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INTRODUCTLON

Obtaining direct experimental information on the dynamics of the detlagra-
tion and detonation of energetic materials has been difficult with the use ot
conventional optical techniques. The advent of nonlinear optical techniques such
as Coherent Anti-Stokes Raman Scattering (CARS) provides an opportunity to extend
the information obtainable on energetic systems. Propellant flames are otften
transient, particle-laden, incandescent, and, under some conditions, turbulent.
However, single—-shot CARS spectra were obtained from the post-flame region of
double-base propellant flames (Harris and Mcllwain, refs | and Z). This demon-
stration of the direct applicability of CARS to obtaining temperature and concen-
tration from propellant flames led to further investigations in the reaction zone
and post-flame region of CHA/N 0 model propellant flames (Harris, refs 3 and 4
and Aron et al., ref 5). These studies were then extended to the reaction zone
of nitramine propellant flames through measurements at the surface and at 6-mm
above the propellant surface (Aron and Harris, ref 6 and Harris, ref 7). In
these studies both the spectral and spatial ranges are extended for the reaction

zone of CH4/N 0 and nitramine propellant flames. Rich CH4/N20 flames are used as
stationary model flames of the transient propellant flames.

The combustion of nitramine propellants was reviewed recently by Boggs (ref
8) and Schroeder (ref 9). Nitramine propellants contain a substantial percentage
of nitramines (~76%) along with a small percentage of energetic binder {(~4%
nitrocellulose) and/or organic-ester binders. Current models of nitramine pro-
pellant combustion are essentially models of HMX (cyclotetrauwethylene tetranitra-
mine) and RDX (hexahydro-1,3,5-trinitro-s—-triazine deflagration). The burning
rate expression for nitramine propellants (Ben-Reuven and Caveny, ref 1l0)

r = ap1/2 (1 + p/b)l/z

is such that at low pressure

p<<b, r ~ p1/2

whereas at high pressure

p>>b, r ~ p!

Much of the modeling of nitramine propellant has been to explain this complex
burning rate behavior. Ben-Reuven and Summerfield (ref 11) have reviewed nitra-
mine propellant modeling and derived improvements to the comprehensive model of
nitramine deflagration (Ben-Reuven and Caveay, ref 10). The Ben-Reuven and
Caveny model consists of the following mechanism:

..0 *
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First, partial decomposition of RDX in the liquid phase
RDX(L) »> 3CH,0 + 9/4 N,0 + 3/4 NO + 3/8 N,

Next, gas phase decomposition of RDX in the near field (close to the propellant

surface)
)
::! RDX(G) > NO, + NyO + 3CH,0 + 3/2 N,
lfﬁt Finally, oxidation of formaldehyde by NO,

CH20 + NO, > Hy0 + CO + Ny

in the far field (relatively far from the propellant surface).

Thermocouple measurements of temperature profiles in nitramine/polyurethane
composite propellants were made by Kubota (ref 12). He obtained surface tempera-
tures between 690 K to 730 K in the pressure range between 10 to 30 atm. Kubota
found from flame quenching studies that both RUX and the polymeric binder melt at
the surface to produce an homogeneous liquid layer that produces an homogeneous
flame The flame was found to consist of dark and luminous flame zones with the
lumi . ;a8 zone approaching the propellant surface with increasing pressure. The
meas: r:d dark zone thickness at 20 atm for a 75% RUX formulation was 2-um. The
dark :one thickness was observed to vary inversely with the square of increasing
pressure, At 1,000 psi, the dark zone would be compressed to 20U um, spatially
limiting accessibility for optical diagnostics. The 1luminous flawme, however,
would still be accessible to optical diagnostics. According to Kubota, the dark
zone reaction can be attributed to NO reduction to N2 to produce the luminous
flame. The burning rate was found to be controlled not by the luminous tlame but
rather by exothermic reactions of RDX at the propellant surface.

Ben-Reuven and Summerfield (ref 1i) have added to the Ben-Reuven and Caveny
(ref 10) model, a nonequilibrium evaporation law at the melt-gas interface, an
improved melt phase model including a decomposition-gas bubble, and an improved
model for far-field processes including several simultaneous secondary reactions.

Schroeder (ref 9) has reviewed nitramine decomposition chemistry. At low
temperature (500 to 600 K), the gas phase reaction mechanism by which RDX ini-
tially decomposes is postulated as

(CHy NNOy)3 > 3CH,0 + 3,0
This {s thought to occur through HONO elimination and/or cyclic decomposi-

tion via the intermediate L-nitrotormimine, CH)NNO.,. Crossover to a aigh teaper-
1ture reaction nechanism in the jas phase is thought o occur aoove about 60U K.
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%ﬁ' This mechanism is thought to occur via breakage of an initial NN bond followed by

2&:‘ fragmentation to CH,NNO, which decomposes to HCN and NO,, leading to the overall
¢ initial reaction.

