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THREE-DIMENSIONAL NUMERICAL SIMULATIONS
OF FELS BY TRANSVERSE MODE SPECTRAL METHOD

I INTRODUCTION

Three-dimensional simulations of the FEL gain process will become increasinzly im-
portant in the design. optimization and interpretation of FEL experiments. Since the
fundamental FEL concepts have been successfully demonstrated, the FEL is now pushing
the limits of the F'EL capabilities in all directions. Due to the increasing complexity of
FEL experiments, simple one-dimensional theory is often not adequate. At the same time,
however, the analytical three-dimensional results are only obtainable for a limited number
of special operating conditions. The importance of the three-dimensional effects will vary
with the experiments. Some examples of the three-dimensional effects that need to be
understood are:

{a) The transverse electron beam profile is often asymmetric, resulting in the asymmertry
of the radiation field. This is most pronounced in the storage rings and circular
microtrons.

{(b) The radiation field varies both in the transverse and axial directions. There is a
crucial rrade-off of large filling factors with short Rayleigh lengths and vise versa.
The optimal situation varies with the experiments.

(c) Betatron oscillations from the wiggler field cause electrons to sample a varying radia-
tion feld. Under certain situations. this can cause betatron-synchrotron instabilities.

(d) FELs are pushing toward high gain operation. Strong self-focusing in a high gain
FEL can substantially alter the wave front properties. A resonator, not self-consistly
designed with FEL physics. most likely is not the optimal design for the high gain
FEL operation.

(e) Sideband instabilities in an oscillator can lead to pulse breakup and afect the quality
of the radiation beam:.

The analytical and numerical methods employed in the study of the transverse varia-
tion of the wave equation have taken the approaches of transverse mode spectral method.! =3
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transform spectral method,®'7 spectral method,* finite difference method,’? and Lienard-
Wiechert potential method!?. The different methods refer to the techniques used to evalu-
ate the V_?LAR term in the wave equation, where Ay is the vector potential of the radiation
field. All three kinds of spectral methods involve representing the solution of the radiation
Jeld as a truncated series of known functions of the independent variables.

The transverse mode spectral method decomposes the radiation field into a truncated
series of a complete set of orthogonal functions, which satisfy the free space wave equations
with the appropriate boundary conditions. One takes advantage of the transverse mode
properties to reduce the wave equation to a set of first order differential equations.

For the spectral method and transverse spectral method, the series takes on the form of
a transform, and the wave equation reduces to a simple form in the transformed variables,
i.e., V2 Ag has an analytical form in the transform space. The transform spectral method
requires numerically taking the transform of the driving curreat. The spectral methods
describe the current in terms of the Lagrangian variables. and the current term can be
evaluated analytically.

In Sec. II, we will outline the transverse mode spectral method in general. ie.. not
specifying the form of the transverse modes. This formulation will include slow transverse
motion and betatron oscillations of the electrons in the realistic wiggler, finite emittance,
energy spread and self-consistent axial particle dynamics. This method conserves energy.
The formalism is extended to the study of sideband formation!=2'11=12 op a long electron
pulse in the FEL oscillator.

In Sec. I, we outline the spectral and the transverse spectral methods. ‘ The three
different spectral methods are compared in this section.

The advantages of the transverse mode spectral merhod are: i) Free space wave prop-
agation. finite size mirrors. and apertures can be handled analytically. ii) It is easy to

include transverse particle motion exactly. iii) This method lends itself to analytical and

semi-analytical solutions and can provide physical insight for many problems. iv) The
transverse bonndary conditions are included automarically in the wavegzuide mode expan-

sion.




-
'

'Y
"

1

vt
s

St
PRPLPAFSE )

gy ¥ ol ul 'r'r"»—‘
LY.

e a4
DUTEN e I

In Sec. 1V, we apply the transverse mode spectral method to an example with
self-focusing properties. In this example the electron beam focuses due to gain and

refraction. 317

L. THE TRANSVERSE MODE SPECTRAL METHOD
A. THE WAVE EQUATION

In this paper, we will consider only the linearly polarized wiggler, since thar is the
most common wiggler field. The formulation for a circulariy polarized wiggler requires
ouly minor modifications. The realistic magnetic field will be expressed in terms of the

vector potential of the wiggler,

F4
Ay, z) =44y, 2) cos(/ ky(2')d:')eé,, (1)
0

where 1, {y, z) = Ay(z)cosh(kyy), 44(z) and ky(z) are the slowly varying amplitude
and wavenumber of the wiggler.

