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On Density Estimation from Censored Data

by Penalized Likelihood Methods K

/ S
Abstract oS
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' Estimators for the probability density function, cumulative distribution L
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function, and hazard function are proposed in the random censorship setting.

The estimators are derived from the Kaplan-Meier product limit estimator by
The guthors
maximum penalized likelihood methods. We establish the existence and
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uniqueness of the estimates, which are exponential splines with knots at ii;i
- . ;ﬁ_ “r

the uncensored observations, and provide an efficient algorithm for their jf;{f
T T

numerical evaluation. -He‘prove the consistency, in probability and almost

":- L‘
surely, of the density estimates in the Hellinger distance, the L? norms

,'A {-‘m?’y
for p = 1,2,?, and the Sobolev norm. The corresponding hazard rate estimator

converges uniformly on bounded intervals. o

Accesion For \ DR
NTIS CRA&I v RGN
DlC TAB 0 Oy
U..anno med ] 3
Jotitoawss S
3 BY i L
- Ditin tion] el
3 B |
: Avziobiity Codes L ]
T i for / QN
.: Dizt i);)."(..'ldl .":\.‘:\
& .:,\:_'.
. .‘.\-_'\
. NSANAS
A-1 l S




T A T T T Y T T -

PR J')'-"-'-‘-'."‘."-‘F‘n‘.".‘.‘.'

1. Introduction

v

s

The classic problem in the independent random censorship model is to
estimate the distribution function nonparametrically. The maximum likelihood
estimator is the well-known product limit estimator introduced by Kaplan
and Meier (1958). We propose an estimator of the density derived from the
Kaplan-Meier estimator by maximum penalized likelihood techniques.

For uncensored data, the maximum penalized likelihood estimator (MPLE)
was introduced by Good and Gaskins (1971, 1980). Let xl,xz,...,xn be i.i.4.
random variables from a distribution F with density £, and let Fn denote
the corresponding empirical distribution function. The MPLE, denoted by fn'
maximizes the likelihood 'ﬁlf(xi) over a space of “smooth"” functions.
{Requiring smoothness avo;;s the Dirac delta solution of the unconstrained

problem.) Equivalently, fn is the maximizer of

(1.1) n [ log £ aF - O(£)

subject to ff =1 and £ > 0, where ®(f) is a "roughness penalty". DeMontricher,
Tapia, and Thompson (1975) rigorously established the existence and uniqueness
of the soluiion fn within the framework of Sobolev spaces, and showed that the

resulting MPLE is a spline function with knots at the sample points. Silverman

(1982) proposed and studied the statistical properties and asymptot.c

distribution theory of a class of estimators with roughness penalties on log £.

Klonias (1984) obtained existence, uniqueness and consistency results for a

broad class of penalty functionals on fH. 0
In the censored data setting, Lubecke and Padgett (1984) proposed fj:}

estimating the density f by the maximizer of the penalized conditional likeli-

hood, given which observations were censored. Questions of evaluation of the
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estimator and consistency were not addressed.
We propose estimators for the density, distribution, and hazard functions

derived by maximum penalized likelihood techniques. These estimators are based

on an estimate of the root-density v=f5 denoted by u e wvhich is an exponential

spline function with knots at the uncensored observations. The estimator

uy corresponds to the "first MPLE” of Good and Gaskins (1971) in the uncensored
setting. The advantages of parameterizing the problem through the root-density
are that it is square-integrable, conveniently allowing the use of Hilbert
space methods, and avoids the nonnegativity constraint £ > 0, while providing

the same density estimator as the direct approach - for the same penalty

functional - when the MPLE u turns out to be nonnegative, as is the case
here; see Lemma 3.1 of DeMontricher et al (1975). In addition, the square
root transformation is a variance stabilizing transformation for the density

estimation problem, so that a global roughness penalty seems appropriate to

be imposed on v = fk rather than f; see Tukey (1972) and Good and Gaskins
(1971, 1980). We then equivalently consider v as the parameter of the

problem, let it vary over an appropriate Hilbert space and express (L.1) in

terms of it alone.
Estimators of the density £, distribution function F and hazard rate r

