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ABSTRACT A

The leading terms of the bias of the ratio and regression estimators are

known to be of order n-I • We use a finite population decomposition to give

a different expression for the leading term of the bias. Fitting a regression

line to the finite population, we show that the intercept of the regression

A line causes the bias of the ratio estimator. Fitting a quadratic regression

to the finite population, we show that the bias of the regression estimator is

* caused by the quadratic term. We also give a compact and intuitive formula

for the leading term of the bias of the weighted regression estimators for p-

auxiliary variables. Using the same decomposition, we can rewrite the

variance formula of some popular estimators in terms of some simple and

interpretable population characteristics. We prove that under simple random

sampling scheme the unweighted regression estimator is the most efficient

7.. estimator. The extension for the p-auxiliary variates is also given.A
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SIGNIFICANCE AND EXPLANATION

In survey sampling, we often make use of the auxiliary covariate to

improve the precision of estimating the population mean of a character of

interest. Ratio and regression estimators are two commonly used estimators.

It is well-known that they have a small order bias. We give a new

interpretation of the bias using a finite population decomposition. Fitting a

regression line to the finite population, we show that the intercept of the

regression line causes the bias of the ratio estimator. Fitting a quadratic

regression to the finite population, we show that the bias of the regression

estimator is caused by the quadratic term. We also give a compact and

intuitive formula for the leading term of the bias of the weighted regression

-: estimators for p-auxiliary variables. We also prove that under simple random

sampling scheme the unweighted regression estimator is the most efficient

estimator.
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BIAS AND EFFICIENCY OF THE CONSISTENT WEIGHTED REGRESSION ESTIMATORS
IN FINITE POPULATION SAMPLING

Lih-Yuan Deng*

1. Introduction

Consider a finite population consisting of N units with values (yi, xi),

i=l,2,...,N, where xi is positive and known. A simple random sample of size n is

chosen without replacement from the population. Denote the sample and population

means of y and x by y, X" and Y, X respectively. The ratio estimator

YR = X Y/ K and the linear regression estimator Yr = y -b( "- X) are the most

commonly used estimators of Y, where b = "( xi - x)( yj - -)/y'( Xi - 1)2 is

the sample regression coefficient of y over x.

The ratio estimator is known to have a bias of order n- . Durbin(1959),

Beale(1962) and Tin(1965) proposed several estimators to reduce its ni bias. In

Section 2, we use a finite population decomposition to give a different expression of

the leading term of the bias. Fitting a regression line of y over x to the finite popu-

lation, we show that the intercept of the regression line causes the leading term of

the bias.

Like the ratio estimator, the linear regression estimator is also a biased estima-

tor. To study the bias of the regression estimator we introduce a different decompo-

sition. By fitting a quadratic regression to the finite population, we show that the

leading term of the bias is caused by the quadratic term. The sign of the bias is also

* Assistant Professor, Department of Mathematical Sciences, Memphis State
University, Memphis, TN. 38152.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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determined by the coefficient of the quadratic term. In fact, we show that a negative

(positive) coefficient indicates a slight overestimation (underestimation) of Yr

Konjn (1973) gave an explicit but complicated expression of the leading term

of the bias for bivariate regression estimator. In Section 4, we give a compact and

more intuitive formula for the leading term of the bias of the p dime;ional

weighted regression estimators.

The underlying models for estimators like Y, YR , Yk etc. are we nown in

survey sampling. Better understanding of the model for which each e& nator is

used would help samplers to choose the 'right' estimator. A finite population

decomposition will be introduced to study the effect of the 'model deviation' on the

performance of the estimators like mean-per-unit( y), ratio( YR ) and regression( Yr)

in Section 5. Using the same decomposition, we can rewrite the variance formulae

of Y, YR and Ytr in terms of some simple and interpretable population characteris-

tics. The efficiency comparison can be easily made. In particular, we show that yr

is more efficient than YR and they are equally efficient if the intercept of the popu-

lation regression line is zero. We also prove that under simple random sampling

-. scheme the unweighted regression estimator is the most efficient estimator. A

natural extension to p variates is given in Section 6. We show that the unweighted

multivariate regression estimator is more efficient than the weighted ones. An intui-

tive argument is also given.

.2-
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2. Bias of the Ratio Estimator

In general, the ratio estimator has bias and variance of the same order n-1 .

