportional to
the intensity, the signal-to-noise ratio increases with
1t/2,

4. Inversion Conclusions

The derivation of sections 1 and 2 is completely
general in terms of the receiver apertures. Hence, the
receiver apertures can be apodized to optimize inversion
performance. We hope that the additional spatial filtering
done by the aperture averaging will aid in regularizing the

ill-posed nature of the inversion process.
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VIII. NUMERICAL SIMULATION OF THE AMPLITUDE COVARIANCE E\\
FUNCTION INVERSION WITH TIKHONOV REGULARIZATION fft

In this chapter, we hope to see if an profiling by
direct inversion of the scintillation amplitude covariance IR
function with Tikhonov regularization is a practical

measurement technique. We can accomplish this by

numerically modeling the inversion process using the an

balloon data of Good presented previously. From this data, fiﬁf
I construct the covariance function and use Tikhonov )

regularization to invert the covariance function regaining

the original data. What follows is a step-by-step analysis ?iiﬁ

of the numerical simulation.

A. CONSTRUCTING THE CN2 AND SCINTILLATION SPECTRA

The first step in obtaining CNZ(K) is to transform Good's

data into the dimensionless set of variables described in

Chapter VII. We accomplish this by applying (7.11b)

2

obtaining CNz(z) from Cy (z'). CNZ(K) is simply the Fourier

transform of CNz(z). For this test, the path length L is if‘

31.5 km representing the first 63 points of the known CN2

profile (500 m to 31.5 km). I obtained the value of CN2 at
the surface by assuming the -4/3 dependence of CN2 at low @
altitudes described in Chapter IV. Since the balloon data

has a vertical resolution of 500 m, 4z = 0.0159. The spatial
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frequency resolution of the Fast Fourier Transform (FFT) is

given by (Ref. 54] as

AK

=
[t
N

where N is the number of data points. Hence, AK is 0.9843,
(We should remember that K and z are dimensionless
variables.) The value of AK implies that CNZ(K) should span
zero to 63. However, FFT's are based on the Nyquist
criteria, [Ref. 55] that requires two points per Az
interval. Therefore, half the frequencies in the FFT are
duplicates, implying that K spans zero to 31.65.

The analysis in Chapter VII requires that CN2 be an even
function. This is convenient since the Fourier transform of
an even function is real. Figure 8.1 shows the real part of
CNZ(K). The modulus of CNZ(K) is simply the absolute value
of the real part since the imaginary part is zero. We
obtain the scintillation spectrum F . (K) by applying (7.16).

It is interesting to note that the FFT is very robust in
the presence of noise. Using an algorithm from [Ref. 56], I
injected Gaussian white noise with poorer signal-to-noise
than that described in Chapter VIII, into the real and
imaginary parts of CNz(K). The real part of CNZ(K) with
noise is shown in Figure 8.2. If we inverse FFT ch(K) with

noise, we obtain the CNz(z) profile in Figure 8.3. The

128

'''''''''''''''

......................

AT R S RANN
ORI RRAP N O S ADREAPOR 4 AU N LS L ST Sy




3 ’
wnx3oads C:Nzo ay3 Jo 3xed Te9y 9yl T[°8 3inbig ;

4 .
w. (d3ZITHWNON)Y ADN3IND3IN4 TIHILHCS R
F 1 62— n
1
o ‘.
m ..,.s
. GE (4} 4 4 1 gl S 2 B ﬂ
3 r X
F — "9
3 -
# C -
h m .‘.
¢ 4 mN " .
: x o .
o~ .

m
105 !
G¢

W ¢-30° S=80dWd"
7944 ‘0009 "3 A4 d3AIAONd H1BO (Z)2SND
(13Hd TH3N) 3171403d 2ND O3ZITBWNON 40 WNYNLD3dS ‘(M) 2ND

WP ST G T NY % PR . PL GO rE ey,

's . . 1




v 4 g —— \ e Yy ——— T -
o : R ARG I Ot PRI R NOANKSIRY ! e ......\..\.. prArLe ol ot J.n\.... D )
..... R i PR AN - LR e L. U AT ] e . . .
....... ! AR . [ I S : PP S S $ e ot S, e te e [ LR O L A - -
........... oY T LA, 4 . A N PN ' N S L L PE L LA SRCTCL IR DALY Lo e dwi e ey e e :