3
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il (CH,NNO»)3 + 3HCN + 6NUy + 3H

g 2NWV273 2 2
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i”jl The liquid phase reaction is also thought to occur by a mechanism similar to

ﬁ}% the high temperature gas phase reaction mechanism.

Price et al. (ref 13) modified the Beckstead-Derr-Price (BUP) framework for
HMX decomposition to incorporate both the high (endothermic) and low (exothermic)
oV, temperature nitramine decomposition mechanisms in the solid and exothermic and
endothermic second-order reactions in the gas phase. Cohen et al. (ref 14) ex-
plicitly included reactions of HCN and NO in the BDP wodel.

ﬁét Miller and Coffee (refs 15 and 16) gave detailed comparisons of the various
‘??f methods used to model propellant combustion. Their assessment was that the meth-
535 ods place too much emphasis on matching experimental burning rate data which are
‘“ relatively insensitive to mechanistic details. The; conclude that mechanisms
oK used in propellant modeling should be independently validated. Propellant sur-
bﬁ.* face temperature, Ts, enters many of these models as a parameter used to match
@Q experimental burning rates. Independent measurement of Ts will allow validation
haﬁl . and further development of these models.

h
A CARS spectroscopy, which was reviewed by Druet and Taran (ref 17) and
A Ecbreth and Schreiber (ref 18), provides an ideal tool fer the further elucida-
JSQ: - tion of nitramine propellant kinetic mechanisms, CARS has the necessary spatial
Wy (100 im), temporal (10 ns single shot), and spectral resolution to provide the
-&ha detailed temperature, concentration, and rovibrational state distribution pro-
yﬁﬁ files necessary to successfully model propellant flames from independently meas-
' ured elementary kinetic reactions (Gardner, ref 19).
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N EXPERIMENTAL

!

A
.‘ CARS spectra are generated with folded BOXCARS to achieve phase matchiag.
N The output of a Quanta-~Ray DCR-2A Nd/YAG laser at 1,06 um (700 mj) is doubled to
3\‘ generate the pump beam at 5320A (250 mj) with a bandwidth of near 1 co~ !,  The
g% pump beam is separated from the primary beam with prisms. The pump beam is split
J;; to generate wls and w, + W . is used to pump a dye laser to generate the Stokes

beam, w,. The dye lader consists of a flowing dye cell in a planar Fabry-Perot

KN oscillator cavity pumped slightly off axis by 20% of w, with the output ampli-
&5: fied by an additional flowing dye cell pumped by the remainder of w, . The dye
?b? laser is operated broadband with the laser dyes given in table l. °To achieve
Qq¢ * BOXCARS geometry, is reflected onto the front surface of a dichroic mounted
ﬁﬁ{ at a 45 degree angléﬂ The dichroic reflects 50% of W, from half of 1its front
® surface and 100% of the remainder of w, from its back sfrface while transmitting
iﬁ ) w, which is introduced from the rear Aglow mlp' mlp is split {into two beams, W)
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B and w °, such that at the focusing lens (200 mm focal length) W) ml’, and w, are

N paraliel and situated on a circle of 12.5 mm diameter with @, and w °~ on the
central horizontal plane of the lens with w, in the central vertical plane.
N Telescopes are inserted in the w, and w, beams to allow the focal spots to be
b%f equalized and intersecting. This Rvas acHieved with 0.85 and 2 X Galilean tele-
Qﬁ’ scopes in w  and w,, respectively. A 5-mm-diameter iris centered on w, prior
j&ﬂc to splittingpfutther restricts intersection to the central portion of wf . To
3@? optimize phase matching, a 12.5~mm-thick optical flat--rotatable about 1t hori-
A zontal axis--is inserted into w, before the focusing lens. After passage through
;Qh the sample, the beams are recollimated with a 200-mm focal length lens, after
3\ which w, is located below the plane of w and w “. w , w °, and w,6 are termi-
’%& nated with a neutral density filter. w, is then focused with a %OO-mm focal
2}% length lens onto the slits of a 1/3-m mondchromator equipped with a 2,400 line/mua
¥ holographic grating and 100 um slits. The signal is detected by a PAR SIT detec-
tor and processed by a PAR OMA2 system. The full width at half-height (FWHH) of
e calibration lines_ﬁgar the center of the SIT detector is near 3.0 cm'l, giving
:§$' approximately 1 cm " per channel over the spectral range investigated.
o
ia; Stationary flame wmeasurements were made on a premixed CH,/N,0 flame main-—
AR tained on a circular burner with a 2.0~cm~diameter head. The burner surface was
® constructed of a matrix of steel syringe needles of 0.09-cm outer diameter, so
0] that a flat flame would be achievable under suitable flow conditions. Matheson
ARy technical grade methane and chemically pure nitrous oxide were separately flowed
K u through 603 Matheson rotameters prior to premixing. The flow through the burner
ﬁkr was adjusted to 13 cm/sec to maintain a 3.2 equivalence ratio (4) flame where ¢
ﬁk' is defined here as the fuel/oxidant ratio divided by the stoichiometric fuel/

oxidant ratio., At this flow, there is a dark zone extending about 5-mm above the