When kyy << 1. one can use the approximation 4, ~ 4,{z) for the calculation
of gain and axial particle dynamics. The accurate form for 4, is only necessary in the
calculation of the betatron oscillations. For convenience, we define a dimensionless wiggler
parameter K (:) = (le|" 2m,c?)du(z)-

We also include a DC accelerating electric field.!* Epcé., for the purpose of efficiency
enchancement. For convenience, we define a dimensionless parameter epc = |¢|Epc/moc®.

The radiation field will be expressed as

xplitks — wi :
Aplz.y.2t) = —Alz g, ) 2l - s e, (2)

where
L M
o) - N la A Y- yy ~Yoidems
Alzy ) =Az(z. g, z)e; + A (2, 2)8y = Z Z Aem()emle, y, z)ednme,
(=0 m=0
él.m = Gé.méz + Ff_’,méy
is the general form of the transverse mode. 4y, = |[4em |¢?®%m is the complex amplitude of
the normal modes, G, ., = gs.me"*™ represents the x-component of the complex transverse
mode. F,,, is the y-component of the complex transverse mode. {which may be zero.)

Az(z.y.z) = |4 {2 y. o) expli(2. y. 2)). and & = w/c. We use lower case to denote the

almliatalelda. wias




normalized parameters of the radiation feld. such as a;(z. y, z) = (|e|/v2moc?) Az (2. 4, )
and as,m = (lel/V2moc®) A m.
The funcrion &4 {2z, y, ) should satisiy the free space wave equation and the appro-

priate boundary conditions, i.e.,

- 0% 1 9%\, i3, 7 ilkEmt
{\Vi + 3.7 o ()7) &yl L.y. zle T emT g RE=NT) o g (3)
The orthogonality condition is
//él’m . é:l‘mldzdy = 65,{_’6”3'”;’, (4)

where the integration is over the appropriate radiation domain.

The wave equation for the FEL is

, 02 1 9° 47 i
(V_‘-_"i- -6—:'? o2 atl)AR _TJ'L. (3)

Substituting the expression of the radiation fieid into the wave equation. and making the
slowly varying approximation, we obtain

., 0y, s i(kz— . 87
Z ‘.’.zk-a—:me‘a"-'"‘e""z “’t)eg'm +ce.= —‘—C_JJ_ (6)

tm
Multiply both sides of Eq. (6) by exp(~i(kz — «t)) and integrate in time over a period.

Then, dot both sides by &] , and integrate over the transverse dimension. The result is

34, idx [TV 4 ~
L.m -t d J~G -tjg.m.. —C‘h"-ldt) -
dz ke /o ..../w,/ d.z:/ y t:m® (7)

Now we need to evaluate the current. The fluid-like electron density is

0t —r)
Dle.y spz.py.p:t) = dol 20, Yo: Prios Py,or Pros t0)0 (2 z)é(J Ul kvsrryn
|02/0t|

5([’: -ﬁz)‘s(Py —ﬁy)‘jlpz - p:). (8)
The variabies with “~" and the variable r are functions of the Lagrangian variables

Zo. Yo-Pz,0- DyioPz.o- Wo. 5. Where 2,. 1y, are the initial transverse positions at the entrance

of the wiggler : = 0, p.,,py,., are the initial transverse momentums at : = 0, p., is the

initial axial momentum spread at : = 0, ¥, = —w{, is the initial phase of the electron in
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the ponderomotive potential well, ¢, is the time the electrons enter the wiggler at = =

1

and r is the time that the electron reaches position z. The function d, is the initial phase
space density distribution. including the effects of emittance and energy spread.