R Al e 2R e re ST P
o

9STON 3INOY3TM pue Yitm wnajoads AMVNZU ay3 Jo 3aed [esyd 9YL ¢°8 2aInbtdg

(A3ZITUWAON)Y ADN3ND3IYS HILHLS
G-

[ !
> |

...~ \ A

| Y

Cai N o

i afir
w—

i o

3aNiITdWl

s sz
” m
4 Bs T_.

G¢
HSHO- (S "=3DNBINHAY3SION HLIM ‘0IN0S-3Nd1l :(MH)2ND

¢ . 1944 ‘000D "3 AH Q3IAIAOND HiHd (Z)2SND

; (1NHd H3N) III408d 2ND OFZITHWION 40 WNYL1D3dS ¢ (M) 2ND

§

... "
“ ]




JdNLILE G3ZITHWNON
Z’ g’ S° L > 4 1°
( /

CERA N a0 s ‘l.."’ -t u Vet

1 6° 8°

HSHO-3SION HLIM 2NJ *QI0S-3Ndl 2ND
(Z)2ZND

(%R 4

o8

acl

0381

%1%

9STON 3INOYITM pue YiTm pawIosuel], I9TANOJ 9SISAUI SIOTTF0ad ANVNZU €°g 2Inbt4d

(Z)2ZNJ U3ZITTEWAON

131

e -




P e A o g w W T T TR FV TR IR TR TR TR AT eI Y AR Skt b AL A S e R

R

noise has very little affect on the transform. We will find §C

that very small amounts of noise produce drastic results in

F
v
X
s
, -
-
.
-
.

the inversion of the covariance equation. o

f B. CONSTRUCTING THE COVARIANCE FUNCTION
I determine the covariance function using (7.38). The
numerical integration uses the Trapezoid rule at each
i detector separation p. We should note that the Trapezoid ;:
rule integrates functions with noise quite well since it

does not require higher order derivatives in the data.

i Figure 8.4 shows the covariance function for a maximum e
b
detector separation of d = 0.5 m. The detector optics have s

a "top hat" aperture with a diameter of 1 cm. The form of ?it

- the covariance function in Figure 8.4 is consistent with

i o

theoretical calculations [Refs. 6, 15].
The analytical form of the covariance function for a E;E
. delta function Cy°(K) is given by (7.40). I used this to :
‘ check the covariance function software. The relative error
i is .02. Hence, the covariance function calculations have
ﬁ "noise" (errors) due to the numerical computations. We will
use this as a source of noise for ill-conditioning.
ié We should note that the covariance function has the
i proper dependence on optics aperture size and electro- » r-
magnetic wave wavelength. Figure 8.5 is the dependence of S
the covariance function on aperture size. As expected, the

K covariance function becomes wider with larger apertures.
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This is predicted by the transform properties involved.
Figure 8.6 shows that the covariance function widens for
increasing wavelength.

2 profiling system based on this technique, we

In a CN
would measure the intensity covariance function. Hence, the
covariance function is the starting point for inversion to
obtain the CN2 profile. The following sections describe the
data manipulations required for an actual measurement
system., It is interesting to note that experimental
covariance function measurements of laser beam scintillation
do not have the negative portion that represents the
correlation of maxima and minima in the scintillation
pattern [Ref. 28]. This may be due to the fact that the
photomultipliers measure a positive definite quantity (i.e.,
intensity).

C. CONSTRUCTING THE SCINTILLATION SPECTRUM AND APPLYING

TIKHONOV REGULARIZATION

The scintillation spectrum Fx(K) is the Hankel transform
of the covariance function. The dimensionless form of the
transform is given by (7.15). ¢, %(K) is found by (7.16).

