AD-A163 437 SCHEIIR RN RRCHITECTURE FOR KNOIILEDGE DﬂSED CRDCU)
lﬂSSRCHUSETfS INST OF TECH CRMBRIDGE LAB FOR COMPUTER
SCIENCE C G CLARK ET AL. OCT 85 N90014-80-C-0622

UNCLASSIFIED F/G 9/2

FiLueo
one

Pt 3 oy, LNy T &1, S SRS P .) _ i
i A SISERAI A .
e poer - o S SRt I SN N 0 O S o, it P R T N S Y

P St

3

e e .

[IRSRN

L]

= = &
I

o
|

= s

l

-
®

I

I

oyl
-t
FREER
ER
»n
B
' 4 AOATODACIIORLE: g, CIIDDICIOR, o 4

<l
N
o

Il

NATIONAL BUREAU OF STANDARDS !
MICROGOPY RESOLUTION TEST CMART

‘-‘
A

-“

S$7 .9
I3¢F K
1
)

. . - -
PP PRAPE PR

oTI§_FILE CoPy

C A MBRIDGE, M A S S ACHUSETTS 021 39 ;

VLSI Memo No. 85-271 October 1985

&

Schema: _An Architecture CAD® §§ ¥1t:J
C. G. Clark and R. E. Zippel®® 3 ‘8::‘-

o |
§ m()

ABSTRACT “:::::I'
</

Schema provides an integrated enviromment for all aspects of the synthesis
and analysis of electronic designs from PC boards through circuit and mask
design of VLSI devices. It simplifies the development of aynthesis and analysis
tools by using uniform data structures and by making available libraries of
standard routines and advanced control structures appropriate for CAD tool
development. Because all tools in the Schema enviromment utilize the same
abstract data structures it is easy for tools to interchange data about a design
or even pieces of the design itself. Schema also permits much of the design to
be done in a technology independent fashion by allowing the designer to delay
implementation decisions until the last possible moment. The information
associated with a particular component of a design is organized as a module.
Modules contain schematics, icons, topologies, layouts, simulation results, and
other descriptive information for this component. The descriptions contained in
modules are implemented as procedures which utilize other modules in a
hierarchical fashion. _Schema is under joint development by MIT and Harris
Corporation.

®This work was supported in part by the Defense Advanced Research Projects
Agency under contract number N00014-80-C-0622 and by the Harris Corporation.

#8Zippel: Laboratory for Computer Science, MIT, Room NE#3-418, Cambridge,
MA 02139, (617) 253-6028; Clark: Harris GSS, P. 0. Box 37, Melbourne, FL
32902.

Copyright (c) 1985, MIT. Memos in this series are for use inside MIT and
are not considered to be published merely by virtue of appearing in this series.
This copy is for private circulation only and may not be further copied or
distributed. References to this work should be either to the published version,
if any, or in the form "private communication." For information about the ideas
expressed herein, contact the author directly. For information about this
series, contact Microsystems Research Center, Room 39-321, MIT, Cambridge, MA
02139; (617) 253-8138,

DISTRIBUTION STATEMENT A

Approved for public releasej
Distribution Unlimited

MICROSYSTEMS PROGRAM OFFICE, Room 36-575 Telephone (617) 253-8138

s
L) B &
COar T P T
o . ot
t'l.‘L"L‘ el

X
h

b

.

