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IMPROVED NUMERICAL
IMPLEMENTATION OF THE
BOUNDING SURFACE
PLASTICITY MODEL
FOR COHESIVE SOILS

ABSTRACT A substantiallv more robust numerical algorithm for the
evaluation of the bounding surtace plasticity modei for cohesive soiis is
deveioped. The robustness of the new ailgorithm assures accurate results
for reasonabie sized solution steps and qualitatively correct predictions,

even for exceptionally large steps. The improved predictions are
illustrated for three sxxamplus.
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INTRODUCTICON

The objective of the research reported herein was to improve the
»robustness” of the procedure used for the numerical evaluation of the
*bounding surface” plasticity model for cohesive soils.

The bounding surface model for soils was developed and extensively
evaluated under U.S. Navy and NSF sponsorship (1-9). This - velopment
included the numerical evaluation of the model and the wri*' of a mas-
ter subroutine (and associated subroutines) CLAY that can : incorpo-
rated into existing finite element codes to supply the ncremental
material properties needed in the analysis of cohesive soil structures
(2,5,7). During the original development phase emphasis was placed on
demonstrating the capabilities of the model for representing real soil
behavior and on the accuracy of the numerical evaluation scheme, with
little attention given to the robustness of the numerical evaluation
(i.e., the robustness of CLAY). CLAY was incorporatéd'into several new
and existing finite element programs and was used in the analysis of a
number of Geotechnical engineering problems. ODuring the course of these
studies several instances occurred in which the numerical evaluation
scheme embedded in CLAY was far from robust.

In all cases the problem involved, for one or more elements, the
predicted stress state converging to a point outside of the bounding
surface. A simple scaling procedure had been incorporated intoe CLAY in
an attempt to avoid such an occurrance, however, in many cases it proved
to be ineffective. Once the stress state had fallen outside of the
bounding surface (at the end of a given solution step), in subsequent
steps the solution rapidly deteriorated and soon became meaningless and
very often convergence could not be achieved (even to an incorrect

solution). Using the original version of CLAY the only remedy was to
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ot . . .
ey use smaller global solution increments. In order to achieve an accepta-

ble solution,»for many problems, the required solution steps were exces-

%35 sively small and thus the computer costs were excessively large.

%%? The goal of the present research was to understand and to rectify
o

5€i this problem, i.e., to develop a truely robust version of CLAY.
§§§ " Robustness requires that if reasonably sized solution steps are taken,
3§§ that accurate results be obtained. Of course in general, accurate one

step solutions cannot be achieved with a path dependent material proper-

St
; ; ties model. However, the use of very large steps leading to answers
2 ; which are qualitatively but not quantitatively correct is often useful
W
® for a preliminary analysis. Thus, even if ridiculously large solution

steps are attempted, a robust routine should produce reasonable (if not

entirely accurate) results. Neither of these conditions was met with

-

the original version of CLAY.

" PREL.IMINARIES

'?ﬁg The bounding surface model can be used to supply material properties
:ﬁ%; for all solution schemes applicable to stress analysis problems. The
ﬁb'; most commonly used-method is the finite element procedure; of the three
3&& (displacement, force and mixed) finite element formulations available,
;!: the displacement method is most commonly used. Thus, for the remainder
fié of this report it is assumed that the bounding surface model is being
éi* used in conjunction with a displacement (or a reformulated mixed [1a])
‘ ' finite element analysis. Most of the comments, however, also apply to
ﬁf‘ other methods, e.g., displacement formulation finite difference
%%3& analyses,etc. In the following paragraphs ihe finite element code, for
W which the material properties subroutine (CLAY) is to supply material
2 E properties, is called the parent” program.
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The use of a history dependent constitutive model (such as bounding
surface plasticity) in a stress analysis program, in general, requires
some form of incremental solution procedure. In addition, if the model
is nonlinear, then in order to be able to employ reasonably sized solu-
tion steps, iteration within each step is usually necessary. The itera-
tion of the total solution by the parent finite element program, will be
referred to as "global” iteration.

For a given point in the body undef analysis, and for a given itera-
tion K of a given solution step N, the role of a ”properties”
subroutine, such as CLAY, is to supply to the parent program the
relaionship between the stress increment {Ac} and the strain increment
{Ae}. The bounoing surface model relates ”effective” soil stress to
strain and, thus, throughout this section {o} and {Ac} will represent
effective stresses. The fact that the parent programlmay~be concerned
with total stresses will be addressed in a later seétion. The collec-
tion of points (locations) in the body for which. the incremental proper-
ties are required usually consists of all the element centers or all the
element integration points or all the nodes. The following analysis is
in no way dependent on which set of points is being used, however, for
simplicity of discussion it is assumed that a set 'of properties is
required for each element. The reqguired incremental stress-strain equa-

tion is usually written in the form

{aoky « = B]N,K-l {aely  *+ (doghy k.1 (1)

*For a "force” (stress) based analysis, the required relationship is
(ae} = [] (a0} + {ae,}

This expression could be found by inverting eq. 1l; however, it would be
more economical to re-do the numerical evaluation scheme in CLAY so as to
arrive directly at the required expression.

..................
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Q, For simplicity, in the remainder of the report, the above expression
o will be written without explicitly displaying the increment and itera-
‘€

e tion numbers, i.e.

s

-

e {ao} = [O] (e} + (a0} (2)
;3%

s;e:

%ﬁj Thus, the role of the properties subroutine, CLAY, (for a given glo-

bal iteration of a given solution increment and for a given element) is
to provide the quantities Ej] and {Aoo}. For a nonlinear model they will
be functions of {Ac} and {Ae}, thus the requirement for global itera-
tion. Typically the parent finite element program supplies an estimate
(from the previous iteration} of {Ae} and an estimate of {Ag} is found
using eq. 2 and the properties from the previous iteration (or previous
increment for the first iteration); these estimates-arg used by the pro-

perties subroutine in the calculations of [D) and {20} Now until glo-

bal convergence occurs, these estimates (for the given element) of the
stress and strain increments (used in the calculation of the incremental
properties) will not in general satisfy the resulting incremental
stress-strain equation, (2). Since this inconsistency disappears as
global convergence takes place, it is not absolutely necessary to take
special steps to rectify it. However, numerical experimentation has demon-
strated that overall computational advantages may be realized by resclv-
ing it (5,7). For this purpcse, local iteration” can be introduced.
Local iteration takes place (for each element) within the material prop-

erty subroutine (i.e., within CLAY) and involves using eq. 2 and the

L O N o T R am B S R T T N T N 1
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original strain estimate to calculate a new estimate of the stress*

which in turn is used to find a new set of :incremental properties, etc.

ig%l ' The local iteration is in addition to the global iteration. Since the
i§f? , global iteration also tends to remove the inconsistency, the convergence
i2§' criterion for local iteration is typically less restrictive than the
iés' global requirement. Obviously the introduction of local iteration
¥¥ increases the computaticnal effort for a given global iteration.

However, its use typically decreases the number of global iterations

;#; required, resulting in an overall reduction of computational effort.

i - -

2 3 The calculations involved in finding 0] and {Aoo} will be discussed
.".'

R in the next section.

MODIFICATIONS TO ”CLAY”

The first step was to determine the cause of the lack of robustness
of the numerical evaluation scheme used in CLAY. It was found that
there were two primary reasons. The first was numerical integration
error that occurred for large (and sometimes sméll) steps. The second
was the inadequacy of the scaling procedure used to return a predicted
stress state to the bounding surface when it fell outside. When the
solution steps were small encugh (sometimes exceedingly so) both of
these problems disappeared and the original algorithm functioned pro

perly. The question then was how to improve the evaluation scheme.

*An alternative which has not been explored by the author for the bound-
ing surface model is to maintain the initial stress estimate and itera-
tively modify the strain estimate. The iterative modification of the
strain estimate instead of the stress estimate maintains, at the global
level, a compatible global displacement field. The rationale for this
choice is. the displacement continuity requirement of displacement for-
mulation” finite element procedures. The violation of this condition
does not, however, necessarily destroy the convergence characteristics
of a displacement formulation; the effect it would have in this case has
not been investigated. It should be noted that the present local itera-
tion scheme (which iteratively modifies the stress estimate) would vio-
late the equilibrium requirement of a ”force” formulation finite element
analysis.
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The bounding surface plasticity model leads to the following rela-
tionship between the stress and strain rates (see eg. 4 of reference

7):
5y = [l (&} (3)

For a precise definition of the guantity Di], for the bounding surface
model, the reader is referred to eq. 5 of reference 7. Because [D] is a
function of the history of the stress state over the interval, for any
given solution step this equation is nonlinear (and thus its use, in
general, will require iteration} One way of proceeding is to integrate
over the step tN_l->tN (in performing this operation it is convenient to
think in terms of time even though the particular model may be rate

independent), i.e.,

t t | -
Jy {3} dt = tJN [b] (e} at | (4)
tN-1 N-1

If it is assumed, for the given solution step, that all the strain com-~
ponents are proportional (i.e, Aeij/Aell = constant for tN_ls t < tN),
then for a rate independent model the input history for the interval can
be selected such that all components of {¢} are constant® and are given

by {é}:{Ae}/AtN, hence

t
N
(o} = 21 £ o] ot (5)
"ot

*If there are pore water pressure changes due to water flow, then even
for a rate independent model and proportionate strain increments. this
step will involve an approximation. This approximation occurs because
the assumption of a constant strain rate over the interval would not
necessarily be consistant with the actual history of the water movement.

..................
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letting

t

1
. bl == N
" . o [l at (6) |
= N tN-l
1y ]
o then gives
N -
{ac} = [B]{ae} (7)
X
[ To this point no approximations other than those mentioned above have
7.

been made. Thus what is needed is an accurate evaluation of the avera-

]
-

age value of [D] over the solution increment. Previously, [2,5,7] the

simple one step trapezoidal rule was used, i.e.,

LN

P

box =1 . 1 i
s (] = Py (o], + bl (8)
153 where ED]N-l and [D]N are the values of [D] that correspond to the
f: stress and strain states at the beginning and end of the step, respec-
" tively. It must be noted that in reality [D]N-l is also a function of
R
™~ {o}N (and hence {Ag}) because the latter quantity determines whether or
[\ . . '
' not ”loading” or unloading” occurs over the interval.
M
. The previously cited lack of robustness has made it evident that in
-
Eﬁ some instances this simple numerical integration is not adequate.
<
ﬁ A promising "adaptive” two point integration method was tried but
u2
? failed to converge. Resort was then made to the multi-step (of equal
p‘i length) trapezoidal rule*.
4 *While the multi-step trapezoidal rule has proven to be quite effective
';‘ it is not the most efficient scheme available. Thus, in some future
b research the use of other integration schemes should be explored. It
a would seem to be desirable that the end points of the interval be
‘: . included in the set of integration points (because the corresponding
i stress states explicitly occur in the incremental formulation). Thus

Simpson’s rule and the Gaussian quadrature method that includes the end
points (Lobatto quadrature) would appear to be the most promising can-
didates.

s oy SRR AL J L ChEWTVES

gl
PRt 'S

---------
......
[RC RS

L
T
v
fa
.
A
h
1
.
a
ot
[
s
>
]
1
s
o)
.
s
"X
x
.
N
'
a
P
.4
-~
N
.
A,
“
“
A
¥
t
»
.
)
&
.
N
v .
.
.
»
.
.
.
'
v
a

[T RN O
- B



- g
- .
ﬁ.l ¢

.t
p "

T
e

"‘:“}:u R K] [ )

'Y

A

e A

.'}

AR

4 e At e e e -
N R N N P Lot
o . - L ]

The limit to the accuracy achieved with any improved integration
scheme is the required assumption (see derivation above) that the strain
components vary proportionately and their rates are constant over the
solution step.

