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ABSTRACT 4
' b e dome e

‘The leading terms of the bias of the ratio and regression estimators are
known to be of order n.1 « We use a finite population decomposition to give
a different expression for the leading term of the bias. Fitting a regression
line to the finite population, we show that the intercept of the regression
line causes the bias of the ratio estimator. Fitting a quadratic regression
to the finite population, we show that the bias of the regression estimator is
caused by the quadratic term. We also give a compact and intuitive formula
for the leading term of the bias of the weighted regression estimators for p-
auxiliary variables. Using the same decomposition, we can rewrite the
variance formula of some popular estimators in terms of some simple and
interpretable population characteristics. We prove that under simple random
sampl ing scheme the unweighted regression estimator is the most efficient

estimator. The extension for the p-auxiliary variates is also given./\
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SIGNIFICANCE AND EXPLANATION

In survey sampling, we often make use of the auxiliary covariate to
improve the precision of estimating the population mean of a character of
interest. Ratio and regression estimators are two commonly used estimators.
It is well-known that they have a small order bias. We give a new
interpretation of the bias using a finite population decomposition. Fitting a
regression line to the finite population, we show that the intercept of the
regression line causes the bias of the ratio estimator. Fitting a quadratic
regression to the finite population, we show that the bias of the regression
estimator is caused by the quadratic term. We also give a compact and
intuitive formula for the leading term of the bias of the weighted regression
estimators for p-auxiliary variables. We also prove that under simple random
sampl ing scheme the unweighted regression estimator is the most efficient
estimator.
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BIAS AND EFFICIENCY OF THE CONSISTENT WEIGHTED REGRESSION ESTIMATORS
IN FINITE POPULATION SAMPLING

Lih=Yuan Deng*

1. Introduction

Consider a finite population consisting of N units with values (y; x)),
i=1,2,...,N, where x; is positive and known. A simple random sample of size n is
chosen without replacement from the population. Denote the sample and population

means of y and x by ¥,X and Y, X respectively. The ratio estimator

‘STR = X y/ X and the linear regression estimator ‘YI, = ¥-b(X- X) are the most

commonly used estimators of Y, where b= 0(x;- X)(y; - YV x;- %)° is

] .
A A L
WL

the sample regression coefficient of y over x.

The ratio estimator is known to have a bias of order n~! . Durbin(1959),
Beale(1962) and Tin(1965) proposed several estimators to reduce its n~! bias. In
Section 2, we use a finite population decomposition to give a different expression of
the leading term of the bias. Fitting a regression line of y over x to the finite popu-

lation, we show that the intercept of the regression line causes the leading term of

the bias.

Like the ratio estimator, the linear regression estimator is also a biased estima-

tor. To study the bias of the regression estimator we introduce a different decompo-

sition. By fitting a quadratic regression to the finite population, we show that the

leading term of the bias is caused by the quadratic term. The sign of the bias is also

* Assistant Professor, Department of Mathematical Sciences, Memphis State

University, Memphis, TN. 38152.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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‘_ determined by the coefficient of the quadratic term. In fact, we show that a negative

1 ) !
d (positive) coefficient indicates a slight overestimation (underestimation) of ¥,

j Konijn (1973) gave an explicit but complicated expression of the leading term

;: of the bias for bivariate regression estimator. In Section 4, we give a compact and '

. more intuitive formula for the leading term of the bias of the p dimen;ional

weighted regression estimators.

~ The underlying models for estimators like ¥, %"R , :)Tk etc. are we¢ aown in

;-

-
-

survey sampling. Better understanding of the model for which each e: mator is ;

