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ABSTRACT ,

This thesis presents an algorithm for determining the connectivity of a set
CV) of N rectangles in the plane, a problem central to avoiding aliasimn In VLSI

(0 design rule checkers. Previous algorithms for this problem either worked slowly
yran with a small amount of primary memory space, or worked quickly but usd more
( space. The algorithm presented here, based upon a technique called scanning,

operates in 0N ig N) time in the worst case. This matches the running time of
I the beat known sequential algorithm for this problem. Because we use a machine

model that explicitly incorporates secondary memory, the now connected
components algorithm avoids unexpected disk thrashing which leads to lover
performance. The algorithm uses O(W) primary memory space, where W, the scan
width, is the maximum number of rectangles to cross any vertical out. It
requires no more than O(N) transfers between primary and secondary memory.

When a vertical line passes through a set of rectangles, those rectangles
cut by the line form a set of line segments. The key to development of space-
efficient algorithms using a two layer memory model is that appropriate
manipulations of these segments alone can solve more complicated problems such
as the connected components problem. This thesis introduces interval trees, a
simple, sparse, data structure for storing a set of k line segments. With this
data structure, a variation on a balanced search tree, one can perform each of
the following operations in O(lg k) time in the worst case: 1) insert a new
segment, 2) delete a segment, and 3) given a test interval, return a segment

- which intersects that test interval or return nil if there in no such segment.
This data structure is used in the new connected components algorithm. It can
also be used to improve other existing algorithms for computational geometry
problems.
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This thesis presents an algorithm for determining the connectivity of a set of N
rectangles in the plane, a problem central to avoiding aliasing in VLSI design rule
checkers. Previous algorithms for this problem either worked slowly with a small
amount of primary memory space, or worked quickly but used more space. The algo-
rithm presented here, based upon a technique called scanning, operates in O(Nlg N)
time in the worst case. This matches the running time of the best known sequen-
tial algorithm for this problem. Because we use a machine model that explicitly in-
corporates secondary memory, the new connected components algorithm avoids un-
expected disk thrashing which leads to lower performance. The algorithm uses O(W)
primary memory space, where W, the scan width, is the maximum number of rectangles
to cross any vertical cut. It requires no more than O(N) transfers between primary
and secondary memory.

When a vertical line passes through a set of rectangles, those rectangles cut by the
line form a set of line segments. The key to development of space-efficient algorithms
using a two layer memory model is that appropriate manipulations of these segments .

* alone can solve more complicated problems such as the connected components problem. p

This thesis introduces interval trees, a simple, sparse, data structure for storing a set
of k line segments. With this data structure, a variation on a balanced search tree, one

* _ can perform each of the following operations in O(Ig k) time in the worst case: I) insert
* a new segment, 2) delete a segment, and 3) given a test interval, return a segment

which intersects that test interval or return nil if there is no such segment. This data
structure is used in the new connected components algorithm. It can also be used to
improve other existing algorithms for computational geometry problems.
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Introduction

For a VLSI design to be reliably produced as a working chip, various features on
the chip must be separated by minimum distances to ensure the proper operation of
transistors and interconnections. The design rule checker program verifies that these
and other geometric constraints are satisfied and signals an error if it finds two features
that violate the design rules. For a chip composed of millions of rectangles, design rule
checking is a time-consuming process which cannot be done entirely within the primary
memory of many computers.

This thesis presents an efficient algorithm for finding the connected components of
rectangles in the plkne using a machine model which incorporates the secondary disk
memory where the VLSI design is stored. ly running this algorithm simultaneously on
each layer of a VLSI chip design, a design rule checker can determine which featur's of
a chip design are electrically equivalent, i.e., are effectively part of the same wire. The
determination of electrical equivalence allows the design rule checker to avoid reporting
the many aliasing errors which occur when two electrically equivalent features are
mistaken for electrically distinct features. For example, two wires might be too close
together, but if they are actually the same wire, it does not matter.

Many VLSI design systems use rectilinearly oriented rectangles to represent the
design features. Two rectangles are electrically equivalent if they are connected by a
path of intersecting rectangles. The connected components problem is to label each
rectangle in a design such that two rectangles have the same label if and only if they
are in the same connected component. The set of rectangles in Figure 1, for instance,
has three connected components: {A,B,D,E, }, {C,F}, and [').

The connected components of N rectangles in the plane can be determined in

O(N Ig N) time by an algorithm due to Guibas and Saxe .ij. Their algorithm uses the
technique of scanning, introduced by Sharries and lloy j, which a.oitmes that the
vertical edges of rectangles are initially sorted by r-coordinate. Scanning algorithms

work by sweeping a scanline over a set of geometric objects in the plane and then
working primarily with the objects crossed by the scanline. In the Guihas-Saxe algo-
rithm, the scanline is a vertical line that sweeps from left to right over the rectangles

"* (lmai and Asano [5] also have an O(N Ig N) connected components algorithm for the
*: primary memory model which is not based on scanning.)

The O(N Ig N) running time that Guibas and Saxe achieve is remarkable in that
there may be as many as order N rectangle intersections. Unfortunately, the Guibas-
Saxe algorithm is designed to run entirely within primary memory, and it may cause
disk thrashing for a large VLSI chip.

In this thesis, we abandon the simple primary memory model, and instead use a
machine model which includes a secondary disk memory as well as primary memory.
The configuration is shown in Figure 2. We assume that the primary memory is a
fast, random-access memory of limited size. The set of rectangles is kept in a file
in secondary disk storage. Accesses to the file are presumed to be sequential, either

forward or backward. More general random accesses to disk blocks are unnecessary
.. for our algorithm.

