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on Density Estimation from Censored Data
by Penalized Likelihood Methods

Abstract L
Estimators for the probability density function, cumulative distribution L. -'

function, and hazard function are proposed in the random censorship setting.

The estimators are derived from the Kaplan-Meier product limit estimator by

maximum penalized likelihood methods. 3w establish the existence and.

uniqueness of the estimates, which are exponential splines with knots at

the uncensored observations, and provide an efficient algorithm for their

numerical evaluation. -We prove the consistency, in probability and almost

surely, of the density estimates in the Hellinger distance, the LP norms

for p 1,2,0, and the Sobolev norm. The corresponding hazard rate estimator

converges uniformly on bounded intervals. 7-.
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1. Introduction

The classic problem in the independent random censorship model is to

estimate the distribution function nonparametrically. The maximum likelihood

estimator is the well-known product limit estimator introduced by Kaplan

and Meier (1958). We propose an estimator of the density derived from the

* Kaplan-Meier estimator by maximum penalized likelihood techniques.

For uncensored data, the maximum penalized likelihood estimator (MPLE)

was introduced by Good and Gaskins (1971, 1980). Let XIX 2 ,...,X,, be i.i.d.

random variables from a distribution F with density f, and let F denote
n

the corresponding empirical distribution function. The MPLE, denoted by f
n "n.. +

maximizes the likelihood 1 f(X.) over a space of "smooth" functions.i=l1- ""

(Requiring smoothness avoids the Dirac delta solution of the unconstrained

-" problem.) Equivalently, f is the maximizer of
n

(1.1) n. log f dF - (f)

subject to ff I 1 and f > 0, where 0(f) is a *roughness penalty". DeMontricher,

Tapia, and Thompson (1975) rigorously established the existence and uniqueness

of the solution f within the framework of Sobolev spaces, and showed that then

resulting MPLE is a spline function with knots at the sample points. Silverman

(1982) proposed and studied the statistical properties and asymptot.c

distribution theory of a class of estimators with roughness penalties on log f.

Klonias (1984) obtained existence, uniqueness and consistency results for a

broad class of penalty functionals on f .

In the censored data setting, Lubecke and Padgett (1984) proposed

estimating the density f by the maximizer of the penalized conditional likeli-

hood, given which observations were censored. Questions of evaluation of the

. .. ,** ~ * - + +- . .--*** .*



estimator and consistency were not addressed.

We propose estimators for the density, distribution, and hazard functions

derived by maximum penalized likelihood techniques. These estimators are based .

-. °-o)2

on an estimate of the root-density v=f denoted by u , which is an exponential

* spline function with knots at the uncensored observations. The estimator

u corresponds to the "first MPLE" of Good and Gaskins (1971) in the uncensored
n

setting. The advantages of parameterizing the problem through the root-density

are that it is square-integrable, conveniently allowing the use of Hilbert

space methods, and avoids the nonnegativity constraint f > 0, while providing

the same density estimator as the direct approach - for the same penalty

functional - when the MPLE u turns out to be nonnegative, as is the case

here; see Lemma 3.1 of DeMontricher et al (1975). In addition, the square

root transformation is a variance stabilizing transformation for the density

estimation problem, so that a global roughness penalty seems appropriate to

be imposed on v = f rather than f; see Tukey (1972) and Good and Gaskins

(1971, 1980). We then equivalently consider v as the parameter of the

problem, let it vary over an appropriate Hilbert space and express (1.1) in

terms of it alone.

Estimators of the density f, distribution function F and hazard rate r

are derived from u by
n

f (t) = u (t) 2

- t
F t) f fn (t)dt

and r (t) f (t)/[l - Fn (tI].n n n:

The existence, uniqueness and implicit representation of u as an

exponential spline with knots at the uncensored observations are derived in

-2-
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"" Section 2, where we also discuss the numerical evaluation of the estimator

through an efficient algorithm of Klonias and Nash (1983 a,b) based on a

truncated Newton method described in Nash (1984).