K]
‘ used would help samplers to choose the ’right’ estimator. A finite populatien
™
.:,. decomposition will be introduced to study the effect of the *model deviation’ on the
N
;{ performance of the estimators like mean-per-unit( y), ratio( g ) and regression( yy,) !
3 ; in Section 5. Using the same decomposition, we can rewrite the variance formulae '
!
3‘ of ¥, Yyr and ¥, in terms of some simple and interpretable population characteris-
- tics. The efficiency comparison can be easily made. In particular, we show that :y‘k
\
: is more efficient than :y'R and they are equally efficient if the intercept of the popu- '
L]
lation regression line is zero. We also prove that under simple random sampling
58
R scheme the unweighted regression estimator is the most efficient estimator. A
L
N
® natural extension to p variates is given in Section 6. We show that the unweighted

multivariate regression estimator is more efficient than the weighted ones. An intui-

tive argument is also given.
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5?‘ 2. Bias of the Ratio Estimator
\ In general, the ratio estimator has bias and variance of the same order n™.
Tty
' . Hence, in practice the bias usually is not so important in large samples. For small
¥
3.‘3 sample problems, such as in stratified sampling with many strata where the separate
ol
)‘3 ratio estimator is used in each stratum with small sample size, the problem of bias
»,
!" of the ratio becomes somewhat important. Cochran(1977) pointed out that in sur-
)_' % veys with many strata and small samples in each stratum if the separate ratio esti-
L (2
’ mator seems appropriate, it may be useful to modify the ratio estimator such that it
"
hrj is unbiased or subject to a smaller order bias than the ratio.
o
< Hartley and Ross(1954) proposed an unbiased estimator
®
o Vim =7X + 200 (5. 73, @)
‘ where
S R ey
::.: f—nzll—nzl Xi. (2.2)
5
R Mickey(1959) extended Hartley and Ross ’s ideas to get another unbiased estimator
2
' ot S —n+ o~
7 yu= RX+ 282 (5. k), @3)
s
i where
PAY
. —
A = ] ny-Yyi
% R==¥0 —— . 2.4
3 o 21 nE- %, (2.4)
S
! Z‘-'f' Lahiri(1951) showed that the ordinary ratio estimator is unbiased under an unequal
N
?r; probability sampling scheme.
L There are several methods available for reducing the bias to order n™2 . The
e i
., 2 first is the jackknife estimator of ¥y , due to Quenouille(1956). Durbin(1959) is the
&
TN -3-
33
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first one to propose the jackknife method for ratio. It can be applied to a broad
class of statistical problems in which the original estimator has a bias of order n™!,

Beale(1962) proposed the following estimator for bias reduction.

- 8 -
Y= X i w5 2.5)
x4 3 1+ o S
n x
where
Sry_ g 2.6)
Cxy = 'y Cxx = ™% - .
Xy TY XX _xz
Tin(1965) proposed an estimator which is closely related to Beale’s estimator
l - 1-f
Yr=Yrll- == Cu-cxyl. Q.7

Tin's correction, i.c. the second term of (2.7), is a sample analog of the bias

(Cochran, 1977, p.161)

e e | - _
E(Fg - V)= — Cux-Cy) Y+ O™, (2.8)
where
Sxy sz
Cy = ﬁ yCxx = 2 2.9)

Cochran(1977) pointed out :)TB and -YT have the same leading term of order n~l. In

general , :YB and %'—T should perform very similarly for large sample.

We will consider a decomposition of the finite population. Using this decom-

position, we cau give an interpretation of the bias in (2.8). In fact, we will see that

the leading term of the bias of :YR is caused by the non-zero intercept of the

regression line to the finite population.




Given a finite population {(y;, x;),i=1,.N}, we can decompose the population

as following

yi=a+Bx+ ¢, (2.10)
where

):{‘( x; - X)X Yi- b9)

2.11
o= f(R-B). (2.12)

It is easy to see { ¢;} satisfies
TNe=0, INex=0. (2.13)

Using (2.10), we can find the leading term of the bias of 'yR in terms of the inter-

cept, @

R
0
&
+
s
=,l
N

Ky - )= 2.14)

which follows from (2.10), (2.13), and C,, = =2 = & ¢
. ] . ] Xy = =

Formula (2.14) shows that the bias of .7R is caused by the non-zero intercept
o in the decomposition. Furthermore, the leading term of the bias depends on

a C,,. Since C,, > 0, the sign of the bias is the same as the sign of o. That is, if
a > 0 then we would expect that “YR will slightly overestimate Y ; if a < O then

‘YR will underestimate Y. There is no certainty that for small n the actual bias is
reduced. However, we have reason to expect that the bias will be diminished when

n is not too small and the population is not extremely irregular.
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3. Bias of the Regression Estimator

Like the ratio estimator, the linear regression estimator, ¥, is also a biased

estimator. The leading term of the bias is given as follows (Cochran 1977, p.198)

1-f E(ei(x- X)P)

n sf

E(¥,- D= - + O™, 3.1)

where ¢; is defined in (2.10)
To provide an interpretation for the leading term of the bias of %,,, we use the

following quadratic decomposition of the finite population

vi= Bo+ Bixi+ Bax?+ &, (3.2)

where { ﬁj , j=1,2,3} minimizes

SNCyi- Bo- Byxi- Byx?)?