................ ......-... ..... *b. m**'**'**
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This model is used by Szymanski and Van Wyk Ji for a connected components
algorithm, a special case of their algorithm for connectivity analysis of more general
regions. Their algorithm is more suitable for large rectangle databases because it uses
less primary ,ic..nory than the Guibas-Saxe algorithm and has locality of reference .,-

for secondary memory. The amount of primary memory space used by the algorithm
is 0(W), where W, the scan width, is the largest number of rectangles cut by any
scanline. In practice, Szymanski and Van Wyk comment, the size of W is about
0(v'7V). Unfortunately, their algorithm is based on rectangle intersections, and the
running time can be as large ab O(NW).

This thesis presents a connected components algorithm that combines and op-
timizes the Szymanski and Van Wyk and the Guibas and Saxe algorithms. It uses
O(W) (primary memory) space and runs in O(N Ig N) time in the worst case.

The algorithm consists of a two-pass scan over the set of rectangles. Most of the

work is done in the first, forward scan. A backward scan is then used to produce the
labeling of rectangles such that two rectangles have the saute lahl if and only if they
are in the same connected component. The algorithi maintains four data structures
of size O(W) during its forward scan.

The first chapter of this thesis presents the connected components algorithm
and its analysis. The second chapter describes a data structure and algorithms for
the implementation of the scan set, one of the data structures used in the forward
scan of the connected components algorithm. Some sort of scan set appears in every
scanning based algorithm for solving problems with rectangles. In particular, the
new data structure, interval trees, could be used by Guibas and Saxe to simplify the
implementation of their algorithm. The introduction to chapter 2 discusses some the L

the previous implementations of scan sets.
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1. The Connected Components Algorithm

This chapter presents the connected components algorithm and its analysis. Sections
.J. - 1, 2, 3, and 4 describe the four data structures used during the forward scan. Section

5 gives the algorithm, section 6 proves its correctness, section 7 analyses the time and
space requirements of the algorithm, and Section 8 offers some remarks.

1.1. Rectangle set

In scanning algorithms an event is a geometric phenomenon that causes some
computation at the time when it occurs. There are two types of events for a left-to-
right scan: a start event when the scanline crosses the left boundary of a rectangle
(the rectangle becomes active, or enters) and an end event when the scanline crosses
the right boundary of a rectangle (the rectangle becomes inactive, or leaves). Each
rectangle has an associated start event and end event.

There are two technical issues to be resolved during scanning. The first is manage- L
mcnt of active rectangles, and the second is the sorting of events.

The rectangle set R is a dynamic set that contains the active rectangles at any
point during the scan. The problem is that the association between start and end
events must be maintained in small primary memory space. We assume that each
rectangle in the disk file has a unique identification number. When a rectangle enters
primary memory, it is stored in the set R with the idtntification number as a key. The
rectangle set can be maintained as a balanced search tree, using O(W) space. Each
insertion, deletion, or search takes O(lg W) = O(lg N) time.

. . The scanning part of our algorithm assumes the events are sorted by z-coordinate.
If not, the events must be sorted. This takes O(Nlg N) time in the worst case, but
most computer systems do have a fast disk sort. 'Much of the time. we can do much
better because many VLSI databases already keep reciangles sorted by left edge.

Given a file sorted by left edge alone, we can sort it into start and end events
in O(NIg N) time and O(W) space using an idea due to Szymanki and Van Wyk
[10j. The idea is to keep a priority queue, such as a heap [1, p. 1.17-1521, in primary
memory. During the operation of the algorithm, the priority queue holds at most W+ I
rectangles sorted by right endpoint. When a new rectangle is read in. its right endpoint
is stored in the priority queue. Then the priority queue is emptied of all rectangles
with right endpoint smaller than the left endpoint of the new rectangle. For each of
these rectangles, the right endpoint is written out in order as an end event. Then the
left endpoint -. the new rectangle is written out as a start event. Thus, without loss
of generality, we can assume the start and end events are presorted.

There are other, more mundane data management issues to be raced in the course
of programming the connected components algorithm described here. Most of these
can be resolved using simple pointer associations, but the more complicated will be
addressed directly in the sections to come.

1.2. Scan set
We now turn our attention to the data structure that maintains the scanline for

the connected components algorithm. At any point during the forward scan, the active

10



rectangles can be represented as a set of vertical intervals, i.e., an interval in y. For
example, Figure 1 shows the intervals of the active rectangles at the time rectangle
E enters. The scan set S maintains the dynamic set of intervals that represents the c::. ._-:

active rectangles. "

The scan set allows the connected components algorithm to determine rectangle
intersections easily. Two rectangles intersect if and only if there is a scanline that
crosses both rectangles, and their intervals overlap in the scan set corresponding to
the scanline. This technique for determining rectangle intersections is well known and
is used in previous scan-based algorithms for determining rectangle intersections or
connected components [3], [41, [10].

To be precise, a scan set S supports the following operations:

S-INSERT(A)
Add rectangle A to the scan set.

S-DELETE!(A)
Remove rectangle A from the scan set.

S-FIND(I)
Returns a rectangle in the scan set S that overlaps interval I in some way, and
NIL if no rectangles overlap I.

The number of rectangles stored in S at any given time during a scan is at most
the scan width W. We can implement each of the three operations in time O(lgW)
using space O(W) with interval trees. This data structure is described in chapter 2.

1.3. Component set .; -

During the forward scan, the connected components algorithm maintains a com-
ponent set Q that reflects our current knowledge of the connectivity of the active rec-
tangles. Each component is designated by a color, which for convenience is represented
as an integer. 1

The rectangle colorings within the component set Q may change with a start event.
If a new rectangle connects two previously unconnected components, we merge them
within the component set Q by recoloring active rectangles in the smaller of the two.

The component set Q supports the following operations:

COLOR!(A)
Assigns rectangle A a new (unused) color.

UNCOLOR(A)
Dissociates rectangle A from others of its color. If A is the last of its color, the
color is destroyed (made available for reuse).

COLOR(A)
Returns-A's color.