W burner surface followed by a dark yellow reaction zone extending to about 13-mm
s E above the burner. A bright yellow post flame region surrounded by a light blue

v afterburning diffusion flame was situated above the reaction zone, To obtain
PAS CARS spectra in the reaction zone, the center of the burner surface was displaced
fxf vertically with a translation stage from the focus of w , w °, and w, to 2 cm
D) below the focus. Spectra were obtained at intervals of 0.5 mm (0.25 ‘mm in the

N vicinity of the reaction zone). The flame exhibited macruscopic structure since
A, the position of the reaction zone fluctuated with respect to the burner surface.
4 } Snectral scans through the reaction zone were obtained in periods of stability
between these large scale fluctuations, Spectra obtained at the same positions

'é;; relative to the position of initial attainment of full flame temperature were
o reproducible within the precision of the flowmeters.

‘Y} The nitramine propellant grains were 14 x 14 mm cylinders of wass 3.2 g.
' The propellant grains were burned in air with spectra taken along the centerline

above the burning propellant surface during the approximatley l—-minute burn time.
The propellant flame can be characterized as consisting of an inner dark zone
approximately 4 mm thick, a bright yellow post flame region, and an outer blue
2 diffusion flame. The calculated gas velocity from the burning cylinder 1is ap-
proximately 5U cm/sec,
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. |
t The observed CARS spectrum 1%33roprotional to the square of the wuwodulus of
K the third-order susceptibility, x ~7, which is the sum of a resonant term y
¥ related to a nuclear displacement and Xor related to electronic displacement:
|
K]
N
14 (3

% P = =

The resonant term can be considered as a sum of Lorentzian line shapes of
each Q(J), 0(J), or S(J) transition (Tolles et al., ref 20 and Hall, ref 21).

) kj Tj |

2. Xe =% 2%, -1 T (2)
\ 3 |

o where

.

. ki = (N/mwo) le!Z (Aj) 1§ -1 (3)

R

where Mj, Aj, Tj are the polarizability matrix e¢lement, normalized population

N difference, and line width, respectively; Aw, is w_=- w 2 - w,; m is the reduced
«ﬁ mass; and o is the resonant Raman frequency.‘JM = 42 (\)%-1):knd 7/45 b £ 2 YZ
f{: (v+1) forf Q and O, S branches, respectively. Where a, v, and b 1~ are the
' der}vatives of the mean isotropic and anisotropic molecular polarizé%ility, and
EX b;1” are the Placzek-Teller coefficients, v is the vibrational quantum number and

(v + 1) is contributed by the vibrational matrix element. The observed spectrum
:: is convoluted over the laser linewidths and instrumental slit function.
"
;1 x_ is the sum of real and imaginary components x° and ¥*“, respectively,
Y such that
e
? (3),2 2 2 2

!/ x /=)('+2x’xnr+x"+xnr (4)

x” and x°° display dispersive and resonant behavior, respectively. Normalizing
equation 4 with respect to the observed y“nr at the resonance gives

24 @
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1312 XL(KD) + 1

2 — (5)
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where X and k are defined as x/N and k/N, respectively and Xi = N/Np with N and
NT’ the number density of the resonant species and the total number density,
respectively.

Summing of equation 5 over the populated levels gives:

2 _ 2 (3),2 =2 T 2
ZI1%corr = ¥ (I/gj) Ux 771" /X e = [x1 ;i&l +1 (6)
— 1912 o
where kj = e T3 since ZAJ./gj =1
o

gj = (v + 1) for Q branches without rotational structure and (2J + 1) nj (v + 1)
for 0 and S branches where n; is the nuclear spin degeneracy. Tj is taken as the
experime?5315y observed spectral line width, Texp, since the observed CARS inten-
sity, |X | is convoluted by the instrument function. 1f the peak height is
measured from the maximum to the minimum of the resonant peak modulation of the
nonresonant background spectra, only the imaginary term is wmeasured (Tolles et
al., ref 20) so that

1
(1 )"
X = corr (7)

i - =2
Toxp® U) Xoe/™

with M = a? and 7/45 Y2 for Q branches (where anisotropic contributions are neg-

lected) and 0,S branches, respectively. Equation 7 forms the basis for a quali-
tative interpretation of the spectra. Concentration and temperature are separa-
ble such that concentration is related to the sum of I, .. while temperature is
related to the ratio of I, .. of populated levels. Equation 7 was used to obtain
relative concentrations through the reaction zone discussed below. In addition,
for N, and H, the spectra were synthesized using the method of Hall (ref 21) and
fitted to the experimental spectra using a least-square procedure to obtain tem-
perature and concentration.