To compensate for the ill-conditioning present, we introduce
a low pass filter of the form given in (7.23). This is the
Tikhonov regularization. Figure 8.7 shows CNz(K) after the

reqularization with a stabilizer of the form aK3. Note the

affect of the filter on the higher spatial frequencies.
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Figure 8.8 shows how CNZ(K) changes with stabilizers of N

different powers of K. We obtain CNZ(z) by inverse FFT, b

Figure 8.9 shows the true CNZ(z) profile, unregularized SN

L s
Lt A

-— “.
solution and regularized solution with ¢ =1 x 10 11 and a ?};

K3 stabilizer. Remember that a determines the amount of b

e

ill-conditioning allowed to enter the solution. The

: I
ta ’r .lll .

unregularized solution (dots) bears no resemblence to the
original CNz(z) profile. The regularized profile with a =1 §m'
= x 101! does very well resolving much of the 500 m EEE
resolution structure present in the actual data. The small EE}
"hump" in the regularized solution after the real data has };.
gone to zero is part of the ill-conditioning. Note that the 3?:
regularized solution has problems near zero. It in fact L

-
[3
becomes negative (not shown) which is unphysical. This is L;

very likely due to the frequency truncation. Consider a

PRI T T
AT

"top hat" aperture. We can Hankel transform the "top hat"

1)
20

to obtain the Airy spectrum. Hankel transforming back to
aperture coordinates produces an oscillation in the original
aperture function, Figure 8.10. This is due to frequency e
truncation. This same truncation occurs in our calculation
of the covariance function and CN2 spectrum. Hence, an
} induced oscillation in CNZ(K) transforms as the large
negative value in the space coordinate, z. The fact that it
;. is negative implies that the oscillation in the spectra is

-h out of phase with the other frequencies present. .
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Lowering the regularization parameter a allows more of

the ill-posed nature of the problem into the solution.

Figure 8.11 shows the true solution and regularized solu-

9 3

tions with @ = 1 x 10~2 and 1 x 10713 for a K3 stabilizer.

Clearly, the choice of a is a trade-off between structure
and magnitude accuracy. The aperture averaging does in fact
filter the higher spatial frequencies, however manipulating
a produces more favorable results than changing the optics
diameter.

It is interesting to note the affect on C 2(z) for

N

stabilizers with different powers of K and the same

regularization constant, a. Figure 8.12 shows CNz(z) for

KZ, K3 and K4 stabilizers all with a = 1.0 x 10-11. In

2

Chapter VII, we found that K“ stabilizers co:respond to the

optimal Wiener filter. From this simulation, I feel that K3

2

stabilizers offer the best fit to the CN profile.

D. REGULARIZATION CONCLUSIONS

Initially, we were interested in whether direct
inversion of the covariance function with Tikhonov
regularization offered a practical way of obtaining CN2
profiles. I have shown that one can obtain high vertical
resolution profiles (4z = 500 m) with this technique.
However, covariance function measurements are very difficult

to make. The quality of the measured covariance functions

will never be comparable to those calculated numerically in
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this section. Based on this fact alone, I feel that other N
. v
techniques are more likely to yield accurate, high vertical 4

Q . resolution C profiles. I will propose a method for Ny

2
N

Ky el
X obtaining such profiles in the next chapter. s
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! IX. CONCLUSIONS

i The importance of the atmospheric isoplanatic angle and
i refractive turbulence profiles to the Space Defense

; Initiative (SDI) cannot be overstated. In this dissertation
I have demonstrated an improved isoplanatic angle
measurement system and presented a technique to measure
refractive turbulence profiles. 1In the following sections,

I will briefly review each area and propose future work.

A. ISOPLANATIC ANGLE MEASUREMENT
We saw that the original Walters isoplanometer could be
improved by apodizing the aperture of the receiver tele-

5/3 altitude weighting

scope. To best approximate the 2z
required for isoplanatic angle measurement, I constructed a
double annulus aperture function optimized for a Celestron
C8 telescope. The double annulus aperture weighting
function is a significant improvement over that of the "top

hat®™ clear aperture used on the previous isoplanometers.

