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E other graduate students. He led a special study in Nuclear
v Survivability, drawing on current research in the field, and
g provoking each of us to wrestle with that problem in a
{ fundamental way. Just how does one measure the probability
' of failure for a structure exposed to the effects of nuclear

weapons? The questions raised in this class were so intri-
guing that I chose the field for my research areas umnder the
direction of Dr Bridgman. My thanks to him for his inspira-
tion, his encouragement, and his discipline.

My thanks also to the Defense Nuclear Agency who spon-
sored the work. Their willingness to sponsor travel to DNA
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A few words about some special items in the text are in
order. Words can mean different things in different disci-
plines. A design engineer, for example, will see ’'sigma' in
pounds per square inch, while a statistician will see the
normal distribution, To prevent these misunderstandings, a
glossary can be found in Appendix F,

This problem covered a broad range of disciplines—-from ::ﬂj
nuclear effects, to nonparametric statistics, to aircraft

structures. The bibliography is topically indexed as an aid

in sorting out the literature.
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Abstract
A new approach for assessing the survivability of air-
craft components in nuclear blast and thermal environments :
is presented in this dissertation. A nonparametric tech- E$¢
nique is developed for use in calculating the reliability géﬁ
interference integral. This approach eliminates the need ﬁ }
for density function identification and parameter estima- }_:
; tion., Furthermore, the method can be used without resorting ?;é
:% to large~sample random Monte Carlo simulation or propagation :iﬁs
F O
3 of moments. In addition to this, the derived cumulative ;%{
;v distribution function using such a technique exactly inter- fi??
Sf . polates the true distribution function at selected points. :};E
= Vi
F. (b The method is applied to the problem of aircraft survivabil- ETJ
ity in nuclear blast environments using failure (strength) :
distributions found in the literature. It is also applied
to the case of aircraft survivability in nuclear thermal
environments where direct failure data is not available.
Inputs to the engineering models involved are treated sta-
tistically, and the method is used to rigorously determine
the statistical nature of the output variables.
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I. Iatroductioa

The objective of this dissertation is to find a logical
way of inferring the probability of failure of an gircraft
component when exposed to the effects of nuclear weapons. A
reliability theory approach is taken that is distribution
free. This approach, which exploits some recent develop-
ments in nonparametric statistics, eliminates the need for
density function identification and parameter estimation.
Furthermore, it provides a new way of finding the distribu-
tion of a functiom of random variables without using large-
sample Monte Carlo simulation. The method is applied to the
problem of aircraft survivability in nuclear blast eanviron-
ments using test data found in the literature. It is also
applied to the case of aircraft survivability in nuclear
thermal environments where direct failure data is not avail-
able. Inputs to the engineering models involved are treated
statistically, and the method is used to rigorously deter-
mine the statistical nature of the output variables.

A review of nuclear survivability/vulnerability (S/V)
methods is provided in Chapter 1II. The determimnistic
approach for aircraft is reviewed. Little work on probabil-
istic methods for aircraft has been done up to this time.
Attempts to logically develop a prodbasbilistic model from
stated aircraft hardness specifications are noted as are

other approaches. Ground system survivability methods are
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examined. Probabilistic methods have been used for some

time in this area. The earliest approaches involve direct -
modeling of system failure probability as a function of NS
range from the weapon. Modern methods include Monte Carlo W
simulation. This has been used in Minuteman survivability

studies and more recently to investigate electromagnetic

pulse (EMP) survivability. Other studies include surviva- ﬁié

bility assessment of horizontal and vertical missile shel-

ters and interruption of low frequency communications by

nuclear effects.

A review of classical stress/strength interference ;““
theory is provided in Chapter III. Strength and stress
distributions are discussed, and the reliability interfer-
ence integral presented. Engineering determinism, or
“cookie-cutter” damage distributions, are shown to be a
special case of the general interferemce theory approach,
Stress/strength interference theory is thus a natural choice
as a theoretical approach., Serious problems have existed in
applying interference theory to failure assessment of large
engineering systems, These include development of the sys-
tem reliability model from component structures, the numeri-
cal difficulty of finding the distribution of a fumctiom of
one or several random variables, and the serious limitation
presented by the lack of data. This last limitation in par-~
ticular makes density function identification and parameter

estimation difficult, Attempts to solve the above diffi-
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E y culties include fault tree analysis, propagation of moment

i h methods, direct and indirect MNonte Carlo simulation, vari-

f able transformation techniques, Bayesian analysis, and sur-

E' vey of expert opinion.

i A new solution to the above difficulties using an

: extension of recently developed nonparametric estimation
techniques is presented in Chapter IV. VWhile the system

. reliability modeling problem remains, the new numerical

?’ technique provides a tool for finding the distribution of a

E: function of multiple random variables. An example from the

v

i engineering literature is presented as a benchmark problem.

;Z The advantages of the nonparametric method are noted. These
advantages include (a) elimination of the requirement for
density function identification and consequent parameter
estimation, (b) freedom from a priori distributional assump-
tioms, (¢) elimination of the requirement for large Monte
Carlo samples, and () protection against drawing unwar-
ranted inferences from a small data set.

The analysis of aircraft survivability to nuclear
induced blast environments is presented in Chapter V. 1In
this case, actual failure distributions for piece—-parts are
taken from an analysis of some 20 years of static test data
conducted at Wright-Patterson AFB, OH. A general discussion
of the survivability problem is presented, and a series
reliability model for the mission developed. Blast vulmnera-

bility is determined for the fuselage, wing, and vertical
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E ﬁ}: tail assemblies. This is done by using the statistical Siﬁf
i - variation of overpressure versus range to determine the
N applied stress distributions, The actual failure distribu-—
L
i tions determined from the test data then allow the component
i failure probabilities to be determined as a function of
. range. These provide the required information for finding
the system failure probability as a fumction of-range from
i the weapon.
The analysis of aircraft survivability to nuclear
thermal environments is presented in Chapter VI. The diffi-
i culty of sparse data is mnoted. In particular, no
probabilistic description of the thermal environment could
be found from the literature, Also, no failure data for the
. i; failure mode of interest could be found in the literature,
As an alternative, the statistical distribution of radiated
power is developed by regressing the output of a complex
i radiation hydrodynamics code on that of a more approximate
model. The study is restricted to the radiated power from a
1 Kiloton (KT) burst in a sea level atmosphere. The statis-
f tical environmental input is them used to determine the
‘ distribution of peak skin temperature in a thin skin assem-—
. bly. Two thermal failure models are compared, and failure
; probabilities versus range are displayed.
The results are summarized in Chapter VII, and recom-
mendations for future work are given, The recommendations
E include needed developments in both methodology and applica-
0 1.4
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tions. The greatest need for applications is for standar-
dized statistical descriptions of nuclear effects envi-~
ronments.

The development of the primary numerical method used
in the applications problems is detailed in Appendix A. The
documentation of several modifications to a nonparametric
estination method is included.

A source code listing of the computer program NOSWET is
presented in Appendix B.

In Appendix C, a new method is presented for finding
the distribution of monotonic functions of random variables.
Functions of a single random variable are comsidered first,
and examples presented. The theory'is then extended to
(;, fanctions of two random variables, and two examples of this

are given., The theory, with some restrictions, is extended
to functions monotonic in N random variables.
i In Appendix D, the num-rical technique used to calcu-
late the integral of conditional density functions is

explained and documented. The reliability interference

2 theory integral is a special case of this type of problem.

Further consideration of the vulnerability of a box- iyﬁ
beam wing structure in nuclear thermal environments is pre-
sented in Appendix E, In narticular, the relative vulnera- r" 1

. bilities of the parts of the beam are discussed.

- Finally, a glossary of acronymns and nomenclature is

K presented in Appendix F, keyed by Chapter. . f;;%
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I1. A Review of Survivability Methods

o Overview
The problem to be considered is this: An aircraft flys

in the vicinity of a nuclear weapon at the time that it

.S

detonates. If the aircraft position with respect to the
burst is known, can one predict the probability of aircraft
failure due to the effects of the nuclear weapon? ¥hat is
the justification for such a prediction? The literature is
reviewed below. This literature search leads to a preferred

approach to solving this problem,

Deterministic Methods

The Defense Nuclear Agency (DNA) document DNA2048-H,

. (‘ Handbook For Analysis of Nuclear Weapon Effects on Aircra

. [68] is representative of deterministic methods for
assessing aircraft survivability. The basic objective of

- the handbook is the determination of sure-safe (8S) and i
sare-kill (SK) ranges. SS and SK ranges <correspond to ;

range locations where SS and SK responses of an aircraft

i subsystem are expected. A SS respomse correspomnds to ;;‘*
2 incipient damage, or 1limit loads. A SK response i
?% corresponds to a catastrophic damage condition. This way "
i of thinking has its origins in aircraft design. SS 1loads t

are limit loads, while SK loads are ultimate loads, or

loads beyond ultimate, Ultimate loads are often taken to be

X . '
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limit loads times a factor of safety, typically 1.5. This
approach to survivability allows one to find those regions
of space where the aircraft is sure-safe or sure-killed.
Typical outputs of the method of Reference [68] are shown in
Figures 2.1 and 2.2, These .pictures require some
explanation.

In Figure 2.1, the target occupies the origin of
coordinates. A nuclear detonation may be placed anywhere in
the plane of the figure. Any burst that falls on the solid
contour, or outside of it, leaves the target at the origin
completely undamaged. Hence, the region of space outside of
the contour is called the ’'sure-safe’ region. The probabil-
ity of damage is nonzero (but unspecified) in the region of
space inside the contour.

In Figure 2.2, the target also occupies the originm.
In this case, however, any nuclear burst that falls on the
contour or inside of it results in the destruction of the
target. Hence, the region inside the contour is now the
'sure-kill’' region., Outside of the comtour, the probability
of damage is unspecified (but it is mnot unity).

The chief disadvantage of the technique is that it is
ambiguous. There are regions of space left over where the

state of the aircraft subsystem cannot be determined.
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ilis Methods

The obvious problem with the deterministic technique
can be eliminated if ome recognizes that the failure proba-
bility should vary smoothly from some low value in the SS
region to some high value in the SK region. A number of
approaches have been used to attempt this, and they are
reviewed below.

Aircraft Structures. Bridgman [44], in an early
Technical Note, attempted to find a continuous probability
of damage curve by postulating a damage function as a cumu-
lative lognormal distribution in the range space. This
approach closely parallels that of AP~-550 [53], discussed
later. Since the lognormal is a two parameter distribution,
an infinite number of possibilities exists for the contin-
uous damage curve. Bridgman took the novel approach of
coupling the information in DNA-2048H so as to find the
optimum continuous damage model, He did this by postulating
the damage probability to be some arbitrarily low anumber
(.02) at a known SS range, and an arbitrarily high number
(.98) at a known SK range. The SS and SK ranges were deter-
mined by the methods of DNA-2048H. Such & specification
leads to a unique solution for the two parameters of the
lognormal distribution, and thus specifies the damage func-
tion.

In some later papers [45.46), Bridgman recognized that

the range specifications depended not just on the target,
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= but on the entire source, transmission, and interaction ;i;
l problem as well. He then postulated & continmous failure Eég
distribution in the stress space, again finding the distri- &ER

bution by coupling the information in DNA-2048H to the §§&

lognormal model so as to specify the survivadbility function. 'ﬁ;\

There have been other attempts to treat survivability :bti

; as a statistical ©problem at the componment level. The i&i

Studies and Analysis group at Hq USAF [42] used an approach

similar to Bridgman's. Sure—-safe and sure-kill specifica-
tions in the stress space were assigned as percentiles of

the component failure distribution. The possibilites using ng

;.',: N
parametric statistics were surveyed as shown in Figure 2.3, e

Other <contributors to this field include Gragg [63]. The
probabilistic survivability literature for aircraft systems
is quite limited compared to that of ground systems, whkhich [ S
will be considered next, v

Ground Structures. Ground system survivability has

been studied for a considerably longer time than has air-
craft survivability. One of the earliest probabilistic
treatments is the method of AP-550 [53]. The failure proba-
bility of a structure is given as a complementary cumulative —
lognormal function, with the parameters of the lognormal

depending on the target hardness. This method is still in

use by the targeting community, as represented by the f:r
Defense Intelligence Agency (DIA). In this method one

models damage directly as a function of range, based on

II.6
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early observations of the Hiroshima blast damage. Targets

are coded by a special number as being either overpressure
sensitive or dynamic pressure sensitive., The special coding
of a target type yields parameters for the determimation of
the continvous damage function.

A quite different probabilistic method was developed by
the Defense Nuclear Agency (DNA) in the 1late 1960's and
applied to problems of Minuteman Missile survivability.
This technique was developed independently of the method
used by DIA, DNA published the FAST (Failure Analysis By
Statistical Techmniques) code in 1974 [57]. FAST is an ambi-
tious Monte Carlo code, including correlated nuclear weapon
environments, variable system reliability models, and arbi-
trarily input component fragilities, or subsystem failure
distributions. The publication of FAST was a significant
milestone., It was one of the first, if not the first,
Department of Defense (DOD) products that treated surviva-
bility along the lines of classical reliability theory.
After being wused in the Nuclear Hardness and Evaluation
Program (NHEP) [58], it was not used much until 1980. At
that time a group at Lawrence Livermore National
Laboratory (LLNL) began using it to imvestigate probabilis-
tic modeling of survivability to EMP [40,41].

Recent probabilistic survivability studies include
examination of MX survivability im both its horizontal and

vertical shelters [55]. These studies, also conducted by
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DNA, did not use FAST, but a combination of approximate &é%
probabilistic techniques [37] and Monte Carlo simulation iﬁg
[55]1. Other studies of hardening of ground facilities may E?H'
be found in the literature [49,50,75]. Eiﬁ;

Another notable study conducted recently by DNA is that :?Sf

of Jordano [67)]. He investigated the uncertainty of nuclear
effects on low frequency (LF) communication links. He cal-
culated the probability of LF signal loss, based on statis-
tical inputs to nuclear debris cloud stabilization altitude

and location. This work differed both from the FAST and the

approximate probabilistic techniques. Rather than make

distributional assumptions, Jordano directly calculated the Mo

distribution of a function of a random variable based on a

variable transform method.
To summarize, ground system survivability is dome in

two ways. The targeting community, as represented by DIA,

treats all damage as an empirical fumnction of =range [53].
The nuclear effects community, as represented by DNA, has
developed some probabilistic damage models based on classi-
cal reliability theory [37,55,57] and direct variable trans- ff?
formation techniques {67]. The DNA publications just men- ‘Tf
tioned form the nucleus of modern probabilistic survivabil-
ity literature for the DOD, However, there has been a good
deal of work done outside of DOD, 4and some of this will be nE

reviewed at this time.
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Other Structures. Two groups in the engineering commu- ;&g,
nity outside of DOD have extensively studied methods for Eééﬂ
determining the probability of failure of structures. Civil -
engineers have been conducting research in the area since E%?
the late 1960's. Most of the literature here involves the EEE‘

method of propagation of moments of random variables, about

which more will be said in Chapter III., This technique has

been applied to a broad range of structural reliability

problems [7,27,28,30,31]. Some of these even deal with iﬁ;
nuclear blast damage [71]. Textbooks on the subject of “;2?
structural reliability are beginning to be published léis
[(15,23]. Since about the early to mid 1970°'s, the nuclear sfi

SN
engineering community has also taken an active interest in fE%E
the subject. Proceedings of the conferences on Structural ﬁé§
Mechanics in Reactor Technology (SMIRT) include many papers .:;:
on the application of probabilistic methods to problems of igéj
nuclear safety. Here too, books are being written [25,29]. ﬁﬁt
In most cases, these methods and applications are based on 'jy“
mathematical reliability theory, coupled with standard prop- - Nii
agation of moments techniques. }Egﬂ

Summary

The literature just reviewed includes deterministic and
probabilistic methods. Deterministic methods do not provide
for continuous failure (or survivability) funotions. This
violates intuition. On the other hand, probabilistic models

that are based on direct modeling with range are justified

= I1.10
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only by early observations of nuclear blast damage. Some
recent publications suggest that the fundamentals of
reliability theory are applicable to the problem. In
Chapter III, classical reliability theory is more

carefully reviewed. The strengths and weaknesses of this
method as an applications tool for survivability analysis

will be noted.
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I1X, Stress—Strength Intexferomce Iheoory

Overview

The mathematics of reliability theory, and the field of
reliability analysis, came szbout as s result of problems the
DOD had with electronics piece—-parts in the early 1940's
[8]. Only since about the mid 1960’s bas the field been
extended to problems of large—scale engineering systems. In
the paragraphs that follow, the basic theory of reliability
mathematics is reviewed. Engineering determinism is shown
to fit naturally into the theory as a special case. The
problems in applying the theory to engineering systems are

reviewed, as are previous approaches to solving those

problems.

Mathematical Reliability Theory

Strength Distributions. The strength distribution is a
statistical property of a population of devices operating in
some stress environment. Examples include light bulbs
operating for a given number of hours, or samples of wing
materials under tensile testing., The strength distribution
is sometimes called the failure distributiomn or the
resistance distribution, It is a measure of how well the
devices resist a stress load. The distribution is most
easily determined for the case when a number of items can

all be tested to failure. In that case, one can plot the
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fractional number of failures occuring in a given stress -

interval versus the midpoint of the interval. The resulting

histogram approximates the underlying probability density
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function (PDF) for failure. This statistical information is

a measure of the strength of the item, since the central

N SO
{ 2 )

value of the distribution indicates the value of stress

where most failures occur. In addition, the amount of

I scatter about the central value measures the variability in

the quality of the item. The stress value at which an item

will fail is a random variable. The probability that an

I item will fail at a particular stress value s is then éis
expressed by:
—s -
pf—Pr[Sgs}:/:ofs(s)ds Fs(s) (3.1)
i (;- where Pg is the failure probability, S8 the strength random

variable, s a particular value of 8, fs(s) the strength PDF,

;. and Fg(s) the strength cumulative distribution function

(CDF) .
|

If the testing of n items resulted in every single item ﬂﬁq

failing precisely at the value SK, then a true cookie-cutter
= distribution would result, The PDF would be a Dirac delta
function [2] located at SK, and the CDF would be a step
function as shown in Figure 3.1 (top). A more likely result
is that every item fails at a slightly different value,

resulting in a CDF similar to that of Figure 3.1 (bottom).
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Cookie-Cutter Distribution

1.0 r
PROBABILITY
OFf

FAILURE

COMPONENT RESPONSE

Uniform Distribution

‘ Qo -
PROBABILITY SLOPE INDICATES
OF RANDOM VARIATION
FAILURE
0

COMPONENT RESPONSE

Figure 3.1. Cookie-Cutter (Top) and Random (Bottom)
Failure Distributions
(Adapted From Reference [57])
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Stxess Distributions. Equation 3.1 gives the failure
probability for the item provided the stress is exactly
known, As in the case of the failure point of the device,
the applied stress may not be known exactly. Repeated
measurements of the free field stress may yield a central or
expected value f.r the measurements, but also dispersion
about the central value. The applied 3tress, s, would then
also be a random variable, described by a statistical dis-

tribution.

The Interference Integral and Related Random Variables.

If the distributions of S and s have been determined, then
the general expression for the failure probability is given
by:

pf=Pr{S$l] (3.2)

Provided the strength and stress variables are
independent, Equation 3.2 can be written as:

Pr(S<s}= :f'(s)Fs(s)ds (3.3)
vhere Pg is the failure probability as before, 8 the
strength random variable, s the stress random variable,
fg(s) the PDF of the stress distribution, and Fg(s) the CDF
of the strength distribution, In words, the failure
probability is just the chance that a random selection from
the sample space of all strength values yields a2 number less
than or equal to a random selection from the sample space of

all stress values. Equation 3.3 is often referred to as the

reliability interference integral, or just the interference

III.4
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integral, since contributions to the integral occur omnly in
the variable space where the density functions overlap or
“interfere”, The shaded portion of Figure 3.2 illustrates
the interference region. Equation 3.3 is seen to reduce to
Equation 3.1 if the stress PDF is a Dirac delta fumction.

If the stress and strength random variables are not
independent, Equation 3.3 cannot be used as written,
However, Equation 3.2 is still valid, and the failure
probability can be calculated by finding the distribution of
either the margin variable, ¢ , or the safety factor
variable,n . The margin variable is defined by:

§=S-s3 (3.4)
Consequently, in terms of fie margin variable, the failure
probability could also be calculated by:

pe=Pr{£<0) (3.5)
Also, the safety factor variable, provided the applied
stress is not zero, is defined by:

N=8/s (3.6)
In terms of the safety factor, the failure probability can

be calculated by:

pe=Pr{n<1} (3.7)

At this point, examination of Equations 3.4 and 3.6
shows that one of the requirements for solving the problem fif
is the ability to find the distribution of a function of two ?fiﬂ
random variables. This can be a difficult problem, and it >

will be discussed in more detail below. Before considering

III.S
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that, a discussion of the reduction of the interference
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E~ integral for the deterministic case is presented.

Reduction To Engineering Determinism. If the stress is %2“
deterministic, the PDF of s may be represented by a Dirac ggﬁ
delta function centered at the known stress value, say s. Eﬁﬁ:

O
That is, »

£,(s)=8(s-3) (3.8)
Using Equation 3.8 in the interference integral of Equation .
3.3 reduces the integral to: gji

pg=Fg(3) (3.9) 7
If the strength is also deterministic, then the strength CDF &;f
is given by: i;;

- Fg(3)=0 v 3<SK (3.10) :
Fg(3)=1 v 525K (3.11)
" (‘ The results of Equations 3.10 amd 3.11 are the familiar i:;
- deterministic cookie-cutter damage functions. ‘

Going the other way, Equations 3.10 and 3.11 can be
used first inside the interference integral of Equation 3.3. ;T;
Since the integrand is zero for every s<{SK, the limits are 5
changed so that: ;;S

pf=ﬁfs(s)ds (3.12) &-.-—

SK .
g But Equation 3.12 is just the statement that: .
: pg=Pr(s)>SK] (3.13)
? Again, by hypothesis, only one value of s is ever ‘.,
;; observed, namely s. Consequently, Equatiomn 3.12 takes only ;i?
*i two values: Eﬁi
II1.7 i
X
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pe=1l v 82SK (3.14)

pg=0 « s<(SK (3.15)

The set of Equations 3.14 and 3.15 is ideatical in
meaning to the set of Equatiomns 3.10 and 3.11. Cookie-
cuotter damage distributions are the result.

The reduction of the general reliability integral
approach to the cookie-cutter case for Dirac delta PDF's
makes it a natural choice for adding probabilistic
information to the survivability problem. One sees that
engineering determinism is nothing more than a subset of a
more general probabilistic approach. The subset is found by
replacing all continuous probability demsity functions by a
very special probability demsity function-—-the Dirac delta,
which has a single parameter. Seen inm this 1light,
engineering determinism would seem to have no inherent
theoretical superiority over probabilistic methods based on
reliability theory. Even.so. probadbilistic approaches to
survivability problems are not common, The teasonsvfor this

are examined next,

Applications Difficulties For Engineering Systems

The direct application of stress—strength interference
theory has beenm thwarted by problems in system reliability
modeling, analytic and numerical intractability in finding
the distribution of functions of random variables, and a
serirus lack of hard data. These are all discussed in turn

below.
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System Reliability Modeling. Even if data were

abundant and mathematical methods available, it is still

difficult to determine how individual component failures can

combine to create a system failure. An example from the

»N
aircraft survivability problem is the melting or rupturing Nﬁb

of non-structural skin panels, It simply is not true that

the loss of a single skin panel will mean the loss of the

aircraft. It is true that as panels are lost, the drag e

o
coefficient increases, and that at some point, as more and T
more panels are lost, the drag coefficient is such that the
mission cannot be completed-—-i.e, the system has failed. }:5

o
The difficulty in constructing a model of system reliability e
or survivability as a function of component survivability is f
apparent. System reliability modeling is discussed in most g

reliability engineering textbooks [8].

An approach used in reactor safety studies is that of

21

fault tree analysis [29)]. Basically, a list is created of é
every event that is to be the subject of analysis. These

events are termed top events. A functional diagram of the B
system is then studied so as to identify contributing events f{
that may directly cause the top event to occur. These

contributing events typically cause the top event to occur

through AND/OR Boolean operations. For example [29], s fgg
circuit breaker may fail to trip because it fails randomly ??;
by itself, OR a trip signal is not received. The con- 3%;
tributing events can also be further analyzed. To continue ;E;
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the example, perhaps the trip signal is not received because
relay 1 AND relay 2 remained closed. Fault tree
construction can become a substantial task for a large
engineering system.

At this point, it should be noted that whatever number

is obtained by a probabilistic assessment of survivability,

it will not represent an absolute measure of the frequency
of system failure. Since no system reliability diagram can :;L

be perfect, a probabilistic estimate of survivability is a

r
o e

vlr'."« et
0 St -

conditional probability measure. At the very minimum, it is

Vel

conditional due to the system reliability model. Since it .
s
is not possible to know all the failure mechanisms of a e
W
system, the resulting survivability number is an upper bound }ﬁ{
AP
A
to the system survivability. Thus, for military g
. . 3 3 . ~
applications, targeters have more to gain by this type of p\

analysis than do defenders.

Mathematical Methods. Another difficulty inm the direct

application of reliability theory is the amnalytic and i;
numerical intractability of the mathematics of statistics. .ﬁf
The most common problem, and one already hinted at, is that f*-

-

of finding the distribution of a function of one or more
random variables., Very few problems have exact amalytic or ‘5ﬁ

closed-form solutions. Methods that have been used by i

¢
~—

survivability analysts include propagation of moments with a -ji
priori distributional assumptions, MNoate Carlo simulation, 'fj
and variable transformation techniques. ﬁﬁ
I11.10 o
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Propagation of moments methods have been used by DNA in :§§

some of the studies of missile basing [55]. Basicslly, given Egé
an equation of the form: S
OS]

Z=g(X5.X5, . . .Xp) (3.16) *._\
moment information about the X; is collected (usually the s
mean and variance). The mean and variance of Z are then Eif
calculated by means of Taylor Series expansions about some ;ii
point ([8,12]. This requires the determinatiom and 35_
evaluation of partial derivatives. Once the mean and ;TT

variance of Z have been estimated, a lognormal distribution
function for Z is usually assumed [71]. Correlations among
the X; must be accounted for. Along these same lines, a new
technique based on a linear algebra has been developed by
Ditlevsen [23]. This approach assumes that only moment
information is available for all inputs, and thus only
moment informationm can be used for all outputs. Ditlevsen’s

linear algebra approach seeks to accomplish the same goals

zj as & probability theory, yet can be presented without a ZFS
Eﬁ reference to probability theory,. _;?
%é There are several disadvantages to using propagation of 515
L* moments. One is that not all combinations of random s
{ variables yield distributions that have moments. The
’ Cauchy, for example, cannot be estimated efficiently by such
methods [23,13]. Another disadvantage is the common use of E:E
a priori distributional assumptions. However, perhaps the ?g
worst disadvantage is the tediousness of calculating many }i
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partial derivatives. For example, in Appendix B of

Reference [12], omne can find an expression for the expected
value of a fourth moment, This single expression occupies
48 lines of typewritten text! Needless to say, tasks of
this magnitude are promne to errors. Most of these
objections can be ovexrcome by using Monte Carlo simulation,
Direct Monte Carlo simulation 4is described by
Stancampiano [32]. This is basically a brute force
counting operation. One samples randomly the distribution
of margin or safety factor. This is dome by randomly
drawing from the strength and stress distributions, which
may be functions of multiple random variables, and counting
the relative number of times the margin variable is less
than 0, or the safety factor less than 1. If the part has a ;i;i
very high reliability, this counting operation can become

expensive,

Monte Carlo with fitting seeks to overcome the expense E‘ }

of brute force Monte Carlo counting, In this case, one fits
the simulated data to a distribution function, perhaps a :%?;
;: normal, or some other type. Stancampiano shows [32] that i;:
[; some problems can be sensitive to the choice of distribution :
function chosen. An elegant technique is to calculate high
L’ order moments of the data and use the Shannon maximum ;.d
entropy method to find the minimally prejudiced probability :;3[

distribution [13]., This is not always straight-forward,

since the solution for the minimally prejudiced PDF involves

IIX.12 -
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solving a non—-linear programming problem. Also, there is no
a priori guarantee that the distribution of the output
variable has moments.