In the following discussion the solution step prescribed by the par-
ent program (the finite element program that is calling CLAY) will be
referred to as the ”step”. If required, for accurate numerical integra-
tion, the algorithm in the new CLAY may further subdivide this step into
"sub-steps”. These sub-steps, however, will be transparent to the par-
ent program and to the user (except for increased computer cost).

The use of M sub-steps in the trapezoidal rule leads to the follow-

ing incremental properties

M

B-2 @& : (9)

m=1 m
The incremental properties [Iﬂm’ over sub-step m, are found from eq. 8
where [D]N—l and [D]N, which are the values of fD] at times tN_l and tN,

are replaced by properties corresponding to times; (t t + AtN/M),

N-1’ "N-1

(t + AtN/M, tN_ + 2AtN/M), etc. and AtN is replaced by AtN/M. The

N-1 1

strain at time t +m AtN/M is assumed to be (see previous paragraphs

N-1
discussing the assumptions made)

{el, = {ehy | + g (o) (10)

The stress estimate at the corresponding time is initially (in the first

local iteration) taken to be:

m=1

{c}m T {cf}m__l + {Ao}m_l = {o}N_l + ,E {Ao}i + {Ao}m_l (11)
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That is, an estimate equal to the value found in the previous sub-step
is used for {Ao}m. when local iteration is used, then this is succes-
sively modified by replacing {Ao}m_l with improved estimates calculated
from eq. 7 (using {Ae}m and Gi]m from the previous local iteration).

The determination of the number of sub-steps (for a given =lement)
to be used in each solution step is based upon the following con-
sideration. It was noted previously that a symptom of inaccurate
numerical integration is the prediction of a stress state outside of the
bounding surface. The factor that measures this phenomenon is B which
relates the image stress state aij to the actual stress state o.. (see

1]
Figure 1), i.e.,

({8} - {o 1) = 8{a} - {o,}) (12)

The image stress state is defined by the intersection of the projection
line with the bounding surface. The projection line originates at the
projection center (see Figure 1) and passes through the stress state.
Fo; the current model the projection center lies on the I axis and is
located at cl, (see Figure 2). The size of the bounding surface is
determine by the current value of I, (see [7]). 1t is seen from Figure
1 and eg. 12 that a value of B of less than 1.0 indicates a stress state
{o} which lies outside of the bounding surface.

In a given global iteration, an initial attempt is made to use one
step integration. If the value of B, for the calculated stress state at
the end of the solution step is greater or only slightly less than 1.0

(> 0.999*), then it is assumed that no problem exists and one step tra-

*A number of rather arbitrary limits such as this have been used in the
new version of CLAY. Some numerical experimentation was done to show
that the values are adequate, however, future work should investigate a
range of alternatives in an attempt to optimize the quantities.
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A
§§; pezoidal integration is used as in the past (2,5,7). When this crite-
gﬁmv rion is not satisfied the new CLAY attempts to use two sub-steps in the
gég integration process. If at the end of either the first or second sub-
zgkg step the 8 does not satisty the > 0.999 criterion, the sub-step is again
jﬂ%h halved (i.e. four sub-steps) and the integration is started again (using
-

one quarter of the initial stress estimate for the beginning of the glo-

2

S

a

bal iteration). This process is continued until either the criterion is

-
-

Bodr

met or a limit of a maximum of 32 sub-steps is reached. In the latter
case the solution process is then continued as if the limit on 8 had
been satisfied. Denote the number of sub-steps (for the given element)
arrived at by this process as M (M=1o0or 2 or 4 ....32).

Once, sub-stepping is used, it is used for all subsequent global
iterations for that solution step and for the particular element in
question. As global iteration proceeds, the value of M (number of sub-
steps) is not permitted to decrease but it may be ihcreased.* However,
in the first global iteration of the next solution step (for the given
element) once again one step integration is attemped (i.e., M is reset
to 1). The number of sub-steps used (M), is remembered by CLAY (the
mechanism will be explaineda later).

Within each sub-step local iteration is used** to determine the
value of {Ao}m. The local iteration is continued until the value of 8

for the end of the sub-step meets a 1% convergence criterion or a limit

*Initially a rather sophisticated scheme was tried in which the several
sub-steps into which the step was divied could be of varying length and
the number of sub-steps could vary from one to a set maximum as needed.
At the beginning of each global iteration the number of sub-steps was
started at one, thus the sub-stepping pattern could (and did) change
from global iteration to global iteration; the resulting process had
poor convergence characteristics (due to the changing sub-stepping
pattern) and was thus abandoned.

G ** Thus the control over local iteration is no longer left to the User
:b"( as in the previous version of CLAY.
1y
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of a maximum of 5 local iterations is reached. At least two local inter-
actions are always performed (the first calculation of B is counted as
iteration number one). Because of the local iteration, the initial
estimate for {Ac} is not overly important and a value of zero could be
used if desired.

The need for an adequate procedure for returning a predicted stress
state that is outside of the bounding surface to the surface stilil
exists, even though a more accurate integration scheme has been adopted.
Such a need persists because of the use of the 0.999 limit on B instead
of 1.0, the maximum of 32 placed on the number of sub-steps for a given
solution step, and for the intermediate calculations in the local itera-
tion process. The limits on B and M are used to avoid excessive sub-
stepping and thus excessive computational cost.

Classical radial return” (11) has been adopted to bring a point

back to the bounding surface (while the previously used scheme in CLAY

was based on the radial return concept, it .was only approximate).
Whenever a stress state (at the beginning of the step, or at the end of
the step or orz of the sub-steps) is found to be outside of the bound it
is scaled back to the bound (along the line connecting it to the projec-
tion center). This scaled stress state is used for the purpose of cal-
culating the plastic modulus.

The one instant where the scaled value of the stress is not used
is in the updating of the size of the bounding surface as determined by
the value of I0 (see eq. (26) of reference 7). The extreme importance
of using the unscaled stress for this operation appears to stem from the
fact that the size of its bounding surface is really controlled by

strain considerations and the strains are not scaled.

11
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The scaling of the invariants of the stress (the invariants are

defined in eq. 20 of (2)) yieldss

Iscaled = B(I - clg) + clg

Jscaled =8J (13)
3

Sscaled = B7S

when the stress state at the beginning of the step {o}N_l is outside
of the bound, it is of considerably more concern than the corresponding
problem for the state at the end of a step or sub-step. The state at
the beginning of the step is an accepted solution (to that point in
time), whereas at the end of a step it is merely an intermediate predic-
tion in the iteration process. The discrepancy at the beginning of the
step represents an error which has crept into the solution, whereas at
the end of a step it is only a potential error. In an attempt to pre-
vent error build-up (as incremental stresses are accumulatedj, if the
stress state at the beginning of the step is found td be oustide of the
bound, the individual components are then scaled back to the bound,

i.e.,:

(0tN-lepateq = Blohy_ * (1 - 8)(c} (14)

lscale

and a stress correlation vector {Aoo} is calculated

{Aoo} = - (1-8)({o} - {c}) (15)

$ eI, < 1,1,1,0,0,0 >'

where {c} 3

This stress correction is incorporated into the gloial analysis by
treating it as a strain independent stress term, i.e., by modifying egq.

7 to read (i.e., the form is that of eq. 2):

{6} = [D] {ae} + {40} (16)

A A
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3}:‘::;' The use of the stress correction vector prevents a gradual
':"5, "straying” outside of the bounding surface for cases where the state
:g:::v . should be moving on the surface. Equation (16) is only used at the glo-
éé}sg bal 1level because in CLAY the correction representea by {Aoo} is
:'ﬁ directly achieved by the scaling of {o}N_l; i.e., all operations within
;f{sg CLAY use eg. (7).

3'55 For the purpose of calculating [5], the scaling of the stress states
‘I%"' back to the bounding surface is of major importance, however, tne incor-
,_"' poration of the stress correction vector {Aao} into the global analysis
{ can be neglected with only relatively minor consequences.

‘ Situations can arise where the one step trapezoidal rule is not age-
‘ guate, even though it does not result in obviously incorrect values of
i%;g B. An example of such a problem area is a nearly neutral loading situa-
g y tion where inaccurate integration may predict ”loading”_ when unloading”
f" u should occur or vise-versa. To avoid inaccuraté integration, in
‘12’ general, a second sub-stepping criterion is imposed. The ratio Lg -
‘3‘ LZ] /L;‘ is required to be less than 0.0l1, where Lg and Lg are the sums of
&;E;E the absolute values of the calculated stress components at the end of
,:E: the increment with different numbers of sub-steps (i.e. 1 and 2 or 2 and
;'f, 4, ete). This criterion will obviously always require at least 2 sub-
41, steps. As noted above, an upper limit of 32 on the number of sub-steps
3&; is imposed.

;', IMPLEMENTATION OF CLAY

-: Subroutine CLAY, along with its supporting subroutines, (listed in
3:%',. Appendix I) is intended to be incorporated intc new and existing finite
‘ element (or finite difference) programs in order to supply the incre-
E;I mental material properties for cohesive soils as predicted by the bound-
~§ ing surface plasticity model. First some general comments concerning
) 4
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its use will be made, followed by specific instructions for its call”,

and finally some concluding remarks concerning the parent program and
the calculation of pore pressures.

Subroutine CLAY returns to the parent finite element program the
matrices (D] and [Dt], and the vectors {Ac} and {Aoo}. The matrix [p]
and the vector {Aoo}, as described above, relate the incremental stress
and strain vectors by means of eg. 2. The matrix [Dt] is the tangent
stiffness matrix (12) and is the value cof [D], (eq. 5 of reference 7)
at the end of the solution step.

If the global nonlinear solution scheme uses successive substitu
tion, only Eﬂ (and of course {Aoo}) is needed (5,12). If the
Newton-Raphson method is being used then the Jacobian can be approxi-
mated by the expression (l-a) [5'] + ath]. When a=0 the procedure
reverts to successive substitution and when a=1 it yiglds the tangent
stiffness” method”. For a quasi-Newton method (13) néither 6] nor DDt]
are needed (except for initiation of the approximate Jacobian and for
occasional updates, if used) and can be ignored. The incremental stress
{Ac}, however, is needed in the update formula and is calculated in CLAY
by the previously described integration process and is returned to the
parent program.