The duid-like beam density can be defined as
NS N Nate)
nlz.y zt)= / dp,/ dpy/ dp:D(z.y.2.pz.0y.0:. t). {9)
x8 x x
We will define the effective area of the electron beam to be

1 (
o5z, t) = ;:/dz/dy n(z,y, 2. t), (10)

where n, = n(z, ¥, 2, t)|maz-

The current deasity can be defined as

. . R .
Jr = —[elv;o/ dp,/ a'py/ dp-D(z.y. 2, pz, Dy . D= t)

M,
= —lelnovzo‘/ di, /dxo/ dyo/ dpz,o/ dpy,o/ dp:.o (ll)
p.z l T -y e “yv oy
’-——do(zmywpx.a-. Dy.o1Pzo- wo)o(z — )o(y - .’/,"ﬂt -
p:-n,
The final form of the wave equation is
d Gy (2, 7. 2) exp(—iw) expl—i3s m=
Zlm ICFL( )K(:)< Lm Y. ij ) p( Lm )>’ (12)

where

27 dwa 0 0 [+ 20
/ / dzo/ dl/o/ dp:.o/ dpy,o/ dpz,o
-0 -0 -0 o]

()

nodbd ‘zo Yo:Dz,0:Py,0:Pz.0, %) (13)

is the 2nsemble average, the normalization is < (1) >= 1. C = (&} /c*)(3:0/2k)0s. wp =

(47lei2n,/m,) /2, Fi(z) = Jo(b) = Ji(b) comes from the fast electron oscillation in the

oo

z-lirection due to the linearly polarized wiggler, b(z) = K2/2(1+ K?), v = [, (ku(:) +

k=x/0)ds" +wy, 3. =02 /c. 320 = vz0/c. and v:, is the mean initial axdal velocity.
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B. PARTICLE DYNAMICS

The mean transverse particle position and momentﬁm, in general. should be integrated
along with the axial particle momentum eqnations. Under certain circumstances. analytical
forms for the transverse particle trajectories are sufficient.

Taking the betatron oscillations as an example, the parricle motion in the x-direcrion.

without any additional external focusing, can be written as

E=1,+(pro/vemoc)z. (14)

The particle motion in the y-direction exhibits betatron oscillations. Taking &, 7 << 1.

16—-17 ;

the particle dynamics in the y-direction is approximately

<

. E3(0)\ /2 S
g=ys (—3—-)> COS(/ k3(:')d:' + 03), (15)
kafz) 0

o =2 V.9 2 = — ™ 2 . —_ -
where k3 = K&y [0, 43 = (P;,O'T'yo)l/ Pyo = py,a/k3('0) tomoc?. and 03 = cos ™y /ys).
The particle motion in the z-direction is best written in rerms of the equartion for the

total relativistic gamma factor

= k - e vl , <
== —-:;Fl(:)fx(:ﬂa,(z.y. s)|sin(w + 2(2. 7. 2}) = epc. (16)

and the equation governing the phase

d* 14+ 3., )ky d¥
d"; = ( :;'O) ((Ej-é-eoc)ﬁ-r-é-éBw. ‘ (17)

!

where

diy kKR 1+ ER (18]

d: 2% dz &3

is the degree of taper for the ~fficiency enhancement schemes.

ko, ks(0 d[EK?{z)k3(z)] |
(SBW = T’j;?j( )(l‘f‘COS(D) [ ( ) ( )“ (19‘
17277 k4(2) dz

includes the effect resulting from the combination of betatron oscillation and contoured

B, §eld. and

Iyt
‘D(_’jo.pyo.: =2/ kj(- )‘1- 'T":(.)j.
D)

-

PR RN - S . . e . P
PRV VT L L WL WU AT Y. S (- T WL S WU G . G WY - §




S W N W W W WU AT LWL T -

N-‘-'

Equations (12, 16-17) form the self-consistent set of equations for the radiation field and

the particle dynamics.