Other Monte Carlo techniques exist, though they will
not be useful for the nuclear survivability problen.
Inportance sampling [32] can be used if one knows that the
location parameter for the stress distribution is relatively
fixed. In that case, one can improve the Monte Carlo
efficiency by concentrating the sampling in the area of
interference between the strength and stress demnsity
functions. This will not be useful for the problem at hand
since the applied stress from a nuclear weapon cannot, in
general, be confined to a limited range of values.

Other methods include the use of specialized
mathematics, such as Cook's work with H Functions [4].
These methods are still cumbersome and unattractive at
present for engineering applications.

Sparse Datas Sets. Finally, the lack of data for the
required inputs to a probabilistic assessment limits the
usefulness of the reliability theory approach. The most
serious limitation of the lack of data is in the ability to
identify parametrically the input distributions. With a
small sample, it is possible that a number of density
functions would slip through even the best of goodness of
fit tests., Ashley [3] has shown how the use of a weak test,

such as the Chi-square which is popular among engineers, can
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lead to erromneous conclusions about the umnderlying
distribution, and unvarranted confidence statements about
survivability. Without & good idea of the underlying
density function for the inputs, it is hard to know just how
to estimate the parameters——indeed, one may not even know
how many there are,

The dearth of hard data has led many to consider
Bayesian estimation techmiques. The use of Bayesian
statistics in reliability theory is discussed by Kapur and
Lamberson [8]. Bayesian statistics combines subjective
judgment or experience with hard data to provide statistical
information similar to the classical statistical inference
approach,. The method is comntroversial since “no

(; experimental or amnalytical methods exist for the
quantification of . . .belief” [8]. Nevertheless, Bayesian
methods have been widely used in doing probabilistic risk
assessments. The reasons for this are best represented by
direct quotes from the literature:

Ang writes in 1975, '"When the observed data are
limited, as is often the case in engineering, the
statistical estimates have to be supplemented (or even
superseded) by judgmental information. With the classical
statistical approach, there is no provision for combining
judgmental information with observational dats in the

estimation of parameters. [1]
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E McCormick, in a 1981 book on risk analysis [29], writes
EE f§3 "The interpretation of'" (the law of large numbers) "is clear
! enough for experiments that can be repeated. There are many
S occasions in which the knowledge available is less precise,
g especially when the engineer deals with rarely occurring
i events that form the basis of many risk evaluations, Then
‘ it is necessary to resort to the axiomatic or subjective
approach to the concept of probability, which we shall use
! from now on."
i Subjective probabilistic assessment is also mentioned
by Bevensee [41]., The lack of hard data for EMP
survivability assessment is apparently so serious, that in a
1981 follow-up study to that of Reference [41], fully 29
pages of a draft Lawrence Livermore National Laboratory
. G (LLNL) report are devoted to methods of polling expert
- opinion [39]. Personal conversations with experts in the
EE study of ground systems survivability confirm that opinion
!. surveys sre a common source of information [48].
;i This lack of hard data, combined with the controversy
iz surrounding the use of Bayesian statistics, leads to a
Ft perplexing dilemma. Faced with the difficulties in ;?f
fl rigorously pursuing an approach along classical statistical ikfz
ig lines, one may wish to retain the traditional approach of igg}
g engineering determinism., On the other hand, engineering %T%

determinism cannot deal with uncertainty other than by worst

RS
case analysis or by parametric surveys. From a probability RN
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theory point of view, one has not avoided subjectivity by
S retaining engineering determinism. One has simply chosen
the Dirac delta function as the underlying PDF for all
variables of interest. The present probabilistic alter-
: natives to that are to choose continuwous distributions, and

somehow to estimate the parameters for those distributions.

Summary

I To summarize the Chapter then, three of the more
serious difficulties in applying stress—-strength
interference theory to engimneering systems have been noted.

‘ These include: (a) the problem of system survivability

modeling based on component survivability, (b) the
difficulty inherent in the mathematical methods for

(b propagating statistical information, and (c) the sparsemness

of the databases for engimeering inputs.
In Chapter IV (with related appendices), a new approach

for dealing with problems (b) and (c¢c) above will be

presented. It will be shown that newly developed methods in
nonparametric estimation provide a tool for finding the
i distribution of a function of multiple random variables. It
will also be argued that nonparametric estimation provides a
logical method for propagating uncertainty in an engineering

model.
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R LY. Noaparametric Estimation—-A New Interferemce ITheoxry Tool

Overview

In this Chapter, an effort will be made to deal with
some of the problems mentioned in Chapter III. However, the
problem of system survivability modeling from kmowledge of
component survivability will not be dealt with. In the
chapters that follow, an aircraft system will be treated as
a simple series reliable assembly. However, much more can

be dome in overcoming the problems involved with mathemati-

cal methods, and with sparse data bases. These are pre-

sented at this time.

&‘ Some recent developments [14) in nonparametric estima-

tion technigques provide a new and powerful statistical tool Y
for use in survivability calculations. This tool can be
used as an empirical one, for use on observed sets of data.
It can also be used as a numerical method in its own right.
Although most of the details are discussed in Appendixes A

and C, a basic outline of the approach is discussed below,

and an example from the reactor risk analysis literature is fﬁa
presented.
As noted earlier, one of the tasks that must be dome in R

order to make stress-strength interference theory work is

that of finding the distribution of a function of one or

Cama
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more random variables. ¥With the nonparametric estimation
N technique, the following can be demonstrated:

(a) Given the random variable equation Z=g(X), with
g(x) monotonic, and the distribution function of X (whether
parametric or non—-parametric), the distribution function of
Z can be exactly determined at selected points,

(b) Given the random variable equation Z=g(X,Y), the
distribution functions of X and Y, and the restriction that
d2/0x#0 wvx, Jg/dy#0 vy, then the distribution function of Z
can be determined at a selected number of points by using
the equation of conditional probability as a sampling rule.
The accuracy in the distribution function of Z is limited
only by standard problems of numerical integration.

(c) Given the random variable equation

Z=g(Xy,X9, . . . X)) (4.1)
the distribution functions of the X;, and the restriction i?ﬁg

that aglaxi#o vy x then the distribution fumction of Z can

i'
be determined at a selected number of points, provided the

Xi are independent or have known correlations, The accuracy

in the resulting distribution function of Z is limited onmly

by standard problems of numerical integration.

This technique is best illustrated by working an
example from the actual survivability 1literature. The :iﬁ:
density function for the safety factor of a reactor pressure
vessel will be calculated by the above method, and compared

to a standard Monte Carlo calculation [32].
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A Benchmark Problem—Safety Factor of a Reactor
e Pressure Vessel

A very long ductile steel cylinder is subjected to an

applied internal pressure P, The applied pressure P is

found to be a random variable with a three—~parameter Weibull

| distribution. That is:
Fp(p)=1-expl-((p-c)/2)®1 v pdc (4.2)
Fp(p)=0 v p<ec (4.3)
i where p is a particular pressure value in KPa (kilopascals),

a is the Weibull scale parameter in KPa, b the dimensionless

Weibull shape parameter, and ¢ the Weibull location para~-

i meter in KPa. Stancampiano gives the values as:
a=.10665P (4.4)
b=4.212 (4.5)

] e c=.9P, (4.6)
P,=4316 KPa (626 psi) (4.7)

The random variable P is the stress variable, and it
‘ has the parametric representation just noted. However, one
may represent P nonparametrically rather thanm parametric-
ally. This is done by solving Equation 4.2 for the m values
i of p; that satisfy the equation:

p;=Fpl(G;) (4.8)

where the Gi are given by:

B G;=(i+a)/(m+g); i=1,m (4.9)
- and a and B are constants satisfying:

-1{a¢pg1 (4.10)
Iv.3
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The m values of p found by solving Equation 4.8 are

ordered from smallest to largest and denoted by the set of

rr
4
N
X
P

values:

{Pi}§i=1»m

As discussed in Appendix C, if, for every i from 1 to
m, the Gi of Equation 4.9 are plotted versus the ordered P;
in the set just described, then the result in general is an
approximation to the distribution function Fp(p). However,
for this case, the result is exact at the data points | PR
This is because the data (the pi) were drawn by the rule of
Equation 4.8. Such a set of points will be defined as a
stylized set (Reference Appendix C).

The distribution of P derived from a set of 50 stylized
points is shown in Figure 4.1. The plotting rule used was
Hazen’s Rule where a and B are given by —-.5 and 0 respec-—
tively. The distribution function of Figure 4.1 is exact at
the percentiles .01(.02).99 and in—-between values are simply

linearly interpolated from these. As discussed in Appendix

A, the end-point values are found by requiring the integral :jt:
of the PDF to be unity. A
At this point, it might appear that this representation L—~%

of the distribution of P is needlessly complicated, since
(a) the distribution of P is already known parametrically,
and (b) the parametric form was used anyway to provide the ~— oy

data to the nonparametric technique. :ﬁ%a
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The answer to the first objection is that, although it :}:ﬁ
R
seems complicated now, the application of this method will "?

- »
¥
¢

)

make more difficult problems much simpler later on. To find

v
: 'J'i

v At

a distribution function parametrically, one must first know 3&8
the density function or distribution function, and themn all QH&q
the parameters that go into it. If these were always known ;?*
for every comnceivable combination of random variables, then LJ?E

RS

density function identification would be greatly simplified.
As it is, some of the simplist combinations of random vari-
ables (Reference Appendix C) have complicated density and
distribution functions.

As to the second objection, the fact that the nonpara-
metric technique is using data drawn from a parametric model
is just a property of the example. Stancampiano [32] does
not say how the distribution of P was found to be three-
parameter Weibull. If one simply believes him, then the
parametric input is accepted. If one does not believe him,
then one obtains the data for himself, and estimates the

distribution of P independently, using another parametric

model, or perhaps a nonparametric one. In any case, every Eﬁnj
input variable will have its distribution functiomn specified ;w4
somehow. No matter how it is done, the nmonparametric repre-— ;xf
sentation can be used.

To continne the calculation of the survivability of the
pressure vessel, one now needs to find the distribution of

the strength, having determined the distribution of the
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applied stress. At this point, a subtle departure from the
norm of classical reliability theory occurs——a departure i’

shared by most problems in nuclear survivability. Classic-

::f'“
1) «Ta A ]
PIY

ally, the strength distribution would be found by taking a

AT
ooy
q' 'J 'I

]

>

large number of cylinders, and testing them all to failure.

The strength distribution would then be determined by the

standard methods of statistical inferemce. However, in this

case, as in most cases involving nuclear survivability, the
items in question are far too few in number, and too expen- N per
sive per copy, to test to destruction. Instead, one models

the response of the part. For the cylinder example, the

point at which the vessel is believed to burst is given by

the equation:

Pb=A6;Fcy11nW (4.11)
where A is a dimensionless modeling coefficient, cais the @~;
engineering ultimate tensile strength in KPa, Fcyl is a ﬁi
dimensionless function of strain and elongation given by: E;
Fcy1=.25/(6u+.227).(e/£u)(u (4.12) L-.-
€, is the true strain at maximum tensile test, and is u.l
given as a function of the uniform elongation , e; by: -
¢,=1n(1+€}) (4.13) —
W=D/d (4.14)
d=D-2t (4.15) '::I;-
t being the wall thickness of the cylinder, D the outer LTT

diameter, and d the inner diameter.
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The distribution of the strength variable, that is, the
distribution of Pb' is determined by finding the distribu-
tion of the individual input variables, and then finding the
distribution of the fumoctiom of the inputs. The input
distributions are given by:

A is normally distributed with mean 1.0478 and standard
deviation .0948. aa is normal with a mean of 433,000 KPa
and standard deviation of 21,200 KPa, ¢ is normal with a
mean of .4485 and standard deviation of 0377, The corre-
lation between the tensile strength and elongation is an
additional complication. The correlation coefficient was
found to be —.498. The outer diameter D was taken as uni-
formly distributed between 60.639 ¢cm and 61.281 cm, The
wall thickness t was taken as uniformly distributed between
1.237 ¢m and 1.532 ¢cm [(32]. The nonparametric representa-—
tions of the input variables are shown in Figures 4.2
through 4.6.

The strength distribution can now be found by a
sequence of binary operations. Some variable changes sim-
plify the equation for the burst pressure, Py The geomet-
rical factors can be represented by:

xl=1nI=1n(D/(D-2t)) (4.16)

The distribution of Xy, found by the method described
earlier, is shown in Figure 4.7. With the distribution of
11 determined, the dimension of the random variable equation

is reduced, and the burst pressure can be written as:
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. - To handle the correlated variables, the variable X, is
defined by:
xz""{ipcyl (4.18)

The distribution of X, is shown in Figure 4.8. At this

point, the random variable equation for the burst pressure
has been reduced to an independent set of variables:
- P,=AX,X,4 (4.19)

One can now proceed with a sequence of binary opera-
tions to find the distribution of the burst pressure.
; Defining the variable 13 by:

X3=AX, (4.20)
the equation for the burst pressure is reduced to:

Pp=X,X3 (4.21)

The distribution of X3 is illustrated in Figure 4.9,

At this point, there are at least three ways to pro-

AP
[ A
LI

1
" L]

. ceed. One could find the distribution of Pb~from Equation

4.21 above, and thenm directly integrate to find the failure

probability. The integration technique is discussed in ﬁiﬁ

Appendix D. It is analagous to the graphical estimation Z*Q
B technique [8], or the Mellin transform techmique [9]. kjd?
iA Alternately, we could evaluate the distribution of the mar- ﬁiﬁ
; gin variable, ¢, or the safety factor variable M. The ;Eﬁ]
; latter will be done. In this case, 7 is given by:
” N=p,/P=X,X3/P (4.22)

'y

PPN I

PR AR )
O gt I

IV.15

’ffff{l'.

RUTE T )
et
a

ot

..........
.........




14240 3o uoyaInqriisSTg °8-% 2andty

(eax) T4240=2x

SI899° Y cI6EE" Y €3010° 7% CI189°¢ ¢ACSE" ¢ ¢ATT0" ¢

T Ty

~00°0
“ AV, ’4
9 L0z° 0
T
: \ .
5
b (@]
4 o
1 L 0% 0 =
.\ [+
L’ I} Vs
2 a -
”x Q ) w ". A
3 ® T
g = o
b L 0970 a D
L2 -] .....L
o .
5] ....
0 g du
- 08°0
A\ )
—-0—o- ¢-d66L°1/4ad "
: ado .
00°1

W.. A .u
s A
w- .......
W-. _4. --

. . ' ‘v
Y e 9 o
oy ....M.n
w. RN R TLFLRGLIAIIIS . AR s BB -~ T T R _..y S ,..~.w.




PRI R S S

*6'% @1n31y

((r1z-a)/d)uiy 3Jo uorangriisiqg
(ssajuorsuauyq) ((Lz-d)/a)uly

¢0-4d8¢L°9 ¢0-90€0°9 z0-dz¢ee-s ¢0-d6€9° Y

¢0-3dL€£6°¢ C0-46£C° ¢
1

~

TN W

b

ORI

©—6 €8°7(/4dd

- 00°0

ﬁom.o

4dD

00°1

S PPN

o

"

Ak

IV.17
..‘.L. A:’ ::: ;‘::.‘::;.“.\A

d4dd p3TeO§ pu® JQDd

n

O SN IS T S A N e




At e Te e LA
~ -
,,,,, o

W e 8 A

.....

Defining 14 by:

X4=13/P (4.23)
the distribution of X, is determined and illustrated in
Figure 4,10, The final distribution of the safety factor,
given by:

N=X,X, (4.24)
is illustrated in Figure 4.11.

One of Stancampiano's single random samples of the
safety factor is displayed in Figure 4.12, It is of size
3500. In Figure 4.13 the results of the nonparametric
technique are overlayed with that of the random sample
method. As mentioned earlier, the nonparametric results are
exact (within éntegration errors) at the percentiles
.01(.02).99. Also, the nonparametric technique is efficient
enough to run on a Z-80 microcomputer. The results of
Figures 4.1 to 4.11 were done on such a computer. A check
was made on the results by doing the problem on a CYBER 750
also. For this check, 100 stylized points were used to
represent each distribution. Except for increased tail
information, the results were identical to that for 50
stylized points,

Of course, one need not use the nonparametric algorithm
in such a rigorous fashion as just described. Instead, one
may use random Monte Carlo sampling just as Stancampiano
did, and then use the nonparametric method on the simulated

data. This was done also, and the results displayed in
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Figure 4.14. The root mean square error by the nonparamet-
ric method is a factor of 20 smaller (1.021E-4 versus
2.040E-3) than by using Shannon maximum entropy. Thus, the
nonparametric tool can be used as oither a rigorous numeri-
cal moethod for findiang the distribution of a functionm of
multiple random variables, or as a direct estimator of

distribution functioms given a data set.

A Comment on Sparse Data Sets

The problem of sparse data sets for the inputs still
remains. It is still true, that if one is attempting to
measure the failure probability for a highly reliable part,
and the data for the inputs is limited, then one is forced
to estimate the ares in the tail of some distribution., If
one is using parametric models, then the relative error can
be large for different parametric models, For example,
Stancampiano [32] found a failure probability of 7E~10 + S5E-
10 using normal fitting; 2E-31 + 2E-31 using importance
sampling, and 2E-16 *+ 4E-16 using Shannon maximum entropy.
There is a large relative variation within each method and
between the methods, even though the absolute value is close
to zero. The nonparametric estimate for the same problem: is
zero.

Tail estimation is always difficult., Shapiro and Gross
{12] point out that great care needs to be exercised when

one seeks probability values that are outside the range of
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the set of data obtained. The use of an erroneous paramet-—
ric model can be costly in this case. The advantage of the
nonparametric approach taken here is that one cannot infer
probabilities far beyond the ramge of the data, Protection
against unreasonable inference is built in,

Further research in applying the nonparametric tool to
highly reliable assemblies is in order. However, that is
not a problem in aircraft nuclear survivability. As men-
tioned earlier, this tail issue is not important for this
application. One only has & tail problem if ome can
guarantee that the location parameter for the stress vari-
able is fixed in the stress space. For the aircraft nuclear
survivability problem no such guarantee can be given.
Besides this, extremely small failure probabilites (sure-
safe regions) and extremely large failure probabilites
(sure-kill regions) are not the regions where one worries
about what happens, It is clear what happens. It is the
space between that one wonders about, and any techique that
can accurately find the shape of the distributions in this
region is a valuable tool, Such is the case for the nonpar-

ametric model.

Summary

To summarize, the nonparametric method that will be
used to find the survivability of sircraft in nuclear weapon
environments has been described. A benchmark problem from

the reactor risk analysis literature has been worked, and
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the roesults compared to more standard methods. The nonpara-
metric method has been shown to be numerically efficient,
and useful as a stand-alone numerical algorithm or a tool
for direct application on existing data sets. Its use on
sparse data sets has been mentioned, Its chief advantage
here is that it provides protection against unreasonable
extrapolation beyond the information contained in the sparse
data set.

In the next two Chapters the tool just described and
demonstrated will be applied to the problem of aircraft

survivability in nuclear weapon environments,

IV.26

......................
T R R T T T A OO
PR WP T Y PP W S PP W W YRP W WA GT WU A s s G

i s e i e s ek - S

VT

NI A TV

% Ty e 1w
peeieay
[N Sy A -.'
'.'/.’r‘c’.'.‘




V. Aircraft Yulmerabjlity Ia Nucleazx Blast Eavircaments

Overview

The prescription for a survivability calculation can
now be specified succinctly. One needs to first construct a
reliability model of the system as a whole. For each
component that goes into the model, one thenm requires a
stress and a sttenﬁth function for the component. For
nuclear survivability, the nuclear weapon effect (in this
case overpressure) appears in the stress model, If the
weapon effect is a random variable, then the applied stress
is also. The strength model may be a single number, that
is, a sure-kill (SK) specificatiom, or it may be a
functional equation as in Chapter IV, For the present
Chapter, a single number will suffice provided ome can test
enough items so that the distribution of such numbers can be
determined., This distribution, of course, is the strength
distribution, Heving obtained both distributions, which may
vary in space and time, the failure probability is

determined.

Migssion Survivability

A systems approach to the problem of nuclear surviva-
bility analysis must begin with a desgscription of the
intended mission and the threats to that mission, Every

misgsion may be thought of as a series chain of mission

..................




: -
? RN
. phases. Each phase must be executed in order for the mis- ?tf
; 3ﬁ sion to be completed. These ideas have been recogmnized E;K
l [45]. An illustration of the base escape problem (from s .;:'
; paper by Bridgman [45])) is shown in Figure 5.1, E&ih
; During each mission phase, the weapon system may ;?;
encounter one or more nuclear bursts at particular points in‘ i??
" space and time., Thus each phase may be modeled as a chain %E
e

of burst encounters. Each encounter will cause various
! nuclear-induced stresses to be placed on the weapon system,

and these stresses must be survived. For each nuclear

ﬁ weapon induced stress some subsystems will be vulnerable and niﬁ
‘ some will not. Those subsystems that can fail must be :“.
identified. The calculation of the survivability may then ;;2

_ proceed as suggested by Bridgman [45]. His flow diagram §§5

. o from Reference [45] is shown in Figure 5.2, 111
: Two of the most difficult parts of the calculation are ;SE
oA

shown in Figure 5.2 within the dashed lines. Regarding the i;g

! first box, 'Find Intensity on Target', Bridgman writes ''The ;;i
Ez calculation of free field intonsities ... . is a challeng- iﬁ;
A ARG
;; ing business involving all manmer of calculation omn the i%;i
E hydrodynamics of blast waves on the transport of neutrons, -
gamma rays and x-rays on the propagation of the electromag- t;&

netic pulse, etc. All of this has occupied our attention
o for too long a period. Our focus here is to go beyond the
;7 free field calculations and focus on the next block of the

diagram--finding the probability of failure . . ." [46].
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In all that follows, the focus of this dissertation
will be limited to the two elements of the block diagram

just mentioned. Actually, one can generalize those two

blocks just a bit more by considering the intensity on the
; target as a random variable also. The scope of work im this
i Chapter and the next is illustrated in Figure 5.3, which
expands on the two blocks of Figure 5.2, Some additional
- explanation of Figure 5.3 is in order.
'I In a deterministic model, one would find the intensity
of the stress on target and then compare that stress value
to the strength of the part., If the intensity exceeds the
I‘ strength of the part, then the part fails. Otherwise, it
does not.
If one uses a probabilistic model, them ome finds, not

the intensity on the target, but the statistical distribu-

tion of intensities on the target at the particular range
and time of interest. Also, the strength of the item is not
now represented by a single number, but by a statistical
distribution of numbers. The failure probability, which is
clearly a function of range and time and other variables, is
now given by the interference integral of Equationm 3.3,

The central problem is to determine the distributions
of stress and strength at each range and time point of
interest., There are three ways to do this, and each is

discussed below.
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First, one c¢an simply claim to know th» distributions, %

fi' or rather, one can select them a priori. As has been pre- E

viously discussed, selection of the Dirac delta function for E

the stress and strength PDF’'s leads directly back to the E

cookie—cutter way of doing business. One might select the E

-

Dirac delta function for the stress PDF and a2 lognormal for t

the strength PDF. This is precisely what is illustrated in ?

Figure 5.2, The intensity on target is believed known. The ;

part fails randomly. Of course, the disadvantage of this :
approach is that it may be difficult to defend the choice of

distributions used. E

A second approach is the straightforward one of measur-— §

. ing the quantities desired. The stress distributiomn is g
found by measuring the stress over a number of identical A
experiments so that the random character of the stress is -
determined. The strength distribution is determimned by
testing a8 number of items to complete failure. This method

may be termed a macrodata approach, since the information

TR

obtained is directly applied to the failure calculation of
the system as a whole, The disadvantage is that the testing
requirements may be impossible. -~
ft Finally, one may infer the quantities desired. A
E; deterministic model of the stress is formulated as in, for
ﬁ! example, the bending moment on a wing of an aircraft, This -

model may depend on other variables whose distributions are

known, The statistical distribution of the stress (bending

.7 et et “ et PRI R S R T N S IS ORI SR
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moment) is them found by propagating the statistical varia-—
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A tion of all the input variables into the output variable.
The strength distribution is found similarly. A good exam-
ple of an inferred strength distribution is given by Equa-
tion 4.11 which predicts the burst pressure for a reactor

pressure vessel [32]. One might call this a microdata

R CTY IO N T ) T,

approach, since the information collected is not applied

directly to the system of interest but must be propagated
l into a8 larger model before onme can calculate the failure
probability. Although this approach is more rigorous and
useful than the others considered, it has one potentially
serious disadvantage, It depends critically om an accurate
model of the processes being considered. Unlike direct
f . testing, one is calculating the probability of failure given
! (. the modeling is accurate. Catastrophic events may well
5 occur if the modeling is incomplete or imaccurate.
- The central thrust of this Chapter will be to determine
the stress and strength distributions for selected aircraft

components vulnerable to the effects of overpressure and

blast from & nuclear weapon. All of the above approaches

will be considered, including mixtures of the approaches.
Stress Distributions in a2 1 Kiloton Blast Environment
t The overpressure environment from a nuclear burst in a
Q homogeneous atmosphere may be described in three separate
:k regions, These are the free air region, the transition
E N region, and the mach stem region., In the free air region,
:.:' v.s
v
e N U e L e B R
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no ground effects perturb the blast wave. In the mach stem
region, the reflected blast wave has caught up and comstruc—
tively interfered with the primary wave so that a region of
intense overpressure exists near the ground. The transition
region is the region between the free air and mach stem
regimes, typically in the vicinity above the triple point
[45]).

The overpressure environment in the free air regiom is
usually described by the Air Force Weapons Laboratory (AFWL)
1 Kiloton (KT) standard [74], or the more recent DNA stan-
dard [73]. Research has been conducted to further refine
this standard [47,51]. Reference [47] includes the 95%
confidence intervals about the nominal pressure versus range
curve., This is shown in Figure 5.4, which is a reproduction
from that Reference. This information can be analyzed to
construct the statistical distribution of overpressure as a
function of range from the nuclear burst.