That is
( Bo, By B = (XX) Xy, (3.3)
where
1 X1 x12 Y1
X=\| - : »y=1"1- 34)
1 xy XN2 YN

From the least squares theory, it is easy to see

INa=03Ndix=03Ndx2=0. (3.5)

Using the decomposition (3.2), we can show

-6-
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Theorem 3.1. Let 8, B;, B, as in (3.3) and X0 = %1- 2{‘ x! , the t-th population

moments of x, X be the t-th sample moments, then

o = 1-f K -
E(Fp- V)= - — Bz—'s-2'+ Oomn?,

X
where
1 X X®
T 2) X X
| X x|
Proof. We can rewrite (2.10) in the matrix form
y =XHa +e, (3.6)

where

i) e-b)

¢ = (¢, €., ey), X and y defined in (3.4). Using (2.13), (3.3) and (3.6),

r 1 W

5 N 21 e .
0 o - a
Bol= 18]+ x% |[LsNex |- [B]+ . Y

o} N N 0 1 «N. .2
B, 1 N 42 ¢ X1 € Xi

N 21 ¢ le N
Therefore
B, = cE(e; x?), (3.8)

where the explicit expression of ¢ can be found using the formula for the matrix

inversion




: 1 X X2
: | % g0
o | X2 X X9
1 j:Z:-j Note in writing the last equality, we used the formula for the determinant of a parti-
X
s tioned matrix ( e.g. Rao, 1971, p. 32 ). Using (3.9) and the fact that [711' XX)]
(._-f is positive definite , we have
'.:f:
b K=c1>0. (3.10)
::: From (2.13), we have
- \ — 2
o E(e; x?) = E(g( x;- X)%). (3.11)
o Theorem 3.1 follows from (3.1),(3.8),(3.10) and (3.11). O
:"{ Theorem 3.1 may provide a better understanding of the bias of :)Th.. The lead-
oS ing term of the bias is due to the non-zero P, the coefficient of the quadratic term
) in the decomposition (3.2). Furthermore, we can see the over or underbias of .Yk
oy .
®) depends only on the sign of B,. If B, > 0, then we expect ¥, will underestimate
3::5:: Y, whereas B, < 0 indicates an overestimation of AYk.
.3; 4. Bias of the Multiple Regression Estimator
.‘ The discussion so far has been restricted to the situation in which auxiliary
5
; information on just one x-variate is to be used for improving the precision of esti-
mates. In practice, we may have information about several x-variates and it may be
jzl:jf'. considered important to make use of all the available information to get a more pre-
o

-, cise estimator. Several methods of using p-variates X;, X,, - - ,Xp are proposed in

LSt il Sl SR RO T A oo
- - > "‘)-‘,.‘ }." . N
» .




Vot = Y—‘PLB,'(Y,-- X)) , @1

where { ﬁj j=1,.,p} is the least squares estimate of the corresponding population

parameter { Bj,j=l..,p } in the linear regression model. Yy, is the best linear

unbiased estimator under the following superpopulation model(Royall, 1970)

Yi= ﬂo‘*ﬁﬂj"ii*' &, 4.2)
=
where
oW, if i=j
Em(e)=0; EM(&&) =g  fjaxj

with w; = 1. Clearly, the multivariate regression is a consistent estimator of Y.

Like the ratio estimator and simple regression estimator, ¥ has also a bias of

1

order n™' . For p=2, Konijn(1973) gave an explicit but complicated expression of

the leading term of the bias for the bivariate regression estimator, i.e.