REPRES ENTATIVE(q)
Returns any rectangle having color q. If there is no such rectangle, return NIL.

'Thc IvU'r Q is innemonic for "qonnected qomponentu" and "qolor." The first ietwrs or the alphabet
arc re.4mcrd for rectangles.

.. , ...... •.... . . . ... .-.... . . .. , .. .... ...... :.,, :.,.:.,



* RECOLOR!(ql, q2)

Takes all rectangles of color q, and Color q2 and makes them all either color q, or
color q2. The other color is destroyed.

We implement the component set Q using a vector in which each color is repre-
sented as an index in the vector. Each slot in the vector contains a pointer to the
first rectangle in a doubly linked list of all rectangles of that color, and the number
of rectangles in the list. The pointers to implement the linked lists can be stored with
the actual rectangles. Each rectangle also stores the index of its color. If the number V
field is zero, the color is unused, and we then use the pointer field to implement a free%
list of the unused colors. An extra variable is needed to store the head of the free list.

All operations except RECOLOR! can be implemented in constant time. If we
always merge the color with the smaller number of rectangles into thc one with the
larger number, then we can do 0(N) recolorings in 0(N lg N) time. There are at most
W4 rectangles in the component set Q at any given time so the data structure need only
be size 0(W).

1.4. Territory set

To achieve an 0(N Ig N) worst case running time for the connected components
algorithm, we must find a way to maintain the component set Q without looking at
every intersection. Figure 3 shows the basic idea. The active rectangles BI, C, and 0
have thc same color, say 1. The new rectangle E intersects all three of these rectangles,
which tells us that rectangle E should be given the samne color as rectangle 11. all
rectangles with B's color should be merged with rectangles of rectangle C's color. etc.

* We would get the same result, however, if we just noticed that rectangle E, intersects
some rectangle(s), all of color 1. That is. instead or asking, "What other rectangle~s
does rectangle E intersect?" we would like to be able to ask, "For what color q if) the
component set Q does rectangle E intersect at least one rectangle colored q" WVe now
describe a new data structure called a territory set T that will allow us to answer this
question using small space and time.

The territory set T is a refinement or the illuminator data structure used by
Guibas and Saxe in their algorithm for the connected components problem [.11. The
territory set is essentially a colored partition {t1J of the scanline. Conceptually, each
territory has two fields: its Interval and its color. The interval is a closed interval in v
We implement the color indirectly by associating with each territory a representative
rectangle which is in the territory, and therefore has the same color as the territory.
Each territory t in T obeys the following rules:

1. Each active rectangle is cov'ered by exactly one territory.

2. Each territory covers at least one active rectangle. To ensure that the territory
set is never empty, we assume there is a dummy rectangle above all rectangles in
the data base that extends the full length of the design.

3. All active rectangles covered by territory t have the same color as t.

12



%~

A E:.

Sconline

Figure 3: The inefficiencies that can arise front intersection- based connectivity
algorithms. Colors of active rectangles are represented as circled numbers. When
rectangle E enters we would like to know it should have the same color as each rectangle
Colored 1 without recognizing this fact three different times via intersection check.
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For example, in Figure 4 no rectangles go across the boundary between territories
ti and t2. Each territory covers at least one active rectangle. Each active rectangle's
color corresponds to the color or the territory that covers it. Here, rectangles A, B and
G and territory tj that covers them are colored 17. Rectangles C and F and territory
t2 are colored 42.

The territory set T supports the following operations:

T-INSERT!(t)
Add territory t to the territory set.

T-DELETE!(t)
Delete territory t from the territory set.

LOCATE(y)
Returns the territory that includes the y-coordinate y. If the point y falls n the
boundary between two territories, the lower of the two is returned.

NEXT(t)
Returns the territory immediately above territory t.

COLOR(t)
Returns the color of territory t. This operation involves getting t's representative
rectangle and getting the color from the rectangle.
The territory set T can be implemented as a standard height-balanced tree using

O(W) space. The operations T-INSERT!, T-DELETE!, LOCATE, and NEXT can each
be implemented in O(lg W) = 0(Ig N) time. As a simple optimization, the territories
can be linked in order, which allows NEXT to run in constant time.

1-
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1.5. The Algorithm

The connected components algorithm operates in two phases. The first phase is
a forward scan over the rectangles during which connectivity information is prepared
that is written out to an intermediate sequential file on disk. The second phase is a
backward scan over the intermediate file during which component labels are asigned
toeach rectangle.

1.5.1. The forward scan

The data structures used by the forward scan contain only those rectangles that
are active, which ensures that the 0(W) space bound is met, but which also leads to
problems maintaining connectivity across the entire database. WVhen we see an end
event for a rectangle A signaling that A is to become inactive, we are not prepared
to give A a final label, yet we must purge A from our internal data structures. For
example, at the time rectangles A and C in Figure 5 become inactive, there is no way
to guess that they are in the same connected component. %Vere we to give them final
labels now, we would incorrectly give them distinct labels.

Since we cannot give each rectangle A a final label in the forward scan, we give
it a friend. Rectanglc A's friend is another rectangle which (1) is active at the time
rectangle A leaves, and (2) is known to be in the same connected component as rectangle
A. If there is no such rectangle at the time rectangle A1 leaves, then its friend is NIL.
Figure 5 shows a possible assignment of friends.

HH

INI



At the end or the forward pass, each connected component is linked together by a
tree of friend arrows. From this friend information, the back pass can construct f1Wd
component labels. The idea is that each friend arrow points from left to right if the
source and destination rectangles are sorted by right edge, or eluivalently, by time of
exit. Thus, a component label assigned to the root of the tree will propagate right to
left through the tree during the back scan.

The start event

Processing a start event for rectangle A during the forward scan invoulvs fern
steps: setting up, handling top and bottom boundary conditions, recoloring afected
rectangles, and cleaning up.