CH,/N,0 Flames

Thermochemical calculations (Gordon and McBride, ref 22) were performed for
4 = 3.2 CHA/NZO‘ The calculated flame temperature was 1745 K with 237 CO, 1%
€05, 424 H,, 54 H)0, and 29% N,. CARS spectra were obtained in the regions 4200
to 3900, 2%00 to 2050, and 1900 to 1200 cm~l as a function of distance above the
center of the surface of the burner, The spectra are given in figures 1 through
7 and summarized in table 2,

Reaction occurs over a region extending from Z mm to 12 rm with the steepest
concentration gradients occurring between 6 mm to 10 mm. The flame may be rough-
ly characterized as consisting of a dark or preheating zone extending from the
surface to 6 mm, a reaction zone extending froi 6 mm to lU0 mm and a post flame
region above 10 mm. The spectra shown in figures 1 through 6 show oune represent-
ative spectra from each of these regions.
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The spectra shown in figure | show the decay ot reactant N,0 and the in-
crease of the products Ny, CO, and Hy. The N0 vy at 2222 cm~! “and associated
hot bands already have been observed and assigned from spectra occurring in the
reaction zone of lean CH,/N,0 flames (Harris, rets 23 and 24). The N, and CU
vibrational and the H., pure rotational S(7) [The notation used is S(v””)[ spectra
have previously been %iscussed for spectra arising from the post flame region ot
rich CH4/N20 flames (Aron et al., ref 5). The simultaneous observation of the
decay of N,0 and the increase of the three principal products provides an oppor-
tunity to g%tain concentration gradients to test kinetic mechanisms.

Spectra shown in figure 2 show the decay of the other reactant together with
the increase of product H2 S(7) and S (6) pure rotational lines. The CH, struc-
ture shown in figure 2 is assigned to v, transitions. The prominent features of
the methane transitions are observed* at the following frequencies (cm '): 1531,
1562, 1583, 1606, 1628, 1653, 1676, 1722, 1745, 1769, and 1792. This 1is in
agreement with previously observed (Champion and Berger, ref 25) and calculated
(Gray and Robiette, ref 26) Raman lines at the following frequencies (em™1):
1534 (Q), 1566 ([s(0)], 1587 [s(1)], 1610 {S(2)], 1632 |S(3)}, 1654 {S(4)}), 1077
[s(5)], 1724 [s(7)], 1746 (S(9)], and 1770 [S(10)], assuming a separation of 4B
for a ground state B value of 5.24 em™! (Gray and Robiette, ref 26).

N,O and Hy S(5) spectra are shown in figure 3. The N,0 CARS at 1284, 1290,
and 1295 cm™* transitions (not previously reported) are assigned to the v, and v
+ v, - v, and vl + 2 v, -2 v, in agreement with transitions observed in the
Raman at 21285 ¢n~! and calculated at 1289.7 cm- (Herzberyg, ref 2/). The v
transition has a larger Raman cross section than the v, together with hot bands
populated at low temperature, providing an attractive option for quantitative
temperature and concentration profiles in the reaction zone.

The decay of the CH, 2 v, band is shown in figure 4. The observed bands
(em™l) are 3101 (Q), 3129 [s(6)l, 3149 ([s(l)], 3168 [s(2)), 3182 [S(3)), 3205
{sC4)], 3223 [s(5)]}, 3235 [s(6)], and 3258 [S(7)]. These are in agreement with
assignments given by Hunt et al. (ref 28). Hydrogen Q band structure as it in-
creases through the reaction zone is given in figure 5. Hydrogen is seen at a
concentration less than 1% at 4 mm. The line positions as shown for v* = 0 in
figure 5 and v*" =0 J <11 and v =1 J <9 in figure 6 and the S bands J = 5
to 9 have been shown to be in excellent agreement with the results of constants
derived from ab initio calculations (Fendell et al., ref 29) and constants
(Dabrowski, et al., ref 30) derived from the B“Iu <--X“ Ig+ and C° Mu <~-- X* Ig+
band of H, (Haw et al., ref 31).