1-f 1 28e12p ) Se11 i Sen
n l’pz lesxz SX,2 SXzz

], 4.3)

where

1 - _
Sei2 = T 2 & xii - X% - X9,

e =(yi- Y)-Bi(x;i- X)-Baxyi- X),

B, and B, are the population regression coefficient of y over X, X,, and p is the

correlation coefficient between X; and X, , and S x,S x, are the population vari-

ances of X, X, respectively.
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Our purpose is to find a simple formula for the leading term of the bias of

~

Yy and AYW which is in a more general class of weighted multivariate regression

estimators
Yw =( f09 —x—l: 5(—2,---, -x—p)( xs' w'—l x')'l X" w'—l s
1 ’ - - ’ -
-~ INX(X wix)™t X/ wily,
where
x01 xll . xpl XOI xll . xpl
X = . , : . , x' = :, : : : ’
XoN XIN - XpN e e

va 1 ’ »
x.i = -ﬁ ZIN Xjii » Y5 = (Yt Y2or Y0) > IN=(L1,---,1)

and

W, = diag(w;,w,, . . ., W)
is a sub-matrix of

W = diag(w;,wj, . . . ,WN) .

From the Theorem 1 of Wright(1983), we know that .?w is a consistent esti-

mator of Y if

Iy € col( WIX),ie. W=X ¢ , for some c . 4.4)
We will consider the class of estimators ‘Yw satisfying this condition. If ‘Yw con-
tains the intercept term, then xo = 1, otherwise X, should be omitted from ‘3"“, It

is easy to see that Y , iy and ¥, are special cases of ¥, .

...............
.................

........
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Using the weighted least square notation, we have

Yw =(io’il’.i2"”»¥p)‘p ES(—.B ’
~w ~ ~w

where

‘Bw =(X/ w'—l xs)-l X, w‘-l Ys - @4.5)

-~

The following decomposition of the finite population will be used to prove our key

result
y=XEw+e, (4.6)
where
B = XWXy x'w-ly . 4.7)
It is easy to see that
X'Wle=0. (4.8)

~

Lemma 4.1. Let B , B be defined as in (4.5),(4.7), then
w

~w -

1 , - —1 ’ -
[}w - Ew = (X, W, X7 X/ Wle, = Op(n-o's)
= Sxx,w_l U+ Op(n—l) ’ 4.9)
where
1 oo — - — — \
SXX,W = _N- X w lx ’ E = ( ul’ pALXT] up) (4.10)
and
1y »
uj = ; 21 ujl . ujl inWi Ci . (41 1)

Proof. Since

-11.
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N B =B +(X/W,1x)" X'W, e, “.12)
'4":: “-w  ~w

N it is easy to see

% X,/ WX, = Tiz' XWX + 0,05 =S, + O,(%%). (4.13)
[ And from (4.8), we have

) o o .

e = X W e = (T Ty, , ) = 0,(m%) . (4.18)

) n
}. Hence, using (4.13) and (4.14)

P i o

e This completes the proof of Lemma 4.1. O

o ' Theorem 4.1. If 1y € col( W™X), then

© 1-f - y
v E(Yw - Y)= - n tr(Syxw ! Suw) + O 2,
| where tr(A) denotes the trace of the matrix A and S, ,, is defined in (4.10),

3 Sxuw = [S Y x-]
i
) and

. ’
TofSfals
Tate }Lsz.L

Sux = Zl uji( Xy - xk)= Zl X;i ew; i (x - Xp) .

Pk
W
P

TN

Proof. Let X = ln Xs/n and X = lN'X/N. Since 1y € col( W™1X), we have

s £
"'

y= XPB , which together with Lemma 4.1 implies
~ W

e
<
£

|

- - - - -~
»
SRS

=[X-(X- XNB = T-(X- XB +Syu T+ Opn7)]

-.‘ - v
LS =Yy-
-

lxl

- X) B - (X X)Sgu T+ On71).

Hence, we have
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i

N E(Fu - V)= -E(X- DSy D+ O@?).

§1-.
o And

Ny

- E(X- X)Suu ' © = EWl(X - XS 1) = E@Sy™ WX - X))

; :"4

B (S El WX - X)) = L (S S

%, = tr( XX,W [‘_1(5' _)])- n tr( XX,W xu.w) .