We establish consistency of the proposed estimators under mild moment
- .1"

and smoothness conditions. We rely on asymptotic results for the Kaplan-

Meier estimator by Gill (1983) for consistency in probability, and by Foldes

and Rejto (1981) for almost sure consistency. The central proposition

establishes consistency of f in the Hellinger distance, i.e.,
n

u- -- 0 as n +IUn I112..

almost surely or in probability under suitable conditions, and determines

lower bounds on the rate of convergence in each case. Consequently, we

obtain consistency of u in the supremum-norm and Sobolev norm, consistency
n

of the density estimator fn in the L1 ,L2, supremum, and Sobolev norms, and,

uniform convergence of the hazard rate estimator rn on bounded intervals.

The assumptions, statements, and proofs of the consistency and rate

of convergence bounds are presented in section 3. Auxiliary lemmas, which

provide bounds on integrals needed to establish consistency in the Hellinger

distance, are proved in section 4, including a result regarding the entropy

of continuous distributions.

-3-
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2. Formulation of the Estimator

The Random Censorship Model: Let X1 ,X2 , .. ,X be independent positive

random variables with common density function f and cumulative distribution

function F. Let Yl'Y2 ' """Y be independent positive random variables,

representing censoring times, with common distribution function G which

may be discontinuous or defective. The random variables Yl,Y2,...'Yn are

assumed to be independent of XX 2,... ,X. The observations are

(ZiP6 i 1 ,2,...,n), defined by

111Z. X A Y.

and 6. {X. < Y.),

where A denotes minimum and I{A} denotes the indicator random variable of

the event A. Denote the distribution function of {Z.} by H, which is given

5 by

1 - H =(1-F) (1-G).-'---

Define T sup~t: F(t) < 1), with T and T defined similarly.

The product-limit estimator F is given by
n

n {i:Zn <t

where Z < Z < ... < Z denote the ordered observations {Zi }  and

n- - - nn

6nl' 6n2 ... '6 denote the corresponding indicators {6 } The Kaplan-Meier

estimator has jumps only at the observations for which 6. 1, which are
1

called uncensored observations. There are a random number N of uncensored

observations. We let Tnl < Tn2 < ... < T nN denote the ordered uncensored

observations, and let w /n denote the size of the jump of F at T
ni n ni

-4-.
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The Optimization Problem: In the censored data sett ng, i~i~-~

estimating f by the maximizer f nof

n

subject to: 'A f If f >0

2
or equivalently, see Lemma (3.1) of DeMontricher et al (1975), by u =frinn

where u ndenotes the maximizer of the following optimization problem:

(2.1) max {nJ log u 2dF - t (u.)2, u E H (A))
fA n fA

subject to: fA U2

and u (T)>O0, i < i< N
ni -- n

where at > 0, H (A) ={uE L 2 (A): a' L 2 (A)) and consider the cases

A + ffR A R. Incorporating the first constraint into the objective

function, we consider maximization of

= u nf log u dF -Ctf (U,) 2 -)

where Ais the Lagrange muultiplier corresponding to the constraint. Then

the solutions u (1 (2) .1 ve R n respectively aegiven -

n ~n of(.)oe+ r

implicitly by

(j) n j(2.2) u n (t) A 1 =1 w .i u n (T *)l k.i(t,T ., h), j 1,2,

where X > 0 is the Lagrange multiplier associated with the first constraint,

h (ct/X) and

k (x,y;h) =(2h) 
1{e((x-y)/h) + e((x+y)/h)1,

2

where,

e (x) exp(- x }/2, x E R



Note that k,k are the kernels of the reproducing kernel Hilbert spaces
12

(RKHS) H(A), endowed with the inner products <UlU 2> = UlU2 + h A 1 2

for A = R , IR+ respectively. The parameter h plays the role of the "band-

width" of a kernel estimator and we will equivalently use h rather a as our

smoothing parameter. For the consistency results of Section 3 we will let

h depend on n, i.e., h = O(n-), > 0. Then A, which also depends on n,

behaves asymptotically like n, so that a n O(n - ). For a development of

the consistency of the MPLE's in the uncensored case, with a rather than h

the independent parameter, see Klonias (1982).