Sensitivity analysis of the double annulus weighting

function to strong low altitude turbulence and inner scale 15
changes with altitude showed no effect detrimental to a l~ﬁ
measurement system. Hence, we fabricated a fourth {?f
generation isoplanometer based on the double annulus ﬁgq
aperture. This instrument is designed for night use and f“{
]
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offers many advantages over the previous system. First, the
double annulus no longer requires the use of the Celestron
Cl4 telescope as did the "top hat" aperture. This is a
considerable savings in cost and instrument managability.
This instrument also has the ability to make isoplanatic
angle measurements once per second giving data with very
high temporal resolution. Trends in the isoplanatic angle
are emerging now that have never been seen before and
indicate that this instrument may be an extremely effective
tool to probe the tropopause.

In Chapter V, I detailed tests proving that the
instrument is indeed measuring the isoplanatic angle
correctly. And lastly, I presented data from Maui showing
interesting trends in the isoplanatic angle. Currently, two
fourth generation isoplanometers are operating at different
locations, supporting high priority programs.

Clearly, the greatest need in the area of isoplanatic
angle measurement is a painstaking correlation between the
structure observed in isoplanatic angle measurements and
meteorological data. One hopes that the isoplanometer might
effectively measure turbulence at the tropopause. This
would save money in balloon flights, etc.

Also of interest would be to modify the fourth
generation system to provide high temporal resolution data

during the day. This requires the use of high quality
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telescope m.unts and drives, but I feel daytime data is well

worth the expense.

B. REFRACTIVE TURBULENCE PROFILING

In this section, we investigated the inversion of the
scintillation amplitude covariance equation. I included the
filtering done by the receiver optics and obtained a closed
form solution to the inversion problem. Unfortunately,
inverting the covariance function is ill-posed in a
mathematical sense, meaning that noise in the data causes an
unstable solution. Hence, I incorporated a reqularization
technique developed by Tikhonov to compensate for the ill-
conditioning. Tikhonov reqularization is a low pass filter
designed to eliminate high spatial frequencies most
contaminated by the ill-conditioning.

I modeled the inversion numerically using an actual
refractive turbulence profile with 500 m vertical
resolution. We saw that the Tikhonov regularization
reproduced much of the profiles very well. However, we note

that actual covariance function measurements are very

difficult to make. Hence, 1 recommend pursuing the
weighting function approach to refractive turbulence |
profiling described in Chapter VII. One should be abie to ‘ &
obtain suitable weighting functions given an appropriate ji:
basis set. This would allow refractive turbulence profiling
by scintillation intensity variance measurements, operating L
much like the isoplanometer.

148 :?f




s WM. ..

i APPENDIX A

; OTHER WEIGHTING FUNCTIONS

i ' Many different weighting functions can be generated
using the technique mentioned in Chapter III. What follows
is a brief overview of the many weighting functions I

i generated while trying to approximate to the 25/3 behavior
or find weighting functions that peak at a given z.

First, a few words about the double annulus aperture.

i In Figure 3.8, we have noted the error remaining at low z.
This can be improved by making the inner annulus larger,
Figure A.l. However, you sacrifice some performance at

. larger altitudes. Because of the 25/3 weighting for the
isoplanometer, we felt error should be minimized at higher z
at the expense of low z.

. I also tried other combinations of Bessel functions.
One is the "wedding cake" aperture function (in my
nomenclature), which is composed of two "top hat" functions

N with different transmissivities, Figure A.2. Typically, the
"wedding cake" aperture gave a weighting function of z
below 3 km, Figure A.3. Associated with the "wedding cake" j;

4 is the "three tier" aperture function, which has one more {ij

"layer". Weighting function behavior with the "three tier" N

is basically the same as the "wedding cake".

149 o




One can incoherently add spectra of different aperture

functions since the correlation distance is so small (on the
order of centimeters), given a telescope with a sufficiently
large aperture. Using this technique, I was able to make
the weighting function bend at a given z, Figure A.4. The
weighting function in Figure A.4 is an incoherent addition
of the "top hat" and "wedding cake" aperture functions.
Weighting functions with this characteristic are also
important.