Set up. Figure 6 shows the important y-coordinates and intervals for the geanl "
case. The bottom and top coordinates of A's interval are designated Via, and Ip. The
endpoints of the k territories in the territory set T that A overlaps are Vol 119,... ,k.;
The k territories are gathered into a list L by first using LOCATE to find the territory
that includes ybor, and then using NEXT to gather the remaining territories that overlap
A's interval [Vbot, ytop]- All the territories in L are then removed from T, which leaves
a gap in T from 10 to wk. This gap will be repaired in subsequent steps.

Intuitively, the colors of the territories in list L represent our first guess at which
colors must be merged due to the entrance of rectangle A. Since each territory contains -

at )cast one active rectangle, the territories in the middle of the list will necessarily
contain a rectangle that intersects A.

Handle boundary conditions. Rectangle A extends only partially into the top and
bottom territories, so we must explicitly reference the scan set S to determine whether
there are active rectangles in these two territories that intersect A. We describe only .

the handling of the top boundary condition since the bottom boundary condition is
symmetric. Also, for simplicity, we shall consider the special case k = I (Figure 7)
after we deal with the general case k > 2 (Figure 6).

Handling the top boundary condition for k > 2 involves determining whether
the top territory should be kept in list L. The first case is when there is some active
rectangle B that intersects the interval [Ip-I, PYtoI. The interval of the rectangle B
falls entirely within the top territory, so it follows that A, B, and every other active
rectangle covered by the top territory must have the same color by the time we finish
processing the entrance of A. Therefore, we leave the top territory in the list L, and

* nothing is to be done.

Otherwise, no active rectangle intersects A in the top territory, and the top
territory is removed from L. Since k is at least 2, there must be an active rectangle
in the interval [yuop, yk] because the top territory must contain at least one rectangle,
and the interval [Yk-,Iot Ytp] contains none. Therefore, we can return the top territory

.*i to the territory set with the shortened interval lytop, ykj without violating any of the
properties a territory must have. In other words, chopping off empty space does not
hurt.

1.
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Figure 6: The territory set is shown on the left and the rectangles on the right
for the case when k > 1. The colors of territories t1 t 2,...,t are a first guess at the
colors to merge because of rectangle A's entrance.
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We now discuss the processing of the top boundary condition for the special case
when k = I (Figure 7), since once again, the bottom boundary condition is symmetric.
lf rectangle A intersects some active rectangle, then we're done. If rectangle A does
not intersect any active rectangle, it is possible that the rectangle that justified the
existence of the single territory in list L is below rectangle A, instead of above. In this
case, we must explicitly query the scan set S with the interval [ytg,yllit to determine
whether there is an active rectangle to justify putting a territory over the interval. If
there is an active rectangle, we must enter a new territory into T with the shortened
interval [sitop, y, ] using the color of the old territory.

Recolor. Now, the colors of the territories in list L are exactly the colors that
* must be merged because of rectangle A's entrance. We first color rectangle A with

a new color. We then merge A's color with the color of each territory in L. The
colors are automatically garbage collected by the component set Q. Because of our
pointer implementation of territory colors, no territory will ever be colored with a
garbage- collected color.

Clean up. We finish the servicing of rectangle A's entrance by repairing the
territory set T and making A active. The gap left after handling boundary conditions
becomes the interval of a new territory with the color of rectangle A. Rectangle A is

a inserted in the rectangle set R and the scan set S. Since the left side of a rectangle
indicates an end event in the back scan, enter an end event for rectangle A in the
intermediate file that will serve as input to the back scan.

The end event

Servicing an end event for rs-,tangle A requires us first to find the associated
rectangle object for A in the rectangle set R. Then, we must output a start event
for A in the back pass and fix up the internal data structures. We accomplish this
processing in three steps: making rectangle A inactive, associating A with a friend,
and fixing the territory set T.

Make A inactive. Let q be rectangle A's color before processing the end event.
Uncolor rectangle A, and remove it from the scan set S and the rectangle set R.

Find a friend. Query the component set Q for a representative of color q. Associate
this representative rectangle (possibly NIL) with rectangle A so that A can now tell its
friend when asked. Write out this information as a start event for rectangle A for use

r in the back scan. We shall say that rectangles that recieve NIL as a friend have no
friend or are friendless.

Fiz the territory set. Pick any point on rectangle A's interval, and use LOCATE
to find the one territory t that covers rectangle A. Find a rectangle B in the scan set S
that intersects t's interval to see if there is some active rectangle to justify t's existence.
(Recall that a territory must cover at least one active rectangle.) If no rectangle exists,
then A is the last active rectangle in t's interval, and territory t can be eliminated by
extending the interval of the next territory above t to include tVs interval.

If the existence of tersitory t is justified by some active rectangle B, and A is

s serving as thc representative for territory t, then make rectangle B the representative

of territory t.
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1.5.2. The back scan

The second phase, the back scan, passes backwards through the intermediate file
- of rectangle-friend information created in the forward scan, producing a final file of

rectangle-label pairs which will be sorted by left edge. During this right-to-left scan,I each rectangle receives its final labeling from its friend. The back scan uses only one
- data structure, the rectangle set R?. It also requires a counter initialited to 0.

During the back scan, the rectangle set R holds all active rectangles, and each
active rectangle knows its final component label. Labels are assigned sequentially
during the back scan, and the counter holds the value of the next label to be assigned.

I The start event

The first step in servicing a start event for rectangle A is to assii" a final label
* to A. if A has no friend, it is the rightmost rectangle in its component, and so a new
* label must be assigned from the counter. Store this label into A and increment the

counter.

Otherwise, find rectangle A's friend in the rectangle set R, and give A4 the same
-label as its friend. Rectangle A's friend must be active since A and its friend were

simultaneously active in the forward scan. Rectangle A left first in the forward scan so
it must enter after its friend in the back scan. Finally, add rectangle A to the rectangle
set)R.