(2)
In the remainder of the paper, un refers specifically to un  ,k=k20.

(1)A IR and H denotes H(+). However, arguments applying to u are nearly
+ + x

identical and, in instances when they differ, are slightly simpler.

Existence and Uniqueness:

PROPOSITION 2.3: Let Ho(A) = {u EH(A): u(Tni) > 0, £ 1,2,...,N . For

each X > 0, there exists a unique maximizer uX of (2.1) in H (A), which is a
0

spline function given implicitly by

N
At == uA(Tni K(t,Tn;h) YtEA.

Thenu n =uA where A is the value of A for which 11u,112  .
n-. " 2

Proof. The proof relies on Theorem 7 of Appendix I (f Tapia and Thompson

(1978). The set H 0(A) = (uEH: u(T)ni > 0,1 < i < N n is closed and convex.

The second Gateaux variation of Z (u), given by

N

V2 £t(u) (, h) -2{ Wni u (Tni 2 n(T ni (T ni) + <,>
i=l ." "." "-

-6- .



T1, E H, is uniformly negative definite: 2 (u) (nbT1) < -2A flrfl . To

establish the existence and uniqueness of the maximizer of RA (u) over H 0(A)

by Tapia and Thompson's result, it suffices to show that is continuous.

Continuity of Ifollows from

arid

Iu(T.)-u*(T.)I <I< k(-,T .;h),u-u* > I Ik(-,T .;h)jj Iu-u*B1.
fli fl3 li ni.

Note that the constraints u(T .)> 0 cannot be active at the maximum,
ni.

so the stationary point of the Lagrangian of the problem satisfies

V(u) NT) 0 YnEH.

Equivalently,

N
n -

w u(T .) k(*,T .;h) -AuI > =0 Vn EH,
i'=l ni ni ni

so
* N

nw. u(T) ke*,T~ )ul 0

provides the form of the maximizer implicitly.U

Numerical Evaluation: Since u is determined by its values at the uncensoredn

observations, we will obtain u (T .)by first solving for
n ni

q. (Xh) u (T. 1 l< i< N
1 " ni - -n

Evaluating the implicit form of u at{(Tni we obtain the following nonlinear

-7-
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systems of equations

n

(2.3) q' = w*1 Wn k(TWIT ;h), i < i < N

-l n

Note that the solution q = (q)T of (2.3) is the unique solution
n

to the following finite dimensional optimization problem:

N
n2 N .

minwq Wq - log qi, q E a '1,
- - i=l fl - +

where W = diag{w ,...,wnN and the (i,j)-th entry of the positive definite
n
n

matrix $ is given by k(T ni,T n;h). Existence and uniqueness of the solution

to this problem are discussed in Klonias and Nash (1983), who present an

efficient algorithm for the numerical evaluation of q. The parameter X is

then obtained from the equation f u = 1 i.e.,

N Nn n

q q (k*k)(T ,T;h),
i=l j=l

where * denotes convolution. The values u (T n) are then obtained from q and X.

In the figures that follow we graph the MPLE f E H (R) or

(2)n
f E H (JR) - solid lines - against the underlying density f. The datan +

were generated using the IMSL random number generator GGWIB. The X and Y

samples were generated consecutively starting with DSEED = 255866175. The

sample sizes are n = 120. In Figure 1, Exponentials E(8), with mean e = 1,

have been censored by E(3); the number of uncensored observations is N 86.
n

In Figure 2, Weibulls W(a,O), with shape parameter a = 3 and mean 0 = 1,

have been censored by W(3,2); the number of uncensored observations is N n 105.n 1•

Note that in the case of the Exponential density f E H (-"- ) but fli(H1R)

(2) (1)and as expected f(2 performs better than f n On the other hand in the case 7n n

(1)(2)of the Weibull, f r H (ER)(I H(IR ) and f n seems to perform better than f n+ n -'A

-8-''.-
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3. Consistency

Assumptions: In the proofs of consistency of our estimators, we make use

of the following assumptions:

Al: There exists T > 2 such that E[XT] < -
I

TH -:

A2: f [l-G(s)J dF(s) < +"0-

A3: Il(f)f = j dF < + .

