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Dedicated to an immigrant of 1906, Sverre L. Unde=. who

gave up his native Norway to bequeath to me these great

United States.



In the Winter of 1981, Dr. Charles 3. Bridgman provided

a unique and enlightening experience for me and several

other graduate students. He led a special study in Nuclear

Survivability, drawing on current research in the field, and

provoking each of us to wrestle with that problem in a

fundamental way. Just how does one measure the probability

of failure for a structure exposed to the effects of nuclear

weapons? The questions raised in this class were so intri-

guing that I chose the field for my research area under the

direction of Dr Bridgman. My thanks to him for his inspira-

tion, his encouragement, and his discipline.

My thanks also to the Defense Nuclear Agency who spon-

sored the work. Their willingness to sponsor travel to DNA

and other locations for consultation was very beneficial.

A few words about some special items in the text are inp order. Words can mean different things in different disci-

plines. A design engineer, for example, will see 'sigma' in

pounds per square inch, while a statistician will see the

normal distribution. To prevent these misunderstandings, a

glossary can be found in Appendix F.

This problem covered a broad range of disciplines--from

nuclear effects, to nonparametric statistics, to aircraft

structures. The bibliography is topically indexed as an aid

in sorting out the literature.
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A good deal of statistics had to be learned in all

this. A special thanks goes to Dr. Albert H. Moore. His
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to this research effort.
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especially for assistance with the stress model in Chapter

VI and Appendix E.
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Montulli, committee members at large and to Dr. Michael F.

h ~. Baran, who reviewed and commented on an early version of
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examined the proof in Appendix C. Thanks are due two
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and Al Sharp both took the time to patiently listen during

an early stage of the research. I am especially grateful to
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routine.
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Abstract

crftA new approach for assessing the survivability of air-

craft components in nuclear blast and thermal environments

is presented in this dissertation. A nonparametric tech-

nique is developed for use in calculating the reliability

interference integral. This approach eliminates the need

for density function identification and parameter estima-

tion. Furthermore, the method can be used without resorting

to large-sample random Monte Carlo simulation or propagation

of moments. In addition to this, the derived cumulative

distribution function using such a technique exactly inter-

polates the true distribution function at selected points.

The method is applied to the problem of aircraft survivabil-

ity in nuclear blast environments using failure (strength)

distributions found in the literature. It is also applied

to the case of aircraft survivability in nuclear thermal

environments where direct failure data is not available.

Inputs to the engineering models involved are treated sta-

tistically, and the method is used to rigorously determine

the statistical nature of the output variables.

. . . ~. .
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I. latroduetiom

The objective of this dissertation is to find a logical

way of inferring the probability of failure of an aircraft

component when exposed to the effects of nuclear weapons. A

reliability theory approach is taken that is distribution

free. This approach, which exploits some recent develop-

ments in nonparametric statistics, eliminates the need for

density function identification and parameter estimation.

Furthermore, it provides a new way of finding the distribu-

tion of a function of random variables without using large-

sample Monte Carlo simulation. The method is applied to the

problem of aircraft survivability in nuclear blast environ-

ments using test data found in the literature. It is also

applied to the case of aircraft survivability in nuclear

thermal environments where direct failure data is not avail-

able. Inputs to the engineering models involved are treated

statistically, and the method is used to rigorously deter-

mine the statistical nature of the output variables.

A review of nuclear survivability/vulnerability (S/V)

methods is provided in Chapter 11. The deterministic

approach for aircraft is reviewed. Little work on probabil-

istic methods for aircraft has been done up to this time.

Attempts to logically develop a probabilistic model from

stated aircraft hardness specifications are noted as are

other approaches. Ground system survivability methods are

.............- -
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examined. Probabilistic methods have been used for some

time in this area. The earliest approaches involve direct

modeling of system failure probability as a function of

range from the weapon. Modern methods include Monte Carlo

simulation. This has been used in Minuteman survivability

studies and more recently to investigate electromagnetic

pulse (EMP) survivability. Other studies include surviva-

bility assessment of horizontal and vertical missile shel-

ters and interruption of low frequency communications by

nuclear effects.

A review of classical stress/strength interference

theory is provided in Chapter IIl. Strength and stress

distributions are discussed, and the reliability interfer-

ence integral presented. Engineering determinism, or

"cookie-cutter" damage distributions, are shown to be a

special case of the general interference theory approach.

Stress/strength interference theory is thus a natural choice

as a theoretical approach. Serious problems have existed in

applying interference theory to failure assessment of large

engineering systems. These include development of the sys-

tem reliability model from component structures, the numeri-

cal difficulty of finding the distribution of a function of

one or several random variables, and the serious limitation

presented by the lack of data. This last limitation in par-

ticular makes density function identification and parameter

estimation difficult. Attempts to solve the above diffi- -

1.2
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culties include fault tree analysis, propagation of moment

methods, direct and indirect Monte Carlo simulation, vari-

able transformation techniques, Bayesian analysis, and sur-

vey of expert opinion.

A new solution to the above difficulties using an

extension of recently developed nonparametric estimation

techniques is presented in Chapter IV. While the system

reliability modeling problem remains, the new numerical

technique provides a tool for finding the distribution of a

function of multiple random variables. An example from the

engineering literature is presented as a benchmark problem.

The advantages of the nonparametric method are noted. These

advantages include (a) elimination of the requirement for

density function identification and consequent parameter 
L

estimation, (b) freedom from a priori distributional assump-

tions, (c) elimination of the requirement for large Monte

Carlo samples, and (d) protection against drawing unwar-

ranted inferences from a small data set.

The analysis of aircraft survivability to nuclear

induced blast environments is presented in Chapter V. In

this case, actual failure distributions for piece-parts are

taken from an analysis of some 20 years of static test data * -

conducted at Wright-Patterson AFB, OH. A general discussion

of the survivability problem is presented, and a series

reliability model for the mission developed. Blast vulnera-

bility is determined for the fuselage, wing, and vertical

1.3-



.. . tail assemblies. This is done by using the statistical
*."' I

variation of overpressure versus range to determine the

applied stress distributions. The actual failure distribu-

tions determined from the test data then allow the component

failure probabilities to be determined as a function of

range. These provide the required information for finding

the system failure probability as a function of range from

the weapon.

The analysis of aircraft survivability to nuclear

thermal environments is presented in Chapter VI. The diffi-

culty of sparse data is noted. In particular, no

probabilistic description of the thermal environment could

be found from the literature. Also, no failure data for the

failure mode of interest could be found in the literature.

As an alternative, the statistical distribution of radiated

power is developed by regressing the output of a complex

radiation hydrodynamics code on that of a more approximate

model. The study is restricted to the radiated power from a

1 Kiloton (KT) burst in a sea level atmosphere. The statis-

r tical environmental input is then used to determine the

distribution of peak skin temperature in a thin skin assem-

bly. Two thermal failure models are compared, and failure

probabilities versus range are displayed.

The results are summarized in Chapter VII, and recom-

mendations for future work are given. The recommendations

r include needed developments in both methodology and applica-

1.4-- 77
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tions. The greatest need for applications is for standar-

d iz azed statistical descriptions of nuclear effects envi-

ronments.

The development of the primary numerical method used --

in the applications problems is detailed in Appendix A. The

documentation of several modifications to a nonparametric

estimation method is included.

A source code listing of the computer program NOSWET is

presented in Appendix B.

In Appendix C, a new method is presented for finding

the distribution of monotonic functions of random variables.

Functions of a single random variable are considered first,

and examples presented. The theory is then extended to

functions of two random variables, and two examples of this

are given. The theory, with some restrictions, is extended

to functions monotonic in N random variables.

In Appendix D, the num'rical technique used to calcu-

late the integral of conditional density functions is

explained and documented. The reliability interference

theory integral is a special case of this type of problem.

Further consideration of the vulnerability of a box-

beam wing structure in nuclear thermal environments is pro-

sented in Appendix E. In narticular, the relative vulnera-

bilities of the parts of the beam are discussed.

Finally, a glossary of acronymns and nomenclature is

presented in Appendix F, keyed by Chapter. -

I-,.S
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.-. II A Review of Survivability Methods--

Overview ;_.

The problem to be considered is this: An aircraft flys

in the vicinity of a nuclear weapon at the time that it

detonates. If the aircraft position with respect to the

burst is known, can one predict the probability of aircraft

failure due to the effects of the nuclear weapon? What is

the justification for such a prediction? The literature is

reviewed below. This literature search leads to a preferred

approach to solving this problem.

Deterministic Methods

The Defense Nuclear Agency (DNA) document DNA2048-H,

Handbook For Analysis of Nuclear Weavon Effects on Aircraft

[68] is representative of deterministic methods for

assessing aircraft survivability. The basic objective of

the handbook is the determination of sure-safe (SS) and

sure-kill (SK) ranges. SS and SK ranges correspond to

range locations where SS and SK responses of an aircraft

subsystem are expected. A SS response corresponds to

incipient damage, or limit loads. A SK response

corresponds to a catastrophic damage condition. This way

of thinking has its origins in aircraft design. SS loads

are limit loads, while SK loads are ultimate loads, or

loads beyond ultimate. Ultimate loads are often taken to be

.- . . ...-- - .. .
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limit loads times a factor of safety, typically 1.5. This N

approach to survivability allows one to find those regions

of space where the aircraft is sure-safe or sure-killed.

Typical outputs of the method of Reference (68] are shown in

Figures 2.1 and 2.2. These -pictures require some

explanat ion.

In Figure 2.1, the target occupies the origin of

coordinates. A nuclear detonation may be placed anywhere in

the plane of the figure. Any burst that falls on the solid b.

contour, or outside of it, leaves the target at the origin

completely undamaged. Hence, the region of space outside of

the contour is called the 'sure-safe' region. The probabil-

ity of damage is nonzero (but unspecified) in the region of

space inside the contour.

In Figure 2.2, the target also occupies the origin.

In this case, however, any nuclear burst that falls on the

contour or inside of it results in the destruction of the

target. Hence, the region inside the contour is now the

'sure-kill' region. Outside of the contour, the probability

of damage is unspecified (but it is not unity).

The chief disadvantage of the technique is that it is

ambiguous. There are regions of space left over where the

state of the aircraft subsystem cannot be determined.

S . . . . . . . 2 .
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Probabilistic Methods

The obvious problem with the deterministic technique

can be eliminated if one recognizes that the failure proba-

bility should vary smoothly from some low value in the SS

region to some high value in the SK region. A number of

approaches have been used to attempt this, and they are

reviewed below.

Aircraft _ Bridgman [441, in an early

Technical Note, attempted to find a continuous probability

of damage curve by postulating a damage function as a cumu-

lative lognormal distribution in the range space. This

approach closely parallels that of AP-550 [531, discussed

later. Since the lognormal is a two parameter distribution,

an infinite number of possibilities exists for the contin-

uous damage curve. Bridgman took the novel approach of

coupling the information in DNA-2048H so as to find the

optimum continuous damage model. He did this by postulating

the damage probability to be some arbitrarily low number

(.02) at a known SS range, and an arbitrarily high number

(.98) at a known SK range. The SS and SK ranges were deter-

mined by the methods of DNA-2048H. Such a specification

leads to a unique solution for the two parameters of the

lognormal distribution, and thus specifies the damage func-

tion.

In some later papers [45.46], Bridgman recognized that

the range specifications depended not just on the target,
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but on the entire source, transmission, and interaction

problem as well. He then postulated a continuous failure

distribution in the stress space, again finding the distri-

bution by coupling the information in DNA-2048H to the

lognormal model so as to specify the survivability function.

There have been other attempts to treat survivability

as a statistical problem at the component level. The

Studies and Analysis group at Hq USAF [421 used an approach

similar to Bridgman's. Sure-safe and sure-kill specific&-

tions in the stress space were assigned as percentiles of

the component failure distribution. The possibilites using

parametric statistics were surveyed as shown in Figure 2.3.

Other contributors to this field include Gragg [631. The

probabilistic survivability literature for aircraft systems

is quite limited compared to that of ground systems, which

will be considered next.

Ground Structures. Ground system survivability has

been studied for a considerably longer time than has air-

craft survivability. One of the earliest probabilistic

treatments is the method of AP-550 [531. The failure proba-

bility of a structure is given as a complementary cumulative

lognormal function, with the parameters of the lognormal

depending on the target hardness. This method is still in

use by the targeting community, as represented by the

Defense Intelligence Agency (DIA). In this method one

models damage directly as a function of range, based on

11.6



L I,

% 0 ak -d-W-o

' ' z *B ,, 1, 4

" ' f,'_\ :/ - ""....

B.. ,-

'-" I t I 1 I ' 4i-"-'-

H 4)

it" cd " --

oGoi .o

:-.:-

(L- w .4

CU4+-

0 7- 0 C

ww 0: 4 P

(L1

'* * ~ .~-'-d.~................. ............................................................. ... . . . . . . . .



0477 W- I" i

-*,K Y . Fo1 - - 7 .,

early observations of the Hiroshima blast damage. Targets

are coded by a special number as being either overpressure

sensitive or dynamic pressure sensitive. The special coding

of a target type yields parameters for the determination of

the continuous damage function.

A quite different probabilistic method was developed by

the Defense Nuclear Agency (DNA) in the late 1960's and

applied to problems of Minuteman Missile survivability.

This technique was developed independently of the method

used by DIA. DNA published the FAST (Failure Analysis By

Statistical Techniques) code in 1974 [57]. FAST is an ambi-

tious Monte Carlo code, including correlated nuclear weapon

environments, variable system reliability models, and arbi-

trarily input component fragilities, or subsystem failure

distributions. The publication of FAST was a significant

milestone. It was one of the first, if not the first,

Department of Defense (DOD) products that treated surviva-

bility along the lines of classical reliability theory.

After being used in the Nuclear Hardness and Evaluation

Program (NHEP) [58], it was not used much until 1980. At

that time a group at Lawrence Livermore National

Laboratory (LLNL) began using it to investigate probabilis-

tic modeling of survivability to EMP [40,41].

Recent probabilistic survivability studies include

examination of MX survivability in both its horizontal and

vertical shelters [55]. These studies, also conducted by

11.8-
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DNA, did not use FAST, but a combination of approximate

probabilistic techniques [371 and Monte Carlo simulation

[55]. Other studies of hardening of ground facilities may

be found in the literature [49,50,75].

Another notable study conducted recently by DNA is that

of Jordano [67]. He investigated the uncertainty of nuclear

effects on low frequency (LF) communication links. He cal-

culated the probability of LF signal loss, based on statis-

tical inputs to nuclear debris cloud stabilization altitude

and location. This work differed both from the FAST and the

approximate probabilistic techniques. Rather than make

distributional assumptions, Jordano directly calculated the

distribution of a function of a random variable based on a

variable transform method.

To summarize, ground system survivability is done in

two ways. The targeting community, as represented by DIA,

treats all damage as an empirical function of range [53].

The nuclear effects community, as represented by DNA, has

developed some probabilistic damage models based on classi-

cal reliability theory [37.55,57] and direct variable trans-

formation techniques [67]. The DNA publications just men-

tioned form the nucleus of modern probabilistic survivabil-

ity literature for the DOD. However, there has been a good

deal of work done outside of DOD, and some of this will be

reviewed at this time.

11.9
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Other Structure&. Two groups in the engineering comu-

nity outside of DOD have extensively studied methods for

determining the probability of failure of structures. Civil

engineers have been conducting research in the area since

the late 1960's. Most of the literature here involves the

method of propagation of moments of random variables, about

which more will be said in Chapter III. This technique has

been applied to a broad range of structural reliability

problems [7,27,28,30,31]. Some of these even deal with

nuclear blast damage [711. Textbooks on the subject of

structural reliability are beginning to be published

[15,23]. Since about the early to mid 1970's, the nuclear

engineering community has also taken an active interest in

the subject. Proceedings of the conferences on Structural

Mechanics in Reactor Technology (SMIRT) include many papers

on the application of probabilistic methods to problems of

nuclear safety. Here too, books are being written [25,29].

In most cases, these methods and applications are based on

mathematical reliability theory, coupled with standard prop-

agation of moments techniques.

Summary

The literature just reviewed includes deterministic and

probabilistic methods. Deterministic methods do not provide

for continuous failure (or survivability) functions. This

violates intuition. On the other hand, probabilistic models

that are based on direct modeling with range are justified

II.10
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only by early observations of nuclear blast damage. Sone 

recent publications suggest that the fundamentals of

reliability theory are applicable to the problem. In

Chapter III, classical reliability theory is more

carefully reviewed. The strengths and weaknesses of this

method as an applications tool for survivability analysis

will be noted.
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-. ;-';" III. Stless-Strematk Imtezoforeme I :"

Overview

The mathematics of reliability theory, and the field of

reliability analysis, came about as a result of problems the

DOD had with electronics piece-parts in the early 1940's

[8]. Only since about the mid 1960's has the field been

extended to problems of large-scale engineering systems. In

the paragraphs that follow, the basic theory of reliability

mathematics is reviewed. Engineering determinism is shown

to fit naturally into the theory as a special case. The -

problems in applying the theory to engineering systems are

reviewed, as are previous approaches to solving those

problems.

Mathematical Reliabilit, Theory

Strength Distributions. The strength distribution is a

statistical property of a population of devices operating in

some stress environment. Examples include light bulbs

operating for a given number of hours, or samples of wing

materials under tensile testing. The strength distribution

is sometimes called the failure distribution or the

resistance distribution. It is a measure of how well the

devices resist a stress load. The distribution is most L

easily determined for the case when a number of items can

all be tested to failure. In that case, one can plot the

1II.1 """
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fractional number of failures occuring in a given stress

interval versus the midpoint of the interval. The resulting

histogram approximates the underlying probability density

function (PDF) for failure. This statistical information is

a measure of the strength of the item, since the central

value of the distribution indicates the value of stress

where most failures occur. In addition, the amount of

scatter about the central value measures the variability in

the quality of the item. The stress value at which an item

will fail is a random variable. The probability that an

item will fail at a particular stress value s is then -

expressed by:

P f=Pr (Ss} f s(s)ds=F (s) (3.1)

•.* where pf is the failure probability, S the strength random

variable, s a particular value of S, fS(s) the strength PDF,

and Fs(s) the strength cumulative distribution function

(CDF).

If the testing of n items resulted in every single item

failing precisely at the value SK. then a true cookie-cutter

distribution would result. The PDF would be a Dirac delta

function [2] located at SK, and the CDF would be a step

function as shown in Figure 3.1 (top). A more likely result

is that every item fails at a slightly different value.

resulting in a CDF similar to that of Figure 3.1 (bottom).

-. :-c.l111.
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Figure 3.1. Cookie-Cutter (Top) and Random (Bottom)
Failure Distributions

(Adapted From Reference [57])
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.1..1111. Distributio. Equation 3.1 gives the failure

probability for the item provided the stress is exactly

known. As in the case of the failure point of the device,

the applied stress may not be known exactly. Repeated

measurements of the free field stress may yield a central or

expected value fr the measurements, but also dispersion

about the central value. The applied stress, s, would then

also be a random variable, described by a statistical dis-

tr ibut ion.

The Interference Intearal and Related Random Variables

If the distributions of S and a have been determined, then

the general expression for the failure probability is given

by:

* . Pf:Pr gS_ s) (3.2)

Provided the strength and stress variables are

independent, Equation 3.2 can be written as:

Pr S <s 1 fs(s)Fs(s)ds (3.3)

where pf is the failure probability as before, S the

strength random variable, s the stress random variable,

f s(s) the PDF of the stress distribution. and Fs(s) the CDF 7

of the strength distribution. In words, the failure

probability is just the chance that a random selection from

the sample space of all strength values yields a number less

than or equal to a random selection from the sample space of

all stress values. Equation 3.3 is often referred to as the

reliability interference integral, or just the interference

111.4
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integral, since contributions to the integral occur only in

the variable space where the density functions overlap or

"interfere". The shaded portion of Figure 3.2 illustrates

the interference region. Equation 3.3 is seen to reduce to

Equation 3.1 if the stress PDF is a Dirac delta function.

If the stress and strength random variables are not

independent, Equation 3.3 cannot be used as written.

However, Equation 3.2 is still valid, and the failure

probability can be calculated by finding the distribution of

either the margin variable, , or the safety factor

varlablo, 1 . The margin variable is defined by:

(3.4)

Consequently, in terms of the margin variable, the failure

* - probability could also be calculated by:

pf=Pr t<O0) (3.5)

Also, the safety factor variable, provided the applied

stress is not zero, is defined by:

?J=S (3.6) . -

In terms of the safety factor, the failure probability can

be calculated by:

Pf=Pr(17jl) (3.7)

At this point, examination of Equations 3.4 and 3.6

shows that one of the requirements for solving the problem

is the ability to find the distribution of a function of two

random variables. This can be a difficult problem, and it

will be discussed in more detail below. Before considering

F.
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that, a discussion of the reduction of the interference

integral for the deterministic case is presented.

Reduction To Enaineerins Determinism. If the stress is

deterministic, the PDF of a may be represented by a Dirac

delta function centered at the known stress value, say i.

That is,

f (s)=6(s-i) (3.8)

Using Equation 3.8 in the interference integral of Equation

3.3 reduces the integral to:

pf=FS (i )  (3.9)

If the strength is also deterministic, then the strength CDF

is given by:

F5 (iS)0 Y -i<SK (3.10)

FS(i)=1 v iSK (3.11)

The results of Equations 3.10 and 3.11 are the familiar

deterministic cookie-cutter damage functions.

Going the other way, Equations 3.10 and 3.11 can be

used first inside the interference integral of Equation 3.3.

Since the integrand is zero for every s<SK, the limits are ...

changed so that:

Pf =Xs fa(s)ds (3.12)

But Equation 3.12 is just the statement that:

Pf=Pr(s>SK) (3.13)

Again, by hypothesis, only one value of s is ever

observed, namely a. Consequently, Equation 3.12 takes only

two values:

1111.7
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pf~ •jSK (3.14)

P. =0 i(SK (3.15)fi

The set of Equations 3.14 and 3.15 is identical in

meaning to the set of Equations 3.10 and 3.11. Cookie-

cutter damage distributions are the result.

The reduction of the general reliability integral

approach to the cookie-cutter case for Dirac delta PDF's

makes it a natural choice for adding probabilistic

information to the survivability problem. One sees that

engineering determinism is nothing more than a subset of a

more general probabilistic approach. The subset is found by

replacing all continuous probability density functions by a

very special probability density function--the Dirac delta,

which has a single parameter. Seen in this light,

engineering determinism would seem to have no inherent

theoretical superiority over probabilistic methods based on

reliability theory. Even so, probabilistic approaches to

survivability problems are not common. The reasons for this

are examined next.

Applications Difficulties For Enaineerina Systems

The direct application of stress-strength interference

theory has been thwarted by problems in system reliability

modeling, analytic and numerical intractability in finding

the distribution of functions of random variables, and a

serip-'s lack of hard data. These are all discussed in turn

below.
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11111M Reliability Modl1n1.jz. Even if data were

abundant and mathematical methods available, it is still

difficult to determine how individual component failures can

combine to create a system failure. An example from the .-

aircraft survivability problem is the melting or rupturing

of non-structural skin panels. It simply is not true that

the loss of a single skin panel will mean the loss of the

aircraft. It is true that as panels are lost, the drag

coefficient increases, and that at some point, as more and

more panels are lost, the drag coefficient is such that the

mission cannot be completed--i.e, the system has failed.

The difficulty in constructing a model of system reliability

or survivability as a function of component survivability is

apparent. System reliability modeling is discussed in most

reliability engineering textbooks [8].

An approach used in reactor safety studies is that of

fault -tree analysis [29]. Basically, a list is created of

every event that is to be the subject of analysis. These

oevents are termed top events. A functional diagram of the

system is then studied so as to identify contributing events

that may directly cause the top event to occur. These

contributing events typically cause the top event to occur

through AND/OR Boolean operations. For example [29], a

circuit breaker may fail to trip because it fails randomly

by itself, OR a trip signal is not received. The con-

tributing events can also be further analyzed. To continue

III..
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the example, perhaps the trip signal is not received because

relay 1 AND relay 2 remained closed. Fault tree

construction can become a substantial task for a large
,U

engineering system.

At this point, it should be noted that whatever number

is obtained by a probabilistic assessment of survivability, - -

it will not represent an absolute measure of the frequency

of system failure. Since no system reliability diagram can

be perfect, a probabilistic estimate of survivability is a

conditional probability measure. At the very minimum, it is

conditional due to the system reliability model. Since it

is not possible to know all the failure mechanisms of a

system, the resulting survivability number is an upper bound

to the system survivability. Thus, for military

applications, targeters have more to gain by this type of

analysis than do defenders.

Mathematical Methods. Another difficulty in the direct

application of reliability theory is the analytic and

numerical intractability of the mathematics of statistics.

The most common problem, and one already hinted at, is that

of finding the distribution of a function of one or more

random variables. Very few problems have exact analytic or

closed-form solutions. Methods that have been used by

survivability analysts include propagation of moments with a

priori distributional assumptions, Monte Carlo simulation,

and variable transformation techniques.