The end event
Processing an end event for a rectangle A consists of simply removing A from

the rectangle set R and writing out rectangle A with its label to a final file. No
rectangle that subsequently enters has A as a friend because the two rectangles are not

* simultaneously active. Thus, no other rectangle will need to get a label from A, and
* hence, it is safe to remove A. The final file is sorted hy left edge from right to left.

Reversing the file leaves it file sorted left to right by left edge as was the original input
file.

U 1.6. Proof of correctness

This section shows that two rectangles get the samte label if and only if they are
in the same connected component.

(=)We first show that if two rectangles are given the same label, then they are in the
Ir same connected component. We prove this by induction on the number of rectangles

given the same label. Suppose rectangle A is the first rectangle given label 1. Then
at the time we process rectangle A's start event during the back scan, rectangle A is
friendless and the value of the counter is 1. If rectangle A had a friend, it would be
given the same label as its friend contradicting our assumption that rectangle A wasr

S the first to receive its label. The counter is incremented after rectangle A is given the
label I so no friendless rectangles to enter after A will get the label 1. By the same
argument, no friendless rectangle to enter before rectangle A could have been given
the label 1.

t rAssume that at some point in the backscan, k rectangles have been given label _777

I and all k are in the same connected component. Some j <5 k of these rectangles
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are active (i. e. are in the rectangle set R). Now the start event for some rectangle B
causes B to get label 1. For this to happen, rectangle B must have a friend rectangle
C which is one of the j active rectangles with label 1. Since rectangle C is rectangle C
B's friend, both rectangles B and C must have had the same color in the component
act Q at the time rectangle B left in the forward scan.

To finish the argument, we must show that two rectangles simultaneously having
the same color in the component set Q Must be in the same connected component.
If this is true, then rectangles B and C are in the same connected component and
therefore by transitivity rectangle B is in the same connected component as the other
k rectangles given label 1.

We show that two rectangles sharing a color in the component set Q must be in the
same connected component by induction on the number of rectangles with that color.
A new color is introduced into the component set Q only when a COLOR! operation

* is performed upon a rectangle A during its start event. Hence each color begins with
only one member rectangle. Other rectanglcs join a color only through the MERGE!

* operations performed during the processing of the start event for a rectangle.
Assume that before processing the start event for a rectangle A, all rectangles with

the same color in the component set Q are in the same connected component. After
handling the boundary conditions, there are m > 0 territories in the list L. These
territories have n < m distinct colors 91,q2, ... , q. which are all merged into one final 4
color q. The colors q1, 92,.- . are exactly those colors for which at least one member

* rectangle intersects rectangle A. Each pair of rectangles in the final color q is connected
* by a path of intersecting rectangles. If they shared a color qi in the component set Q

before rectangle A entered, then by assumption there is a path connecting them that
Uincludes only rectangles originally colored qi. Otherwise, there is a path between the '

two rectangles that includes rectangle A. Therefore all rectangles now colored q are in
the same connected component.

(v-) We now prove that if two rectangles are in the same connected component, then
they get the same label. It suffices to show that if two rectangles intersect they get the
same label because then all rectangles in the same connected component get the same
label by transitivity. The proof has two parts. First, we argue that if two rectangles
intersect, then during the forward scan they have the same color in the component set
Q wvhile they are both active. Then we show that if two rectangles are simultaneously

Cactive and have the same color in the component set Qthen they get the same label.
If two i -ctangles A and B intersect, they have the same color in the component set

Q while they ar both active. Assume without loss of generality that rectangle B enters
after rectangle A. Let t be the territory in the territory set T that covers rectangle A
at the time rectangle B enters. Since rectangles A and B intersect, territory t must at
least partially cover rectangle B so it will be gathered into the list L in the first step of
the processing of the start event for rectangle B. The presence of the active rectangle A
intersecting rectangle B guarantees that after the boundary condition checks, territory

t will still be in the list L. Therefore after the merging, rectanglcs A and D will be the
same color in the component set Q. From that point on they will always move together
in any recolorings, so they will always have the same color until one of them leaves.
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If two rectangles are in thi same color in the component set Q while they are
active, then they will get the same final label. Suppose a rectangle A is about to leave.
Consider the set of rectangles that have the same color as rectangle A. Rectangle A
chooses one as a friend (shown by an arrow in figure 8). Later, other rectangles may
join this set through merges. As each rectangle in the set leaves, it chooses a friend
from among those left in the set. Eventually an exiting rectangle finds itself alone, and
it exits without a friend.

Figure 8 shows one such set of rectangles taken from the example in figure 5.
During the forward scan each of these rectangles simultaneously shares a color in the
component set Q with at least one other rectangle in the set. For example rectangles
A and B share a component immediately after rectangle B enters and rectangles B, E,
and F share a component immediately after rectangle F enters.

We can view the illustration in figure 8 as an acyclic graph with the rectangles as
vertices and the friend relation arrows as directed edges. Each vertex has outdegree
one except for a single sink, the friendless rectangle H. If we start at any vertex in the
graph and follow the edges, we always end up at the sink. We know from our previous
argument that a rectangle gets the same label as its friend. That friend in turn gets
the same label as its friend, ... (down the friend links) ... , who gets the same label as
the sink H. By transitivity any two rectangles that are in the same component of the
component set Q while active will get the same final label.