ﬁ' are derived from uy by
9

f (t) =u (t)2

n n

F (t) = rEe (vyat

n on

and r (t) = £ (£)/[1 -~ F_(t)].
n n n

The existence, uniqueness and implicit representation of un as an

exponential spline with knots at the uncensored observations are derived in
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Section 2, where we also discuss the numerical evaluation of the estimator
through an efficient algorithm of Klonias and Nash (1983 a,b) based on a
truncated Newton method described in Nash (1984).

We establish consistency of the proposed estimators under mild moment

and smoothness conditions. We rely on asymptotic results for the Kaplan-

Meier estimator by Gill (1983) for consistency in probability, and by Foldes

and Rejta (1981) for almost sure consistency. The central proposition

establishes consistency of fn in the Hellinger distance, i.e.,
Ilu - fall —* 0 as n*>®
n 2

almost surely or in probability under suitable conditions, and determines
lower bounds on the rate of convergence in each case. Consequently, we
obtain consistency of uy in the supremum-norm and Sobolev norm, consistency
of the density estimator fn in the Ll’Lz' supremum, and Sobolev norms, and,
uniform convergence of the hazard rate estimator r, on bounded intervals.
The assumptions, statements, and proofs of the consistency and rate

of convergence bounds are presented in section 3. Auxiliary lemmas, which

provide bounds on integrals needed to establish consistency in the Hellinger

distance, are proved in section 4, including a result regarding the entropy

of continuous distributions.
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2. Formulation of the Estimator

The Random Censorship Model: Let xl,xz,...,xn be independent positive

| random variables with common density function f and cumulative distribution
function F. Let Yl'Y2'°"'Yn be independent positive random variables,
representing censoring times, with common distribution function G which

l may be discontinuous or defective. The random variables Yl,Yz,...,Yn are

assumed to be independent of xl'x2""'xn' The observations are

{‘21'61)’ i=1,2,...,n}, defined by

Zi = Xi AYi

and &8, = 1{x, <v.},
p 8 A - 1

where A denotes minimum and I{A} denotes the indicator random variable of

the event A. Denote the distribution function of {Zi} by H, which is given

by

1 -H= (1-F) (1-G) .
A Define T = sup{t: F(t) < 1}, with T and T defined similarly.
The product-limit estimator ﬁn is given by
| 1-F (t) = n (1- —#——)5(1’,
) n {i:z . <t} n-i+1
" “ni-

where Z . < Z _ < ... < Z _ denote the ordered observations {Z.}, and
nl - n2 - - nn i

.0 3 3 3 N . -b ]
\ 6n1'6n2" 'Gnn denote the corresponding indicators {61} The Kaplan-Meier

estimator has jumps only at the observations for which Gi = 1, which are
called uncensored observations. There are a random number Nn of uncensored
observations. We let Tnl < Tn2 < ... < TnN denote the ordered uncensored
n

observations, and let wni/n denote the size of the jump of Fn at Tni'

-4~




The QOptimization Problem. In the censored data setting. 1.1 suggests ’

estimating £ by the maximizer fn of

- 2
n f, log £ aF_ - (0/a) [, (£'/6)°¢

subject to: IA £f=1, £ >0,

or equivalently, see Lemma {(3.1) of DeMontricher et al (1975), by ui = fn'

where un denotes the maximizer of the following optimization problem:

.2 ~ . 2
(2.1) max {n IA log u” dF - @ IA ('), u€ H(A)}
. 2
subject to: IA u =1

> 1< <
and u(Tni) >0, 1% i. < Nn,

where @ > 0, H(A) = {u¢€ LZ(A): a* € LZ(A)} and consider the cases
A +'n2+, A = R. Incorporating the first constraint into the objective

function, we consider maximization of

2, {u) = an log uzd;‘n - aIA(u')z - AfAuz

where A is the Lagrange multiplier corresponding to the constraint. Then

the solutions uél), uéz) of (2.1) over R and n{+ respectively are given

implicitly by

N
(J) - -1 n (J) . § =
(&) =A "} w (T, ) kj(t'Tni'h)' j =1,2,

(2.2 i=1 Yni Yn

where A > 0 is the Lagrange multiplier associated with the first constraint,

= (u/k)k and

k) (x,yih) = nL e((x-y)/n),

(2h) "He ((x-y)/h) + el(x+y)/m)},

il

kz(x,y;h)

where,

e(x) = exp{-|x[}/2, x€R.
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Note that kl,k2 are the kernels of the reproducing kernel Hilbert spaces
. . 2
< > = LTy
(RKHS) H(A), endowed with the inner products u, .4, IA u,u, + h IA uju)
for A = R, H{+ respectively. The parameter h plays the role of the "band-
width” of a kernel estimator and we will equivalently use h rather a as our

smoothing parameter. For the consistency results of Section 3 we will let

h depend on n, i.e., hn = O(n—g): £ > 0. Then A, which also depends on n,

1-2¢

behaves asymptotically like n, so that an = 0(n ). For a development of

the consistency of the MPLE's in the uncensored case, with 0 rather than h

the independent parameter, see Klonias (1982).

In the remainder of the paper, un refers specifically to uéz), k=k._,

2
A= nz+ and H denotes H(H{+). However, arguments applying to uél) are nearly

identical and, in instances when they differ, are slightly simpler.

Existence and Uniqueness:

PROPOSITION 2.3: Let H (A) = {u €H(A): w(T ;) >0, i =1,2,...,N }. For
each A > 0, there exists a unique maximizer uy of (2.1) in HO(A), which is a

spline function given implicitly by
N
n w

=1 _ni .
; uy (t) = 3 '2 Sty KETim VEEa.
i=l A 'ni

. . 2 _
Then u = uAn, where An is the value of X for which lhxlllz = 1.

Proof. The proof relies on Theorem 7 of Appendix I «f Tapia and Thompson

(1978). The set HO(A) = {u€H: u(Tni) >0,1 <ic< Nn} is closed and convex.

The second Gateaux variation of lk(u), given by

N
n
2 -2
V%, (u) (n,h) =-z{i§1 woo w(T ) TIT BT L) + A<n,E 2],




..........

2 2
n.£ € H, is uniformly negative definite: v 2X(u) (n.,n) < - 2]InJl°. To
establish the existence and uniqueness of the maximizer of lA(u) over HO(A)
by Tapia and Thompson's result, it suffices to show that lx is continuous.

Continuity of lx follows from
Null =l w*ll]< }u-ull
and

laer y-urer O] < | <xte,r omu-ue > | < lxce,r sml Ju-ur]f.

Note that the constraints u(Tni) > 0 cannot be active at the maximum,

so the stationary point of the Lagrangian of the problem satisfies

Vi, (u)(m) =0 Vnex..

Fquivalently,
N
» -1
<y woo W )7 k(4,7 k) - de,t> =0 Vnen,
i=1
o)
- Nn
-1 -1 . _
"A 'Z Vi u(Tni) k{ 'Tni' ) u" = 0.

i=1

provides the form of the maximizer implicitly. [I

Numerical Evaluation: Since un is determined by its values at the uncensored

observations, we will obtain un(Tni) by first solving for

_ | -1
q; = (Ah) “n(Tni) , 1 <1< Nn.