The CLAY™ “subroutine package” consists of the subroutine CLAY and
eight supporting subroutines. A.l the subroutines in this package are
written in FORTRAN 77, thus taking advantage of the structuring otfered

by the language. In keeping with modern programming practice, the

Contrary to what is suggested in (12), studies performed by the
authors for one element problems have found the successive substitution
method to show somewhat better convergence characteristics than the tan-
gent stiffness method. The successive substitution method can be sig-
nificantly improved by using an acdaptive convergence factor (7).

14
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design of the package is quite modular and facilitates its incorporation

§§ into new and/or existing finite element programs for the analysis of
'mﬁ earth structures.

ég To access the CLAY subroutine package a parent finite element pro-
?%; ’ gram needs to only call subroutine CLAY. This is done for each itera-
$§ tion of each loading increment and for all points in the idealized earth
ﬁ; structure where the incremental properties are required (e.g., at ele-
EQ‘ ment centers or at quadrature points). The call involves the following

argument list:

a CALL CLAY(INC,ITNO,ITYPE,KIND,LARGE,GAMMA,PROP,STOR,SIG,EP,DSIG,DEP,U,
) DLTAU,DBAR,DTAN,DSIGO)

, The quantities INC, ITNO, ITYPE, KIND and LARGE are integer
s% variables, U, DLTAU, and GAMMA are real variables, and PROP, STOR, SIG,
fﬁ_ EP, DSIG, DEP, DBAR, DTAN, and DSIGO are real arrays with the dimensions
" (21), (6), (6), (6), (6), (6], (6,6), (6,6) and (6), respectively.

%\ The arguments in the call statement are now discussed in detail.
§§‘ For clarity, the order of discussion is changed slightly from that in
;g the subroutine call.

j§s INC: Giobal solution increment number (the first increment must be
;; numbered 1).

jé ITNO: Global iteration number (the first iteration in each increment
g& must be numbered 1).

%E ITYPE: A flag indicating which form of the bounding surface is to be
E; used in the analysis.(further details regarding the possible
'E forms of the surface are given in Appendix IILI),

a: PROP: A one-dimensional array containing the values of the model
" ' parameters. At the point in the idealized earth structure for
: : which the incremental material properties are sought, these
g

; 
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) parameters characterize the bounding surface plasticity model

HE)

,;.‘:s\\ for the soil. The parent finite element program must read and
S

"u‘*( store the values of the model parameters for each different
o

(A}

type of soil in the structure being analyzed, and then, for

}{;. each call to CLAY, present the appropriate values for the soil
‘;3..' at the point in question.

‘?%E The model parameters are stored in the PROP array in the
:;g:g‘ following order : Ay Ky Moy Me/Mc’ vor G, I g » Patm* Re?
el Ac’ T, Re/Rc’ Ae/AC, c, S, m, hc’ he/hc, h2, a, w. That. is,
'-‘l PROP(1) = A, PROP(21) = w, etc. After the model parameters are
read into the parent program, but before the first call to
h-‘ CLAY, the values for Mc and Py must be converted to associated
:3%§ quantities in invariant stress space. This is achieved by mul-
;gi tiplying these parameters by 14/27 and 3, respectively. It is
:‘2 suggested that‘T subroutines RPROP and TCHECK, listed in Appendix
,'%n I1I, be incorporated into the parent finite element program for
%:?'.' the purpose of reading, echo printing and écaling the material
;%.‘ parameters. The input instructions for RPROP are given in
:i?: Appendix III along with a brief discussion of the new single
Essg:‘:: surface option for the bounding surface.

,l STORs This one-dimensional array is used to store the values of cer-
tain guantities (e.g., internal variables) which describe the

current state of the soil and parameters related to the evalua-

.._ tion of the model such as the number of sub-steps M. For a
sﬁ given step in the analysis these values are unique to the point
;E‘E' in the structure under consideration (e.g., element centers).
‘ At the beginning of the analysis the parent program must ini-
::j.:'z tialize, for each point in question, the values of STOR(1) and
"E *A detailed discussion of the model parameters is given in ref. §,7.
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STOR(5). STOR(l) must contain the initial value of the effec-

A L X

tive preconsolidation pressure (I0 = 3p°), while the initial
value of the total void ratio (eo) must be stored in

STOR(S).* These values are not read Oy the material parameter F

T A i B3 ™ ]

input subroutine (RPROP) because they will, in general, vary
from point to point within the deposit, even for a homogeneous

spil. After each call to CLAY, the values in STOR must be

o e e gt

stored by the parent program for each point in the earth struc-
ture for which the incremental properties are required. Prior i

to each call to CLAY the appropriate values for the paint in

NI R e B

question must be retrieved from storage (i.e., from a two-

dimensional array or from a disk file) and then presented to

s

N - -
e

the CLAY subroutine through the CALL.

SIGs This one-dimensional array contains the components of the
stress** at the beginning of the increment and must be supplied

to CLAY by the parent program. It corresponds to the vector

{G}N-l° Compressive normal stresses are considered to be
% positive.
?‘ EP: The components of the strains at the beginning of the increment
E; are stored in this one-dimensional array and must be supplied
to CLAY by the parent program. It corresponds to the vector

{e}

Nel® Compressive normal strains are consicered to be posi-

tive.

2 -
Pl

DSIGs This one-dimensional array contains an estimate of the

stress** increment. It corresponds to the vector {Ao}N and is

calculated and returned to the parent program by CLAY.

s xx s R 1M

P ——

o

*Note: when the new version of CLAY is introduced into finite element
iy programs SAC2 and SAC3 (9), the storage of the initial void ratio in
K. STOR(7) must be changed to STOR(5) in Subroutines GEOM and STIFNS.

**whether these are to be "total” or "effective” stresses is discussed
3 later.
! 17
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953 DEP: The estimate of the strain increment is contained in this one-
DR dimensional array. It corresponds to the vector {Ae}N and is

supplied by the parent program.

fg : Js This variable represents the oore oressure at the beginning of
%&; the increment N-1. It corresponds to the quantity UN-L*'

~:?i OLTAU: The estimate of the pore pressure increment is represented by
§§3‘ this variable. It corresponds to the quantity Au, *.

fﬂ&k GAMMA:  This variable is the combined bulk modulus (I) for the soil
o particles and pore fluid (14)*.

?;§ KIND: The value assigned to this flag is determined by how saturated
E. § conditions are modelled in the parent program.

V'" A value of zero is required when the special (mixed) formu-
:%i? lation for incompressible and nearly-incompressible solids
;;i& (10,15) is wused. In such instances, the pore pressure is
g

treated as a primary dependent variabie at the global level.

Thus, the parent program calculates u and AuN_ at the glo-

N-1 1
bal level. Whether or not the parent program is required to
send them to CLAY (in u and DLATU) depends on whether it sends

total or effective stresses in SIG and 0SIG (these possibiii~

ties are explored in greater detail later). For such a for-

°® mulation, the value of I’ (GAMMA) will be required by the parent
E?: program and is supplied by CLAY.

g;zs When a conventional displacement formulation for compressi-
‘.f' ble solids is used for idealized undrained conditions (14), (or
&i;: for unsaturated conditions where I’ is equal to zero), KIND is
§‘€é set equal to one. In such cases, the only primary global vari-
% ables are the displacements; the pore pressure is treated as a
%ﬁgj *Whether this quantity is supplied by the parent program or by CLAY is
qraw discussed in the explanation of the variable KIND.

e
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secondary dependent variable. The CLAY subroutine calculates
the values of U1 (V) and Auy, (DLTAU), and supplies them to
the main program for printing.

" DBAR and

§ DTAN:  These arrays contain the estimates of the incremental stress-
; . strain properties &ﬂ (see eq. 2) and the tangent stiffness
3 matrix” [Dt] respectively. For KIND = 1 these matrices have
ﬁ been augmented by adding I’ to the matrix elements in the upper
Y left 3 x 3 corner (more details are given later; see also

7,14).

Subroutine CLAY calculates (D] and [Dt] and returns them
to the parent program. It is desirable, but not absolutely
: necessary, that the parent program remembers” the last Eﬂ
s calculated for the point in question and returns it to CLAY in
the mext call. This is similar to the requirement for STOR.
For the first iteration of the first solufion step (and at

other instances for which the last calculated Eﬂ is not

- v ar am e

available) it should be set to zero.
K DSIGOs This array contains the stress correction vector of eq. 2, i.e.
5' {Aoo}.
" LARGE: The value of this flag depends on the definitions used for the
stresses and strains in the analysis. If eﬁgineering measures

b of stresses and strains are used, LARGE is set equal to zero.
+ If true stresses and logarithmic (natural) strains are used,
N LARGE is set equal to one.

Although the CLAY subroutine package determines three-dimensional
incremental stress-strain properties, it can also be used to supply pro-

perties for two-dimensional analyses. For a three-dimensional analysis

\ the ordering of the components in the stress (and strain) vector is

¢ 19
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In order to use CLAY in conjunction with a two-dimensional analysis
the strain and stress vectors in the parent orogram must be <expanded
into this form. For example, for an axisymmetric analysis the stress

and strain components are ordered in the following manner:

T

< 0,0,>  and <e_,¢ 0, 0>

r'%921 g . e’%2'Vre’

The indicated zero values must be supplied by the parent program for the
vectors {G}N, {e}N, and {Ae}N. The incremental stress-strain proper-
ties of interest are located in the upper left 4x4 corners of the 6x6
DBAR and DTAN arrays returned by the CLAY subroutine, etc.

For plane strain conditions .the stress and strain vectors are

ordered in the following manner:

y 0, T

y? Oz Tyys O 0>' and S€xr Eyr 0y Yoy O 0"

<0X’ g xy? =7

The indicated zero values must be supplied by thé parent program for the
appropriate arrays. It is seen that the parent program must calculate
the stress normal to the plane of the body (i.e., oz).

As described to this point, subroutine CLAY provides an incremental
relationship between the strain increment and the effective stress
increment. (Of course, for ideal drained conditions %otal and effective
stresses are identical). If CLAY is to be incorporated into a parent
finite element program which only requires this relationship, then no
further considerations are needed. For such an application the "call
parameters” KIND, U and DLTAU are assigned values of 0, 0.0 and 0.0
respectively, and the material property GAMMA is ignored. The arrays

SIG and DSIG are then effective stresses.
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Saturated soils under ideal undrained conditions (no movement of
pore fluid) behave as nearly incompressible solids and are often approx-

\ imated as perfectly incompressible solids. For a perfectly

s,

incompressible solid a conventional displacement analysis can not bSe

-l

used (10). The most popular means for handling this problem are the

use of a reformulated” analysis (i.e. a ”mixed” approach) (10) ana tne

.