0

'.‘;-':;"..'-. ‘-‘\")\
Pl

An Architecture for Knowledge Based CAD

G. C. Clarkt— R. E. Zippel$

+Harris GSS, P. O. Box 37, Melbourne, FL 32902, USA]
IMIT Laboratory for Computer Science, Cambridge, MA 02139, USA

Abstract

Schema provides an integrated environment for all aspects
of the synthesis and analysis of electronic designs from PC
boards through circuit and mask design of VLSI devices. It
simplifies the development of synthesis and analysis tools by us-
ing uniform data structures and by making available libraries of
standard routines and advanced control structures appropriate
for CAD tool development. Because all tools in the Schema en-
vironment utilize the same abstract data structures it is easy for
tools to interchange data about a design or even peices of the
design itself. Schema also permits much of the design to be done
in a technology independent fashion by allowing the designer to
delay impiementatiion decisions until the last possible moment.
The information associated with a particular component of a
design is organized as a module. Modules contain schematics,
icons, topologies. layouts, simulation results, and other descrip-
tive information for this component. The descriptions contained
in modules are implemented as procedures which utilise other
modules in a hierarchical fashion. Schema is under joint devel-
opment by MIT and Harris Corporation.

SCHEMA is an environment for developing knowledge
based. computer aided design tools for electronic systems.
The three major goals of its design are:

¢ Provide an integrated environment for all aspects of
the synthesis and analysis of electronic designs from
PC boards through circuit and mask design of VLSI
devices.

o Simplify the creation of computer aided design tools
by encouraging and supporting their construction from
libraries of standard routines, by using uniform data
structures and by providing libraries of advanced con-
trol structures appropriate for CAD development.

o Allow the designer to delay making decisions until nec-
essary; for example, the technology (TTL, ECL, gate
array or custom MOS) used in a logic design need not
be specified until timing simulations or physical design
is begun.

The key to achieving these goals is the development of &
totally integrated design environment where design tools
easily communicate and cooperate. This has been achieved
by the innovative software architecture used in the devel-
opment of SCHEMA.

SCHEMA achieves coherence not by specifying the in-
terchange formats to be used between different CAD pro-
grams, but rather by specifying the data structures the pro-
grams should use. SCHEMA specifies a set of abstract data
types for dealing with electronic designs, and a set policies

to be used when dealing with the new data types. This.

et
aty g -
at 0w
. N e Lt

FARAE A

approach provides a common layer on which different CAD
tools may built, and it allows the CAD tools to invoke each
other and easily cooperate by interchanging pieces of elec-
tronic designs.

These data types are implemented using an object ori-
ented programming system called Flavors. These struc-
tures represent circuit topologies and schematics, mask art-
work, floorplans and simulation waveforms (both digital
and analog). Circuit topologies represent the connectivity
of a circuit; schematics are represenations of the graphic
images of a circuit that are drawn on paper. Since these
structures are instances of flavors, they also incorporate
pieces of code that allow them to directly provide procedu-
ral functionality. That is, a transistor contains the informa-
tion and code required to display itself on the screen, write
itself out to a file or participate in a simulation. This raises
the semantic level at which the CAD tools deal with objects,

simplifying their development. It also allows implementa-
tion and operation decisions to be delayed and even changed
without modifying the code that makes use of them.

Modules

The basic component of a design in SCHEMA is a mod-
ule. Each module consists of a topology and several de-
scriptions, e.g. schematics, icons, layouts and simulation
results. Examples of modules in a design include: an in-
verter, a half adder, an arithmetic logic unit, a data path, a
cache, instruction fetch unit and a memory system. Each of
these module includes not only the schematic (and its cor-
responding topology), but also the results of various tests
that have been performed on the circuit (simulation re-
sulte), documentation and design notes and physical speci-
fications (VLSI layouts or PC board designs). The modules
represent s complete view of a design component.

The designer rarely interacts directly with the topol-
ogy of a module, but instead deals with the descriptions
(schematics). The analysis tools (simulators, timing veri-
fiers and other consistency checkers) work with the topol-
ogy, and usually use the descriptions only for communicat-
ing with the designer. The only major exceptions are the
physical design tools, VLSI layout system and wire wrap
and PC board systems that, by necessity, must work with
the physical descriptions.