Ar C[f F H NIL•--

Increasing time of exit on forward scan

Figure 8: An example of a component taken from figure 5. The arrows represent

the friend relation. Each rectangle shares a component color with at least one other

rectangle in this set during the forward scan. During the back scan, these rectangles

enter from right to left. Rectangle I receives a new label, and all the other rectangles

receive their labels indirectly from rectangle H.
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1.7. Analysis

This section shows that the worst-case running time of the connected components
algorithm is O(N Ig N), the amount of primary memory required is O(W), and the
number of transfers between primary and secondary memory is O(N). We have already
seen that each data structure requires only 0(11') primary memory space, and it can
be verified that the number of disk transfers is O(N). Thus, we must demonstrate that
the running time of the algorithm is O(N Ig N).'C_

The rectangle set R and the scan set S each contribute only O(NIgN) to the
overall time. The rectangle set R is used in both the forward scan and the back scan.
It contributes only O(N Ig N) to the time in each phase since it performs at most two
operations, each requiring 0(lg N) time, on each of the O(N) start and end events. -

The scan set S performs one insertion or deletion and at most four S-FIND operations
for each start or end event. b

Operations on the territory set T contribute O(N Ig N) time as well. During the
servicing of an end event, the territory set T performs at most one LOCATE, two T-
DELETE!'s, and one T-INSERT!, if we regard the modification of a territory interval
as a deletion followed by an insertion. For a start event, only one LOCATE and at
most three T-INSERT!'s are performed. The number of calls to NEXT, T-DELETE!,
and COLOR directly depends on the size of the list L, however.

We shall show that each operation is performed at most O(N) times. The opera-
tions that are performed a constant number of times for a given event are executed
O(N) times overall. The other operations are called once for each time a territory
appears in a list L during a start event. Thus, showing that the sum total of the sizes
of L throughout the entire forward pass is O(N) will produce our desired bound. The
total number of insertions into T is at most -IN, which therefore bounds the total
number of deletions. Moreover, each of these territories! can participate in a list L only
once since it is deleted from T at that time and replaced by the consolidated territory
or a new boundary territory. Hence, the sum total of the lengths of L is O(X), which
also bounds the number of times any operation is performed. Since each operation
costs 0(lg N) time, the total work performed on the territory set is O(N Ig N).

It remains to analyze the component set Q. Each start event causes one COLOR!
operation, and each end event causes one UNCOLOR! and REPRESENTATIVE opera-
tion. Using the same arguments as above for the territory set, at most O(N) RECOLOR! F
and COLOR operations are performed throughout the whole forward scan. Thus, its
contribution to the overall running time of the connected components algorithm is also
O(N Ig N).

1.8. Remarks

This section presents the important extension of the connected components algo-
rithm to multiple layers. We also discuss some alternative implementations of the data
structures which may be better suited to a practical implementation.

The connected components problem of rectangles in the plane presented in this
paper is a simplification of the problem faced in computer-aided design of VLSI.
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Computing the electrically equivalent rectangles in multiple planar layers of a VLSI
design is not much more difficult than the one-layer problem discussed in this paper,
even though contact cuts can allow components to snake up and down among layers. -

To find the connected components of rectangles on multiple layers, we simply run
a copy of the basic, one-layer, connected components algorithm on each layer. In
the forward scan each layer is given its own scan set, rectangle set, and territory set.
The component set, however, is global to the entire computation. Each contact is
represented explicitly on the layers it intersects. In the back scan, both the counter
and the rectangle set are global. No further changes are necessary.

Some of the data structures necessary for the connected components algorithm can
be implemented more practically than with the asymptotically efficient height-balanced
trees presented in the body of the paper. The rectangle set R, for example, can be
implemented by hashing on the rectangle identification number, which would lead to
good average case behavior. At the cost of a bit more complication, the component set L
Q can be implemented with a union-find structure that allows O(N) merges in almost
linear time [11].

The scan set S and the territory set T can be implemented by using bins, as has
been done for other VLSI algorithms [2]. Each bin represents a fixed portion of the ir
scanline and contains a pointer to the list of objects that overlap that bin. A desirable -.

bin size can be chosen based on statistical information about the VLSI design. The
worst-case running time of the algorithm may be diminished, however, because long,
tall rectangles will be split across many bins. The difference between this approach
and an intersection-based approach, such as [10] may be negligible.

2-
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2. Interval Trees

The scan set data structure is central to any algorithm that uses scanning. In
particular, an algorithm which passes a scanline over a set of rectangles requires a
data structure to manipulate the line segments that the scanline induces in that set
of rectangles. The INSERT!, DELETE!, and FIND operations that the algorithm
of chapter 1 requires are a subset of the operations required by other scan-based
algorithms for problems involving rectangles, for example [3, 4].

Other data structures have been developed to handle INSERT!, DELETE!, and
the more complicated operation of ennumerating all segments intersecting a given test
interval. Each of these data structures has its shortcomings. The segment trees of
Bentley and Wood [3) require 0(nlgn) space for n segments. McCreight's priority
search trees [6] require only 0(n) space, but they are quite complicated. Priority search
trees are built upon height balanced trees. Unfortunately, updates after rotations
require 0(lg n) time, so the underlying balanced tree structure is limited to those which
have a constant number of rotations on each insertion/deletion.

The three operations we want-insert a segment, delete a segment, and find any
segment that overlaps a test interval-do not require the heavy artillery of priority
search trees. A simple modification applied to any height balanced tree scheme will
suffice. The new scheme, interval trees, requires only 0(n) space and it performs each
of the three operations in 0(lg n) time.

Section 1 introduces interval trees. Section 2 describes the insert and delete
operations. Section 3 gives the algorithm for the find operation and argues that it
is correct. Section 4 offers some conclusions.

2.1. The structure of Interval Trees

Interval trees represent a set of line segments, all intervals along the same line.
Each segment, s, is represented as an ordered pair (81,s2), SI < s2, where s, is the
minimum point of the line segment and s2 is the maximum. It is assumed that the [.

minimum points of all segments are distinct. It they are not, break ties with the
maximum points or with an ID attached to each segment. All that really matters is
that the intervals are distinguishable.