X use of a penalty approximation of the incompressibility (l6). The
) reformulated analysis only requires a relationship between effective
stress and strain and hence the comments of the previous paragraph
apply. The penatly method in reality considers the material to be only
nearly incompressible and is dealt with in the next paragraoh.

It is often assumed that the slight compressibility of the pore
fluid and the soil particles can be modeled by the simple linear rela-

tion:

. Where Av/\/0 is the incremental change in volumé, I is a constant bulk
' modulus* for the pore fluid-soil particles and Au is the change in pore
pressure. (The approximation of Incompressible behavior by means of 3

‘—”,,/’penalty formulation introduces this same equation where I*is interpreted

f as the penalty number (16)). Typical Iwill be very large compared to
che Jeviatoric stiffness and thus the soil will behave as a nearly
incompressible solid.” The analysis of nearly incompressible solids is
notoriously difficult (10,17) and requires some special consideration.
\ The most commonly used schemes are the conventional displacement formu-
lation with ”selected-reduced” integration (16) and the previously men-

tioned reformulated (mixed) analysis (10).

*The possibility of treating Ias a variable in an attempt to model par-
tially saturated conditions is heyond the scope of this study.
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when a reformulated analysis is used for a nearly incompressible
material the parent program needs, in addition to the effective stress-
strain relationship, the volume change-pore pressure relationship. For
this latter purpose CLAY supplies the value of I" (GAMMA of the call) to
the main program. In a reformulated analysis the pore water pressure 1is
directly calculatad in the global finite element analysis. If it is
desirea that the parent program sena and receive total stress informa-
tion (SIG and DSIG) to CLAY then it must also supply (in the call) the
appropriate pore pressure values (U and DLTAU) to CLAY. If, instead,
effective stresses are used then U and DLTAU are supplied as zero.

For a conventional displacement analysis of idealized undrained con-
ditions where the water-soil particle compressibility is included, the
material stiffness is augmentea by the volume compressibility due to I
i.e., I’ is added by CLAY to each member of the upper left 3 x 3 corner
of {B] and [bt] (OBAR and OTAN of the call). For such conditions the
call parameter KIND is set equal to 1, and SIG and DSIG are total stress
vectors. Subroutine CLAY calculates the resulting pore pressure at the
beginning of tne interval (U) and the incremental change (DLTAU) and
ceturns them to the main program for printing purposes.

Either of the two methods dJdiscussed for undrained conditions are
valid for ideal drained conditions if I’ is set equal to zero.

The most important class of problems is when the sp0il is saturated
and there is time for flow of the pore fluid to take paice (due to non-
homogenous stress conditions). Such situations require the solution of
the coupled flow-stress analysis problem (a number of references are
given in (8)). Such an analysis requires the incremental strain-

effective stress relationship which can be supplied by CLAY. The.param-

eter KIND is set equal to 0. The stress vectors (SIG and DSIG) are
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either effective or total depending on whether U and DLTAU are supplied

to CLAY as zeros or as the actual pore water pressure values (as calcu-

lated by the parent program from the coupled analysis).

The subroutines making up the CLAY subroutine package are brierly
described below. Listing of the subroutines are given in Appendix I.
CLAY: This is the main subrouutine of the package. The parent finite

element program must call this subroutine in the manner dis-
cussed in the previous section. The substepping integration
strategy is determined and the local iteration is conducted in
the subroutine.

BOUND1: In this subroutine the quantities 8, F’i’ F,j, F,a and Eb are
computed for the form of the bounding surface consisting of a
single ellipse (further details regarding this new form of the
surface are given in Appendix III and in (18)); i.e., for
ITYPE=1 (refer to the discussion of the call to CLAY).

BOUND3: Values for the quantities listed above are computed for the
form of the bounding surface consisting of two ellipses and a
hyperbola (7); i.e., for ITYPE=3.

ELASTC: The elastic contribution to the &ﬂ array is computed in this
subroutine.

GETH: THe value of the hardening function 1s determined in this
subroutine. Further details regarding forms of the hardening
function are given in Appendix III.

INVAR: The values of the three stress invariants used in the formula-
tion are computed in this subroutine.

LODFUN: The values of the plastic modulus, Kp, and of the loading
index, L (eq. (7) in reference (7)), are computed in this sub-

routine.
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:}:3': PLASTC: The plastic contribution to the (o] array (eq. (5) in reference
Xy (7)) is computed.

:-.i.: SKALE: In this subroutine if the stress state lies outside the bound-
:"é ing surface, then using egs. (13}, it is scaled back to it.

33:.-3-:3

) EXAMPLES

}:H A number of examples have been analyzed in order to demonstrate the
2 improvements in "robustness” of CLAY. The first series involved incor-
it porating the new CLAY into program EVAL (7) and solving single element
E‘:EE': examples. For those cases in which CLAY had previously exhibited poor i
':EEE behavior the improvement was dramatic. In Tables 1 and 2 comparisons
‘e'!' are made of the results from two of these analyses for varying numbers
':.' . of global steps to reach a given finmal loading condition. while the
::‘:} _‘j results obtained with the new CLAY for one very large global step are
e not entirely accurate, they are not unreasonable as was the case with
2‘ the old version of CLAY. A careful study of the prédicted pore water
y‘: Y pressures (u) in Table 2 for the new CLAY reveals, an interesting pheno-
'l menon, i.e., the convergence with increasing numbers of global incre-
':‘:‘3 ments is not entirely smooth. This behavior can be observed by
"?{E comparing the results with 2, 4 and 8 global steps. This phenomenon is
";3 caused by the adaptive sub-stepping scheme used in the new CLAY which
E;: car; result in a greater total number of sub-steps even though the number
, ’ of global steps is less.

;\‘ The second series involved using the old and new versions of CLAY in
" the plane strain finite elementr program SAC2 and analyzing two ideal-
\&‘3‘ ized footing problems. Properties for a typical unsaturated clay were
ATY used for the soil. Results from one of these examples are given in
é.‘ Figure 3. The improvement in predictions for large step sizes is
E:.\ clearly evident.
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}%ﬁi CONCLUSIONS

The numerical scheme used to evaluate the bounding surface model for
;ﬁﬁ? : cohesive soils has been successfully modified in order to substantially
%”x’ improve its robustness. The modifications include the introguction of
' sub-stepping when necessary and a more accurate radial return algorithm.
34§§ 1t was demonstrated by a number of examples that the new algorithm
gé‘o is quite robust. That is for reasonably sized solution steps it gives
' accurate results and for very large steps it is convergent and gives
s reasonable accuracy. The one question that remains to be explored is
iy the impact of these modifications on the computational cost. The cost
— of the material model evaluation (as compared to ofher costs such as
equation solution) for large finite element analyses of earth structures

must be determined.
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) BOUNDING SURFACE

‘l‘-:ii F (81J9 qn) =0

\
;.. Projection center

N _ Fig. 1: Schematic illustration of a bounding
Yo surface in general stress space
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Fig. 3: Plane Strain Footing Example Using SAC2
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Table 1.

total stress path:

Triaxial Loading under Drained Conditions

////’ Ag =240
/ Nt
| Vs
Fo=392 kfa
ap=o
Number € P ev
of (%) (kpa) (%)
Increments old new old new old new
1 1.06 5.18 392 1392 0.61 2.64
2 2. 34 4.77 . L 1.62 2.71
4 3.35 4.38 ” - 2.27 2.72
8 3.91 4.24 LN R e 2.57 2.72
16 4,11 4,21 - - 2.68 2.72
32 4,17 4.19 M. " 2.71 2.72
64 4.18 4.19 =" L 2.71 2.72
128 4.19 4.19 - M. 2.71 2.72
29

------

Wy .
! ‘4'3\ o) %‘ “\

.
AR IOES

L

ST T A DA AN
.;:".l' \\ ni--! r’

O

N NN




%

3? Table 2. Triaxial Loading under Undrained Conditions

n {reformulated analysis)

b

3

{% undrained stress path:

4‘:'.

v g = 10% applied

:,:

30

"

o

o

{0

k2

6:.'|

i

®

3 Number q P u

? of (kPa) (kPa) (kPa)

i% Increments old new old new old new
b . 1 2593.04 | 249.801 176.06 | 169.19]1080.28 | 306.08
;:"o 2 1459.12 1 225.01| 29.68 | 180.05 848.69 | 286.95
“

;:s: 4 820.02 | 225.02| 55.80 | 180.16| 609.54 | 286.84
(13 B 477.68 | 226.99| 98.47 | 180.12| 454.76 | 286.88
Te, 16 312.40 224.97§ 146.02 | 180.19{ 350.11 | 286.80
0.‘

“;‘ 32 249.77 224,971 170.66 | 180.21] 304.60 | 286.78
A%

L)

::§ 64 231.07 | 224.99) 179.05 | 180.23| 289.97 | 286.77
pe 128 226.08 | 225.00] 181.10 ] 180.23| 286.26 | 286.76
'i“h
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ne! SUBROUTINE CLAY (INC,ITNO,ITYPE,KIND,LARGE,GAMMA,PROP,STOR,SIGTH,
rh{' $ £EPM,DSIGM,DEPM,UB,DLTAU,DBAR,DTAN,DSIGO)
19l