P .

») In writing the above equalities, we use the fact Tr(AB)=Tr(BA) and

Y

o E(WX- X)) = [E[T(%- X -f s

A (B(f‘ _))= [uj(xk' v =T u x|
! This completes the proof of Theorem 4.1. O

*f:‘" Three special cases of Theorem 4.1 are mentioned below.

el

> (1) For the ratio estimator, X =(xy, X, xy) , W = diag( x;, X3,.., xy ) ,
L -
i Bu= Y/ X=R and ¢;= y;- B, x;= y;-Rx;. In terms of the decomposition
r
: :"; (2'10),
X\J' Sxuw =3 L YNe(x- X)= :

o N-1

h :-j'i a
iy l Therefore, the leading term of the bias of yg is
y? 1 1-f S?

- - — -1 = — q—-

:: n tr(sxx,w qu,w)— n aiz’
. which is the same as (2.14).

(2) For the regression estimator, we have
o 1 X
51 =l | W=Th
o I xn
,.3 It is easy to see
)
‘..‘:'j
-.:-j:’
T 13-
o
o v ,“" AOANLHIE AR T, 1'?:0’!’ T ‘1 ‘.."‘}.,_‘.‘_: --\:':?g.é‘ﬁ\wfw—m \;‘. ‘}ﬁuvzwv.‘v‘(ﬂ.h\\' 5N _:.Q:r\: _;:-\:.»: 's:- «-{:-1

‘.- :. :: .'..' “.:' .. : ‘ . g n J" ; ‘ f'-'_'-'.: (:.‘::" -‘. *\\{.‘\"\-KJ: \.‘w‘."-; h \1 . !\ \'\' '\ . W ~». .‘ ,‘.' ) ;.:_ .: o 9 -
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".'f'-iw
& "‘J
L
o 1 X 0 0
_ _ 1
\z su‘w X i‘(l) ’ sxu,\v B [0 E( ¢ Xiz)] + oM.
=%
. .
T Hence, the leading term of the bias of ¥, is
"x 2
i 1 O 1-f E(e;x?)
.53_ - -n— tr ( Su.w qu,w) = - n S} .
)
“; (3) It can be verified that Konijn’s(1973) expression of the bias for the special case
55 '
‘::: with p=2 is the same as our formula in Theorem 4.1. Our formula is much more
i
) general than Konijn’s even for p=2. Note that for the multivariate regression esti-
ol
::": mator, W = 1 and 1y in the design matrix X, and
\.. _
s INe(xi- X =0,
T which implies
=
i 1_yN X) = —— yN(x.- X X :
N NoT 21 Xi &l X - = 1o 20 (K- XD el x- Xy |
- This is the same as the S,;,’s in Konijn’s formula in (4.3). :
.\ Ny 5. Efficiency Comparison of ¥, y and ¥
2
L The variance of y is well-known,
N 1-f 2 1-f 1 n <2
, \Y = — §2- L oY) .
i a(N= == 8= Ln- Y 5.1y
-:‘_’:'_: There are no closed forms for Var( -7R ) and Var( :)T,,). Each can be approximated by
F; their approximate variances (Cochran, 1977)
o
o v 2
° . 1-f 1 N Y
e VR= — — i~ = X .
- R n N-1 Zl ( Yi X xl) & 2)
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T AT

-f 1 < -
Vi = = TNy - D -BOx- B2, 63

where f = /N is the sampling fraction and B = B is given in (2.11).
We would like to rewrite the expression of Vg, V), and Var( y) in terms of the

decomposition in (2.10). Using the decomposition (2.10), we have

Theorem 5.1. Let o,p be defined as in (2.10), then

@5 - T-0-(Z o+ (X e, whee - L 516,

1-f 283 2 2__1 N2
(b)Vg = T(a'—i-2-+ S¢) , where Se=—N—_i-El c“.