Polynomial fits exist for the nominal pressure versus
range curve and are available in the literature [66].
Unfortunately, Referemce [47] does not give the polynomial
fits to either of the bounding curves that represent the 95%
confidence interval, Since this information is lacking, a
direct analysis of the graph of Figure 5.4 was made.
Although the dispersion was found to increase slightly with

range, an average value was used in the following analysis.
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Figure 5.4 is a log-log plot of p, the overpressure,
versus r, the range from the burst. If it is assumed that a
normal regression of 1n p on 1ln r has been dome, then, for a
fixed value of r, the random variable P is log-normal with

location parameter a_ and scale parameter Bp. Note that the

P

lognormal distribution follows naturally from the standard

i
g
N
\
n
N
E S
.
-
E
[
-

assumption that the distribution of the residuals in the log

space is normal, The location parameter is given by the

regression equation, while the scale parameter is assumed

constant. For any range r then, measured in meters, the

distribution of P (in Pascals) is lognormal with parameters

given by:
ap(r)=.19(1n(r/1000))2—1.51n(r/1000)+8.738 (5.1)
Bp(r)=.17 (5.2)

The stress distribution for particular components will

take its random nature from the random character of the

basic overpressure variable,. In one case, this results in a

simple analytic problem for the failure probability, but in

most cases one must find the distribution of functiomns of

the overpressure variable.

Strepgth Distributions for Aircraft Components

With the fundamental random variable input for the

stress function identified, one can now consider strength

functions and strength distributions. Three approaches will

be examined, all of which have appeared in the literature at

one time or another. These include cookie-cutter techniques




[54], probabilistic methods with an a priori lognormal
assumption [45], and actual use of long-term test data
[22,20].

Cookie—Cutter Distribution. For all of the work in

e e e e

this Chapter, the strength model is given by the simple
equation:

8=SK (5.3)
That is, the single sure—-kill value SK characterizes the
strength of the component., For the cookie-cutter case, as
noted in Chapter III, the strength PDF is themn given by:

fg(s)=4&(s-SK) (5.4)
and the strength CDF by:

Fg(s)=0 v s(SK (5.5)

Fg(s)=1 v s2SK (5.6)
The parameter for the Dirac delta distribution is the sure-
kill specification, given by sources such as Reference [541.
Some references [42] use an unbiased <cookie-cutter speci-
fication which uses the average of the sure—safe (SS) and SK
specifications as the parameter of the Dirac delta fumction.

These techniques, which remain in practice [56], result
in cookie-cutter damage distributions with range, provided
the stress distribution is also a Dirac delta function.

A Priori Lognormal Distribution. A second common
approach is the assumption of a lognormal stremgth

Jistribution, with a concurrent estimation of its parameters

by some method [45,42,50,71].

V.12
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Bridgman, for example [45], assigns the SS and SK
specifications from Reference [54) as the 2nd and 98th
percentiles, respectively, of the strength distribution of a
specified component, Denoting SS and SK by 8.02 and s.98
respectively, the parameters of the lognormal are found from
the equations:

as={1n(S.ozs.98)]/2 (5.7)

Bs=[1n(S.98/S_02)}/(21.98) (5.8)
where z gg is the 98th percentile of the standard normal
variate and is approximately 2.054.

This approach satisfies qualitatively the concepts of
SS and SK specifications, while at the same time providing s
continuous probability of failure with range from the
nuclear burst.

Strength Distributions From Test Data. The cookie-

cutter approach does not take into account the probabilistic
nature of failure phenomenon, while the alternate approaches
of Bridgman [45] and others [42], though probabilistic, lack
foundation in the actual database, and do not treat the
uncertain nature of the applied stress eavironment. Conse-
quently, the Department of Defense (DOD) database for
nuclear gust and overpressure effects on aircraft was care-—
fully surveyed to find sircraft component failure data. The

results of that data search are presented at this time,

V.13
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DOD Database For Blast Effects. The DOD database

for blast effects on aircraft and air-raft structures falls
into two broad classes—-—simulation testing and nuclear test-
ing. The Defense Atomic Support Information and Analysis
Center (DASIAC) has compiled complete bibliographies om both
simulation and nuclear testing.

Simulation testing is largely carried out by the
Defense Nuclear Agency (DNA), though others are involved in
it also. A complete list of DNA and non-DNA reports on
simulation testing may be found in Referemce [35]. The
purpose of simulation testing is to compare theoretical
response predictions with actual response observations.
There is little failure information in this database, since
the objective of simulation testing is not to test to
destruction. Failures do occur sometimes in simulation
experiments, but these are almost always unintemtional. An
example of this can be found in Reference [60] where the
tail section of an A-4C was destroyed in a simulation of a 1
KT yield device.

Nuclear testing has been carried out both above ground,
prior to 1963, and by underground tests. Reference [35]
also lists reports compiled from nuclesr tests, most of them
above ground. In addition, DASIAC has published two unclas-
sified summaries of operations REDWING [70) and PLUMBBOB
[69)., Besides these, DASIAC has also published a complete

compendium of blast and thermal effects on aircraft gleaned

V.14
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from a number of above ground nuclear tests [64]. Table V.1
shows the operations and shots that were examined. Some of
these tests involved in-flight aircraft. Since these were
manned, great care was takem to be sure that applied stress
levels were well below limit loads of the components. Typi-
cal response data for these is gi;en in Table V.2 taken from
Reference [70]. The response data is displayed as a frac-
tion of design limit load,

Although no failure information was found for in-flight

aircraft response to nuclear overpressure effects, much is

available for parked aircraft, Unfortunately, this data
consists mostly of verbal descriptions of damage to a large
number of different components. In many cases the exact
failure mechanism is not knowa (e.g.——'The canopy was
cracked and badly burned.’) An attempt was made to quantify
the information by comstructing man-hours—-to—repair versus
overpressure plots, but these are difficult to extrapolate
and remain classified. Consequently, the nuclear tests
database does not contain the information needed to deter-
mine statistical failure distributions for aircraft compo-
nents.

Even though the DOD database did not yield information
that would allow reliability theory to be used, useful
information was obtained., If drone aircraft in-flight tests

had been conducted at higher levels, one might have observed

failures or a number of failures., If the number of failures
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TABLE V.1

NUCLEAR EVENTS INVOLVING VULNERABILITY TESTING

Vulnerability

Operation

Nuclear Shot

A/C In-Flight' UPSHOT-KNOTHOLE HARRY
NANCY
SIMON
* No Failures REDWING DAKOTA
Observed—-—Max Load NAVAJO
of 1.1 * Limit Load HURON
APACHE
HARDTACK KOA
WALNUT
DOMINIC AZTEC
ENCINO
YESO
A/C Structures” UPSHOT-ENOTHOLE ENCORE -
GRABLE e
* Yield Points PO
Exceeded in 2 Cases -t
1]
v [ ] 16
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T, Is time of detonation. T, Is time of shock arrivai,
Absolute Horlzontal Range Horlzontal Range Radlant Peak Percent of
Shot Altltude at T, at Tga Exposure Overpressure Design Lim!t
feet feet feet cal/emé psi
Cherokee 34,000 47,785 139,571 52 Wing
Zunl 14,000 27,000 97,760 34,0 0.400 47 Wing
Flathead 16,000 17,800 59,100 45 Wing
Dakota 16,000 13,100 35,050 88 Wing
Apache 8,000 23,500 60,500 48 Wing
Navajo - -— - 46.2 Wing
Huron 9,894 8,768 23,386 110 Wing
Tewa 19,000 27,250 65,750 0,500 65 Wing
SUMMARY DATA ON PROJECT 5.4
T, Is time of detonatlon. Ty, Is time of shock arrival.
Absolute Horlzontal Range Horlzontal Range Radiant Peak Percent of
.. Shot Altitude at T, at T, Exposure Overpressure Design Limit
(‘ teet toot " feet cal/em? psi
Lacrosse 13,700 6,750 28,200 1.17 0,283 35 Wing
Zunf 16,900 34,000 - 10.55 -
Erie 10,450 3,829 14,000 65 Wing
Flathead 25,700 13,466 44,659 50 Wing
Inca 9,815 2,624 11,572 -
Dakota 17,650 16,690 43,630 56 Wing
Apache 10,200 28,516 45,375 35 Wing
. Huron 16,200 10,000 31,493 40 Wing
.
i
P
;-.: SUMMARY DATA ON PROJECT 5.5 CAPABILITIES AJRCRAFT (F-84F)
i; T, !s time of detonation, T., Is time of shock arrlval,
"': Absolute Horlzontal Range Horlzontal Range Radlant Peak Percent of
o Shot Aitltude at Tg at Tea Exposure Overpressure Design Limit
:fi" teet feot feet cal/emé ps!
: Lacrosse 15,200 8,640 600 1,65 0.80 51 Wing
- Flathead 21,000 900 14,935 40 Wing
> Dakota 20,374 300 11,065 115 Wing
;-,-_ Mohawk 19,920 3,729 19,700 65 Wing
- Apache 31,614 18,614 64,300 -
. Nava jo 16,865 25,200 57,400 10 Wing
s'-:..
i;E ".-
GO
».':-
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v
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REPRESENTATIVE RESPONSE DATA (From Reference [70])

SUMMARY DATA ON PROJECT 5.3
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had been cataloged as a function of the ratio of stress to
design allowable stress, a generic strength distridbution
might be constructed which should apply to any component
that is produced by the same design process. Such data was
indeed found in non-DOD publications, as discussed below.
Static Tests On Aircraft. A computer search of
the DIALOG (a commercial literature search service) data-
bases located two separate compilations of static test
results on aircraft, The first is a compilation by Jablecki
[26] done in 1955, and based on static test results con-

ducted at Wright-Patterson AFB (WPAFB) from 1940-49,

Jablecki did not actually do a statistical analysis. This

was later done both by Chenoweth [22] and by Freudenthal and

Wang [24]. A second set of static test data was obtained i%i

(;2 and analyzed by Chenoweth in 1972 [20)]. This was a compila- ‘ B
ARIRS

tion of static tests conducted at WPAFB from 1950-1970, In RORS

both cases, the data involved static loadings of the wings,
fuselage, horizontal stabilizer, vertical stabilizer, and
landing gear, The data analysis was done in &8 normalized

fashion by constructing the failure probability as a func-

tion of the ratio of applied stress to designm ultimate

‘e 'y

stress, These analyses allow one to construct the failure

2l

distribution for an aircraft component as a function of the

design parameters., Both of these data sets have been used
in estimating the reliability of aircraft structures to

thunderstorm gust loadings [24,21)] and aircraft maneuver

V.18
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Wl
i loadings [21]. A more detailed discussion of these findings ;ﬁ?
A Ly follows. ?ﬁ%&
e
p Large Aircraft Structures. Chenoweth fit the %VF
E Jablecki data for the larger structures, the wings and gé%
S fuselage, to a lognormal failure distribution with the ran- &:5}
ﬁ__ dom variable being i
-
' X=S/Sq (5.9)
;‘ where the random variable S is the stress on the component
!l that causes it to fail and SUL is the ultimate load design ;;;

stress for the component. Comnsequently, the component

failure distribution is given by

Fy(x)=6((lnx-a )/B_)) ¥ x>0 (5.10) -

where #(z) is the standard normal cumulative distribution

function (CDF) evaluated at z, and given by ;ff

¢(z)=/fm(2n)_1/2exp(-t2/2)dt (5.11) -
The variable x is an arbitrary value of the random variable ol
X, ag is the location parameter for the lognormal density
function, and Bx is the scale parameter for the lognormal

density function, If one desires the distribution of the

random variable S8 it can be shown that given X is lognormal

with parameters a, and B,, then S is lognormal with -

parameters ag and BS given by

ag=a;+1nSgy (5.12)
Bg=By (5.13) —
Small Aircraft Structures. Chenoweth fit the ;g
data from the smaller structures (vertical stabilizer, ;i
pot

V.19 S
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horizontal stabilizer, and landing gear) to an asymptotic
Weibull distribution funmction. This is just a power

function, and the distribution of X in this case is given by

Fx(x)=0 v x£0 (5.14)
Fy(x)=(x/a )1/ Pz v 0¢xga, (5.15)
Fy(x)=1 ¥ x2e, (5.16)

In the above equations a_ and bx are the parameters for

x
the power function distribution, If the distribution of S
is desired it can be shown that, given X has a power
function distribution with parameters a, and bx then S8 has &
power fuaction distribution with parameters ag and bs given
by

ag=8 Sy . (5.17)

bg=b, (5.18)

The 1972 data analysis is not brokenm out into large and
small structures as was done for the Jablecki data. The
data is instead lumped together and fitted to the power
function model. Chenoweth shows [20] both sets of data
fitted to this model, and notes that a slight improvement
can be seen in the reliability of the design process from
1945 to 1960. The improvement is shown in Figure 5.5,
taken from Reference [20]. For the more recent data set,
the mean has improved by about 10% and the coefficient of

variation (ratio of standard deviation to mean) has been

reduced by about 33%.
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Figure 5.5. Aircraft Failures Versus Ultimate Dcsign
(From Reference [20])
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Chenoweth’s dats is somewhat surprising. It seems to
imply that at nominal limit loads (2/3 of uvltimate) the
failure probability is significantly high--omn the order of
10%. Chenoweth apparently insists on the validity of the
data. Quoting from Reference [21], he says, "It is showsn
that a 'no static test’ policy on major aircraft structural
components yields extremely high probability of failure or
nnrelinbilityﬂ' No formal rebuttal to this was found in the
literature. Chenoweth goes om in Referemce [21] to further

show, based on the data, the vulnerability of aizrcraft to

I‘ y
l. ‘. _l' |. N L]

T

thunderstorm gust loads and maneuver loads. In both cases,

qT

-
Y

the resulting failure probabilities range from 1E-4 to 1E-2.

«
4

'

- .
0T
‘

The following additional observations should also be noted.

RN I A
" fl
“frir

A B

¥y 07

First, the data as shown in Figure 5.5 is, at most,

A
.
{s,
).

I

half the story. The distribution of stresses or loads can

ST
be as importamt, or perhaps more important, than the §§ﬁ
strength distribution in determining the actual probability igz
of failure. For example, if the ultimate load design had F:i
been chosen in such a way that the limit 10ad value (2/3 of ;E}
ultimate, say) was oxtremely improbable, then the aircraft ;;3
could be perfectly hard. It is the interference of the ;5;

stress distribution with the strength distribution that

governs the failure probability, and mot either acting

alone. Ao
As a second consideration, Chenoweth says [21] the data ;ﬁi

NN

is first time static test data., If these tests resulted in fjj
R
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redesign of the components, then the resulting product would

-‘v',v
y-

e,
)
X

L8s

N of course be harder than the first time tests indicate.

~

Third, the data is admittedly old. The most recent

i

N |‘:-
o
R
L Wy X3 N

0
0
L)

data set is a mixture of aircraft from 1950 to 1970. The

C' I,
L
i

X

.
)

[
s

.methods of aircraft design and hardness verification and
validation have undoubtedly changed since the data was
obtained, so that one should not infer that it applies to
modern combat aircraft, Because of this, the resulting
calculations in this Chapter should be considered worst
case results.

Having said all this, the datas is still a valuable
collection of information. Here at least is some
justification for choosing parametric failure distributions.
The following calculations illustrate the use of such

information,

(e}

Component Failure Probabilities
Foselage Yulnerability. The general failure
probability is, as stated earlier, given by the reliability
interference integral. That is,
Pe=f oty (8)Fgls)ds (5.19)
Model 1. The result depends on the time dependent
properties of both the strength and stress distributions,
The stress function is presumed given by
s=P (5.20)
where P is just the random overpressure variable,

lognormally distributed with parameters given by Equations

b V.23
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5.1 and 5.2. For this case, denoted as Model 1, the cookie-
cutter strength distribution is assumed, reducing Equation
$§.19 to the result:

p‘-l-F.(SK) (5.21)
whoere SK is 1,085ES Pa (15.75 psi). Since the stress
distribution is a lognormal, the results for this case have
an analytical form as a function of ramge. Explicitly,

pf(r)-1-¢{(lnSK—ap(r))/ﬂP] (5.22)
where $(z) is given by Equation 5.11.

The results of Nodel 1 are shown in both the stress
space (Figure 5.6) and the range space (Figure 5.7). One
notes that the use of a probabilistic model for the stress
is sufficient to provide a continvous probability of failure
in the range space. The tails in Figure 5.7 for Model 1 are
due to the variation in the applied overpressure only, since
the strength distribution is a step function. The median
failure range for Model 1 corresponds to the SK stress
specification.

Model 2. KEeeping the stress distribution the
same, if the lognormal assumption is made for the strenmgth
distribution, with parameters calculated from Equations 5.7
and 5.8, and 8S=6891 Pa (1 psi), and SK=1.085E5 Pa (15.75
psi), then the failure probability may be written as:

pf-PrISSP}t/C:fP(p)Fs(p)dp (5.23)
where 8 is the strength random variable, P the stress random

variable (the applied overpressure), f’(p) the probability

V.24
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-, donsity functiom of P, and Fs(p) the CDF of 8 evaluated at

e p. Equation 5.23 could also be written as
pg=Pr(8/PL1) (5.24)
or
pe=Pr{1n(8/P)K0)} (5.25)

In the case of Equation 5.25, letting the random
variable Y, somoetimes called the log safety factor, be

defined by

Y=1n(8/P)=1n8~-1npP (5.26)
it is seen that Y is consequently normally distributed with

moan p, and standard deviation a& given by

hy=og=ay (5.27)

= 2 2,1/2
o, =(Bg2+p,?) (5.28)

Consequently, the failure probability for the fuselage
can be shown to be

pf=¢(-uy/dy) (5.29)

Since the parameter a is a function of distance from
the burst, Pg s given by Equation 5.29 is also a function

of distance from the burst. The results for Model 2 are

also shown in Figures 5.6 and §5.7.

Model 3. Finally, the actual data for fuselage

failures may be used to form the strength distribution while

retaining the previous model for the stress distribution. » ;"
Since the large structures were found to have lognormal
strength distributions, the general form for the failure

probability is given again by Equations 5.27 through 5.29.

V.25




However, ian this case the psramoters ag and Bs are
calculated from Equations 5.12 and 5.13 where the parameter

sUL is related to the sure—safe specification by:

SyL=1.5(88) (5.30)
and the paramoters 88, a,, and By sre given by:

SS=6891 Pa (1 psi) (5.31)

a,=.1481 (5.32)

By=.3159 (5.33)

The vulnerability of the fuselage for this case is also
illustrated in Figures 5.6 and 5.7. MNodel 3 (based on the
Chenoweth data) seems to imply a much softer fuselage than
either Model 1 or Model 2 would suggest. The failure proba-
bility rises steeply with increasing stress, with a median
failure level at about 11.7E3 Pa (1.7 psi). Nevertheless,
all three distributions agree qualitatively in the S8S and SK
regimes,

Not surprisingly, the softness of the fuselage as a
function of range from the 1 KT standard is clearly
demonstrated in Figure 5.7. If Model 3, based on the
Chenoweth data, is accepted, the sure~safe range (denoted by
RS--the distance where the failure probability is less than
or equal to .02) is at 1160 metoers, where the median
overpressure is expected to be 5012 pascals (.73 psi). This
stress value is about 27% smaller than that postulated by

2048, bdut is within the error bounds given by 2048 [54].
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. This soft fuselage result qualitatively agrees with L}tf
LY [N 4
5 v e
NIt that of the work documented in Reference [60]. There it was e
pr e
I noted that the 2048 Method 1 techmnique for overpressure was : |
. KR N
; severoly unconservative . In a test of the A-4C, the SK bx&
: o
v condition was reached at a farther range from a 1 KT simula- N3
. e

i tion than was expected. In fact, the catastrophic failure

2
.
o)

ol

- occurred at 311 meters from ground zero. From Figure 5.7 ?i&
E (keeping in mind that our SS and SK specifications are i;?
. o
I somewhat different from that of Reference [60]) one sees b

that the cookie-cutter prediction is indeed ome of no fail-

Ny ures, while Bridgman's model (Model 2) would predict a
_' failure probability of .76 at that point, and the actual -
test data would predict the fuselage to be sure-—-killed.

Again, the caveats previously mentioned should be

! Qi‘ remembered. In addition to those, there can still be an ——

ambiguity regarding the uses of the terms SS and SK. %&;
‘. Although Reference [68] clearly equates a SS coamdition to a ggg
. limit load condition, it is not clear whaet the factor of .

safety is between SK and S8S specifications, Indeed, for the
; fuselage specs it may be 15.75--the ratio of SK to S§S. If
E that is the case, then the ultimate load should perhaps be
given directly by 15.75 psi and not 1.5 times the SS

specification. This would have a dramatic effect on the

O

strength distribution, moving the median failure point to a

higher level.

1 AL NP
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¥ing ity-Fundamental Mode. For the case of
-?q the fuselage, the presumption that the fuselage responds

directly to overpressure led to simple computational
results. If instead a more complex response (i.,e, stress)
model had been chosen, no such simple results would have

resulted. This is the case for even elementary models of

AV ERE S PSS TR .

wing-loading.

The general expression for the failure probability as
. shown in Equation 5.19 is still valid, but mnow has no
closed-form solution. Although the distribution of P
remains the same as in the fuselage analysis, the stress
‘ vuriable s is no longer the direct overpressure variable.
Tae stress (using a simple fundamental mode analysis as in
Reference [45]) is now the load factor (im g's——multiples of
. (. weight) given by:
N np=.5pv2C A/ W (5.34)
:3 where p is the air density behind the shock front (kglns), v
- is the lifting wind velocity (m/sec), C; is the coefficient
. of 1ift (dimensionless), A is the area of the wing (square
meters) and W is the aircraft weight (Nt). At every range
i point r the distribution of the load factor is now the
required stress distribution. The problem is analytically
intractable, since p, v, and even (; in Equation 5.34 depend
nonlinearly on the overpressure.,

As previously discussed, the general problem of

o propagating a random variable through a complicated response
S
h.":‘
V"
p:': v [ ) 3 o
¥
_- ......... ..‘ RS o . . » - -. '''''''''' ‘. ‘-l '-- A Y b TSI EL N I T ) - nl‘¢\‘ -‘ b.' s‘l ~> ‘»
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function has been approached by distributional fittinmng

o [37,32] and by Monte Carlo analysis [32,57]. The former

approach can lead to large differences in results [32,3]
while the latter may require more computer resources than
the simple strength or response function models justify.
Fortunately, nonparametric estimation provides a powerful
tool [14,Appendix A,Appendix C].

The distribution of load factor can be constructed at
any range r by using the technique illustrated in Chapter
IV. This is done by drawing a stylized sample from the
assumoed known distribution of P and propagating these sample
values through the respénse equation to generate a load
factor sample. This sample can then be used to son~truct
ghe distribution [14,Appendix A,Appendix C].

With this tool in hand, the distribution of s (load
factor) can be determined without a priori distributional
assumptions, and without large-sample MNonte Carlo analysis.
Equation 5.19 can then be numerically integrated at each
point r where the failure probability is desired.

For the case of wing—-loading, the stress model is
described by the following, where bold—faced variables
indicate random variables. For every value of P drawn at
range r,

(1) Determine the magnitude of the peak wind velocity,
8y, behind the shock froat (from Rankime-Hugoniot).

w,=5Psg/{7p,(1+6P/7/p,) /%) (5.35)

= -

-

=

b .
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(A complete description of these variables may be found
in the section on nomenclature.)
(2) Find the components of wy in the aircraft frame of

reference.

‘l.x-(‘llit)yb (5.36)
!1‘y=(lllsr)(xt-xb) (5031)
Biax=(uy/s.)d, (5.38)

(3) Determine the initial attack angle (straight and
level flight assumed).

CLo=2¥/(pgvo2A) (5.39)

ap=(Cp o—+356)/1.243 (5.40)

(4) Determine the resultant wind vector in the

aircraft frame of reference.

Brx %lax (5.41)
Sry %12y Y0 (5.42)
Srx"%1ax (5.43)

(5) Resolve the resultant wind vector into its lifting

and non-1lifting components.

S

Up=rx (5.44) R
e

= 2 2,1/2 RN

va(a, “tu %) (5.45) -
(6) Determine the angle between the 1ift wind and the ;,,4

aircraft chord vector.

cosdol={cos(ao)ur’+sin(ao)ur:}/v (5.46) .

-
del=Acos(cosdel) (5.47) .
a=+(n~del) (5.48)

(7) Determine the coefficient of 1lift. IR

V.32 .1
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€y =1.2430+.356 (5.49) t;:

f?} (8) Determine the air density behind the shock front. éﬁ
D=Po{7+6P/p.}/{7+P/p‘} (5.50) g:

(9) Determine the load factor (a sample value of s) E&

from Equation 5.34, i.,e, ﬁg

ap=.50viC A/N (5.51) i

Model 1. With the stress distribution determined }1

nonparametrically, the strength distribution is now ;ﬁ

required. Again one may use the simple equation, it

_ S=n,, (5.52) o

Q' For Model 1 a cookie-cutter strength distribution is assumed

‘i so that the strength variable has the PDF, i:
' fgls)=b(s-n ) (5.53) -
vhere n , is taken from Reference [54] as 6.75 g's for }

loading from below. i.

As in the fuselage case, the results for the failure
probability reduce to
Ppe=1-F (ngy) (5.54) E;
where the CDF of the stress distribution is now found =
nonparametrically.
The results for loading from below are displayed in —
Figures 5.8 and 5.9. The failure probability as a function

of applied stress is shown in Figure 5.8, while the

corresponding failure probability with range is shown in -
Figure 5.9. The results for Model 1 are shown by the solid jf
‘\.
lines. ?:
B
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Model 2. The stress distribution remains the
same, but the lognormal assumption is now made for the
strength distribution, with the parameters calculated from
Equations 5.7 and 5.8, sand with SS and SK given by 3 and
6.75 g's respectively (Method 1 of Reference [54]).

Since the stress distribution is known nonparametric-—
ally, the integral in Equation 5.19 must be solved numeric-
ally. The method for doing this is described in Appendix D.
The results using the lognormal assumption are shown in
Figures 5.8 and 5.9 also.

Model 3. Finally, the strength distribution
derived from the test data is given as a lognormal, with
parameters ag and ﬁs calculated from Equations 5.12 and

5.13, and SUL calculated from Equation 5.30. For the case

of the wing, the necessary parameters are given by

$S=3 g's (5.55)
a,=.1076 (5.56)
B =.2467 (5.57)

The results for Model 3 are shown with those of the
previous models in Figures 5.8 and 5.9. The results for the
different models in both the stress and range spaces are
much closer together tham the comparisons for the fuselage
were. In fact, the results of Figure 5.9 indicate that the
cookie-cutter approximation for wing-loading is reasonably
valid, especially for the higher values of the failure

probability., There are at least three reasons for this.
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First, the ratio of SK to SS is much smaller for the
wing-loading case, The continuous probability models rise
faster with increasing stress, and the differences between
the cookie~cutter damage distribution and the continous ones
are decreased. Second, the experimental results for the
fuselage showed the largest variation of any of the aircraft
components. This makes the fuselage a worst case as far as
reliability goes. Finally, the aircraft response (load
factor) is a very steep function of range, resulting in a
step—function appearance. All three distributions are in
near agreement on RK, the sure-kill range (point whkere
failure probability equals or exceeds .98), while the dif-
ference in RS is only about 100 meters.