A4: f' changes sign finitely many times.

AS: TF < TG < +

Assumptions Al - A4 suffice to establish consistency in probability,

employing the results of Gill (1983) on the weak convergence of the Kaplan-

Meier estimator, which require A2. To obtain almost sure consistency, we

use A5 in place of Al and A2, in order to apply the law of the iterated

logarithm for the Kaplan-Meier estimator due to Foldes and Rejto (1981).

The moment condition Al is used to obtain upper bounds on the maximum of

the uncensored observations. A3 arises in the application of a bound on

the entropy., proved in section 4. A4 arises as a technical condition in a

law of large numbers for integrals relative to the Kaplan-Meier estimator

proved in section 4.

The Root-Density Estimator: We now prove a number of consistency results

for the root-density estimator un, and establish lower bounds on the rates
n

of convergence. The consistency of the density estimator f is then derived
n

in the following subsection as a corollary of these convergence properties

cf u . The key Theorem 3.3 provides consistency of u in the L2-norm,n n 2

relying on a series of lemmas proved in section 4.

-i ~~- 11 - ":-"



We record the following two facts: 6i

(i) From the implicit form of u, note that

(3.1) IIunll 1 + h 2  , 12 F (+
nn 2. n

(ii) Since u is the maximizer in the optimization problem,
n

2A 2n 22 1.i2
(3.2) 0l og v dF n n h nf d P n "'-n"-:2

Theorem 3.3: (a) Under assumptions Al - A4, and t > - 1)/3,

llu-,,~l12  0 d(n- ) for d < t /2. :-i:.

-p.2
(b) Under assumptions A3 - A5, and t > 1/6

In-7l2- O(n-d) a.s. for d < G- t)/2.

Proof. By Lemma 5.3 of Klonias (1982),

;" 2v12  - 2  ""2 - 'Hu < f log v2 df log u dF

n-2l 0 0 n

f log vd(-F n f log - log n d(F- + f log u n
0OlgV (- n ) - lgv ~ n n + og d-°-,

which, by (3.2),

lOg 2 2 log 2 + ( 2 1 21II)
< Olgu n-F lgvd(Fn-F)' knfhn -O1 2l'l)

and since by (3.1), A /n < 1,
n-

2 A CO 22 v,1
< f log u d(F -F)- J log v d(Fn-F) + hI111,

-0 n n -n-

The conclusions follow from Lemmas 4.2 and 4.7, with the rate of convergence

being determined by Lemma 4.2. -

-12-
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The following lemma establishes the rate at which Xn converges ton

infinity, for use in the proof of Lemma 3.5 below.

Lemma 3.4: /n) + - (+n-

n n

(a) in probability for d < (G t-/22 T

(b) almost surely for d < (G - t)/2,

under the assumptions of Theorem 3.3 (a) or (b), respectively.

Proof: By (3.1),
A"22

0 < F (+-)- (A/n) < /n)h 2lu, 2

- n n - n n 2

which by (3.2),

< log u n dF -f log v2 dF + h2 II v',"

so the conclusion follows exactly as in Theorem 3.3.

Next, we establish the consistency of our estimate of the Fisher

information. This result is needed to prove uniform consistency of u in

Theorem 3.6.

Lemma 3.5: n u - 0v } 0

(a) in probability for d < 2-

(b) almost surely for d < (--2t)

under the assumptions of Theorem 3.3 (a) or (b), respectively.