From the Bateman manuscripts, I tried some Hankel
transform pairs. If we consider the Hankel transform of

f(x), (the spectrum), in the form

f(y) = f. f(x)Jo(xy)(xy)l/zdx (1)
0

the function x"l/ze-ax has the spectrum yl/z(y2 + az)—l/z.

The exponential aperture function has the weighting function

shown in A.5. This weighting function is also on the 22

side of 25/3.

Shown in Figures A.6 and A.7 are the weighting functions
associated with sine and cosine spectra. Both have
analytical aperture functions that can be found in the
Bateman Manuscript [Ref. 34].

This is by no means a complete list of all the apertures
I found weighting functions for. However, these are the
more interesting and applicable.
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APPENDIX B

MAUI METEOROLOGICAL BALLOON DATA

LO-CATE WO-8000 UPPER AIR DATA MANAGEMENT SYSTEM P106277

REV2.11 (C) 1984

DATE (GMT) TIME(GMT) ASCENT NO. FLIGHT EQ. STATION SONDE NO.
850917 04:16 17 5 0 6685

TIME PRESSURE HEIGHT TEMP DP-DEP RH
MIN. MBARS M-MSL CEL. CEL. PERCENT

0.00 711.4 0 12.0 21.1 22.0
0.65 700.0 135 11.2 17.8 28.3
1.73 682.4 348 11.2 14,6 36.2
2.73 659.4 633 9.5 15.0 34.7
4.00 627.7 1038 4.6 12,0 41.7
6.10 577.7 1709 0.0 11.2 42,9%%*
6.15 576.4 1727 -0.1 11.3 42.6
6.28 573.2 1788 90.8 17.8 46.9
6.35 571.7 1816 -0.3 11.1 43.3
7.80 540.6 2261 -4.1 7.1 57.7
8.75 518.8 2585 -5.5 12.6 36.8
8.82 517.3 2608 -2.7 12.8 37.1
8.88 515.7 2632 -5.9 12.3 37.6
9.67 500.0 2874 -7.3 13.1 34.6
9.88 495.7 2941 -7.9 15.0 29.0
11.40 466.0 3418 -11.6 11.5 38.4
12.80 443.3 3800 -12.6 14,5 28.9
15.55 400.0 4576 -18.4 14.0 28.3
22.23 305.6 6530 -32.5 10.3 35.1
22.65 300.0 6660 -33.5 10.0 35.6
25.73 260.8 7627 ~41.6 6.6 47.9




Ph ath i ail ol S AR £ g 28 g Fol
.
SR

TIME PRESSURE HEIGHT TEMP DP-DEP RH

MIN. MBARS M-MSL CEL. CEL. PERCENT
26.60 250.0 7913 -43.8 8.4 38.4
27.87 233.8 8359 -47.5 8.1 37.9
29.80 216.1 8876 -50.2 8.2 36.5
31.30 200.0 9377 ~-54.2 7.9 35.8
34.78 169.1 10427 -65.0 7.0 35.1
36.72 153.2 11022 -70.0 6.6 34.8
37.13 150.0 11147 -70.6 6.5 34.7
37.40 148.0 11227 -71.1 6.5 34.7
38.40 140.9 11531 -70.0 6.6 34.7
38.45 140.1 11554 -26.4 9.8 39.4
38.58 139.0 11606 -70.1 6.6 34.7
40.38 126.9 12143 -73.7 6.3 34.4
43.53 109.0 13029 -74.7 6.2 34.3
44.83 102.3 13396 -76.6 6.0 34.2
45.30 100.0 13527 -76.8 6.0 34.1
45.63 98.4 13620 -76.17 6.0 34.1
48.10 87.4 14310 -72.2 6.4 34.5
52.60 70.0 15633 -67.2 6.8 34.8
54.15 64.9 16092 -65.0 7.0 34.9
56.53 57.5 16830 -65.0 7.0 34.9
58.75 51.6 17495 -62.0 7.3 34.9
59.42 50.0 17690 -61.7 7.4 34.9
63.05 41.6 18835 -59.4 7.6 34.7
66.17 30.0 20883 -59.2 7.7 34.4
66.73 20.0 23427 -58.8 7.7 34.4
66.75 19.6 23554 -58.8 7.7 34.4
68.03 10.0 27711 -65.8 7.1 34.2