To implement an interval tree, start with any balanced search tree scheme: AVL
trees, 2-3 trees, etc. Set up the search tree as it would normally be set up using the
minimum point of each segment as the search key. The segments may be stored in
internal nodes as in A'vL trees or stored strictly at the leaves as in 2-3 trees. Now add
to each internal node a range interval corresponding to the minimum and maximum
points covered by any segment in the subtree rooted at that node. The minimum point
of the range interval for an internal node always comes from its leftmost son if the
tree is based on any standard search tree. However, the maximum point comes from
any-where in the subtree.

Figure 9 shows one possible implementation of an interval tree for a set of seg-
ments. It uses a 2-3 tree strategy where all the segments are stored in the leaves.
Figure 10 shows another underlying scheme more like an AVL tree where segments are
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stored in internal nodes as well as the leaves. Here the range interval for an internal
node takes the minimum and maximum points covered by segments in any part of the A
subtree including the node itself. For example, in the left son of the root, the maximum .

point comes from segment c stored in the node itself. :.

Some points in the range interval for a node may not be covered by any segment
stored in the subtree rooted at that node. These uncovered intervals are called gaps in
the range interval. For example, the node in figure 9 with three children has two gaps
in its range interval: h2 to i t and i2 to it.

.9-

_ _ _) h h2 ) i j j

-4 2 L2 1.-

Figure g: An interval tree with an underlying 2-3 tree representation for a set
of segments. Intervals in brackets are range intervals for internal nodes.

27

. . . .. .. . . . . . . .
: : ,-..-

,'* .. .. ' .... ,* *.*I * * " • -. :



a212  
hc q2

bo[d,,d 2 d[

. 0 2, 2]d' I

Figure 10: An interval tree containing the segments from figure 9. The underlying
balanced search tree here is an AVL-like tree which uses rotations to maintain balance.

*The letters within nodes indicate segments. For example, g stands for the segment o

(g1, 92). Bracketed intervals are the range intervals for the internal nodes.
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2.2. Insertion and Deletion of Segments

This section describes how to insert anid delete segments from an interval tie. A
segment can be inserted/ deleted and the range intervals updated in time OIg n) in an
interval tree with n segments. We describe the operations in some detail for interval
trees implemented with underlying tree structures similar to 2-3 trees and AYL trees.

Insertion arnd deletion of a segment is done in accordance with the underlying
balanced trec scheme. In A"L trees and others like it, balance is maintained through
rotations. In B tree schemes such as 2-3 trees, it is maintained by node splitting,

-. sharing keys among siblings, etc. In either case, maintenance of the range intervals is

quite easy. This is because once the range intervals of a node's children are established,
- - calculation of its range interval takes a constant amount of time.

Insertion into 2-3 trees involves two steps. The first stage is a search to aind the
leaf in which the new segment belongs. The segment is then inserted into that leaf.
In the second stagc, this leaf splits into two leaves if the addition of the new segment
made the leaf too full. The splitting of the leaf may make its parent overfull. 11f so,
the parent splits, and so on.

To update range intervals during the first stage, fix effected intervals on the way
down the tree during the search for the appropriate leaf. That is, each node passed
through in the search will be an ancestor for the new segment, so if the new segment I

has a minimum point lower than the minimum point of a range interval or a maximum
greater than its maximum, adjust the range interval. On the second stage, adjust the
interval of each node involved in splitting. The splitting goes from the bottom of the
tree up, so each node's children are stable by the time it splits. Therefore calculation
of a new range interval requires a constant amount of time for thoae nodes. - -

A2 B

TT

Figure 11: An example of a typical rotation. Circles represent nodes of a tree.
Triangles represent tress of 0 or more nodes. This rotation is performed ir both or
the trees T2 and T'3 have height h and tree T1 has height h + 1. McCreight use" this
example when explaining updates to priority search trees after rotations. Priority
search trees require O(lgn) time for each rotation which restricts the number of
balanced tree schemes suitable as underlying structures. Interval trees require only
a constant amount of time per rotation. .
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Deletion is much the same except that instead oi splitting, there is cmueacig. THe
same reasoning applies here: adjust range intervals on the way down while searching
for the segment to delete, and adjust each node involved in coalescing.

* Trees that use rotations to adjust balance are even easier. As with thoen interval
trees with underlying 2-3 trees, adjust range intervals on the way down the tree when
making an insertion/deletion. If the tree is unbalanced, make the ecesery rotations.
Figure 11 shows a typical rotation. The circles represent nodes with segments red
in them. The triangles represent subtrees of 0 or more such nodes. These n!atms
cause problems with priority search trees because the subtrees Tg,Ts, and 3 MsA
change when updating information stored in the nodes ni anti n. With normal March
trees and interval trees this is not the case. The range intervals in trees r,, T1, mad T
remain unchanged. Give node n2 the old range interval from node al, and calculate
a new range interval for node n, using segment A and the range intervals of trees
72 and T3. Since rotations take constant tinie, we can do up to O(ig a) ef them fm
each insertion/deletion without effecting the &asymptotic time requirements for these
operations.

2.3. The FIND operation

This section gives the algorithm for the FIND operation required by the scan set of
the algorithm presented in chapter 1. It also contains an argument that this algorithm
is correct.

Given a test interval t (t 1 , t2) and an interval tree, FIND(t1, t2) returns a segment
in the interval tree which covers (overlaps) the interval t or it returns nil if there is
no such segment. By appropriately defining "covers %e can implement open or closed
cndpoints in any combination for both the segments and the test interval, (eg. open testinterval with half open segments or closed test interval with open segments). We can

even vary within the segments in the interval tree if we want to make the proces.iing
a bit more complicated and allow two extra bits of information per Wgnient. The
differencc between open and closed endpoints is merely the difference between a test
with a strict "less than" and a test with "less than or equal to".

Given the root of an interval tree, r, and a test interval t, to FIND a covering
segment (if any) proceed as follows: If there are any segments stored in node r and one
of them covers t, return that segment and halt. Otherwise, look at the range interval
or node r's leftmost child. If this range interval covers test interval t, then recursively
FIND a covering segment in that child. Otherwise, check the range interval of node
r's next leftmost child, and recurse to that node if its range interval covers the test
interval t, and so on. If node r contains no covering segment and none of its children
have range intervals that cover test interval t, then return nil.