Evaluating the implicit form of\ﬂ]at{Tni} . we obtain the following nonlinear




systems of equations

n
n

-1
. = . : ’ i € 1 < .
(2.3) q., = Ej 1 w j k(T .,T j h) i i N

Note that the solution q;I = (ql,...,qN )T of (2.3) is the unique solution
= n

to the following finite dimensional optimization problem:
Nn N

. T 2 n
mn{g w t WS - 21_1 Wni log qi' 36 IR_,_ }c

where W = diag{wnl,...,wnN } and the (i,j)-th entry of the positive definite
n

matrix } is given by k(Tni,Tnj;h). Existence and uniqueness of the solution
to this problem are discussed in Klonias and Nash (1983), who present an
efficient algorithm for the numerical evaluation of q. The parameter A is

then obtained from the equation I ui =1, i.e.,

N Nn

A = 21;1 )Zj=1 q;ay (%I (T 0,7, o),

where * denotes convolution. The values un(Tni) are then obtained from 3 and X.
In the figures that follow we graph the MPLE f;l) €H(R) or

féz) €H (ﬂ{;) - solid lines ~ agaipst the underlying density £. The data

were generated using the IMSL random number generator GGWIB. The X and Y

samples were generated consecutively starting with DSEED = 255866175, The

sample sizes are n = 120. 1In Figure 1, Exponentials E(D), with mean 6 = 1,

have been censored by E(3); the number of uncensored observations is Nn = 86,

In Figure 2, Weibulls W(a,8), with shape parameter 0 = 3 and mean 0 =1,

have been censored by w(3,2)} the number of uncensored observations is Nn = 105.

Note that in the case of the Exponential density fy €H (R+) but fl! ¢'ﬂ (R)

(2) (L)

and as expected fn performs better than fn . On the other hand in the case

of the Weibull, f5 ¢ H(RN H(El*)and fil) seems to perform better than f;z).

-8-
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f which is an E{1l) density which is censored by an E(3). The data is 120
Y

observations of which 86 are uncensored. Note that £ € H ‘Eﬂ) but not in

H(R) and fzz)performs better than f;l).
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FIG. 2. The solid lines are the estimates fil)e H (IR) (top) with h = .275 and

f;z)e H (EM) with h = .26,.plotted against the underlying f which is a Weibull(3)
with mean 1 density which is censored by a Weibull (3) with mean 2. The data is
120 observations of which 105 are uncensored.

Note that f;, € H {R) QN H(IR+) and fr(\l)

(2)

seems to perform better than fn .
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3. Consistency

Assumptions: 1In the proofs of consistency of our estimators, we make use

of the following assumptions:

Al: There exists T > 2 such that E[XI] <o,

n

a2 [ [1-G(s)] ™} aF(s) < + = .

m: eI =2f(EParcsrm,

A4: f£' changes sign finitely many times.

Assumptions Al -~ A4 suffice to establish consistency in probability,
employing the results of Gill (1983) on the weak convergence of the Kaplan-
Meier estimator, which require A2. To obtain almost sure consistency, we
use A5 in place of Al and A2, in order to apply the law of the iterated
logarithm for the Kaplan-Meier estimator due to Fold3§ and Rejt5 (1981).
The moment condition Al is used to obtain upper bounds on the maximum of
the uncensored observations. A3 arises in the application of a bound on
the entropy, proved in section 4. A4 arises as a technical condition in a
law of large numbers for integrals relative to the Kaplan-Meier estimator

proved in section 4.

LS

The Root-Density Estimator: We now prove a number of consistency results

for the root-density estimator un, and establish lower bounds on the rates
of convergence. The consistency of the density estimator fn is then derived
ir. the following subsection as a corollary of these convergence properties
cf un. The key Theorem 3.3 provides consistency of u in the Lz—norm,

relying on a series of lemmas proved in section 4.
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- We record the following two facts:

(i) From the implicit form of . note that

(3.1) Mo Il =1 +82 uli2 = ta/a) E_(+ ).

(ii) Since u is the maximizer in the optimization problem,

X A A
(3.2) I log v° dF - ——h vl <J’ log u ar_ - —h flu nll2
Theorem 3.3: (a) Under assumptions Al - A4, and t > % - —) /3,

-da 1 1
- = [ = = /
"un v"2 0 (n‘ ) for 4 (2 T t)/2
{(b) Under assumptions A3 - A5, and t > 1/6

"un"""2= O(n_d) a.s. for 4 < (%- t) /2.