Proof: Using (3.2), then (1e6.6) in Rao (1373),

-13-
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)' -II~,,II 2  < In.II 2  - II,II 2 ..
- 11f 2 <~ IlunH22

(n/X h 2 (f lo u f log v dF}
n n n n 0n

(n/A )h-2  2 o . ( F) -- F)

lo df log v2 d F )
no n 

.'on n 10

The conclusion follows from Lemma 3.4 and Lemmas 3.12 and 3.17. (1
We are now ready to establish the uniform consistency of u

n

Theorem 3.6: llu,,-vllc," 0-d(n

(a) in probability for d < - - .t)/2, t> f)/3

(b) almost surely for d < (- 2t)/2, t > 1/6

under the assumptions of Theorem 3.3(a) or (b), respectively.

Proof- Let u*(x) - u(IxI) for x E R. Note that 2 2 ull

I u*'IlI- 21lu'li and llu*ll, Ilull. Then, as in Klonias (1982), for each

x E R,-

lUn(X) v(x)1
2  lu(x) -v*(X)1

2

< h- II n-II + h (Iu'tI - I..'I) + 2JIv.i'ff....

+ 2h2II,,II h (Il ,l II,'ID liv I 12

2h hnll' I1 n-1 :::..::.n

The conclusion follows from Theorem 3.3 and Proposition 3.5 (taking d = -t).

Theorem 3.7: llut - V'II = O(n:d
n 2

(a) in probability for d < 2 :..../4
2~ 2 t)

(b) almost surely for d < 2t/

under the assumptions of Theorem 3.3 (a) or (b), respectively.

-14-



Proof: By computation, then integration by parts, w

fU;- vi( 2 juf 2 2~'i+ 2f v'(v-u'

2 2 00

ulI iv1 2v' (0) v(0)-u (0)) + 2f v" Cu -V)

which, by Ilglij 2 lJ 2 ~~' (see Kionias (1981)) anid the Cauchy-Schwartz

inequality

<Ilun,1I2 ivII2 + 2 (liv-1liviI12) lu~-l + 211v"11 Il VI2

The Density, Distribution, and Hazard Function Estimators:

Using Lemmna 4.1 of Kionias (1982) with Theorems 3.3, 3.6, and 3.7, we

obtain consistency of the density estimator f n various norms:

Theorem 3.8: Under the assumption of Theorem 3.3 (a) or (b)

Mi Ilf-f tf-12 both converge to zero in probability or almost

surely with the rates of Theorem 3.3 (a) or (b) respectively.

(ii) Il fl converges to zero in probability or almost surely with the

rates of Theorem 3.6 (a) or (b) respectively.

(iii) "lf -"H converges to zero in probability or-almost surely with the

rates d < 4t)/4 or d < 4t)/4 respectively.

As corollaries of Theorem 3.8, we establish the uniform consistency

of the induced estimates of F and r. Note that

1lF _F IL f Ifn-f 11

and hence, by the Theorem 3.8 (i), we conclude:



Corllay.9: Under the assumptions of Theorem 3.3 (a) or (b), y.-

11F -FII 0. O (d

in probability or almost surely with the values of d > 0 given in Theorem

3.3 (a) or (b) respectively.

For the proof of the consistency of the induced hazard rate estimator,

note that 
-

-rn() r~~ 1- n-t I fn Mli 1i-F f}

< (11F (t)(J-~t~j- {1f - 11. 0, 1.JF I1.

so by Corollary 3.9 and Theorem 3.8, we have the following result:

Corollary 3.10: Let I =[0,F (I-1-]foafxdC>0.Te

sup Ir (t) r r(t) 1 0 (n-d

(a) in probability for d -11 - 2)/

(b) almost surely for d < -2t)/2

under the apsunmptions of Theorem 3.3 (a) or (b), respectively.