Temperature was calculated from the v*“ = 0 Q branch throughout the reaction
zone, From 4 to 8 mm, there is a gradual increase in temperature from 500 K to
900 K and the distribution appears Boltzmann. Above 8 mm, there is an apparent
bimodal distribution in which approximatley half of the observed spectra have
Boltzmann distributions consistent with the random experimental error while the
other spectra show much larger deviations from the Boltzmann distribution (great-
er than 2 0) than the random experimental error. In these non-Boltzmann distri-
butions, the odd levels are preferentially populated over the even levels with

* Some lines were observed with the use of other dyes.,
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3ﬁ§ the higher J value of both even and odd levels showing excess population. At
"y present, it is not certain whether these apparently non-Boltzmann distributions
reflect the actual hydrogen rotational distributions, instrument errors, or flame
instability for hydrogen above the reaction zone. Flame stability lessens with

a0 distance above the burner. The outer blue diffusion flame is noticeably floppy.
%" Further work is being done im more stable rich CHA/N 0 flames to clarify the
ok interpretation of the hydrogen Q branch spectra. The H, spectra that have
'hﬁt Boltzmann distributions give results consistent with temperatures obtained from
'*i’ N, CARS spectra and thermochemical calculations.

{nb N, CARS spectra in the reaction zone are difficult to interpret because of
%;: the unknown non-resonant susceptibility. However, in the post flame region
jﬁq least~squares-fits to the N, spectra give a temperature of 1890 £ 100 K and con-
Q;J centration of 0.26 + 0.05 m (mole fraction) which are close--although slightly
BLh high for temperature--to the results of the thermochemical calculations.
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f%ﬁ Thermochemical calculations (Gordon and McBride, ref 22) were performed for
LB the nitramine propellant with the result that the adiabatic, constant pressure,
: ) flame temperature was calculated as 2076 K with the equilibrium final products
; 5 calculated as 38% CO, 274 H,, 22% Ny, 102 H,0, and 3% CO,. CARS spgﬁtra were
1&‘& obtained in the regions 4200 to 3900, 2400 to 2050, and 1900 to 1200 c¢m ° both as
Loy a function of distance above the center of the propellant surface and time at a
ki given initial distance. The spectra are given in figures 7 through 14 and summa-

rized in table 3. The 14 mm high grain burns in approximately 60 sec for an

1&* average burning velocity of 0.2 mm/s. The average flow calculated is 50 cu/s
}\§; assuming that the cylindrical geometry is retained throughout the burn (a resid-
*$4» ual residue retaining approximately the original cylindrical geometry is retained
%,3 throughout much of the burn). 1In the wmiddle of the burn, the propellant flame
plal consists of: (1) a dark region extending 4 mm above the propellant surface; (2)
;) a conical dark yellow post flame region above the dark zone and extending to 3 cm
oy above the propellant surface; and (3) a conical blue after-burning diffusion

flame of CO, H,, and air extending to 8 cm above the propellant surface. The
initial region of steepest formation of N, occurs from 3 to 6 mm ahbove the pro-
pellant surface. The flame was smaller during ignition and extinguishment (the
initial and final 10 sec, approximately).

Average spectra (100 scans, 10 sec) were taken as a function of distance
from the propellant surface to 6 mm above the surface at intervals of 1 mm. kach
spectrum was taken nominally 1U sec after ignition. 1In addition, time sequences

) of 10 scans (1l sec) spectra were taken approximately every 6 sec from ignition to
V) extinguishment. For H,, the intensity of the signal permitted the acquisition of
L single-shot spectra.

oy |

gp%, The N, spectrum as a function of distance awvove ghe propellant surface is
?Qb’ shown in figure 7. N, appears at low concentration (<1%Z) at the propellant sur-
4b¢; face and gradually increases to final concentration near 6 am. Time-resolved W,
Rt spectra at 2 mm above the propellant surface are shown in figure 8. N, is seen
A initifally at low concentration and takes more than halt the burn time to approach
?ﬁﬁ equilibrium concentration.
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The CU region 1s shown in figure 9. CO is seen at higher concentration than