Hence, in practice the bias usually is not so important in large samples. For small

sample problems, such as in stratified sampling with many strata where the separate

ratio estimator is used in each stratum with small sample size, the problem of bias

of the ratio becomes somewhat important. Cochran(1977) pointed out that in sur-

veys with many strata and small samples in each stratum if the separate ratio esti-

mator seems appropriate, it may be useful to modify the ratio estimator such that it

is unbiased or subject to a smaller order bias than the ratio.

Hartley and Ross(1954) proposed an unbiased estimator

-+n-1 ((2.1)
n-i

where

----r ,1-±-- (2.2)
n n X

* . Mickey(1959) extended Hartley and Ross 's ideas to get another unbiased estimator

" t - (N-n+l) I

YM= RX+ N (y- Rx), (2.3)

where

D'T'_ ny- Yi
R - Fn - (2.4)

'. n n-f- xi

Lahiri(1951) showed that the ordinary ratio estimator is unbiased under an unequal

-, probability sampling scheme.

*.v. There are several methods available for reducing the bias to order n-2 . The

* first is the jackknife estimator of YR , due to Quenouille(1956). Durbin(1959) is the

.. 3

-3-

S

*P<.! ; -- 5-.. ... . ., . .~ . 5.. .. . .. P. ....S. . ... .'. ,..%,,, ,. .



*1-

,! first one to propose the jackknife method for ratio. It can be applied to a broad

class of statistical problems in which the original estimator has a bias of order n-1 .

Beale(1962) proposed the following estimator for bias reduction.

,, y+ . .-f 1+ 1-f

7B- n 2 YR 1-f (2.5)
- f __ I+ - C- X
-- ,- n

n Y

where

C - ,c,- = . (2.6)
.. , i xy X

Tin(1965) proposed an estimator which is closely related to Beale's estimator

* 1 -f

YT YR l --n (cx-CRY)]. (2.7)
n

* Tin's correction, i.e. the second term of (2.7), is a sample analog of the bias

(Cochran, 1977, p. 161)

E( YR - Y)= - (Cxx- Cxy) Y + O(n 2) (2.8)
n

where

..... }.......:, xy. " C xx (2.9)

* Cochran(1977) pointed out YB and YT have the same leading term of order n- 1. In..2
C, general, YB and YT should perform very similarly for large sample.

We will consider a decomposition of the finite population. Using this decom-

position, we cm give an interpretation of the bias in (2.8). In fact, we will see that

% % the leading term of the bias of YR is caused by the non-zero intercept of the

regression line to the finite population.

.4.
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Given a finite population {( yi, xi),i=1,..Nl, we can decompose the population

afollowing

yj=Ut+l 3 X+ e1, (2.10)

* where

a= xi. X). (2.11)

It is easy to see {ei} satisfies

~~e 1 0, re~x=0.(2.13)

Using (2.10), we can find the leading term of the bias of YR in terms of the inter-

* cept, a

A 
--

E( YR - Y)= - a C,,+ O(nf 2) , (2.14)
n

which follows from (2.10), (2.13), and Cxy=.SX=R X*

Formula (2.14) shows that the bias of YR is caused by the non-zero intercept

a in the decomposition. Furthermore, the leading term of the bias depends on

ccCx. Since Cx> 0, the sip of the bias is the same as the sign of a.That is, if

a a> 0 then we would expect that Y1R will slightly overestimate Y;if ac < 0 then

YR will underestimate Y.There is no certainty that for small n the actual bias is

reduced. However, we have reason to expect that the bias will be diminished when

n is not too small and the population is not extremely irregular.

I 
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3. Bias of the Regression Estimator

Like the ratio estimator, the linear regression estimator, yj is also a biased

estimator. The leading term of the bias is given as follows (Cochran 1977, p.198)

E( Ylr"Y) =  1f E( ei( Xi- _y)2)

E(Yk- Y) - n s 2 + O(n- 2), (3.1)

where e• is defined in (2.10)

To provide an interpretation for the leading term of the bias of Y, we use the

following quadratic decomposition of the finite population

yi= + 01 xi + 02 X1 + d,, (3.2)

" where { f3j , j=1,2,31 minimizes
" PI( yi" p0 Xi" 2) 2 "

That is

( 13 o i3 '  )'N = (X'X)-IX'y (3.3)

where

x 9 • (3.4)
"'N xN NJ

* From the least squares theory, it is easy to see
.4

"X 
= 0 ,y' di X,2  O (3.5)

* Using the decomposition (3.2), we can show

e.