IxI1.10
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Propagation of moments methods have been used by DNA in

some of the studies of missile basing [55]. Basically, given

an equation of the form:
Z=g(l 1 , x 2 , . . .() (3.16)

moment information about the XI is collected (usually the

mean and variance). The mean and variance of Z are then

calculated by means of Taylor Series expansions about some

point [8,12]. This requires the determination and

evaluation of partial derivatives. Once the mean and

variance of Z have been estimated, a lognormal distribution

function for Z is usually assumed [71]. Correlations among

the I, must be accounted for. Along these same lines, a new

technique based on a linear algebra has been developed by

Ditlevsen [23]. This approach assumes that only moment

information is available for all inputs, and thus only

moment information can be used for all outputs. Ditlevsen's

linear algebra approach seeks to accomplish the same goals

as a probability theory, yet can be presented without a

reference to probability theory.

There are several disadvantages to using propagation of

moments. One is that not all combinations of random

variables yield distributions that have moments. The

Cauchy, for example, cannot be estimated efficiently by such

methods [23,13]. Another disadvantage is the common use of

a priori distributional assumptions. However, perhaps the

worst disadvantage is the tediousness of calculating many

II.11
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partial derivatives. For example, in Appendix B of

Reference (121, one can find an expression for the expected

value of a fourth moment. This single expression occupies

48 lines of typewritten text! Needless to say, tasks of "i

this magnitude are prone to errors. Most of these

objections can be overcome by using Monte Carlo simulation.

Direct Monte Carlo simulation is described by ""1

Stancampiano [321. This is basically a brute force

counting operation. One samples randomly the distribution iil
of margin or safety factor. This is done by randomly

drawing from the strength and stress distributions, which

may be functions of multiple random variables, and counting

the relative number of times the margin variable is less

than 0, or the safety factor less than 1. If the part has a

very high reliability, this counting operation can become

expensive.

Monte Carlo with fitting seeks to overcome the expense 2
of brute force Monte Carlo counting. In this case, one fits

the simulated data to a distribution function, perhaps a

normal, or some other type. Stancampiano shows [32] that

some problems can be sensitive to the choice of distribution

function chosen. An elegant technique is to calculate high

order moments of the data and use the Shannon maximum

entropy method to find the minimally prejudiced probability

distribution [13]. This is not always straight-forward,

since the solution for the minimally prejudiced PDF involves

e_'1.12



solving a non-linear programming problem. Also, there is no

a priori guarantee that the distribution of the output

variable has moments.

Other Monte Carlo techniques exist, though they will

not be useful for the nuclear survivability problem.

Importance sampling [321 can be used if one knows that the

location parameter for the stress distribution is relatively

fixed. In that case, one can improve the Monte Carlo

efficiency by concentrating the sampling in the area of

interference between the strength and stress density

functions. This will not be useful for the problem at hand

since the applied stress from a nuclear weapon cannot, in

general, be confined to a limited range of values.

Other methods include the use of specialized

mathematics, such as Cook's work with H Functions [4].

These methods are still cumbersome and unattractive at

present for engineering applications. 
:. •

Sa s Data !&IA. Finally, the lack of data for the

required inputs to a probabilistic assessment limits the

usefulness of the reliability theory approach. The most

serious limitation of the lack of data is in the ability to

identify parametrically the input distributions. With a

small sample, it is possible that a number of density

functions would slip through even the best of goodness of

fit tests. Ashley [3] has shown how the use of a weak test,

such as the Chi-square which is popular among engineers, can
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lead to erroneous conclusions about the underlying

distribution, and unwarranted confidence statements about

survivability. Without a good idea of the underlying

density function for the inputs, it is hard to know just how

to estimate the parameters--indeed, one may not even know

how many there are.

The dearth of hard data has led many to consider

Bayesian estimation techniques. The use of Bayesian

statistics in reliability theory is discussed by Kapur and

Lamberson [8]. Bayesian statistics combines subjective

judgment or experience with hard data to provide statistical 7'

information similar to the classical statistical inference

approach. The method is controversial since "no

experimental or analytical methods exist for the

quantification of . . .belief" [8]. Nevertheless, Bayesian

methods have been widely used in doing probabilistic risk

assessments. The reasons for this are best represented by

direct quotes from the literature:

Ang writes in 1975, "When the observed data are

limited, as is often the case in engineering, the

statistical estimates have to be supplemented (or even

superseded) by judgmental information. With the classical

statistical approach, there is no provision for combining

judgmental information with observational data in the

estimation of parameters." [1]

111.14-
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McCormick, in a 1981 book on risk analysis [29], writes
"The interpretation of" (the law of large numbers) "is clear

enough for experiments that can be repeated. There are many

occasions in which the knowledge available is less precise,

especially when the engineer deals with rarely occurring

events that form the basis of many risk evaluations. Then

it is necessary to resort to the axiomatic or subjective

approach to the concept of probability, which we shall use

from now on."

Subjective probabilistic assessment is also mentioned

by Bevensee [41]. The lack of hard data for EMP

survivability assessment is apparently so serious, that in a

1981 follow-up study to that of Reference [41], fully 29

pages of a draft Lawrence Livermore National Laboratory

(LLNL) report are devoted to methods of polling expert

opinion [39]. Personal conversations with experts in the

study of ground systems survivability confirm that opinion

surveys are a common source of information [48].

This lack of hard data, combined with the controversy

surrounding the use of Bayesian statistics, leads to a

perplexing dilemma. Faced with the difficulties in

rigorously pursuing an approach along classical statistical

lines, one may wish to retain the traditional approach of

engineering determinism. On the other hand, engineering

determinism cannot deal with uncertainty other than by worst

case analysis or by parametric surveys. From a probability

k 111.15
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theory point of view, one has not avoided subjectivity by

retaining engineering determinism. One has simply chosen

the Dirac delta function as the underlying PDF for all .- -

variables of interest. The present probabilistic alter-

natives to that are to choose continuous distributions, and

somehow to estimate the parameters for those distributions.

Summary

To summarize the Chapter then, three of the more

serious difficulties in applying stress-strength

interference theory to engineering systems have been noted.

These include: (a) the problem of system survivability

modeling based on component survivability, (b) the

difficulty inherent in the mathematical methods for

propagating statistical information, and (c) the sparseness

of the databases for engineering inputs.

In Chapter IV (with related appendices), a new approach

for dealing with problems (b) and (c) above will be

presented. It will be shown that newly developed methods in --- "

nonparametric estimation provide a tool for finding the

distribution of a function of multiple random variables. It

will also be argued that nonparametric estimation provides a

logical method for propagating uncertainty in an engineering

model.

111.16
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*. -' -IV. Nommaramerotric Estimation-A Now Interforenco Theory Tool

Overview Cr

In this Chapter, an effort will be made to deal with

% some of the problems mentioned in Chapter III. However, the

problem of system survivability modeling from knowledge of

component survivability will not be dealt with. In the

chapters that follow, an aircraft system will be treated as

a simple series reliable assembly. However, much more can

be done in overcoming the problems involved with mathemati-

cal methods, and with sparse data bases. These are pre-

sented at this time.

Distribution of a Function of Multiple Random Variables

Some recent developments [141 in nonparametric estima-

tion techniques provide a new and powerful statistical tool

for use in survivability calculations. This tool can be

used as an empirical one, for use on observed sets of data.

It can also be used as a numerical method in its own right.

Although most of the details are discussed in Appendixes A

and C, a basic outline of the approach is discussed below,

and an example from the reactor risk analysis literature is

presented.

As noted earlier, one of the tasks that must be done in

order to make stress-strength interference theory work is

that of finding the distribution of a function of one or

. .,' -
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more random variables. With the nonparametric estimation

technique, the following can be demonstrated:

(a) Given the random variable equation Z=g(X), with

g(x) monotonic, and the distribution function of I (whether

parametric or non-parametric), the distribution function of

Z can be exactly determined at selected points.

(b) Given the random variable equation Z-g(X,Y), the

distribution functions of I and Y, and the restriction that

g/6x#0 vx, 6g/yAO vy, then the distribution function of Z

can be determined at a selected number of points by using

the equation of conditional probability as a sampling rule.

The accuracy in the distribution function of Z is limited

only by standard problems of numerical integration.

(c) Given the random variable equation

Z=g(XlX 2 # .. . n ) (4.1) _2.

the distribution functions of the I, and the restriction

that g/cix.iO Y x i , then the distribution function of Z can

!1

be determined at a selected number of points, provided the

X. are independent or have known correlations. The accuracy

in the resulting distribution function of Z is limited only

by standard problems of numerical integration.

This technique is best illustrated by working an

example from the actual survivability literature. The

density function for the safety factor of a reactor pressure

vessel will be calculated by the above method, and compared

to a standard Monte Carlo calculation [32].

rr
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A Benchmark Problem-Safety Factor of a Reactor
Pressure Vessel

A very long ductile steel cylinder is subjected to an p

applied internal pressure P. The applied pressure P is

found to be a random variable with a three-parameter Weibull

distribution. That is:- -I!.

Fp(p)=l-exp[-((p-c)/a) b ] v p>c (4.2)

Fp(p)=0 V pc (4.3)

where p is a particular pressure value in KPa (kilopascals),

a is the Weibull scale parameter in KPa, b the dimensionless

Weibull shape parameter, and c the Weibull location para-

meter in KPa. Stancampiano gives the values as:

a=.10665P 0  (4.4)

b=4.212 (4.5)

c=.9p 0  (4.6)

P 0 =4316 KPa (626 psi) (4.7)

The random variable P is the stress variable, and it

has the parametric representation just noted. However, one

may represent P nonparametrically rather than parametric-

ally. This is done by solving Equation 4.2 for the m values

of pi that satisfy the equation:

pi--FP1 (Gi) (4.8)

where the G i are given by:

Gi=(i+a)/(m+p); i=lm (4.9)

and a and are constants satisfying:

-l~~a 1 (4.10) .,..
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The m values of p found by solving Equation 4.8 are

ordered from smallest to largest and denoted by the set of

values:

(pi l 'm

As discussed in Appendix C, if, for every i from 1 to ..*

m, the G i of Equation 4.9 are plotted versus the ordered pi

in the set just described, then the result in general is an

approximation to the distribution function Fp(p). However,

for this case, the result is exact at the data points pi.

This is because the data (the pi) were drawn by the rule of

Equation 4.8. Such a set of points will be defined as a

stylized set (Reference Appendix C).

The distribution of P derived from a set of 50 stylized

points is shown in Figure 4.1. The plotting rule used was

Hazen's Rule where a and are given by -. 5 and 0 respec-

tively. The distribution function of Figure 4.1 is exact at

the percentiles .01(.02).99 and in-between values are simply

linearly interpolated from these. As discussed in Appendix

A, the end-point values are found by requiring the integral

of the PDF to be unity.

At this point, it might appear that this representation

of the distribution of P is needlessly complicated, since

(a) the distribution of P is already known parametrically,

and (b) the parametric form was used anyway to provide the

data to the nonparametric technique.
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The answer to the first objection is that, although it

seems complicated now, the application of this method viii

make more difficult problems much simpler later on. To find k7
a distribution function parametrically, one must first know

the density function or distribution function, and then all

the parameters that go into it. If these were always known

for every conceivable combination of random variables, then

density function identification would be greatly simplified.

As it is, some of the simplist combinations of random vari-

ables (Reference Appendix C) have complicated density and

distribution functions.

As to the second objection, the fact that the nonpara-

metric technique is using data drawn from a parametric model

is just a property of the example. Stancampiano [321 does

not say how the distribution of P was found to be three-

parameter Weibull. If one simply believes him, then the

parametric input is accepted. If one does not believe him,

then one obtains the data for himself, and estimates the

distribution of P independently, using another parametric

model, or perhaps a nonparametric one. In any case, every

input variable will have its distribution function specified

somehow. No matter how it is done, the nonparametric repre-

sentation can be used.

To continue the calculation of the survivability of the

pressure vessel, one now needs to find the distribution of

the strength, having determined the distribution of the .

IV.6
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applied stress. At this point, a subtle departure from the

norm of classical reliability theory occurs--a departure

shared by most problems in nuclear survivability. Classic- ,.

ally, the strength distribution would be found by taking a

large number of cylinders, and testing them all to failure.

The strength distribution would then be determined by the

standard methods of statistical inference. However, in this

case, as in most cases involving nuclear survivability, the

items in question are far too few in number, and too expen-

sive per copy, to test to destruction. Instead, one models

the response of the part. For the cylinder example, the

point at which the vessel is believed to burst is given by

the equation:

Pb=Ad FcylInW (4.11)

where A is a dimensionless modeling coefficient, or, is the

engineering ultimate tensile strength in KPa', F is a

dimensionless function of strain and elongation given by:

Fcyl=.25/(eu+.227)(e/fu)Eu (4.12)

is the true strain at maximum tensile test, and is

given as a function of the uniform elongation , e' by:

tu=ln(l+t ) (4.13)

W=D/d (4.14)

d=D-2t (4.15)

t being the wall thickness of the cylinder, D the outer

diameter, and d the inner diameter.

iv.7 .5.
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The distribution of the strength variable, that is, the

distribution of Pb' is determined by finding the distribu-

tion of the individual input variables, and then finding the

distribution of the fumotion of the inputs. The input
I-.- %F

distributions are given by:

A is normally distributed with mean 1.0478 and standard

deviation .0948. is normal with a mean of 433,000 [Pa

and standard deviation of 21,200 [Pa, 9u is normal with a

mean of .4485 and standard deviation of .0377. The corre-

lation between the tensile strength and elongation is an

additional complication. The correlation coefficient was

found to be -.498. The outer diameter D was taken as uni-

formly distributed between 60.639 cm and 61.281 cm. The

wall thickness t was taken as uniformly distributed between

1.237 cm and 1.532 cm [321. The nonparametric representa-

tions of the input variables are shown in Figures 4.2

through 4.6.

The strength distribution can now be found by a

sequence of binary operations. Some variable changes sim-

plify the equation for the burst pressure, Pb" The geomet-

rical factors can be represented by:

X 1 =ln=Iln(D/(D-2t)) (4.16)

The distribution of X, found by the method described

earlier, is shown in Figure 4.7. With the distribution of

11 determined, the dimension of the random variable equation

is reduced, and the burst pressure can be written as:

IVA
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Pb=Affo y lii (4.17)

To handle the correlated variables, the variable 12 is

defined by:

o2_1'47 a y I (4.18)

The distribution of X2 is shown in Figure 4.8. At this

point, the random variable equation for the burst pressure

has been reduced to an independent set of variables:

Pb -AX2X1 (4.19)

One can now proceed with a sequence of binary opera-

tions to find the distribution of the burst pressure.

Defining the variable X3 by:

X 3 =AX 1  (4.20)

the equation for the burst pressure is reduced to:

Sb=12Xs (4.21)
b~~ 2 1

The distribution of 13 is illustrated in Figure 4.9.

At this point, there are at least three ways to pro-

ceed. One could find the distribution of Pb-from Equation

4.21 above, and then directly integrate to find the failure

probability. The integration technique is discussed in

Appendix D. It is analagous to the graphical estimation

technique [8], or the Mellin transform technique [9].

Alternately, we could evaluate the distribution of the mar-

gin variable, , or the safety factor variable ?]. The

latter will be done. In this case, 11 is given by:

7 =Pb /P=X2X/P (4.22)

VV1
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Defining 14 by:

X 4 3 /P (4.23)

the distribution of X4 is determined and illustrated in

Figure 4.10. The final distribution of the safety factor.

given by:

7=x2X4 (4.24) F

is illustrated in Figure 4.11.

One of Stancampiano's single random samples of the

safety factor is displayed in Figure 4.12. It is of size

3500. In Figure 4.13 the results of the nonparametric

technique are overlayed with that of the random sample

method. As mentioned earlier, the nonparametric results are

exact (within integration errors) at the percentiles

.01(.02).99. Also, the nonparametric technique is efficient

enough to run on a Z-80 microcomputer. The results of .

Figures 4.1 to 4.11 were done on such a computer. A check

was made on the results by doing the problem on a CYBER 750

also. For this check, 100 stylized points were used to

represent each distribution. Except for increased tail

information, the results were identical to that for 50

stylized points.

Of course, one need not use the nonparametric algorithm

in such a rigorous fashion as just described. Instead, one

may use random Monte Carlo sampling just as Stancampiano

did, and then use the nonparametric method on the simulated

data. This was done also, and the results displayed in

IV.18
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Xx . .

Figure 4.14. The root mean square error by the nonparamet-

ric method is a factor of 20 smaller (1.021E-4 versus

2.040E-3) than by using Shannon maximum entropy. Thus, the

nonparanotric tool cam be used as either a rigorous humeri-

eal method for finding the distribution of a function of

multiple random variables, or as a direct estimator of

distribution functions given a data set.

A Comment on Sparse Data Sets

The problem of sparse data sets for the inputs still

remains. It is still true, that if one is attempting to

measure the failure probability for a highly reliable part,

and the data for the inputs is limited, then one is forced

to estimate the area in the tail of some distribution. If

one is using parametric models, then the relative error can F

be large for different parametric models. For example,

Stancampiano [321 found a failure probability of 7E-10 + 5E-

10 using normal fitting; 2E-31 + 2E-31 using importance

sampling, and 2E-16 +4E-16 using Shannon maximum entropy.

There is a large relative variation within each method and

between the methods, even though the absolute value is close

to zero. The nonparametric estimate for the same problem is

zero.

Tail estimation is always difficult. Shapiro and Gross

[121 point out that great care needs to be exercised when

one seeks probability values that are outside the range of

IV .24
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the set of data obtained. The use of an erroneous paramet-

. .r ic model can be costly in this case. The advantage of the

nonparametric approach taken here is that one cannot infer

probabilities far beyond the range of the data. Protection

against unreasonable inference is built in. N-Q

Further research in applying the nonparametric tool to

highly reliable assemblies is in order. However, that is

not a problem in aircraft nuclear survivability. As men-

tioned earlier, this tail issue is not important for this -

application. One only has a tail problem if one can

guarantee that the location parameter for the stress vari-

able is fixed in the stress space. For the aircraft nuclear

survivability problem no such guarantee can be given.

Besides this, extremely small failure probabilites (sure-

safe regions) and extremely large failure probabilites

(sure-kill regions) are not the regions where one worries

about what happens. It is clear what happens. It is the

space between that one wonders about, and any techique that

can accurately find the shape of the distributions in this

region is a valuable tool. Such is the case for the nonpar-

ametric model.

Summary

To summarize, the nonparametric method that will be

used to find the survivability of aircraft in nuclear weapon

environments has been described. A benchmark problem from

the reactor risk analysis literature has been worked, and

IV.2-
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-: the results compared to more standard methods. The nonpara-

metric method has been shown to be numerically officient,

and useful as a stand-alone numerical algorithm or a tool

for direct application on existing data sets. Its use on

sparse data sets has been mentioned. Its chief advantage

here is that it provides protection against unreasonable -.,

extrapolation beyond the information contained in the sparse

data set.

In the next two Chapters the tool just described and

demonstrated will be applied to the problem of aircraft

*survivability in nuclear weapon environments.

IV.26.
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V. Aizz crf Valzorability JA Nuclear Blast Imvir .1m3ta.

Overview

The prescription for a survivability calculation can

now be specified.succinctly. One needs to first construct a

reliability model of the system as a whole. For each

component that goes into the model, one then requires a

stress and a strength function for the component. For

nuclear survivability, the nuclear weapon effect (in this

case overpressure) appears in the stress model. If the

weapon effect is a random variable, then the applied stress

is also. The strength model may be a single number, that

is, a sure-kill (SK) specification, or it may be a r .

functional equation as in Chapter IV. For the present

Chapter, a single number will suffice provided one can test

enough items so that the distribution of such numbers can be

determined. This distribution, of course, is the strength

distribution. Having obtained both distributions, which may

vary in space and time, the failure probability is

determined.

Mission Survivability

A systems approach to the problem of nuclear surviva-

bility analysis must begin with a description of the

intended mission and the threats to that mission. Every

mission may be thought of as a series chain of mission

V.1
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phases. Each phase must be executed in order for the mis-

sion to be completed. These ideas have been recognized

[45]. An illustration of the base escape problem (from a

paper by Bridgman [45]) is shown in Figure 5.1.

During each mission phase, the weapon system may

encounter one or more nuclear bursts at particular points in

space and time. Thus each phase may be modeled as a chain

of burst encounters. Each encounter will cause various

nuclear-induced stresses to be placed on the weapon system,

and these stresses must be survived. For each nuclear

weapon induced stress some subsystems will be vulnerable and

some will not. Those subsystems that can fail must be

identified. The calculation of the survivability may then

proceed as suggested by Bridgman [45]. His flow diagramt. .

from Reference [451 is shown in Figure 5.2.

Two of the most difficult parts of the calculation are

shown in Figure 5.2 within the dashed lines. Regarding the

first box, 'Find Intensity on Target', Bridgman writes "The

calculation of free field intensities . . . . is a challeng-

ing business involving all manner of calculation on the

hydrodynamics of blast waves on the transport of neutrons,

gamma rays and x-rays on the propagation of the electromag-

netic pulse, etc. All of this has occupied our attention

for too long a period. Our focus here is to go beyond the

free field calculations and focus on the next block of the

diagram--finding the probability of failure . . ." [46].
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wilIn all that follows, the focus of this dissertation

will be limited to the two elements of the block diagram

just mentioned. Actually, one can generalize those two

blocks just a bit more by considering the intensity on the

target as a random variable also. The scope of work in this

Chapter and the next is illustrated in Figure 5.3, which

expands on the two blocks of Figure 5.2. Some additional

explanation of Figure 5.3 is in order.

In a deterministic model, one would find the intensity

of the stress on target and then compare that stress value

to the strength of the part. If the intensity exceeds the

strength of the part, then the part fails. Otherwise, it

does not.

If one uses a probabilistic model, then one finds, not

the intensity on the target, but the statistical distrib-

tion of intensities on the target at the particular range

and time of interest. Also, the strength of the item is not

now represented by a single number, but by a statistical

distribution of numbers. The failure probability, which is

clearly a function of range and time and other variables, is

now given by the interference integral of Equation 3.3.

The central problem is to determine the distributions

of stress and strength at each range and time point of

interest. There are three ways to do this, and each is .

discussed below.
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First, one can simply claim to know thN distributions,

or rather, one can select them a priori. As has been pre-

viously discussed, selection of the Dirac delta function for

the stress and strength PDF's leads directly back to the

cookie-cutter way of doing business. One might select the

Dirac delta function for the stress PDF and a lognormal for

the strength PDF. This is precisely what is illustrated in

Figure 5.2. The intensity on target is believed known. The

part fails randomly. Of course, the disadvantage of this

approach is that it may be difficult to defend the choice of

distributions used.

A second approach is the straightforward one of soasur-

ing the quantities desired. The stress distribution is

found by measuring the stress over a number of identical

experiments so that the random character of the stress is

determined. The strength distribution is determined by

testing a number of items to complete failure. This method

may be termed a macrodata approach, since the information

obtained is directly applied to the failure calculation of

the system as a whole. The disadvantage is that the testing

- requirements may be impossible.

Finally, one may infer the quantities desired. A

deterministic model of the stress is formulated as in, for

example, the bending moment on a wing of an aircraft. This

model may depend on other variables whose distributions are

known. The statistical distribution of the stress (bending

V.7



moment) is then found by propagating the statistical varia-

tion of all the input variables into the output variable.

The strength distribution is found similarly. A good exam-

ple of an inferred strength distribution is given by Equa-

tion 4.11 which predicts the burst pressure for a reactor

pressure vessel [32]. One might call this a microdata

approach, since the information collected is not applied

directly to the system of interest but must be propagated

into a larger model before one can calculate the failure

probability. Although this approach is more rigorous and

useful than the others considered, it has one potentially

serious disadvantage. It depends critically on an accurate

model of the processes being considered. Unlike direct

testing, one is calculating the probability of failure given

the modeling is accurate. Catastrophic events may well

occur if the modeling is incomplete or inaccurate.

The central thrust of this Chapter will be to determine

the stress and strength distributions for selected aircraft

components vulnerable to the effects of overpressure and

blast from a nuclear weapon. All of the above approaches

will be considered, including mixtures of the approaches.

Stress Distributions in a 1 Kiloton Blast Environment

The overpressure environment from a nuclear burst in a

homogeneous atmosphere may be described in three separate

regions. These are the free air region, the transition

region, and the mach stem region. In the free air region,

-~*t .. ..- * - * . ... . . . . . .. •-



no ground effects perturb the blast wave. In the mach stem

region, the reflected blast wave has caught up and construc-

tively interfered with the primary wave so that a region of

intense overpressure exists near the ground. The transition

region is the region between the free air and mach stem

regimes, typically in the vicinity above the triple point

[45] .

The overpressure environment in the free air region is

usually described by the Air Force Weapons Laboratory (AFWL)

1 Kiloton (KT) standard [74], or the more recent DNA stan-

dard [73]. Research has been conducted to further refine

this standard [47,51]. Reference [471 includes the 95%

confidence intervals about the nominal pressure versus range

curve. This is shown in Figure 5.4, which is a reproduction

from that Reference. This information can be analyzed to

construct the statistical distribution of overpressure as a

function of range from the nuclear burst.

Polynomial fits exist for the nominal pressure versus

range curve and are available in the literature [66].

Unfortunately, Reference [471 does not give the polynomial

fits to either of the bounding curves that represent the 95%

confidence interval. Since this information is lacking, a

direct analysis of the graph of Figure 5.4 was made.