i 2 S 2 AL E I XS E IR I LZLEXALREIR T LS LRI LSRR 242222224222 ettt )ys)
[

ey v Subroutine to evaluate Yannis Dafalias' bounding 2
gl' » surface plasticity model for clay soils. #
~‘ﬁ§ & Fortran 77 version, Prepared by L.R. Herrmann and V.Kaliakin ®
"..' » at the University of California, Davis Campus. ¥
’l. @ #
. #  "Robust” version using radial return and sub-incrementing - 11/85 #
ity AR BRSNS RN RN RN IR R RN R AN R I NE IR ERA R BRI SRS O IR ART S
$ L INTEGER I,J,K,IT,INC,ITNO,ITYPE,KIND,LARGE,LOIT,LOITMX,II(6)
:{ (% REAL PROP(1),STOR(6),SIGTM(6),EPM(6),DSIGM(6),DEPM(6),DBAR(6,6),
it 5 DTAN(6,6),SIGB(6),EPB(6),DSIG(6),DEP(6),DEPT(3,3),3B(3,3),
L $ SE(3,3),bLTA(3,3),DB(6,6),DSIGO(6),SIGEM(6),SIGBP(6),
3 $ UB,DLTAU,GAMMA,SMALL,DIL,DDIL,VOIDB,VOIDE,XIB,XIE,XJB,{JE,
:g $ SCUBEB, SCUBEE, SIN3AB, SIN3AE, COS3AB, COS3AE, BULKB, BULKE, GB, GE,
?\3, $ XI0B,XIOE,XIL,XIBSV,XIESV,BETA,ER, REF,CONV, PRT,RTS,
1 : $ TEMP1,TEMP2, TEMP3, TEMP4
[4y-. C
R DATA 11/11,22,33,12,13,23/, DLTA/1.0,3%0,0,1.0,3%0.0,1.0/
c ' - _—
f‘ . C A number of arbitrary limits are defined
i c
183
:$’~ SMALL=0.0001#PROP(8) ! small value for stress invariant
TN BETALM=0.999 ! limit on "beta" (how far can be out of bound)
e STPMIN=1./32. + .01 ! limit of 32 sub-steps
J LOITMX=5 ! 1imit on number of local iterations
l:)j CONV=0.01 ! convergence limit for local iterations
s C and sub-stepping
.‘ : c - - - -
‘ﬁf c Initialize history for first increment
A c
L2 IF(INC .EQ. 1 .AND. ITNO .EQ. 1) THEN
e STOR(2)=STOR(1) ! size of bounding surface Io
|$§ STOR(3)=UB ! pore water pressure(for non-reformulated)
;*? STOR(6)=1.0 ! size of sub-steps
A END IF
YyV c
@ c Update history for new increment
S A8 c
~
o, IF(INC .GT. 1 .AND. ITNO .EQ. 1) THEN
N STOR(1)=STOR(2) ! size.of bounding surface Io
'flﬂ STOR(3)=STOR(4) ! pore water pressure(for non-reformulated)
Y STOR(6)=1.0 | size of sub-steps
o END IF
e c
[ c Convert from total stress formulation to effective stress
. u"\n (o]
N
oS GAMMA=PROP(6) ! bulk modulus for water & soil particles
s A
i\ 34
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s
i
1
i
S IF(KIND .EQ. 1) THEN ! unreformulated analysis
B UB=STOR(3)
v DLTAU=GAMMA®* (DEPM(1)+DEPM(2)+DEPM(3)) lchange in pore pressure
b3 STOR(4)=UB + DLTAU ! store pore press. (unreformulated analys)
A\ (:
f:) DO 5 I=1,3 ! remove stiffness due to gamma
e DO U J=1,3
b DBAR(I,J)=DBAR(I,J) - GAMMA
o) y CONTINUE
;{{ 5 CONTINUE
i ENDIF
. DO 10 I=1,3 ! convert to effective stresses
,13 SIGEM(I)=SIGTIM(I) -~ UB
b SIGBP(I)=SIGEM(I) ! initial guess of stress for end
3 SIGEM(I+3)=SIGTM(I+3) ! of increment
r':ﬂ SIGBP(I+3)=SIGEM(I+3)
M, 10 CONTINUE
d c
{:- c Calculate the initial estimate for the incremental stress
J '..‘_:\q C
% DO 30 I=1,6
;{QQ TEMP=0.0
e DO 20 J=1,6
, TEMP=TEMP + DBAR(I,J)®*DEPM(J)
[k 20 CONTINUE
e DSIGM(I)=TEMP
e 30 CONTINUE
b .‘:«\.’ (o4
Sy RTS=STOR(6) ! recall sub-step size used in previous iteration
) o
g:; 40 CONTINUE ! return point when change sub-step size
E f.l.l c
:i{f C Transfer stress ,strain and pore water pressure to local arrays 30
Ly C as not to disturb the values brought in from the parent progran
I c
) DO 100 I=1,6
o SIGB(I)=SIGEM(I)
S9N DSIG(I}=DSIGM(I}*RTS
f:}:' EPB(I)=EPM(I)
A DEP(I)=DEPM(I)®*RTS
N DSIGO(I)=0.0
L DC 50 J=1,6
Ay, DBAR(I.J)=0.0
e DTAN(I.J)=0.0
P 50 CONTINUE
N 100 CONTINUE
o ¢
C Determine 3-dimensional incremental properties.
c

FACTOR=0.0 ! Tangent properties at start of increment
XIOB=STOR(1)
CALL INVAR (FACTOR,STOR,SIGB,DSIG,EPB,DEP,DEPT,VOIDB,LARGE,
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14&5 $ SMALL,XIB,XJB,DIL,DDIL,SB,SCUBEB,SIN3AB,COS3AB,
o 3 DLTA,II}
*#: XIBSV=XIB {save unscaled vaiue {or {inding change in Io
1&» CALL ELASTC (PROP,VOIDB,XIB,DB,BULKB,GB)
")' CALL PLASTC (ITYPE,PROP,DEPT,VOIDB,X{IB,XJB,{I0B,DDIL,SB,S5CUBEB,
» $ SIN3AB,COS3AB,DB,BULKB,GB,DLTA,II,INC,ITNO,BETA)
.- c
P;:$ C If stress at start of increment outside of bound wove 1t Ddack
.i j C and calculace stress correction vector
_-'.:- C
s IF(BETA .LT. 1.0) THEN
- DO 200 I=1,3
‘ﬁ: DSIGO(I)=-(1.0 - BETA)#(SIGB(I) - XIB¥PROP(14}/3.0)
a0 SIGB(I) =SIGB(I) + DSIGO(I)
AL DSIGO(I+3)=-(1.0 - BETA)®*SIGB(I+3)
- " SIGB(I+3) =SIGB(I+3) + DSIGO(I+3)
" 200 CONTINUE
G END IF
0 ) c
: -3 C Sub-incrementing (if needed) integration loop over solution step
N c
"j PRT=0.0
'p,l.l. C .
- 300 CONTINUE { Sub-incrementing loop
-:‘u C '
ﬁ:%j BETAL=0.0 } initialize memory for beta
/ ﬁ} DO 325 LOIT=1,LOITMX ! Local iteration on stress sub-increment
} -'.a C
v FACTOR=1.0 ! Tangent properties at end of sub-increment
::!. CALL INVAR (FACTOR,STOR,SIGB,DSIG,EZPB,DEP,DEPT,VOIDE,LARGE,
"Lm $ SMALL,XIE,XJE,DIL,DLIL,SE,SCUBEE,SIN3AE,COS34E,
S 3 JOLTA,II)
‘;:a XIESV=XIE ! save unscaled value for finding change in Io
N c :
...A . CALL ELASTC (PROP,VOIDE,XIE,DTAN,BULKE,GE)
C
F‘,‘ XIL=PROP(T) ! calculate size of bounding surface
L TEMP1=1.0/(PROP(1) - PROP(2))
oy TEMP2= (XIESV - XIBSV)/3.0
IF(XIOB .GE. XIL) THEN
piovis XIOE=XIOB*EXP(TEMP1%0.5*((VOIDB + VOIDE)¥DDIL
6 $ - (VOIDB/BULKB + VOIDE/BULKE)#TEMP2))
.\-; ELSE
\*)f XIOE=XIOB + TEMP1#XIL#0.5%((VOIDE+VOIDB)*DDIL
52@ $ - (VOIDB/BULKB + VQIDE/BULKE)®*TEMP2)
::.; END IF
et CALL PLASTC (ITYPE,PROP,DEPT,VOIDE,XIE,XJE,XICE,DDIL,SE,SCUBEE,
” $ SIN3AE,COS3AE,DTAN,BULKE,GE,DLTA,II,INC,ITNO,BETA)
4‘1:"' C
MW DO 320 I=1,6 | estimate of stress change over sub-increment
]:.':. y TEMP=0.0
hﬂ': DO 310 J=1,6
® 36
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KLY
o TEMP=TEMP + 0.5%(DB(I,J) + DTAN(I,J))#DEP(J)
g0 310 CONTINUE
B DSIG(I)=TEMP
e 320 CONTINUE ! check convergence
J%‘ IF(ABS(BETA-BETAL )/MAX(BETAL,BETA) .LT. CONV) GOTO 326
e BETAL=BETA ! update memory of beta
el 325 CONTINUE
4, 326 CONTINUE
§3§ c
2&5 c Check to see if sub-incrementing is sufficiently fine
. IF(BETA .LT. BETALM .AND. RTS .GT. STPMIN) THEN
;ig RTS=RTS#*0.5 { halve the interval
it c
553 GO TO 40 ! start over on the step with smaller sub-steps
[\ ) C
by END IF
e PRT=PRT + RTS ! update at end of sub-step
'\1 BULKB=BULKE
[y XIBSV=XIESV
AN XIB=XIE
Lo VOIDB=VOIDE
L XIOB=XIOE
C
) DO 400 I=1,6
-l SIGB(I)=SIGB(I) + DSIG(I)
o EPB(I) =EPB(I) + DEP(I)
’_: DO 390 J=1,6
e DBAR(I,J)=DBAR(I,J) + 0.5%(DB(I,J) + DTAN(I,J))¥*RTS
D DB(I,J)=DTAN(I,J) .
[x 390 CONTINUE
e 400 CONTINUE
{ ’ C
el IF(PRT .LT. 0.99) GOTO 300 ! solution increment not yet complete
W h C
@ C Check to see if sub-stepping is sufficiently fine to give
§ . o accurate stress predictions
¢
- ER=0.0
;c REF=0.0
a0 DO 450 I=1,6
® ER=ER + ABS(SIGB(Il) - SIGBP(I))
oh REF=REF + ABS(SIGB(I))
s SIGBP(I)=SIGB(I) ! remember stress with previous
O 450 CONTINUE ! step size
’..: IF(ER/REF .GT. CONV .AND. RTS .GT. STPMIN) .THEN
o RTS=RTS%0.5
Y : GOTO 40 ! start over on the step, only with
g}” - END IF ! smaller sub-steps
fg.s: IF(BETA .LT. 1,0)WRITE(4,*)'ITNO=',ITNO, 'BETA=',BETA
ol o
55: STOR(2)=XIOE ! store size of bounding surface
B
®
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STOR(6)=RTS ! store sub-step size

)
\R'i c Calculate incremental stress and return it to the main program

DO 500 I=1,6 ! stress increment
DSIGM(I)=SIGB(I) - SIGEM(I)
500 CONTINUE

%4 Cc Conversion from effective stress to total stress

IF(KIND .EQ. 1) THEN ! for non-reformulated analysis
. DO 560 I=1,3 ! add in stiffness due to gamma
K~ DO 555 J=1,3

e DBAR(I,J)=DBAR(I,J) + GAMMA

JoN DTAN(I,J)=DTAN(I,J) + GAMMA

y 555 CONTINUE

it 560 CONTINUE

e END IF

f&g. DO 600 I=1,3 ! add pore pressure to effective stress
! DSIGM(I)=DSIGM(I)+DLTAU