C. CONSERVATION OF ENERGY

We can show that this formulation conserves energy. To do this. we rewrite Eq. {18)

in terms of the amplitude of each mode.

v _ k , - A lm L
- =~z R(9& () Y gemlE G 2)|anm(2) e~ mCam 2 sin g, —epe. (20)

where ¥y, = W+ 6y m + Or.m is the phase associated with each mode. We have assumed
here that 2¢(Jsm )z << 27. The spatial rate of change of the total electron beam energy

is

(moc*d3/dz) = = DFy(:)4u(2) D |dem(3)[e™ mFem): < (2.0 7] sln ’”‘-m>
tLm J: (21)

~de

where D = (o3 /3x)(w}/c?)3:0k. The spatial rate of change in the radiation energy is

Citf. - Z d| 4, —nl —2m(30,m)z (22

Applying Eq. (12) to Eq. (22), we can show that the energy is conserved. i.e., the energy
zained by the radiation is equal to the energy lost by the electrons plus the enerzy supplied

by the axial DC electric feld.

dal o d% o
dR <moc E—> + (moc'eDc>. (23)

D. THE CHOICE OF THE TRANSVERSE MODES OF THE WAVE EQUATION

The choice of the normal modes, however. will depend on the geomertry of the FEL of
interest. A few examples of the possible choices of the normal eigenmodes are given below:
(a) Gaussian-Hermite expansion allows the most fexibility in the modeling of the FEL

physics of interest in an open resonator. The expressions for & ,, = Gy ne; are

S I - LN L < . A RN “. . B ’ . .o e N
- et e oL e . S et R e - . R
v y - . P LI WL YUY . VIV O §. VR P VWi e v

. . Lt RPN . ;
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Bk Gem = Tt m =1 gyt w(2)

- ~

N where Z = /2z/w(z). j= \/Ey/w(:), H, is the Hermite polynomial of the ith order.
o ¢ = {2 = 2¢)/z0. 2c Is the axial location of the minimum waist. w(z) = w,(1 + ¢*}*/2.
W, is the spot size, and z, = w?k/2 is the Rayleigh length.

(b) When the electron beam and the resonator system are axially symmetrical, and when

the betatron oscillations are not included in the model of the linearly polarized wiggler.
then the radiation can be assumed to be axially symmetrical. The Gaussian-Leguerre

L modes are the choice for the expansion, and each term is expressed as &, , = Gy mé:,

{0 where

T e i

45 do.m = \/;w(:)Lm( w2(:))e'\p( w3{z) ) (25a)
Oom = =(2m + 1) ta0™(5) + o3, (250)

L?, is the Laguerre polynomial.

{c) In a low gain oscillator, the best choice would be the eigenmodes of the resonator
caviry!® including the effects of apertures, finite size mirrors and resonator losses. The
eigen modes in turn can be written in terms of the appropriate Gaussian-Laguerre or
Gaussian-Hermite modes. The advantage of going to the resonator cavity modes is
that the losses for the higher order resonator cavity modes increase rapidh} with the
cavity mode number, such that only a few modes need to be kept in the caluclation.
In addition there is no need to calculate the radiation outside the FEL wiggler.

(d) Closed waveguides can be used to conine the radiation beam over a distance long

compared to a Rayleigh length. If the wavesuide is not rectangular, the vector poten-

tial of the waveauide modes generally have both x and y components. For the analysis
o . presented here. we have to assume the transverse guide dimensions are large compared
to a radiation wavelength. The theory is also restricted to low-order. low-loss modes
L whose propagation constants & + R2(.Js ) are nearly equal to the plane-wave value.

e 1.e., Re( 31, m) << k. For wavelengths rhat are comparable o the waveguide diamerters




or when multimode analysis are desired, this method has to be modified slightly to
include the different frequencies and axial wavenumbers associated with the different
wavegiuide modes. The formulation should be similar to thar described in the Sec.

II.F with sidebands.

E. COMPUTATION SPEED

The cost of computation per axial step is spent mairly for the radiation field. The
number of operations is a; .V, {L + 1){}M + 1) to integrate Eq. (12), where .V, is the toral
number of electrons, and «; is a numerical constant. The particle orbit equations require
as(L + 1){(M + 1).V, /N, number of operations to evaluate the radiation field a,(Z. . z).
and 3.V, number of operations for the integration, where .V, is the number of electrons
per ponderomotive wave, and a2 and a; are numerical constants. In general, Eq. (16) is

faster than Eq. {20). which requires ay(L — 1){3f = 1).V, number of operations.