I ° -6-



Theorem 3.1. Let 00, 01, N as in (3.3) and X ) .1 xt the t-th population

moments of x, 3t) be the t-th sample moments, then

- 1-f K -)

E(yk- Y )= - - O(n

where

r2)O)!

:.K-[r4 )  V ), 3e3)) L 2 r2) V) 3)V) 0

Proof. We can rewrite (2.10) in the matrix form

y =XHa +e, (3.6)

where

r01,
H= 1 XJ= ,0 0

e -(e 1 , e2,.., eN)', X and y defined in (3.4). Using (2.13), (3.3) and (3.6),

N 1

XX) I e xi + [ (3.7)

1

Therefore

"2 c E( e x 2), (3.8)

where the explicit expression of c can be found using the formula for the matrix

inversion

-7.
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X
.(3)I X 2) -()

-X2 •(3.9)
_ IX (2) -X .3)

Note in writing the last equality, we used the formula for the determinant of a parti-

tioned matrix ( e.g. Rao, 1971, p. 32). Using (3.9) and the fact that [- (X'X)]
N

is positive definite , we have

K c- 1 > 0. (3.10)

From (2.13), we have

E( e i xi2) = E( ei( xi - y) 2) (3.11)

* Theorem 3.1 follows from (3.1),(3.8),(3.10) and (3.11). 0

Theorem 3.1 may provide a better understanding of the bias of Yh- The lead-

ing term of the bias is due to the non-zero 0 2 the coefficient of the quadratic term

in the decomposition (3.2). Furthermore, we can see the over or underbias of Yk

depends only on the sign of 032. If 32 > 0, then we expect YIr will underestimate

Y, whereas 2 < 0 indicates an overestimation of YI.

* 4. Bias of the Multiple Regression Estimator

The discussion so far has been restricted to the situation in which auxiliary

p.., information on just one x-variate is to be used for improving the precision of esti-

mates. In practice, we may have information about several x-variates and it may be

. considered important to make use of all the available information to get a more pre-

*- cise estimator. Several methods of using p-variates XI, X2,• ,Xp are proposed in

.- .... ,.



the literature. The most popular estimator is the multivariate regression estimator

Yj, --j (4.1)
t J=l

where { j j--,..,p} is the least squares estimate of the corresponding population

-& parameter { Pj=l..,p } in the linear regression model. Y'nr is the best linear

unbiased estimator under the following superpopulation model(Royall, 1970)

-. Yi - PO + i j xji + E' (4.2)

j=1

where

Wi if i=j

EM(El)=O ; EM(Eiej)= if i *j

with wi  1. Clearly, the multivariate regression is a consistent estimator of Y.

Like the ratio estimator and simple regression estimator, Y'm has also a bias of

order n-i1 . For p=2, Konijn(1973) gave an explicit but complicated expression of

the leading term of the bias for the bivariate regression estimator, i.e.

1-f 1 2 Ie2 p Sel I  Se22

n 7-p 2  S x, S X Sx 2  S x,2 ] (

where

N-

ei= (Yi - Y) - BI( x1i - XI) - B 2 ( x 2 i - X 2 )
.B1 and B2 are the population regression coefficient 'f y over Xl, X2, and p is the

correlation coefficient between X, and X2 , and S x1,S x. are the population vari-

ances of XI, X2 respectively.

. . ..
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Our purpose is to find a simple formula for the leading term of the bias of

Yn* and Y. which is in a more general class of weighted multivariate regression

estimators

Yw = ( O, x 1 , X 2 ,..., P)( xS w;S x,) - 1 X, S- 1 yS

1 N'X( XS' W )1 ' Xs' W 1 Y

N

where

X01  x11  1P [X01  X1,1 1PX = " " X
XON XIN -XpN j  xOn Xin P.