Vertical Stabiljizer Vulnerability. The analysis of the
vertical tail assembly can be done in the same way the wing-
loading analysis was done. The stress variable s is now the
combined bending moment of the vertical tail and fuselage.
The overpressure variable P is sampled as before, the sample
values are propagated through the response equations, and
the distribution of 8 is determined at range points «r.
Equation 5.19 is then integrated numerically to determine
the failure probability as a function of range from the 1 KT
standard. The stress model is described as follows, For
every value of P drawn at range r:

(1) Proceed with the response functionm for wing-

loading tbhrough step (5) to find u the component of the

’
P

V.37

T

r '.'
AAAAA
"..'..i AT

o ot Tl S NP YN

Tl

R
%

A A
RG]

s . .";-i‘
i

~ r. .
v
.




LA Y A S . e -

resultant wind vector that acts on the vertical tail
assoembly.
(2) Determine the combined bending moment due to this

wind acting on the vertical tail and fuselage (a value of

s).
Be=.5pw 2c, AL, (5.58)
By=.50u  2Cy AL, (5.59)
B=B,+B, (5.60)

Model 1. The S8S specification is taken as 1.763E6
newton-meters, and SK specification as 3.7E6 newton-meters

(again, after Method 1 of keferenco [54]). For the cookie-

cutter model of the strength distribution, one sssumes the

strength to be given by

S=b,, (5.61)
where b'k is the sure-kill value just mentioned. This being
the parameter of a Dirac delta function, the equation in the
range space for the failure probadbility is givem by

pg=1-F _(by) (5.62)
where again the distribution of the stress is found using
nonparametric methods. The results are displayed in Figures

5.10 and 5.11.

Model 2. The strength distribution under the
assumptions of Model 2 is a lognormal with parameters given
by Bridgman’s prescoription [45] in Equations 5.7 and 5.8. e
The S8SS and SK specifications just mentioned provide the S.oz

and 8.98 percentiles that go into the calculation,
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The failure probability must be found by numerically
integrating Equation 5.19 st each range point =r. The
rosults are displayed along with those of Model 1 in Figures
5.10 and 5.11.

Model 3. PFinally, under the assumptions of Model

3, the strength function is given by Equation 5.61, but the

“r Tl L B F ¥ & v ~
KPP  FIAATIATAIAIA B

failures are distributed as determined by Chenoweth [20].

The strength distribution is asymptotic Weibull with para-

. meters given by Equations 5.17 and 5.18. As usual, Sgp is

. taken as 1.5 times the SS specification, From the static

: tost results, a  and b, are found to be:

! 2,=1.606 (5.63)
b,=.1431 (5.64)

and the SS specification is taken as 1.763E6 newton-meters.

-

The results of the analysis are displayed in Figures
5.10 and Figure 5.11 and are compared to the other models.
- Although there appoears to be some differences in the
distributions when viewed in stress intensity space, these
differences are nil when viewed in range space. In

particular, Model 3 and the cookie-cutter approximation are

‘. indistinguishable., This is a reasonable result since the
ratio of SE to SS is low, and the experimental dats yields a
Za failure distribution that rises steeply. From Figure 5.11,
!- RK is at about 330 meters, while RS is at about 520 meters.
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Summary

i The survivability of several aircraft components in a

nuclear blast environment has been calculated. Stress dis-

a
4, 4

".

tribution construction begins with stress functions. The
nuclear weapon effect of interest here, the overpressure
variable, is a2 random variable that enters into these stress
functions. The distribution of these functions, found by
nonparametric methods, defines the stress distributions for
the components.

The strength distributions are surveyed. Two common
approaches, cookie-cutter modeling and lognormal modeling,
are compared to distributions found by analyzing twenty
years of aircraft static test data.

The resulting failure probability with range from the
weapon is calculated and compared. In general, one cannot
say beforehand whether or not a parametric model is superior
to a cookie-cutter model. For most cases, the results did
not vary much. For the case of the fuselage, however,
neither the cookie-cutter nor the lognormal was as conserva-
tive as the actual test data suggested.

In the next Chapter, the survivability to nuclear
thermal offects will be considered, and the difficulties

posed by the lack of failure data will be noted.
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A VI. Aircraft Volmerability In Nuclear Ihermsl Environments

Overview

In this chapter, a stress—strength interference theory

calculation of the probability of failure of skin panels in

. — . e

nuclear thermal environments is accomplished. A search of

the database for nuclear effects on aircraft yields no
‘ direct information on either stress or strength distribu-

tions for the failure modes of interest. The temperature of

a thin skin panel in a nuclear thermal environment is a
! fundamental stress, Although this is a deterministic
response, statistical variation is introduced by treating
the radiated power from the weapon as a random variable, and
. c;' then finding the distribution of the functions of this
N random variable. Two failure modes are considered. The
N first is based on sure—safe and sure-kill specifications for
i aircraft, and is analogous to the work done on blast vulmner-
ability, For this mode, two strength distributions are
examined-~a cookie-cutter and a lognormal, An alternate

failure mode is investigated that considers skin panel

[T DR

yielding as a function of both gust and thermal loading.
The calculation illustrates the use of the nonparametric

interference theory technique in treating problems where

multiple nuclear effects contribute to a failure mode.

e ITE

P S B CoT e e P S O TP S S TR SO
T e . . - - - - - A - . - - R A S L P R S o - - - ~ - - ' ~* - - . . . AT . e . - - . - - -
P T g o e e A N L M N T T e T AT S el el IS ISR
tatata NP IR A MR A SRR PR AL SP U S  l S SR  SAE I SR S TR I A I PR S W A VN




" e
?
s

»
»
i
1]
v
v

A Data Search For Thermal Effects on Aircraft

As in the case of blast effects on aircraft, no direct
failure data for aircraft components were found. Items of
interest in the nuclear tests examined include thermal flu-
ence and temperature time histories. Peak temperatures for
the time histories of Operation REDWING are well below melt
point., A typical result from Reference [70] is shown in
Figure 6.1. Lacking actual service histories for the fail-
ure mode of interest, the only alternative is engineering
modeling. An important variable, as displayed in Figure
6.1, is the temperature of a thin panel as a function of
time. This is a fundamental thermal stress on the system,

and is discussed in detail below.

A Deterministic Thermal Stress Model

A simple model of the temperature rise in a thin-skin
assembly can be constructed by requiring an energy balance
condition [45]). That is, the temperature in the thin skin
obeys the differential equation:

PC AXAT/dt=Y,, (t)/(4xr2)~h(v)(T-Ty) (6.1)
where the term on the left of the equals sign is the time
rate of change of the energy deposition in the material.
The variables in this term include p, which is the material
density in kg/ms; Cv is the specific heat in Joules/(kg-°-

KEelvin); Ax is the skin thickness in meters; T is the skin

temperature in degrees Kelvin; t is the time in seconds.
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The first term to the right of the equals sign is the

source term, corrected for spherical divergence. The vari-
ables there are given by:

Y n(t)=P (W) E(t)T a, cosd(t) (6.2)
where Pn(') is the maximum radiated power (in watts) from
the weapon and is a function of W, the weapon yield in
kilotons (KT); £f(t) is the fractiomal radiated power at time
t; T, is a transmittance factor to account for attenuvation
through the atmosphere; ay is the absorptivity of the skin
surface; @ is the look angle between the weapon and the
aircraft skin and is a function of time due to the motion of
the aircraft. The variable r in.Equation 6.1 is the slant

range (in meters) from the weapon at time t,.

The last term in Equation 6.1 is the sink term, the

o

rate of energy dissipated to the environment by convective
cooling. The variables here include h(v), which is the ﬂji

(velocity dependent) heat transfer coefficient im Joules/(°-

2

Kelvin-meter“—sec) and TO' the temperature of the air adja-

cent to the skin in degrees Kelvin,

The equation can be made dimensionless by introducing

some natural variables. Since the differential equation is
one that couples temperature and time, the natural variables

involve both times and temperatures. The natural time

variables include t,, the time (in sec) to peak thermal A
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radiated power. The dimensionless time T can them be
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T=t/t, (6.3)
et Another important time variable is t., the cooling time,
given by
t,=pC,Ax/h (6.4)
where the right hand side variables have already been
described. One can show that in the absence of any source

term, the cooling time is the time for a preheated structure

to cool to 1/e of its initial temperature, where e is the

o,

natural logarithmic base, Finally, the ratio of time E{
constants will be denoted by 53:

Y=t /t, (6.5) :_-:-
The natural temperature variables include the ambient %?f

temperature, TO' in degrees Kelvin, The dimensionless time
o dependent temperature T can be defimed by

(o N 4

T(T)=T(T)/T0 (6.6) o

“. A time dependent characteristic temperature can also be

v

defined. This temperature depends omn geometrical and

physical characteristics of the skin material, amnd on

properties of the thermal pulse. The dimensionless Lol

characteristic temperature can be written as

A A
T (r)=T  (7)£(71) (6.7)
A
where T, (7) is given by )
A N
Tk(f)=Pm(W)Trabcos[0(T)}tm/(4nrzpCvAxT0) (6.8) .
The variables on the right hand side of Equation 6.8 have ?f
been described previously., The term f(T) in Equation 6.7 {%ﬁ
is the relative radiated power at time T. That is :E?
DA
-.:k:-:
N
LN
VI.s N
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f('r)=P('r)/Pm(W) (6.9)

where P(7T) is the radiated power in watts at time T. For
stationary targets, %k reduces to a time—independent
constant. Dividing all times in Equationm 6.1 by t_ , the
time to thermal maximum, and all temperatures by Ty, the
ambient temperature, leads to a dimensionless differential
equation, Solving that equation by using an integrating
factor and the natural variables just described leads to the
solution

%(-r>=1+[r(o)-1+J'J T ()¢ aT'Jexp(~77) (6.10)

Equation 6.10 is the deterministic equation for the
stress function. It represents the anticipated response of
the skin to a nuclear thermal pulse., The statistical distri-
bution of this response can be determined by propagating
statistical information about the input variables through
the function., Of the many input variables one might con-
sider, the radiated power from the weapon will be examined
statistically and the others left as deterministic. Two
reasons dictate this choice. First, it will provide a
parallel development to the work of the previous chapter.
In particular, a thermal analog to the work of Carpenter and
Kuhl [47] will be developed. Second, it is difficult to
find statistical data for the other variables of interest.
In fact, the statistical information for the radiated power
is not readily available, and one must analyze the data that

one can find. In the next section, the deterministic stress

VI.é6
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function is expanded into a random variable equation.

The Thermal Stress Distribution For A 1 KT Sea Level Burst

Genexal Approach. The objective now is to find the
statistical description of the temperature in a thin skinm at
any time desired. Equation 6.10 is the basic deterministic
temperature response., The dependence on the basic weapon
effect, the radiated power, can be explicitly demonstrated
by writing the characteristic temperature in the form shown
in Equation 6.7. The resulting integral equation is:

%(T)=1+[T(0)-1tlz-%k(T')f(T')J7wdT']exp(-VT) (6.11)

If one now recognizes that the radiated power, f£(T), is
statistically distributed, then the resultant output vari-
able, %(T) is also statistically distributed, since it is a
function of a random variable. In particular, if the dis-
tribution of the radiated power has been determined, then
the particular sample value fi(T) results in a corresponding
sample value %i(T) where the two values are functionally
related through Equation 6.11, Given the distribution of
the radiated power, the distribut;on of the temperature in
the structure can be determined by the methods already
discussed. The determination of the distribution of the
radiated power is the next task to be accomplished.

A Statistical Modol Of The Radisted Power. As previ-
ously mentioned, a search of the database for thermal

effects on aircraft did not yield any information about

vVI.7
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statistical thermal source models——that is, no analog to the o0y
. _‘.“. h
r : ".'u
work of Carpenter and Kuhl [47] was found. In order to 'fl\

continue with an interference theory calculation one must
have a source of data., There are several approaches that
could be taken, but all depend in part on a deterministic

model of the weapon effect. Two such deterministic models

are discussed below. ?”i

A relatively simple model of the radiated power ;Eﬁ

RS

produced by a nuclear weapon is described by Glasstone [62]. {Li

Figure 6.2, reproduced from Reference [62], displays the :;“
normalized power as a function of normalized time. In this ;i

model, the time to (second) thermal maximum, and the peak ii:

radiated power at that time are scaled according to yield. ”?i
Consequently, the plot of Figure 6.2 has been used for a :

variety of yields and burst altitudes. Glasstone quotes the ?3’

results as being valid + 25% for altitudes below about 4-5
kilometers (km) and + 50% for altitudes above that. This

statement acknowledges that the value of the radiated power

is statistically umncertain.

Glasstone’s pulse is synthesized from both experimental

data gathered during the days of atmospheric testing and ”
theoretical modeling., With the signing of the Limited Test :
Ban Treaty in 1963, theoretical calculations of thermal :
environments have largely replaced data collection Y
technigues. S&;
E;:
e
kpg
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Sharp of the Air Force VWeapons Laboratory (AFWL)
published an alternate model in 1973 [77]). The model was
published as a FORTRAN subroutine, and includes variatiom of
the thermal pulse shape with altitude, This feature was not
available in the Glasstone model. This AFVYL thermal power
routine, called FLUX, is still in use. It is fouand, for
example, in some computer codes that deal with nuclear
survivability problems. These coGes include TRAP [65],
QUANTA [38], and FLEE.2 (36].

The problem of finding a statistical description of the
radiated power from a nuclear weapon still remains. One
approach which might be used is documented by Ostermann and
Collins [75)]. These authors specify a lognormal distribu-
tion for a nuclear weapon environment, using the output of a
nuclear effects algorithm as the median of the distribution,
The scale parameter of the lognormal (which is just the
standard deviation of the log of the data) is said to be
estimated by a combination of judgment and data. This
technigque is similar to Bridgman'’s approach to specifying
the strength distribution [45].

As an alternate approach, one can examine the data that
does exist, however sparse, and formulate the distribution
of the radiated power from that alone, Choosing this as a
rationale, the Glasstone model cannot be used. Although an
uncertainty is stated, it is not clear how to translate +25%

into a statistical distribution, The AFWL FLUX routine
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documentation, on the other hand, contains a good deal more
information. This informatiom allows one to coamstruct a
statistical radiated power model based on the data alone,
Before proceeding with this, FLUX must be oexsmined in a
little more detail,

FLUX is a numerical model that seeks to duplicate the
thermal power output of a more complex code called SPUTTER
[80]. SPUTTER is a program used to dynmamically model
nuclear fireball phenomenology. Among the quantities
available from a SPUTTER run are the thermal power and
energy as a function of wavelength and time. Shttp'used
SPUTTER to obtain time—dependent power and energy in 35
wavelength bands covering the atmospheric transmission
window., FLUX was then developed as a curve fitting tech-
nique to match the unattenunated source power and energy
values as functions of time summed over the 35 wavelength
bands.

FLUX therefore derives its sole credibility from the
SPUTTER runs which it seeks to match. The statistical model
to be developed is thus again comditional. SPUTTER is
presumed to be true.

If the SPUTTER runs are taken to represent nature, then
one needs to assess statistically the ability of FLUX to
model SPUTTER output. The answer depends on the height of
burst and yield regime. Figure 6.3 taken from Reference

[77) illustrates a rather good result, while Figure 6.4
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illustrates a somewhat poorer one. Of special interest is

Figure 6.5, which is the fit for a 1 KT burst in s sea level
atmosphere. In these fignr;s the solid line is the FLUX
prediction line, while the circles are the SPUTTER output.
The objective is to find a statistical measure of the qual-
ity of the FLUX fit.

One could make the lognormal assumption as done by
Ostermann and Collins [75), and use FLUX output as the
median radiated power value. The scale parameter for the
lognormal could be estimated by the average root mean square
error. That is, one might take fp as:

sp={zi:1(1nzf—1nyi)2/n11’2 (6.12)
where y, is a particular SPUTTER value and Yf is the FLUX
. prediction at the same time., The only problem with this is
(. that there is no guarantee that the FLUX line is the median
line. This is borne out by a second examination of Figure ,
6.5. One sees that FLUX underpredicts SPUTTER in the late
time regime in particular, A calculation of the mean
residual, R, defined by:

§=zi:1(1ntf—1nyi)/n (6.13)
for the FLUX fit to SPUTTER run FB-21 (Figure 6.5) yields a
value of -,18, showing the overall underprediction, The

scale parameter as estimated in Equation 6.12 is about .50.

This fit can be improved in the following way.
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Since the objective of FLUX is to match SPUTTER point
for point, FLUX may be thought of as a predictor variable
for the SPUTTER output. Hence, if FLUX exactly matches
SPUTTER, then a plot of SPUTTER versus FLUX for fixed yield
and height of burst will yield a straight line with unit
slope and zero intercept. The SPUTTER data for the 1 KT sea
level case, with the corresponding FLUX prediction values is
shown in Table VI.1. In this table, time enters in as an
implicit variable, The regression of SPUTTER on FLUX is
shown in Figure 6.,6. As already noted, at late times FLUX
underestimates the SPUTTER values. This is seen in Figure
6.6 in the low power regime. The one sigma boundaries are
also shown on the plot. Linearity is pronounced, as
expected, with a correlatiun coefficient of .96. The
regression equations in the log space are given by:

{InY >=minY +b (6.14)

Og|p=-3258 (6.15)
where Y, is the median SPUTTER output in watts, Y, is the
FLUX prediction in watts, m is .7626, b is 6.847, and dle
is the conditional variance of the SPUTTER output given FLUX
as a predictor variable. As a8 comparison, the mean residual
for this fit has been reduced to about 8E-6, while the root
mean square error has been reduced to about .30. The least
squares fit incorpor;tes the standard assumption that the

distribution of the residuals is normal.
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TABLE VI.1

DATA FOR 1 KILOTON AT SEA LEVEL

Time Power FLUX Prediction
(Sec) (Watts) (Watts)
1.0 2.444E11 8.668E10
0.9 2.977E11 1.043E11
0.8 3.660E11 1.284E11
0.7 4.539E11 1.624E11
0.6 5.581E11 2.130E11
0.5 6.709E11 2.935E11
0.4 8.049E11 4.345E11
0.3 1.000E12 7.201E11
0.2 1.383E12 1.462E12
0.15 1.792E12 2.396E12
0.1 2.744E12 4.604E12
0.09 3.166E12 5.343E12
0.08 3.864E12 6.193E12
0.07 5.056E12 7.134E12
0.06 8.269E12 8.594E12
0.05 1.223E13 1.200E13
0.04 1.402E13 1.466E13
0.03 1.348E13 1.374E13
0.02 1.019E13 8.504E12
0.015 6.941E12 5.105E12
0.01 3.392E12 2.387E12
0.009 2.804E12 1.992E12
0.008 2.342E12 1.651E12
0.007 1.909E12 1.364E12
0.006 1.525E12 1.132E12
0.005 1.185E12 9.539E11
0.004 8.886E11 8.347E11
0.003 7.248E11 7.960E11
0.0026 7.073E11 8.188E11
0.002 8.242E11 9.129E11
0.0015 9.794E11 1.092E12
0.001 9.851E11 1.602E12
; vVIi.17
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Since the plot is in the log space, the radiated power
!‘ is a lognormal random variable with location parameter ap
and scale parameter BP given by:

ap=<1aY_> (6.16)

Bp=%|F (6.17)

The statistical model of the radiated power is thus
determined, The explicit expression for a sample value of
the relative radiated power can be written in terms of the
above parameters. Given Z;» a value of the standard normal
variate, f,(7) is given by:

fi(T)=exp(aP(T)+szi) (6.18)
The i subscript denotes the statistical meaning of the
particular value of fi in terms of the standard normal
variate z;. In particular,

Pr{F(f }=Pr{Z<z,} (6.19)
Equation 6.18 may be directly inserted into Equatiom 6.11 to
complete the expression for the distribution of the
temperature in a thin skin assembly.

With a statistical model for the temperature in a thin
skin completed, the stress distribution is known., The other
half of the problem is the determination of the strength
distribution, The choice of the strength variable depends

on the failure mode of interest. Melt mode failures will be

examined in the next section,
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Thermal Vulnerability Modeling

The statistical description of the temperature in a
thin skin has been completed. This may be the stress vari-
able of interest, but it may also appear in the strength
function, depending on the failure model chosen. The choice
of the strength variable also depends on the failure mode of
interest. Two failure models are considered below, In one,
melt mode failures are considered., In the other, the tem-—
perature of the skin enters into both the stress and
strength distributions.

Melt—Mode Vulperability. In th? previous chapter,
methods from the nuclear survivability literature [54,45)]
were compared with data that allowed one to infer actual
strength distributions for several aircraft components.
Aircraft must be designed for a certain amount of gust
hardness since atmospheric turbulence is a natural aircraft
environment. It is not surprising, then, that enough data
exists in regards to mechanical 1loading to formulate
strength distributions directly from test data [22]. Some
have even suggested that because of this, modern day air-
craft have some inherent hardmess to nuclear gusts [72].

In contrast, aircraft are not normally designed for
thermal environments like that from a nuclear weapon. Con-
sequently, no direct data exists from which to infer a
strength distribution., There is then no choice but to model

the strength function by choosing values of skin tempera-
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tures that are considered critical. In Reference [54] two
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ﬁ:f such values are chosen—-a sure-safe (SS) temperature, Tggq,

.
e

.,
G

and a sure-kill (SK) temperature, Tgg- The sure-safe

'

28
X

e
¢

temperature is that temperature which results in a 20%

:.. '.. N
[y |
YN
f“ .

reduction in the modulus of elasticity. The sure-kill tem-

perature is the melt-point of the material. Two strength

b

TR

distributions will be considered. As in the case for blast,
a cookie~cutter strength distribution will be called Model 1

while the a priori lognormal strength distribution will be

referred to as Model 2,

Cookie—-Cutter Failure Distribution. The structure AR
fails npon encountering the SK temperature, and does not -
fail otherwise——i.e, the failure probability density func-
tion (PDF) is a Dirac delta function centered at Tgy.

\o A Priori Logmormal Failure Distributiom. The

probability of failure for the skin structure is .98 if the

SK temperature is encountered; it is .02 if the SS stress

value is encountered; the distribution of failures is log-

normal [45].

. These two distributions are illustrated im Figure 6.7.

E The stress space is now temperature. The circles represent L--
. Model 2, while the solid line represents Model 1. Model 1 V
{ yields the familiar cookie—cutter plot in the absence of any

!’ statistical model of the stress. However, since a statisti- L;-

cal model of the stress does exist, the failure probabdbility

will be a continuous function of range. For Model 1, it is .
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given by:
Pf(r)-l"F‘(Ts‘) (6.20)

where F.(T) is the cumulative distribution fumctiom (CDF)

of the temperature (the stress variable) in the thin skin at
the time of interest.

The resultant vulnerability of the skin is shown in
Figure 6.8 for both Model 1 and Model 2 strength distribu-

tions. The cookie-cutter damage distributionr is not very

different from the lognormal one, The failure probability

is a steep function of range, dropping from .98 to .02 in

the span of 100 meters even for the lognormal assumption.
The reason for this is the rapid decrease in peak tempera-
This is true even if the structure is not

ture with range,

cooled. If it is, the decrease is even faster. Thus, one

sees that cookie-cutter techaiques can work well depending
on the rate of change of the critical response variable with
other variables in the problem.

Before leaving the thermal vulnerability problem,

one

can consider an alternate failure mode. In particular, one

can examine the effects of combined gust/thermal loading on
the mechanical integrity of a structure., This is the last

topic, and is <considered in the next section.

Combined Blast/Thermal VYulnerability.

idea behind most thermal vulnerability calculations is to

The fundamental

find the amount of heat required for some specific effect.

The topic of yielding of skin panels due to thermal loads
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combined with internal pressurization loads is treated using

Method 2 of Reference [54]. This problem demonstrates that
a combination of conditions can precipitate failure rather
than the primary weapon effects acting alone. On the other
hand, & given failure mode might depend on more than one
weapon effect. In the alternate failure model described
below, the combined effects of blast and thermal in causing
yielding of wing skin panels is investigated. This will
illustrate the utility of the stress—-strength interference
theory technique in treating such problems.

Stress On A Skin Panel. A ;tress analyst would
attempt to calculate the stresses in the skin rather than
use the SS and SK specifications of the previous section
{43]. A representative wing section is shown in Figure 6.9,
Treated as a simple box beam with constant bending stress
[76], and using a thermal model from a classical text like
Gatewood [61], one can show that the stress in the lower
section at position z and time t is given by:

Ux(z.t)=ds(z.t)+0’th(z.t) (6.21)
where os(z.t) is the stress component due to the gust load-
ing and dth(z.t) is the stress compoment due to the thermal

loading from the nuclear detonation. These two terms are

given by:
US(Zpt)'-GI‘NLZIC (6.22)
ath(znt)=ath1(znt)"’cthz(z:t)"'aths(lnt) (6.23)

The thermal stress terms [61]) are given by:
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Figure 6.9. A Box-Beam Wing Model
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Oppq (2. t)=—a E(T)AT(z,¢t) (6.24)
NS G gz, t)=(ayb E(T) /A )8 EAT (2, t) a2 (6.25)
O n3(z.t)=(a b zE(T) /I )22 ¢2aT(2,t) a2 (6.26)

The variables in the above equations are described as
follows, Ulg is the allowable design stress, taken as
6.891E7 pascals (104 psi). NL is the load factor on the
wings (dimensionless). The coordinate z is the location
where the stress is desired (meters) measured relative to
the center of the assembly. The variable ¢ is the midpoint
of the skin as measured from the center and is taken as
.1524 meters (6 inches). ¢ is the half-thickness of the
skin, taken as 1.588E-3 meters (.0625 inch). a; is the

coefficient of linear expansion ( 2.286E-5 m/m-°-Kelvin).

E(T) is the modulus of elasticity (in pascals) at

(o

temperature T (in ® —EKelvin). The room temperature modulus
of aluminum is takenm as 6.891E10 pascals (107 psi). As
previously discussed, T is the temperature of the skin in
degrees Kelvin, The term AT is given by:
AT(z,t)=T(z,t)-Ty(z,t) (6.27)
where T(z,t) is the temperature at location z and time t and
Ty is the ambient temperature in degrees Kelvin, The dimen-
sion b_, as shown in the figure, is the chordwise length,

taken as .9144 meter (36 inches). Finally, A, is the cross-

sectional area (15 square inches or 9.677E-3 meter?), while
Ix is the area moment of inertia (474 in4 or 1.973E-4
meter‘).
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E Now, using the thin skin approximation as before, the

5 i?? temperature response of the skin is as shown in the previous

! section, The bottom skin panel is heated uniformly to a

E peak temperature Tp s0o that the temperature profile with 2z

E is given by:

! T(2)=T, v -c-€{z(-c+€ (6.28) b
3 T(z)=T; elsewhere (6.29) i
~ where € is the skin half-thickness, as previously defined.

i With the above temperature profile, the integrals in ;c}

Equations 6.25 and 6.26 are calculable in closed form. The R

results for the lower wing station (z=-c) for the geometry

of Figure 6.9 1lead to the equation:
a'x=0'1$NL-.3582aIE('rP)A1‘p (6.30)
Equation 6.30 is a function of two random variables-- ;jf

NL' the load factor on the wings, and Tp. the peak tempera-

.ture in the thin skin. This equation is the stress response

of the skin. The response is dependent on both the gust

loading and the thermal loading caused by the nuclear wea-

pon. Even though this is a function of two random variables, ::2:
it is not clear that it needs to be treated that way. The }Qﬁ

gust loading and peak thermal loading can appear at very e

different times, and this would effectively decouple the two
effects.
S The relative vulnerabilities of the four parts of the

box beam are discussed in more detail in Appendix E,. In

fact, the analysis there shows that the lower skin is not
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the most vulnerable assembly. However, that part of the
beam is interesting in that the gust dominates the stress
distributioﬁ, while the thermal dominates the strength
distribution. Since the thermal contribution to the load
stress is slight, one can first consider the case of gust
loading only.