) 600 CONTINUE

{ady! RETURN

L) END
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Ff . SUBROUTINE INVAR (FACTOR,STOR,SIG,DSIG,EPB,DEP,DEPT,VOID,LARGE,
] $ 3MALL,XI,XJ,DIL,DDIL,S,SCUBE,SIN3A,COS34,
i $ DLTA,II)
o C
) c Subroutine to compute values of invariants
]
) c
.i‘
4 INTEGER I,J,K,N,IK,LARGE,ZII(1)
P REAL STOR(6),SI1G(6),DSIG(6),EPB(6),DEP(6),DEPT(3,3),
4 $ s(3,3),DLTA(3,3),V0ID,SMALL,XI,XJ,DIL,DDIL,SCUBE,SIN3A,
ﬁ $ Cc0S34,ARB,FACTOR, TEMP1
¢ PARAMETER (yes=1)
DATA ARB/1000.0/
3 c
N DIL=0.0
X DDIL=0.0
: DO 20 I=1,3
X DIL =DIL + EPB(I)
e DDIL=DDIL + DEP(I)
|f 20 CONTINUE
b XI=0.0
,: d XJ=0.0
i SCUBE=0.0
L SIN34=0.0
c
:Q c Calculate first stress invariant
(¥ c
'y DO 100 I=1,3
9 XI=XI + SIG(I) + FACTOR®*DSIG(I)
. 100 CONTINUE
, c
0 VOID=1.0 + STOR(5)
\ IF(LARGE .ZQ. ves)
:ﬁ $ VOID=VOID#*EXP(-DIL - FACTOR*DDIL)
\ c .
?j c Change matrix components to tensor components;
c calculate deviatoric stresses.
QPO Cc
i DO 200 H=1,5
I I=II(N)/10
j? J=MOD(II(N),10)
K S(I,J)=SIG(N) + FACTOR#DSIG(N) - XI#DLTA(I,J)/3.0
] S(J,I)=S(1,d)
X DEPT(I,J)=DEP(N)®*(1.0 + DLTA(I,J))*0.5
Fr DEPT(J,1)=DEPT(I,J)
] 200 CONTINUE
i: c
\
W c Avold near zero value of the first stress invariant
e c
Vi IF(ABS(XI) .LE. SMALL) THEN
0 TEMP1=SIGN(1.0,XI)
:ﬁ XI=SMALL®*TEMP1
7 END IF
R{
[
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Compute the square root of the second deviatoric stress invariant
as well as the third deviatoric stress invariant

550
a0

Y DO 300 I=z1,3

) DO 300 J=1,3

L XJ=XJ + S(I,J)*s(I,d)

igkq DO 300 X=1,3

el SCUBE=SCUBE + S(I,J)*S(J,K)*S(K,I)
W 300 CONTINUE

: SCUBE=SCUBE/3.0

s

C Arbitrary check to avoid excessively small values of J

-
TR
s

s
NI s
(@]

XJ=SQRT(0.5%XJ)
IF(XJ*ARB .LT. XI) XJ=0.0

(@}

Compute the sine and cosine of three times the "Lode" angle

_4'?'.-

3% IF(XJ .GT. SMALL)  SIN3A=1.5%*SQRT(3.0)*SCUBE/(XJ#XJ*XJ)
*3.; IF(SIN3A .GT. 1.0) SIN3A= 1.0

234 IF(SIN3A .LT. -1.0) SIN3A=-1.0

o " COS3A=SQRT(1.0 - SIN3A®SIN3A)

¥l .

o‘.;su RETURN
5 END

9
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SUBROUTINE ELASTC (PROP,VOID,XI,D,BULK,G)

INTEGER I,d
REAL PROP(1),D(6,6),V0ID,XI,XIL,BULK,G,CONST1,CONST2, TEMP1

Calculate the elastic bulk and (if necessary) shear moduli

XIL=PROP(T)
BULK=VOID/(3.0#PROP(2))*(MAX(XI,XIL))

IF(PROP(5) .GT. 0.5) THEN ! shear modulus is input
G=PROP(5)

ELSE
TEMP1=1.5%(1.0 - 2,0%PROP(5))/(1.0 + PROP(5)) ! Poisson's ratio
G=TEMP1#BULK ! is input

END IF

Calculate elastic portion of the incremental properties

CONST1=BULK + G/0.75
CONST2=BULK - G/1.50

DO 100 1=1,6 ! initialize the D array
DO 100 J=1,6
D(I,J)=0.0
.D(J’I)=O 0
CONTINUE
DO 200 I=1,3 -1 load up the diagonal
D(I,I)=CONST1 ! elements
D(I+3,I+3)=G
CONTINUE
D(1,2)=CONST2 ! load up the nonzero
D(1,3)=CONST2 ! off-diagonal elements
D(2,3)=CONST2

D(2,1)=CONST2
D(3,1)=CONST2
D(3,2)=CONST2

RETURN
END
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AN
4;\;5';‘
R
e
o SUBROUTINE PLASTC (ITYPE,PROP,DEPT,VOID,XI,XJ,XIO,DDIL,S,SCUBE,
-g{h $ SIN3A,COS34,D,BULK,G,DLTA,II,INC,ITNO,3ETAS)
._h“,‘ C
;§§| INTEGER I,ITYPE,J,X,L,M,N,LL,LFLAG,II(1)
e REAL ALFUN,CV,RT,SINV
'“? REAL PROP(1),DEPT(3,3),S(3,3),D(6,6),DLTA(3,3),V0ID,XI,
R $ XJ,XI10,DDIL,SCUBE,SIN34,COS34,BULK,G,XKP, XKPBAR,BETA,
o $ DBETA,DFI,DFJ,DFAL,DFJJ,XN,R,A,H1, TEMP, TEMP1, TEMP2,
K0 3 TEMP3, TEMP4, TEXP5 , TEMP6 , TEMPT ,BETAS
L C
nhh ALFUN(CV,RT,SINV)=2.0%RT#CV/(1.0 + RT - (1.0 - RT)#SINV)
o
S XN=ALFUN(PROP(3), PROP(4),SIN3A) ! compute model parameters that
’;\- H1=ALFUN(PROP(17),PROP(18),SIN3A) ! are function of Lode angle
Gy c
" '.-j c Calculate bounding surface parameters
l." X C
- IF(ITYPE .£Q. 3) THEN
po -, R=ALFUN(PROP(9), PROP(12),SIN3A)
ey A=ALFUN(PROP(10),PROP(13),SIN3A)
B’y CALL BOUND3 (PROP,S,XN,R,A,VOID,XI,XJ,XIO,SCUBE,XKPBAR,DFI,
s $ DFJ,DFJJ,DFAL,BETA , BETAS)
e ELSE .
. CALL BOUND1 (PROP,S,XN,VOID,XI,XJ,XIO,SCUBE,XKPBAR,DFI,DFJ,
W $ DFJJ,DFAL,BETA,BETAS)
B END IF
1Ay c ,
pral IF(BETAS .LT. 1.0) CALL ELASTC (PROP,VOID,XI,D,BULK,G)
A DBETA=BETA - 1.0
J . IF(DBETA .LT. 0.0) DBETA=0.0
v; Cc
J\\.' C Check for elastic zone
25 C
Ko~ TEMP1=BETA - DBETA#PROP(15)
Wiy IF(TEMP1 .GT. 0.0) THEN
(] LFLAG=1
s ¢ | . . g
Yy C Caiculate the plastic modulus and loading function
£ c
«ff CALL LODFUN (ITYPE,PROP,DEPT,XN,H1,XI,XJ,XI0,DDIL,S,SCUBE,
ks $ COS3A,BULK,G,XKP,XKPBAR,VOID,DBETA, TEMP1,DFI,
® $ DFJ,DFJJ,DFAL,LFLAG)
- ELSE
oty LFLAG=0
‘Wid END IF
o c
{ c Calculate plastic portion of the incremental properties
) c
wy IF(LFLAG .NE. 0) THEN
oy TEMP3=3.0#BULK®*DFI
e TEMPY4=G*DFJJ
KX TEMP5=SQRT(3.0)*G#DFAL
Ve
l‘c‘
. .
o
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TEMP6=XKP + 9.0®BULK®*DFI®DFI + G¥DFJ#DFJ

TEMPT=XJ#XJ
DO 200 M=1,6

+ G¥(DFAL®COS3A)#*(DFAL%#COS3A)

I=II(M)/10

J=MOD(II(M),10)

DO 200 N=M,6
X=II(N)/10
L=MOD(II(N),10)

TEMP=0.0
TEMP1=0.0
TEMP2=0.0
IF(TEMPT*TEMP7 .NE. 0.0) THEN
DO 100 LL=1,3 ,
TEMP1=TEMP1 + S(I,LL)#*S(LL,J)
TEMP2=TEMP2 + S(X,LL)®*S(LL,L)
CONTINUE
TEMP1=TEMPS #( (TEMP1~1.5%SCUBE#S(1,J)/TEMPT7 )/TEMPT
-DLTA(I,J)/1.5)
TEMP2=TEMPS5 #( (TEMP2~1.5%SCUBE#*S(K,L)/TEMPT7 )/ TEMPT
-DLTA(K,L)/1.5) '
END IF -
TEMP=(TEMP3®*DLTA(I,J) + TEMP4#*S(I,J) + TEMP1)
#(TEMP3®DLTA(K,L) + TEMP4#S(K,L) + TEMP2)/TEMP6
D(M,N)=D(M,N) - TEMP '

CONTINUE

END IF
RETURN
END

43

"‘ P ! LY TR O T T T T B P AP U P L T L LN LN S - . e €
T O R R O S o A N e o G Ly »«.‘ Mt .. "" ) .' ' RN RO Q frated &‘\'




g
W
o
oty
el
g?g SUBROUTINE BOUND1 (PROP,S,XN,VOID,XI,XJ,XI0,SCUBE,XKPBAR,DFI,DFJ,
3 &4 3 DFJJ,DFAL,BETA,BETAS)
a4 c
§£§~ C Subroutine to evaluate relationship of current stress state
"’, ¢ to the bounding surface
NI C (the latter consisting of a single ellipse)
iyl ¢
o REAL DFUN,RT,FUN,FUNC
,:‘;:.:‘.'3 REAL PROP(1),Y0ID,XI,XJ,XI0,XIC,XIL,XIBAR,XJBAR,XKPBAR,BETA,
Jﬁgt $ GAM,THETA,DFI,DFJ,DFJJ,DFAL,XN,DNAL,R,C,ARB,BIG, SMALL,
. $ TEMP, TEMP1, TEMP2, TEMP3, TEMPY4 , TEMP5 , SCUBE, BETAS, S(3,3)
c
DATA ARB/0.001/,BIG/1.0E+20/,SMALL/1.0E=-20/
DFUN(FUN,RT,FUNC)=FUN®FUN®(1.0 - RT)/(2.0%RT®#FUNC)
c .
DNAL=DFUN(XN,PROP(%4),PROP(3))
R=PROP(9)
C=PROP(14)
c
XIC=XIO0*C
TEMP1=XI -~ XIC
IF(ABS(TEMP1) .LT. ARB) TEMP1=ARB
TEMP2=C - 1.0/R -
— TEMP3=TEMP1#TEMP2
N TEMP4=C#(C - 2.0/R)
iﬁk TEMPS=TEMP1#TEMP1 + (R - 1.0)#XJ/XN#(R - 1.0)%XJ/XN
X
) c )
Qﬁﬁ BETA=XIO*(-TEMP3+SQRT (TEMP3*TEMP3-TEMPS #( TEMPU+(2.0-R)/R)))
3 $ /TEMPS
Cc
3&? c Check if stress point is outside bound and if so scale back to it
) c
.48
;ﬁgﬁ CALL SKALE (PROP,S,XI,XJ,XIO,SCUBE,BETA,BETAS)
B C
W)
Ot C Compute derivatives of the bounding surface w.r.t. invariants
,' c and the value of the "bounding" plastic modulus
"Q'Q'l C
) YIBAR=BETA*(XI - XIC) + XIC
1t IF(XIBAR .EQ. 0.0) XIBAR=SMALL
o XJBAR=BETA*XJ
1L GAM=XIBAR/XIO
THETA=XJBAR/XIBAR
.-{ XIL=PROP(7)
Tore TEMP=12.0%V0QID/(PROP(1) - PROP(2))#*(MAX(XIO,XIL))®XIO®*XIO
4¢84 c
ey
¢ DFI =2.0%XIO*(GAM - 1.0/R)
3 DFJJ=2.0%BETA®#(R - 1.0)/XN®(R - 1.0)/XN
@ DFJ =DFJJ®™XJ
M ) DFAL=-6.0®XJBAR®(R - 1.0)®(R - 1.0)¥DNAL/ (XN®XN®XN)
"y XKPBAR=TEMP#(GAM - 1.0/R)#(GAM + R - 2.0)/R
NS RETURN
5&3 END
\l'
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SUBROUTINE BOUND3 (PROP,S,XN,R,A,VOID,XI,XJ,XIO0,SCUBE,
$ XKPBAR,DFI,DFJ,DFJJ,DFAL,BETA,BETAS)