I- N I ,j , Y =(Y1, Y2,-., y.)" , IN = ,,"",

and

WS = diag(w,w,..., w )

is a sub-matrix of

W = diag(wl,w 2,... wN).
4M

From the Theorem 1 of Wright(1983), we know that Y is a consistent esti-

mator of Y if

IN l col( W-IX), i.e. W =X c, for some c (4.4)

We will consider the class of estimators Yw satisfying this condition. If yw con-

tains the intercept term, then x0i 1, otherwise X0 should be omitted from Yw . It

is easy to see that YR , Yr and Vm7 are special cases of Yw•

-10-
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Using the weighted least square notation, we have

Yw ''u'"1X2-'''p'v RO-W

where

13 o- ( 5 Wa 1 XS)f 1 X5 WS3 1 y5  (4.5)

The following decomposition of the finite population will be used to prove our key

result

y =X P3 + e, (4.6)

where

P3 (X'W- 1XY' XVW1y . (4.7)

It is easy to see that

X' W-e = 0. (4.8)

Lemma 4.1. Let 13 , O3 be defined as in (4.5),(4.7), then

~ (X'W 1 X,)- X,' W 1 e,- Op(n--)

Sxx'w1 U - + OP(n 1) '(4.9)

where

01

*V W 1  1~ uji uji xjiwji e . (.1
n

Proof. Since

-2



i f3 =j X +(X" '- X ') - Xs ' W#-1 e, (4.12)

it is easy to see

L X, W_ 1 X="N' XWIx + Op(n-03) a xx,w + Op(n-°'). (4.13)

And from (4.8), we have

.In X W21 e =( 1  2 ," ",i)'= Ov(n-05)• (4.14)

Hence, using (4.13) and (4.14) r
13 - 13 = s,-1 ir+O~nb
-W -W V-

This completes the proof of Lemma 4.1. 0

* Theorem 4.1. If 1N e col( W-1 X), then

E(yw ± y) -f tS,(S,- Sj,,)+ 0( - ) ,

where tr(A) denotes the trace of the matrix A and Sxx is defined in (4. 10),

, " S ui Xk = --- Xki" ) - s 'P iw - Xk )

.4) Proof. Let K = i n' Xs / n and X = 1N'X / N. Since 1N E col( W-iX), we have

.y -- " , which together with Lemma 4.1 implies"; i"-"- -w

w= [iT- (- X) ] = y- (iT- X)[ J + SXXw - 1 V + O(n-)]

7.' . . . -w - - -w.. ,= y ( i X)J3 ( i X)xx~ - IV + Op(n-1.).

Hence, we have

,'.2

. ,- * 12.-
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E( , - Y)= -E(( K- )S,, - ' -U) + O(n 2 ).

And

E( Y - X)S.x,~w 1 -U) = E(tr[( X - X)SJILW w 1 ~ r S ~ (X - X ]

= r(S ( '- X)]) = l- tr(Sxxw, Sxu,w "

This completes the proof of Theorem 4.1. 03

Three special cases of Theorem 4.1 are mentioned below.

* (1) For the ratio estimator, X =(x1, x2,.., xN )', W = diag( X1 , x2,.., xN ),

.w = Y/X = R and e= y1 - Ow xi =Y - R xi . In terms of the decomposition

(2.10),

IL N S 2(p s2
SxU, N -- 1I ei(x i - ) -- -R)= -a--.

x

Therefore, the leading term of the bias of YR is

-,1-f -s 1-f
whicht(S 1,w ' = a-,

which is the same as (2.14).

(2) For the regression estimator, we have

0 X

S" W = INxN

It is easy to see

.13-
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S, .,,= ,Szouw [0 E( ei xj2) + OH1

Hence, the leading term of the bias of Y3r is

i-f ( -Is 1-f E( ei Xi2)n n

(3) It can be verified that Konijn's(1973) expression of the bias for the special case

V. with p=2 is the same as our formula in Theorem 4.1. Our formula is much more

general than Konijn's even for p=2. Note that for the multivariate regression esti-

mator, W = I and IN in the design matrix X, and

IN e,(xJ Xk k) =O,0
which implies

IN' el( Xki" XkR ..'--

N-i rxj ei( xki - Xk) N 1N- "x~ Xj) ei(xki-X)
This is the same as the S 12's in Konijn's formula in (4.3).

5. Efficiency Comparison of y, YR and Y,

The variance of y is well-known,

Var(y) = S N2 -1-f I- IN( Y )2  (5.1)

* -.,.- There are no closed forms for Var( YR ) and Var( Yr,). Each can be approximated by

their approximate variances (Cochran, 1977)
LI0- 2

, 1-fl I S(2y. x(
n N-i 1 X

,.. and

-14.-
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7 l-f 1
NV-r Y-[( Y) B(x 1 -X )] (5.3)

where f = n/N is the sampling fraction and B = [ is given in (2.11).