The Case of Gust Loading Only. As a first
approximation, Equation 6.30 is evaluated when the thermal
environment is absent., This reduces the stress function to:

°;=°igNL (6.31)

The strength function is taken as the yield point of
6061-T6 aluminum, That is, the critical, or sure-kill
stress value is given by:

0,4,=2.756E8 pascals (40,000 psi) (6.32)

Since this is a cookie-cutter strength distribution,
the reliability interference integral reduces to the result:

Pf=1'Fs(ask) (6.33)
where s is the stress variable, and is just o, as given in
Equation 6.31. The overlay of the wing stress model with
the previously comsidered cookie-cutter and lognormal gust
volnerability models are shown in Figure 6.10, Model 1 is
the cookie-cutter model for gust loads discussed in Chapter
V, while Model 2 is the a priori lognormal model, and Model
3 is the results based on Chenoweth's data, The skin stress
model just developed (represented by the [J's in the figure)

is a bit more conservative than the other models considered.
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This is in part because it is just another cookie—-cutter
i ‘ damage model, but with a lower sure-kill specification.
", That is, the sure-kill load factor is taken as 4 instead of

6.75. This value of 4 is closer to what the authors of

STRAT-SURVIVOR [42] would call the unbiased cookie-cutter

C AR T

damage specification. In any case one sees that a reason-—
able independently derived failure model gives about the
i same results as the others considered.
The Thermal Stress Contribution. Equation
6.30 can also be evaluated with the peak thermal environment
‘ present, and the aircraft in a straight and level flight
eondition. In that case, and for the geometry previously
indicated, the response equation reduces to:
. (i 0,=01,~-3582a)E(T AT (6.34)
- The thermal stress coatribution adds a compressive
- stress term to an existing tensile load. The thermal stress
. contribution is quite small for the lower skin assembly.
This is because not much heating has taken place by the time
the blast wave arrives. For example, the statistical dis-—
% tribution of temperature at blast arrival time (.24 sec) is
shown in Figure 6.11 for a target at 200 meters range. This
o variable is statistically distributed at each time step due f}ﬂ
i' to the statistical variation in the calculation of the
thermal power (Figures 6.3-6.5). The position at 200 meters
range is well inside the sure—-kill region for gust acting

f‘ alone., The illustration in Figure 6.11 shows a temperature

vI.31
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maximum in the right hand tail of the distribution at less ;; a
f;' than 585°. t:;:
il

This does not mean that a gust/thermal synergism does

not exist. It only means that it does not exist in the

stress function for the lower skin. The behavior of the

strength function there is examined next.

Gust Dependent Stress——Thermal Dependent Strength.

Even though the thermal loading does not contribute much to

the stress function, a combined effects problem can still

E, exist. The yield point of the material has been treated so

l far as a constant. Hence, the strength distribution has
b been considered as a cookie—-cutter in the stress space. ' ;-...-;-
- However, the yield point can vary with temperature, A .

- possible variation of yield strength with temperature is
ll \. illastrated in Figure 6.12. The authors of Reference [79] LAét
=

- state that the degradation of yield strength parallels that

of the elastic modulus out to about 480° Kelvin. At that
point, the length of time at a given temperature (' soak Lff

time'') becomes an important variable as well. Since 480° is

a rarely observed temperature for the 1 KT scenario, the

strength function and the elastic modulus can both be mod- Efef

eled by: :
E(T)=E(T,)g(T) (6.35) :
gy (T)=0gp (To)g(T) (6.36) :

where g(T) is the approximately linear function shown by the ;f;

dashed line in Figure 6.12, and dSK(TO) is given by Equation
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6.32.

o When the temperature dependence for the strength vari-
able is takem into account, the previous cookie-cutter
strength distribution is altered. The statistical uncer-—
tainty in the temperature of the skin propagates into the
temperature dependence of the yield point of the material, A
set of calculations was performed to determine the strength
distributions from 200 to 500 meters at blast arrival time,
The resulting continuous strength distributions are shown in
Figures 6.13, 14, and 15 for range positions of 200, 400,
and 500 meters respectively. The strength of the part is

- statistically distributed because the temperature of the

P_".

- part is (Figure 6.11) and the strength depends on the tem-—
" perature as shown in Equation 6.36. Since the distribution
*l (, of temperatures changes at each range step the strength

distribution does also. For the close—in case (200 meters)

- the original step function damage distribution of Equation
!! 6.32 centered at 2.756E8 pascals has been transformed into a

continuous function with a long left-ward tail. The mid-

{E range strength distribution (400 meters) shows a cookie-

cutter shape beginmning to form, with the most probable

failure point being the room temperature failure point of
- 2.756E8 pascals, The cookie~cutter limit has essentially
*E been reached in Figure 6.15 when the aircraft is 500 meters

from ground zero at burst time. Hence, even anm original

cookie~cutter assumption (as in Equation 6.32) can lead to




[
*
e ala s 2

r v
e 1o

B4 o
e

"
l'l [P

I BB | 1 I I 1

No degredation E

Time at i

temperature

Maximum thermal
0.41 degradation of

yield stress 10 msec

0.2+

Property at test temperature
Property at room temperature

1 ] 1 | I ] i
0 100 200 300 400 500 600 700 800

Temperature (degrees F)

E ————— Yield stress
t

— ¢+ — Young's modulus "~
=
r
= DN
- Figure 6.12. Degradation of Strength Properties e
o With Instantaneous Heating (From Reference [79]) v

vVI.35 .
. -
—
e e e . e T e T e e e AT s i L S e
P ] - . - - - - e - " - L] - -~ . - . -
o PR R IENSAP IO N A A PR AP AR PRV S PP &L‘ P TN S W




wﬁmﬁrnmﬁﬂ Ty
-.......\-&o‘ uﬂ... o ,
P g L, AT S

28uey jue(s siaIa| QQZ 3I®E
Y3a3ua13s PI2TA JO UOTINQTIISTQ [EOTISTIBIS “€1°9 2an31y
(s1eoseqg) 3Iuyod PI21X
80+39S.°¢C wo+mpqo.m wo+MMWm.N 80+3L0%"°C 80+306C°¢ 80+3A%/.1°C
== - F00°0

]
F0Z°0 i
3

F0%°0

VI.36

-09°0

idd p@1e°S pue J4Qo

Iowco .....

0—oO6- 8-319€(°9/4dd “f
4d0 R%

00°1 WV

f
S e e el i ey .A
ERCRS -}n | PO AR SRR} e

T A I Lo e
PRPRT DR} RN




$ ) I“ .- ' 2 -\] L o N
frraniZd Faimoea
M ...-. LA A ..-..- L.vn.\s---.\-.f - .

.

N .

w 938uey 3JueIS Sa913W QQ% 1I®

1 Y33ua211S PIATX JO UOTINGTAISTQ [BOTISTILIS °4[°9 2an3yy

' (sTeosed) yisuaiag

W 80+d96L°C wc+mwNm.N 80+3969°7 80+3/.99°¢C 80+3.€9°¢C 80+4.09°¢C

9 00°0

b

b

b - 0C°0

iu o

X =

3 0% o ~
3 “

3 o -

! [

4 7]

g o

P -

3 o

. -09°0

E o)

. o

. ]

g fow.o

. o——oe— [-31°C7/4ad

» add

g 00°1

g




‘
i
F

:
’
]
k
K

LR Ny ¢

s 8 %

Ay

4

A N i

Rl

e

-

T

x
9

v

AT AT T w—y

AN

S % ta

80+d96L°¢

80+30%L° 7
-

80+3A%2L°C

28uey JueBIS S12319W QO¢ e
y38ud2138 PIATA JO UOTINGTAISTA TEOFISTIBIS °G[°9Q 2andyy
(s1eosed) 3IUTOgd PIFX

g€ +4L0L°C 80+4169°C 80+d46£49°C
Il i

—-o—oO- [-dA1yyv 7/idd
aad

00°0

o ° 0

[109°0

-08°0

(o

00°1

PR A
ST
: S

40d P®T®BOS Pu® J0D

vVi.38




continuous probability distributions when the statistical

e nature of other variables is introduced.

The failure probability at each range point depends on

more than the strength distribution alone., It is the combi-

nation of stress and strength at every instant of time that

governs the failure probability. The stress function is

A b

ree
given by Equation 6.31 for the lower skin since the gust :}ﬁj

.L":{'..:
loading dominates the stress, as just discussed. The load ?ia
factor, NL. is the random variable that gives the stress L -

function its random character. The stress distributions for
range positions of 200, 400, and 500 meters are shown

respectively in Figures 6.16 through 6.18.

With both distributions determined, one from the ;:ﬁ

nuclear blast effects, and the other from the thermal 'ﬁ;,
’ _:. ‘.J
effects, the failure probability can be directly calculated i d

by the methods previously described and illustrated. The
failure probability as a function of range is displayed in
Figure 6.19. The results are nearly indistinguishable from
the approximation that considered gust effects only and the

room temperature value of the yield stress. This is because

very little heating has taken place at gust arrival time,

One should not infer that gust/thermal combinations are
never important, since results may be different for differ- .
ent parts of the beam and for other scenarios. However, the
results do show the utility of the new nonpsrametric

approach to stress—-strength interference theory when direct
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service datas is not available.

§gnnar!

Aircraft vulnerability to the nuclear thermal pulse

from a low yield weapon has been considered. A search of

the available dats sources for thermal effects on aircraft
yielded no direct information on either stress or stremgth
distributions. A deterministic model of the stress was
developed instead. The statistical variation in one of the
input quantities to this model was determined from the
nuclear effects literature. Stress distributions were then
inferred by finding the distributions of functions of this
random input variable., Melt mode failures were examined and
the failure probability with range calculated. The results
show little variation between a cookie-cutter and a log-
normal strength distribution model. A combined effects
problem was also analyzed. In this case the blast environ-
ment was found to dominate the stress distribution, while
the thermal effect determined the strength distribution. The
failure probability as a function of range was again calcu-
lated, with little synergistic effect noted. These problems
further illustrate the utility of the nonparametric inter-

ference theory technique in assessing nuclear survivability.
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T - VII. Summary And Recommendatioas

'% Summary
i A new approach for assessing the survivability of
. aircraft components in nuclear blast and thermal

environments has been presented. A nonparametric techmnique
i for finding the distribution of functions of random
I variables has been discovered and presented. This procedure
allows one to rigorously determine the strength and stress
distributions for aircraft components exposed to nuclear
' blast and thermal eavironments. If direct service histories

are not available, strength distributions may still be

inferred by considering the statistical variation in the
i (;' inpnts to a stremgth function, Similarly, stress
a: distributions may be inferred even though direct stress
. measurements are not possible. The reliability interference
_ integral can then be solved resulting in continuous failure
. probabilities as a function of range from a nuclear weapon.
In the following paragraphs, each chapter is briefly
? reviewed, and recommendations for future work presented.
i Chapter II provided a review of nuclear :f;ﬁ
T survivability/vulnerability methods, both deterministic and
i probabilistic, Deterministic methods do not provide for ir;j

continuvous damage probabilities with range. Probabilistic

methods of two broad types have been used. Users of the

first type model failure probabilities directly with range,
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while users of the second model strength and stress
functions as random variable processes. The latter is the
basic approach of mathematical reliability theory.

Chapter III provided a brief review of mathematical
reliability theory, including stress—strength interference
theory and the interference integral. Engineering determin-
ism was found to be a special case of this theory. That is,
cookie~cutter failure distributions result if Dirac delta
functions are used to represent the probability density
functions for the stress and strength random variables.
Even though these theoretical considerations are attractive,
stress—strength interference theory is difficult to apply to
large engineering systems. Three problems exist-—(a) the
difficulty of developing a system reliability model from
component models, (b) the analytic difficulty of finding
distributions of functions of random variables, and (c¢) the
limited amount of data available, Some of the current meth-
ods of approaching these difficulties were reviewed. Fault
tree analysis, expectation amalysis, direct Monte Carlo
simulation, indirect Monte Carlo simulation, variable trans-
formation techmiques, and Bayesian inference have all been
used in attacking these problems,

In Chapter IV, a new application of nonparametric
statistics was presented that allows one to find the
distribution of fumctions of multiple random variables, The

technique can be applied without using random number
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generators. Although nothing can be done when little data
is available, the nonparametric method does provide
protection against drawing unwarranted conclusions from

sparse data bases. In addition to this, the nonparametric

approach eliminates the need for density function o
identification, parameter estimation, and the taking of
partial derivatives. An example from the reactor safety
literature was presented to illustrate the method, and ;“i
provide a benchmark calculation,

In Chapter V, this new theory was applied to the prob-

lem of aircraft survivability in nuclear blast environments,

In this case, the strength distributions for several air-
craft piece—parts were taken from the literature. A statis-— Eﬁ?
(;‘ tical model of the overpressure from a nuclear weapon was ;?
also available from the literature. This information
allowed the stress distribution to be determined using the

new nonparametric tool. The stress—strength interference -
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integral was them solved, resulting in a continuous S
probability of failure with range. Except for the fuselage, jﬂf

cookie—cutter approximations appeared to be adequate for the

q low-yield scenario chosen,

In Chapter VI, a more difficult problem was approached.

}

& The analysis of the thermal vuolnerability of aircraft is )

y - -

iE difficult owing to the lack of available data, Strength iﬁ

;i distributions cannot be determined based on service histor- gi
ies. Stress distributions cannot be determined directly ;;
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Sl either. However, stress and strength furctions for failure

H modes of interest can still be postulated exactly as is done
f in the deterministic case. Any statistical information that
' affects the stress and strength functions can be incorpo-
i rated using the nonparametric technique. Stress and
strength distributions are thus rigorously inferred, based
on any available data, The scattexr in the prediction of the
i thermal radiated power was analyzed in this fashion, and the

probability of failure for skin panels examined. In this

case, cookie-cutter techniques were found to be completely

adequate for the yield scemnario chosen.

Recommendations for Future Work

Deterministic modeling will always be the mainstay of
nuclear survivability assessment, The physics of nuclear
weapon effects and the respomse of weapons systems to those
effects will be a topic of study for years to come.
Probabilistic modeling can and should augment this work. If
data exists, however sparse, the nonparametric tool

described in this dissertation can be used. Finding datas

[ and rigorously processing it is hard work. The
survivability analyst must decide whether this task is worth
if it. Methods need to be developed to assist in answering the

- question, "Is this worth doing? Will a 'cookie-cutter’

approximation be a good one?"

VII.4




One of the more difficult problems in stress—strength
interference theory is in the assessment of very low failure
probabilites. The nonparametric tool applied in this
dissertation could in principle be applied to these problems

also. The assessmont of 2 very low failure probability

would require a large number of points and substantial

computer resources. Research in this area should be

h conducted.

Work should definitely continue in the area of applied
nonparametric stetistics. This work shounld involve
;E improvements in nonparametric tools themselves, and nevw
*‘ applications of those tools,

As far as work on the tools sthemselves, several

improvements need to be made. Survivability assessment
based on direct probability demnsity fumctiom (PDF)
estimation might be useful. Since integration is well-
posed, such a tool would not suffer from some of the defects

that can arise when estimating a PDF by differentiation of a

cumulative distribution fumnctiom (CDF). Endpoint &;ﬁ
extrapolation is another area that could be improved. The RS
' currently used center—difference scheme for integrating the ﬁjﬁ

PDF might be enhanced by using higher-order polynomials or

spline methods, Another area of study is stylized sampling
from non-monotonic functions. A preliminary numerical ianves-
tigation seemed to indicate that CDF estimation by stylized

sampling worked well enough if one was willing to put up
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------------

............
IR I AL I R e S L I s
.....




.........

\o

with jumps in the CDF. The size of the jumps can be made as
small as desired by simply taking more and more points.
However, the PDF estimator derived by differentiating such a
CDF can be a numerical problem, Beyond this, a good
theoretical proof here would be welcome,

Nonparametric estimation techniques should also be
applied to other problems in engineering and physics. One
simple yet potentially useful application might be in MNonmte
Carlo radiation transport., Even if used only as a tool to
provide fast inversion of distribution functioms, computer
time might be substantially decreased in some of these large
codes. Other applications will no doubt be found.

Finally, as applied to future work in nuclear surviva-
bility, the most unseful efforts would be in determining the
statistical uncertainty in nuclear effects predictions.
This is a difficult task, involving a careful search of all
known data; however, as noted earlier, if the environments
of the nuclear effects can be statistically described, con-
tinuous failure probabilities with range will result, even
if strength distributions must be taken as cookie-cutter.
Furthermore, these environmental inputs would remain the
same, barring further testing and discovery, and survivabdil-
ity assessment could proceed with these environments as a

common input.
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Appendix A: The Development Of Algorithm NOSWET

Overview

This appendix chromnicles the development of NOSWET
(NOnparametric 'after 8'eeder"Estimation Techniqgue), the
primary algorithm used to find the distribution of functions
of random variables. The actual use of NOSWET for this
purpose is discussed in Appendix C. In this Appendix, the
work of James Sweeder and A.J., Moore [14] is examined as a
possible tool in reliability theory. One of Sweeder’s early
research models (Model 5332) is selected for further
development. The Model is applied to random samples of size
50 from the uniform, normal, double exponential, and log-
normal distributions, These results show unwanted varia-
tions due to the randomness of the samples. A second series
of experiments are performed to show the performance of
Model 5332 on stylized samples. The concept of a '"'sty-—
lized’’ sample [14] is explored and defined more precisely.
The performance of the Model on stylized samples is
investigated. The results indicate a need to change the
part of the algorithm that affects the tails of the distri-
butions. A third series of numerical experiments is pre-~
sented that shows marked improvement in the estimate of the
cumulative distribution function (CDF), but a very much

degraded estimate of the probability density funoctiom (PDF).

This mystery leads to a fourth series of experiments. In
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<. this series, Sweeder’s original trigonometric ianterpolation ﬁi%
of the CDF is abandoned, as is his method of estimating the \
PDF. A linear interpolation scheme is implemented, along
with a centered-difference scheme for finding the PDF. The
results are a much improved estimate of both the CDF and the
PDF for the distributions studied. Finally, a fifth series
of experiments is performed in order to find an adaptive
endpoint extrapolation techmnigue. Turning again to numeri-
cal analysis, one finds that enforcing the conservation of
probability in the tails of the distribution leads to opti-
mum selection of the endpoints, Sweeder's extrapolation
rule is shown to be a special case of the general endpoint
selection algorithm, These results are incorporated in the
(;‘ computer code NOSWET, and used in nuclear survivability

assessments,

In a recently published work [14], Sweeder has
demonstrated a nonparametric techmigque for estimating
distribution and density functions. Sweeder showed that,
given a set of observations denoted by

{z;)}, i=1,m, where z;<z;,,
then the sample distribution function Fs(z) is defined by:

Fg(z)=0 v z<z, (A.1)
For the region z;z<z 44 Fs(z) is given by

Fg(z)=G,+[(6;,,-6;)/2)%[1-cos{n(z=z;)/(2;,4-2;))1(A.2)
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Fg(z)=1 v 22z .4 (A.3)

Sweoeder showed that this sample distribution function
converges uniformly to the underlying distribution fumction
Fg(z).

In Equation A.,2 G; is a nonparametric plotting position
given by some rule such as:

G =(i+a)/(m+p); -1LalP(1 (A.4)

In Equations A.1 and A3 z, and z_ ., are extrapolated

endpoints such that:

Go=0 (A.5)

Gpe+1=1 (A.6)

At the data points z=z; the sample distribution
function yields the values:

Fg(z;)=6, (A.7)

Sweeder’s work was examined, siace it was anticipated
that the problems of nuclear survivability would be
dominated by small sample statistics, and nonparametric
estimation wouid completely eliminate the problems of
density function identification and parameter estimation.

Although the original Reference [14] should be consulted
for detail, Sweeder's basic idea is to take the sample
defined by the set described above, and break it into a
nuomber of subsamples. Each subsample is treated as
representative of the entire population, and Equations A.1
through A.3 are used to form estimates of the CDF. These

estimates are then averaged. A key parameter in omne of

A.3
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Sweeder’s models is thus the number of subsamples to take.
The first digit, 5, from Model 5332 denotes the number of
subsamples.

Another parsmeter of importance is the choice of the
plotting rule. Table A.1 shows several selections that
follow under the general description of Equation A.4. The
third choice, Hazen’'s Rank, is the second parameter in Model
5332.

The third major parameter of importance in Sweeder's
algorithm is the choice of the extrapolation comstant. For
many of the plotting positions of Table A.1, the distribu-
tion is not dgternined at the endpoints. That is, the Gi's
do not span the entire space from O to 1. Thus, the sample
CDF remains undefined in the tails unless one chooses the
points z, and z_, .4 in such a way that

Fg(z4)=0 (A.8)

Fglz g ,q)=1 (A.9)
For each subsample, Sweeder proposed a general extrapolation

given by:

20=21_A1(22—11) (A-lo)
Zpe1=2gqt0p(z =2, 4) (A.11)

where Al and An are the lower and upper extrapolation con-

& P p— -
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stants. Table A.2 gives the choices of Al and An that

Sweeder examined. For Model 5332, choice 3 was used.




TABLE A.1

PLOTTING POSITIONS OF THE FORM Gi'(i+a)/(l*ﬁ)

& FORMULA DESCRIPTION
o~ 1. i/ (m+1) Mean Rank
2. (i-.3)/(m+.4) Median Rank Approximation
- 3. (i-.5)/m Hazen Rank
e 4. [i-(m+1)/2m]/[m-(1/m)] Average of Mean and Mode
Y Rank
5. (i-1)/(m-1) Mode Rank .
- 6. i/m Empirical Distribution -
. Function :
- 7. (i-.375)/(m+.25) Efficient Approximation AT
e for the Normal RN
. Distribution B
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TABLE A.2

EXTRAPOLATION VALUES

LOWER VALUE (4,) UPPER VALUE (4,)
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The CDF, including the endpoints, can now be con-

structed using Sweeder’s technigume., However, Sweeder added

'..
5
o
" .
[
(9
l.'.
.":
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an additional feature in order to reduce some of the numeri-
cal noise in the CDF estimate. Once the CDF has been deter-
mined, it may be easily inverted by using a Newton-Raphson
or other techmique. Rather than inverting the distribution
randomly, Sweeder used the median rank points (choice 2 of
Table A.1) to invert the distribution. These points were
then processed again by the algorithm, resulting in a better
estimate of the CDF, For Model 5332, choice 2 of Table A.l
is used.
Model 5332 was chosen as a starting point, since for s
range of distributions examined, it behaved well with
Q‘i respect to modified Cramer Von Mises (CVM) distance measures
[14]. Sweeder applied it to the double exponential, normal,
and uniform distributions, representing distributions with a
heavy tail, a moderate tail, and & short teil, respectively.
Model 5332 was not optimum for any of the distributions
considered. However, compared to the 3 other models that
Sweeoeder considered, it ranked second overall for smallest
CVM distance averaged over all three distributions, More
significantly, Model 5332 was not the worst choice for any
distribution considered. Hence, it was selected as the
starting point for possible use in a reliability theory

approach to nuclear survivability.
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In the first series of numerical experiments, desig-
nated as Series 1, Model 5332 (with two inversions) was
applied to the uniform, normal, double exponential, and
lognormal distributions. The lognormal was added as a bench
mark since it is asymmetric and is popular with other
survivability analysts [49]). Randon s;mples of size 50 were
drawn from each of these distributions, and the CDF and PDF
estimated by Sweeder’'s method. The results are illustrated
in Figores A.1 through A.4. In these figures the PDF'S have
been scaled to their peak values 50 as to be able to overlay
the PDF and CDF on the same plot. The results for each
distribution are discussed briefly below.

The uniform distribution shows a rather heavy tailed
result compared to the true one. The true endpoints are at
0 and 1, whereas the numerical technique is putting them at
-.20 and 1.15. In addition, the PDF has some oscillations.
These oscillations exceed the true pesk vaslue of the PDF by
more than 50%.

The approximation to the normal is, at least visually,
somewhat better, The true endpoints are of course at +o
which cannot be matched by this numerical algorithm. A more
meaningful comparison is the 98th and 2nd percentiles, which
should be at 1 and 0 respectively. The behavior in the
right hand tail is better than that in the left. The PDF
estimate does fairly well except for the peak which should

be at .5, Here noise seems to Le a problem.

-------------
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The results for the double exponential (DE) shown in
Figure A.3 show very clearly the concave shape of the DE
PDF. The peak of the PDF is also matched fairly well, but
the distribution seems to show considerable asymmetry, being
shorter in the right-hand tail than in the left.

The results for the lognormal are displayed in Figure
A.4. Sweeder’s technique does remarkably well here,
Although not developed explicitly for asymmetric density
functions, Model 5332 estimates the lognormal CDF and PDF
rather well., The asymmetry inm the CDF is clearly evident,
as is the almost spiking PDF.

Although the overall results are favorable, it is
difficult to tell at this point how useful Sweeder’s qethod
might be for engineering applications, In particular, it is
difficult to tell by observing one random sample from each
distribution which features are potential model problems and
which are the result of a random draw, This question can be
dealt with by considering, and defining in more detail, the
idea of a stylized sample, and applying that idea to a

second series of numerical experiments,

Model Performance on Stylized Samples

Sweeder does not strictly define the term '’'stylized
sample’’ [14], but basically, s stylized sample is omne that
best represents a given distribution. This can be defined
more precisely by observing the following. Of all the

possible random samples that onme might choose, there is one
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- particular sample that yields a best estimate of the 23:
o #4144
underlying distribution, In this set, each z; of the set @{}
satisfies: ﬁk%-

G;=Fy(z;) (A.12) ’«

If each z; so determined is then plotted using the same D*’

E oL

plotting rule by which it was drawn, then by Equation A.7, NG

Sweeder’s method exactly interpolates the distribution

function Fgz(z) at the data points. A stylized sample can e

thus be defined formally:

Definition: The set of points {z;},i=1.m is said to be

ii a stylized sample from the population of the random variable ‘i¥
- Z, if, for every point in the set, §i¥
Fg(z})=F,(z}) (A.13) »

(; Stylized samples of size 50 were drawn from each of the E;ﬁ
bench mark distributions., The results are displayed in ,gi}

Figures A.5 through A.8 and are discussed below. ;;Ei

The results for the uniform distribution are displayed ;E%s

in Figure A.5. Clearly, the situation has improved. The
PDF shows very clear features of the true PDF, and the peak
PDF value is very close. The CDF is also much improved, but
one still sees a rather long tail, which is now symmetric
about .50.

The behavior of Model 5332 on a stylized sample from
the normal distribution is shown in Figure A.6. The PDF
estimation is almost outstanding. However, one can still

see that the CDF does not match exactly, even though the

A.14
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endpoints are symmetric about the median,.

The DE distribution as estimated by using Model 5332 is
illustrated in Figure A.7. Again, the PDF estimate looks
very good, while the CDF estimate is not quite as good.
Again, symmetry sbout .50 is obvious, with slightly more
tail than in the normal case.

Finally, the lognormal distribution as estimated by
Sweeder's technique is shown im Figure A.8,. The PDF
behavior is a little hard to see on such a scale singce it
rises so fast, but it matches fairly well, However, the CDF
seems to have a noticeable problem between the 70th and 98th
percentiles.