Although the dispersion was found to increase slightly with

range, an average value was used in the following analysis.
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Figure 5.4 is a log-log plot of p, the overpressure,

versus r, the range from the burst. If it is assumed that a

normal regression of In p on In r has been done, then, for a

fixed value of r, the random variable P is log-normal with

location parameter a and scale parameter p. Note that the

lognormal distribution follows naturally from the standard

assumption that the distribution of the residuals in the log

space is normal. The location parameter is given by the

regression equation, while the scale parameter is assumed

constant. For any range r then, measured in meters, the

distribution of P (in Pascals) is lognormal with parameters

given by:

Ofp(r)=.19(ln(r/lOOO))2-1.Sln(r/lO00)+8.738 (5.1) ..-

p

f3p(r) =.l 7 (5.2)

The stress distribution for particular components will

take its random nature from the random character of the

basic overpressure variable. In one case, this results in a

simple analytic problem for the failure probability, but in

most cases one must find the distribution of functions of

the overpressure variable.

Strenth Distributions for Aircraft Com onents

With the fundamental random variable input for the

stress function identified, one can now consider strength

functions and strength distributions. Three approaches will

be examined, all of which have appeared in the literature at

one time or another. These include cookie-cutter techniques

V. 11 """



[54], probabilistic methods with an a priori lognormal

assumption [45], and actual use of long-term test data

E(22,20].

Cookie-_Cutter Di.triution. For all of the work in

this Chapter, the strength model is given by the simple

equation:

S-SK (5.3)

That is, the single sure-kill value SK characterizes the

strength of the component. For the cookie-cutter case, as

noted in Chapter III, the strength PDF is then given by:

fS(s):tl s-SK) (5.4)

and the strength CDF by:

Fs(s)-O v s<S[ (5.5)

F,(s)-l v s SK (5.6)

The parameter for the Dirac delta distribution is the sure-

kill specification, given by sources such, as Reference [5A].

Some references [42] use an unbiased cookie-cutter speci-

fication which uses the average of the sure-safea (SS) and SK

specifications as the parameter of the Dirac delta function.

These techniques, which remain in practice [56], result

in cookie-cutter damage distributions with range, provided

the stress distribution is also a Dirac delta function.

A PRzjozi jLmajj D j.u_. A second common

approach is the assumption of a lognormal strength

distribution, with a concurrent estimation of its parameters

by some method [45,42,50,71].
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Bridgman, for example [45], assigns the SS and SK

specifications from Reference [54J as the 2nd and 98th

percentiles, respectively, of the strength distribution of a

specified component. Denoting SS and SK by S• 2 and S 9 8

respectively, the parameters of the lognormal are found from

the equations:

.S= l In(S. 0 2 S.98) )/2 (5.7)

.' (l 1n(S 9 8 /S. 0 2 ) z 2z 9 8 ) (5.8)

where z. 9 8 is the 98th percentile of the standard normal

variate and is approximately 2.054.

This approach satisfies qualitatively the concepts of

SS and SK specifications, while at the same time providing a

continuous probability of failure with range from the

* nuclear burst.

_11xAlh Distribuions From Test Data. The cookie-

cutter approach does not take into account the probabilistic

nature of failure phenomenon, while the alternate approaches

of Bridgman [45] and others [42], though probabilistic, lack

foundation in the actual database, and do not treat the

uncertain nature of the applied stress environment. Conse-

quently, the Department of De.fense (DOD) database for -

nuclear gust and overpressure effects on aircraft was care-

fully surveyed to find aircraft component failure data. The

results of that data search are presented at this time.

S.
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DOD Database For Blast Effects. The DOD database

for blast effects on aircraft and airiraft structures falls

into two broad classes--simulation testing and nuclear test-

ing. The Defense Atomic Support Information and Analysis

Center (DASIAC) has compiled complete bibliographies on both

simulation and nuclear testing.

Simulation testing is largely carried out by the

Defense Nuclear Agency (DNA), though others are involved in

it also. A complete list of DNA and non-DNA reports on

simulation testing may be found in Reference [35]. The

purpose of simulation testing is to compare theoretical

response predictions with actual response observations.

There is little failure information in this database, since

the objective of simulation testing is not to test to

destruction. Failures do occur sometimes in simulation

experiments, but these are almost always unintentional. An

example of this can be found in Reference [60] where the

tail section of an A-4C was destroyed in a simulation of a 1

KT yield device.

Nuclear testing has been carried out both above ground,

prior to 1963, and by underground tests. Reference [35]

also lists reports compiled from nuclear tests, most of them

above ground. In addition, DASIAC has published two unclas-

sified summaries of operations REDWING [70] and PLUMBBOB

[69]. Besides these, DASIAC has also published a complete

compendium of blast and thermal effects on aircraft gleaned
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from a number of above ground nuclear tests [64]. Table V.1

shows the operations and shots that were examined. Some of

these tests involved in-flight aircraft. Since these were

manned, great care was taken to be sure that applied stress

levels were well below limit loads of the components. Typi-

cal response data for these is given in Table V.2 taken from

Reference [70]. The response data is displayed as a frac-

tion of design limit load.

Although no failure information was found for in-flight

aircraft response to nuclear overpressure effects, much is

available for parked aircraft. Unfortunately, this data

consists mostly of verbal descriptions of damage to a large

number of different components. In many cases the exact

failure mechanism is not known (e.g.--'The canopy was

cracked and badly burned.') An attempt was made to quantify

the information by constructing man-hours-to-repair versus

overpressure plots, but these are difficult to extrapolate

and remain classified. Consequently, the nuclear tests

database does not contain the information needed to deter-

mine statistical failure distributions for aircraft compo-

nents.

Even though the DOD database did not yield information

that would allow reliability theory to be used, useful

information was obtained. If drone aircraft in-flight tests

had been conducted at higher levels, one might have observed

failures or a number of failures. If the number of failures

V.15

. . ,- .



TABLE V.1

NUCLEAR EVENTS INVOLVING VULNERABILITY TESTING

Vulnerability Operation Nuclear Shot

A/C In-Flight* UPSHOT-KNOTHOLE HARRY
NANCY
SIMON

No Failures REDWING DAKOTA
Observed--Max Load NAVAJO
of 1.1 *Limit Load HURON

APACHE

HARDTACK KOA
WALNUT

DOMINIC AZTEC
ENCINO
YES 0

A/C Structures ~ UPSHOT-KNOTHOLE ENCORE*
GRABLE

+Yield Points

Exceeded in 2 Cases

IF



TABLE V.2

REPRESENTATIVE RESPONSE DATA (From Reference [70])

p.=

V.. ,

SUMMARY DATA ON PROJECT 5.3
To is time of detonation. Tss Is time of shock arrival.

Absolute Horizontal Range Horizontal Range Radiant Peak Percent of

Shot Altitude at To  at Tsa Exposure Overpressure Design Limit

feet feet feet cal/cm2  psi

Cherokee 34,000 47,785 139,571 52 Wing
Zuni 14,000 27,000 97,760 34.0 0.400 47 Wing
Flathead 16,000 17,800 59,100 45 Wing
Dakota 16,000 13,100 35,050 88 Wing
Apache 8,000 23,500 60,500 48 Wing
Navajo -- .46.2 Wing
Huron 9,894 8,768 23,386 110 Wing
Tewa 19,000 27,250 65,750 0.900 65 Wing

SUMMARY DATA ON PROJECT 5.4
- To Is time of detonation. Tsa Is time of shock arrival.

Absolute Horizontal Range Horizontal Range Radiant Peak Percent of
Shot Altitude at To  at Tsa Exposure Overpressure Design Limit

feet feet feet cal/cm2  psi

Lacrosse 13,700 6,750 28,200 1.17 0.283 35 Wing
ZunI 16,900 34,000 -- 10.55
Erie 10,450 3,829 14,000 65 Wing
Flathead 25,700 13,466 44,659 50 Wing
Inca 9,815 2,624 11,572
Dakota 17,650 16,690 43,630 56 Wing
Apache 10,200 28,516 45,375 35 Wing
Huron 16,200 10,000 31,493 40 Wing

SUMMARY DATA ON PROJECT 5.5 CAPABILITIES AIRCRAFT (F-84F)

To Is time of detonation. Tsa Is time of shock arrival. 7

Absolute Horizontal Range Horizontal Range Radiant Peak Percent of
Shot Altitude at To  at Tsa Exposure Overpressure Design Limit

feet feet feet cal/cm2  psi

Lacrosse 15,200 8,640 600 1.65 0.80 51 Wing
Flathead 21,000 900 14,935 40 Wing
Dakota 20,374 300 11,065 115 Wing
Mohawk 19,920 3,729 19,700 65 Wing
Apache 31,614 18,614 64,300
Navajo 16,865 25,200 57,400 10 Wing
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had been cataloged as a function of the ratio of stress to

design allowable stress, a generic strength distribution

might be constructed which should apply to any component

that is produced by the same design process. Such data was

indeed found in non-DOD publications, as discussed below. -

Static Tests On Aircraft. A computer search of

the DIALOG (a commercial literature search service) data-

bases located two separate compilations of static test

results on aircraft. The first is a compilation by Jablecki

[26] done in 1955, and based on static test results con-

ducted at Wright-Patterson AFB (WPAFB) from 1940-49.

Jablecki did not actually do a statistical analysis. This

was later done both by Chenoweth [22] and by Freudenthal and

Wang [24]. A second set of static test data was obtained

and analyzed by Chenoweth in 1972 [20]. This was a compila-

tion of static tests conducted at WPAFB from 1950-1970. In

both cases, the data involved static loadings of the wings,

fuselage, horizontal stabilizer, vertical stabilizer, and

landing gear. The data analysis was done in a normalized

fashion by constructing the failure probability as a func-

tion of the ratio of applied stress to design ultimate

stress. These analyses allow one to construct the failure

distribution for an aircraft component as a function of the

design parameters. Both of these data sets have been used

in estimating the reliability of aircraft structures to

thunderstorm gust loadings [24,21] and aircraft maneuver
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loadings [211. A more detailed discussion of these findings

follows.

Lare Aircraft Structures. Chenoweth fit the

Jablecki data for the larger structures, the wings and

fuselage, to a lognormal failure distribution with the ran-

dom variable being

X=S/Su L  (5.9) 2

where the random variable S is the stress on the component

that causes it to fail and SUL is the ultimate load design

stress for the component. Consequently, the component

failure distribution is given by

V x>O (5.10)

where *(z) is the standard normal cumulative distribution

function (CDF) evaluated at z, and given by

C(z) (2i)-l/2exp (-t 2/2)dt (5.11)

The variable x is an arbitrary value of the random variable

X, ax is the location parameter for the lognormal density

function, and is the scale parameter for the lognormal

density function. If one desires the distribution of the

random variable S it can be shown that given I is lognormal

with parameters ax and Px, then S is lognormal with

parameters aS and PS given by

a S= a x + 1nSuL (5.12)

PS=Ox (5.13)

Small Aircraft Structures. Chenoweth fit the

data from the smaller structures (vertical stabilizer,
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horizontal stabilizer, and landing gear) to an asymptotic

Weibull distribution function. This is just a power

function, and the distribution of X in this case is given by

Fx(x)=O V xS0 (5.14)

1/b rjxa
FX(x)=(x/ax ) / x v O x ax (5.15)

Fx(x)=l v x~a, (5.16)

In the above equations a x and b are the parameters for

the power function distribution. If the distribution of S

is desired it can be shown that, given X has a power

function distribution with parameters ax and b x then S has a

power function distribution with parameters aS and bS given

by

asaxSuL (5.17)

* bs=bx (5.18)

The 1972 data analysis is not broken out into large and

small structures as was done for the Jablecki data. The

data is instead lumped together and fitted to the power

function model. Chenoweth shows [20] both sets of data

fitted to this model, and notes that a slight improvement

can be seen in the reliability of the design process from

1945 to 1960. The improvement is shown in Figure 5.5,

taken from Reference [20]. For the more recent data set,

the mean has improved by about 10% and the coefficient of

variation (ratio of standard deviation to mean) has been

reduced by about 33%.
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Chenoweth's data is somewhat surprising. It seems to

imply that at nominal limit loads (2/3 of ultimate) the

failure probability is signifioantly high--on the order of

10%. Chenoweth apparently insists on the validity of the

data. Quoting from Reference [21]. he saysa, "It is shown

that a 'no static test' policy on major aircraft structural

components yields extremely high probability of failure or

unreliability." No formal rebuttal to this was found in the

literature. Chenoveth goes on in Reference [211 to further

show, based on the data, the vulnerability of aircraft to

thunderstorm gust loads and maneuver loads. In both cases,

the resulting failure probabilities range from 1E-4 to 1E-2.

The following additional observations should also be noted.

First, the data as shown in Figure 5.5 is, at most,

half the story. The distribution of stresses or loads can

be as important, or perhaps more important, than the

strength distribution in determining the actual probability

of failure. For example, if the ultimate load design had

been chosen in such a way that the limit load value (2/3 of

ultimate, say) was extremely improbable, then the aircraft

could be perfectly hard. It is the interference of the

stress distribution with the strength distribution that

governs the failure probability, and not either acting

alone.

As a second consideration, Chenoweth says [211 the data

is first time static test data. If these tests resulted in
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redesign of the components, then the resulting product would

of course be harder than the first time tests indicate.

Third, the data is admittedly old. The most recent

data set is a mixture of aircraft from 1950 to 1970. The

.methods of aircraft design and hardness verification and

validation have undoubtedly changed since the data was

obtained, so that one should not infer that it applies to

modern combat aircraft. Because of this, the resulting

calculations in this Chapter should be considered worst

case results.

Having said all this, the data is still a valuable

collection of information. Here at least is some

justification for choosing parametric failure distributions.

The following calculations illustrate the use of such

information.

Component Failure Probabilities "

u A. JlA Y V&1n AI iIi t • The general f a i I u r a

probability is, as stated earlier, given by the reliability

interference integral. That is,

fs (s)F (s)ds (5.19)
Pff-a

Model 1. The result depends on the time dependent -"

properties of both the strength and stress distributions.

The stress function is presumed given by

s-P (5.20)

where P is just the random overpressure variable,

lognormally distributed with parameters given by Equations
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5.1 and 5.2. For this case, denoted as Model 1. the cookie-

cutter strength distribution is assumed, reducing Equation

5.19 to the result:

pfl-FS (SK) (5.21)

where SK is 1.08515 Pa (15.75 psi). Since the stress

distribution is a lognormal, the results for this case have

an analytical form as a function of range. Explicitly,

Pf(r)=l-4( (lnSK-a pr)) / P) (5.22)

where t(z) is given by Equation 5.11.

The results of Model 1 are shown in both the stress

space (Figure 5.6) and the range space (Figure 5.7). One

notes that the use of a probabilistic model for the stress

is sufficient to provide a continuous probability of failure

in the range space. The tails in Figure 5.7 for Model 1 are

due to the variation in the applied overpressure only, since

the strength distribution is a step function. The median

failure range for Model 1 corresponds to the SK stress

specification.

Mo.I1 I. Keeping the stress distribution the

same, if the lognormal assumption is made for the strength

distribution, with parameters calculated from Equations 5.7 -

and 5.8, and SS=6891 Pa (1 psi), and SK-1.085E5 Pa (15.75 V

psi), then the failure probability may be written as: 11

Pf2Ipr (S ~)iffp (P) F (P) dp (5.23)

where S is the strength random variable, P the stress random

variable (the applied overpressure), fp(p) the probability
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density function of P, and FX(p) the CDF of a evaluated at

p. Equation 5.23 could also be written as

pf-Pr(/P.il (5.24)

or

pf=Pr (in(3/P)iO) (5.25)

In the case of Equation 5.25, letting the random

variable •, sometimes called the log safety factor, be

defined by

• •=ln(S/]P)=l-n P (5.26)

it is seen that Y is consequently normally distributed with

mean Py and standard deviation iy iven by

"Y" S-0 p (5.27)

- P ( + p2 ) + /2 (5.28)

Consequently, the failure probability for the fuselage

can be shown to be

Pf(-IL-y/0y) (5.29)

Since the parameter ap is a function of distance from

the burst, pf as given by Equation 5.29 is also a function

of distance from the burst. The results for Model 2 are

also shown in Figures 5.6 and 5.7.

"igjiod 1. Finally, the actual data for fuselage

failures may be used to form the strength distribution while

retaining the previous model for the stress distribution.

Since the large structures were found to have lognormal

strength distributions, the general form for the failure

probability is given again by Equations 5.27 through 5.29.

V.25...-.:.....................................



However, in this case the parameters aad PS are

calculated from Equations 5.12 and 5.13 where the parameter

SUL is related to the sure-safe specification by:

SUL=l.5(SS) (5.30)

and the parameters SS. ZO, and Ax are given by:

SS-6891 Pa (1 psi) (5.31)

otz=.1481 (5.32)

Ax=.3159 (5.33) z"

The vulnerability of the fuselage for this case is also

illustrated in Figures 5.6 and 5.7. Model 3 (based on the

Chenoweth data) seems to imply a much softer fuselage than

either Model 1 or Model 2 would suggest. The failure probe-

bility rises steeply with increasing stress, with a median

failure level at about 11.7E3 Pa (1.7 psi). Nevertheless,

all three distributions agree qualitatively in the SS and SK

regimes. .* . -

Not surprisingly, the softness of the fuselage as a

function of range from the 1 KT standard is clearly

demonstrated in Figure 5.7. If Model 3, based on the

Chenoweth data, is accepted, the sure-safe range (denoted by - -

iS--tho distance where the failure probability is less than

or equal to .02) is at 1160 meters, where the median

overpressure is expected to be 5012 pascals (.73 psi). This

stress value is about 27% smaller than that postulated by

2048, but is within the error bounds given by 2048 [541.
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4 This soft fuselage result qualitatively agrees with

that of the work documented in Reference [601. There it was

noted that the 2048 Method 1 technique for overpressure was

severely unconservative . In a test of the A-4C, the SK

condition was reached at a farther range from a 1 KT simula-

tion than was expected. In fact, the catastrophic failure k

occurred at 311 meters from ground zero. From Figure 5.7

(keeping in mind that our SS and SK specifications are

somewhat different from that of Reference [60]) one sees

that the cookie-cutter prediction is indeed one of no fail-

ures, while Bridgman's model (Model 2) would predict a

failure probability of .76 at that point, and the actual

test data would predict the fuselage to be sure-killed.

Again, the caveats previously mentioned should be

remembered. In addition to those, there can still be an

ambiguity regarding the uses of the terms SS and SK.

Although Reference [68] clearly equates a SS condition to a

limit load condition, it is not clear what the factor of

safety is between SK and SS specifications. Indeed, for the

fuselage specs it may be 15.75--the ratio of SI to SS. If

that is the case, then the ultimate load should perhaps be

given directly by 15.75 psi and not 1.5 times the SS

specification. This would have a dramatic effect on the

strength distribution, moving the median failure point to a

higher level.
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jj.n Vulnerability-FundaRental iodeo For the case of

the fuselage, the presumption that the fuselage responds

directly to overpressure led to simple computational L

results. If instead a more complex response (i.0, stress)

model had been chosen, no such simple results would have

resulted. This is the case for even elementary models of

wing-loading.

The general expression for the failure probability as

shown in Equation 5.19 is still valid, but now has no

closed-form solution. Although the distribution of P

remains the same as in the fuselage analysis, the stress

variable a is no longer the direct overpressure variable.

LAe stress (using a simple fundamental mode analysis as in ".

Reference [45]) is now the load factor (in g's--multiples of

3 ~ weight) given by:

nL= SPVvCLA/W (5.34)

3
where p is the air density behind the shock front (kg/m) v

is the lifting wind velocity (m/sec), CL is the coefficient

of lift (dimensionless), A is the area of the wing (square

meters) and W is the aircraft weight (Nt). At every range

point r the distribution of the load factor is now the

required stress distribution. The problem is analytically

intractable, since p, v, and even CL in Equation 5.34 depend

nonlinearly on the overpressure.

As previously discussed, the general problem of

propagating a random variable through a complicated response
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function has been approached by distributional fitting

[37,321 and by Monte Carlo analysis [32,57]. The former

approach can lead to large differences in results [32.3]

while the latter may require more computer resources than

the simple strength or response function models justify.

Fortunately, nonparametric estimation provides a powerful

tool [14,Appendix A,Appendix C].

The distribution of load factor can be constructed at

any range r by using the technique illustrated in Chapter

IV. This is done by drawing a stylized sample from the

assumed known distribution of P and propagating these sample

values through the response equation to generate a loa-

factor sample. This sample can then be used to gon-truct

the distribution [14,Appendix AAppendix C].

With this tool in hand, the distribution of a (load

factor) can be determined without a priori distributional

assumptions, and without large-sample Monte Carlo analysis.

Equation 5.19 can then be numerically integrated at each

point r where the failure probability is desired.

For the case of wing-loading, the stress model is

described by the following, where bold-faoed variables

indicate random variables. For every value of P drawn at

range r,

(1) Determine the magnitude of the peak wind velocity, .-

al. behind the shock front (from Rankine-Hugoniot).

al5Ps 0 (7pa(l+ 6 P/ 7 /P a) 1 / 2  (5.35)
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(A complete description of these variables may be found .

in the section on nomenclature.)

(2) Find the components of a, in the aircraft frame of

reference.

l a x-In1/ sr)yb (5.36)

S I  a y m l 1 / ) (x t xb )  ( 5.37 ) - -'

ILI a z (ul s )dz (5.38)

(3) Determine the initial attack angle (straight and

level flight assumed).

CLO=2W/(P 0 v 0
2 A) (5.39)

Sa=(CLO-. 3 56)/1.243 (5.40)

(4) Determine the resultant wind vector in the

aircraft frame of reference.

'rx'. ax ( 5.41)

£r~avo (5.42)

arzmUlaz (5.43)

(5) Resolve the resultant wind vector into its lifting

and non-lifting components.

up=U (5.44)p x

v=(Ury 2 + rz 2 ) (5.45)

(6) Determine the angle between the lift wind and the,

aircraft chord vector.

oadel ( cos ( a 0 ) Ury+S in( 0 )u ra ]/v (5.46)

dol=Acos(oosdel) (5.47)

a=+ (-d e 1) (5.48)

(7) Determine the coefficient of lift.
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CL=l .2430+.3 56 (5.49)

-" (8) Determine the air density behind the shock front.

a=P0(7+6P/Pal/17+P/Pa ) (5.50)

(9) Determine the load factor (a sample value of a)

from Equation 5.34, i.e,

AL-.5PV2 CLA/W (5.51)

Model 1. With the stress distribution determined

nonparametrically, the strength distribution is now

required. Again one may use the simple equation,

S=nsk (5.52)

For Model 1 a cookie-cutter strength distribution is assumed

so that the strength variable has the PDF,

f (s) = b (s-n sk (5.53)

where nsk is taken from Reference [54] as 6.75 g's for

loading from below.

As in the fuselage case, the results for the failure

probability reduce to
,. P =l-F (nsk (5.54)

where the CDF of the stress distribution is now found

nonparametrically.

The results for loading from below are displayed in

Figures 5.8 and 5.9. The failure probability as a function

of applied stress is shown in Figure 5.8, while the

corresponding failure probability with range is shown in

Figure 5.9. The results for Model 1 are shown by the solid

1 m •s.
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oAod 2. The stress distribution remains the

"' same, but the lognormal assumption is now made for the

strength distribution, with the parameters calculated from

Equations 5.7 and 5.8, and with SS and SK given by 3 and

6.75 g's respectively (Method 1 of Reference [54]).

Since the stress distribution is known nonparametric-

ally, the integral in Equation 5.19 must be solved numeric-

ally. The method for doing this is described in Appendix D.

The results using the lognormal assumption are shown in

Figures 5.8 and 5.9 also.

Model . Finally. the strength distribution

derived from the test data is given as a lognormal, with

parameters aS and PS calculated from Equations 5.12 and

5.13, and SUL calculated from Equation 5.30. For the case

of the wing, the necessary parameters are given by

SS=3 s's (5.55)

a =.1076 (5.56)

pz=.2467 (5.57)

The results for Model 3 are shown with those of the

previous models in Figures 5.8 and 5.9. The results for the

different models in both the stress and range spaces are

much closer together than the comparisons for the fuselage

were. In fact, the results of Figure 5.9 indicate that the

cookie-cutter approximation for wing-loading is reasonably

valid, especially for the higher values of the failure

probability. There are at least three reasons for this.
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First, the ratio of SK to SS is much smaller for the

wing-loading case. The continuous probability models rise

faster with increasing stress, and the differences between

the cookie-cutter damage distribution and the continous ones -

are decreased. Second, the experimental results for the

fuselage showed the largest variation of any of the aircraft

components. This makes the fuselage a worst case as far as

reliability goes. Finally, the aircraft response (load

factor) is a very steep function of range, resulting in a

step-function appearance. All three distributions are in

near agreement on RK, the sure-kill range (point where

failure probability equals or exceeds .98), while the dif-

ference in RS is only about 100 meters.

Vertical Stabilizer Vulnerability. The analysis of the

vertical tail assembly can be done in the same way the wing-

loading analysis was done. The stress variable a is now the

combined bonding moment of the vertical tail and fuselage.

The overpressure variable P is sampled as before, the sample

values are propagated through the response equations, and

the distribution of a is determined at range points r.