To see why this algorithm works, let us look at a binary tree. The argument for
n-ary trees is similar. If we find a covering segment in the node, then we succeed. If
there is no covering segment in the node and none or the children have range intervals
touching the test interval, then there is no hope; the tree does not contain a covering
segrrent, so we should return nil. The only subtle point is that if the range interval
of the left child covers the test interval but a recursive search in the left child fails to
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yield a covering segment, then a search of the right child must fail as well. This allows
us to follow exactly one path through the interval tree during a FIND operation so the
operation costs O(ig i) time in the worst case in an interval tree with n segments.

Figure 12 shows why the right son will be of no help if the left son's range interval ,
covers the test interval but the recursive search fails. Suppose segments a ad b are
in the left subtree of a node. During the FIND operation we see the range Intera
for the left subtree covers test interval t, but the search ultimately fails. For this to
happen, interval t must fall into a gap of the left subtree range interval. T'n- 7y
way a segment in the right subtree could cover interval f would be if there w Ame
segment c that reached into the gap. However, that would mean cl < b whick -a.tes
the structure of the search tree. If c1 <b 1 then segment c must be in the left subtree
if segment b is.

An interesting corollary to this argument is that if the range interval (1,1) of the -
left son overlaps the range interval (r, TO of the right son, then there is some segment
in the left subtree that extends through the entire overlap region. The overlap region
is either (r7, 12) or (rl,'2) if r2 < 12. The segment (p, 12) %hich registers the maximum
point in the range interval for the left subtree must have a minimum point p < rl so
this segment covers the entire overlap region. Consequentrly, if during a FIND operation
two children of a node have range intervals overlapping the test interval, then we know
there is a covering segment and that it is in the leftmobt child. If we are not interested
in a specific segment, but only care to know if there exists a covering segment or not,
we could stop at this point with an affirmative answer. For example, this is all that is
necessary in the Guibas and Saxe connected components algorithm.

III
a t 1  t 2  b4

a aC
1 1

C" C
2

Figure 12: If a and b are segments in a subtree rooted at some node n, then the
subtree rooted at node n's right sibling cannot contain a segment c reaching into the
gap between segments a and b, That would viclate the strict ordering of the search
tree based on minimum segment endpoints.

a, I.... ....

;. ....... ..... /... ...........-...............-....-.- ,..-a........-,. ..-...- , .. . -;



2.4. Remarks

* This section wraps up the discussion of interval trees by applying them to the
... .-.~.scan set used in the connected components algorithm of chapter 1 and by looking at

the problem of ennumerating all segments covered by a test interval.

* The scan set of chapter 1 is supposed to contain rectangles, not segments. The
problem is easily remedied by using pointers to rectangles whose y interval will serve
as the segments. Our insistence on distinguishability is motivated by the scan set.
Removing either one or two identical segments from an interval tree would not appear
to matter. However, removing the wrong rectangle from the scan set could cause many
problems with the connected components algorithm.

The interval tree is sparser than Bentley and Wood's segment trees and simpler
than McCreight's priority search trees. Any existing code for a balanced search tree
can be modified to implement interval trees in a very short time. Interval trees have
only the linear ordering on the lower end of the interval and the very easily maintained
range intervals. They do not maintain any heap-type information on maximum points
which is what causes all the headaches with priority search trees.

We are taking advantage of the special case operation FIND. In fact, interval
trees will not perform as well as segment trees or priority search trees for general
ennurneration. All efforts to modify interval trees to perform ennumeration have lead -

back to variations on priority search trees.
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Directions for Further Reserch

As mentioned in the introduction, the Szmanski-Van Wyk algorithm for connected
components assumes the same machine model as the algorithm presented in this thesis. •-.'- "
Their algorithm, however, is more general. It is designed for connectivity Analysis,
computation of union, intersection, etc. of general polygons. Their algorithm ass a
two-pass scan assuming an edge file on disk. It runs in O(NW) time where N is the
number of edges in the file, and uses O(W) space where IV is the maximum number of
edges to cut any vertical scanline.

Neivergelt and Preparata have an algorithm for such geometric operations on ar.
bitrary polygons as well 171. Their algorithm is designed to run entirely within primary
memory, but its assymptotic running time is better than that of the Szymanski-Van
Wyk algorithm. Given n points in the plane and some connecting line segments with "
segment intersections, the Neivergelt-Preparata algorithm runs in time O((n + 8) Ig n). .. .
In the special case where the points and lines form convex polygons, it runs in O(n Ig n+
a) time. Could a data structure such as the territory et of section 1.4 be introduced
into the Szymanski-Van Wyk algorithm to allow it to run in worst case time closer to
that of the Neivergelt-Preparata algorithm?

The geometric problems discussed in this thesis are only a small number of those
problems for which a two-layer model may prove fruitful. Many geometric problems are
incorporated into applications programs where the size of the input is arbitrarily large
in practice. For example, the convex hull is used in simulating chemical reactions and
in estimating population parameters in statistics and triangulation is used in numerical
analysis and in computer aided design of VLSI circuits. There are algorithms for these
problems in the literature with good or even optimal worst case time bounds, but
these algorithms assume all data is available in primary memory at all times. Are
there algorithms for these problems based upon the two -layer memory model which
match the time bounds of existing algorithms but run in small primary memory and
guarentee good paging?

Finally, is there a data structure with the simplicity of interval trees that will
allow ennumeration of all k segments that overlap a test interval in time O(Ig n + k)

- where n is the number of segments in the structure? If not, is there a structure similar
*. to priority search trees that does not have the same level of complexity in insertions
*. and deletions?

< [-
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