In summary, the Series 2 experiments allow one to see
the power of Sweeder’s method on stylized samples. The
performance is very good for the normal and double
exponential distributions, and is less satisfactory for both
the uniform and lognormal. The outstanding problems seem to
?e undue weight in the tails of the vniform, and somewhat
weak estimation of the asjmnetric lognormal. These

difficulties are overcome by actually modifying the model.

Elimination of Subsampling

At the moment, two problems remain: (a) the improper

o
.

tail weight given to the uniform distributiom, and (b)
somewhat poor performance in CDF estimation, especially for

the uniform and lognormal distribution functions.
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These two problems were found to be related. Based on

the previous definition of a stylized sample, if one treated

the entire sample as a2 single subsample and plotted it by

Hazen’'s Rule, then the CDF estimate should be exact (for

m=50) at the CDF values .01(.02).99. The Series 2 experi-

ments did not yield exact results at these points owing to

the subsampling and averaging process,

A third series of experiments was performed. For this

series, the subsampling was eliminated. Said another way,

Sweeder’s Model 5332 was altered, using his nomenclature, to

Model 1332, The results are shown in Figures A.9 through

A.12, For these experiments no inversions were necessary,

decreasing computer executionm time by a factor of 20 or so.
The use of this new model on a stylized sample from the

sniform distribution is shown in Figure A.9. This Figure is

truly enlightening, as will be discussed shortly. The CDF

estimate is nearly perfect, and the tail weight problem has

211 but vanished. In short, the CDF estimate is precisely

as predicted. However, the PDF estimate is much worse.

Instead of having a flat line at the value 1.0, sinusoidal
variations exist which oscillate between 0 and n/2.

The new estimate of the normal distribution is dis-
the CDF estimate is very

played in Figure A.10. Again,

good, while the PDF estimate has failed.
EC
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The behavior of the new model on the DE and lognormal R
distributions is shown in Figures A.11 and A.12, Again, the 2
general result is a very good estimate of the CDF and s E
badly oscillating PDF, This problem led to a fourth series g
of numerical experiments. ﬁ
~

3

Modification of the PDF Estimation Method -
At the conclusion of the Series 3 experiments two f
observations were made, First, the CDF estimate was ;
k.

behaving exactly as anticipated based on the comncept of :
stylized sampling, Second, the PDF estimate had gone badly :
awry. Sweeder’'s subsampling techmique clearly helps the PDF ;
-

estimate a good deal. Why is this so? v
The PDF mystery is solved by examining in detail N
Sweeder’'s method for finding the PDF, He simply .
-

differentiated Equations A,1 through A.3 resulting in:
£g(2)=0 v 24z, (A.14)
For the region zi$z<zi+1 the PDF is given by:
fs(z)=(nfi+1/2/2)sin{n(z—zi)/(zi+1-zi)} (A.15)
fg(z)=0 « Z2Z04q (A.16)
The term fi+i/2 in Equation A.,15 is defined by:
fi+1/2=(Gi+1-Gi)/(zi+1—zi) (A.17)
The quantity fi+1/2 is the classic centered-difference
approximation to the derivative. If the true value of the
derivative is a constant 1.0, one sees from Equation A.15
that the PDF estimate is a sinusoidal function with & peak

amplitude of n/2, exactly as observed in Figure A.9. ,
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One also sees from Equation A.15 that increasing the
number of points does nothing to improve the PDF estimate.
The PDF always goes to zero at the dats points, and oscil-
lates botween 0 and n/2. In short, the problem is omne of
posedness, as discussed by Lee [10].

However, one can calculate the average value of

Sweeder’s derivative over the interval [z;,z;,,1.

z.
(fs(z)>-J.z;+l fs(z)d’/(zi+1_'i) (A.18)
The result is just:

The average value of Sweeder’s PDF is just the
numerical centered-difference value. It appears that
Sweeder’'s subsampling technique acts primarily as an
averaging aslgorithm,

If these considerations are true, one can now alter
Sweeder's method again. A new CDF estimate can be defined
by:

Fg(z)=0 v z<z, (A.20)
On the interval [z;,z;,4):

Fg(2)=6;+(6;,41-6;)(z~2,)/(z ,4,-2;) (A.21)

Fs(z)=1 v 222,49 (A.22)

The PDF estimate is given by:

fg(z)=0 v z<(z, (A.23)

fs(z)-fs,z(z-zo)/(zslz-zo) v 2582423/, (A.24)
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$ On the interval [z;_;,5,25,9/2)¢ §$§
Y fg(2)=fy /2% (341727 F3-1/2) (2724-9/3) 2
/(2349727 %5-172) (A.25)
On the interval [23-1/2"n+1) fg(z) is given by:
fS(Z)'f--llz(z-+1-‘)/(’n+1_’--1l2) (A.26)
while
& £5(2)=0 v 22z .. | (A.27)
La In Equation A.,25 i ranges from 2 to m-1 and 2i41/2 is :
i defined by: ;‘_“
3 234172702342 ;49)/2 (A.28) :
A The results of the above model on the stylized samples ;;%3
A from the benchmark distributions are displayed in Figures E;:
;f A.13 through A.16. One final improvement will ©be ’i?:
considered, and that is the problem of eandpoint ;;
extrapolation, Ei;

Endpoint Extrapolation

Even though the results displayed in Figures A.13
through A.16 are very rewardin~, one nagging issue remains--
that of endpoint extrapolation. That is, how should one

choose the points zZ and zm+1? It is not clear that

Sweeder's choice of a constant Al and Au remain optimum for
the newly developed algorithm. For example, examination of

Figures A.5 through A.8 indicates that the resultant end-

'
’

'

1

point values do not agree with those of Figures A.13 through

v
]
RN

A,16. The uniform tail length is shorter in Figure A.13,

NEL

. o
A N

)

and the lognormal is longer on the right and positive on the
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left in Figure A.16, as it should be. However, the normal

>

S 4 AL S T B AT

i,
‘I "
v " g

and DE tails in Figures A.14 and A.15, respectively, are

5 shorter, which they should mot be.

;: Sweeder [14] grappled with this problem, developing a
. number of adsptive models. This approach was not completely
;} successful, since under subsampling and inversion, endpoints
i were sometimes chosen that eliminated some original datas.
i In sddition, one would like to avoid computer intensiveness
E as much as possible.

f An alternate approach is to enforce conservation of
}: probability in the tails of the sample distributiom to find
E the endpoints,

Derivation of the General Form. The numerical situa-

tion in the tails is illustrated in Figure A.17. The CDF is

known at the circled locations. The PDF is known approxi-

mately at the location of the x's. The locations of ) and

Zpey B2TC desired.

The conservation of probability may be approximately

enforced on the intervals [zo.zll and [z;,z,] by requiring:

z
Fz(zl)=J;;fz(z)dz (A.29)

- - 122
Fz(zz) Fz(zl) J;lfz(z)dz (A.30)

Using the relations:

Fg(z,)=6, (A.31)
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Figure A.17. An Illustration of the Extrapolation Problem
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Equations A.29 and A.30 reduoce to:

+£ ) (2, -2,)/2 (A.32)

Gl'fl(zl-ZO)lz (Au33)
where

Since the Gi's sre known from the plotting rule of
Equation A.4 and fz by some method of interpolation on the
interval [23/2.25/2], the only unknowns above are f; and Zg.
Solving for Z9 leads to the eguation:

29=29-26G;(2,-2,)/{246-£f,(2,-2,)]} (A.36)

If A; is defined by:

A1=2G1/{2A6-f2(zz-zl)l (A.37)
then Equation A.,36 has exactly the same form as Sweeder's
extrapolation rule Equation A,10. A similar analysis for
the right hand tail leads to a similar form and an extrapo-
lation constant An defined by:

An=2(1—Gm)/{2AG-fm_1(zm—zn_1)} (A.38)

Exploiting the general form for the Gi's. the extrapo-
lation constants may be written as:

4,=2(1+a)/{2-f,(29-2,)/4G]) (A.39)

A,=2(B-a)/{2-F,_,(z -2, 4)/4G) (A.40)

These extrapolation constants depend on the plotting
rule (a,B), the sample size (m), the extreme order statis-
tics (21'12'1n~1'zn)' and on the choice of interpolation for

the derivative (f,,f_ _4).
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TABLE A.3

ADAPTIVE EXTRAPOLATION BEHAVIOR

FORMULA 2(1+a) 2(p-a)

i/(m+1) 2 2
(i-.3)/(m+.4) 1.4 1.4
(i-.5)/m 1,0 1.0
[i-(m+1)/2m)/[n-(1/m)] (m-1)/m (m-1)/m
(i-1)/(m~-1) 0 0
i/m 2 0

(i-.375)/(m+.25) 1.25 1.25

A.38
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The dependence of the extrapolation constants on the

plotting rule is best seenr by examining Table A.3. The
adaptive extrapolation constants properly reflect the uander-
lying behavior of the plotting rule. For example, the
empirical distribution functioan (EDF) requires no upper
extrapolation (An=0). while the mode rank roequires no upper
or lower extrapolation (Al-o.An-O).

One also sees that Al and An remain positive quantities
provided:

2-£,(2,-2,)/46>0 (A.41)

2-f, _1(zp-z,_41)/46>0 (A.42)

Equations A.41 and A.42 are just the requirements that
f1 and fm be non—negative. Since a numerical approximation
is being used for the fi's. the above equations may not
always be satisfied. A number of interpolation schemes are
investigated below.

Linear Interpolation. From Figure A.17, and assuming

thet

f0=fn+1=° (A.43)
then

fslzgfzgfslz (A.44)

fm-1/288m-188p-3/2 (A.45)
where, in general,

Linear interpolation consequently leads to:
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fp-1=fm-1/2%(fn-3/2 fu-1/2)(2q_1-20-1/2)
N /(2q_3/272a-1/2) (A-48)
Average Value Approximation. The above expressions may

lead to negative A1 and A, . Another choice for f, and £__4

would be to set:

£25(f3,,+£5),)/2 (A.49)
fo-15(Eg 1/2%E0_3/2)/2 (A.50)
This choice leads to:

£2(29-271)/86=(z23-2,)/(2(23-2,)]} (A.51)
fp1(zp=2y 1)/86=(z -z o )/{2(z _4-2__5)} (A.52)

In this case, the resulting expressions for Al and An

remain positive provided that:

( z 3 -z 1 ) / ( z 3 -'2.2 ) < 4 (‘\-5<3)
. (zm-zm—z)/(zm-l-zm-2)<4 (A.54)
k‘ Extreme Value Approximation. The average value approx-—

imation may still yield negative extrapolation constants for

heavy-tailed distributions, Using an extreme value approxi-

mation, one sets:
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The result here is that: E_
fy(zy-2,)/46=1 (A.57) C
fo_q(zp~2,_1)/86=1 (A.58) o

This choice therefore guarantees that the extrapolation L;
constants remain positive., In fact, for this approximation: 35
4;=2(1+a) (A.59) ;i
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A,=2(p-a) (A.60)
For plotting under Hazen's Rule (a=-.5,8=0), the extrapola-
tion constants reduce to Sweeder’'s values (8;=1,4,=1).

Finsl Results. The final results obtainmed by incorpo-
rating these new ideas are illustrated in Figures A.18
through A.22. Some discussion here is in order.

The results for the uniform distribution are illus-
trated in Figure A.18. It is interesting to note that no
changes have occurred in the endpoints. This must mean that
Sweeder’'s rule is correct. That this is truve can be seen by

examining Equations A.47 and A.48. Using the fact that, for

the uniform:

AG=zi+1_zi v i"l.m (A.‘l)

Equations A.47 and A.48 reduce to Equations A.57 and A.58.
(V) The linear interpolation scheme reduces naturally to L
Sweeder's rule under the assumption of a uniform distri’' u-

tion,

The result for the normal distributioa is displayed in
Figure A.,19. An increased tail length is evident compared RN
to the plot of Figure A,14, Apn expanded left-hand tail is
shown in Figure A.20 to illustrate the differences in the
approximations, In this figure the smooth curve represents
the true PDF, the X's the adaptive extrapolation technique 'fﬁi

just developed, and the circles Sweeder's rule,.
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The final result for the DE is illustrated in Figure

T el
...

s
.

A.21, The adaptive techniqne has extended the tails con-

siderably.

The final result for the lognormal is illustrated in
Figure A.22. The adaptive endpoint extrapolatiom hereo
brings the left—-hand tail very close to zero, and extends
the right-hand tail by more thanm a factor of 3.

At this point, the developmental task was considered to
be finished. The computer code NOSWET was written based on
the above considerations. A listing is given in Appendix B,

and its primary use is discussed in Appendix C.

Summary

To summarize, Sweeder’s method [14] has been modified
in four ways. First, the concept of a2 stylized sample was
defined. The performanmce of one of Sweeder’'s early research
models on stylized samples from the uniform, normal, double
exponential, and lognormal distributions led to the elimi-
nation of Sweeder’s subsampling method. Second, Sweeder’s
trigonometric method of interpolating the CDF was changed to
simple linear interpolation. Third, the PDF estimation
method was changed to a centered-difference scheme. Fourth,
a general approach to endpoint extrapolation was taken by
enforcing the conservation of probability in the tails of
the distribution, Sweeder's extrapolation rule [14] was
seen to be a special case of this more general approach.

The new algorithm, written as computer program NOSWET (NOa-
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parsmetric ‘after 8SWeeder’ Estimation Techniqgue), was found
to be especially useful in finding the distridbution of
fuanctions of random variables. The program listing is shown
in Appendix B, and its primary use is described in Appendix

c.
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Appendix B: Listing Of Program NOSWET

VAkkkARA XX XX XDROGRAM NOSWET**tkkdkkkkhhhhhkhkhhkkhhdk

' Program NOSWET (NOnparametric 'after SWeeder'
Estimation Technigque)

Constructs a Nonparametric Distribution and Density
Function From The Data in the 1D Array XDATA

IR AR AR R NENRERRNRNERENAERNENNNDR.]

' Algorithm is based on NONPARAMETRIC ESTIMATION OF
DISTRIBUTION AND DENSITY FUNCTIONS WITH APPLICATIONS
by James Sweeder, Ph.D, Capt, USAF. AFIT/DS/MA/82-1

IR 2RISR RN R R NN NN Q]

' This Microsoft Basic¢ Code Written By HALVOR A. UNDEM,
Capt, USAF, DS-83, as an Applications Tool in
Nuclear Survivability.

IR NARANRANERRANNNRANANR
IR 22 I 222222222223 22 2222222322222 2222322222222 222

'In the Fictitious Fortran CALL Statements, Variables
Preceding the Semicolon Are Input, Those After Are
Output or Altered.

ImMUEBRARAANNRRNERRNNRRRARNRNRN]

COMMON BASICNAMES,SETMIN%, SETMAXS

DIM MAX(15),MIN(15) ,WEIGHT(15)

ON ERROR GOTO 5400' DISK I/0O ERROR TRAP

INPUT "BASICNAMES$,SETMIN%,SETMAX%:",BASICNAMES,
SETMINS , SETMAXS
INPUT "Do You Want a DEBUGS Run (Y/N) ";DEBUGS
INPUT " (S)weeder, (H)istogram, or (C)ontinuous PDF";
PDFTOGGLES
PRINT "THIS IS PROGRAM NOSWET.0l15"
' NOSWET.015 FEATURES: (1)--CHOICE OF KSUBS%
(2)--CHOICE OF EXTRAPOLATION
(3)--CHOICE OF PDF
(4)--WRITES TO DISK IF
MEMORY SHORT
! (5)--CDF IS LINEAR
INTERPOLATION
PREFIXS$="A:"
FOR SET%=SETMIN% TO SETMAXS$
PRINT
PRINT "NOSWET IS PROCESSING DATA SET ";SET%
NUMBERS$=STRS (SET%)
ADD$=MIDS$ (NUMBERS,2)
FILNAMS=BASICNAMES$+ADDS
'Call LOADER(;XDATA[],SIZE%)
GOSUB 1000
IF DEBUGS$="Y" THEN 300 ELSE 370
'THEN Segment--Debug Mode Selected
FOR I%=1 TO SIZE%

B.1
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320 PRINT XDATA(IS):

330 IF I% MOD 5=0 THEN PRINT

340 NEXT I%

350 PRINT “SIZE% IS ";SIZE%

360 IF SIZE%<2 THEN PRINT “SAMPLE TOO SMALL--

LOADER ABORT":STOP
370 'Call SORT(XDATA[],N%;XDATA[])

8¢ 0 P J AL EERE .

380 N$=SIZE%
390 GOSUB 1490
' 400 'Call SUBSAMPL (XDATA[] ,KSUBS%,SIZE%,;SUBSAMP[] ,M%,R%,
XMAX, XMIN)
410 INPUT "(R)andom or (S)tylized Sample"; TOGGLES$
420 IF TOGGLES="R" THEN KSUBS%=5 ELSE KSUBS%=1
430 IF KSUBS$>N%/3 THEN PRINT "KSUBS% TOO LARGE":GOTO
410
I 440 INPUT " (S)weeder or (A)utoranging Extrapolation®;
EXTRAPTOGGLES$
450 GOSuUB 1780
460 IF DERUGS="Y" THEN 470 ELSE 580
470 'THEN Segment--bLebug Mode Selected
' 480 FOR SAMPLE%=]1 TO KSUBSS%
i 490 IF GAMPLE%$<=R% TdEN LASTEL3¥=M%+2 ELSE
: LASTEL$=M$+1
500 PRINT "SAMPLE%,LASTEL% ARE ";SAMPLES%;LASTEL%
510 FOR ELEMNT$=0 TO LASTELS
520 PRINT SUBSAMP (ELEMNTS%, SAMPLE%) ;
. 530 IF ELEMNTS MOD 5=0 THEN PRINT
. o 540 NEXT ELEMNTS$
550 PRINT *"PAUSING BEFORE NEXT SAMPLE":STOP
560 NEXT SAMPLES$

2 570 PRINT "M%,R%,XMAX,XMIN ARE ";M%;R%;XMAX;XMIN
- 580 'Call JACKNIFE(SUBSAMP(],SIZES%,KSUBS%;SUBSAMP[],
XDATA[] ,ZDATA[])

l 590 GOSUB 2600
: 600 IF DEBUGS="Y" THEN 610 ELSE 820
610 'THEN Segment--Debug Mode Selected
620 PRINT “"HERE IS THE NEW XDATA ARRAY";
; 630 FOR I%=1 TO SIZES
: 640 PRINT XDATA(IS%);
ﬁ 650 IF I% MOD 5=0 THEN PRINT
-~ 660 NEXT I%
670 PRINT "HERE IS THE ZDATA ARRAY"
680 FOR I%$=1 TO SIZES
690 PRINT ZDATA(IS):;
o 700 IF I% MOD 5=0 THEN PRINT
i 710 NEXT 1%
& 720 PRINT "HERE IS THE NEW SUBSAMP ARRAY"
730 FOR SAMPLE%$=1 TO KSUBS%
740 IF SAMPLE%<=R% THEN LASTEL%=M%+2 ELSE
LASTEL$=M%+1
> 750 PRINT "SAMPLE%,LASTELY ARE ";SAMPLE%; LASTEL%
i 760 FOR ELEMNT%=0 TO LASTELS$

B.2
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770
780
790
800
810
820
830
840
850
860
870
880
890

900
910
920
930
940
950
960
970
980
990
1000
1010
1020

1030
1040
1050
1060

1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250

.............

IF DEBUGS="Y" THEN PRINT "LOADER HAS BEEN CALLED" e
ANSS="N" .j::::;
o

v
PRINT SUBSAMP(ELEMNTS, SAMPLES) ; ey
IF ELEMNT$ MOD 5=0 THEN PRINT i
NEXT ELEMNT% e
PRINT "PAUSING AFTER SAMPLE% "; SAMPLES$:STOP :
NEXT SAMPLES$ b
INPUT "Dump XDATA To Disk ";ANSS$ ;nfw
IF ANS$="Y" THEN 840 ELSE 860 P,
'THEN Segment--Dump XDATA To Disk Py
GOSUB 5160 e
INPUT "wWant A Look (Y/N)";LOOKS$ ?‘
IF LOOKS$S="Y" THEN 880 ELSE 940 S
INPUT "Input The Value of X *,X A
'Call CDFPDF (SUBSAMP|[],KSUBS%,M%,R%,IPLOTS,X; AVGCDF (X),
AVGPDF (X})
IPLOT%=3 'Midpoint of EDF e
GOSUB 3780 -
PRINT "AT X=";X; "CDF,PDF ARE ";AVGCDF;AVGPDF Yo
GOTO 860 VY
INPUT "Do You Wish To Plot the PDF/CDF ®;ANSS$ T
IF ANS$="Y" THEN GOSUB 5450' CALL PLOTPCDF T
NEXT SET% e
CHAIN "FAILPROB" B
END ol
IR AR AR RN RN ERERENNREEEREENERNRNI _‘.“._"
inanet SUBROUTINE LOADER(;XDATA[],SIZEg)"*"""!
INNANANANARANNRANAARNRNANNANANNRN
'*Subroutine LOADER Loads the XDATA Array From T
The Keyboard or From A Datafile &0
IR AER AR AR AR RNENLRENERERESERNSEN] .
'INPUT VARIABLES: None--Prompts For All A
INARIRANNRARRRNNRARNAERNY RN
'OUTPUT VARIABLES: XDATA--The Array Containing SIZE$ f?f;
Elements R
IARRNINAINARRNNNNNRNARANANNEN '{;‘“

IF ANSS$="Y" THEN 1110 ELSE 1190

'THEN Segment--Load XDATA From Random Number Generator
RANDOMIZE e
INPUT "What Size is Your Sample ";SIZE$% -
DIM XDATA(SIZES%) -

FOR J%=1 TO SIZE%
XDATA(J%)=RND
NEXT J%
RETURN
'ELSE Segment--Load From Keyboard or Datafile T
KEYINS="T" i

IF KEYIN$="K" THEN 1220 ELSE 1290

'THEN Segment--Load Data From Keyboard
INPUT "What Size Is Your Sample";SIZE% S
DIM XDATA(SIZE$) R
FOR J%=1 TO SIZE% "
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1260 PRINT ®"XDATA(";J%;")=";:INPUT XDATA(J%)
1270 NEXT J%
2 - 1280 RETURN
i 1290 'ELSE Segment--Load Data From Tape
1300 OPEN "I",3,FILNAMS
- 1310 INPUT #3,SIZE%,NELS$
ff 1320 IF TAPCALLS$="T" THEN ERASE XDATA
} 1330 DIM XDATA(SIZES%)
»ﬂ 1340 NREC$=SIZE%$\NEL%
. 1350 IF SIZE% MOD NEL%<>0 THEN NREC%=NREC%+1l
- 1360 XINDEX$%=0
X 1370 FOR RECORD%=1 TO NRECS%
A 1380 FOR ELEMNT%=1 TO NEL$%
- 1390 XINDEX%=XINDEX$+1
:f 1400 IF XINDEX$>SIZE% THEN PRINT "OUT OF
. DATA"™ : RETURN
1410 INPUT #3,XDATA(XINDEXS$)
1420 NEXT ELEMNT$
1430 NEXT RECORD$%
1440 CLOSE #3
3 1450 TAPCALLS="T"
'i' 1460 RETURN

- 1470 END

1480 IMANNIAANRANAINERRARENNRANRRANNN

1490 ' SUBROUTINE SORT(XDATA[],N%;XDATA[])""""'

1500 IR RANRANRENRNIRIIRARADRNN

1510 'SUBROUTINE SORT Sorts a Data Set From Min to Max

1520 'INPUT VARIABLES: XDATA--The Array Containing the Data
N§—==—- The Number of Elements

1530 'OUTPUT VARIABLES: XDATA--The Array After Sorting

1540 Thhkhkhhkhkhkkhhhkhkhhhhkhhkhkhhkhkhhkhkhkkhhkhkhhkhhkhhhkkhkhhkhdhk

1550 IF DEBUGS$="Y" THEN PRINT "SORT HAS BEEN CALLED"

1560 FLIPS=1 'FORCE AT LEAST ONE PASS

1570 WHILE FLIPS

1580 FLIPS=0

1590 FOR J%=1 TO N%-1

1600 IF XDATA(J%) >XDATA(J%+1) THEN 1620 ELSE 1660

1610 'THEN Segment--SWAP pair

1620 SWAP XDATA (J%) ,XDATA (J%+1)

1630 FLIPS=1

1640 GOTO 1660

1650 'ELSE Segment--Look At Next Pair .
1660 NEXT J% -
1670 WEND ;
1680 IF DEBUGS$="Y" THEN 1690 ELSE 1750 R
1690 PRINT "HERE IS THE SORTED ARRAY" B
1700 FOR I%=1 TO N% IICSER

1710 PRINT XDATA(IS):; Tk
1720 IF I% MOD 5=0 THEN PRINT e
1730 NEXT I%
1740 PRINT

1750 RETURN




1760 END e
- VA IRAAAAALLELLLLLLLLLEL L LLLLL RSN
P 1780 ' SUBROUTINE SUBSAMPL (XDATA|[],KSUBS%,SIZE%; SUBSAMP[], j&¥¢
M%, R% , XMAX, XMIN) s
1790 IR A SRR EERRRRARNRNRRRERRER NN NN}
" 1800 'Subroutine SUBSAMPL Loads the 2D Array SUBSAMP from
- the 1D Array XDATA
- 1810 IR AR R R RER R AR AR RERR RN RANNI]
- 1820 'INPUT VARIABLES: XDATA--1D Array Containing
Observations
SIZE%--Total Dimension of XDATA
KSUBS%-Number of Subsamples
Desired--Will Be # of Cols of SUBSAMP
1830 IR N AR AR R RN RRRRRERERS]]
1840 'OUTPUT VARIABLES: M$--Nominal Number of Elements Per
Subsample
R$--Number of Subsamples With M$+1l
g Elements
- SUBSAMP--2D Array--Each Column Is A
X Subsample
1850 IR ERE N AR R R R RN RARNERLLERERENLNERED] .'A'..:.
1860 'REQUIRED EXTERNALS: SUBROUTINE ENDPOINT--To Get N
XMIN, XMAX b

1870 IinAnNANENARNIRIRNRINRARRIRANAR)

~

1880 IF DEBUG$="Y" THEN PRINT "SUBSAMPL HAS BEEN CALLED" DS

1890 M$=SIZE$\KSUBS% OGS

B 1900 R¥=SIZE$ MOD KSUBS% Iy

o 1910 IF SAMPCALL%=1 THEN 1920 ELSE 1940 &
1920 'TBEN Segment--SUBSAMPL Previously Called b

1930 ERASE SUBSAMP S

1940 IF R%=0 THEN 1950 ELSE 1980 N

1950 'THEN Segment--M$ Elements in SUBSAMP--Dimension 1 More L

{ 1960 DIM SUBSAMP(M$+1,KSUBS%) e
- 1970 GOTO 2000 g
. 1980 'ELSE Segment--Mi+l Elements in SUBSAMP e
N 1990 DIM SUBSAMP(M$+2,KSUBS%) N
.. 2000 XINDEX$=0 e

- 2010 FOR SAMPLE%$=1 TO KSUBS% :{}3
- 2020 IF SAMPLE%<=R% THEN 2030 ELSE 2060 PRty
= 2030 'THEN Segment--M%$+l In This One _
2040 SAMPSIZE%=M%$+1 —
2050 GOTO 2080 -
2060 'ELSE Segment--M% In This One
2070 SAMPSIZE%$=M%

2080 WEIGHT (SAMPLE%)=SAMPSIZE%/SIZE$
” 2090 FOR ELEMNT%$=1 TO SAMPSIZE%
- 2100 XINDEX$=XINDEX%+1
. 2110 IF TOGGLES$="R"™ THEN XINDEX%=SAMPLE%+KSUBS%$* (ELEMNT%-1)

2120 SUBSAMP (ELEMNTS, SAMPLE%) =XDATA (XINDEX%) BESRR
) 2130 NEXT ELEMNTS% BN
: 2140 'CALL EXTRAP(SUBSAMP[],TOGGLES$; DELTAL,DELTAU) AR
3 2150 GOSUB 5970 P
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2160
2170

2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290

2300
2310

2320
2330

2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580

M A N AU A AR A A R SAT A e A R A S A Nl At et A A A RS S o s e s s e s

SUBSAMP (0, SAMPLE%) =SUBSAMP (1, SAMPLE$) -DELTAL

* (SUBSAMP(2,SAMPLES) -SUBSAMP (1, SAMPLES) )

SUBSAMP (SAMPSIZE%+1, SAMPLE%) =SUBSAMP (SAMPSIZE% , SAMPLE%)

+DELTAU* (SUBSAMP (SAMPSIZES , SAMPLES)

-SUBSAMP (SAMPSIZE%-1, SAMPLE%}))

MIN(SAMPLE%)=SUBSAMP (0, SAMPLES%)

MAX (SAMPLES$ ) =SUBSAMP (SAMPS1ZE$%+]1 , SAMPLE%)

NEXT SAMPLES$

'CALL SUBROUTINE ENDPOINT(MIN[],MAX[],KSUBS%)
GOSUB 2270

SAMPCALLS$=1

RETURN

END

' SUBROUTINE ENDPOINT(MIN[],MAX[],KSUBS%;XMIN,XMAX)

IR R R NN R AN RENNNEREERNAERNENEREERRED]

'Subroutine ENDPOINTS Gets The Extrapolated Values

for A Set of Data Found in Arrays MIN And MAX
TR AARNNIRENNARANNER]
'INPUT VARIABLES: MIN--1D Array Containing Mininum
- Extraps

MAX--1D Array Containing Max Extraps
KSUBS%$--Size of Above Arrays

IR A LN LR R RERELENEREENERNEERENEND]

'OUTPUT VARIABLES: XMIN--Minimum Found in MIN
XMAX--Maximum Found in MAX

'REQUIRED EXTERNALS: SUBROUTINE SORT
(A RRER AL ERERRERNERNNENNERRNN]
IF DEBUGS="Y" THEN PRINT "ENDPOINT HAS BEEN CALLED"
'CALL SORT (XDATA[],N%;XDATA[])
FOR J%=1 TO KSUBS%
SWAP XDATA(J%) ,MIN(J%)
NEXT J%
N%=KSUBS$%
GOSUB 1490
FOR J%=1 TO KSUBS%
SWAP XDATA(J%) ,MIN(J%)
NEXT J%
XMIN=MIN(1)
'"CALL SORT(XDATA[],N%;XDATA[])
FOR J%=1 TO KSUBS%
SWAP XDATA(J%) ,MAX(J%)
NEXT J%
GOSUB 1490
FOR J%$=1 TO KSUBS%
SWAP XDATA(J%) ,MAX(J%)
NEXT J%
XMAX=MAX (KSUBS%)
RETURN
END

................................................