Equation 5.19 is then integrated numerically to determine

the failure probability as a function of range from the 1 [T

standard. The stress model is described as follows. For

every value of P drawn at range r:

(1) Proceed with the response function for wing-

loading through step (5) to find up, the component of the
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,a

resultant wind vector that acts on the vertical tail

assembly.

(2) Determine the combined bending moment due to this

wind acting on the vertical tail and fuselage (a value of

8).

Df-.SPU P CdfAfLf (5.58)

Bi.Spu 2 CdAtL (5.59)

nt-. p dt t t' :::'

D=Df+Bt (5.60)

Model 1. The SS specification is taken as 1.763E6

newton-meters, and SK specification as 3.7E6 newton-meters

(again, after Method 1 of Reference [54]). For the cookie-

cutter model of the strength distribution, one assumes the

strength to be given by

S=bsk (5.61)
sk4

where bsk is the sure-kill value just mentioned. This being

the parameter of a Dirac delta function, the equation in the

range space for the failure probability is given by

PfI-Fl (bsk) (5.62)

where again the distribution of the stress is found using

nonparametric methods. The results are displayed in Figures

5.10 and 5.11.

11oAu 2. The strength distribution under the

assumptions of Model 2 is a lognormal with parameters given

by Bridgman's prescription [45] in Equations 5.7 and 5.8.

The SS and SK specifications just mentioned provide the S

and S.98 percentiles that go into the calculation.

V.38

.• ..



V4V

4.J

C144

00

1-'0

4

4-44

o o 00

w -77

tt
0iTe OATTqeoj"

V.3



L.l4.N mL C -M !7 7

0 p

o C

o 1 rz

cc 0

V.404

.~ . ~ . . . . . .



The failure probability must be found by numerically

2-* integrating Equation 5.19 at each range point r. The

results are displayed along with those of Model I in Figures

5.10 and 5.11.
4odel 3. Finally, under the assumptions of Model 1'

3, the strength function is given by Equation 5.61, but the

failures are distributed as determined by Chenoweth [201.

The strength distribution is asymptotic Weibull with para-

meters given by Equations 5.17 and 5.18. As usual, SUL is

taken as 1.5 times the SS specification. From the static

test results, a and b1 are found to be:

a x=l.6O6 (5.63)

b =.1431 (5.64)

and the SS specification is taken as 1.763B6 newton-meters.

The results of the analysis are displayed in Figures

5.10 and Figure 5.11 and are compared to the other models.

Although there appears to be some differences in the

distributions when viewed in stress intensity space, these

differences are nil when viewed in range space. In

particular, Model 3 and the cookie-cutter approximation are

indistinguishable. This is a reasonable result since the

ratio of SI to SS is low, and the experimental data yields a

failure distribution that rises steeply. From Figure 5.11,

IF
RK is at about 330 meters, while RS is at about 520 meters.
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The survivability of several aircraft components in a

nuclear blast environment has been calculated. Stress dis-

tribution construction begins with stress functions. The

j: nuclear weapon effect of interest here, the overpressure

variable, is a random variable that enters into these stress

functions. The distribution of these functions, found by

nonparametric methods, defines the stress distributions for

the components.

The strength distributions are surveyed. Two common

approaches, cookie-cutter modeling and lognormal modeling,

are compared to distributions found by analyzing twenty

years of aircraft static test data. A44

The resulting failure probability with range from the

weapon is calculated and compared. In general, one cannot

say beforehand whether or not a parametric model is superior "

to a cookie-cutter model. For most cases, the results did

not vary much. For the case of the fuselage, however,

neither the cookie-cutter nor the lognormal was as conserva-

tive as the actual test data suggested.

In the next Chapter, the survivability to nuclear

thermal effects will be considered, and the difficulties

posed by the lack of failure data will be noted.
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VI. Aircraft Vulnerability In Nuclear Thermal Knvironments

Overview-

In this chapter, a stress-strength interference theory

calculation of the probability of failure of skin panels in

nuclear thermal environments is accomplished. A search of

the database for nuclear effects on aircraft yields no

direct information on either stress or strength distribu-

tions for the failure modes of interest. The temperature of

a thin skin panel in a nuclear thermal environment is a

fundamental stress. Although this is a deterministic

response, statistical variation is introduced by treating

the radiated power from the weapon as a random variable, and

then finding the distribution of the functions of this

random variable. Two failure modes are considered. The
.4..

first is based on sure-safe and sure-kill specifications for

aircraft, and is analogous to the work done on blast vulner-

ability. For this mode, two strength distributions are

examined--a cookie-cutter and a lognormal. An alternate

failure mode is investigated that considers skin panel

yielding as a function of both gust and thermal loading.

The calculation illustrates the use of the nonparametric

interference theory technique in treating problems where

multiple nuclear effects contribute to a failure mode.
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Data Search For Thermal Effects on Aircraft

As in the case of blast effects on aircraft, no direct

failure data for aircraft components were found. Items of

interest in the nuclear tests examined include thermal flu-

once and temperature time histories. Peak temperatures for

the time histories of Operation REDWING are well below melt

point. A typical result from Reference [70] is shown in

Figure 6.1. Lacking actual service histories for the fail-

ure mode of interest, the only alternative is engineering L

modeling. An important variable, as displayed in Figure

6.1, is the temperature of a thin panel as a function of

time. This is a fundamental thermal stress on the system,

and is discussed in detail below.

A Deterministic Thermal Stress Model

A simple model of the temperature rise in a thin-skin

assembly can be constructed by requiring an energy balance

condition [45]. That is, the temperature in the thin skin

obeys the differential equation:

PCv 4xdT/dt=Yth(t) /(4w r 2 )-h(v) (T-T 0 ) (6.1)

where the term on the left of the equals sign is the time

rate of change of the energy deposition in the material.

The variables in this term include p, which is the material

3 0density in kg/a ; Cv is the specific heat in Joules/(kg- °-

Kelvin); Ax is the skin thickness in meters T is the skin

temperature in degrees Kelvin; t is the time in seconds.

VI.2I
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The first term to the right of the equals sign is the

source term, corrected for spherical divergence. The vari-

ables there are given by:

T th t)=PE(V)flt)Trabcos 6t) (6.2)

where Po(W) is the maximum radiated power (in watts) from

the weapon and is a function of W, the weapon yield in

kilotons (KT); f(t) is the fractional radiated power at time

t; Tr is a transmittance factor to account for attenuation

through the atmosphere; ab is the absorptivity of the skin

surface; 9 is the look angle between the weapon and the

aircraft skin and is a function of time due to the motion of

the aircraft. The variable r in Equation 6.1 is the slant

range (in meters) from the weapon at time t.

L ['The last term in Equation 6.1 is the sink term, the _

rate of energy dissipated to the environment by convective

cooling. The variables here include h(v), which is the

(velocity dependent) heat transfer coefficient in Joules/(0 -

Kelvin-meter2 -sec) and T O , the temperature of the air adja-

cent to the skin in degrees Kelvin.

The equation can be made dimensionless by introducing

some natural variables. Since the differential equation is

one that couples temperature and time, the natural variables

involve both times and temperatures. The natural time

variables include tm the time (in see) to peak thermal

radiated power. The dimensionless time T can then be

defined as -

VI. 3
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"=t It (6.3)

"'-"Another important time variable is tco the cooling time,

given by

toPCv x/ h (6.4)

where the right hand side variables have already been!F
described. One can show that in the absence of any source

term, the cooling time is the time for a preheated structure

to cool to l/e of its initial temperature, where e is the

natural logarithmic base. Finally, the ratio of time

constants will be denoted by

^f=t m/t (6.5)

The natural temperature variables include the ambient

temperature, T O , in degrees Kelvin. The dimensionless time

dependent temperature T can be defined by

A
T(1)=T(lr)/T 0  (6.6)

A time dependent characteristic temperature can also be

defined. This temperature depends on geometrical and

physical characteristics of the skin material, and on

properties of the thermal pulse. The dimensionless ..'

characteristic temperature can be written as

A A-
T0 (r) -Tk (r) f(T) (6.7)

A
where Tk(T) is given by

Tk(l)=Pm(W)Trabcos(0("))tm/(4tr2 pCv AxT0 ) (6.8)

The variables on the right hand side of Equation 6.8 have

been described previously. The term f(T) in Equation 6.7

is the relative radiated power at time r. That is

V1.5
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f (r)=P(T)/P (W) (6.9)

"7

where P(r) is the radiated power in watts at time r. For

A
stationary targets, Tk reduces to a time-independent .

constant. Dividing all times in Equation 6.1 by tm , the

time to thermal maximum, and all temperatures by To , the

ambient temperature, leads to a dimensionless differential

equation. Solving that equation by using an integrating

factor and the natural variables just described leads to the

solution

A CYr
T(")=I+[T(O)-l+JO Tc(7')eT d '']exp(-Yr) (6.10)

Equation 6.10 is the deterministic equation for the

stress function. It represents the anticipated response of

the skin to a nuclear thermal pulse. The statistical distri-

bution of this response can be determined by propagating

statistical information about the input variables through

the function. Of the many input variables one might con-

sider, the radiated power from the weapon will be examined

statistically and the others left as deterministic. Two

reasons dictate this choice. First, it will provide a

parallel development to the work of the previous chapter.

In particular, a thermal analog to the work of Carpenter and

[uhl [471 will be developed. Second, it is difficult to

find statistical data for the other variables of interest.

In fact, the statistical information for the radiated power

is not readily available, and one must analyze the data that

one can find. In the next section, the deterministic stress

VI.6



function is expanded into a random variable equation.

The Thermal Stress Distribution For A 1 KT Sea Level Burst

Gene al Apkoxaqh. The objective now is to find the

statistical description of the temperature in a thin skin at

any time desired. Equation 6.10 is the basic deterministic

temperature response. The dependence on the basic weapon

effect, the radiated power, can be explicitly demonstrated

by writing the characteristic temperature in the form shown H
in Equation 6.7. The resulting integral equation is:

( +T -f Tkr ) f(r ' ) e d exp( - 'r) (6.11)

If one now recognizes that the radiated power, flr), is _

statistically distributed, then the resultant output vari-

able, T(r) is also statistically distributed, since it is a

function of a random variable. In particular, if the dis-

tribution of the radiated power has been determined, then

the particular sample value f (-r) results in a corresponding

sample value TiOT) where the two values are functionally

related through Equation 6.11. Given the distribution of

the radiated power, the distribution of the temperature in

the structure can be determined by the methods already

discussed. The determination of the distribution of the

radiated power is the next task to be accomplished.

A A iillsiA _ l _oL Jk! £_A.s.AAA E.11A z. As previ-

ously mentioned, a search of the database for thermal

effects on aircraft did not yield any information about

V1.7



statistical thermal source models--that is, no analog to the

work of Carpenter and Kuhl E47] was found. In order to

continue with an interference theory calculation one must

have a source of data. There are several approaches that

could be taken, but all depend in part on a deterministic

model of the weapon effect. Two such deterministic models

are discussed below.

A relatively simple model of the radiated power

produced by a nuclear weapon is described by Glasstone [621.

Figure 6.2, reproduced from Reference [62], displays the

normalized power as a function of normalized time. In this

model, the time to (second) thermal maximum, and the peak - -

radiated power at that time are scaled according to yield.

Consequently, the plot of Figure 6.2 has been used for a

variety of yields and burst altitudes. Glasstone quotes the

results as being valid + 25% for altitudes below about 4-5

kilometers (ki) and + 50% for altitudes above that. This

statement acknowledges that the value of the radiated power

is statistically uncertain.

Glasstone's pulse is synthesized from both experimental

data gathered during the days of atmospheric testing and

theoretical modeling. With the signing of the Limited Test

Ban Treaty in 1963, theoretical calculations of thermal

environments have largely replaced data collection

techniques.

VIE. 8
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Sharp of the Air Force Weapons Laboratory (AFWL)

published an alternate model in 1973 [77]. The model was

published as a FORTRAN subroutine, and includes variation of

the thermal pulse shape with altitude. This feature was not

available in the Glasstone model. This AFIL thermal power ."

routine, called FLUX, is still in use. It is found, for

example, in some computer codes that deal with nuclear

survivability problems. These codes include TRAP [65],

QUANTA [38], and FLEE.2 [36].

The problem of finding a statistical description of the

radiated power from a nuclear weapon still remains. One

approach which might be used is documented by Ostermann and

Collins [75]. These authors specify a lognormal distribu-

tion for a nuclear weapon environment, using the output of a

nuclear effects algorithm as the median of the distribution.

The scale parameter of the lognormal (which is just the

standard deviation of the log of the data) is said to be

estimated by a combination of judgment and data. This

technique is similar to Bridgman's approach to specifying

the strength distribution [45].

As an alternate approach, one can examine the data that

does exist, however sparse, and formulate the distribution

of the radiated power from that alone. Choosing this as a

rationale, the Glasstone model cannot be used. Although an

uncertainty is stated, it is not clear how to translate +25%

into a statistical distribution. The AFYL FLUX routine

VI.10



documentation, on the other hand, contains a good deal more

information. This information allows one to construct a

statistical radiated power model based on the data alone.

Before proceeding with this, FLUX must be examined in a

little more detail.

FLUX is a numerical model that seeks to duplicate the

thermal power output of a more complex code called SPUTTER

[80]. SPUTTER is a program used to dynamically model

nuclear fireball phenomenology. Among the quantities

available from a SPUTTER run are the thermal power and

energy as a function of wavelength and time. Sharp used

SPUTTER to obtain time-dependent power and energy in 35

wavelength bands covering the atmospheric transmission

window. FLUX was then developed as a curve fitting tech-

nique to match the unattenuated source power and energy

values as functions of time summed over the 35 wavelength

bands.

FLUX therefore derives its sole credibility from the

SPUTTER runs which it seeks to match. The statistical model

to be developed is thus again conditional. SPUTTER is

presumed to be true.

If the SPUTTER runs are taken to represent nature, then

one needs to assess statistically the ability of FLUX to

model SPUTTER output. The answer depends on the height of

burst and yield regime. Figure 6.3 taken from Reference

[77] illustrates a rather good result, while Figure 6.4

YI.11
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illustrates a somewhat poorer one. Of special interest is

Figure 6.5, which is the fit for a 1 KT burst in a sea level ,

atmosphere. In these figures the solid line is the FLUX

prediction line, while the circles are the SPUTTER output.

The objective is to find a statistical measure of the qual-

ity of the FLUX fit. --

One could make the lognormal assumption as done by

Ostermann and Collins [75], and use FLUX output as the

median radiated power value. The scale parameter for the

lognormal could be estimated by the average root mean square

error. That is, one might take Ap as:

~Cn2 1/2
Ap=( nl(lnYf-lnyi) /n) (6.12)

where Yi is a particular SPUTTER value and Yf is the FLUX

prediction at the same time. The only problem with this is

that there is no guarantee that the FLUX line is the median

line. This is borne out by a second examination of Figure '

6.5. One sees that FLUX underpredicts SPUTTER in the late

time regime in particular. A calculation of the mean

residual, I, defined by:

injllnYf-lnyi) /n (6.13)

for the FLUX fit to SPUTTER run FB-21 (Figure 6.5) yields a

value of -. 18, showing the overall underprediction. The

scale parameter as estimated in Equation 6.12 is about .50.

This fit can be improved in the following way.

VI1.15
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Since the objective of FLUX is to match SPUTTER point
B..

for point, FLUX may be thought of as a predictor variable

for the SPUTTER output. Hence, if FLUX exactly matches

SPUTTER, then a plot of SPUTTER versus FLUX for fixed yield

and height of burst will yield a straight line with unit

slope and zero intercept. The SPUTTER data for the 1 KT sea

level case, with the corresponding FLUX prediction values is

shown in Table VI.l. In this table, time enters in as an

implicit variable. The regression of SPUTTER on FLUX is

shown in Figure 6.6. As already noted, at late times FLUX

underestimates the SPUTTER values. This is seen in Figure

6.6 in the low power regime. The one sigma boundaries are

also shown on the plot. Linearity is pronounced, as

expected, with a correlatiaon coefficient of .96. The

regression equations in the log space are given by:

<lnYs >= m lnYf+b (6.14)

orS F ' 3 2 5 8  (6.15)

where Ys is the median SPUTTER output in watts, Yf is the

FLUX prediction in watts, m is .7626, b is 6.847, and SIF

is the conditional variance of the SPUTTER output given FLUX

as a predictor variable. As a comparison, the mean residual

for this fit has been reduced to about 8E-6, while the root

mean square error has been reduced to about .30. The least

squares fit incorporates the standard assumption that the

distribution of the residuals is normal.

VC 16
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TABLE VI.1

DATA FOR I KILOTON AT SEA LEVEL

Time Power FLUX Prediction

(Sec) (Watts) (Watts)

1.0 2.444Ell 8.668E10
0.9 2.977E11 1.043E11

0.8 3.660E11 1.284E11
0.7 4.539E11 1.624E11
0.6 5.581E11 2.130Ell

0.5 6.709E11 2.935E11
0.4 8.049E11 4.345Ell
0.3 1.000E12 7.201E11
0.2 1.383E12 1.462E12

0.15 1.792E12 2.396E12
0.1 2.744E12 4 .604E12
0.09 3.166E12 5.343E12

0.08 3.864E12 6.193E12
0.07 5.056E12 7. 134E12
0.06 8.269E12 8.594E12
0.05 1.223E13 1.200E13
0.04 1.402E13 1.466E13
0.03 1.348E13 1.374E13
0.02 1.019E13 8.504E12
0.015 6.941E12 5 .10SE12

0.01 3.392E12 2.387E12
0.009 2.804E12 1.992E12

0.008 2.342E12 1.651E12
0.007 1.909E12 1.364E12
0.006 1.525E12 1.132E12
0.005 1.185E12 9.539Ell
0.004 8.886E11 8.347E11
0.003 7.248E11 7.960Ell
0.0026 7.073E11 8.188E11
0.002 8.242E11 9.129Ell
0.0015 9.794E11 1.092E12
0.001 9.851Ell 1.602E12
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Since the plot is in the log space, the radiated power

• s is a lognormal random variable with location parameter ap

and scale parameter Op given by:

a =<lnY > (6.16)

~P %IF(6.17)

The statistical model of the radiated power is thus

determined. The explicit expression for a sample value of

the relative radiated power can be written in terms of the

above parameters. Given zi, a value of the standard normal

variate, fi(T) is given by:

f (r)=exp(aplr)+Apzi) (6.18)

The i subscript denotes the statistical meaning of the

particular value of f in terms of the standard normal

variate z.. In particular,

Pr(Ff i J=Pr(Z zi) (6.19)

Equation 6.18 may be directly inserted into Equation 6.11 to

complete the expression for the distribution of the

temperature in a thin skin assembly.

With a statistical model for the temperature in a thin

skin completed, the stress distribution is known. The other

half of the problem is the determination of the strength

distribution. The choice of the strength variable depends

on the failure mode of interest. Melt mode failures will be

examined in the next section.

.-
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Thermal Vulnerability Modeling

The statistical description of the temperature in a

thin skin has been completed. This may be the stress vari-

able of interest, but it may also appear in the strength

function, depending on the failure model chosen. The choice

of the strength variable also depends on the failure mode of

interest. Two failure models are considered below. In one,

melt mode failures are considered. In the other, the tem-

perature of the skin enters into both the stress and -

strength distributions.

Melt-Mode ulner abili ty. In the previous chapter,

methods from the nuclear survivability literature [54,45]

were compared with data that allowed one to infer actual

strength distributions for several aircraft components.

Aircraft must be designed for a certain amount of gust

hardness since atmospheric turbulence is a natural aircraft % k

environment. It is not surprising, then, that enough data

exists in regards to mechanical loading to formulate

strength distributions directly from test data [22]. Some

have even suggested that because of this, modern day air-

craft have some inherent hardness to nuclear gusts [72].

In contrast, aircraft are not normally designed for

thermal environments like that from a nuclear weapon. Con-

sequently, no direct data exists from which to infer a

strength distribution. There is then no choice but to model

the strength function by choosing values of skin tempera-

VI.20i-.:: '--*2
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tures that are considered critical. In Reference [54J two

such values are chosen--a sure-safe (SS) temperature, TSS,

and a sure-kill (SK) temperature, TSK. The sure-safe

temperature is that temperature which results in a 20%

reduction in the modulus of elasticity. The sure-kill tem-

perature is the melt-point of the material. Two strength ;,_Z

distributions will be considered. As in the case for blast,

a cookie-cutter strength distribution will be called Model 1

while the a priori lognormal strength distribution will be

referred to as Model 2.

Cookie-Cutter Failure Distribution. The structure

fails upon encountering the SK temperature, and does not

fail otherwise--i.e, the failure probability density func-

tion (PDF) is a Dirac delta function centered at TS-"

A Priori Lojnormal Fai u Distribution. The

probability of failure for the skin structure is .98 if the

SK temperature is encountered; it is .02 if the SS stress

value is encountered; the distribution of failures is log- L

normal [45].

These two distributions are illustrated in Figure 6.7.

The stress space is now temperature. The circles represent V-.
Model 2, while the solid line represents Model 1. Model 1

yields the familiar cookie-cutter plot in the absence of any

statistical model of the stress. However, since a statisti- L_

cal model of the stress does exist, the failure probability

will be a continuous function of range. For Model 1, it is

V12
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given by:

pf(r)-l-F.(TSK) (6.20)

where Fa(T) is the cumulative distribution function (CDF)

of the temperature (the stress variable) in the thin skin at

the time of interest.

The resultant vulnerability of the skin is shown in

Figure 6.8 for both Model 1 and Model 2 strength distribu-

tions. The cookie-cutter damage distribution is not very

different from the lognormal one. The failure probability

is a steep function of range, dropping from .98 to .02 in

the span of 100 meters even for the lognormal assumption.

The reason for this is the rapid decrease in peak tempera-

ture with range. This is true even if the structure is not

cooled. If it is, the decrease is even faster. Thus, one

sees that cookie-cutter techniques can work well depending

on the rate of change of the critical response variable with

other variables in the problem.

Before leaving the thermal vulnerability problem, one ...

can consider an alternate failure mode. In particular, one

can examine the effects of combined gust/thermal loading on

the mechanical integrity of a structure. This is the last

topic, and is considered in the next section.

Combined Blast/Thermal Vulnerability. The fundamental

idea behind most thermal vulnerability calculations is to

find the amount of heat required for some specific effect.

The topic of yielding of skin panels due to thermal loads
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combined with internal pressurization loads is treated using

,-Method 2 of Reference [541. This problem demonstrates that

a combination of conditions can precipitate failure rather

than the primary weapon effects acting alone. On the other -

hand, a given failure mode might depend on more than one

weapon effect. In the alternate failure model described L

below, the combined effects of blast and thermal in causing

yielding of wing skin panels is investigated. This will

illustrate the utility of the stress-strength interference

theory technique in treating such problems.

111ess On A Skin Panel. A stress analyst would

attempt to calculate the stresses in the skin rather than

use the SS and SK specifications of the previous section

[43]. A representative wing section is shown in Figure 6.9.

Treated as a simple box beam with constant bending stress

[76], and using a thermal model from a classical text like

Gatewood [61], one can show that the stress in the lower

section at position z and time t is given by:

or x(zt)= g(z t)+Gth(Z t) (6.21)

where og (z,t) is the stress component due to the gust load-

ing and Oth(z,t) is the stress component due to the thermal

loading from the nuclear detonation. These two terms are

given by:

C, (z,t)- N (6.22)
g 15 gLz/c

ar th( z, t )=thl ( z, t )+th(z, t)+ th3(Zt) (6.23) "

The thermal stress terms [61] are given by:

° .
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a thl(z. t)=- alE(T)AT(zt) (6.24)
.th2(z t)=(alb E(T)/A z )f:c_ AT(zt)dz (6.25)

th 3 
( z.t)=(alibwzE(T)/Ix _fzdT(z. )dz (6.26)

The variables in the above equations are described as

follows. olr is the allowable design stress, taken as

6.891E7 pascals (104 psi). NL is the load factor on the

wings (dimensionless). The coordinate z is the location

where the stress is desired (meters) measured relative to

the center of the assembly. The variable c is the midpoint .

of the skin as measured from the center and is taken as

.1524 meters (6 inches). f is the half-thickness of the

skin, taken as 1.588E-3 meters (.0625 inch). a1 is the-

coefficient of linear expansion ( 2.286E-5 m/m-°-Kelvin).

E(T) is the modulus of elasticity (in pascal ) at

temperature T (in 0 -Kelvin). The room temperature modulus

of aluminum is taken as 6.891E10 pascals (10 psi). As

previously discussed, T is the temperature of the skin in

degrees Kelvin. The term aT is given by:

AT(z,t)=T(z,t)-T 0 (z,t) (6.27)

where T(z,t) is the temperature at location z and time t and

T o is the ambient temperature in degrees Kelvin. The dimen-

sion bw , as shown in the figure, is the chordwise length,

taken as .9144 meter (36 inches). Finally, Ax is the cross-

sectional area (15 square inches or 9.677E-3 meter 2 ), while

A
I is the area moment of inertia (474 in 4 or 1.973E-4

meter 4).

VI.27
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Now, using the thin skin approximation as before, the

* .. temperature response of the skin is as shown in the previous

section. The bottom skin panel is heated uniformly to a

peak temperature T so that the temperature profile with z
p

is given by:

T(z)-T T -c-( zj-c+( (6.28)
p

T(z)=T0 elsewhere (6.29)

where E is the skin half-thickness, as previously defined.