The system ensures that the topology remains consis-
tent with the descriptions provided by the designer through
the use of timestamps and limited edit trails. It also warns

'-W

Spacial

—me e ncscaneaal)

the designer when two descriptions of a w become igy -

..Jes
e |

Avall 3 djor

T

%

7
R

« oy "‘F‘
il of
sl L

Y RO

»

.
-

LY

',
-
.

s

RS -'. v
. {'v‘
AL d

0

[A
~

. Y N '.tv l'.‘

TR
»

D)
.

.
AN

H"YS
O
A

r
g
BN
ERRS

x4

v.'l '.a .-l'"": fo’ - F‘P‘; % .

T,

Dpin iy Syip gt e Cple s ol 6 S ox il B N e RV S Rl a1

Rl (R CRM AL 4

Juevefers Group of : UG-1, Project: Test, Center

s (18, 13), Scaie » (2, 2)

S r

o

LTI

rent out of thet neds ¢ -33.762 WA
ot of thet nate » -P.478P A

‘ consistent. This division allows the electronic designer to

use the most appropriate mechanism for describing the de-
sign without worrying about getting formats correct for the
CAD tools, and the CAD tool designer deals only with
design descriptions that are both appropriate and “pre-
parsed.”
The topology and its descriptions are implemented as
procedures, though they are usually edited via one of the
description editors: schematic, layout or waveform. This
procedural structure, similar to the approach used in DPL!,
allows a great deal of flexibility parameterizing the different
components and provides an excelient point at which to
install intelligent synthesis modules. For instance, in an
earlier version of SCHEMA this was used to implement an
ALU meodule that chose different carry look-shead schemes
depending on the width of the data word?.

These hierarchical descriptions also incorporate a muk
tiple viewpoint or Slices® mechanism to allow simulation
and analysis modules to annotate the topologies. The mul
tiple viewpoints are used to control the visibility of cer-
tain information to the CAD tools. For instance, transient
analysis programs like SPICE want to be aware of parasitic
capacitances and resistances while a simple logic simula-
tor might not. Rather than generating the two different
topologies for the different simulators, the same topology is
used for both but the parasitics are only visible when the
transient viewpoint is made visible by SPICE. This way an-
notations to the topology made by the two simulators can
be examined by their conterparts easily.

Project /Module Hierarchy

The modules and all other information relating to a
design are collected into a project, which in turn can be a
component of a larger project. For instance, there might
be an L machine project that is used to hold all the design _
components of the L machine. Severa! different versions of

oy

:-:- ot 11 of EMOS-Z0-1 s s 9

L
e ———

.
Node ot 11 oF COS-22-1 W ot

v

T
tode st 12 of CROS- B2 <
”\
.
Node ot T1 oF o0s-16-1 pand s L

the L machine might be designed, so there might be TTL,
CMOS and ECL sub-projects of L machine. Within the
CMOS project there might different projects to contain the
design of the datapath, control logic, and memory manage-
mant system. The modules of sach of these projects would
be combined by the main module contained in CMOS to
produce the final chip.

Each designer maintains his or her own hierarchy of
projects. The root of this hisrarchy is called a portfolio. By
having sub-projects point to the same save fle, designens
can share projects. This project/module hierarchy is a very
useful way of organizing and managing the material related
to a design.

Environments

By specifying an environment the designer makes pre-
cise what types of modules and tools should be available
for the design. Each environment consists of a collection
of primitive modules that may be used, command dispatch
tables for the description editors, design rules, simulation
models and 30 on. The environments themselves are orga-
nised as a directed acyclic graph. At any time, the designer
can refine the environment being used. For instance, one
could begin & design in the Basic Logic environment and
later when it had been decided to use CMOS, switch to
the Generic CMOS environment. Finally, when a foundry
bad been chosen, the designer would select an evironment

for the specific process to be used. While the environment
was Basic Logic, the designer would be able to draw logic
schematics and simulation, but would be unabie to get any
timing information (other than in gate delay units) or do
any circuit design. After switching to Generic CMOS, tran-
sistor level circuits and sticks diagrams could be developed.
When the proress specific environment has been chosen,
detailed masks could be designed and accurate timing in-
formation would be available.