.......................................
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2590
2600

2610
2620

2630
2640

2650
2660

2670
2680

2690
2700
2710
2720
2730
2740

2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
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' SUBROUTINE JACKNIFE(SUBSAMP[],SIZE%,KSUBS%;
SURSAMP|[] ,XDATA[] ,ZDATA[])
TRANNNR. THNANNANRNNNRRORNARRERRN
ve®tsubroutine JACKNIFE Samples From the Current
Distribution, Storing the Sample in ZDATA
INATNNEARNERNENARANEARNRNEN
'INPUT VARIABLES: SUBSAMP--2D Array of Subsamples For
Current Distribution
S1ZE$-~---Total Number of Data Points
in Original Sample
KSUBS%~-Number Of Subsamples Desired
(R AR ERR AR ERRRRERRNRENRRNENENL..]
'OUTPUT VARIABLES: ZDATA--Array Containing Last
Pseudodata
SUBSAMP--Altered 2D Array For "New"
Distribution
XDATA-~Now Contains New Dataset
INABANRPNRERNNARRANARNNANANS
'REQUIRED EXTERNALS: SUBROUTINE PLOTPNT--To Get Median
Ranks
SUBROUTINE ZOFCDF--To Invert
Distribution
SUBROUTINE SUBSAMPL-~To Reload Array
SUBSAMP
IPANTANNRANNANARNANANINAINANANY
IF DEBUGS$="Y" THEN PRINT "JACKNIFE HAS BEEN CALLED"
IF JACKCALLS$<>"T" THEN DIM ZDATA(SIZES%)
INPUT "Input JACKMAX$ (0,1,2):",JACKMAX%
IF JACKMAX%$=0 THEN JACKCALLS$="T":RETURN
IF JACKCALLS<>"T" AND JACKMAX<>0 AND TOGGLES$="S" THEN
2750 ELSE 2780
'"THEN SEGMENT--Verify Desired Operation
PRINT "YOU ARE JACKNIFING A STYLIZED SAMPLE"
STOP
FOR JACK%=1 TO JACKMAXS%
PRINT
PRINT "THIS IS INVERSION NUMBER ";JACK$
ZDATA (0) =XMIN
FOR IJACK$=1 TO SIZE%
YCALL PLOTPNT(IPLOTS%,IPNT%,NOBSS; PLOTPNT)
IPNT$=IJACKS%

IPLOTg=2" Median Rank Points
NOBS%$=SIZE%
GOSUB 3060

'CALL ZOFCDF (ALFA,ZMIN,ZMAX; ZALFA)
ZMAX=XMAX

ZMIN=ZDATA (IJACK%-1)
ALFA=PLOTPNT
GOSUB 3270

ZDATA (IJACKS) =ZALFA
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2940

2950
2960

2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080

3090
3100

3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230

3240
3250
3260
3270
3280
3290

3300
3310

3320
3330

PRINT "FOR DATA POINT *;IJACK$; "ALFA,ZDATA ARE ";ALFA;
ZDATA (IJACKS)
NEXT IJACKS
'"CALL SUBSAMPL (XDATA[] ,KSUBS%,SIZE%; SUBSAMPL[] ,M%,R%,
XMAX, XMIN)
FOR J%=1 TO SIZE$
SWAP XDATA(J%) ,ZDATA(J%)
NEXT J%
GOSUB 1780
NEXT JACKS%
JACKCALLS$="T"
RETURN
END

' SUBROUTINE PLOTPNT(IPLOTS,IPNT%,NOBS%; PLOTPNT)
IR NRNAN RN NN N RN NNORANRT
' Subroutine PLOTPNT Generates the Plotting Position
for the I%th Observation out of NOBS%
ITNAANENRNREANRNRARRRIRNRANARNNN
'INPUT VARIABLES: IPLOT%--Variable Selecting Choice
of Plotting Position

IPNT}~——~~- The I$th Observation
NOBS$~---The Total Number of
Observations

'OUTPUT VARIABLE: PLOTPNT--The Plotting Position
IARAAANNAENNNARNERARNEERRRRARRRN)
IF DEBUGS$="Y" THEN PRINT "PLOTPNT HAS BEEN CALLED"
IF IPNT%=0 THEN PLOTPNT=0:RETURN
IF IPNT%$=NOBS%+1 THEN PLOTPNT=1:RETURN
IF IPLOT$=2 THEN 3180 ELSE 3210
'"THEN Segment--Approximate Median Ranks
PLOTPNT=( IPNT%~.3)/(NOBS%+.4)
GOTO 3230
'ELSE Segment--Midpoint of EDF
PLOTPNT= (IPNT%~.5) /NOBS%
IF PLOTPNT<0 OR PLOTPNT>1 THEN PRINT "ERROR IN
PLOTPNT" : STOP
RETURN
END

' SUBROUTINE ZOFCDF (ALFA,ZMIN,ZMAX; ZALFA)

INMANANNNANAENANARNRERRARARANANN

'Subroutine ZOFCDF Finds the Value of z such that

Pr{Z<=z]=ALFA

IR AR R R R AR NN RN AR ERRRERRRN]

"INPUT VARIABLES: ALFA~--PERCENTILE DESIRED
ZMIN-~MINIMUM VALUE OF VARIATE
ZMAX~-~-MAXIMUM VALUE OF VARIATE

IANBRAERANNANIRENRDNANNANNNN

'OUTPUT VARIABLES: ZALFA--Value of Z Satisfying

Equation
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3340
3350
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3360
3370
3380
3390
3400
3410
3420
3430
3440
3450
3460
3470
3480
3490
3500
3510
3520
3530
3540
. 3550
- 3560

e 3570
S 3580

- 3590
- ‘o 3600
3610

3620
3630
3640

3650
3660
3670
3680
3690
3700
3710
3720
3730
3740
3750
3760
3770
3780

3790

-
alt at
L

'REQUIRED EXTERNALS: SUBROUTINE CDFPDF--To Supply

CDF Values
REAER AR AR R AR RERRYERERRET]
IF DEBUGS$="Y" THEN PRINT “ZOFCDF HAS BEEN CALLED"
ICOUNT%=0
CRIT=1
HIVALUE=ZMAX
LOVALUE=ZMIN
WHILE CRIT>.000001
IF HIVALUE=LOVALUE THEN 3440 ELSE 3480
'THEN Segment--Nonconvergence Problem
PRINT “ZOFCDF CANNOT CONVERGE"
PRINT "ALFA,ZALFA,CRIT ARE ";ALFA;ZALFA;CRIT
STOP
'ELSE Segment--Normal Search Continues
ICOUNT%=ICOUNTS%+1
IF ICOUNT$>212 THEN 3510 ELSE 3580
'THEN Segment--Tolerance Not Met
PRINT ®"TOLERANCE NOT MET"
PRINT “"ALFA,ZALFA,CRIT ARE ";ALFA;GUESS;CRIT
PRINT “"HIVALUE,LOVALUE ARE ";HIVALUE; LOVALUE
INPUT "Execute Recovery Routine ";ANSS$
IF ANS$="Y" THEN X=(HIVALUE+LOVALUE)/2:GOTO
3740
. PRINT “ZOFCDF HAS ABORTED":STOP
IF PDF<>0 AND ICOUNT%>1 THEN 3590 ELSE 3620
'THEN Segment--Newton-Raphson Estimate
GUESS=GUESS+ (ALFA~CDF) /PDF
IF GUESS>HIVALUE OR GUESS<LOVALUE THEN 3630
ELSE 3640
'ELSE Segment--Halve the Interval Estimate
GUESS= (HIVALUE+LOVALUE) /2
'CALL CDFPDF (SUBSAMP[] ,KSUBS%,M%,R%,IPLOTS,X;
AVGCDF (X) ,AVGPDF (X))
IPLOT%=3 'Midpoint of EDF
X=GUESS
GOSUB 3780
CDF=AVGCDF
PDF=AVGPDF
IF CDF>ALFA THEN HIVALUE=GUESS
IF CDF<ALFA THEN LOVALUE=GUESS
CRIT=ABS (CDF-ALFA)
WEND
ZALFA=X
RETURN
END
IAnNARARNRNNANNIRNIAIRNARRNRAORNNRAN
' SUBROUTINE CDFPDF (SUBSAMP[],KSUBS%,M3%,R%,IPLOTS,X;
AVGCDF (X) ,AVGPDF (X))
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3800

3810
3820

3830
3840
3850

3860
3870

3880
3890
3900
3910
3920
3930
3940
3950
3960
3970
3980
3990
4000
4010
4020
4030
4040
4050
4060
4070
4080
4090
4100

4110

..........

'Subroutine CDFPDF Gets the Value of The CDF and
PDF Using Sweeder's Estimation Technique

'INPUT VARIABLES: KSUBS%-~THE NUMBER OF SUBSAMPLES
Xemmm——— VARIATE OF DISTRIBUTION
SUBSAMP-2D ARRAY CONTAINING
PARTITIONED SAMPLE
R$--NUMBER OF COLS OF SUBSAMP WITH
M$+1l ELEMENTS
M3--NUMBER OF ELEMNTS IN SAMPLES%
R%+1l ON
! IPLOT%--CHOICE OF PLOTTING POSITION
IR A R R R AR AR R AR RRRRNRERRENNEERN)
'OUTPUT VARIABLES: AVGCDF--Average CDF Over KSUBS%
Subsamples
AVGPDF--Average PDF Over KSUBS%
Subsamples (Both Evaluated at X)

'EXTERNALS REQUIRED: SUBROUTINE LOADXDUM--To Load
Dummy Array
SUBROUTINE POINTCDF--To Get
Point CDF,PDF Valus
AN IARANDINORINANTRRNANRNARD
IF DEBUGS$="Y" THEN PRINT "CDFPDF HAS BEEN CALLED"
SUMCDF=0
SUMPDF=0
FOR SAMPLE%=1 TO KSUBS%
YCALL LOADXDUM(SUBSAMP[],XDUM[],SAMPLE%,R%,M%)
GOSUB 4080
'CALL POINTCDF (XDUM[] ,SAMPSIZE%,X, IPLOTS)
SAMPSIZE%=LASTEL%
GOSUB 4430
IF DEBUGS="Y" THEN 3990 ELSE 4000
PRINT "FOR SAMPLE="; SAMPLE%; "CDF,PDF ARE ";CDF,PDF
SUMCDF=SUMCDF+WEIGHT ( SAMPLE% ) *CDF
SUMPDF=SUMPDF+WEIGHT (SAMPLES%) *PDF
NEXT SAMPLE%
AVGCDF=SUMCDF
AVGPDF=SUMPDF
RETURN
END

' SUBROUTINE LOADXDUM(SUBSAMP{],M%,R%,SAMPLE%;XDUM[])

IR AR AR B R RN RN NNERERNEERNEDRNSN]

'Subroutine LOADXDUM Loads the XDUM Array For Later
Use By Subroutine POINTCDF--It Acts As The

Fictitious Data Array And is Loaded From Array SUBSAMP

B.10
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‘ 4120 'INPUT VARIABLES: SAMPLE$--IDENTIFIES COLUMN OF e
s SUBSAMP o
L T R}-—==w=—e FIRST R%Y COLUMNS OF SUBSAMP !
N HBAVE ONE MORE DATA Point ins
“ SUBSAMP--2X2 Array Containing Data-- b
N Row is ELEMNT%, Col is SAMPLE% e
- M§-———~——- Number of Elements Per RO
- Sample e
3 4130 'R RUBRENAARANANANANRANNE]) 3:{
. 4140 'OUTPUT VARIABLES: XDUM-~--—- DUMMY SORTED DATA Array-1D Y
4150 IR AR SRR RARRRRR R RRERARRERRRNN] iri
N 4160 IF DEBUGS="Y"™ THEN PRINT "LOADXDUM HAS BEEN CALLED" e
. 4170 IF DEBUGS$="Y" THEN PRINT "“SAMPLE%,R%,M% CAME IN AS oo

" : SAMPLE% ; R% , M3
4180 IF SAMPLE%<=R% THEN 4190 ELSE 4220 SRS
4190 'THEN Segment~--Set Has M%$+l Elements P
4200 LASTEL$=M%+2 'Because of Extrapolated b
Points REAR
4210 GOTO 4240 R
4220 'ELSE Segment~-Set Has M$% Elements N
4230 LASTEL$=M%+1 I
4240 IF CALLXDUMS$="T" THEN ERASE XDUM ;c;
i 4250 DIM XDUM(LASTELS$) [
.- 4260 FOR I%=0 TO LASTELS% St
. 4270 XDUM(I%)=SUBSAMP(1I%,SAMPLE%) ﬁjx
N 4280 NEXT I% el
c 4290 IF DEBUGS$="Y" THEN 4300 ELSE 4360 AN
6:: 4300 'THEN Segment--Debug Mode Selected N
4310 PRINT "HERE IS THE XDUM ARRAY FOR SAMPLE "“;SAMPLE% ETT
4320 FOR IDEX%$=0 TO LASTELS% Ry
4330 PRINT XDUM(IDEX%):; fs'
4340  IF IDEX® MOD 5=0 THEN PRINT 3@?
4350 NEXT IDEX$% KAy
4360 ‘ELSE Segment--Normal Termination ao%)
4370 CALLXDUMS$="T"

4380 RETURN

4390 END

4400 IR RARNIRRINRBIARRNANRNRON
Cj 4410 'SUBROUTINE POINTCDF (XDUM[],SAMPSIZE%,X,IPLOT%; -
== CDF, PDF) L
4420 IR AR R RN R AN RERENRENRERRENERNENEND] L——
4430 ' Subroutine POINTCDF Estimates the CDF and PDF

Nonparametrically From a Data Set Found in XDUM~-

4440 TARAABANRNANNRANARNEENNNNNR)

4450 'INPUT VARIABLES: XDUM--DUMMY ARRAY CONTAINING THE

DATA INCLUDING THE ENDPOINTS st

SAMPSIZE%~-TOTAL SIZE OF THE ARRAY -~

X---~POINT WHERE CDF,PDF WANTED e

4460 ' IPLOT%$--Choice of Plotting Position R

4470 (A AL XA R AR EEERERERERERE LN LN ‘::\~

4480 'OUTPUT VARIABLES: CDF-~Value of CDF At Point X e

PDF-~Value of PDF At Point X A

oz N
3
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4490 'TUNNANABANNRNRRNNNANRNANRND :::'.:,:

o 4500 'REQUIRED EXTERNALS: SUBROUTINE PLOTPNT VAl
bt 4510 INNNNANANRAENANAANARNEAND ) \‘\‘
4520 IF DEBUGS="Y" THEN PRINT "POINTCDF HAS BEEN CALLED" 2

4530 PI=4*ATN(1) hnre

4540 DUMIN=XDUM(0) e

4550 DUMAX=XDUM(SAMPSIZES) R

-

4560 IF X<=DUMIN THEN CDF=0:PDF=0:RETURN
4570 IF X>=DUMAX THEN CDF=1:PDF=0:RETURN
4580 FOR I%=0 TO SAMPSIZE$-1l

B

4590 IF XDUM(I%)<=X AND X<XDUM(I%+l) THEN 4600 ELSE 4710 b
4600 'THEN Segment--Interval Found e
4610 'CALL PLOTPNT(I%,IPLOTS,SAMPSIZES$) Bt
4620 IPNT%=I% N
4630 NOBS$=SAMPSIZE$-1 B
!l 4640 GOSUB 3060 -
- 4650 G=PLOTPNT o
- 4660 "CALL PLOTPNT(I%+1,IPLOTS,SAMPSIZES) S
a 4670 IPNT$=I%+1 o
3 4680 GOSUB 3060 T
- 4690 GPLUS=PLOTPNT o
hﬂ 4700 GOTO 4740 >
- 4710 'ELSE Segment--Look Again i
F: 4720 NEXT I% el
4730 PRINT "ABORT IN POINTCDF--X NOT FOUND":STOP e
4740 ARG=(X-XDUM(I%$))/(XDUM(I%$+1)-XDUM(I%)) R

4750 CDF=G+(GPLUS~G) *ARG )

4760 IF PDFTOGGLE$="S" THEN CDF=G+(GPLUS-G)/2 i
* (1-COS(PI*ARG))

4770 IF CDF<-6E-09 OR CDF>1 THEN PRINT "CDF ABORT IN

POINTCDF": STOP

4780 IF PDFFLAGS$="S" THEN PRINT "PDF ABORTED":PDF=0:RETURN

4790 IF PDFTOGGLE$="S" THEN 4800 EL. 4830

4800 ' THEN Segment--Use Sweeder's ( iginal PDF

4810 PDF=PI/2* (GPLUS~G)/(XDUM(I%-. 1) -XDUM(I%))*SIN(PI*ARG)

4820 GOTO 5130

4830 IF PDFTOGGLES$="H" THEN PDF=(GPLUS-G)/(XDUM(I%+l)-

XDUM(I%)) :GOTO 5130

4840 IP X<=,5*(XDUM(I%)+XDUM(I%+1l)) THEN 4850 ELSE 5020

4850 'THEN Segment--Interpolate From Previous Derivative

4860 IP XDUM(I%+1)=XDUM(I%) THEN 4870 ELSE 4890

4870 PRINT "DUPLICATE SAMPLE--PDF ABORT"

4880 PDFFLAGS="S" : PDF=0 : RETURN

4890 PDFMAX= (GPLUS-G) / (XDUM(I%+1) -XDUM(I%))

4900 XHI=,5*%(XDUM(I%)+XDUM(I%+1)) IO

4910 IF 1%=0 THEN PDFMIN=0:XLO=DUMIN:GOTO 5120 ¢

4920 "CALL PLOTPNT(I%-1),IPLOTS,SAMPSIZES; PLOTPNT) NG
4930 IPNT$=I%-1 A
4940 GOSUB 3060 RO
4950 GMINUS=PLOTPNT T
4960 IF XDUM(I%)=XDUM(I%-1) THEN 4970 ELSE 4990 TV
4970 PRINT "DUPLICATE SAMPLE-~PDF ABORTS" v
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PDFFLAGS$="S" : PDF=0 : RETURN
PDFMIN=(G-GMINUS) / (XDUM(I%)~-XDUM(I%-1))
XLO=.5* (XDUM(I%-1)+XDUM(I%))

GOTO 5120

'ELSE Segment--~Interpolate To Next Derivative
PDFMIN=(GPLUS-G) / (XDUM(I%+1)-XDUM(I%))
XLO=,5% (XDUM(I%)+XDUM(I%+1))
IF I%$=SAMPSI1ZE%~1 THEN PDFMAX=0:XHI=DUMAX:GOTO 5120
'CALL PLOTPNT(I%+2,IPLOTS,SAMPSIZES; PLOTPNT)

IPNT$=1I%+2
GOSUB 3060

GHIGH=PLOTPNT
PDFMAX=(GHIGH-GPLUS) / (XDUM(I%+2)-XDUM(I%+1))
XHI=,5% (XDUM(I%+1)+XDUM(I%+2))

PDF=PDFMIN+ (PDFMAX-PDFMIN) / (XHI-XLO) * (X-XLO)

IF PDF<0 THEN PRINT "PDF ABORT IN POINTCDF":STOP

RETURN

END

' SUBROUTINE DUMPDATA (XDATA[],SIZE$)

ON ERROR GOTO 5410

IF MID$(FPILNAMS,2,1)=":" THEN FILNAM$=MIDS(FILNAMS,3)

FILES=PREFIXS$+FILNAMS

OLDFILS=FILES$+".BAK"

KILL OLDFILS$

NAME FILES AS OLDFILS

OPEN "O",1,FILES

NEL%=5

NREC$=SIZE%\NEL$%

IF SIZE% MOD NEL$<>0 THEN NREC%=NREC%+1

XINDEX%=0

PRINT #1,SI1ZE%;NELS

FOR RECORD%$=1 TO NREC%

FOR ELEMNT$=1 TO NEL%

XINDEX%=XINDEX%+1

IF XINDEX3%>SIZE% THEN PRINT #1,:CLOSE 1:RETURN

PRINT #1,XDATA(XINDEXS);

NEXT ELEMNT%

PRINT #1,

NEXT RECORDS$

CLOSE 1

RETURN

END

'RRNESSUBROUTINE DISKERR"®""""®"""!

IF ERR=53 AND ERL<>1300 THEN RESUME NEXT

ON ERROR GOTO 0

RETURN

END

'RANARSUBROUTINE PLOTPCDF®®nnmnenee

MEMORY=FRE (0)

PRINT "MEMORY LEFT 1S ";MEMORY;"BYTES"

MEM=1000

IF MEMORY<MEM THEN 5520




..........