Proof. By Lemma 5.3 of Klonias (1982),
||un—v|| < ] log v aF - f 0 log u daF
. -] 2 ~ -] 2 A 00 2 ~ o0 2 -~
= - - -~ - e + 3
IO log v- @(F-F ) IO log v dF fo log u_ a(F-F ) ]0 log u dF

which, by (3.2),

< Im log u> a(F_-F) - ]@ log v2 a(F_-F) + (A /)2 llv'llz - llu'llz)

- Jg 199 Y, n o ~°9 n " n 2 n'2/'
and since by (3.1), )\n/n <1,

o 2 2 © 2 oA 2 2 "

< fo log u_ d(Fn-F) - IO log v d(Fn-F) + hn "v'"z. -‘-—~—-

The conclusions follow from Lemmas 4.2 and 4.7, with the rate of convergence

being determined by Lemma 4.2. U

-12-~
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The following lemma establishes the rate at which An converges to

.

XA o

AN

P

i

infinity, for use in the proof of Lemma 3.5 below.

A

Lemma 3.4: l(kn/n) - En(+ w)| = O(n-d)

7

i
T

(a) in probability for 4 < (%-- %-- £>/2,

Ly
>
o

=t
-

(b) almost surely for 4 < (%-- t}/2,

i a

under the assumptions of Theorem 3.3 (a) or (b), respectively.

Proof: By (3.1),

F 2 2 ;fﬁf

< - < ' R

0 <F (+=) - (A /n) < A /mn” [lutll]

which by (3.2), :H;{
Ll

> 2 °° 2 2 2 oo

A A . e

< fo log u_ dF !0 log v© aF  +h_ [|v "2, o

so the conclusion follows exactly as in Theorem 3.3. ;lii

Next, we establish the consistency of our estimate of the Fisher S

information. This result is needed to prove uniform consistency of u in jfﬂ{

Theorem 3.6.
da 2 2
temna 3.5: of{]ul2 - 2} + o

(a) in probability for 4 < (%—— %-— 2t)

(b) almost surely for 4 < (%—— Zt)

under the assumptions of Theorem 3.3 (a) or (b), respectively.

Proof: Using (3.2), then (le6.6) in Rao (1373),

~13-

' '-‘ '1‘ .
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T2 < Bl - fivel?

-2 0 2 - 00 2 ~
(n/A )b {IO log u dF - IO log v an}

IA

-2 (™ 2 . - 2 A
< /A n " {f logul afF - F) - [ logv" a(F, - N}

The conclusion follows from Lemma 3.4 and Lemmas 3.12 and 3.17. [[

We are now ready to establish the uniform consistency of u-

Theorem 3.6: "un—v" o = O(n'.d)

(a) in probability for d < (3 - % - 2t)/2, ©> (% - l /3

(b) almost surely for d < (-21- - Zt)/z, t>1/6

under the assumptions of Theorem 3.3(a) or (b), respectively.

Proof: Let u*(x) = u(lxl) for x € R. Note that "u*l!§= 2"u||§,

"u*'";= 2flu’ll ana [ju*]l  =1llull .. Then, as in Klonias (1982), for each

x€R,

lun(x) - v(x)l2 = [u;(x) - v*(x)[2

-1 2 2 12 2

by lug=vll3 +n (gl - 0 l13) + 2nfieli
4 2 2 n2 (%
e 1ol (1l - 102 m i

The conclusion follows from Theorem 3.3 and Proposition 3.5 (taking d = -t).