AR Tt ATV P T

ST T TS T, L"o“ ‘ ‘ m'_,- A AP AN LW TR T

Schenatic of: RC Filter, Project: Analog Circuits, Conter s (-38.0, -25.0) Scale 10.0

|
..
|

N V.

L

[N SN
)

\

== ‘

v " .\ £ .

oot (shase)
s'cl.l lI.Slljs.'cl.l..ﬂo.I
Software Tools
Though most of the time the data structures needed . R
by a CAD designer are already in place, SCHEMA also in- The second figure illustrates the use of the linear sys-

cludes a large library of compatible flavors (abstract data tems analysis tools. The bottom window gives the exact
types) for constructing new structures. Within this library transfer function of the RLC circuit shown in the top left
are mechanisms for dealing with many different types of window. At the right. several Bode plots are given, and a
(! hierarchy, prototypes, “creation on demand,” timestamp- Pop up menu is shown which gives the parameters of last

ing. and so on. When creating a new data structure, the plot.

designer merely picks the flavors that provide the function-

ality desired and includes his own customizations. This fine Conclusions

grained modularity has helped maintain a high level of uni- We have given a brief summary of the internal archi-
formity within the system. The modularity techniques used tecture of SCHEMA and shown a few of its uses. Its novel
are based on the Capsule ideas’. architecture and extremely high degree of integration make

In addition there is also a growing library of useful SCHEMA easir to use both by CAD tool designers and de-
CAD oriented procedures that may be drawn upon. Among signers than many other systems.
them are sparse matrix routines, linear and non-linear equa- The authors would like % acknowledge the assistance
tion soivers, a moderate size symbolic algebra package, of the other members of the SCHEMA design group, Anuja -
topological traversal routines, two dimensional spatial man- Kohli, Siu-Ling Ku. Mike McDonald, Margaret St. Pierre
agement packages and so on. The existence of these pack- and Steve Seda. This work was supported by DARPA con-
ages has enabled CAD builders to build on each others work tract NO0OO14-80-C-0622 and Harris corp.

more than in previous systems.
s o e Sty o o o g] - B b T Do P L
. * MIT Artificial Inteligence y Re-

and encourages tool developers to proceed in a coopera- ‘Mm:

tive, cummulative fashion. For the electronic designer it (2l :‘m Rose, A Detapath Generator. B. S. Thesis, Dept. EECS,

pr'ovidu‘n umfor'm environment'. with uniform access to a Massachusetts Institute of Technology. June 1082.

wide variety of different synthesis and analysis tools. {8] G.J. Sussman, *SLICES: At the Boundary between Anal-
A simple transient simulator was buiit on this base ysis and Synthesis.” Proc: Artificial Intelligence and Pat-

by Chris Terman. An example of its use is shown on the tern Recognition in Computer Aided Design, IFIP WG §.2,

preceding page. The resuits of the simulation are left as Grenoble, France, 1978.] .

annotations on the topology that the user (or another pro- [4] D. L. Weinreb and D. A. Moon, Lisp Machine Manual. MIT

gram) can examine. The top left window shows the circuijt Artficial Intelligence Laboratory, Cambridge, MA, 1981.

8] R. Zippel, “Capeules,” SIGPLAN Bulletin, vol. 18, no. 8,

being simulated, the top right one shows a few selected pp. 166-169, 1983,

waveforms. In the bottom window, the currents into the
depletion transitors are given.

u SR N e e e N A e et e
A NI A S N N L
Ll -')‘ A i .'_nr_."_a.'.‘_.\)' :n‘ A"‘;‘;'..-.A-.& NI e et e -’__. .‘ e ;_:" al 1’ l f‘f 2% .f“

At et et \‘L‘J"

RO AR SRR SRS

R
AT

Pa s R R k]
‘om

-t ety