Subroutine to evaluate relationship of current stress state

to the bounding surface

(the latter consisting of two ellipses and a hyperbola)

INTEGER IZONE
REAL DFUN,FUN,FUNC

REAL PROP(1),v01D,X,XI,XJ,XIO,XIL,XKPBAR,BETA,BETAS,DFI,DFJ,DFJJ,
$ DFAL,XIC,XN,DNAL,R,DRAL,A,DAAL,Y,C,ARB,BIG,SMALL,T,Q,QC,Q0,
$ FOP,XJo,BT,RHO,XIBAR, THETA,PSI,GAM,DYSAL,DFOPAL,DJOAL,DBTAL,
$ DRHOAL, TEMP, TEMP1, TEMP2, TEMP3, TEMP4 , TEMP5 , TEMP6 , TEMPT , TEMP8

DATA ARB/0.001/, BIG/1.0E+20/, SMALL/1.0E-20/
DFUN(FUN,RT,FUNC)=FUN®*FUN#(1.0 - RT)/(2.0%RT®*FUNC)

DNAL=DFUN(XN,PROP(4),PROP(3))
DRAL=DFUN(R,PROP(12),PROP(9))
DAAL=DFUN(A,PROP(13),PROP(10))
Y=R®A/XN

C=PROP(14)

XIC=XIO*C

Shift projection point

TEMP1=XI -~ XIC
IF(ABS(TEMP1) .LT. ARB) TEMP1=ARB
TEMP2=C - 1.0/R
TEMP3=TEMP1#*TEMP2
TEMPY4=C#(C - 2.0/R)
Q =XJ/TEMP1
QC=XN/(1.0 - R%*C)
IF(C .NE. 0.0) THEN
QO=XN®(SQRT(1.0 + Y*Y) - (1.0 + Y))/R/C
ELSE
Q0=-BIG
END IF

IF(XJ .EQ. 9.0) THEN
IF(TEMP1 .GT. 0.0) THEN
IZONE=1
ELSE
IZONE=3
END IF
ELSE IF(C .GE. 1.0/R) THEN
IF(Q .GE. 0.0 .OR. Q .LE. QC) THEN
IZONE=1
ELSE IF(Q .GE. Q0) THEN
IZONE=3
ELSE
IZONE=2
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Y END IF .
9 ELSE r
Y IF(Q .GE. QC) THEN
R IZONE=2 1
5 ELSE IF(Q .GE. 0.0) THEN
e IZONE=1
s ELSE IF(Q .LE. Q0) THEN
"y IZONE=2

e ELSE
" IZONE=3

END IF
o END IF
Xl IF(IZONE .EQ. 1) THEN
R c
;;';::;: g Projection on ellipse 1
NI

"' TEMPS=TEMP1#TEMP1 + ((R - 1.0)%XJ/XN)##2

- BETA=XIO#(-TEMP3+SQRT(TEMP3#TEMP3-TEMPS ® (TEMPU+(2.0-R)/R)))
R0 $ / TEMPS
I ELSE IF(IZONE .EQ. 2) THEN
dﬁ" c
‘,?f, c Projection on hyperbola

= c

| TEMPS=TEMP4 - 2.0%A/R/XN
. TEMP6=XJ*(1.0/R + A/XN)/XN
;% TEMP7=TEMP3 + TEMP6
SaY TEMP8=TEMP1#TEMP1 - (XJ/XN)#*(XJ/XN) -
oy BETA=-0.5%XIO#TEMP5/TEMP7

vhe IF(TEMP8 .NE. 0.0)

),, $ BETA=XIO*(-TEMP7 + SQRT(TEMPT*TEMP7 - TEMP8#TEMPS))/TEMPS
Sl ELSE

s

0:".’ c

::::s::‘, g Projecton on ellipse 2

ﬁ“&

D T=PROP(11)

. TEMP5=SQRT(1.0 + Y#Y)
“?.« FOP=XN/TEMPS
o XJO=4%(1.0 + Y - TEMP5)/Y

o BT=T#(XJO - T#FOP,/(XJO - 2.0#T#FOP)

! RHO=(BT - T)/FOP/XJO
el TEMP6=T - BT + C
L TEMPT =TEMP 1 #TEMP6
P TEMP8=TEMP1#TEMP1 + RHO®XJ*XJ
:'.ﬁ.' BETA=XIO®(~TEMPT+SQRT (TEMPT $TEMPT
Y $ -TEMPS#(TEMP6*TEMP6 - BT#BT)))/TEMPS
Ay END IF

c

. c Check to see if state point is on outside the surface, and if so,
:,'j:::j c scale it back to the surface.

A% C

s CALL SKALE (PROP,S,XI,XJ,XIO,SCUBE,BETA,BETAS)
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ﬁiﬂ c Compute derivatives of the bounding surface w.r.t. invariants
.“Jk C and the value of the "bounding" plastic modulus for the
:%?' c appropriate zone.
) c
S XIBAR=BETA#(XI - ZIC) + XIC
et IF(XIBAR .EQ. 0.0) XIBAR=SMALL
K GAM=XIBAR/XIO
A T THETA=BETA#XJ/XIBAR
; : X=THETA/XN
o XIL=PROP(7) '
B TEMP=12.0%V0ID/(PROP(1) - PROP(2))#XIO®XIO#(MAX(XIO,XIL))

c
&$$§ IF(IZONE .EQ. 1) THEN
X Cc
ﬁ%? . C Normal consolidation zone (ellipse 1)
Ky, c
L PSI=Y/((R - 1.0)¥(R - 1.0))
o TEMPSzR#(1.0 + X*X + R#*(R - 2.0)%X#X)
4l DFI=2.0%XIO®(GAM - 1.0/R)*PSI
§ DFJJ=2.0#XIO#GAM#((R - 1.0)/XN)*##2#PSI#BETA/XIBAR
)gﬁ DFJ=DFJJ#XJ
2N XKPBAR=TEMP®*(GAM - 1.0/R)#*(GAM + R - 2.0)*PSI*PSI/R
el DFAL=PSI*6.0%(R-1.0)*THETA®GAM#XIO#(((R-1.0)/ (ReR#*

$ (2.0/R-GAM=1,0)) + 1.0)®DRAL - (R-1.0)*DNAL/XN)/(XN®XN)

T RETURN :
g ELSE IF(IZONE .EQ. 2) THEN
1 C
:\ f c Overconsolidated zone (hyperbola)
‘:‘!'i C
D) TEMP5=1.0 - X%(1.0 + Y)
et DFI=2.0%XIO*(GAM - 1.0/R)
h‘t DFJ=2.0%XI0*((1.0 + Y)/R - X%GAM)/XN
) DFJJ=DFJ/XJ
X XKPBAR=TEMP®(GAM - 1.0/R)*(TEMP5%GAM + 2.0%A/XN)/R
B DFAL=6.0#XIO® (DNAL#*(THETA#GAM/XN=-1.0/R+A/ (R#*THETA®GAM)
® $ -2.0%A/XN)/ (XN#XN)+DRAL#(1.0/THETA~1,0/XN+A/ (XN*THETA®GAM) )
o $ /(R#*R) + DAAL®*(1.0/XN - 1.0/(THETA®GAM®*R))/XN)
it RETURN
ag ELSE
2 c
?JL c Tension zone (ellipse 2)
® c
[ PSI=1.0/(R®(BT - T))
ot DFI=2.0%PSI®XIO®(GAM + T - BT)
:; : DFJJ=2.0#PSI®XIO®GAM®RHO*BETA/XIBAR
Vi DFJ=DFJJ%XJ
e XKPBAR=TEMP®PSI#PSI#(GAM+T~BT)®(GAM®(BT-T) + T#(2.0%BT-T))
Y . DYSAL=Y#(DRAL/R + DAAL/A - DNAL/XN)
I DFOPAL=FOP*(DNAL/XN - Y®DYSAL/(1.0 + Y#Y))
i DJOAL=XJO®(DAAL/A - DYSAL/Y) + A®%(1.0/Y - FOP/XN)®DYSAL
) DBTAL=( (T-BT)*DJOAL - (T-2.0%BT)#T#DFOPAL)/(XJO~2.0%T#FOP)
S DRHOAL=DBTAL/FOP/XJO - RHO#(DFOPAL/FOP + DJOAL/XJO)
® 47
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DFAL=3.0%#PSI®*XIO#THETA®GAM® (DRHOAL + 2.0®RHO#DBTAL
3 / (T+GAM-2.0#BT))

RETURN
END IF
END

SUBROUTINE LODFUN (ITYPE,PROP,DEPT,XN,H1,XI,XJ,XI0,DDIL,S,SCUBE,
$ C0s34a,BULK,G,XKP,XKPBAR,VOID,DBETA,DENOM,DFI,
$ DFJ,DFJJ,DFAL,LFLAG)

Subroutine to calculate the plastic modulus and loading function
INTEGER I,ITYPE,J,K,LFLAG
REAL PBOP(1),DEPT(3,3).S(3.3),XJ,XIO,DDIL,SCUBE,COS3A,
$ VvO01D,BULK,G,XKP,XKPBAR,DBETA,DENOM,DFI,DFJ,DFAL,DFJJ, XN,
$ #1,H,XLF,SUM1,SUM2, TEMP1, TEMP2,, TEMP3, TEMP4 , TEMPS , TEMP6

Get value of hardening function and compute the plastic modulus .