We would like to rewrite the expression of VR, Vjr and Var( y) in terms of the

decomposition in (2.10). Using the decomposition (2.10), we have

Theorem 5.1. Let a, be defined as in (2.10), then

(a)YR X Y= (- ))(-a)+(- ) ,where =- "'ei
n

1-f 2 S2  where S2 N N 1 2

(b)V n C)' N-i

Proof. From (2.10) and (2.13), we have

YR =a(")+ + ": X and Y=a+DX,
K T

which implies Part(a). From (5.2), we have

(xi-
n N-1 5.4)

Using (2.13), it is easy to see

, i e( i -'1-- (5.5)

Part(b) follows immediately from (5.4)-(5.5). 0

6 Part(a) of Theorem 5.1 shows that YR " Y depends only on the intercept, a

not on the slope 1. YR Y can be written as a "weighted" average of - a and

* Fthe weight for is X/ I . (Note that the weight X/ may be greater than 1

). For a sample with K-= X, the weight associated with T is 1, and zero weight

4 for - a. Hence, there is no effect of a on the difference YR - Y for any sample

V
.V
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-Iw.¢ with I X. Such a sample is called "balanced sample" in Royall and Her-

son(1973).

From Part(b) of Theorem 5.1, we can see that VR, the leading term of

Var( YR ), is composed of two sources of variation. The first component is the non-

zero intercept (a) of the decomposition and the population characteristic ( 521 X2)

of x-variate. The second is the population variance (S2) of e-variate. For y, the

mean-per-unit estimator, we have

Theorem 5.2.

N
(a7y Y 01-R) -.

.4 (b)Var(y) = 1-2f ( p2 S + S2)n

(C)VR < Var(y) if and only if I a I I x,
where a and j are defined in (2.11),(2.12).

Proof. Part(a) is trivial. Using (2.10) and (2.13), we have

y,- Y=O(xi- X) + ei. (5.6)

Part(b) follows from (5.1), (5.5) and (5.6). Part(c) follows from Part(b) and

Theorem 5.1. 03

For the regression estimator, YI, we have

0 %. Theorem 5.3.

(a)k- Y= F+ O(n - )

.16.
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(b)Vj - Ln Sl
n

(c)Vk < VR, with strict inequality if a 0 0

(d)Vtr < Var( y), with strict inequality if f0 * 0
Proof. Par',s(a) and (b) are trivial. Part(c) follows from Theorem 5.1. Part(d) fol-

lows from Theorem 5.2. D

From Part(b) of Theorem 5.3, we see that VIr does not depend on a and J3,

whereas VR depends on the intercept a and Var( y) depends on the slope P. The

reason is that the underlying model for yjr has the same structure as the decomposi-

tion (2.10). On the other hand, the underlying model for YR is

Yi = Xi + £i,

hence YR captures the slope term in the decomposition but not the intercept term.

The underlying model for Y is

yi=a+ Ej,

hence the intercept in (2.10) can be captured by Y but not the slope.

Part(c) of Theorem 5.3 shows that ylr is always more efficient than YR. Note

the result of Part(c) is well-known( Cochran, 1977, p.196) without using the finite

* population decomposition approach. For estimating cell totals in tables of the type

typically constructed from survey data, Fuller(1977) showed the superior perfor-

mance of the regression estimator. However, in practice YR is more popular than

y. One reason is the computational simplicity of YR over Y1, in complex situa-

tions.

-17.



Wright(1983) characterized a class of consistent estimators for a general sam-

pling plan. Applying his result to the simple random sampling, we can see

W= aw+ OW(5.7)

is a consistent estimator of Yif wi is chosen to be either I's, xi's or c1 + c2 x,

where

x Sy Ys (Y1,Y2,-.,Yd' , Ws = diag(w,w 2,.. Wn).
11xn

However, it is not clear that how to choose the "optimal" weight. One criterion we

0 may use is the minimum variance of Yw. According to which, we can choose the

"best" weight among this class of consistent estimators of Y.Note that Y1. is also

a special case of 37w with wi 1. Theorem 5.4 shows that Y, (w1  I 1 is the best

choice.