F. FREQUENCY SIDEBANDS AND PULSE SLIPPAGE

The electron oscillation in the ponderomotive potential well is called the synchrotron
osciilation. We define Ay, to be the synchrotron wavenumber of the electron traveling

exactly along the z-axis

1/2
i W%k, k w, . 4 .
Ko = | == g5 E ) | ()
10 ] ~

When the intensity of the radiation becomes high, such that the electrons make half a
bonnce in the wiggler. then sideband frequencies can grow. One-dimensional simulations*?
and three-dimensional simulations!=2 show that the amplitnde of the radiation Seld be-
comes chaotic. and the quality of the radiation field becomes desraded.

In order to understand the effect of sidebands on wavefront curvatures. the three-
dimensional formulation is necessary. We assume periodic boundary conditions for the

radiation feld of length 7,,. which is chosen to be many times the ampiitude modulation

distance and the pnlse slippage distance. If the length of the electron beam is much longer




; E
A
_f‘_:i-f than £,,, only a section of a long electron beam needs to be modeled. If the electron beam
Z:j:Z;j is shorter than ¢,,, then the whole pulse shape must be included.
The radiation feld can be written as
‘ -
{CAKS
A exp (¢h€)
R Agiz.y sty ==-Ale.y 8, t)—p(,)—L + e (27)
e
e where
- Alz,p. & t) = A (2. y. 2)e, + Ay(2.y,2)e,
o N L M
5 =3 3 Y Aumalterm(z yct)ednmctekne
n=90 /2=y m=0

is a slowly varying function of position following the radiation pulse, & = (1+ J.,)(~2/{1+

?;.'_l-’_j K?))ky is the resonant wavenumber, Ak, = (n — 1)0k, 0k = 27/€4, and € = = — ct.
' A(z.y. £, t) is a slowly varying function of position and time following the radiation pulse.
*:jt Following the same procedure outlined in Sec. II.A and II.B. we obtain the self-
Ly

““E consistent set of equations for s n.,. ¥ and w. The independent Lagrangian variables are
e L™

Lo Lo Yo-Pz.0-Py.o-Pz,0+ Yo, ¥,. ¢ and

T 1da . G} (2.7, 2) exp —i(v + Mkn ) exp(idrmz) \ | |
:_:‘_.: 286t m.n =JCF1(:)K(:) [ — ns m (23)
:t : c dt -/.-J: ==ct

J -

L l d’,’ k — - ~ o~ o~ - ~ v
i Tt 1(2)Klag (3. §. & ¢)]sin(w + 2(3, 5, &, t)) - epc (29
N - and
Ld%yp (14 3z0)ky 1dA ,

L - = - - +T + 0By, 30
F-rv c? dt? 5 (c dt +epc) + 05w (20)
T where
L
l'_::;’,‘ 2 dv 2 du . » G el 00

; <. >=/ —2 / — / dz"j dyo/ dp,_o/ dpy,o/ dp:.o

.»:“ 0 an  Jp -h e -G N
y . 'jo(-\"'m Yo:Dz,0+ Py,0+ Pz.0- Voo ¥o) (31)
) ne0p
is the ensemble average. ¥, = (27//.)&,, and 0 < §, < €. are the axial location of the

’ electron in the electron pulse at t=0, ¢ = f (By(ct')+k)T.dt =ckt+w,, 3= f b.dt' + &,.

e 10




§= I-ct>¥,/6k -3, and ¢ = cf(1 + K*)/2+2 is the pulse slippage distance.

The method described above is straightforward. Since the number of electrons that
’ must be used to model the electron beam with finite emittance and finite length is large.
' any general numerical method, including this method. requires a considerable amount of

computation time. For limited compurational resources. it is necessary to form simpliified

models. This formulation lends itself towards semi-analytical models of finite length elec-
tron pulses,!=21® where some of the integrals in the expression for ensemble average can

be evaluated analytically.

ND TRANS MS M S

The principle behind the spectral and transform spectral methods is similar to the

transverse mode spectral method. The major difference comes from the representation

. of the radiation field, for example. Fourier series in the Cartesian zeometry and Hankel

) transform in the axially cylindrical gzeometry.

'.:I;'-‘-‘ Let us take the Fourier series for the illustration. The domain for the radiation feld

is -D,/2<z< D:j2and ~Dy/2 < y < Dy/2. and the boundary conditions are periodic.