Proof. From (2.10) and (2.13), we have

AyR =a(—§)+ﬁ'i+ —E Xad Y=a+BX,
X X

which implies Part(a). From (5.2), we have

S O W N €. b 5.4
VR— n N_l ZIdl’dl- a 'x- +cl' (‘)

Using (2.13), it is easy to see
TNe(xi- X)=0. (5.5)

Part(b) follows immediately from (5.4)-(5.5). O

Part(a) of Theorem 5.1 shows that :YR - Y depends only on the intercept, o

, not on the slope P. :YR - Y can be written as a "weighted" average of - o and
€, the weight for € is X/X . (Note that the weight X' x may be greater than 1

). For a sample with X = X, the weight associated with € is 1, and zero weight

for - a. Hence, there is no effect of & on the difference ‘YR - Y for any sample

-15.-
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with X= X. Such a sample is called "balanced sample” in Royall and Her-
son(1973).

From Part(b) of Theorem 5.1, we can see that Vg, the leading term of

Var( ‘YR ), is composed of two sources of variation. The first component is the non-
zero intercept (o) of the decomposition and the population characteristic ( S}/ 532)
of x-variate. The second is the population variance ( SZ) of e-variate. For ¥, the

mean-per-unit estimator, we have

Theorem 5.2.
@y- Y=B(x- X)+ €.
OVar(y) = X (g2 57+ 53,

(VRS Var(y)ifandonlyif || < | B |
where o and B are defined in (2.11),(2.12).

Proof. Part(a) is trivial. Using (2.10) and (2.13), we have

Yi- Y=B(x;- X)+ ¢. (5.6)
Part(b) follows from (5.1), (5.5) and (5.6). Part(c) follows from Part(b) and

Theorem 5.1. O
For the regression estimator, ¥y, we have

Theorem 5.3.

@7, - Y=+ O,
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(c)Vy S Vg, with strict inequality if o » 0

(d)V), S Var( ), with strict inequality if B # 0
Proof. Paris(a) and (b) are trivial. Part(c) follows from Theorem 5.1. Part(d) fol-

lows from Theorem 5.2. O

From Part(b) of Theorem 5.3, we see that V), does not depend on o and B,

whereas Vp depends on the intercept o and Var( ¥) depends on the slope B. The
reason is that the underlying model for Ay',, has the same structure as the decomposi-
tion (2.10). On the other hand, the underlying model for Vg is

Yi=PBx+ g,
hence ‘YR captures the slope term in the decomposition but not the intercept term.
The underlying model for ¥ is
Yi=o+ §,
hence the intercept in (2.10) can be captured by ¥ but not the slope.
Part(c) of Theorem 5.3 shows that ‘?‘k is always more efficient than ‘S"R . Note
the result of Part(c) is well-known( Cochran, 1977, p.196) without using the finite

population decomposition approach. For estimating cell totals in tables of the type

typically constructed from survey data, Fuller(1977) showed the superior perfor-

mance of the regression estimator. However, in practice Yy is more popular than

a

Yir- One reason is the computational simplicity of Yz over ¥ in complex situa-

tions.
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Ay Wright(1983) characterized a class of consistent estimators for a general sam-
f\'.-
b
.f.-_.:E pling plan. Applying his result to the simple random sampling, we can see
2
Yw = &'\v + ﬁw X 6.7
is a consistent estimator of Y if w; is chosen to be either I’s, x;’s or ¢; + ¢; X;,
where
(ay. B = (X WIX)T X/ Wy,
1X
X=1 | Ys=(yu Y2 Yo 5 W, =diag(wp,wy, - -0 W) .
1x,

However, it is not clear that how to choose the "optimal" weight. One criterion we

may use is the minimum variance of y,,. According to which, we can choose the

"best" weight among this class of consistent estimators of Y. Note that Yir is also

[

a special case of ‘Yw with w; = 1. Theorem 5.4 shows that :)"',, (w; = 1) is the best

choice.

Theorem 5.4. Let Vy denote the leading term of Var( ‘Yw ) and @, B be defined

as in (2.10). If w; = ¢; + ¢, x; for some c,, ¢,, then )

@Vw = o TR o Buni?