With the above temperature profile, the integrals in

Equations 6.25 and 6.26 are calculable in closed form. The

results for the lower wing station (z=-c) for the geometry

of Figure 6.9 lead to the equation:

"xO1gNL- 3 8 2aIE(Tp )AT (6.30)

Equation 6.30 is a function of two random variables--

NLP the load factor on the wings, and Tp, the peak tempera-

ture in the thin skin. This equation is the stress response

of the skin. The response is dependent on both the gust

loading and the thermal loading caused by the nuclear wea-

pon. Even though this is a function of two random variables,

it is not clear that it needs to be treated that way. The

gust loading and peak thermal loading can appear at very

different times, and this would effectively decouple the two

effects.

The relative vulnerabilities of the four parts of the

box beam are discussed in more detail in Appendix E. In

fact, the analysis there shows that the lower skin is not

,1...-
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the most vulnerable assembly. However, that part of the

beam is interesting in that the gust dominates the stress

distribution, while the thermal dominateN the strength 4__

distribution. Since the thermal contribution to the load

stress is slight, one can first consider the case of gust

loading only.

The Case of Gust Loadinj Only. As a first

approximation, Equation 6.30 is evaluated when the thermal

environment is absent. This reduces the stress function to:

or= g NL (6.31)

The strength function is taken as the yield point of

6061-T6 aluminum. That is, the critical, or sure-kill

stress value is given by:

O k= 2 .7 5 6 E8 pascals (40,000 psi) (6.32)

Since this is a cookie-cutter strength distribution,

the reliability interference integral reduces to the result:

Pf=1F a (ask~) (6.33)

where a is the stress variable, and is just or as given in

Equation 6.31. The overlay of the wing stress model with

the previously considered cookie-cutter and lognormal gust

vulnerability models are shown in Figure 6.10. Model 1 is

the cookie-cutter model for gust loads discussed in Chapter

V, while Model 2 is the a priori lognormal model, and Model

3 is the results based on Chenoweth's data. The skin stress

model just developed (represented by the E3's in the figure)

is a bit more conservative than the other models considered.

VI.29
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This is in part because it is just another cookie-cutter

damage model, but with a lower sure-kill specification.

That is, the sure-kill load factor is taken as 4 instead of

6.75. This value of 4 is closer to what the authors of

STRAT-SURVIVOR [421 would call the unbiased cookie-cutter

damage specification. In any case one sees that a reason-

able independently derived failure model gives about the

same results as the others considered.

The Thermal Stress Contribution. Equation

6.30 can also be evaluated with the peak thermal environment

present, and the aircraft in a straight and level flight

condition. In that case, and for the geometry previously

indicated, the response equation reduces to:

(X= g- ..3582aE(TP)ATP (6.34)

The thermal stress contribution adds a compressive

stress term to an existing tensile load. The thermal stress

contribution is quite small for the lower skin assembly.

This is because not much heating has taken place by the time

the blast wave arrives. For example, the statistical dis-

tribution of temperature at blast arrival time (.24 sec) is

shown in Figure 6.11 for a target at 200 meters range. This

variable is statistically distributed at each time step due

to the statistical variation in the calculation of the

thermal power (Figures 6.3-6.5). The position at 200 meters

range is well inside the sure-kill region for gust acting

alone. The illustration in Figure 6.11 shows a temperature

VI.31
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maximum in the right hand tail of the distribution at less

than 5850.
. 4,

This does not mean that a gust/thermal synergism does

not exist. It only means that it does not exist in the

stress function for the lower skin. The behavior of the

strength function there is examined next.

Gust Dependent Stress--Thermal Dependent Strength.

Even though the thermal loading does not contribute much to

the stress function, a combined effects problem can still h

exist. The yield point of the material has been treated so

far as a constant. Hence, the strength distribution has

been considered as a cookie-cutter in the stress space.

However, the yield point can vary with temperature. A

possible variation of yield strength with temperature is

-0 illustrated in Figure 6.12. The authors of Reference [79] .

state that the degradation of yield strength parallels that

0
of the elastic modulus out to about 480 Kelvin. At that

point, the length of time at a given temperature ("soak

time") becomes an important variable as well. Since 4800 is

a rarely observed temperature for the 1 KT scenario, the .-

strength function and the elastic modulus can both be mod- 6-r

eled by:

E(T)=E(T0 ) g (T) (6.35)

a (T)=or[(T 0 )g (T) (6.36)

where g(T) is the approximately linear function shown by the

dashed line in Figure 6.12, and OsK(To) is given by Equation

VI.33
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When the temperature dependence for the strength vari-

able is taken into account, the previous cookie-cutter

strength distribution is altered. The statistical uncer-

tainty in the temperature of the skin propagates into the

temperature dependence of the yield point of the material. A

set of calculations was performed to determine the strength

distributions from 200 to 500 meters at blast arrival time.

The resulting continuous strength distributions are shown in

Figures 6.13, 14, and 15 for range positions of 200, 400,

and 500 meters respectively. The strength of the part is

statistically distributed because the temperature of the

part is (Figure 6.11) and the strength depends on the tem-

perature as shown in Equation 6.36. Since the distribution

of temperatures changes at each range step the strength

distribution does also. For the close-in case (200 meters)

the original step function damage distribution of Equation

6.32 centered at 2.756E8 pascals has been transformed into a .

continuous function with a long left-ward tail. The mid-

range strength distribution (400 meters) shows a cookie-

cutter shape beginning to form, with the most probable

failure point being the room temperature failure point of

2.756E8 pascals. The cookie-cutter limit has essentially

been reached in Figure 6.15 when the aircraft is 500 meters

from ground zero at burst time. Hence, even an original

cookie-cutter assumption (as in Equation 6.32) can lead to

VI.34
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continuous probability distributions when the statistical

nature of other variables is introduced.

The failure probability at each range point depends on

more than the strength distribution alone. It is the combi-

nation of stress and strength at every instant of time that

governs the failure probability. The stress function is

given by Equation 6.31 for the lower skin since the gust

loading dominates the stress, as just discussed. The load

factor, NL. is the random variable that gives the stress .

function its random character. The stress distributions for

range positions of 200, 400, and 500 meters are shown

respectively in Figures 6.16 through 6.18.

With both distributions determined, one from the

nuclear blast effects, and the other from the thermal

effects, the failure probability can be directly calculated

by the methods previously described and illustrated. The

failure probability as a function of range is displayed in

Figure 6.19. The results are nearly indistinguishable from

the approximation that considered gust effects only and the

room temperature value of the yield s-tress. This is because

very little heating has taken place at gust arrival time.

One should not infer that gust/thermal combinations are

never important, since results may be different for differ-

ent parts of the beam and for other scenarios. However, the

results do show the utility of the now nonparametric

approach to stress-strength interference theory when direct

_40-
:~ -7..-
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service data is not available.
.'%

Summary

Aircraft vulnerability to the nuclear thermal pulse

from a low yield weapon has been considered. A search of

the available data sources for thermal effects on aircraft

yielded no direct information on either stress or strength

distributions. A deterministic model of the stress was

developed instead. The statistical variation in one of the

input quantities to this model was determined from the L..

nuclear effects literature. Stress distributions were then

inferred by finding the distributions of functions of this

random input variable. Melt mode failures were examined and

the failure probability with range calculated. The results

show little variation between a cookie-cutter and a log-

L,.,
normal strength distribution model. A combined effects

problem was also analyzed. In this case the blast environ-

ment was f ound to dominate the stress distribution, while

the thermal effect determined the strength distribution. The

failure probability as a function of range was again calcu-

lated, with little synergistic effect noted. These problems

further illustrate the utility of the nonparametric inter-

ference theory technique in assessing nuclear survivability.

V1.*44
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Summary

A new approach for assessing the survivability of

aircraft components in nuclear blast and thermal

environments has been presented. A nonparametric technique

for finding the distribution of functions of random

variables has been discovered and presented. This procedure

allows one to rigorously determine the strength and stress

distributions for aircraft components exposed to nuclear

blast and thermal environments. If direct service histories

are not available, strength distributions may still be

inferred by considering the statistical variation in the

inputs to a strength function. Similarly, stress

distributions may be inferred even though direct stress

measurements are not possible. The reliability interference

integral can then be solved resulting in continuous failure

probabilities as a function of range from a nuclear weapon.

In the following paragraphs, each chapter is briefly

reviewed, and recommendations for future work presented.

Chapter II provided a review of nuclear

survivability/vulnerability methods, both deterministic and

probabilistic. Deterministic methods do not provide for

continuous damage probabilities with range. Probabilistic

methods of two broad types have been used. Users of the

first type model failure probabilities directly with range,

VII.v
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while users of the second model strength and stress

functions as random variable processes. The latter is the

basic approach of mathematical reliability theory.

Chapter III provided a brief review of mathematical

reliability theory, including stress-strength interference

theory and the interference integral. Engineering determin-

ism was found to be a special case of this theory. That is,

cookie-cutter failure distributions result if Dirac delta

functions are used to represent the probability density

functions for the stress and strength random variables.

Even though these theoretical considerations are attractive,

stress-strength interference theory is difficult to apply to

large engineering systems. Three problems exist--(a) the

difficulty of developing a system reliability model from

component models, (b) the analytic difficulty of finding

distributions of functions of random variables, and (c) the

limited amount of data available. Some of the current meth-

ods of approaching these difficulties were reviewed. Fault

tree analysis, expectation analysis, direct Monte Carlo

simulation, indirect Monte Carlo simulation, variable trans-

formation techniques, and Bayesian inference have all been

used in attacking these problems.

In Chapter IV, a new application of nonparametric

statistics was presented that allows one to find the

distribution of functions of multiple random variables. The

technique can be applied without using random number

T11.2 "'"
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generators. Although nothing can be done when little data

is available, the nonparametric method does provide

protection against drawing unwarranted conclusions from

sparse data bases. In addition to this, the nonparametric

approach eliminates the need for density function

identification, parameter estimation, and the taking of

partial derivatives. An example from the reactor safety

literature was presented to illustrate the method, and

provide a benchmark calculation.

In Chapter V, this new theory was applied to the prob-

lem of aircraft survivability in nuclear blast environments.

In this case, the strength distributions for several air-

craft piece-parts were taken from the literature. A statis-

tical model of the overpressure from a nuclear weapon was

also available from the literature. This information

allowed the stress distribution to be determined using the

new nonparametric tool. The stress-strength interference

integral was then solved, resulting in a continuous

probability of failure with range. Except for the fuselage,

cookie-cutter approximations appeared to be adequate for the

low-yield scenario chosen.

In Chapter VI, a more difficult problem was approached.

The analysis of the thermal vulnerability of aircraft is

difficult owing to the lack of available data. Strength

distributions cannot be determined based on service histor-

ies. Stress distributions cannot be determined directly

V1I.3
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either. However, stress and strength functions for failure

modes of interest can still be postulated exactly as is done _

in the deterministic case. Any statistical information that

affects the stress and strength functions can be incorpo-

rated using the nonparametric technique. Stress and

strength distributions are thus rigorously inferred, based

on any available data. The scatter in the prediction of the

pthermal radiated power was analyzed in this fashion, and the
probability of failure for skin panels examined. In this

case, cookie-cutter techniques were found to be completely

adequate for the yield scenario chosen.

Recommendations for Future Work

Deterministic modeling will always be the mainstay of
K..

nuclear survivability assessment. The physics of nuclear

weapon effects and the response of weapons systems to those

effects will be a topic of study for years to come.

Probabilistic modeling can and should augment this work. If

data exists, however sparse, the nonparametric tool

described in this dissertation can be used. Finding data

and rigorously processing it is hard work. The

survivability analyst must decide whether this task is worth

it. Methods need to be developed to assist in answering the

question, "Is this worth doing? Will a 'cookie-cutter'

approximation be a good one?"

VII.4
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One of the more difficult problems in stress-strength

interference theory is in the assessment of very low failure

probabilites. The nonparametric tool applied in this

dissertation could in principle be applied to these problems

also. The assessment of a very low failure probability

would require a large number of points and substantial

computer resources. Research in this area should be

conducted.

Work should definitely continue in the area of applied

nonparamotric statistics. This work should involve

improvements in nonparametric tools themselves, and now

applications of those tools.

As far as work on the tools ,themselves, several

improvements need to be made. Survivability assessment

based on direct probability density function (PDF) L

estimation might be useful. Since integration is well-

posed, such a tool would not suffer from some of the defects

that can arise when estimating a PDF by differentiation of a

cumulative distribution function (CDF). Endpoint

extrapolation is another area that could be improved. The

currently used center-difference scheme for integrating the

PDF might be enhanced by using higher-order polynomials or

spline methods. Another area of study is stylized sampling

from non-monotonic functions. A preliminary numerical inves-

tigation seemed to indicate that CDF estimation by stylized

sampling worked well enough if one was willing to put up

r". -
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with jumps in the CDF. The size of the jumps can be made as

small as desired by simply taking more and more points.

However, the PDF estimator derived by differentiating such a

CDF can be a numerical problem. Beyond this, a good

theoretical proof here would be welcome.

Nonparametric estimation techniques should also be

applied to other problems in engineering and physics. One

simple yet potentially useful application might be in Monte

Carlo radiation transport. Even if used only as a tool to

provide fast inversion of distribution functions, computer

time might be substantially decreased in some of these large

codes. Other applications will no doubt be found.

* Finally, as applied to future work in nuclear surviva-

bility, the most useful efforts would be in determining the

statistical uncertainty in nuclear effects predictions.

This is a difficult task, involving a careful search of all

known data; however, as noted earlier, if the environments

of the nuclear effects can be statistically described, con-

tinuous failure probabilities with range will result, even

if strength distributions must be taken as cookie-cutter.

Furthermore, these environmental inputs would remain the

same, barring further testing and discovery, and survivabil-

ity assessment could proceed with these environments as a

common input.
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A--neadix A: Te Develovn O Al oritba NOSIET

Overview

This appendix chronicles the development of NOSWET

(NOnparametric 'after Sleeder' Estimation Technique), the

primary algorithm used to find the distribution of functions

of random variables. The actual use of NOSWET for this

purpose is discussed in Appendix C. In this Appendix, the

work of James Sweeder and A.J. Moore [14] is examined as a

possible tool in reliability theory. One of Sweeder's early

research models (Model 5332) is selected for further

development. The Model is applied to random samples of size

50 from the uniform, normal, double exponential, and log-

normal distributions. These results show unwanted varia-

tions due to the randomness of the samples. A second series

of experiments are performed to show the performance of

Model 5332 on stylized samples. The concept of a 'sty-

lized" sample [141 is explored and defined more precisely.

The performance of the Model on stylized samples is

investigated. The results indicate a need to change the

part of the algorithm that affects the tails of the distri-

butions. A third series of numerical experiments is pre-

sented that shows marked improvement in the estimate of the

cumulative distribution function (CDF), but a very much

degraded estimate of the probability density function (PDF).

This mystery leads to a fourth series of experiments. In

A.1
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this series. Sweeder's original trigonometric interpolation .

of the CDF is abandoned, as is his method of estimating the

PDF. A linear interpolation scheme is implemented, along

with a centered-difference scheme for finding the PDF. The

results are a much improved estimate of both the CDF and the

PDF for the distributions studied. Finally, a fifth series

of experiments is performed in order to find an adaptive

endpoint extrapolation technique. Turning again to numeri-

cal analysis, one finds that enforcing the conservation of

probability in the tails of the distribution leads to opti-

mum selection of the endpoints. Sweeder's extrapolation

rule is shown to be a special case of the general endpoint

selection algorithm. These results are incorporated in the

computer code NOSWET, and used in nuclear survivability

assessments.

Sweeder's Model 5332

In a recently published work [14], Sweeder has

demonstrated a nonparametric technique for estimating

distribution and density functions. Sweeder showed that,

given a set of observations denoted by

(zi), i=l,m, where zi(zi+l

then the sample distribution function Fs(z) is defined by:

FS(z)=0 V z(z 0  (A.1)

For the region zilz<zi+ 1 Fs(Z) is given by

FS( zGi+ [ (Gi+I-Gi) /21 0[l-cos [it(z-zil/lzi+-z i ) 1A.2-

A.2 ..7



Fs(Z)=1 v z)z (A.3) .

Sweeder showed that this sample distribution function

converges uniformly to the underlying distribution function

Fz(z).

In Equation A.2 Gi is a nonparametric plotting position

given by some rule such as: .A

Gili+a)/lm+); -llail (A.4)

In Equations A.1 and A.3 z 0 and z,+ 1 are extrapolated

endpoints such that:

G0 =0 (A.S)

i ~ -G in 1 = ( A . 6 ) - "

At the data points z=z i the sample distribution

function yields the values:

Fs(z i)=Gi (A.7)

Sweeder's work was examined, since it was anticipated

that the problems of nuclear survivability would be

dominated by small sample statistics, and nonparametric

estimation would completely eliminate the problems of

density function identification and parameter estimation.

Although the original Reference [14] should be consulted

for detail, Sweeder's basic idea is to take the sample

defined by the set described above, and break it into a

number of subsamples. Each subsample is treated as

representative of the entire population, and Equations A.1

through A.3 are used to form estimates of the CDF. These

estimates are then averaged. A key parameter in one of

A.3
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.% • ' Sweeder's models is thus the number of subsamples to take.

The first digit, 5, from Model 5332 denotes the number of

subsamples.
.'. ...-

Another parameter of importance is the choice of the

plotting rule. Table A.1 shows several selections that

follow under the general description of Equation A.4. The

third choice, Hazen's Rank, is the second parameter in Model

5332.

The third major parameter of importance in Sweeder's

algorithm is the choice of the extrapolation constant. For

many of the plotting positions of Table A.l, the distribu-

tion is not determined at the endpoints. That is, the Gi's

do not span the entire space from 0 to 1. Thus, the sample

CDF remains undefined in the tails unless one chooses the

points z0 and z,+, in such a way that

Fs(zo)=O (A.8)

Fs(zm+1)=l (A.9)

For each subsample, Sweeder proposed a general extrapolation

given by:

zO=zl-A l ( z 2 - z1 )  (A.1O)

Zm+l=Zm+Au(zm-zm-i) (A.11)

where A1 and Au are the lower and upper extrapolation con-

stants. Table A.2 gives the choices of A, and au that

Sweeder examined. For Model 5332, choice 3 was used.

A.4
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TABLE A.1

PLOTTING POSITIONS OP TE OR.1 eM(i4a)(m+p)"

FORMULA DESCRIPTION

1. i/(m+l) Mean Rank

2. (i-.3)/(m+.4) Median Rank Approximation

3. (i-.5)/ Hazen Rank

4. [i-(m+l)/2m]/[m-(l/m)] Average of Mean and Mode
Rank

5. (i-o)/(m-l) Mode Rank

6. i/m Empirical Distribution
Function

7. (i-.375)/(m+.25) Efficient Approximation
f or t he N o rmal
Distribution

A.5



TABLE A.2

EXTRAPOLATION VALUES

LOVER VALUE (Ad UPPER VALUE (AU)

4 .0 0

2.0.5 0.5

3. 1.0 1.0

4. 1.5 1.5

5. G /(G2 -01  G1 /(G2 -

A.6



The CDF. including the endpoints, can now be con-

structed using Sweeder's technique. However, Sweeder added

an additional feature in order to reduce some of the numeri- - -

cal noise in the CDF estimate. Once the CDF has been deter-

mined, it may be easily inverted by using a Newton-Raphson

or other technique. Rather than inverting the distribution

randomly, Sweeder used the median rank points (choice 2 of

Table A.1) to invert the distribution. These points were

then processed again by the algorithm, resulting in a better

estimate of the CDF. For Model 5332, choice 2 of Table A.1

is used.

Model 5332 was chosen as a starting point, since for a

range of distributions examined, it behaved well with

respect to modified Cramer Von Mises (CVM) distance measures

[14]. Sweeder applied it to the double exponential, normal,

and uniform distributions, representing distributions with a

heavy tail, a moderate tail, and a short tail, respectively.

Model 5332 was not optimum for any of the distributions

considered. However, compared to the 3 other models that

Sweeder considered, it ranked second overall for smallest

CVM distance averaged over all three distributions. More

significantly, Model 5332 was not the worst choice for any

- distribution considered. Hence, it was selected as the

starting point for possible use in a reliability theory

approach to nuclear survivability.

A.7.....................................
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In the first series of numerical experiments, desig-

nated as Series 1, Model 5332 (with two inversions) was

applied to the uniform, normal, double exponential, and

lognormal distributions. The lognormal was added as a bench

mark since it is asymmetric and is popular with other

survivability analysts [49]. Random samples of size 50 were

drawn from each of these distributions, and the CDF and PDF

estimated by Sweeder's method. The results are illustrated

in Figures A.1 through A.4. In these figures the PDFPS have

been scaled to their peak values so as to be able to overlay %

the PDF and CDF on the same plot. The results for each

distribution are discussed briefly below.

The uniform distribution shows a rather heavy tailed

result compared to the true one. The true endpoints are at

0 and 1, whereas the numerical technique is putting them at

-. 20 and 1.15. In addition, the PDF has some oscillations.

These oscillations exceed the true peak value of the PDF by

more than 50%.

The approximation to the normal is, at least visually,

somewhat better. The true endpoints are of course at +.

which cannot be matched by this numerical algorithm. A more

meaningful comparison is the 98th and 2nd percentiles, which

should be at 1 and 0 respectively. The behavior in the

right hand tail is better than that in the left. The PDF

estimate does fairly well except for the peak which should

be at .5. Here noise seems to 'e a problem.

AAI
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The results for the double exponential (DE) shown in

Figure A.3 show very clearly the concave shape of the DE

PDF. The peak of the PDF is also matched fairly well, but _

the distribution seems to show considerable asymmetry, being

shorter in the right-hand tail than in the left.

The results for the lognormal are displayed in Figure

A.4. Sweeder's technique does remarkably well here.

Although not developed explicitly for asymmetric density

functions, Model 5332 estimates the lognormal CDF and PDF

rather well. The asymmetry in the CDF is clearly evident,

as is the almost spiking PDF.

Although the overall results are favorable, it is

difficult to tell at this point how useful Sweeder's method

might be for engineering applications. In particular, it is

difficult to tell by observing one random sample from each

distribution which features are potential model problems and

which are the result of a random draw. This question can be

dealt with by considering, and defining in more detail, the

idea of a stylized sample, and applying that idea to a

second series of numerical experiments.

Model Performance on Stylized Samples

Sweeder does not strictly define the term "stylized

sample'' [14], but basically, a stylized sample is one that

best represents a given distribution. This can be defined

more precisely by observing the following. Of all the

possible random samples that one might choose, there is one

A.13
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particular sample that yields a best estimate of the

underlying distribution. In this set, each z i of the set

satisfies:

Gi Fz (zi) (A. 12)

If each z 4 so determined is then plotted using the same

plotting rule by which it was drawn, then by Equation A.7,

Sweeder's method exactly interpolates the distribution

function Fz(z) at the data points. A stylized sample can

thus be defined formally:

Definition: The set of points (z.),i=l,m is said to be

a stylized sample from the population of the random variable

Z, if, for every point in the set,

Fs(zt)Fz(z ) (A.13)

Stylized samples of size 50 were drawn from each of the

bench mark distributions. The results are displayed in

Figures A.5 through A.8 and are discussed below.

The results for the uniform distribution are displayed

in Figure A.5. Clearly, the situation has improved. The

PDF shows very clear features of the true PDF, and the peak

PDF value is very close. The CDF is also much improved, but

one still sees a rather long tail, which is now symmetric

about .50.

The behavior of Model 5332 on a stylized sample from

the normal distribution is shown in Figure A.6. The PDF

estimation is almost outstanding. However, one can still

see that the CDF does not match exactly, even though the

A.14
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endpoints are symmetric about the median.

The DR distribution as estimated by using Model 5332 is

illustrated in Figure A.7. Again, the PDF estimate looks

very good, while the CDF estimate is not quite as good.

Again, symmetry about .50 is obvious, with slightly more

tail than in the normal case.

Finally, the lognormal distribution as estimated by

Sweeder's technique is shown in Figure A.8. The PDF

behavior is a little hard to see on such a scale since it ,

rises so fast, but it matches fairly well. However, the CDF

seems to have a noticeable problem between the 70th and 98th

percentiles.

In summary, the Series 2 experiments allow one to see

the power of Sweeder's method on stylized samples. The

performance is very good for the normal and double

exponential distributions, and is less satisfactory for both

the uniform and lognormal. The outstanding problems seem to

be undue weight in the tails of the uniform, and somewhat

weak estimation of the asymmetric lognormal. These

difficulties are overcome by actually modifying the model.

Elimination of Subsamnlina

At the moment, two problems remain: (a) the improper

tail weight given to the uniform distribution, and (b)

somewhat poor performance in CDF estimation, especially for

the uniform and lognormal distribution functions. ...

r . . . . . . . . ... . -.. . . . . . . . . . . . . . . . . . . . . . . . .



These two problems were found to be related. Based on

the previous definition of a stylized sample, if one treated

the entire sample as a single subsample and plotted it by

Hazen's Rule, then the CDF estimate should be exact (for

m-50) at the CDF values .01(.02).99. The Series 2 experi- -.

ments did not yield exact results at these points owing to

the subsampling and averaging process.