. N, at the surface with an increase in temperature most evident with increasing
distance above the surface. A peak at the frequency of HCN at 2086 em™ ! was
3&% moderately strong at the surface and 1 mm but had decayed by 2 mm to reveal the
{3( . CO hot band at 2080 cm'l. In addition, N, and H, S(9) at 2129 4::m-l are seen to
‘ﬁé; be in approximately constant ratio to CO above 2 mm. In time-resolved spectra ot
ﬂﬁg this region (not shown), near the end of the burn (55 sec atter ignition), Cu and
‘%' Hy are no longer present and only the N, resonance is seen.
Iﬁs NO and H, S(7) spectra are shown in figure 10 as a function of distance
oy above the propellant surface. NO is seen as a modulation of the non-resonant
et background. However, since NO has a Raman cross section only half that of Ny,
;%’ the concentration of NO may be greater than 1% at the surface. In time-resolved
“© spectra NO is seen to persist until the steep increase in N, which occurs at
1 about 4 mm above the propellant surface. The H, 5(7) band is seen to undergo a
Qq continuous increase with distance above the propellant surface up to 6 mm.
.\’:
\:k Prominent spectra at 1599 en”} tentatively associated with the RDX NO, asym—
iﬁb metric stretch transition reported at 1596 cm™" in the Raman spectrum of RUX
O powder (Igbal et al., ref 32), Hy S5(5) at 1446 cm !, and Co, at 1387 en~! are
® shown in figure 1ll. The 1599 cm transition is present at the surface and at
fE3 1.0 mm but absent at 3.0 mm. The H2 S(5) transition is seen to increase relative
a??t to CO,. This is consistent with the final equilibrium conccatrations of these
Qgi spsfies. At 1 mm, the moderate intensity feature between H; and CU, near 1408
;;& . cm is seen to be complex and tentatively associable with CO, and HCN bending
A modes (Harris, ref 7).
;ﬁ“ . Time-resolved spectra of H, Q branch at the propellant surface are given in
%ﬁk figures 12 through l4. The H, Q branch has a cross section twice as large as
Ly nitrogen, and hydrogen is present at high concentration throughout the propellant
g\a flame so that the hydrogen Q branch spectra are not perturbed appreciably by the
il non-resonant susceptibility. This simplified interpretation of the spectra to
2 obtain temperature, As shown in figure 12, single shot spectra are obtained at
R good signal-to-noise and are in substantial agreement with l0-shot averaged spec-
- tra. The reduction of the signal-to-noise from bottom to top is a reflection of
iﬁ* the increasing temperature as a function of distance above the propellant sur-
5 face. Temperatures have been obtained from the H, Q branch spectra. The average
o temperature of the spectra taken at the surface is 1000 K t 200 K. The disper-
k.. sion reflects not only the noise in the individual spectra but also the variation
; ! of the distance of the surface with respect to the CARS sampling volume since
;§§ spectra are taken as close t. the surface as possible. A propellant surface/gas
:ﬁy interface temperature {s mure properly associated with the lower bound of tne
;b' propellant surface temperature measured with good signal-to-noise rather than the
Yy! average surface temperature. The spectra shown in figure 14 are three-shot aver-
@ ages and are near the lower bound of measured surface/gas interface temperatures.
ﬁ@% The lower two spectra were least-squares fit to a temperature of YU0 % 11Uy K
H{g which may then be associated with an upper bound of the surface/gas interface
&ﬁ} . temperature. Time-resolved H2 Q branch CARS spectra taken at the surface during
haY the duration of the propellant burn were used to obtain temperature. (The spec-—
S, tra used were Boltzmann within experimental accuracy. The non-Boltzmann distri-
mh . butions werc not obtained with the frequency encountered in CdH,/N,0 flames.)
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ot These spectra show an initial temperature of 1000 £ 200 K with a gradual rise to
! 1500 + 200 K over the first 40 sec of the burn, then a sharp increase within a
R sec to 2000 * 200 K which is maintained for approximately 10 sec before a rapid
rise to 2600 + 200 K at 55 sec of the burn. The initial gradual temperature rise
to 1500 K may be associated with the dark zone while the steep tewmperature rise
) to 2000 K may be associated with the reaction zone of the adiabatic flame which
L‘: culminates in flame temperature near the calculated adiabatic flame temperature

§ of 2076 K. The subsequent steep temperature rise to 2600 K encountered at 55 sec

& into the burn 1is assoclated with the afterburning or diffusion flame of CU, H
x 5 with air. This is consistent with the absence of CO and H; at this time in time-
ey resolved spectra discussed above. As in the CH,/N,0 flame, flame stability de-~
T creases with distance above the surface of the propellant. Temperature and con-
i centration were also obtained from N, spectra in the adiabatic post flame region
1

as 2010 £ 115 K and 0.26 % 0.04 which are in good agreement with the calculated
values (2076 K and 0.22) and the temperature estimated from hydrogen spectra in
this region (2000 + 200 K). (N, spectra have not been analyzed in the dark and
reaction zones because the composition of these regions is not yet sufficiently

ﬁ}g characterized to permit estimation of the nonresonant susceptibility.)
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*g? The reaction zone of the rich CH4/N20 flame was studied primarily to provide
; ; a stationary flame analog to the transient nitramine propellant flames. Since
i@* the rich CH,/N,0 flame has similar atomic composition, adiabatic flame tempera-
i ture, and finaf products as the propellant flame, it is to be expected that some

features of the kinetic mechanisms will be similar in both systems. In the CH4/
NoU flame, the decay of the initial products was observed through the Q branch of
the v, NN and v NO stretching modes of N,0 and the @, 0, and S branches of the

v an& 2 v, modes of Cis. The formation of the products Ny, Hy, CU, and CO, was
also observed.