70.00 0.0 28794 -69.3 6.7 34.2
70.07 0.0 28794 -68.5 6.8 34.2
70.13 0.0 28794 -67.6 6.9 34.3
70.25 0.0 28794 -65.7 7.1 34.4




RH
MIN. MBARS M-MSL CEL. CEL. PERCENT

2 TIME PRESSURE HEIGHT TEMP DP-DEP

70.32 0.0 28794 -64.7 7.2 34.4

71,78 0.0 30992 -43.0 8.5 38.1

71.92 0.0 30992 -41.0 8.5 39.0

71.98 0.0 30992 -40.3 8.4 39.7

o 72.03 0.0 30992 -39.4 8.3 40.7

. 72.10 0.0 30992 -38.5 8.1 41.8
b WIND VELOCITY

:: TIME HEIGHT DIRECTION SPEED HEIGHT

%f MIN., M-AS DEGREES KNOTS FT-MSL

0 0 79 29.0 0.0

1 204 102 21.3 668.7

2 424 99 11.6 1391.1

3 718 94 6.8 2356. 5

4 1038 49 2.8 3405. 5

5 1358 43 3.4 4453.8

6 1677 67 3.1 5502. 1

7 2015 116 3.3 6612.5

8 2329 178 3.5 7641.8

9 2668 188 6.2 8753. 4

10 2978 216 6.8 9769. 3

11 3292 247 6.1 10801.2

12 3582 246 7.2 11751.0

13 3856 212 9.4 12652.3

14 4139 199 12.7 13578.1

15 4421 198 10.7 14503.9

16 4708 206 9.8 15444.7

17 5000 219 10.4 16404.0

; 18 5292 234 12.2 17363.2
X 19 5585 220 12.2 18322. 4
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TIME HEIGHT DIRECTION SPEED HEIGHT
_!\!_I_N_._ M-AS DEGREES KNOTS FT-MSL
\ 20 5877 234 10.6 19281.6
@ 21 6169 257 13.1 20240.8
[ 22 6462 256 19.3 21200.0
23 6770 248 21.1 22210.5

7083 246 26.9 23239.4
7397 265 21.1 24268.4
7715 284 25.6 25311.6
8054 292 33.5 26423.3
8395 295 37.6 27541.5
8662 296 39.0 28418.8
8943 291 35.3 29339.8
9277 283 31.0 30435.6
9588 268 25.6 31456.6
9889 255 26.2 32445.6
10191 240 27.2 33434.6
10494 239 28.0 34428.0
10801 229 37.7 35437.7
11107 246 36.0 36440.2
11409 260 22.0 37432.3
11730 284 20.1 38485.2
12029 247 23.4 39464.0
12316 243 21.9 40408. 2
12598 248 18.4 41331.0
12879 255 16.7 42253. 9
13161 251 13.0 43178.2 Fﬁi
13443 209 11.8 44103.5 0
13723 197 14.4 45021.5 T
14002 203 8.3 45939.2 .
14282 24 2.9 46856.9
14575 50 10.9 47816.8
14868 79 15.7 48781.4
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TIME
MIN.
51
52
53
54
5%
56
57
58
59
60
61
62
63
64
65
66
67
68
69

HEIGHT

M-AS

15163
15457
15751
16048
16355
16665
16970
17270
17568
17874
18189
18504
18819
19459
20116
20773
24364
27603
28794

DIRECTION
DEGREES

87
90
102
107
95
80
86
97
100
97
88
89
96
106
106
106
106
106
277

SPEED

KNOTS

19.7
19.1
20.4
18.6
19.7
20.4
23.9
23.8
21.7
13.0
13,2
19.2
25.4
27.2
27.1
27.1
27.1
27.1
47.8

HEIGHT

FT-MSL
49746.0
50710.5
51677.9
52649.4
53658.7
54674.6
55675.7
56660.0
57638.1
58641.1
59675.0
60708.9
61742.8
63842.6
65998.5
68154.3
79933.6
90560.9
94468.3
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