Theorem 3.7: "u -v " = O(n
(a) in probability for a4 < (-— -7 2t)/4
(b) almost surely for @ < (E- - 2t})/4

under the assumptions of Theorem 3.3 (a) or (b), respectively.
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Proof: By computation, then integration by parts,

o

AR AR
"ste e

AL

AR

2 2 2 00
lag, = w5 = Haglls - Hwll3 + 2/ v v

#

- »
l.'. 'l
,

2 - N2 - ' - ® " -
"“5"2 l|v "2 2v' (0) [v(0) u (0] + 2!0 v (un v)

which, by "g"i < "9"2 "g'"2 (see Klonias (1981)) and the Cauchy-Schwartz

inequality

< llagh2 = W02 + 2 (vl iol,) ™ ozl + 2lle”l, o ol

The Density, Distribution, and Hazard Function Estimators:

Using Lemma 4.1 of Klonias (1982) with Theorems 3.3, 3.6, and 3.7, we

obtain consistency of the density estimator fn ia various norms:

Theorem 3.8: Under the assumption of Theorem 3.3 (a) or (b)

(i) "fn-fﬂl and “fnffﬂz both converge to zero in probability or almost

surely with the rates of Theorem 3.3 (a) or (b) respectively.

(ii) “fn—f"m converges to zero in probability or almost surely with the

rates of Theorem 3.6 {a) or (b) respectively.

(iii) "fn-f"H converges to zero in probability or almost surely with the

rates 4 < (%-- %-- 4t)/4 or d < (% - 4t)/4 respectively.

As corollaries of Theorem 3.8, we establish the uniform consistency

of the induced estimates of F and r. Note that

IE ¢ Il < e el .

and hence, by the Theorem 3.8 (i), we conclude:

e 22T
i
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Corollary 3.9: Under the assumptions of Theorem 3.3 (a) or (b),

in probability or almost surely with the values of @ > O given in Theorem 7i¥an
3.3 (a) or (b) respectively. ;{E?
For the proof of the consistency of the induced hazard rate estimator, ?3i€
note that k:?j?
lr_(0) - red] = J-F (0170 £ () - -reed 1 Meqo) ] ;

: - 1o 17 o

< {11-F ()111-F(t)]} { £ -f Il + liello, “F,;'F"m} , T

so by Corollary 3.9 and Theorem 3.8, we have the following result: ;;Eai
o

Corollary 3.10: Let I = [0,F—1(1—€)] for a fixed € > 0. Then

d

sup |r (t) - x(n)] = o(n )
telx
. PO 1 1
(a) in probability for 4 < (5-- T 2t) /2

(b) almost surely for 4 < (%-— 2t)/2

under the assumptions of Theorem 3.3 (a) or (b), respectively.

-16-
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4. Auxiliary Lemmas

We now establish bounds for the integrals in the proof of Proposition
3.3. We will use bounds on the rate of convergence of the Kaplan-Meier
estimator and on maxima of i.i.d. random variables, which are stated in

the following remarks:

RI: IfT_ =+, for any B < =,
F 2
2 il o B
i -Fll,, = 0 (n ")
as n + ©, by an application of Theorem 2.1 of Gill (1983).

R2: If F and G are continuous distribution functions such that .

< T_ < 4 ™, then
Tr G - !

"f'n"F"w =0 ((1_0_9%8_1}_) l’) a.s.

[See Foldes and Rejtg (1981).]

,"“l,‘_'. e,

L T Y
. 7 .
i S .

R3: If E[XI] < o, then xnn = O(np) almost surely for any p > 1/T.

‘e e .
'1'5'- .

This fact follows from a tail probability bound, the Borel-

.
A

Cantelli Lemma, and monotonicity of xnn in n.

Lemma 4.1: Assume that A2 holds and TF = 4+ ®©, Then

nd ]: {1-F(t)] 4t — O a.s.

nn

for all d <1 -~ T-l.

o
Proof: Let W = Ix [1-F(t)) dt. Compute Ny
nn ’ A

N e -".‘; e
., e
.

o n-1
E[W ) f: [Is [1-F(t)) dt]nF(s) f(s)ds

e A

f: [1-F(t)IF ()" at RO

l. “.

[ -r(ey1e MIFE g

1A
o
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If B[XI] < =, there exists a constant ¢ such that 1-F(t) < c/tt for all
t >0, and thus F 1(1-c/t") < t for all t > 0. Splitting the interval of
n integration at F-l(l-n—llog n), and using these facts to bound the integrand

on the resulting intervals, one obtains

EIW ) = O(nl/ T‘J').