".*_:;; The slowly varying amplitude of the radiation field is written as

:Ii-'j'.; 1 LM ‘

, Alzy.9) = 55 DY) Aum(2)eilEertinnlg, (32)
2TY =0 m=0

- where k, = 27¢/D, and &, = 27m/D,. The equation for the amplitude in terms of the
current is

o d .k} +k2

o [2‘**7’" Aumls) =

ST . 227 [ 3

....1_4_7. i dz dy‘]’e—i(kel-f-kmy)e—i(k:-dt). 23
o ke Jg 2x/w B
S8 When the current J, is formulated in Eulerian variables for the x and y coordiantes.
, then the right-hand-side of Eq. (33) has to be evaluated numerically. and the method is
called the transform spectral method. If the current is formuiated in Lagrangian wariables
‘o

{Zo. Yo Pz.04 Pyo- Pz.0- o) then Eq. (SC) can be reduced to

11




alla™ > b = R o At i sl ~ ek =l

[ d k? -+ kfzn et BedHhmi—v) > (34)

I +1 ok ] Anm(2) = iCFy(2)K () <J 23,

The particle dynamics equations (16-17) are also applicable here. For a Fourier series
expansion. one can show thav the energy is conserved in the D, by D, domain for the
spectral method.

In general, the Eulerian formulation of the current is inferior to the Lagrangian for-
mulation. The Eulerian formulation is not convenient to use for the study of betatron
effects, because the numerical transforms of Eq. (33) require the current to be evaluated
at prespecified grids. This problem can be reduced, if the number of grids used across the
electron beam is large, which in turn requires a larger number of terms in the expansion.
For the Hankel transform, there is the additional problem of numerical errors resnlting
from numerical integration with a finite number of zrids in an infinite integration domain.

The estimate for the speed of computation for the spectral method has the same form
as in Sec. ILE. The value for the coefficient a,, a2 and as depends on the expansion. and
they are smaller for the Fourier transform and larger for the Hankel transform.

The transverse mode spectral method, in some instances, is better than both the spec-
tral and transform spectral methods, because of the following properties. The propagation
of the radiation field through apertures, and the reflection and transmission of the radia-
tion field at mirrors can be evaluated in terms of matrix multiplication of the amplitudes of
the normal modes. The spectral and transform spectral methods require an additional step
in converting the radiation fleld into Gaussian modes. Finally, the transverse mode spec-
tral method is easier to implement for calculations in complicated waveguide geomerries.
because the boundary conditions are automatically included.

The transverse mode spectral method is not the best numerical scheme when the
FEL wiggler is many times the Rayleigh length and the FEL radiation is strongly focused
to the electron beam. The reason is that the higher order modes become more and more
important. The number of transverse modes, which have to be included, become large. The
Fonrier series spectral method employing the Lagrangian Formulation is more appropriate

for this type of simulations.
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IV. SELF-FOCUS

G EXAMPLE AND DISCUSSION

A three-dimensional code employing Gaussian-Hermite expansion of the radiation field
is applied to a linearly polarized wiggler. The following examples will show self-focusing
properties of the FELs.

The electron beam is assumed to have a Gaussian profile and a radius of 2.25 x 10~2
cm. The current is 50 A and the energy is 109.6 MeV. The wiggler has a magnetic field
B, = 6.3 kG. period of 2.4 cm and length L, = 6 m. The incident 0.5 um radiation at
the entrance of the wiggler is a Gaussian TE My, mode with a minimum waist w, = 0.06
cm located at : = L, /2. and a power of 5.8 x 10° W.

In this example, the electron beam radius is much smaller than the spot size, i.e.,
res << w,. If the radiation has the spot size of the electron beam, its Rayleigh length
would be only 32 cm. A plot of the power gain is shown in Fig. 1. The FEL is operating
in the high zain regime, and the radiation saturates at 4 m.

Figures 2.a-e shows the radiation amplitude at z=0. 150, 200, 450 and 600 cm plotted
from —4w, to 4w, in both the x and y plane. In chis example, the self-focusing phenomenon
is not only due to refraction. but also gain. The peak amplitude in Figs. 2a-e are 4.5x 1072,
1.1x1072,4.6x 1072, 4.1 x10~2 and 2.6 x 10~ 2 respectively. At 150 cm, the laser beam is
already narrowed down significantly. The corresponding phase front is shown in Fizg. 3.a.