(b) For any oy, B, |

SNCyi- og- Box)? =TN(yi-a-Bx)? + TP o- @)+ (Bo- B x))
(c)V}, < Vy for any choice of w; . where ( a,, By)" = (X'W“X)"1 X'w-ly,

-18 .
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N
o .
T X=1 " 1,y=(ypY2 yn)', W =diag(w,wy, - -,wy).
R
- Proof. Since Theorem 5.4 will be a special case of Theorem 6.1 in Section 6, the
' : proof is omitted.
3 '(_"
:.j From Part(c), we see that Y, (with w; = 1) is the most efficient estimator
\
‘ N

among the class of consistent estimators ¥, . This provides a strong justification

e
Er 27,

P

for the use of -Yk in survey sampling. Obviously, we would expect Theorem 5.4

i
“ also holds for multiple regression estimator when there are more than one auxiliary
. variables. We will extend Theorem 5.4 to the multivariate case in Section 6.
@
:?_? 4
’ 6. Optimal Weighted Multiple Regression Estimator
L In this section we consider the efficiency of the estimators based on the p-
\* *
T auxiliary variables. Consider the multivariate regression estimator, Y., and Yy, ,
N which are defined Section 4.
N There is no exact formula for Var( ¥,, ) and MSE( ¥, ). It can be easily shown
S
N - .
that the leading terms of Var( y,, ) and MSE( ¥,, ) are the same. (Note that it is true
o
<, .
o5 only for the case 1y € col( W-1X) ). Let Vy denote the leading term of Var( Yw )
)
oY
L Lemma 6.1 finds an expression for Vy, .
L
=
e Lemma 6.1. If 1y e col( WX), then
o
.
s
4 .
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Tl

ST

: 1-f 1
f Vw= N D& where 6= yi- X B D
O and

o B =xwixy? x'wly. (6.2)

~w

: Proof. Let X= 1y’X/Nand X= 1/ X,/n. Since Iye col( WIX), we
"h-‘l bl -

o have

= Vo - Y=(F- D-(X- P + O,@™). (6.3)
) - ~ Tw

From (4.4), it is easy to see

NP

- o
)

1.3
)
Oslalnls

Xp = XXwWIx)! xwly=Y. 6.4)

Hence

2% Vu - Y=5- XB + O = T+ O, (6.5) |
T ~ ~w |
where I'
S Qe "
e==3T¢ , ¢=y;- X B . (6.6)

n -i ~w

.':;j.':, Note that

l N l ’ v ~
s — == 1 - =Y- XB =0.
: N 2 ei=g INO-X Ew) X |§w 0
o Therefore

€= 0,m™%) 6.7)

“
hPrie P
R A )
PP
2 st b e

s
a2
L e S

Y

E[(Tw - V) =

-’—n‘-f 2+ O(?).

-
IA'

e
W

This completes the proof of Lemma 6.1. O
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Using Lemma 6.1, we can easily prove the key result
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Theorem 6.1. Let V,,Vy denote the leading terms of Var( y,),Var(y, ) and

B = X’X)"'X’y For any B, we have

@0 -XBYY-XB) = - XY -XB)+ (B - BYXX(B - B).

(b)Y, < Vy . ie. ‘le, ( with w; = 1) is the most efficient estimator among ‘Yw .
Proof. Define

c=y-X§o=(y-X§)+X([_5- [_So)=d+X([~3- [}0). (6.8)
Since dX = (y - X pyX = y'(l - XXX)1X)X = 0, we have

ce=dd+ (- Eo)'X'X( B - [_50) . (6.9)
This is Part(a). Part(b) follows easily from Part(a) (with Eo = LSW), Lemma 6.1,

1-f 1-f
Vs R B et vy = S TN

A more intuitive proof of Theorem 6.1 is given below: From Lemma 6.1, we

have

Var(Fu) = Vw = <ok == FNyi- X B )R (6.10)

which is minimized by taking B to be the unweighted least squares estimate since
~w

(6.10) is an unweighted sum of squares. For unequal sampling scheme, (6.10)
might be a weighted least squares. In that case w; = 1 is no longer the optimal

choice. We have shown that the most efficient estimator can be obtained by choos-

ing W=1. However, it is interesting to see the comparison of ¥, under different

criteria, for example, the coverage probabilities of the associated t-intervals and so

on.
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