” VRS T 0

Thus, if d < 1 - 1/T, by Markov's inequality,

. prnd o> el - O(nd-l-l/‘[-l)'

yielding convergence in probability. One can obtain almost sure convergence
along a geometric subsequence, and extend to the entire sequence by monotonicity.

Lemma 4.2: (a) Under the assumptions Al and A2, as n > ®

d 2 S h § 1
- = € = - -
hn ! log u_ 4d(F -F) (4] (1) for d 2

(b) Under assumption A5, as n + ®

-] 2 A
hn(nllog log n)k IO log u d(ran) = 0(1) a.s.

Proof: By differentiation in (2.2),

3
k_.
V.
. (4.3) Iu'l < h~1u- a.s.
B : n' - n n
1 An
By the Cauchy-Schwartz Inequality, un(x) = <k(--x),un> and E-< - <1l
as in DeMontricher et al. (1975),
! .
-1 L] -1y
- < < -
"“n"c, < fix ¢-xff “un" < (2k(0)h " /A )7 < (4k(0)h )
i Thus, for t > T '
' nNn

i

He-t/hn'

u () > F_(+ ) (2h )

~18-
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and for n sufficiently large,

(4.4) -t/h < log u (t) < o.

, and Fn(t) is constant for t > TnN « Thus, for

Note that X >7T
nn -
n n

nN

n sufficiently large,

400 2 A oo 2
'Ix log u (t)A(F -F)(t)| = |, log ul (t)aF(t)]
nn nn

-1 ¢t®
<o [ taF).
nn

By integration by parts,

o 00
[, tarte) = -f  tan-F)(e)
xnn nn

= Ixnntl-r(t)ldt + X [1-F(x_)].

Since {F(xi)} are 1.i.d4. Uniform (0,1) random variables,

1-F(x_) = 0(n"! 10g n) almost surely.

Combined with the bounds of Rl and Lemma 2.5, this yields

f: t aF(t) = 0(n® ! 1og n)
nn

for any p > 1/1. Thus
+oo 2 a d
lfxnn log u”(t) d(F -F)(t)| = oth n%)

for any d <1 - 1/T.

To bound the integral from O to Xnn, integrate by parts:

-19-
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X

nn 2 A 2 A Xnn 8 .
[ Io log u_ a(F -F)| = |log u (x )I(F (x ) - Fx )] -2 -Io ;—;-‘- F -5 ]
<an’lx |IF -5
- n nn n o

-1 p-8 1
=0p(hnn )forB<2andp>1/'l’.

where the inequality follows from (4.3) and (4.4), and the rate from Rl and
R3. Thus part (a) is verified for any 4 < —;— - 1/T.
For part (b), note that xnn > TF < 4+®®a.s. asn>>®, and the result

follows from R2. [1

We now establish the rate of convergence of integrals relative to the

Kaplan-Meier estimator.

Proposition 4.5: Let g:{0,®) > R be a differentiable function. Suppose
that g has M < = intervals of increase or decrease, and that f lg[Ydf < + o

for some Y > 4. Then, under assumption A2,

~ -d 1 2

d(F -F){= 0 _(n for d < = - —

s (n)l XCa) -2
Under assumption A4, the convergence above is with probability one.