A third series of experiments was performed. For this

series, the subsampling was eliminated. Said another way,

Sweeder's Model 5332 was altered, using his nomenclature, to

Model 1332. The results are shown in Figures A.9 through

A.12. For these experiments no inversions were necessary,

decreasing computer execution time by a factor of 20 or so.

The use of this new model on a stylized sample from the

uniform distribution is shown in Figure A.9. This Figure is

truly enlightening, as will be discussed shortly. The CDF

estimate is nearly perfect, and the tail weight problem has

all but vanished. In short, the CDF estimate is precisely

as predicted. However, the PDF estimate is much worse.

Instead of having a flat line at the value 1.0, sinusoidal

variations exist which oscillate between 0 and u/2.

The new estimate of the normal distribution is dis-

played in Figure A.10. Again, the CDF estimate is very

good, while the PDF estimate has failed.

A.20
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The behavior of the new model on the DE and lognormal

distributions is shown in Figures A.11 and A.12. Again, the

general result is a very good estimate of the CDF and a L

badly oscillating PDF. This problem led to a fourth series

of numerical experiments. Y

Modification of the PDF Estimation Method

At the conclusion of the Series 3 experiments two

observations were made. First, the CDF estimate was

behaving exactly as anticipated based on the concept of

stylized sampling. Second, the PDF estimate had gone badly

awry. Sweeder's subsampling techniqvi clearly helps the PDF

estimate a good deal. Why is this so?

The PDF mystery is solved by examining in detail

Sweeder's method for finding the PDF. He simply

differentiated Equations A.1 through A.3 resulting in:

fs(z)=0 v z<z 0  (A.14)

For the region zilz<zi+ I the PDF is given by:

f'. fs(z)=(rf i+i/2/2) sin [7(z-z i ) /(z i+l-z i ) ](A.I15)

fs(z)= 0 V zlzm+ 1  (A.16)

The term fi+i/2 in Equation A.15 is defined by:

f i+l/ 2=(Oi+l-Gi ) / (Zi+l-zi) (A.17)

The quantity fi+l/2 is the classic centered-difference

approximation to the derivative. If the true value of the

derivative is a constant 1.0, one sees from Equation A.1S

that the PDF estimate is a sinusoidal function with a peak

amplitude of n/2, exactly as observed in Figure A.9.

A.25
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One also sees from Equation A.15 that increasing the

number of points does nothing to improve the PDF estimate. V

* The PDF always Soes to zero at the data points, and oscil-

lates between 0 and a/2. In short, the problem is one ofN

posedness, as discussed by Lee 1101.

However, one can calculate the average value of

Sweeder's derivative over the interval [zi*zi+i1.
fsz i+f S (dzzi+l-z i) (A.18)

The result is just:

<fs~z )inf~l/2(A.19)

The average value of Sweeder's PDF is just the

numerical centered-diffcrence* value. It appears that

Sweeder's subsampling technique acts primarily as an

* .. averaging algorithm.

If these considerations are true, one can now alter

Sweeder's method again. A new CDF estimate can be def ined

by:

Fs(z)=0 z<z0  (A. 20)

On the interval [z1, z1 +i):

F S(z)=l T Z. Zm+l (A.22)

The PDF estimate is given by:

fz) V z(ZO (A.23)

f (z)zz 3 1  (A.24)

S /*1O /z / -z)' O zz/

A.26



.e.

On the interval [zil.j,12 zi+ 1 / 2 ):

[- -'""fs(zlmfi-ll2+(fi+ll2-fi-ll2) (z-zi-ll 2 )  6.-T

l(Zi+ll2-zi-ll 2 ) (A.2S) i

On the interval [Zm l/2Zm+l) fs(z) is given by:

f S(z)=f-1/2 (z +l-z) / (z+l--l/ 2 ) (A.26)

while .

fslz) O v z~z n+ (A.271). :

In Equation A.25 i ranges from 2 to a-1 and zi+.l/2 is

defined by:

z i+l/2 ( z i + z i + ,)/2 (A.28)

The results of the above model on the stylized samples

from the benchmark distributions are displayed in Figures

A.13 through A.16. One final improvement will be

considered, and that is the problem of endpoint

extrapolation.

Endpoint Extrapolation

Even though the results displayed in Figures A.13

through A.16 are very rewardin., one nagging issue remains--

that of endpoint extrapolation. That is, how should one

choose the points z0 and z,+,? It is not clear that

Sweeder's choice of a constant Al and Au remain optimum for

the newly developed algorithm. For example, examination of

Figures A.5 through A.8 indicates that the resultant end-

point values do not agree with those of Figures A.13 through

A.16. The uniform tail length is shorter in Figure A.13.

and the lognormal is longer on the right and positive on the

A.27
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left in Figure A.16, as it should be. However, the normal

and DR tails in Figures A.14 and A.15, respectively, are

shorter, which they should mot be.

Sweeder [141 grappled with this problem, developing a

number of adaptive models. This approach was not completely

successful, since under subsampling and inversion, endpoints

were sometimes chosen that eliminated some original data.

In addition, one would like to avoid computer intensiveness

as much as possible.

An alternate approach is to enforce conservation of

probability in the tails of the sample distribution to find

the endpoints..

DoIZA .tio& of the GoereXAj Fo1 The numerical situa-

tion in the tails is illustrated in Figure A.17. The CDF is

known at the circled locations. The PDF is known approxi-

mately at the location of the x's. The locations of z0 and

z,+ 1 are desired.

The conservation of probability may be approximately

enforced on the intervals [z 0 ,z I1 and [Zlz 2 ] by requiring:
fz(zl) 1  fz(z)dz (A.29)

FZ(z 2 ) _ FZ(zl) J2fZ (z )d z  (A.30)

Using the relations:

Fz(Zi)=Gi (A.31)

A.32
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Figure A.17. An illustration of the Extrapolation Problem
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i+f(z)dza(f +f )(z -z)/2 (A.32

* Equations A.29 and A.30 reduce to:

I Gmfl(zl-z0 )/2 (A.33)

where

AG-G -Gi iG 2-G (A. 3S)

Sinoe the Gils are known from the plotting rule of

Equation A.4 and f 2 by some method of interpolation on the

I ~interval [z/.S2.the only unknowns above are f, and z0.

Solving for zoleads to the equation:

if a1 is defined by:

a -2G / (2AG-f2 ( 2 z) (A. 37)

then Equation A.36 has exactly the same form as Sweeders

extrapolation rule Equation A.10. A similar analysis for

the right hand tail leads to a similar form and an extrapo-

* lation constant Au defined by:

Au=2 (l-0)/12 AG-f rn.(zm-zri) (A. 38)

Exploiting the general form for the G Is, the extrapo-

lation constants may be written as:

a 1-2(i+a) /(2-f 2 (z2 -zl)/laG) (A. 3 9)

These extrapolation constants depend on the plotting *-

rule (a,P), the sample size (m), the extreme order statis-

* tis (ZiZ 2 Dm~iJm)Dand on the choice of interpolation for

the derivative (~f-)

A. 34



TABLE A.3

ADAPTIVE EXTRAPOLATION DERAVIOI

FORMULA 2ia

1. i/rn1)2 2

2. (i-.3)/(rn+.4) 1.4 1.4

3. (i-.S)/* 1.0 1.0

* . i-)/rnl)0 0

6. /rn2 0

7. (i-.375)I(rn+.25) 1.25 1.25

A.33



The dependence of the extrapolation constants on the

plotting rule is best seen by examining Table A.3. The

adaptive extrapolation constants properly reflect the under-

lying behavior of the plotting rule. For example, the

empirical distribution function (EDF) requires no upper

extrapolation (Au-0), while the mode rank requires no upper

or lower extrapolation (A WO.AumO).

One also sees that Al and Au romain positive quantities

provided:

2-f 2 (z 2 -z 1 ) / AG>0  1.41)

2-f r-i (zm-zm- )
/
AG> 0 (A.42) I"l

Equations A.41 and A.42 are just the requirements that

f, and f be non-negative. Since a numerical approximation

is being used for the fi's, the above equations may not

always be satisfied. A number of interpolation schemes are

investigated below.

_Linear In terolation. From Figure A.17, and assuming

that:IL

=o te 0 +l=0 (A.43)

then

f3 /2Sf2 f 5 /2  (A.44)

fm-1/21fm-l~fm-3/2 (A.45)

where, in general,

f i+1/2*'AG/ (zi+l- Z i)' (A.46).

Linear interpolation consequently leads to: -i.
f 2 = f 3 2 + 1f 5 2 -f 3 2 ((z2 -z 3 /2 1/(z 5 /2 -z 3 1 2 1 1A.47)

A.36



fm-l~fm-l/2+(f m-3/2-fm-1/2 ) ( z n - 1 - zm - 1 / 2 ) "I

";* i" /(z -3. /2-a_1/ 2 ) (A.48)

Averaze Value Anvroximation. The above expressions may

lead to negative A, and Au. Another choice for f2 and f3 -. ""

would be to set:

f 2 -(f 3 1 2 +f 5 1 2)1/2 (A.49)

fm-- (f a-/2+fn_3/2)/2 (A.50)

This choice leads to:

f2 (z2 -zl)/G-(z 3 -zl)/(21z 3 -z 2 )) (A.51)

f (zm -z m 1)/AG =(z -zm _
2 )/2(Z3 1lZ 2 )] (A.52)

In this case, the resulting expressions for A1 and Au

remain positive provided that:

(z3 -zl) / (z3 -z 2) (4 (A.53)

(z m-Z -m2) /(z,-l-z,-_2)<(4 (A.54) '-.

Extreme Value Ayvroximation. The average value approx-

imation may still yield negative extrapolation constants for

heavy-tailed distributions. Using an extreme value approxi-

mation, one sets:

f =f(A. 55)f 2 -f 3 /2

f f / (A.56)

The result here is that:

f 2 ( z2 -zl) IG= (A.57)

f 3
( z m - z m -

1 )/A G=l (A.5 8)

This choice therefore guarantees that the extrapolation

constants remain positive. In fact, for this approximation:

ai-2(1+a) (A.59)

A.37

.. . . .. . . ...-. .. . . .. .



AuM2 (p-ca) (A. 6 0) '-"

For plotting under Hazen's Rule (=-.5,0uO), the extrapola-

tion constants reduce to Sweeder's values (0 1l1,Aul).

Final Results. The final results obtained by incorpo-

rating these new ideas are illustrated in Figures A.18

through A.22. Some discussion here is in order. -.

The results for the uniform distribution are illus-

trated in Figure A.18. It is interesting to note that no

changes have occurred in the endpoints. This must mean that

Sweeder's rule is correct. That this is true can be seen by

examining Equations A.47 and A.48. Using the fact that, for

the uniform:

Equations A.47 and A.48 reduce to Equations A.57 and A.58.

The linear interpolation scheme reduces naturally to

Sweeder's rule under the assumption of a uniform distri' u-

t ion.

The result for the normal distributiou is displayed in

Figure A.19. An increased tail length is evident compared

to the plot of Figure A.14. An expanded left-hand tail is

shown in Figure A.20 to illustrate the differences in the

approximations. In this figure the smooth curve represents

the true PDF, the X's the adaptive extrapolation technique

just developed, and the circles Sweeder's rule.

A.38
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The final result for the DR is illustrated in Figure

A.21. The adaptive technique has extended the tails oon-

siderably.

The final result for the lognormal is illustrated in

Figure A.22. The adaptive endpoint extrapolation here

brings the left-hand tail very close to zero, and extends

the right-hand tail by more than a factor of 3.

At this point, the developmental task was considered to

be finished. The computer code NOSWET was written based on

the above considerations. A listing is given in Appendix B,

and its primary use is discussed in Appendix C.

Summary

To summarize, Sweeder's method [14] has been modified

* in four ways. First, the concept of a stylized sample was

defined. The performance of one of Sweeder's early research

models on stylized samples from the uniform, normal, double

exponential, and lognormal distributions led to the elimi-

nation of Sweeders subsampling method. Second, Sweeder's

trigonometric method of interpolating the CDF was changed to

simple linear interpolation. Third, the PDF estimation

method was changed to a centered-difference scheme. Fourth,

a general approach to endpoint extrapolation was taken by

enforcing the conservation of probability in the tails of

the distribution. Sweeder's extrapolation rule [14] was

seen to be a special case of this more general approach.

The new algorithm, written as computer program NOSYKT (NOn-

A.44



. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ k C7~.~w~uy yy k7 Ik "J~ i ~ 9-. ~ ~ w ~ . ~~ -. V.- ~- .. ~. - .- -I -w--- 7. .-

parametric 'after Uleederl Estimation Technique), was found

p to be especially useful in finding the distribution of

fumoctions of random variables. The program listing is shown

in Appendix B, and its primary use is described in Appendix

C .
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10 '************PROGRAM NOSWET**********************
20 'Program NOSWET (NOnparametric 'after SWeeder'

Estimation Technique)
Constructs a Nonparametric Distribution and Density
Function From The Data in the 1D Array XDATA

30
40 'Algorithm is based on NONPARAMETRIC ESTIMATION OF

DISTRIBUTION AND DENSITY FUNCTIONS WITH APPLICATIONS
by James Sweeder, Ph.D, Capt, USAF. AFIT/DS/MA/82-1

50 IUUUUUUUUUUUU

60 'This Microsoft Basic Code Written By HALVOR A. UNDEM,
Capt, USAF, DS-83, as an Applications Tool in
Nuclear Survivability.

70
80

*90 'In the Fictitious Fortran CALL Statements, Variables
Preceding the Semicolon Are Input, Those After Are
Output or Altered.

100
110 COMMON BASICNAME$,SETMIN%,SETMAX%
120 DIM MAX(15,,IN(I5),WEIGHT(I5)
130 ON ERROR GOTO 5400' DISK I/0 ERROR TRAP
140 INPUT -BASICNAME$,SETMIN% ,SETI4AX%: ,BASICNAME$,

~*.. SETMIN% ,SETMAX%
*150 INPUT ODo You Want a DEBUG$ Run (Y/N) w;DEBUG$

160 INPUT "(S)weeder,(H)istogram, or (C)ontinuous PDF";
PDFTOGGLE $

170 PRINT OTHIS IS PROGRAM NOSWET.0150
180O NOSWET.015 FEATURES: (I)--CHOICE OF KSUBS%

(2)--CHOICE OF EXTRAPOLATION
(3)--CHOICE OF PDF
(4)--WRITES TO DISK IF

MEMORY SHORT
*190 '(5)--CDF IS LINEAR

INTERPOLATION
200 PREFIX$="A:l
210 FOR SET%=SETMIN% TO SETMAX%
220 PRINT
230 PRINT ONOSWET IS PROCESSING DATA SET ";SET%
240 NUMBER$=STR$(SET%)
250 ADD$=MID$(NUMBER$r2)
260 FILNAM$=BASICNAME$+ADD$
270 'Call LOADER(;XDATA[],SIZE%)
280 GOSUB 1000
290 IF DEBUG$=*Y* THEN 300 ELSE 370
300 'THEN Segment--Debug Mode Selected

r310 FOR I%=1 TO SIZE%

7 7.eB. 1



320 PRINT XDATA(I%);
330 IF I% MOD 5-0 THEN PRINT

S. 340 NEXT I%
350 PRINT "SIZE% IS OJSIZE%
360 IF SIZE%<2 ThEN PRINT "SAMPLE TOO SMALL-- 

90..

LOADER ABORT" :STOP
370 'Call SORT(XDATA[],N%;XDATA[])
380 N%-SIZE%
390 GOSUB 1490
400 'Call SUBSAMPL(XDATA[] ,KSUBS%,SIZE%,;SUBSAMP[] ,M%,R%,

XMAX,XMIN)
410 INPUT m(R)andom or (S)tylized Samplew;TOGGLE$
420 IF TOGGLE$-"R" THEN KSUBS%-5 ELSE KSUBS%-"
430 IF KSUBS%>N%/3 THEN PRINT OKSUBS% TOO LARGE":GOTO

410
440 INPUT a(S)weeder or (A)utoranging Extrapolation";

EXTRAPTOGGLE $
450 GOSUB 1780
460 IF DERUGW$Y" THEN 470 ELSE 580
470 'THEN Segiiqent--bebug Mode Selected
480 FOR SAMPLE%-1 TO KSUBS%
490 IF SAMPLE%<-R% THEN LASTEL4-M%+2 ELSE

LASTEL% -M% +l
500 PRINT -SAMPLE%,LASTEL% ARE ";SAMPLE%;LASTEL%
510 FOR ELEMNT%-0 TO LASTEL%
520 PRINT SUBSAMP(ELENNT%,SAMPLE%);
530 IF ELEMNT% MOD 5-0 THEN PRINT
540 NEXT ELEMNT%
550 PRINT "PAUSING BEFORE NEXT SAMPLE":STOP
560 NEXT SAMPLE%
570 PRINT "M%,R%,XMAX,XMIN ARE ";N%;R%;XMAX;XMIN
580 'Call JACKNIFE(SUBSAMP[],SIZE%,KSUBS%;SUBSAMP[],

XDATA[], ZDATA[])
590 GOSUB 2600
600 IF DEBUG$=Y" THEN 610 ELSE 820
610 'THEN Segment--Debug Mode Selected
620 PRINT "HERE IS THE NEW XDATA ARRAY";
630 FOR I%=l TO SIZE%
640 PRINT XDATA(I%);
650 IF I% MOD 5=0 THEN PRINT
660 NEXT I%
670 PRINT "HERE IS THE ZDATA ARRAY"
680 FOR I%=i TO SIZE%
690 PRINT ZDATA(I%);
700 IF I% MOD 5=0 THEN PRINT
710 NEXT 1%
720 PRINT OHERE IS THE NEW SUBSAMP ARRAY"
730 FOR SAMPLE%=1 TO KSUBS%

* 740 IF SAMPLE%<=R% THEN LASTEL%=M%+2 ELSE
LASTEL%=M%+l

750 PRINT -SAMPLE%,LASTEL% ARE ; SAMPLE%; LASTEL%
760 FOR ELEMNT%=0 TO LASTEL%
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770 PRINT SUBSAMP(ELEMNT%,SAMPLE%);
780 IF ELEMNT% MOD 5=0 THEN PRINT
790 NEXT ELEMNT%
800 PRINT 'PAUSING AFTER SAMPLE% O;SAMPLE%:STOP
810 NEXT SAMPLE%
820 INPUT wDump XDATA To Disk O;ANS$
830 IF ANS$="Y' THEN 840 ELSE 860
840 'THEN Segment--Dump XDATA To Disk
850 GOSUB 5160
860 INPUT *Want A Look (Y/N)";LOOK$
870 IF LOOK$="Y" THEN 880 ELSE 940 -
880 INPUT wInput The Value of X 8,X
890 'Call CDFPDF(SUBSAMP[] ,KSUBS%,M%,R%,IPLOT%,X;AVGCDF (X),

AVGPDF(X))
900 IPLOT%=3 'Midpoint of EDF
910 GOSUB 3780
920 PRINT "AT X=";X;"CDF,PDF ARE ";AVGCDF;AVGPDF
930 GOTO 860
940 INPUT nDo You Wish To Plot the PDF/CDF ";ANS$
950 IF ANS$=*Y" THEN GOSUB 5450' CALL PLOTPCDF
960 NEXT SET%
970 CHAIN OFAILPROBE
980 END
990 '
1000 '" 'SUBROUTINE LOADER(;XDATA[],SIZE%) ... '
1010
1020 'Subroutine LOADER Loads the XDATA Array From

The Keyboard or From A Datafile
1030 "
1040 'INPUT VARIABLES: None--Prompts For All
1050 .
1060 'OUTPUT VARIABLES: XDATA--The Array Containing SIZE%

Elements
1070 '•"•""•""""•""""UUU ""• """
1080 IF DEBUG$="Y" THEN PRINT "LOADER HAS BEEN CALLED' L
1090 ANS$="N.
1100 IF ANS$="Y" THEN 1110 ELSE 1190
1110 'THEN Segment--Load XDATA From Random Number Generator
1120 RANDOMIZE
1130 INPUT nWhat Size is Your Sample ";SIZE%
1140 DIM XDATA(SIZE%)
1150 FOR J%=1 TO SIZE%
1160 XDATA(J%) =RND
1170 NEXT J%
1180 RETURN
1190 'ELSE Segment--Load From Keyboard or Datafile
1200 KEYIN$="T-
1210 IF KEYIN$=*K' THEN 1220 ELSE 1290
1220 'THEN Segment--Load Data From Keyboard
1230 INPUT nWhat Size Is Your SampleQ;SIZE%
1240 DIM XDATA(SIZE%)
1250 FOR J%=l TO SIZE%
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1260 PRINT OXDATA(O;J%; " )=";:INPUT XDATA(J%)
1270 NEXT J%
1280 RETURN
1290 'ELSE Segment--Load Data From Tape
1300 OPEN I", 3,FILNAM$
1310 INPUT #3,SIZE%,NEL%
1320 IF TAPCALL$="T* THEN ERASE XDATA
1330 DIM XDATA(SIZE%) . -

1340 NREC%=SIZE%\NEL%
1350 IF SIZE% MOD NEL%<>0 THEN NREC%=NREC%+1
1360 XINDEX%=0
1370 FOR RECORD%=1 TO NREC%
1380 FOR ELEMNT%=1 TO NEL%
1390 XINDEX%=XINDEX%+i
1400 IF XINDEX%>SIZE% THEN PRINT wOUT OF

DATA" :RETURN
1410 INPUT #3,XDATA(XINDEX%)
1420 NEXT ELEMNT%
1430 NEXT RECORD%
1440 CLOSE #3
1450 TAPCALL$="T"
1460 RETURN
1470 END
1480 ,
1490 ' SUBROUTINE SORT(XDATA[],N%;XDATA[]) '
1500 "
1510 'SUBROUTINE SORT Sorts a Data Set From Min to Max
1520 'INPUT VARIABLES: XDATA--The Array Containing the Data

N% ----- The Number of Elements
1530 'OUTPUT VARIABLES: XDATA--The Array After Sorting
1540 '**********************************************
1550 IF DEBUG$="Y" THEN PRINT "SORT HAS BEEN CALLED"
1560 FLIPS=1 'FORCE AT LEAST ONE PASS
1570 WHILE FLIPS
1580 FLIPS=0
1590 FOR J%=l TO N%-1
1600 IF XDATA(J%)>XDATA(J%+) THEN 1620 ELSE 1660
1610 'THEN Segment--SWAP pair
1620 SWAP XDATA(J%),XDATA(J%+1)
1630 FLIPS=1
1640 GOTO 1660
1650 'ELSE Segment--Look At Next Pair
1660 NEXT J%
1670 WEND
1680 IF DEBUG$="Y" THEN 1690 ELSE 1750
1690 PRINT "HERE IS THE SORTED ARRAYO
1700 FOR I%=1 TO N%
1710 PRINT XDATA(I%);
1720 IF I% MOD 5=0 THEN PRINT
1730 NEXT I%
1740 PRINT
1750 RETURN
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1760 END
1770 IUUUUUUUUUUEUU

1780 'SUBROUTINE SUBSAMPL(XDATA[] ,KSUBS%,SIZE%;SUBSAMP[],
M% ,R%o,XMAxXMXIN)

1790 u uu

1800 'Subroutine SUBSAMPL Loads the 2D Array SUBSAMP from
1810 the ID Array XDATA
1810UUUUUU U UUUU

1820 'INPUT VARIABLES: XDATA--1D Array Containing
observations

SIZE%--Total Dimension of XDATA
KSUBS%-Number of Subsamples
Desired--Will Be # of Cols of SUBSAMP

1830
1840 'OUTPUT VARIABLES: M%--Nominal Number of Elements Per

Subsample
R%--Number of Subsamples With M%+1

Elements
SUBSAI4P--2D Array--Each Column Is A

Subsample
18.50
1860 'REQUIRED EXTERNALS: SUBROUTINE ENDPOINT--To Get

XMIN, XMAX
1870UUHNUUUUUUUUUI
1880 IF DEBUG$="Y" THEN PRINT "SUBSAMPL HAS BEEN CALLED"
1890 M%=SIZE%\KSUBS%
1900 R%=SIZE% MOD KSUBS%
1910 IF SAMPCALL%=l THEN 1920 ELSE 1940
1920 'THEN Segment--SUBSAMPL Previously Called
1930 ERASE SUBSAMP
1940 IF R%=0 THEN 1950 ELSE 1980
1950 'THEN Segment--M% Elements in SUBSAMP--Dimension 1 More
1960 DIM SUBSAMP(M%+1,KSUBS%)
1970 GOTO 2000
1980 'ELSE Segment--M%+1 Elements in SUBSAMP
1990 DIM SUBSAMP(M%+2,KSUBS%)
2000 XINDEX%=0
2010 FOR SAMPLE%=1 TO KSUBS%
2020 IF SAMPLE%<=R% THEN 2030 ELSE 2060
2030 'THEN Segment--M%+l In This One
2040 SAMPSIZE%=M%+1
2050 GOTO 2080
2060 'ELSE Segment--M% In This One
2070 SAMPSIZE%=M%
2080 WEIGHT(SAMPLE%)=SAMPSIZE%/SIZE%
2090 FOR ELEMNT%=l TO SAMPSIZE%
2100 XINDEX%=XINDEX%+1
2110 IF TOGGLE$="R' THEN XINDEX%=SAMPLE%+KSUBS%*(ELEMNT%~1
2120 SUBSAMP (ELEMNT% ,SAMPLE%) =XDATA (XINDEX%)
2130 NEXT ELEMNT%
2140 'CALL EXTRAP(SUBSAMP[] ,TOGGLE$;DELTAL,DELTAU)
2150 GOStJB 5970
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2160 SUBSAMP(0,SAMPLE%) =SUBSAMP(1,SAMPLE%) -DELTAL
*(SUBSMP(2,SAMPLE%)-.SUBSAKp(1,SMPLE%))