Theorem 5.4. Let VW denote the leading term of Var( 7w) and OE, ~3be defined

as in (2.10). If wi =c 1 + c2 xi for some cl, c2, then

()w=1-f I I , C p ,2(V - n N-i1r

(b) For any ce0, is0,

* a~- ~ox~)2 ~j'Iy-a-pxj) +ZN(xo-c)+(oJ x) 2

(c)Vjv: VW for any choice of wi . where ( cg, Ow~)' =(X'W'lX)- X'W-1y,

.18.
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I XI
.; ~X ,, " ,Y (Yl, Y2-9. YN)' W ,,diag(w1,w 2, • WN).

"-XJN

Proof. Since Theorem 5.4 will be a special case of Theorem 6.1 in Section 6, the

proof is omitted.

From Part(c), we see that Y1, (with wi = 1) is the most efficient estimator

among the class of consistent estimators Y'w This provides a strong justification

for the use of y7r in survey sampling. Obviously, we would expect Theorem 5.4

also holds for multiple regression estimator when there are more than one auxiliary

variables. We will extend Theorem 5.4 to the multivariate case in Section 6.

6. Optimal Weighted Multiple Regression Estimator

In this section we consider the efficiency of the estimators based on the p-

• auxiliary variables. Consider the multivariate regression estimator, Ynr, and Yw

which are defined Section 4.

There is no exact formula for Var( Yw ) and MSE( Yw )- It can be easily shown

that the leading terms of Var( Yw ) and MSE( Yw ) are the same. (Note that it is true

only for the case 1N r col( W"X) ). Let Vw denote the leading term of Var( Yw).

Lemma 6.1 finds an expression for Vw .
0

Lemma 6.1. If 1N e col( W-1 X), then

-19-
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1-f where ej = y1 -X, 61

and

OW (X'W 1lX)F X'W-y.- (6.2)

Proof. Let X= IN'X/N and i= In' XgIn . Since INE6 COI( W-X) ,we

have

Yw- Y=(Y- Y) -(Y- X)J + 0 (n-1 ). (6.3)

From (4.4), it is easy to see

X 13= (XWlX) 1 l X,%W-y = .(6.4)

Hence

Yw Y - -K P + Op(n-1) = + Op~n- 1), (6.5)

where

n' j e1 = y1 - X 13.(6.6)

Note that

y~i ! lN'(Y-X13) Y =0.

Therefore

= O(n-05) (6.7)
and

*, -[y Y)2 =1 S, O(nf 2 ).
n

This completes the proof of Lemma 6. 1. 01

Using Lemma 6. 1, we can easily prove the key result

020
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Theorem 6.1. Let VpVw denote the leading terms of Var( y.),Var( Yw) and

13 (X'X)-IX'y For any 30 , we have

(a)(y -X 1o)'(y - X o) = (y- X 0)'(y -X )+ ( - 0)'X'X(13 - ).

(b)Vh . : Vw . i.e. Y, ( with wi = 1 ) is the most efficient estimator among yw .

Proof. Define

e =y -oP =(y- X1)+X(- D 0)=d+X(D3- 0)0 (6.8)

e=y-X_o y X - + ( - " -o2 =  X - " -o . (6)

Since dX = (y - X y3)X = y'(l - X(X'X-iX')X = 0 , we have

e'e=d'd+(3- 0o)'X'X( 13- 1). (6.9)

S This is Part(a). Part(b) follows easily from Part(a) (with 30 = 13), Lemma 6.1,
.4 -0 -w

1-f 1 N2 1f
VIr= Ii and Vw IN e.2 [

A more intuitive proof of Theorem 6.1 is given below: From Lemma 6.1, we

have

va( Yw) Vw = p )2,

nW -f ~"~ 3 (6.10)n N-1 -1 -w
which is minimized by taking 3 to be the unweighted least squares estimate since

-W

* (6.10) is an unweighted sum of squares. For unequal sampling scheme, (6.10)

might be a weighted least squares. In that case wi  1 is no longer the optimal

choice. We have shown that the most efficient estimator can be obtained by choos-

ing W=I. However, it is interesting to see the comparison of yw under different

criteria, for example, the coverage probabilities of the associated t-intervals and so

on.

N 21 -
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