4. Auxiliary Lemmas

We now establish bounds for the integrals in the proof of Proposition

3.3. We will use bounds on the rate of convergence of the Kaplan-Meier L

estimator and on maxima of i.i.d. random variables, which are stated in

the following remarks:

RI: If T = + 0, for any <

F +, o y 2 ,

ItFjIWo= 0p (n)
pl

as n , by an application of Theorem 2.1 of Gill (1983).

R2: If F and G are continuous distribution functions such that

S< <+ then
F G- .e

S(log log nl 1)as
nn 2°

[See Foides and Rejt" (1981).]

R3: If EIX T < 0, then X O(n) almost surely for any p > l/T.

This fact follows from a tail probability bound, the Borel-

Cantelli Lemma, and monotonicity of X in n.
nn

Lemma 4.1: Assume that A2 holds and T + . Then
F

n [l-F(t)] dt- - 0 a.s.

nn

for all d < -T

Proof: Let W= [l-F(t)] dt. Compute
nn

E[W [l- [1-F(t)) dt]nF .-)".'"ds

O -nl-F(t)]

<f [l-P(t)je d. "t.

-17-
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If E[X ] < ", there exists a constant c such that 1-F~t) < c/t for all

t > 0, and thus F (1-c/t T ) < t for all t > O. Splitting the interval of

-11integration at F (1-n log n), and using these facts to bound the integrand

on the resulting intervals, one obtains

EW] =o n'/ T - ""Bn
Thus, if d < I - I/T, by Markov's inequality,

d
P[n W > E) o(n -

n a-- -

. yielding convergence in probability. One can obtain almost sure convergence

along a geometric subsequence, and extend to the entire sequence by monotonicity.

Lemma 4.2: (a) Under the assumptions Al and A2, as n

hnd log u2 d(F -F) (1) for d < - .
" 0 n n-  p 2 -

(b) Under assumption AS, as n * .

n (n/log log log u d(F -F) = 0(1) a.s.n :n.-

Proof: By differentiation in (2.2),

(4.3) lun < h u.a.s. "' -

-- n n

By the Cauchy-Schwartz Inequality, Un(x) <k(-x),un> and T - I
n n n

as in DeMontricher et al. (1975), .

"nn-18)

......... i. .... l[ * ... ( -~lUnl<((~ < k~ .*---;:- "

Thus, for t >_Tn ,

n n',,



-:Mz

and for n sufficiently large,

(4.4) -t/h < log u~ Mt < 0.

n n

Note that X > T *and F Mt is constant for t > T Thus, for
nn- nN n -nN

n sufficiently large,

lgu(t) d(F -F) Mt) - i00log u (t)dF(t)I

C~~~ h f dF(t).
nf

By integration by parts,

[l-F(t)Jdt + X 11-F(X)J

Since (F(X.) are I.i.d. Uniform (0,1) random variables,

l-F(X ) O(n log n) almost surely.
fin

Combined with the bounds of Rl and Lemma 2.5, this yields

P-
t dF(t) On log n)

rxr

for any p > l/T. Thus

I fI log u 2(t) d(V -F) (t)j =O(h~ d)
nnl

for any d < 1-lt.

To bound the integral from 0 to Xnn nert yprs

-19-
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x nn 2 2 XnuI logu d(F F)I = log u (X nF (Xnn) -F(X )-2J (F'

nnfl n n 0 u T
< 4h 1 X JIF -FII..

0 (h ) for 0 < 1 and p ) 1/T-
p 2 2

where the inequality follows from (4.3) and (4.4), and the rate from RI and
1

R3. Thus part (a) is verified for any d < 1 - i/T. I.-.<.._.

For part (b), note that X + F < + O a.s. as n -0 , and the result

nn F

follows from R2. '

We now establish the rate of convergence of Integrals relative to the

Kaplan-Meier estimator.

Proposition 4.5: Let g: [0,-) 1 be a differentiable function. Suppose L

that g has M < c intervals of increase or decrease, and that jfgjdf <+

for some > 4. Then, under assumption A2,

2gd -)= 0- (n :f:or::d

Under assumption A4, the convergence above is with probability one.