2170 SUBSAMP(SAMPSIZE%+1 ,SAMPLE%) =SUBSAMP(SAMPSIZE% ,SAMPLE%)
+DELTAU* (SUBSAMP (SAMPS IZ E% ,SAMPLE%)
-SUBSAMP(SAMPSIZE%-1 ,SAMPLE%))

2180 MIN(SAMPLE%) =SUBSAMP(0,SAMPLE%)
2190 MAX(SAMPLE%) =SUBSAMP(SAMPSIZE%+1 ,SAI4PLE%)
2200 NEXT SAMPLE%
2210 'CALL SUBROUTINE ENDPOINT(MIN(] ,MAX[I ,KSUBS%)
2220 GOSUB 2270
2230 SAMPCALL%=1
2240 RETURN
2250 END
2260 IUUUUUUUUUNUUU

2270 'SUBROUTINE ENDPOINT(MIN[] ,MAX[] ,KSUBS%;XMIN,XMAX)
2280
2290 'Subroutine ENDPOINTS Gets The Extrapolated Values

for A Set of Data Found in Arrays MIN And MAX
2300IUUUUNUUIUUUUS
2310 'INPUT VARIABLES: MIN--lD Array Containing Mininum

Extraps
MAX--lD Array Containing Max Extraps
KSUBS%--Size of Above Arrays

2320 *UNUUNHUUUU~U

2330 'OUTPUT VARIABLES: XMIN--Minimum Found in MIN
XMAX--Maximum Found in MAX

2340
2350 'REQUIRED EXTERNALS: SUBROUTINE SORT
2360
2370 IF DEBUG$=YN THEN PRINT wENDPOINT HAS BEEN CALLED"
2380 'CALL SORT(XDATA[] ,N%;XDATA[1)
2390 FOR J%=l TO KSUBS%
2400 SWAP XDATA(J%),MIN(J%)
2410 NEXT J%
2420 N%=KSUBS%
2430 GOSUB 1490
2440 FOR J%=1 TO KSUJBS%
2450 SWAP XDATA(J%),MIN(J%)
2460 NEXT J%
2470 XMIN=MIN(1)
2480 'CALL SORT(XDATA[J ,N%;XDATA[])
2490 FOR J%=l TO KSUBS%
2500 SWAP XDATA(J%),MAX(J%)
2510 NEXT J%
2520 GOSUB 1490
2530 FOR J%=1 TO KSUBS%
2540 SWAP XDATA(J%),MAX(J%)
2550 NEXT J%

*2560 XMAX=MAX(KSUBS%)
2570 RETURN
2580 END
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2600 'SUBROUTINE JACKNIFE(SUBSAMP[H,SIZE%,KSUBS%;

SURSAMP[],XDATA[],ZDATA[])
2610 ~~u*1UUUNUUUUU
2620 '0"'Subroutine JACKNIFE Samples From the Current
2630Distribution, Storing the Sample in ZDATA

263I0UEUUUNERUW

2640 'INPUT VARIABLES: SUBSAMP--2D Array of Subsamples For
Current Distribution

SIZE% ---- Total Number of Data Points
in Original Sample

KSUBS%--Number Of Subsamples Desired
2650
2660 'OUTPUT VARIABLES: ZDATA--Array Containing Last

Pseudodata
SUBSAMP--Altered 2D Array For "Neww

Distribution
XDATA--Now Contains New Dataset

2670
2680 'REQUIRED EXTERNALS:. SUBROUTINE PLOTPNT--To Get Median

Ranks
SUBROUTINE ZOFCDF--To Invert

Distribution
SUBROUTINE SUBSAMPL--To Reload Array

SUBSAMP
2690
2700 IF DEBUG$='Y" THEN PRINT "JACKNIFE HAS BEEN CALLED"
2710 IF JACKCALL$<>-T THEN DIM ZDATA(SIZE%)
2720 INPUT Nlnput JACKMAX% (0,l,2):",JACKMAX%
2730 IF JACKMAX%=0 THEN JACKCALL$="T":RETURN
2740 IF JACKCALL$<>wT AND JACKMAX<>0 AND TOGGLE=S' THEN

2750 ELSE 2780
2750 'THEN SEGMENT--Verify Desired Operation
2760 PRINT "YOU ARE JACKNIFING A STYLIZED SAMPLE"
2770 STOP
2780 FOR JACK%=1 TO JACKMAX%
2790 PRINT
2800 PRINT OTHIS IS INVERSION NUMBER ";JACK%
2810 ZDATA(0)=XMIN
2820 FOR IJACK%=l TO SIZE%
2830 'CALL PLOTPNT( IPLOT% ,IPNT% ,NOBS% ;PLOTPNT)
2840 IPNT%=IJACK%
2850 IPLOT%=2' Median Rank Points
2860 NOBS%=SIZE%
2870 GOSUB 3060
2880 'CALL ZOFCDF (ALFA, ZMIN, ZMAX; ZALFA)
2890 ZMAX-XMAX
2900 ZMIN=ZDATA(IJACK%-1)
2910 ALFA=PLOTPNT
2920 GOSUB 3270
2930 ZDATA (IJACK%) =ZALFA
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2940 PRINT "FOR DATA POINT *;IJACKS;"ALFAZDATA ARE ";ALFA;
ZDATA(IJACK%)

2950 NEXT IJACK%
2960 'CALL SUBSAMPL(XDATA[] ,KSUBS%,SIZE%;SUBSAMPL[] ,M%,R%,

XMAX,XMIN)
2970 FOR J%=1 TO SIZE%
2980 SWAP XDATA(J%),ZDATA(J%)
2990 NEXT J%
3000 GOSUB 1780
3010 NEXT JACK%
3020 JACKCALL$="T"
3030 RETURN
3040 END
3050 '' "' ' ' ' .
3060 ' SUBROUTINE PLOTPNT ( IPLOT%, IPNT%, NOBS%; PLOTPNT)
3070 "
3080 ' Subroutine PLOTPNT Generates the Plotting Position ,

for the I%th Observation out of NOBS%
3090 ' **'"'""'"*.
3100 'INPUT VARIABLES: IPLOT%--Variable Selecting Choice

of Plotting Position
IPNT% ------ The I%th Observation
NOBS%---The Total Number of

Observations
3110 UUUUUUUUUUUUU

3120 'OUTPUT VARIABLE: PLOTPNT--The Plotting Position
3130 ' "'""""''"'''"'''''"'"''"'-"E;
3140 IF DEBUG$="Y" THEN PRINT "PLOTPNT HAS BEEN CALLED"
3150 IF IPNT%=0 THEN PLOTPNT=-0:RETURN
3160 IF IPNT%=NOBS%+l THEN PLOTPNT=l:RETURN
3170 IF IPLOT%=2 THEN 3180 ELSE 3210
3180 'THEN Segment--Approximate Median Ranks
3190 PLOTPNT=(IPNT%-.3)/(NOBS%+.4)
3200 GOTO 3230
3210 'ELSE Segment--Midpoint of EDF
3220 PLOTPNT=- (IPNT%-. 5)/NOBS%
3230 IF PLOTPNT<0 OR PLOTPNT>1 THEN PRINT wERROR IN

PLOTPNT" : STOP
3240 RETURN
3250 END
3260 '
3270 ' SUBROUTINE ZOFCDF(ALFAZMINZMAX;ZALFA)
3280 '
3290 'Subroutine ZOFCDF Finds the Value of z such that

Pr [Z<=z]=ALFA
3300 '
3310 'INPUT VARIABLES: ALFA--PERCENTILE DESIRED

ZMIN--MINIMUM VALUE OF VARIATE
ZMAX--MAXIMUM VALUE OF VARIATE

3320 ''''UU 'UUUUUUUUUUUU'"U-vUU
3330 'OUTPUT VARIABLES: ZALFA--Value of Z Satisfying

Equation F
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3350 'REQUIRED EXTERNALS: SUBROUTINE CDFPDF--To Supply

CDF Values
3360
3370 IF DEBUG$=Y THEN PRINT IZOFCDF HAS BEEN CALLED"
3380 ICOUNT%=O
3390 CRITI'

" -3400 HIVALUE=ZMAX
3410 LOVALUE=ZMIN
3420 WHILE CRIT>.000001
3430 IF HIVALUE=LOVALUE THEN 3440 ELSE 3480
3440 'THEN Segment--Nonconvergence Problem
3450 PRINT OZOFCDF CANNOT CONVERGE"
3460 PRINT NALFA,ZALFA,CRIT ARE ";ALFA;ZALFA;CRIT
3470 STOP
3480 'ELSE Segment--Normal Search Continues
3490 ICOUNT%=ICOUNT%+i
3500 IF ICOUNT%>212 THEN 3510 ELSE 3580
3510 'THEN Segment--Tolerance Not Met
3520 PRINT *TOLERANCE NOT MET"
3530 PRINT -ALFA,ZALFACRIT ARE ";ALFA;GUESS;CRIT
3540 PRINT -HIVALUE, LOVALUE ARE ";HIVALUE; LOVALUE
3550 INPUT "Execute Recovery Routine O;ANS$
3560 IF ANS$="Y* THEN X=(HIVALUE+LOVALUE)/2:GOTO

3740
3570 PRINT "ZOFCDF HAS ABORTED':STOP
3580 IF PDF<>0 AND ICOUNT%>l THEN 3590 ELSE 3620
3590 'THEN Segment--Newton-Raphson Estimate
3600 GUESS=GUESS+ (ALFA-CDF)/PDF
3610 IF GUESS>HIVALUE OR GUESS<LOVALUE THEN 3630

ELSE 3640
3620 'ELSE Segment--Halve the Interval Estimate
3630 GUESS= (HIVALUE+LOVALUE)/2
3640 'CALL CDFPDF(SUBSAMP[] ,KSUBS%,M%,R%,IPLOT%,X;

AVGCDF(X),AVGPDF(X))
3650 IPLOT%=3 'Midpoint of EDF
3660 X=GUESS
3670 GOSUB 3780
3680 CDF=AVGCDF
3690 PDF=AVGPDF
3700 IF CDF>ALFA THEN HIVALUE=GUESS
3710 IF CDF<ALFA THEN LOVALUE=GUESS
3720 CRIT-ABS (CDF-ALFA)
3730 WEND
3740 ZALFA=X
3750 RETURN
3760 END
3770 'UU"UUUU""UU""""NU"UUU""""""
3780 'SUBROUTINE CDFPDF(SUBSAMP],KSUBS%,M%,R%,IPLOT%,X;

AVGCDF (X) ,AVGPDF (X))
3790 "
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3800 'Subroutine CDFPDF Gets the Value of The CDF and
PDF Using Sweeder's Estimation Technique

3810
3820 'INPUT VARIABLES: KSUBS%--THE NUMBER OF SUBSAMPLES

X ------- VARIATE OF DISTRIBUTION
SUBSAMP-2D ARRAY CONTAINING

PARTITIONED SAMPLE
R%--NUMBER OF COLS OF SUBSAMP WITH

M%+l ELEMENTS
M%--NUMBER OF ELEMNTS IN SAMPLES%

R%+1 ON
3830 'IPLOT%--CHOICE OF PLOTTING POSITION
3840 UUUK.UUUUKUUU

3850 'OUTPUT VARIABLES: AVGCDF--Average CDF Over KSUBS%
Subsamples

AVGPDF--Average PDF Over KSUBS%
Subsamples (Both Evaluated at X)

3870 'EXTERNALS REQUIRED: SUBROUTINE LOADXDUM--To Load

Dummy Array
SUBROUTINE POINTCDF--To Get

Point CDFPDF Valus
3880
3890 IF DEBUG$="Y THEN PRINT "CDFPDF HAS BEEN CALLED"
3900 SUMCDF=0
3910 SUMPDF=0
3920 FOR SAMPLE%=l TO KSUBS%
3930 'CALL LOADXDUM(SUBSAMP[] ,XDUM[],SAMPLE%,R%,M%)
3940 GOSUB 4080
3950 'CALL POINTCDF(XDUM[] ,SAMPSIZE%,XIPLOT%)
3960 SAMPSIZE%=LASTEL%
3970 GOSUB 4430
3980 IF DEBUG$="Y THEN 3990 ELSE 4000
3990 PRINT "FOR SAMPLE=R;SAMPLE%;"CDF,PDF ARE ";CDFPDF
4000 SUMCDF=SUMCDF+WEIGHT(SAM4PLE%) *CDF
4010 SUMPDF=SUMPDF+WEIGHT(CSAMPLE%) *PDF
4020 NEXT SAMPLE%
4030 AVGCDF=SUMCDF
4040 AVGPDF=SUMPDF
4050 RETURN
4060 END
4070
4080 'SUBROUTINE LOADXDUM(SUBSAMPI] ,M%,R%,SAMPLE%;XDUMII)
4090
4100 'Subroutine LOADXDUM Loads the XDUM Array For Later

Use By Subroutine POINTCDF--It Acts As The
Fictitious Data Array And is Loaded From Array SUBSAMP

4110 tUUUKUUNUUUUU
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4120 'INPUT VARIABLES: SAMPLE%--IDENTIFIES COLUMN OF
SUBSAMP

R---- FIRST R% COLUMNS OF SUBSAMP
HAVE ONE MORE DATA Point__

SUBSAMP--2X2 Array Containing Data-- ,.
Row is ELEMNT%, Col is SAMPLE%

M%------------------ Number of Elements Per
Sample *

4130 ~ * .~

4140 'OUTPUT VARIABLES: XDU -- DUMMY SORTED DATA Array-iD__
4150
4160 IF DEBUG$*Y* THEN PRINT "LOADXDUM HAS BEEN CALLED"
4170 IF DEBUG$="Y" THEN PRINT "SAMPLE%,R%,M% CAME IN AS

";SAMPLE%;R%,M%
4180 IF SAMPLE%<=R% THEN 4190 ELSE 4220
4190 'THEN Segment--Set Has M%+1 Elements
4200 LASTEL%=M%+2 'Because of Extrapolated

Points
4210 GOTO 4240
4220 'ELSE Segment--Set Has M% Elements *-

4230 LASTEL%=M%+l
4240 IF CALLXDUM$="T" THEN ERASE XDUM
4250 DIM XDUM(LASTEL%)
4260 FOR I%=0 TO LASTEL%
4270 XDUM (I%) =SUBSAMP (I%, SAMPLE%)
4280 NEXT I%
4290 IF DEBUG$="YU THEN 4300 ELSE 4360
4300 'THEN Segment--Debug Mode Selected
4310 PRINT OHERE IS THE XDUM ARRAY FOR SAMPLE ";SAMPLE%
4320 FOR IDEX%=0 TO LASTEL%
4330 PRINT XDUM(IDEX%);
4340 IF IDEX% MOD 5=0 THEN PRINT

4360 'ELSE Segment--Normal Termination

4370 CALLXDUM$=*T'
4380 RETURN
4390 END
4400 ~h
4410 'SUBROUTINE POINTCDF(XDUM[] ,SAMPSIZE%,X,IPLOT%;

4420IIIIUUUUNNUWUEWUUUUUUUUUCDF, PDF)

4430 'Subroutine POINTCDF Estimates the CDF and PDF
Nonparametrically From a Data Set Found in XDUM--

4440
4450 'INPUT VARIABLES: XDUM--DUMMY ARRAY CONTAINING THE

DATA INCLUDING THE ENDPOINTS
SAMPSIZE%--TOTAL SIZE OF THE ARRAY
X ---- POINT WHERE CDFPDF WANTED

4460 'IPLOT%--Choice of Plotting Position

4480 'OUTPUT VARIABLES: CDF--Value of CDF At Point X
PDF--Value of PDF At Point X



4490 UUUUUUUUEUUUU

4500 'REQUIRED EXTERNALS: SUBROUTINE PLOTPNT
4510 S

4520 IF DEBUG$"Y" THEN PRINT "POINTCDF HAS BEEN CALLED"
4530 PI=4*ATN(1)
4540 DUMIN-XDUN(0) ,

4550 DUMAX=XDUH(SANPSIZE%)
4560 IF X<-DUNIN THEN CDF=O:PDF-O:RETURNAN
4570 IF X>=DUMAX THEN CDF=1:PDF-O:RETURN
4580 FOR 1%-0 TO SAMPSIZE%-1
4590 IF XDUM(I%)<-X AND X<XDUM(I%+1) THEN 4600 ELSE 4710
4600 'THEN Segment--Interval Found
4610 'CALL PLOTPNT(I%,IPLOT%,SAMPSIZE%)
4620 IPNT%=I%
4630 NOBS%=SAMPSIZE%-1
4640 GOSUB 3060
4650 G=PLOTPNT
4660 'CALL PLOTPNT(I%+1,IPLOT%,SA4PSIZE%)
4670 IPNT%=I%+l
4680 GOSUB 3060
4690 GPLUS=PLOTPNT_
4700 GOTO 4740
4710 'ELSE Segment--Look Again
4720 NEXT I%
4730 PRINT uABORT IN POINTCDF--X NOT FOUNDI:STOP
4740 ARG=(X-XDUM(I%))/(XDUM(I%+1)-XDUM(I%))
4750 CDF=G+(GPLUS-G)*ARG
4760 IF PDFTOGGLE$=wS THEN CDF=G+(GPLUS-G)/2

4770 IF CDF<-6E-09 OR CDF>l THEN PRINT wCDF ABORT IN
POINTCDF": STOP

4780 IF PDFFLAG$*S* THEN PRINT "PDF ABORTED":PDF'0:RETURN
4790 IF PDFTOGGLE$=OS THEN 4800 EL,*_ 4830
4800 ' THEN Segment--Use Sweeder's C iginal PDF
4810 PDF-PI/2*(GPLUS-G)/(XDU(I%. )-XDUM(I%) )*SIN(PI*ARG)
4820 GOTO 5130
4830 IF PDFTOGGLE$="H THEN PDF=(GPLUS-G)/(XDUK(I%+1)-

XDUM(I%)) :GOTO 5130
4840 IF X<=.5*(XDUM(I%)+XDUM(It+1)) THEN 4850 ELSE 5020
4850 'THEN Segment--Interpolate From Previous Derivative
4860 IF XDUM(I%+l)=XDUM(I%) THEN 4870 ELSE 4890
4870 PRINT 'DUPLICATE SAMPLE--PDF ABORTO
4880 PDFFLAG$"S":PDFW0:RETURN
4890 PDFMAX=(GPLUS-G)/(XDUM(I%+1)-XDUM(I%))
4900 XHI=.5* (XDUM(I%) +XDLJM(I%+l))
4910 IF 1%=0 THEN PDFMIN=0:XLO-DUMIN:GOTO 5120
4920 'CALL PLOTPNT(I%-1) ,IPLOT%,SAMPSIZE%;PLOTPNT)
4930 IPNT%=I%-1
4940 GOSUB 3060
4950 GMINUS=PLOTPNT '

4960 IF XDUM(I%)-XDUM(I%-1) THEN 4970 ELSE 4990 2

4970 PRINT "DUPLICATE SAMPLE--PDF ABORTS" ;
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4980 PDFFLAG$=*S": PDF=O :RETURN
-... 4990 PDFMIN=(G-GMINUS)/(XDUM(I%)-XDUM(I%-1))

5000 XLO=-.5*(XDUM(I%-l)+XDUM(I%))
5010 GOTO 5120
5020 'ELSE Segment--Interpolate To Next DerivativeL
5030 PDFMIN=(GPLUS-G)/(XDUM(I%+l)-XDUM(I%))
5040 XLO=-.5* (XDUR(I%) +XDUI4(I%+l))
5050 IF I%=SAMPSIZE%-1 THEN PDFMAX=O:XHI-DUMAX:GOTO 5120
5060 'CALL PLOTPNT(I%I2,IPLOT%,SAMPSIZE%;PWOTPNT) 4

5070 IPNT%-I%+2
5080 GOSUB 3060
5090 GHIGH=PLOTPNT
5100 PDFMAX-(GHIGH-GPLUS)/(XDUM(I%+2)-XDUM(I%+1))
5110 XHI=.5*(XDUM(I%+1)+XDU4(I%+2))
5120 PDF=PDFMIN+ (PDFMAX-PDFMIN) /(XHI-XLO) *(X-XLO)
5130 IF PDF<0 THEN PRINT UPDF ABORT IN POINTCDF":STOP
5140 RETURN
5150 END
5160 'SUBROUTINE DUMPDATA(XDATA(1 ,SIZE%)
5170 ON ERROR GOTO 5410
5180 IF MID$(FILNAM$,21)=N:m THEN FILNAM$=MID$(FILNAM$,3)
5190 FILE$=PREFIX$+FILNAM$
5200 OLDFIL$=FILE$+*.BAKO
5210 KILL OLDFIL$
5220 NAME FILE$ AS OLDFIL$
5230 OPEN 00O,l,FILE$
5240 NEL%=5
5250 NREC%=SIZE%\NEL%
5260 IF SIZE% MOD NEL%<>0 THEN NREC%=NREC%+1
5270 XINDEX%=0
5280 PRINT tl,SIZE%;NEL%
5290 FOR RECORD%=1 TO NREC%
5300 FOR ELEMNT%=1 TO NEL%
5310 XINDEX%=XINDEX%+1
5320 IF XINDEX%>SIZE% THEN PRINT *1,:CLOSE 1:RETURN
5330 PRINT #1,XDATA(XINDEX%);
5340 NEXT ELEMNT%
5350 PRINT #1,
5360 NEXT RECORD%
5370 CLOSE 1
5380 RETURN
5390 END
5400 '**"UBROUTINE DlSKER R'060
5410 IF ERR=53 AND ERL<>1300 THEN RESUME NEXT
5420 ON ERROR GOTO 0
5430 RETURN
5440 END
5450 'w""SUBROUTINE PLOTPCDFUUUUUUUUUwf
5460 MEMORY=FRE(0)
5470 PRINT OMEMORY LEFT IS ";MEMORY;"BYTES"
5480 MEM=1000
5490 IF MEMORY<MEM THEN 5520

B. 13
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5500 INPUT *Do You Want Plotdata Written To Disk*;ANS$
5510 IF ANS$="Y THEN 5520 ELSE 5630
5520 COMMON MAXPDFXMIN,XMAXFILE$
5530 DIM X(l),Y(1),Y2(1)' Sets Starting Addresses
5540 CLOSE
5550 INPUT "MUST WRITE TO DISK. INPUT FILNAM$:",FILNAM$
5560 IF MID$(FILNAM$,2,1)=-:- THEN

FILNAM$=MID$ (FILNAM$,3)*.-
5570 FILE$=PREFIX$+FILNAM$
5580 OLDFIL$=FILE$+".BAK"
5590 KILL OLDFIL$
5600 NAME FILE$ AS OLDFIL$
5610 OPEN O00,1,FILE$
5620 GOTO 5660
5630 COMMON Xo',YU',Y2()
5640 FILE$=A:"' Sets Address
5650 DIM X(101),Y(101),Y2(101)
5660 PRINT OXMAX AND XMIN ARE ";XMAX;XMIN:INPUT "CHANGE

VALUES3 ;CHANGE$
5670 IF CHANGE$="Y" THEN INPUT "INPUT XMIN,XMAX:",XMIN,XMAX
5680 HX= (XMAX-XMIN) /100
5690 FOR POINT%=1 TO 101
5700 INDEX%=POINT%-l
5710 X=XMIN+INDEX%*HX
5720 GOSUB 3770
5730 PRINT "AT X=";X;"CDFPDF ARE ";AVGCDF;AVGPDF -

5740 IF AVGPDF>MAXPDF THEN ZAXPDF=AVGPDF
5750 IF MEMORY<MEI OR ANS$=*Y" THEN 5760 ELSE 5780
5760 PRINT *1,X;AVGPDF;AVGCDF
5770 GOTO 5790
5780 X(INDEX%) =X:Y(INDEX%)=AVGPDF:

Y2 (INDEX%) =AVGCDF
5790 NEXT POINT%

I5800 IF MEMORY<MEM OR ANS$="Y" THEN 5810 ELSE 5870L
5810 PRINT #1,MAXPDF;XMIN;XMAX
5820 CLOSE
5830 PRINT *MAXPDF;XMIN;XMAX;FILE$=";MAXPDF;XMIN;

XMAX; FILE$
5840 INPUT wChain In PLOTCDF (Y/N) ;ANS$
5850 IF ANS$"N" THEN PRINT "NORMAL TERMINATION":STOP
5860 CHAIN mPLOTCDFw .

