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1. INTRODUCTION AND SUMMARY

This report summarizes the work performed on the "Time Domain Algorithms” .
project, under contract No. F30602-84-C-0016. The objective of this research

E was to address some of the issues related to the non-stationary, time-varying S
- nature of signals propagating through a commnications channel. P
\ Many communications signals (such as freguency modulation and phase ;;k?
3 modulation formats) are characterized by a constant modulus property. The iﬁ?
" propagation of these signals through the communication channel introduces i;;
_ various types of “distortions" due to multipath, fading and similar effects. e
;; These distortions tend to destroy the constant modulus properties of the ]fqi
§§ signal. Recently, an adaptive processing technique was developed which has ol
tf the capability of correcting the effects of the channel and restoring the e
- constant modulus property of the signal. This technique has been shown to be .T{
- very useful in communications applications. We have analyzed this important i‘i
t? processing technique and developed some useful extensions. E:
- . S
In Appendix A we prove giobal éonvergence of the Constant-Modulus F{?

o Algorithm (CMA) for the case of a real channel when the model order is equal i:;;
03 to or greater than that of the channel (the so-called "modei-complete” "Ei
éf case). The analysis is based on an exact fourth-order Taylor series _.;?
representation for the cost function minimized asymptotically by the CMA. -

e

] LSS,
?i In Appendix B we present several extensions to the CMA including IIR SiFT

, equalization, a real-signal version having properties as good as the complex
version, use of the Gauss-Mewton method in place of gradient descent,
interference rejection, and more. Some preliminary simulation results are RS
presented in Appendix F. :

The processing and estimation of signals propagating through time-varying
channels requires time-varying filter structures. While the area of time- gfs.
invariant digital filters is well developed, relatively little fundamental
work is available on the time-varying case. We investigated some of the basic :
questions related to time-varying digital filtering and were able to derive a ;pé'

novel filter structure for such applications.
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In Appendix C we derive the set of finite-order, linear, time-invariant
filters by sampling lossless propagation through a variable-impedance
medium. This leads to a flexible class of time-varying filter structures,
termed "Waveguide Filters" (WGF) in which signal power is decoupled from
changes in the filter parameters. These structures are “balanced" in the
sense that the decoupling between signal power and time-varying filter
coefficients is maintained for each individual section in the structure. In
addition, 1imit cycles and overflow oscillations are suppressed, even in the
time-varying case, when implemented with “passive" arithmetic. Finally, the
WGF structures can be interconnected in series or in parallel in a way which
does not disturb the signal/coefficient decoupling or the power balance.
Thus,the wavequide filters are very useful for modeling physical systems, and
the exactness of their physical interpretation enhances their suitability for
the time-varying case. A1l results are obtained for the multi-input/multi-
output case.

Another topic which was briefly investigated during this study was the
adaptive equalization of rapidly time-varying multipath channels. Due to time
limitations only a conceptual study of this topic was possible. In Appendix D
we describe on adaptive equalizer for eliminating distortion due to multipath
propagation in high-speed digital radio systems. The equalizer is aimed at
the case of very fast channel fluctuation, where "fast" is defined relative to
the impulse-response duration of the inverse of the instantaneous multipath
transfer function. The method is of the decision-feedback type where the
demodulated symbols are used to construct an estimate of multipath-induced
intersymbol interference. The reconstructed baseband waveform is then delayed
and weighted according to the current multipath parameters, and this simulated
echo is subtracted from the incoming baseband waveform. The distinguishing
feature of our approach is that an explicit model of multipath parameters
replaces the tranvsersal equalizer studied previously.

An important counterpart of the filter design prolem is the problelm of
modeling non-stationary signals. In Appendix E we consider the problem of
estimating sinusoidal or narrowband signals with a time-varying center
frequency. The signal parameters are estimated by fitting an autoregressive
model with time-varying coefficients to the data. The overdetermined modified
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Yule-Walker equations are used to estimate a set of constant model

parameters. Some numerical examples illustrating the behavior of the
estimator are presented, and its accuracy aspects are briefly discussed. This
particular study was performed only in small part under the current contract,
but was included for completeness.

The work described here represents an important step towards
accomplishing the difficult tasks of modeling and estimation of complex non-
stationary signals. Further research is needed into the fundamental
properties of time-varying processes and into the development of digital
signal processing techniques for handling such processes.
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Global Convergence of the Constant Modulus Algorithm

Julius O. Smith
Benjamin Friedlaader

Systems Control Technology Inc.
1801 Page Mill Rd., Palo Alto CA, 94303

Abstract

This paper proves global convergence of the Conscaat-Modulus
Algorithm (CMA) lor the case of a real channel when the model
order is equal to or greawcr thaa that of the chaamel (the so-
called “model-compiete” casel. The analysis is based on an exact
fourth-order Taylor series representation for the coet function
minimized asymptoticaily by the CMA.

1._Insroduction

The CMA [3.3,8.7.8] adaptively equalizes constant-mod-
ulus communicatioas signals such as frequency-modulation
(FM) and phase-modulation (PM) formats. The CMA adap-
tively minimizes 3 measure of the amplitude-eaveiope dis-
tortion, such as that caused by muitipath propagation, us-
ing some form of gradieat descent (23,4.9.11|. The amplitude
distortion measure is tyvically 3 weighted time-average of
an error of the form & = (1 — 3 )%, where riy, is the
modulus of the equalized output signal a¢ time {. By chang-
ing the equalizer parameters based on the gradient of this
error measure at esch time sample, the channel-induced
distortions can be eliminated in msay situations [3.8}.