The focusing due to the electron beam is manifested by the small mound at the center.

The beam radius remains at roughly the same size from 150 cm to the end of the
wiggler. Due to electrons oscillating away from the bottom of the ponderomotive potential
well, the radiation loses energy after 4 m. In Refs. 13-14, it was shown analytically that
FEL radiation is not only governed by zain and diffraction. but also by refraction when
operating in the trapped particle mode. For this case, the resonant phase is av the origin,
i.e., sin ¢'p = 0. Even thongh the radiation is losing energy after - = 4 m, the radiation
beam around the electrons still focuses, while the radiation further away from the electrons
defocuses, as shown in Fig. 2.e. This is in qualitative agreement with the theory given by
Refs. 13-14. Figure 3.b shows the focusing properties of the wave front. It is important

that the radiation beam does not defocus when the radiation is losing energy due to the

bouncing of the electrons in the ponderomotive potential well.
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The FEL radiation does not always undergo focusing, for example. the electron beam
could dig a hole in the laser amplitude profile when the FEL is operating with loss in the

low gain regime and large frequency mismartch.

Next. we give an example where the center of the electron beam does a0t travel down
the center of the wiggler due to irregularities in the magnetic wiggler Jeld. The center of
the electron beam is assumed to execute a slow sinuscidal motion, yener = repsin{xs/Ly ).
The radiation guiding properties of the e-beam is still clearly evident. Fig. 4. The peak
ampliitude is 2.4 x 10~2. The motion of the center of the electron beam, however. causes

significant distortion of the radiation beam:.

In summary, this paper outlines one method of solving the three-dimensional FEL
radiation field self-consistently with the electron dynamics. The advantages of this method
are: 1) The boundaries in the transverse directions are included automatically. 2) It is 2asy
to incorporate transverse particle motion. 3) Free space prapagation. finite size mirrors
and apertures can be handled analytically. 4) This method lends itself to analytical and

semi-analytical solutions.

The disadvantages of this method is the increase in the compurtation time if a large
number of electrons are used in the radial direction. and if a large number of modes are
required.

The numerical examples illustrate the self-focusing property of the L. Under appro-
priate conditions, the laser radiation maintains a roughly constant radius radiation beam.
We also showed that the irregularities in the wiggler field can cause significant distortion
of the radiation beam. The implications of this for the FEL design are important. For
electron beams with good emirtance. it is possible to focus the beam o a small area and
operate the FEL in the high gain regime. and not have to worry about diffraction. In this

case it is important to design the resonator cavity including the FEL zain model.

owle [
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Fig. 1 — A plot of the spatial power gain as a function of axial distance
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Fig. 2 — Plots of the amplitude of the radiation field in the x and y plune at (a) z = 0.
)z = 130 cm. (¢) z = 300 ¢m, (d) z = 430 cm and (e) z = 600 cm. The tick
marks are separated by a distance u .
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(b)

Fig. 2 (Cont’d) — Plots of the amplitude of the radiation field in the x and y plane at
(@) z =0, (b) z = 150cm, (c) z = 300 cm, (d) z = 450 cm and (&) z = 600 cm.
The tick marks are separated by a distance W,.
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Fig. 2 (Cont’d) ~ Plots of the amplitude of the radiation field in the X and y plane at

(@) z =0, (b) z=150cm, () z = 300 cm, (d) z = 450 cm and (e) z = 600 cm.
The tick marks are separated by a distance w,.
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Fig. 2 (Cont’d) — Plots of the amplitude of the radiation field in the x and y piane at

(@ z=20,()z=150cm, (c) z =300 cm. (d) z = 450 cm and (e) z = 600 cmn. '
O The tick marks are separated by a distance w,.
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: Fig. 3 — Plots of the phase of the radiation fi2ld in the x and v planz2 1) z = 130 ¢m
and (o) z = ¢00 ¢m. The tick murks are separated by a distance w,. Tae discontinuiwy
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Fig. 4 — Plot of the amplitude of the radiation field in the x and y plane for the

electron beam that deviated from the axis. The tick marks are separated by a distance
w,.
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