CALL GETH (ITYPE,PROP,XN,H1,H,XI,XJ,X10,DFI,DFJ,VOID)
XKP=XKPBAR + H®DBETA/DENOM

SUM2=0.0 ! compute the value of the loading

function

TEMP1=0.0
TEMP2=3.0#BULK*DFI
TEMP3=G#*DFJJ
TEMP4=SQRT(3.0)*G*DFAL
TEMP5=XKP + 9.0%BULK®DFI®DFI + G¥*DFJ#DFJ
$ + G®#(DFAL®COS3A)#(DFAL®*COS34)
TEMP6 =XJ *XJ
IF(TEMP6 .NE. 0.0) THEN
DO 200 I=1,3
DO 200 J=1,3
SUM1=0.0
DO 100 K=1,3
SUM1=SUM? + S(I,X)®*S(K,J)
100 CONTINUE
TEMP1=TEMP1 + (SUM1 - 1.5®#SCUBE#S(I,J)/TEMP6)
$ #DEPT(I,J)/TEMP6
SUM2=SUM2 + S(I,J)*DEPT(I,J)
200 CONTINUE
TEMP1=TEMP1 - DDIL/1.5
END IF
XLF=(TEMP2#*DDIL + TEMP3#SUM2 + TEMPU®TEMP1)/TEMPS

Check for unloading or neutral loading
IF(XLF .LE. 0.0} LFLAG=0

RETURN
END
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SUBROUTINE GETH (ITYPE,PROP,XN,H1,H,XI,XJ,X10,DFI,DFJ,VOID)

C
c Subroutine to compute the hardening function H
C
INTEGER ITYPE
REAL PROP(1),XN,H,H1,H2,XI,XJ,XI0,DFI,DFJ,UNTNOR,R,SM,Z,
$ VOID,PATM,VAL1,VAL2,TEMP1,TEMP2,TEMP3, TEMPY
C
PATM=PROP(8)
R =PROP(9)
SM=PROP(16)
H2=PROP(19)
VAL1=PROP(20) ! first experimental const.
VAL2=PROP(21) ! second experimental const.
Cc
Z=XJ¥*R/ (XN*XIO)
TEMP1=Z%#3M
TEMP2=9.0%DFI*DFI + DFJ*DFJ/3.0
UNTNOR=3.0%DFI/SQRT(TEIP2)
TEMP3=SIGN(1.0,UNTNOR)
IF(VAL1 .LE. 0.0 .OR. ITYPE .EQ. 3) THEN
TEMPU4=1.0 ! constant bk desired
ELSE )
TEMP4=0.5%(VAL1 + TEMP3®((ABS(UNTNOR))#*(1. 0/VAL2)))
END IF
C
H=VOID/(PROP(1) - PROP(2))®*PATM*TLMP2*TEMP4*
[ (TEMP1%H1 + (1.0 - TEMP1)#*H2)
RETURN
END
49
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SUBROUTINE SKALE (PROP,S,XI,XJ,XIO,SCUBE,BETA,BETAS) J

Subroutine to check if the current stress state lies outside the
bounding surface, and if so, scale it back to the surface. 4

o g
et e et ! .
"'U"r":"'( .
QOO

i, REAL PROP(1),S(3,3),BETA,BETAS,XI,XJ,SCUBE,C,XIC,XI0

Q

[a)
4 C=PROP(14)
R {n XIC=C#XI0
" ¢ BETAS=BETA
s IF(BETA .LT. 1.0) THEN
” XJ=XJ*BETA
) SCUBE=SCUBE#*BETA®BETA¥BETA
Se% XI=BETA®(XI - XIC)+XIC
:af& DO 200 I=1,3
.; DO 100 J=1,3
K S(I,J)=BETA®#S(I,J)
o 100 CONTINUE
0 200  CONTINUE
qee BETA=1.0
o ENDIF
e RETURN
o END
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SUBROUTINE RPROP (ITYPE,PROP)

This subroutine reads in and modifies the parameters required
by the bounding surface plasticity uodel for cohesive soils.

INTEGER I,ITYPE

REAL PROP(1)

READ(5,%) ITYPE

IF(ITYPE .EQ. 1) THEN
READ(5,#%) (PROP(I),I=1,9),(PROP(I),I=14,21)

ELSE ! ITYPE = 3
READ(5,#*) (PROP(I),I=1,19)

END IF

WRITE(6,900) PROP(1),PROP(3),PROP(2),PROP(4)
IF(PROP(5) .LT. 0.5) THEN
WRITE(6,902) PROP(5)
BLSE
WRITE(6,904) PROP(5)
END IF
YRITZ(6,906) PROP(T7),RROP(8)
IF(ITYPE .ZQ. 1) THEN
WRITE(6,908) PROP(9),PROP(14),PROP(15)
ELSE
WRITE(6,909) PROP(9),PROP(12),PROP(10),PROP(13)
CALL TCHECK (PROP) -
WRITE(6,911) PROP(11),PROP(14),PROP(15)
END IF

WRITE(6,910) PROP(16),PROP(19),PROP(17),PROP(18)
IF(PROP(20) .GT. 0.0) THEN
WRITE(6,912) PROP(20),PROP(21)
ELSE
WRITE(6,914)
END IF

Convert parameters from triaxial to invariant stress space

PROP(3)=PROP(3)/SQRT(27.0)
PROP(T7)=PROP(T7)%3.0

RETURN

900 FORMAT(13X,'TRADITIONAL CLAY MATERIAL PARAMETERS:!',/,13X,37('-'),
$ /,10X,'Lambda =',F7.3,17X,'Mc =',F7.3,/,
3 10X, 'Kappa =',F7.3,14X,'Me/Mc =',FT7.3,/)

902 FORMAT(19X,'Poisson''s ratio =',F7.3)
904 FORMAT(18X,'Shear modulus, G =',1PE10.3)
906 FORMAT(11X,'Transitional stress, P1 =',1PE10.3,/,

$ 14X, 'Atmospheric pressure =',1PE10.3,//)

908 FORMAT( S5X,'Bounding surface shape parameter, R =',FT7.3,/,
$ 10X, 'Projection center parameter, C =',F7.3,/,
$ 12X, 'Elastic nucleus parameter, S =',F7.3,/)

909 FORMAT(15X,'BOUNDING SURFACE SHAPE PARAMETERS:',/,15X,34('-'),
$  /,14X,'Re =',F7.3,14X, 'Re/Re =',FT.3,/,
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(w' ~ $ 14X, 'Ac =',F7.3,14%, 'Ae/Ac =',FT7.3)
1%': 910 FORMAT(21X, *YARDENING PARAMETERS:',/,21%,21('='),/,
o $ 15%,'m =',F7.3,17X, 42 =',F7.3,/,

) 3 14X,'He =',577.3,14%, 'He/H8e =',F7.3)
9 911 FORMAT(1SX,'T =%,57.3,//,
N $ 14X, 'Pro jection center parameter, C =',F7.3,/,

3 14X,' Zlastic uucleus parameter, S =',F7.3,/)

iﬂ,' 912 FORMAT(15X,'a =',F7.3,18X,'w =',F7.3)
.Sv 914 FORMAT(/,10X, 3('*'\ ' The shape hardening function is constaat ‘',
'l?' Q (1{') /)
END
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(

-:‘ A
13%% SUBROUTINE TCHECK (PROP) 4
A0t C
‘7_-.". c This subroutine checks the value of the bounding surrface shape
RAC C parameter "T" and adjusts this value if it exceeds the theoretical max. 4
‘%; c Original version written by J.3. De HNatale.

ae Cc

(XK
g REAL TEMP1,TEMP2,TEMPR,PROP(1)

vwﬁ YFUN(TT)=(1.0 + TT)*SQRT(1.0 + TT*TT) - (1.0 + TT#TT)
S C
LARA)
,:':::: c Check against theoretical limit in compression

A C

TEMP1=PROP(11)
PR TEMP2=PROP (9 ) #PROP (10 ) #SQRT(27.0)/PROP(3)
e TEMP2=YFUN(TEMP2)
% ) TEMP2=TEMP2/2.0/PROP(9)
‘,g:::g IF(PROP(11) .GT. TEMP2) PROP(11)=TEMP2
PO C
‘r.:_ c Check against theoretical limit in extension
\""‘ C
;::‘l' ' TEMPR=PROP(9 ) #PROP(12)
aﬁkz TEMP2=TEMPR®*PROP(10)#PROP(13)#SQRT(27.0)/PROP(3)/PROP(Y4)
:;;:‘. , TEMP2=YFUN(TEMP2)
Al TEMP2=TEMP2/2.0/TEMPR )

r{ IF(PROP(11) .GT. TEMP2) PROP(11)=TEMP2

IF(PROP(11) .NE. TEMP1) WRITE(6,900)
900 FORMAT(/,TX,'>>> THE USER-SPECIFIED VALUE OF T EXCEEDS THE MAX',
$ ' KK, /,12%,! PERMISSIBLE VALUE AND HAS BEEN RESET TO:',/)

RETURN
END
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! APPENDIX III

Input to the RPROP Subroutine

)
%éﬁ The following quantities are read by the RPROP subroutine: (Note:

R the input is free-form).

ol Line 1: (integer)

1 Bounding surface consists of a single
. ' ellipse (see discussion below)
Ty ITYPE = ‘

LAY )
ﬁﬁ* 3 Bounding surface consists of a combi-
W nation of two ellipses and a hyperbola (7)

el Subsequent line(s): (all parameters are real)

At Patm

0_ if ITYPE = 1: if ITYPE = 3

“ -

.&:P'
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The Single Ellipse Model

R Recently a form of the bounding surface model was developed in which
the surface consists of a single ellipse (further details regarding all
aspects of this new model are given in reference (18)). Although the
i adoption of a single ellipse simplifies the explicit definition of the
| bounding surface, (in previous applications the surface consisted of a
: combination of two ellipses and a hyperbola (7)), it requires the modi-
ciation of the shape hardening function h (refer to "modification 5”
in referenced (7)). More precisely, if the single ellipse is used
A instead of a ™flatter” (with respect to the critical state line) hyper-
bola in the region to the left of the critical state line undesirably

* high levels of J will be attained at large overconsolidation ratios.

K

¥

é The following hardening function is therefore used:

i, ° m m 1 . v

‘. - - —

. h= [z hl(a) +(1-2 )hz]l:z (a + 31gn(np) \” nd )]

iU

¢ .

) i

N In the above expression np represents the component in the p-
W

: direction of the unit normal in triaxial space; the parameters a and w .
ﬁ control the decrease of h (further details are given in reference (18)).
*,

]

The inclusion of the terms in the second set of brackets renders % a
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e function of the ratio n= q/p. Noting that np varies in magnitude from

+1 (along the p-axis in a positive direction) to -1 (along the p-axis in
a negative direction), the function R is seen to decrease abruptly in
W . value when the critical state line is crossed (i.e. when np passes
C) through zero).

Say If, on the other hand, a bounding surface consisting of two ellipses
?q? and a hyperbola is specified (i.e., ITYPE = 3), the hardening function

used is (7):

:;“: h = " hl(a) + (1 - zm)th
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