No intermediate species were detected in the spectral range ianvestigated.
Initial decomposition of the reactants was observed to occur near 500 K. The

first order rate coanstants for N,0 (Balakhnine et al., ref 33) and CH, (Tabayaski
and Bauer, ref 34)

NO +M +Ny + 0 +M k = 1.3 x 101> exp (~56500/RT)

1.0 x 10} exp (~85800/RT)

CHy + M *CH3 +H+M  k

preclude observable reaction at 500 K. However, secondary reactions for "N,0
given by Balakhnine

H+ N,0 » N, + OH k = 6 x 1013 exp (~13100/RT)

and Wagel et al (ref 35)

CH + N0 » N, + CHO k= 4.7 x 1013 cnd/mole s at 3uu K
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and CH, given by Tabayaski and Bauer (ref 34)
CHy + H > CHy + Hy k = 7.23 x 101 exp (-15600/RT)
explain reactivity at 500 K.

The conversion of methane to final product is thought to proceed by the
following global mechanism (Westbrook and Dryer, ref 36)

4 CH3 + CHZO, CHO - HZ’

The conversion of fuel-bound nitrogen is an area of active current research,
Recently, CH,/0,/AR flames doped with HCN, NO, and NHq; and H,/0 /AR flames doped
with HCN were studied by Zabielski (ref 37) and Miller et al. gref 37), respec-
tively. These and previous studies have shown that the conversion of fuel nitro-
gen to HCN is almost quantitative and independent of the chemical nature of the
initial fuel nitrogen. Since conversion to HCN 1is not rate limiting, research
has focused on conversion to NO and Ny« These processes are thought to occur by
the global mechanism,

cH Cco

Fuel N » HCN +» NHi > NO i-o0,1, 2.
NO
—> N,

Good agreement between the theoretical and experimental temperatures and the
concentration profiles in these studies has been obtained in terms of the follow-
ing key reactions:

HCN + 0 > NCO +H Rl k; = 1.26 x 107 1187 gxp (-6800/kT)
NCO + H »NH+ 00  R2 k=5 x 1013

NH+H >N+ H, R3 k3 = 3 x 1013

N+OH »NO+H  Re Kk, = 2.22 x 101 EXP (-50500/RT)

N+ N0 »Ny+0 RS kg = 1.84 x 101 EXP (-76250/RT)

The reaction constant k, is based on a measurement by Perry and Melius (ref 38);
k) 1s an estimate (Miller et al., ref 39); and kq - ks are taken from a recent
compilation (Miller et al., ref 40). These reactions, with the addition of the
hydrocarbon combustion cycle given globally above, account qualitatively for the
formation of the principal products Hy, Ny, and CU in the rich CH, /N 0 flame
studied here., Further reduction of the data obtained from the CH /NZO flame to
quantitative temperature and concentration profiles will enable a quantitative
test of these kinetic mechanisms. The results for CH4/N20 as presented, provide
a comparison for results obtained in nitramine propellants.

In nitramine propellant, the upper bound of the gas-surface interface tem—
perature was measured at 900 t 100 K. To our knowledge, this is the first direct
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: : measurement of the gas-surface interface temperature in the gas phase. The meas-
fﬁ ured temperature was Iin good agreement with a propellant surface temperature of
. = 700 K measured in the solid phase using thermocouples (Kubota, ref 12). Near the
surface of the propellant reactant, RDX and transient species HCN and NO were
" observed at moderate concentration (>1%). The final product N, was observed at
ﬁ?;\ low concentration (~l%Z) while H, and CO were observed at higher concentration
;ﬁiﬁ, (210%). A gradual temperature rise from the surface to 4 mm above the surface to
i¢§§ 1500 K was observed, with a steep rise to 2000 K occurring near 4 mm. KDX and
b HCN were observed to decay within 2 mm of the surface with NO remaining constant
,?, to 4 mm. Near 4 mm, NO decayed rapidly with a concomitant increase in N, concen-
Qw%, tration and temperature to adiabatic flame temperature. H,, CO, and CU, in-
igbﬁ creased in concentration throughout this region.
1'5'1
1&3# The physical structure of the flame is similar to that modeled by Ben-Reuven
- and Summerfield (ref 11) in terms of near field and far field reactions occurring
in the dark =zomne. However, these results suggest that the chemistry in this
ﬁgﬂ model (Ben-Reuven and Caveny, ref 10) must be modified. The observation of HCN
ﬁ?ﬁ and lack of observation of N,0 (<0.1%) is consistent with tihe high temperature
:gaﬁ (T>600 K) nitramine decomposition mechanism
‘0!.
-‘:* (CHpNNO,)3 > 3HCN + 6NO, + 3Hy
}}? NO,, although observable at low pressure in CAKS, is not observable at at-
.;ﬂ mospheric pressure--perhaps due to the adsorption by NO, in the region of the
;ﬁﬁ laser beams used in these experiments, Additional experiments are needed (laser
ﬂﬂ* fluorescence is a possibility) to determine the concentration of NU., in the reac-
X tion zone. NO, is presumably converted to NU by fast radical recombination reac-
. tions of NO, with H, N, and O (Baulch et al., ref 41).
i
Efb Thus RDX decomposition in the flame differs from processes occurring in the
0. CHA/NZO flame in that RDX decomposes directly into products that are thought to
gﬂﬂ be the principal intermediates in the conversion of fuel-bound nitrogen to tinal
R products. This allows, 1in contrast to CHA/NZO processes, a substantial buildup
J of the intermediates HCN and NO near the propellant surface so that they are
;y; directly observable in CARS.
:ﬁ# At these pressures, it is the decomposition processes of the species at the
tl surface, RDX and HCN, which supply the heat that determines the burning rate of
Vo the nitramine propellant. NO conversion to N, which provides the heat for the
(_ luminous flame occurs too far upstecam to affect the surface. HCN decomposition
asa processes, which are given above, are initiated by Rl. Since Rl depends on the
 ?: oxygen concentration, the ignition of nitramine propellants depends critically on
‘5i oxygen concentration, The steep rise in temperature to 2000 K indicates the
@b' presence of the afterburning reaction of hot CO ahd H, (which constitutes 5% of
‘ the products) with air. This reaction serves to shield the inner flame from the