P ]

5520 COMMON MAXPDF,XMIN,XMAX,FILES
5530 DIM X(1),¥(1),¥2(1)" Sets Starting Addresses
N 5540 CLOSE
- 5550 INPUT "MUST WRITE TO DISK. INPUT FILNAMS:",FILNAMS
- 5560 IF MIDS(FILNAMS,2,1)=":" THEN
X FILNAMS$=MIDS$ (FILNAMS,3)
. 5570 FILES=PREFIXS$+FILNAMS
I 5580 OLDFIL$=FILES$+".BAK"
; 5590 KILL OLDFILS
5600 NAME FILES AS OLDFILS
5610 OPEN "0O",1,FILES
5620 GOTO 5660
5630 COMMON X(),¥Y(),Y2()
§ 5640  FILES="A:"' Sets Address
: 5650 DIM X(101),Y(101),Y2(101)
5660 PRINT "XMAX AND XMIN ARE ";XMAX;XMIN:INPUT "CHANGE
VALUES" ; CHANGES
5670 IF CHANGES="Y" THEN INPUT "INPUT XMIN,XMAX:",XMIN,XMAX
. 5680 HX=(XMAX-XMIN)/100
i 5690 FOR POINT$=1 TO 101
, 5700 INDEX$=POINT%-1
: 5710 X=XMIN+INDEX$*BX
- 5720 GOSUB 3770
e 5730 PRINT ®"AT X=";X;"CDF,PDF ARE ";AVGCDF;AVGPDF
: . 5740 IF AVGPDF)>MAXPDF THEN MAXPDF=AVGPDF
I o 5750 IF MEMORY<MEM OR ANS$="Y" THEN 5760 ELSE 5780
: 5760 PRINT #1,X;AVGPDF; AVGCDF
5770 GOTO 5790
5780 X (INDEX%)=X:Y (INDEX%)=AVGPDF:
. Y2 (INDEX%) =AVGCDF
_ 5790 NEXT POINT$
l 5800 IF MEMORY<MEM OR ANS$="Y" THEN 5810 ELSE 5870
:L 5810 PRINT #1,MAXPDF;XMIN;XMAX
: 5820 CLOSE
- 5830 PRINT "MAXPDF;XMIN;XMAX;FILES$=";MAXPDF;XMIN;
- XMAX;FILES
- 5840 INPUT "Chain In PLOTCDF (Y/N) ";ANSS$
] 5850 IF ANS$="N" THEN PRINT "NORMAL TERMINATION":STOP
5860 CHAIN "PLOTCDF"
5870 PRINT "MAXPDF IS ";MAXPDF
5880 INPUT "CHANGE MAXPDF ";PDF$
5890 IF PDF$="Y" THEN INPUT "Input MAXPDF:",MAXPDF
. 5900 FOR INDEX%=0 TO 100
b 5910 Y.(INDEX%) =Y (INDEX$%) /MAXPDF
N 5920 NEXT INDEX$
- 5930 PRINT "MAXPDF,XMIN,XMAX ARE
. " ; MAXPDF ; XMIN; XMAX; "PAUSING" : STOP
- 5940 CHAIN "MXPLOT,.002"
- 5950 RETURN
£ _ 5960 END
v B.1l4 ‘;}

A e 0 W S B 3 S b

_ 5500 INPUT "Do You Want Plotdata Written To Disk™;ANSS
\;]« 5510 IF ANSS$="Y" THEN 5520 ELSE 5630




5970 'SUBROUTINE EXTRAP(SUBSAMP[],TOGGLES;DELTAL,DELTAU)
5980 ALFAPLOT=-.5:BETAPLOT=0
o 5990 IF TOGGLE$="R" OR PDFTOGGLE$="S" THEN
- DELTAL=1 : DELTAU=1 : RETURN
6000 IF EXTRAPTOGGLES$="S" THEN DELTAL=1:DELTAU=1:RETURN
6010 RL1=2*SUBSAMP(2,SAMPLE%)-SUBSAMP(1,SAMPLE%)
-SUBSAMP (3, SAMPLE%)
6020 RL2=SUBSAMP(2,SAMPLES$)-SUBSAMP (1, SAMPLE%)
6030 RL3=SUBSAMP(3,SAMPLE%)-SUBSAMP(2,SAMPLES%)
6040 RL4=SUBSAMP(3,SAMPLE$)-SUBSAMP(1,SAMPLE%)
6050 RL=RL1*RL2/(RL3*RL4)
6060 IF RL>=1 THEN 6070 ELSE 6150
6070 PRINT "EXACT EXTRAPOLATION FAILS FOR DELTAL":STOP
6080 RL=RL4/RL3
6090 IF RL>=4 THEN 6100 ELSE 6130

6100 PRINT "METHOD 2 FAILS FOR DELTAL":STOP
6110 DELTAL=2* (1+ALFAPLOT)

6120 GOTO 6160

6130 DELTAL=2* (1+ALFAPLOT) / (2-.5%*RL)

6140 GOTO 6160

6150 DELTAL=2* (1+ALFAPLOT) / (1-RL)
6160 RH1A=SUBSAMP (SAMPSIZES,SAMPLE%)
—SUBSAMP (SAMPSIZE$~-1, SAMPLES)
6170 RH1B=SUBSAMP (SAMPSIZE%-1,SAMPLES)
-SUBSAMP (SAMPSIZE%-2, SAMPLES)
6180 RH1=RH1A/RH1B
6190 RH2A=2*SUBSAMP (SAMPSIZE$-1,SAMPLES)
o -SUBSAMP (SAMPSIZE$-2, SAMPLES)
(o -SUBSAMP (SAMPSIZES$ , SAMPLES$ )
6200 RH2B=SUBSAMP (SAMPSIZES, SAMPLE%)
-SUBSAMP (SAMPSIZE$-2, SAMPLES)
6210 RH2=RH2A/RH2B
6220 RH=RH1+RH2
6230 IF RH>=2 THEN 6240 ELSE 6320
6240 PRINT "EXACT EXTRAPOLATION FAILS FOR DELTAU":STOP
6250 RH=RH2B/RH1B
6260 IF RH>=4 THEN 6270 ELSE 6300

6270 PRINT "METHOD 2 FAILS FOR DELTAU":STOP
6280 DELTAU=2* (BETAPLOT-ALFAPLOT)

6290 GOTO 6330

6300 DELTAU=2* (BETAPLOT-ALFAPLOT) / (2-.5*RH)
6310 GOTO 6330

6320 DELTAU=2* (BETAPLOT-ALFAPLOT) / (2-RH)

6330 RETURN

6340 END
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Appendix C: Distribution Of A Fungction
NMonotonic In N Random Variables

Overview

This Appendix provides a demonstration of a powerful
alternative to random Monte Carlo sampling when used to find
the distribution of a fumctiom of one or more random
variables. Appendix A provided an introduction to Sweeder's

l method [14] of non-parametric estimation of distribution and
density fumctions. In that Appendix, the concept of a
stylized sample was presented, and impro;emcnts were made to

: one of Sweeder’'s basic numerical techniques. These ideas

are briefly reviewed. The problem of finding the
distribution of a function of a single random variable is

(‘. considered. It is shown that a set of stylized points from

the population of the random variable X maps into a set of
stylized points from the population of Z, where Z=g(X), and

' the function g(x) is monotonic. Two examples are presented.

Functions of two independent random variables are then

considered, and two examples again presented. Functions

monotonic in N random variables are discussed.

A Review of Sweeder’'s Method

Given a set of observations from the population of the
} random variable Z with distribution function Fz(z). one can
order the set from smallest to largest. Given this set,

2 denoted by:
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{z;},i=1,m ‘;5;

where zi<zi+1 then one may construct the sample distribution

function Fg(z) as follows: ;ESP
Fg(z)=0 v z<z, (C.1) 5§F£i
| Fg(2)=6,+(6;,41-6;) (2-2;)/(z5,1-2;) ¥ 2;42¢z;,; (C.2)
Fs(z)=1 v z2Z.94 (C.3) ‘
Sweeder [14] showed that such a sample distribution ;5;?
i function converges uniformly to the underlying distribution é{'_
function Fgy(z). i'f‘
In Equation C.2, G, is a nonparametric plotting &
i position, given.by some rule such as: ot
(=(i+a)/(a+p); -1<agpil (C.4) 2
In Equations C.1 and C.3, Zg and z_,,, are extrapolated E;i
i (" endpoints such that: g;:
Fg(z3)=G,=0 (C.5)
Fglz . 1)=6G_ =1 (C.6)
' The simplist linear transformation is given by:
Zz=X (C.7)

If X is a random variable with distribution function
3 Fy(x), then the distribution function of Z is given by:

Fz(z(x))=Fx(x) (C.8)

Now, provided Fx(x) is known, ome cam collect the

particular set of m values: {

E Bt P

{x;}; i=1l,m

in such a way that the x; satisfy:




.............

.i
. R ”
i Gi=Fx(xi)=J;$fx(x)dx (C.9)
i ) where
Fy(x4)=0 (c.10)

By Equations C.2 and C.9 one sees that:

Fg(x;)=Fyg(x}) (C.11)

R

For this particular set of points, the sample
distribution function Fg(x) is exact at the drawn data
i points, x;. Such a set of points (reference Appendix A)

will be referred to as a stylized sample, The definition is
repeated below:
‘ Definition: The set of points {x:}. i=1l,m, is defineq
as a stylized sample from the population of X if, for every
element of the set,
. o Fg(x{)=Fyg(x}) (C.12)
and x;(x;+1.

Referring back to Equation C,7, one sees that the

. distribution function Fs(z) is also exact at points z; given
by
~A s ]
‘_:' zi=xi (C.13)
% since
) (2 (x; (C.14
Fg(z,;)=Fg(x;)=G; .14)

Hence, the motivation is provided to search for a new
; technique in finding the distribution of a function of a

random variable.

N
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Monotonic Functions of a Single Random Variable

One may now consider the case where the random variable
Z is an arbitrary monotonic function of the single random
variable X, That is,

Z=g(X) (C.15)
where g'(x) has no zeroes throughout the range of X.

From the previous discussion, if one could somehow
obtain a stylized sample from the population of Z, then the
sample distribution function Fs(z) is exact at the points
[z;]. i=1,m. With & minor restriction on the plotting rule
of Equation C.4, such a set of z’'s is found by simply eval-
vating the function g(x) at the points {x;}.

HYPOTHESIS: Given Z=g(X), with g(x) monotonic, and a
stylized sample from the population of X, {x;}. i=1l,m, then
the stylized sample from Z, {z;]. i=l1,m; is found by evalua-

ting g(x) at the points {x;}, i=1,m. This is true provided

the x; are drawn by the rule:

=( 1 = .=xi.

Gi (i+a)/(m+p) Fx(xi) J;ofx(x)dx (C.16)

and p-2a=1 (C.17)
PROOF: The equation of total probability [1,6] can

be used to find the density function fz(z) given the comdi-

tiomal density function fz|x(z(x)). That is:

X

f,(z)= xg‘*' £o(x)f (z(x))dx (C.18)

zZ|x
where X and Xo4q1 Satisfy:
Fx(xo)=0 (C.19)

Fx(xm+1)=1 (C-ZO)
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Since the objective is to draw or construct a stylized ‘$Q*
. RS
" sample from the population of Z, one might seek the point z? e,
i RS
. Dt
that satisfies the egquation: B,
ey
. AN
That is, z; is one of the members of a stylized sample from ﬂﬁg
the population of Z. E,"
The distribution function may be found by integrating -:iﬁ
the density function. Equation C.18 may be integrated to ;ft
the point z;, and the integral over z taken inside the LI,
integral over all x. Recalling the definition of the condi- Zfi’
tional distribution function leads to the result: : ;
F (z )= £_(x)F, ((z )d (C.22) -
y Al Rl PR ¢ zlx'%;’9x . s
.
The z. must satisfy Equation C.22 for every j=1,m. e

i
Now, lex(zj.) is known explicitly. Since z is a func—

\o o

tion of x only, the density function of Z|X is the Dirac

delta function with parameter { given by:

{=g(x) (C.23) .

That is: Eﬂ,

fz|x(z)=6(z-§) (C.24) :

and i
Foro(z)={% s(z-0)a (C.25) "

zIlx zj =|_gd(z {)dz . Tﬁf

By the properties of the Dirac delta function [2,11],
lex(z;) takes only two values:

. . ‘v.-
lex(zj)=° v zj<f (C.26) o

')

s
’-‘l

. . o
Fz|x(zj)=1 v zjzf (C.27) i'

Y

.
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Equations C.26 and C.27 can be put to use in Equation
C.22 by transforming the integral in Equation C.22 to an
integral over {. From Equation C.23, )
di{=g’'(x)dx (C.28)
x=g1 () (€.29)
The transformed integral is:

= s _[8(xm+1)
G, Fz(zj)- fx(g Laenr (z “rasrer s TsN(c.30)

g(xo) zlx

One may now consider increasing versus decreasing func-—
tioms of X,

Monotonically Increasing Functions. For monotonically
increasing functions of X,

g'(x)>0 v x (C.31)

For this case the integrand in Equation C.30 is always
non-negative, By Equation C.26,

%= tyz] c.32)

and is unity elsewhere. Using Equation C.32 in C.30 reduces

that expression to:

'

G F (z )= s(xo)fx (f))dtlg (s (¢)) (C.33)
provxded that

2;¢8(xg4q) (C.34)

Transforming back to the variable in x yields:

- s _(sUz)

Gj-Fz(zj) J;o fx(x)dx (C.35)
However,

G, =F_( ‘)=f‘3f (x)a (C.36)

=Fy xj 0 Ix x)dx .

Since Equation C.34 holds and g(x) is increasing it follows

that




- -1, ®
:_ . 4 (Zj)<:m+1 (C.37)
SN £x(a”1z)>0 (C.38)
r 4
Comparison of Equations C.35 and C.36 implies that XS
- LS LA
L~ e
X g (z])=x] (C.39) a2
- [ TR
- s
S or  zj=g(x]) (C.40) gt
~ The hypothesis is verified for increasing functions of
- X.
% Monotonically Decreasing Functions. For momnotonically
decreasing functions of X, R
g'(x)<0 v x (C.41)
For this case, the integrand in Equation C.30 is always &:k_
nen—-positive, Since positive integrands are preferred, one %ﬁf
can use the relation: Eé:
. lg'(x) l=-g'(x) (C.42) :
'y ¢
in Equation C.30. This results in the expression:
* = [8(xm+1) -1 . v (o1
Fz(zj) L(xo) f2(8 (¢))Fz|x(zj)d;llg (8 (&) lc(c.a3)
Reversing the limits of integration leads to: .
. - . -
_(s(xo) 1 Vo=l -
Fz(zj) g(xm,l)fl(g (C))Fz'x(zj)d{/|a (g (N1 (c.4a4) *?i
Exploiting again Equations C.26 and C.27: 'Ei:
o (2} -1 yeo-1 =
: = = C.45 ae
_ Gj Fz(zj) J;(Xm*l)fx(s (2))alrslg' (g “ (2N ( ) D
. provided that S
i. z;<g(xo) (C.46) ;ii
o Lo
- A variable transformation back to x space yields: LA
v - . - 3-1( z; ) , . ;'7?_
- Gj Fz(zj) J;m+1 fx(x)|g (x) ldx/1g’(x) | . (C.47) T
- - -
- TEA
. ION
c.7 S0
---------------------- el e
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Exploiting Equation C.29 and again reversing limits

ff? leads to:

6.=F, (z)=[*ms1 ., £ (x)a (C.48) k
[t AR R FETR TS Bb Sinki : o
L. -n '-‘
b~ Equation C.48 is just the statement that: agﬁ
- . 1, 1. 5""":{'
i Since Equation C.46 holds and g(x) is decreasing, it g*?
E: follows that :1%
-1, ®
8 (zj)>x° (C.50) o
fx(s”1(z3))>0 (c.51) ko

So there must exist an X0 such that ;3
xj00xg (C.52) _
and g7z} =xy, ' _ (C.53) -
® ::’:::'
or zj-s(xj.) (C.54) :-,‘_j-::
The question is, is this x;s one of the membeors of the 3f2
set of stylized points drawn from the population of X? It L??
is if it satisfies Equation C.,36 for j=j'. However, it must j?;

also satisfy the equation just derived, Equation C.49. Evi-
dently, one must require that

Gj=1~Gj. for some j=1,m; some j’'=1,m (C.55)
Using Equation C.4 in the above, j and j’ must satisfy

j=m+p-2a-j’ (C.56)

But the restriction of Equation C.17 reduces the above

j=m+1-j° (c.57) -
Examination of the above equation (see Table C.1) shows

that under the restriction of Equation C.17, the set of Gj's




...................
-----

remain unchanged under the transformation of Equatiom C.S55.
It is interesting to note that of all the plotting rules
considered (Table C.2), only the EDF fails to satisfy the
condition f-2a=1.

In conclusion then, Equations C.54 and C.57 imply that:

1;'8(1ju)=$(x;+1_j) (C.58)

The hypothesis is therefore verified for decreasing
functions of X, completing the proof.

Sample Calculations. To illustrate the above consider-
ations, two sample problems will be worked--ome involving a
known increasing functionm of X, the other a known decreasing
function of X.

Distribution of a Linear Transform. An example of
an increasing function of X is:

Z=(1nX-ayg) /By (€C.59)
where X is lognormally distributed with location parameter
ay and scale parameter Bi. The input distribution is from
Figure A.22, The stylized sample is formed by finding

z;=(lnx;-ay)/By v i=1l,m (C.60)
The distribution of Z, which should be normal with mean zero
and standard deviation 1, is found using the method previ-

ously described. The roesults are illustrated in Figure C.1.
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TABLE C.1
REFLECTION OF THE PLOTTING RULE UNDER J=N+1-J'
C.10
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TABLE C.2

PLOTTING RULE BEHAVIOR VWITH RESPECT TO f-2a

FORNULA p B B-2a

1. i/ (m+1) 0 1 1

2. (i-.3)/(m+.4) -.3 .4 1
3. (i-.5)/m -.5 0 1 S

e 4. [i-(m+1)/2m]/[m-(1/m)] -(m+1)/2m -1/m 1 ;.‘"'.'*J

6. i/m 0 0 0 RO

5. (i-1)/(m-1) -1 -1 1 H
%

7. (i-.375)/(m+.25) -.375 .25 1
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Distribution of the Log of an Inverse. An example

of a decreasing monotonic function is: “
Z=1n(1/X) (C.61) 2l

where X is uniformly distributed on the interval [0,1]. The f

input distribution is that of Figure A.18. The stylized é““

sample from the population of Z is found by finding E
z;=1n(1/x;) v i=1,m . (C.62) .
The random variable Z should have demsity fumction {J:
fz(z)=e"% v 250 (C.63)

and distribution function
F‘z(z)=1-e-z v 20 (C.64) :
The numerical method is compared to the true CDF and

PDF in Figure C.2.

Monotonic Functions of Two Independent Random Variables

One may now seek to extend the above theory to
functions monotonic in two independent random variables, say

X and Y. That is, given

Z=g(X,Y) (C.65)
where
98/0x#0 and 93/3y*0 v x,y (C.66)

the distribution fumction Fz(z) is desired. The

distribution functions Fx(x) and F!(y) are presumed known so
that stylized samples of any size from the populations of X

and Y may be drawn at will., The set drawn from Y may be

denoted by

.........
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{y;)n i=1,m

where as usual the y; satisfy

L

! Gi-(i+a)/(-+a)-F!(y;)=J'§it‘!(y)dy (C.67) ’-E“
. and the restriction of Equation C.17 holds. As usual, Yo $ﬁi:
E =
. and Ym+1 8F° extrapolated endpoints such that: Qb:
Fy(yg)=0 (C.68)
Fy(ygpsq)=1 (C.69)
i Selecting a particular y; one can in principle con-

struct the conditional density fumnction le’;(z) from the
equation,
fz|y;(z)=fx(x(z))|6x(z)lazl (C.70)
If Equation C.70 is analytically tractable, the
conditional distribution function may be found by direct

integration, i.e.

z ’ ’
Fz'y:(z)=_f_mley:(z Ydz (C.71)
If Equation C.70 is not easily integrable, one can
i doefine the conditional random variables Zi as:
zl=zly}; i=1,n (C.72)

Since there are m elements in the set of stylized points

. from the population of Y, m conditional random variables may

]

' be defined. From the argument just completed for functions
- of a single random variable, stylized sets of points for
i each of the Zi may be drawn by holding y; fixed and forming

the sets from the rule:

; ie, . e

: {zj } (l(ijYi)}n J i,m (Co73)

E Thus, one may construct m sets of conditional random

N o
f C.15% --'1
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variables with m elements each, requiring, at most, m“ calls

-,
s .

4
PP
.

Y S
[

to the function g(x,y).

In any case, the conditional distribution fuaction
le,:(z) is readily available.

The density fumction of Z is given by Equation C.18,
and the distribution function by:

Fy(z)= g':*'f!(y)p (z)dy (C.74)

zly
Since the function F!(y) is known, as are the fumctions
Fz|!(z). the integral of Equation C.74 may be solved by
Mellin transform [9], also known as the graphical method
{8]. The exact details of this using stylized sets are
.described in Appendix D.
Again, the objective is to construct a stylized set of
points from the population of Z. That is, one finds the z;
satisfying
Gj=(j+a)/(m+B)=Fz(z) v j=1,m (C.75)
or, one seeks solutions to the inverse equation,
z;=Fz1(6;) (C.76)
The approach now is direct solution of Equation C.76 by

numerical iterative methods. Two examples using this

formulation are presented at this time.

Distribution of A Sum of Sguares. An example of a T

function monotonic in two independent random variables is

Z=x2+y2 (C.77)
where both X and Y are independent and distributed uniformly

on the interval [0,1]. Again, the input distribution for




P T Ry

either X or Y is that shown in Figure A.18. The stylized

e =
'3
&

o

sample from the population of Z is found by solutiom of

I Equation C.76.
Some tedious analytic work yields the exact

distribution and density fumctions given respectively by:

e "y "y 3 B 5 v

Fz(z)=0 v z£0 (C.78)

Fz(z)=nz/4 v 0<z41 (C.79)

_ For the region 1(z(2,
\ Fg(z)=2{Sin"111/21/2)-sia" 2 ((z-1)/2) 1/ 2]} /2 be-x

+(z-1)1/2 (c.g0)

Fy(z)=1 v 222 (C.81)
F f2(z)=0 v 240 . (C.82)
fz(z)=n/4 v 0241 (C.83)
: N For the region 1<z(2, E;kﬂ
l \o £4(2)=18in"1[2/21/2]-8in" 21 ((2-1)/2)2/2]}/2 (C.84) F
% £7(z)=0 v 2> 2 (c.85) :iﬁ;
- ol
- Equation C.76 was solved iteratively for various num- i;ﬁ}
! bers of stylized points by the method just described. The §¢ﬁ;
; resulting convergence with increasing number of stylized i'f
; points is illustrated in Figures C.3 through C.6. These
E figures illustrate the overall convergence of both the dis-
. tribution and density functions as the number of stylized
points increases. For purposes of illustration, Sweeder's ;;2
! trigonometric interpolation was used for these plots. The 1,4;

most interesting of these is Figure C.3 which was done using

only § stylized points from each of the input distributions.
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The theory just developed predicts that the numerical
. approximation to the true distribution function should be
pinned to the exact distribution function at the perceantile
points .10(.20).90. The crossover points are very close to

these, even though it is expected that integration errors

Li for such a small number of points might lead to erroneous ;i
5: values for the z;. The probability density fumction is {f}
uniform out to z=1, and then has a longer decaying tail. i;ﬁ

The extrapolated endpoints compare favorably to the exact Ef?

results of 0 and 2. Eé;i

Distribution of A Ratio. Finally, consider the distri- Eﬁg

butioﬁ of oA

Z=X/Y (C.86) %Ef

where both X and Y are distributed normally with mean 0 and ;xg

-

variance 1. It is known that the distribution of Z is
Cauchy with density given by:

f5(2)=1/{n(1+22)} (C.87)
and distribution function given by:

Fg(z)=.5+Tan 1 (z)/n (C.88)

This was investigated since the Caunchy is particularly

TV et PN .
. . AR -
n el ettt atatal T T
v e € 1t e s @
. A AR A . . .
I DL NI S e

troublesome for moment propagation methods, including

Shannon maximum entropy [13], and because a hard test of the

¥ oo e e

method was desired for the case when the distribution has

infinite support and heavy tails. The results are NS
e
displayed in Figure C.7. e
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Functions Monotonmic in N Independent Random Variables

- The above considerations lead to the ability to find
the distribution of functions momotonic in N random

variables, provided that the function can be easily

rewritten as combinations of pairs of independent random
variables. One then uses the methods of the last sectiom to

solve a soequence of binary problems. A relatively simple

oy s

example is:
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Z={(R-8)¥+T}/U (C.89)
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where R,S8,T,U, and W are 2ll independently distributed

*
PP

random variables with known distributions. The problem can

be solved by solving a sequence of problems of two random e

variables. First, one finds the distribution of
V=R-8 (€.90)
This is done using the methods just described, and once the
distribution of V is known, Equation C.89 has been reduced
to
Z=(VVW+T)/0 (C.91)
Now one can proceed by finding the distribution of X

where X is defined as

X=VY (C.92)
The original problem has been reduced in dimension again to

Z=(X+T)/U (C.93)
Now Y may be defined by

Y=X+T (C.94)

and the distribution of Y can be found, since the
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distributions of X and T are known. The final problem to
solve is thus

Z=Y/0 (C.95)
But this is easily done, since the distributions of Yand U
are known, and are independent.

The method is not limited to linear functions. The
above simply serves as an illustration of a fumctionm of
multiple random variables, solved using mno additional
mathematical complexity than that for two random variables.
Actually, the requirement of independence might be relazxed,
depending on the problem being considered. If two of the
variables are correlated, if the correlation is known, and
if those two can be isolated from the other randoms
variables, then the distribuotion of their combination can
be determined. This is done in Chapter IV, where the
distribution of the safety factor of a reactor pressure
vessel is determined, the safety factor being a fumctiom of

five random variables, two of them correlated.

Summary

The primary use of algorithm NOSVWET has been demon-
strated in this Appendix. Sweeder’'s method of nomparametric
estimation, as modified (Reference Appendix A), provides a
new tool for finding the distribution of a functiom of a
random variable., After reviewing Sweeder’s basic ideas,
monotonic functions of a single random variable were con-

sidered. It was shown that a stylized sample from the




population of X maps into a stylized sample from the popula-
tion of Z. The ides of drawing a stylized sample to find
the distridbution of an output variable leads to a numerical
method for finding the distribution of a function of two
random variables. Examples were shown, and the problem of a
function of multiple random variables was discussed. The
technique provides a new tool for the survivability analyst,
since the stress and strength distributions are often func-
tions of basic random variables whose input distributions
are known, The method provides a powerful alternative to
random Monte Carlo methods and propagation of moments tech-

nigques.
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P Appendix D: A Numerical Approximation

i it To The Reliabili Interference Integral

The objective of this Appendix is to demonstrate the
utility of stylized sets of points (reference Appendix A) in

solving conditional probability integrals, 1like that shown

Y TNV

in Equation C.74, reproduced below.

=[¥m+1
Fz(z) fyrg*‘ f!(y)ler(z(y))dy (D.1)
- The integral essentially extracts the expected value of

a cumulative distribution function (CDF) with respect to a
> Probability density function (PDF), The CDF and PDF need
‘ not be independent, as Equation D.1 above explicitly
- indicates. The relationship of the above to the reliability
interference integral may be seen by considering Y as the
stress variable s, and Z|Y as the strength variable 8.

Equation D.,1 then becomes the equation for the failure

probability Pg» Biven by

) = 1Sm+1
I P, fso £, (s)Fg(s)ds (D.2)
H: A variable transformation techmnique, known as a Mellin

- transform [9)] may be used to calculate the above integral,
(This is also known as the graphical method by some other

avthors [8).) The variables G and H are defined by

- s ! ’
G(S)= sofs(s )ds (p.3)




= s ’ ’
| H(s) j;of.(s )ds (D.4)
\. Then
14
l ‘H=f _(s)ds (D.5)
: and Equation D.2 may be written as
' 1
i J;G(H)dﬂ (D.6)
. The dependence of G on H is seen through the relations
Hi=F‘(si) (D.7)
=p—1
or si-Fs (Hi) (D.s)
l At the particular value s,, Gi is given by
Gi=Fs(si) (D.9)
or, writing G as an explicit fumction of H,
l R
? Numerically, one draws a set of stylized points from
) .. the stress random variable s, and denotes the set by
..- (si}, i=1,m

where s, and Sn+y 8r¢ the extrapolated endpoints found as
- discussed in Appendix A. Because of the way the stylized

points are drawn, the Bi are given exactly by

;; H;=(i+a)/(m+B); -1Kalp; i=1,m (D.11)

g where

3

- Hy=0 (D.12)
and H .,=1 (D.13)

S The set of stylized points from the strength variable

i 8, denoted by

- (83}, i=1,m

:i defines the strength distribution function Fs(s) as defined
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N °
: in Equation D.9. Consequently, the integral may be
t (éj calculated over H by writing
4
=|Em+1

' P, fﬂo G(H)dH (D.14)
E The above integral may be written as the sum of three
2 separate integrals on the intervals [H,,H,1, (B, ,H ], and
i [Bm’nn+1]' Application of the trapezoidal rule to each of
- these integrals in turn yields

pf1=(Gl+Go)H1/2 (D.15)
E m-1
| Pey An£61+2zi=zei+sn}/2 (D.16)

pf3=(Gm+1+Gm)(1—Hm)/2 (D.17)
. where
i AH=1/ (m+B) (D.18)

The sum of the above three terms is approximately the

value of the reliability interference integral.
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Appendix E: PFurther Consideration of the Yulnmerability
of a Box—Boeam ¥ing Structure

Overview

This Appendix provides additional information on the
box—-beam wing model discussed in Chapter VI. In particular,
the following is provided: (a) the basic assumptions about
the box-beam and the scenario for the vulmnerability calcula-
tions, (b) explicit calculations of the stress in each of
the four members of the beam, and (c) the relative vulnera-
bility of each of the four components of the beam in the

sure—-kill, median—-failure, and sure—-safe regions.

Assumptions

The following assumptions are made regarding the wing

model and the scenmario for the calculation:

(a) the wing is assumed to be designed for constant
bending stress along the length of the wing with a
1g design of 10,000 psi (6.891E7 Pascals);

(b) the wing box is assumed to be free to expand and
bend;

(¢) the effects of siructnral discontinuities are
neglected;

(d) the aircraft is directly above the burst at burst
time, implying that only the lower skin is heated,

and it is heated uniformly.
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