-

Proof: For each k€ Z,, let G = {x€ R: k-1 < glx) <k}. Letting ™

denote the number of intervals of increase oxr decrease of g which intersect
g

G, , may be partitioned as G, = U G » vhere g is monotone on each G .

k ko 4oy ki k,i

For any increasing sequence of integers {An},

o0 ~ A A
lf gar-m| < Y1 |f qar-n]s+]f g ate_-F)].
0o n 'klf An Gk n {.x:lg(x) l>1\n} n

To bound the sum, integrate by parts over each Gk i
1[4

-20-
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/g a(fF _p)l = % |lg(x) (E -F) (x)] ~J g' (x) (F_~F) (x)dx
Cy n i=1 n Sk,i Sk, n
SHeFll, Zex+/, lg']an
i=1 k,i
= || Fn"F"m E(2k + (f. g'(x)ax))
i=1 k,1

tA

Il f'n-rllm I (2k + 1)
i=1

A

M2k+1) || F-F ], -

. 2 _B 1 ) A
Thus, the sum js Op(l\nn ) for any B8 < 3 using Rl to bound "Fn--F"e° .
Use of R2 provides the corresponding almost sure result. To obtain
n
convergence of the sum to zero, we choose An of the form An = [n ], and thus
require n < B/2.

To bound the remaining integral, first show that

J g d; =0
{x:lg(x)|>An} -

for n sufficiently large. For n > I/Y,

p( lolaF_ # 0 i.0.) = P(Eic {1,...,N }: |g(T )] > & i.0.)
telgeal>a )y ® meT e

<pP(dje {(1,...,n} : latx 5 |2 A i.o.)

= P( max Ig(xi)l >A i.o.) =0
1<i<n n

by R3, since E|g(X)]|Y < o

~21-
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Thus, we need only bound [ g(x) dF(x) for n
{x:]g(x)] > An}

sufficiently large. Let Fg denote the distribution function of Ig(xi)l.
Note that since Elg(xl)lY < o, yY(l-Fg(y)) >*0Qasy*>®, so for y
sufficiently large, 1-Fg(y) < y-Y. Integrating by parts and applying

this bound twice,

! lgl ar = S~ y aF_(y) = A _(1-F_(a)) + S (1-F_(y) dy
{X=|g(x)| > An} A, g n g n A, g

<a -Y+1 + __];_A -Y+1

n n(y-1)
- n Y-1 n

= 0{ ).

For each £ > 0, we can obtain the rate of convergence d = %-— 3-- 3e

. 1 1
bylettlngn=§+€andﬁ=3--€. [I

The following result for continuous distributions is an analog of the
result of Keilson (1971) that a positive integer-valued random variable

)
with a finite moment of any positive order has finite entropy.

Proposition 4.6: Let f be a probability density function such that

Hf”m < 4, and !:xtf(x)dx < + @ for some T > 0. Then for all Yy > 0,
J f(x)llog f(x)Ide < 4 @,

Proof: Note that xllog xI is strictly increasing on (0, 1/e). Thus,

given € > 0, xellog xel < 1/e .for 0 <x < e-lle' Equivalently, for
Yy >o,

22~
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'log le < (ee) Y ¥ for 0 < x < e—lls'

on D= {x€R: £(x) < o 1/8)

’

£(x) |1og £(x)]Y < (e) ™Y £0x)*7EY,

SO

- 1-
Ip tliog £V < e Y s £

< x—(T+l)}. On S, f(x)-taY < x(Y+l)€Y,

Let S = {xeD : £(x)

so

1-ey < - (T+1) (1-€Y) (T+l)ey
fo - IS x dx + IU\S x £ (x)dx

For € sufficiently small, (T+l)(l-€Y) > 1 and (T+l)EY < T, so the

right side is finit~. Then

S £liog €] < (roalle]] I VY £ _fax + ee) Vg0 Vax < + =, 0
- © € D D

To obtain consistency for the estimator un, we apply Proposition 4.5

to the function g = log f. By Proposition 4.6, if Elxll6 < o for any

§ >0, then [ f(x)llog f(x)lyax < w for every Y > 0. Noting that

llfllm < ]I(fl/z)'llg as in Klonias (1981}, we obtain the following

corollary.

Lemma 4.7: {a) Under assumptions Al-Ad

00 ~ -d
|/ 109 £ a(r -F| = op(n ") for @ <1/2.

(b) Under assumptions A3-A5, the convergence in part (a) is almost sure.

Acknowledgment: The authors thank Robert J. Serfling for his advice and

helpful comments.
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