5870 PRINT "MAXPDF IS *;MAXPDF
5880 INPUT *CHANGE MAXPDF ";PDF$
5890 IF PDF$wY" THEN INPUT lnput MAXPDF:O,MAXPDF
5900 FOR INDEX%=0 TO 100
5910 Y.(INDEX%) =Y (INDEX%)/MAXPDF
5920 NEXT INDEX%
5930 PRINT -MAXPDFXMIN,XMAX ARE

;MAXPDF;XMIN;XMAX; 3 PAUSING":STOP
5940 CHAIN wMXPLOT.002m
5950 RETURN
5960 END
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5970 'SUBROUTINE PXTRAP(SUBSAMP[ I TOGGLE$;DELTAL,DELTAU)
5980 ALFAPLOT- 5 :BETAPLOT-O
5990 IF TOGGLE$=RI OR PDFTOGGLE$"S' THEN

DELTALl : DELTAU=1 :RETURN
6000 IF EXTRAPTOGGLEWS" THEN DELTAL=1:DELTAU=1:RETURN
6010 RL1=2*SUBSAMP(2,SAMPLE%)-SUBSAMP(1,SAMPLE%)

6020 -SUBSAM~P (3, SAMPLE%) -

600RL2=SUBSAMP(2,SAMPLE%)-SUBSAM4P(1,SAMPLE%)
6030 RL3=SUBSAI4P(3,SAMPLE%)-SUBSAMP(2,SA4PLE%)
6040 RL4=SUBSAMP(3,SAMPLE%)-SUBSAM4P(1,SAMPLE%)
6050 RL=RL1*RL2/ (RL3*RL4)
6060 IF RL>=1 THEN 6070 ELSE 6150
6070 PRINT OEXACT EXTRAPOLATION FAILS FOR DELTAL":STOP
6080 RL=RL4/RL3
6090 IF RL>=4 THEN 6100 ELSE 6130
6100 PRINT "METHOD 2 FAILS FOR DELTAL":STOP
6110 DELTAL=2*(1+ALFAPLOT)
6120 GOTO 6160
6130 DELTAL=2* (1+ALFAPLOT)/(2-.5*RL)
6140 GOTO 6160
6150 DELTAL=2* (1+ALFAPLOT)/(1-RL)
6160 RH1A=SUBSAMP(SAMPSIZE% ,SAMPLE%)

-SUBSAMP (SAMPSIZE%- , SAMPLE%)
6170 RH1B=SUBSAMP(SAMPSIZE%-1,SAMPLE%)

-SUBSAMP(SAMPSIZE%-2 ,SAMPLE%)
6180 RH1=RH1A/RH1B
6190 RH2A=2*SUBSAMP(SAMPSIZE%-1 ,SAMPLE%)

-SUBSAMP(SAMPSIZE%-2, SAMPLE%)
I~~. -SUBSAMP (SAMPSIZ E%, SAMPLE%)

6200 RH2B=SUBSAMP(SAMPSIZE%,SAMPLE%)
-SUBSAMP (SAMPSIZE%-2 ,SAMPLE%)

6210 RH2=RH2A/RH2B
6220 RH=RH1+RH2
6230 IF RH>=2 THEN 6240 ELSE 6320 r.
6240 PRINT "EXACT EXTRAPOLATION FAILS FOR DELTAU":STOP
6250 RH=RH2B/RH1B
6260 IF RH>=4 THEN 6270 ELSE 6300
6270 PRINT *METHOD 2 FAILS FOR DELTAO":STOP
6280 DELTAU=2* (BETAPLOT-ALFAPLOT)
6290 GOTO 6330
6300 DELTAU=2* (BETAPLOT-ALFAPLOT) /(2-.5*RH)
6310 GOTO 6330
6320 DELTAU=2* (BETAPLOT-ALFAPLOT)/(2-RH)
6330 RETURN
6340 END
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Appendix C: Distribation Functio
Monotonic In N Random Variables

K

Overview .'-

This Appendix provides a demonstration of a powerful

alternative to random Monte Carlo sampling when used to find

the distribution of a function of one or more random

variables. Appendix A provided an introduction to Sweeder's

method [14] of non-parametric estimation of distribution and

density functions. In that Appendix, the concept of a

stylized sample was presented, and improvements were made to

one of Sweeder's basic numerical techniques. These ideas 6,,

are briefly reviewed. The problem of finding the

distribution of a function of a single random variable is

considered. It is shown that a set of stylized points from

the population of the random variable I maps into a set of

stylized points from the population of Z, where Z-g(X), and

the function g(x) is monotonic. Two examples are presented.

Functions of two independent random variables are then

considered, and two examples again presented. Functions

monotonic in N random variables are discussed.

A Review of Sweeder's Method

Given a set of observations from the population of the

random variable Z with distribution function Fz(z), one can

order the set from smallest to largest. Given this set.

denoted by:

c.1..........................................
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where zizi+1 then one may construct the sample distribution

function Fs(z) as follows:

Fs(z)=O v z~zO (C.1)

Fs(z)=Gi+(Gi+-Gi)(z-zi)/(zi+i-zi) v zizzi+ 1  (C.2)

Fs(z)=l v zZ(m+ 1  (C.3)

Sweeder [14] showed that such a sample distribution

function converges uniformly to the underlying distribution

function Fz(Z).

In Equation C.2, G i is a nonparametric plotting

position, given by some rule such as:

Gi=(i a) /(m+ ; - a _... 1(C.4) :-

In Equations C.1 and C.3, z 0 and z,+ 1 are extrapolated

2. endpoints such that:

Fs( z 0 )=GoO (C.5)

Fs(Zm+l)=Gm+l'l (C.6)

The simplist linear transformation is given by: L
Z=x (C.7)

If X is a random variable with distribution function

FX(x), then the distribution function of Z is given by:

Fz(z(x)) = Fx( x ) (C.8)

Now, provided FX(x) is known, one can collect the

particular set of m values;

(xl}; i~l,m ,~i

in such a way that the xi satisfy:

C.2
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G MF (2x f *d (C.9)

where

F 1 (xo)=O (C.1O)

By Equations C.2 and C.9 one sees that:

Fs(X i C)FX(xi ) (C.11)
S i

For this partioular set of points, the sample

distribution function Fs(x) is exact at the drawn data

points, x i. Such a set of points (reference Appendix A)

will be referred to as a stylized sample. The definition is

repeated below:

Definition: The set of points (xi), i=l,m, is defined

as a stylized sample from the population of X if, for every

element of the set,

Fs(X )=Fx(x ) (C.12)

and xi<xi+l.

Referring back to Equation C.7, one sees that the

distribution function Fs(Z) is also exact at points z i given

by

zi x i  (C.13)

since

Fs( Z i) -F (x )-o i (C.14)

Hence, the motivation is provided to search for a new

technique in finding the distribution of a function of a

random variable.

CA3
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Monotonic Functions of a Sinale Random Variable

One may now consider the case where the random variable

Z is an arbitrary monotonic function of the single random

variable X. That is,

Z=g(I) (C.5)

where g'(x) has no zeroes throughout the range of X. F

From the previous discussion, if one could somehow

obtain a stylized sample from the population of Z, then the

sample distribution function Fs(z) is exact at the points

(z) i=l,m. With a minor restriction on the plotting rule

of Equation C.4, such a set of z's is found by simply eval-

uating the function g(x) at the points [x}. L

-YPOTHKSIS: Given Z=g(I), with g(x) monotonic, and a

stylized sample from the population of X, (x"), i1l,m, then

the stylized sample from Z, (z. i=l,m; is found by evalua-

ping g(x) at the points (xi, il,m. This is true provided

the x i are drawn by the rule:

Gi=(i+a)/(m+P)=F(x) xf(x)dx (C.16)

and 0-2 -1 (C.17)

PROOF: The equation of total probability [1,61 can

be used to find the density function fz(z) given the condi-

tiomal density function fzix(z(x)). That is:

fz(z)f+I f(x()f(z(x))dx (V.18)

where 10 and xm+1 satisfy:

FL(x 0 ) =0 (C.19)

F (Cm+i)=l (C.20)

C.4
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Since the objective is to draw or construct a stylized

sample from the population of Z, one might seek the point zj

that satisfies the equation:

G i =F Z(zj ) (C.21) ..,

That is, z is one of the members of a stylized sample from

the population of Z.

The distribution function may be found by integrating

the density function. Equation C.18 may be integrated to

the point z-, and the integral over z taken inside the

integral over all x. Recalling the definition of the condi-

tional distribution function leads to the result:

Fz(Z.)=fxm+' fx(X)Fz x(z.)dx (C.22)

The z* must satisfy Equation C.22 for every j=l,m.

Now, FZIx(z.) is known explicitly. Since z is a func-

tion of x only, the density function of ZIX is the Dirac

delta function with parameter given by:

(C.23)

That is:

fzJlx(Z)=6(z- ) (C.24)

and

F- z(z )6(z-r)dz (C.25)

By the properties of the Dirac delta function [2,111,
a

Fzjx(z j) takes only two values:

Fz x(zj-)0 V zj< (C.26)

F L z )=I V z (_C.271)-

" ~C.S ..



% Equations C.26 and C.27 can be put to use in Equation

*C.22 by transforming the integral in Equation C.22 to an

integral over T.From Equation C.23,

4'.dr-g'(x)dx (C.28)

x~-~)(C.29)

The transformed integral is:

G =F (z; g (x Mr)+ I)f (S- (0)F 1 (z )dr/g'(g -l ))(C.30)

One may now consider increasing versus decreasing func-

tions of I.

Monotonically Increasina& Functions. For monotonically

increasing functions of X,

s'(x)>O V x (C. 31)

For this case the integrand in Equation C.30 is always

non-negative. By Equation C.26,

Fzix~*)=Ov r~* (C 3.2

and is unity elsewhere. Using Equation C.32 in C.30 reduces

that expression to:

G-F1z) f(_ (O)Wspg(g- 1M) (C.33)

provided that

z <S(X(C. 3 4)

Transforming back to the variable in x yields:

G~ Fz (z )= 9 (zj) f ()d (C.35)

However,

SiceG=F(1) fJ f(x)dx (C.36)

SneEquation C.34 holds and g(x) is increasing it follows

that

CA'
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a-i (z;)<X 3 + 1  (C.37 

fg-1~*> (C.3 8)

Comparison of Equations C.35 and C.36 implies that

" s-llz3 ~)=X3 1 .9 -.
S(C.39)

or zj=(x*) (C.40)

The hypothesis is verified for increasing functions of

Monotonically Decreasing Functions. For monotonically

decreasing functions of 1, .

gv(x)(0 V I (C.41)

For this case, the integrand in Equation C.30 is always

non-positive. Since positive integrands are preferred, one

can use the relation:

Ig'(x) b=-g'(x) (C.42)

in Equation C.30. This results in the expression:

F z(*=-f gslxm+l) fll- X g ) L*)dVlig' (s-l1( )) i C.431

Reversing the limits of integration leads to:
" g:( x 0 )  f s- () -

F (z )= ( xg) -1 )Fx(z )d /IS_ 1 (-))i (C.44)

Exploiting again Equations C.26 and C.27:

G j =FZ zi (z f, xM + 1 ( ))d /Is'(g W )I (C.45) ."

provided that

zj <s X0 )  (C.46)

A variable transformation back to x space yields:

G =s-(zz.48 f xlgI' (x) Idx/IS' x)l ( C.47) ;

C.7
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Exploiting Equation C.29 and again reversing limits

leads to:

S Z -zml fX ( x )dz (C.48)

Equation C.48 is just the statement that:

Since Equation C.46 holds and gx) is decreasing, it

follows that

-1 (z*) >I0 (C. 50)
j

fx(g-'(z)) >0 (C.51)

So there must exist an xis such that

If >x0 (C.52)

and g-'(z")=xi (C.53)

or Z g(xj,) (C.54)

The question is, is this xj, one of the members of the

set of stylized points drawn from the population of X? It

is if it satisfies Equation C.36 for j-j'. However, it must

also satisfy the equation just derived, Equation C.49. Evi-

dently, one must require that

Gj=I-G , for some j=l,m; some j'=l,m (C.55)

Using Equation C.4 in the above, j and j' must satisfy

jinm+ -2a-j' (C.56) L--

But the restriction of Equation C.17 reduces the above

to:

j m+l-j' (C.57)

Examination of the above equation (see Table C.A) shows

that under the restriction of Equation C.17, the set of Gj's

C.8
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remain unchanged under the transformation of Equation C.55.

It is interesting to note that of all the plotting rules

considered (Table C.2), only the EDF fails to satisfy the

condition 0-2a-1.

In conclusion then, Equations C.54 and C.57 imply that:

z *mglxj ,)=glxS +lj) (C.58)

The hypothesis is therefore verified for decreasing

functions of 1, completing the proof.

Sample Calculations. To illustrate the above consider-

ations, two sample problems will be worked--one involving a

known increasing function of 1. the other a known decreasing

function of X.

Distribution of a Linear Transform. An example of

an increasing function of I is:

((C.59)

where I is lognormally distributed with location parameter

a. and scale parameter . The input distribution is from

Figure A.22. The stylized sample is formed by finding

zi=llnxi-ai)/pi v i-l,m (C.60)

The distribution of Z, which should be normal with mean zero

and standard deviation 1, is found using the method previ-

ously described. The results are illustrated in Figure C.1. ..-
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TABLE C.1

DEFLECTION OF TE PLOTTING RULE UNDER -+1-'....

J.J.

2 M-1

3 M-2 -- ,'

M-2 3

M-1 2

N 1

C.10
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TABLE C.2

PLOTTING RULE DEKAVIOR WITE RESPECT TO A-2a

FORMULA a 0-2at

1. iI~m+1)011

2. (i-.3)/(m+.4) -.3 .4 1

3. (i-.5)/E -.5 01

4. [i-(u+1)/2m1/[m-(1/m)J -(.+l)I2m -1/m

5. (i-1)I(m-1)-111

6. i/rn 0 0 0

7. (i-.375)I(rn+.25) -.375 .251
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S""- Distribution of the Le" of an Inverse. An example

of a decreasing monotonic function is:

Z=ln(l/X) (C.61)

where X is uniformly distributed on the interval [0,11. The

input distribution is that of Figure A.18. The stylized

sample from the population of Z is found by finding

z iln(l/xi) r iil,m (C.62)

The random variable Z should have density function

fz(z)=e-z T z)O (C.63)

and distribution function

Fz(z)=l-e-z v z>O (C.64)

The numerical method is compared to the true CDF and

PDF in Figure C.2.

Monotonic Functions of Two Independent Random Variales

One may now seek to extend the above theory to

functions monotonic in two independent random variables, say

I and Y. That is, given

Z=g(I,!) (C.65)

where

agIlx#O and aglay#O v x,y (C.66) 7.

the distribution function Fz(z) is desired. The

distribution functions Fl(x) and Fy(y) are presumed known so

that stylized samples of any size from the populations of X

and T may be drawn at will. The set drawn from • may be

denoted by

C.12
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(Yi), i m

where as usual the yl satisfy

Gi=(i+al/lm+Pl=FlYi) Ylif (y)dy (C.67) - .

JY0

and the restriction of Equation C.17 holds. As usual, y0
.%. J.

and y, , are extrapolated endpoints such that:

FY(y0)=0 (C.68)

FT(Ym+,)=l (C.69)

Selecting a particular Yi one can in principle con-

struct the conditional density function fzly;(z) from the

equation,

fzlyl (z)=fx(x(z)) dx(z)/dz I (C.70)

If Equation C.70 is analytically tractable, the

conditional distribution function may be found by direct

S"'integration, i.e.

Fzly ( z fzmy (z')dz' (C.71)

If Equation C.70 is not easily integrable, one can

define the conditional random variables Z as:

ZiI.Zy; i1lm (C.72)

Since there are m elements in the set of stylized points

from the population of Y, m conditional random variables may

be defined. From the argument just completed for functions

of a single random variable, stylized sets of points for

each of the Z i may be drawn by holding Yi fixed and forming

the sets from the rule:

z }-(Blxj.Yil] ;  jil,m (C.73)

Thus, one may construct a sets of conditional random

C.13



variables with a elements each, requiring, at most, m calls

to the function g(x~y).

In any case, the conditional distribution function

Fzjy(Z) is readily available.

The density function of Z is given by Equation C.18,

and the distribution function by:

Fz( z) 4+f (Y)F i( z) dy (C.74)

Since the function Fy(y) is known, as are the functions

FZ1Y (z). the integral of Equation C.74 may be solved by

Mellin transform [9], also known as the graphical method

[8]. The exact details of this using stylized sets are

* described in Appendix D.

Again, the objective is to construct a stylized set of

points from the population of Z. That is, one finds the zj

satisfying

Gj (j+a)/lm+ )Fzlz.) V j=1,m (C.75)

or, one seeks solutions to the inverse equation,

zj =Fz (Gj) (C.76)

The approach now is direct solution of Equation C.76 by

numerical iterative methods. Two examples using this

formulation are presented at this time.

_iLik t&ioIn of A Slm ol Suares. An example of a

function monotonic in two independent random variables is

Z-X2+Y2(C.77)

where both I and Y are independent and distributed uniformly -

on the interval [0,1]. Again, the input distribution for

C.16
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either X or T is that shown in Figure A.18. The stylized

sample from the population of Z is found by solution of

Equation C.76.

Some tedious analytic work yields the exza ct

distribution and density functions given respectively by:

FZ(z)-O V i.~O (C.78)

FZ(z)=ffz/4 Y O. .zj~l (C.79)

For the region l~z.J2,

Fz(z)=z[Sin-l[,zl 2 -i _l ((z1/l/)/

FZ(z)1l Y z>2 (C.81)

fzz= T~ .- (C.82)

fZz=/ O*~z~*l (C.83)

For the region l z.2,

fZ(z)0O v z> 2 (C.85)

Equation C.76 was solved iteratively for various num-

bers of stylized points by the method just described. The

resulting convergence with increasing number of stylized

points is illustrated in Figures C.3 through C.6. These

figures illustrate the overall convergence of both the dis-

tribution and density functions as the number of stylized

points increases. For purposes of illustration, Sweeder's

Ftrigonometric interpolation was used for these plots. The

most interesting of these is Figure C.3 which was done using

only 5 stylized points from each of the input distributionb.

C.17



ci2
Aj

0
04

M0

U P4P

Lrn

0 0

IL.

C\

C) Cfl

'-4



o0
-' 0

-4

-4

4-

00 -

C

0

C

C)

-4

C.0

C.19

% .



41J

Ltn
C14

o o

co

co

00H

C.20



00 00

13o
4. rx4

O u 
o

PL4 r. ca2

U w -H

0
c,4

N 4-4
o 0

00

C.1 04

o 4 
*

0) N

-400 0 0 0

a aUd PaTle:S PUV AQ

C.21



The theory just developed predicts that the numerical

approximation to the true distribution function should be

pinned to the exact distribution function at the percentile

points .10(.20).90. The crossover points are very close to

these, even though it is expected that integration errors

for such a small number of points might lead to erroneous

values for the z*. The probability density function is

. uniform out to z-1, and then has a longer decaying tail.

The extrapolated endpoints compare favorably to the exact

results of 0 and 2.

Distribution of A Ratio. Finally, consider the distri-

bution of

Z=X/Y (C.86)

where both X and Y are distributed normally with mean 0 and

variance 1. It is known that the distribution of Z is

Cauchy with density given by:

fz ( z)=ll {n(l+z 2  (C. 87) '

and distribution function given by:

Fz(z)=. +Tan-(z)/n (C.88)

This was investigated since the Cauchy is particularly

troublesome for moment propagation methods, including

Shannon maximum entropy [13], and because a hard test of the

method was desired for the case when the distribution has

infinite support and heavy tails. The results are

displayed in Figure C.7.
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Functions Monotoni9 in Independent Random Variables.-.-

V' The above considerations lead to the ability to find

the distribution of functions monotonic in N random

variables, provided that the function can be easily -.

rewritten as combinations of pairs of independent random

variables. One then uses the methods of the last section to

solve a sequence of binary problems. A relatively simple

example is:

Z=U(I-S)I+T)/U (C.89)

where R,ST,U. and T are all independently distributed

random variables with known distributions. The problem can

be solved by solving a sequence of problems of two random

variables. First, one finds the distribution of

V-I-S (C.90)

This is done using the methods just described, and once the

distribution of V is known, Equation C.89 has been reduced

to

Z=(VV+T)/U (C.91)

Now one can proceed by finding the distribution of X

where I is defined as

I=Vv (C.92) H
The original problem has been reduced in dimension again to

Z-(X+T) /U (C.93)

Now T may be defined by

Y-X+T (C.94)

and the distribution of T can be found, since the

C.24

• .- ... e ., '" '---.' .'' ' ' --. '.- ' .' .' -''. ."" " """. " / ." . -" . ." " . .,.-.-. '. . .. : ".- -:..." -' ..'"'.. ..''. '..



VI -I T 1, 24

distributions of I and T are known. The final problem to

solve is thus

Z-YIU (C.95)

But this is easily done, since the distributions of T and U

are known, and are independent.

The method is not limited to linear functions. The ."

above simply serves as an illustration of a function of

multiple random variables, solved using no additional

mathematical complexity than that for two random variables.

Actually, the requirement of independence might be relaxed,

depending on the problem being considered. If two of the

variables are correlated, if the correlation is known, and

if those two can be isolated from the other random

variables, then the distribution of their combination can

be determined. This is done in Chapter IV, where the

distribution of the safety factor of a reactor pressure

vessel is determined, the safety factor being a function of

five random variables, two of them correlated.

Summary

The primary use of algorithm NOSWET has been demon-

strated in this Appendix. Sweeder's method of nonparametric

estimation, as modified (Reference Appendix A), provides a

new tool for finding the distribution of a function of a

random variable. After reviewing Sweeder's basic ideas,

monotonic functions of a single random variable were con-

sidered. It was shown that a stylized sample from the

C.25
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population of X maps into a stylized sample from the popula-

tion of Z. The idea of drawing a stylized sample to find

the distribution of an output variable leads to a numerical

method for finding the distribution of a function of two

random variables. Examples were shown, and the problem of a

function of multiple random variables was discussed. The

technique provides a new tool for the survivability analyst,

since the stress and strength distributions are often func-

tions of basic random variables whose input distributions

are known. The method provides a powerful alternative to

random Monte Carlo methods and propagation of moments tech-

niques.
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Anuendix D: A Numerical Avproximation
To, The Reliability Interference Integral

The objective of this Appendix is to demonstrate the

utility of stylized sets of points (reference Appendix A) in

solving conditional probability integrals, like that shown

in Equation C.74, reproduced below.

F z )  m+I f ][(y)F H (z(y))dy (D.1)
p -.0M

The integral essentially extracts the expected value of

a cumulative distribution function (CDF) with respect to a

probability density function (PDF). The CDF and PDF need

not be independent, as Equation D.1 above explicitly

indicates. The relationship of the above to the reliability

interference integral may be seen by considering Y as the

fl (. stress variable s, and ZIY as the strength variable S.

Equation D.1 then becomes the equation for the failure

probability pf, given by

Pf + f (s)F (sds (D.2)
P s0 f 3

A variable transformation technique, known as a Mellin

transform [9] may be used to calculate the above integral.

(This is also known as the graphical method by some other

authors [8].) The variables G and H are defined by

G(S)=J f (S')dS' (D.3)

D.1
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H(s)= ff (s')ds' (D.4)

Then ..... ,

>H=fa (s)ds (D. 5)

and Equation D.2 may be written as

p G(H)dH (D.6)

The dependence of G on H is seen through the relations

Ri=F (si )  (D.7)

or s. =F(a ) (D.8)

At the particular value si , Gi is given by

Gi=F s(s i ) (D.9)

or, writing G as an explicit function of H,

G =F S [Fs.l(Hi)] (D.10)

Numerically, one draws a set of stylized points from

the stress random variable a. and denotes the set by

(si), i=l,m

where s o and sm+1 are the extrapolated endpoints found as

discussed in Appendix A. Because of the way the stylized

points are drawn, the H are given exactly by

H =(i+a)/(a+p); -lsasg" i-I m (D.11)

where

H0 =0 (D.12)

and Hm+l'1 (D.13)

The set of stylized points from the strength variable

S, denoted by

(Si), i-l,m

defines the strength distribution function FS(s) as defined

D.2
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in Equation D.9. Consequently. the integral may be

~ ~ calculated over H by writing

p PfO=J II+'G(H)dHI (D.14)

The above integral may be written as the sun of three

separate integrals on the intervals [H0 5 1 . [RitamJ. and

IR [smHm+ll. Application of the trapezoidal rule to each of

these integrals in turn yields

Pfj7 (G 1 +GO)H 1/2 (D.15)

p IWO, [G+2 i..1 2 G +G )/2 (D.16)

~f3"2 (Gm ++G~ (-H ) /2 (D.17)

where

The sum of the above three terms is approximately the

value of the reliability interference integral.

D.3



Aneaidix I: Further Coasideratiom of the Vulnerability
of & Box-Boan Ving StTUOture

Overview

This Appendix provides additional information on the

box-beam wing model discussed in Chapter VI. In particular,

the following is provided: (a) the basic assumptions about

the box-beam and the scenario for the vulnerability calcula-

tions, (b) explicit calculations of the stress in each of

the four members of the beam, and (c) the relative vulnera-

bility of each of the four components of the beam in the

sure-kill, median-failure, and sure-safe regions.

As"sumpt"ions

The following assumptions are made regarding the wing

model and the scenario for the calculation:

(a) the wing is assumed to be designed for constant

bending stress along the length of the wing with a

1S design of 10,000 psi (6.891E7 Pascals);

(b) the wing box is assumed to be free to expand and

E bend;

(c) the effects of structural discontinuities are

neglected;

(d) the aircraft is directly above the burst at burst

time, implying that only the lower skin is heated,

and it is heated uniformly.

* ~ . .
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