influence of atmospheric oxygen and serves as a flame nolder for the inner tlame,
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CONCLUSIONS

The reaction zone of nitramine propellant is seen to consist of two charac-
teristic areas: (1) an inner flame area near the solid gas-intertace which is at
a temperature of 900 £ 10U K and is characterized by the gas-phase reactions of
RDX and HCN that provide the heat that deterumines the burning rate, and (2) an
outer flame area farther upsteam where NO is converted to N, to generate the
luminous flame.
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W
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i
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®
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!
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Table 2. Summary of species identified in a ¢ = 3.2 CH,/N,0 flame

Observed I...
(em~1) Species Comment
4155-4075 Hy Q-branch Temperature calculations indi-
cate a temperature ot 500 K in
preheat zone.
3240-3100 CH, (2 vz) Rapid decrease in reaction zone

2325 Ny Gradual 1increase in reaction
zone

2222 N,0 (v3) Rapid decrease in reaction zone

2136 Cco Increase in reaction zone

2129 Hy S(9) Rapid increase of intensity in
reaction zone; large compared to
Co

1813 Hy 8(7) Signal intensity increases up
the reaction zone

1636 H, s(6) Weak signal seen in post flame

1531 CHA (vz) Gradual decrease in reaction -
zone

1447 H, S(5) Signal intensity increases up
the reaction zone

1294 N,0 (vl) Intense signal that decreases

rapidly in reaction zone
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Table 3.

Observed In
(em~ D)

ax

4155-4075

2325

2136

2129

2086

1872

1814

1599

1447

1387

Summary of species identified in nitrawmine propellant flame

Sgecies

Hy Q= branch

N2

Cco

Hy $(9)

HCN (vl)*

NO

HZ S(7)
RDX (NO7 asymetric stretch)*
Hz s(5)

COoy (vl)

6y A'v. ‘w.i'o'\ n.',p,l‘l."n e " O

* Tentative.
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Comment
Temperature calculations indi-
cate a temperature of 90U K at

the surface of the propellant

Slow increase until near the end

of reaction zone, a large in-
crease occurs

Signal increases up Treaction
zone

Observed similar intensity to CO

Strong signal initially which

diminishes rapidly

Low concentration modulation
which remains constant through-
out reaction zone; decreases

rapidly at end of reaction zone

Signal intensity
the reaction zone

increases up

Moderate concentration early in
the reaction zone

Signal intensity
the reaction zone

increases up

Moderate signal early in reac-
tion
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:| . ¢ = 3.2 CH4/N20 flame
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I Figure 2b. CARS spectra of CH, (v,) and Hy S(5) and S(6) from a
0 ¢ = 3.2 CH,/N,0 flame
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Rt Figure 3. CARS spectra of Nzo and H2 S(5) froma ¢ = 3.2 CHQ/NZO flame
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(B) d = 3MM
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FREQUENCY (cm-1)

Figure 4. CARS spectra of CH, (2v3) from a ¢ = 3.2 CH,/N,0 flame
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W Figure 7. Time-averaged CARS spectra of N, at various distances above the surface
0, of a nitramine propellant flame
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