Proof: For each kE E , letG {xE R: k- I < g x) < k}. Letting mk

kdenote the number of intervals of increase or decrease of g which intersect ""-"

Gk, may be partitioned as Gk U Gki, where g is monotone on each GkiV
i=1

For any increasing sequence of integers fAn},
n°

I gd(F -F) < g d ( I I gId(F n-F)I.
0 Ik<A :g(X)>A

To bound the sum, integrate by parts over each G

-20-
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- 7y

G (n-F) n- G G n
k ilk, i k, i

11 F1n-FIL X (2k + ~G Ig' (x)Ildx) -

i~l k,i

FI F-F11. (2k + 1  g'. (x)dxj

< 11 P^-Fflj E (2k + 1)

< M (2);+1) Fj -FI..

Thus th sumis (An )for any 0< -,using RI to bound IF-IC

Use of R2 provides the corresponding almost sure result. To obtain -

convergence of the sum to zero, we choose A of the form A E n 1, and thusn n

require Tl < 0/2.

To bound the remaining integral, first show that

f g dF 0

for n sufficiently large. For ri > 1y

P( f g~dF n 0 0 i o.) P Pa iE (1, -. ,Wnb Ig(Tn1)I A ni.o.)

5 P( ~xi>A 1..n g(i ~.
nn

P( max Ig(X.)l > A i.o.) =0

1<i<n

by R3, since Eig(X)JY <

-21-



Thus, we need only bound g g(x) dF (x) for n
{x:lg(x)j A)

sufficiently large. Let F denote the distribution function of Jg(x )I.

Note that since Ejg(X) fly < ,Y'(l-F (y)) + ias y -+ 00 , so for y

sufficiently large, 1-F (y) < ~y Integrating by parts and applying

this bound twice,

A IIgi dF =fy dF (y) A (1-F 9(A )) + IA [1-F 9(Y) dy
(x~~x n>A 9 n gnA

-n y-A n

For each E > 0, we can obtain the rate of convergence d =1 2 32 y

11
by letting n=+ and0=-.

8 2

The following result for continuous distributions is an analog of the

result of Keilson (1971) that a positive integer-valued random variable

with a finite moment of any positive order has finite entropy.

Proposition 4.6: Let f be a probability density function such that

Iffil. < + and fjTf(x)dx < + for some T > 0. Then for all y >Q0,

ff(x)jlog f(x)fydx < + ~

Proof: Note that xjlog xj1 strictly increasing on (0, l/e) . Thus,

given C > 0, xCllog X'I < l/e for 0 < x < e 1 " cuv-ety o

y > 0,

-22-



hlog xjy < (eE)- x - ' for 0 < x < e

On D = (xE I: f(x) < el/C),

f (x) log f I Y < (eE) f (X 'l..

so

fD f log fIY < (eE})Y f fl-E.Y

Let S = {xED flx) < x- (+l)} On S, f(x) - CY < x ( y+1)cY-

so

f D f I-Y - (T'+l) (l-EY)ldx + x -+1) fY

D S D\S f(xldx

For C sufficiently small, (T+l)(1-Cy) > 1 and (T+l)Ey < T, so the

right side is finite . Then

llog fl" < ll lfll 1 V fDX~dx +l(eCf

9 6 fx~x DC''Y ID f(X)l d < +

To obtain consistency for the estimator u , we apply Proposition 4.5

to the function g = log f. By Proposition 4.6, if EjX < - for any

> 0, then f f(x) (log f(x) l'dx < - for every y > 0. Noting that

1 IfI I < 1kf1 2 ) 2 as in Klonias (1981), we obtain the following

corollary.

Lemma 4.7: (a) Under assumptions Al-A4

I o fd T I o( -d
flog f d(Fn-F) = o (n - ) for d < 1/2.p

(b) Under assumptions A3-A5, the convergence in part (a) is almost sure.

Acknowledgment: The authors thank Robert J. Serfling for his advice and

helpful comments.
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