This paper examines the convergence behavior of the
CMA based on gradient descent. Three forms of the CMA
are considered, correspondiag to three error measures. The
frst is the standard CMA for complex data (3], the second
is a aavel real-only form [9.11], and the third is the pre-
existing real-only form [6.3]. These will be referred to as
cases 1.2, and 3. respectively. Various exteasioas of the
CMA discussed in (9.11] are incorporated also,

Sect:on 2 gives the CMA prodlem lormuiation, and sec-
tions 3 and 4 respectively address asymptotic bias and con-
vergence [or gradienc-based implementations of the CMA.

2._Problem Formulation
Signal Model
Let y¢ denote the received signal for t = 1,2,...,T. In
the complex case, y is assumed to be of the form

yo = Hyy(d)2y + Hugld)uy + Heyld)ire i

This work was supported by the U.S. Air Foree (AFSC), Rome
Air Devetopment Center, nnder coatract no. F30602-84-C-0016.

where 2, == m,, e/ is the transmitted signal (o¢ is the
real-valued information-bearing signal), ¢; is addicive white
noise at the channel input, w, is an interference signal
“template” (assumed known), and Hyy(d) and Hyy(d) are
the unknowa ligear time-invariant channei filters associated
with z¢ and u¢ respectively:

Cld) Bld)
Heyld) 2 39 Huyld) 2 29

Ald) Aﬂo +¢gd+a:43 PR +¢..d"‘ (@
Bld)a  bid+bydd +-. 4+ by d™
C(J)Ql+c|d+e3q{3 :—-..+¢”‘d-¢

where {a;,5;,¢;} are real. The unit-delay operator d is
defined by d®z¢ = z,., for an arbitrary signal z;. We
assume the modulus m,, == |2, is either constant or known
for all &.

In the “real-ogly” case, the transmitted signal is assumed
to be of the form z¢ == mq, cos{@:), 20d u, aad v are real
interference aad additive noise, respectiveiy. We assume
9t = wet + ¥¢ Where

|9vwe/dt| € we (3)

0 that positive and negative frequency compoaents are not
aliased together.

E Crigeri
The CMA minimizes
. 1 < )
J0:Ti Rz 3 willd) (4)
tami
with respect to the equalizer parameter-vector . where
N
lic(ﬂl =m3,, Case I: Complex Signals

PR § BN -
lh) =3 }L S H_,(0)~02, Case: Real Signais
t pma

#(#) -3, Case 3: Simplified Reai

(3
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is the instantaneous error for the three cases being con-
sidered. and

20 2 if"(d\[y. - i:r.,mu.]

Cld) : Bl)
Hnld & — ) Hyyld) & ~— 0
Ad) D do +6,d + 338 + .- + dg d
Bldla bd+bd+. v bpd™
Ol Al +éd+iad® +-. +64,d%

()

bg{a.&.,....u,,s,,....5,-.,,&......&.-.,

% A[a..c,,....q,,b.,...,b,\..e......c,-.,]

If Ag > ng, then gy, .4 & OVE > 0. and similarly for
fiy, Ae. [n (the reai) cases 2 and 3, the modulus m,, is re
placed by the root-mean-square o, (assumed constant or
known). The sequence w; provides 3 nun-negative weight
function: typically, wy/we,, 38 A == constant for 3 fixed ex-
ponential decay of past data influence. The signals iy, y¢, u,
are complex in case 1. and real in cases 2 snd 3. while the
equalizer parameters a;, b;, aad ¢; are real in every case.

Casze 2 sums the “instantanecus error” é over the “ins-
tantaneous period” P;. This error definition flor the real
signal case is essentially the same as the compiex-signal
case if the :maginary part is coastructed at the receiver by
delaying the real part oge quarter of the instantaneous per-
iod. Measurement of the instantaneous period is feasibie a3
long 28 (3) hoids. We assume thas the sum of signal samples
z¢ from time ¢ to ¢ — P; 4+ 1 is exactly zero: in practice, one
may wish to interpolate #¢ to achieve this {13|.

Case 3 is the previousiy studied real-only algorichm [6.3],
and here it is viewed as an approximation to case 2. The
simplification introduces asymptotic bias and a changed
asymptotic parameter varisace. The next section coatains
formulas which can be used to compute the asymptotic bias
aad varisnce (the varisnce being inversely proportional to
the curvature of the error surface at the minimum point
i4l)-

3. Asvmptotic Bias

Deflnition 1. The weighted time-average expectation
aperator is defiged by

T
Ew 2 A2 ;.- Y o 9
tami

where w; is a fixed non-negative weight function.
Definition 2. The model-complete case of the CMA
is defined 23 the case 2y > nq, iy > 2y, A > ne, 30d
ve 3 0. That is. the model coefficients can be set to exactly
represent the true channel and interference given y; and u..

a
g
0
...
,:-
rd

IR SRR
I‘ y
(s

" A v .b "
".IAL'A \.r_._‘L{j;. 8

i ot al A el el SeP v Ba ¢ Bad fat Bat S0t 5or (b Shih el Ragn Aleaia e ide sy

Lemma 3 (Blaa). For any gradient-based CMA. cases
1 and 2 are locally asymptotically unbiased in the modei-
complete case, the minimum error beiag J(8y) = 0. The
Simplified Real CMA (case 3) is generally asymptotically
biased.

Proof. Let Jid) g limp—o &J(O'T), where J(6:T) is
given by (4). (The factor of 1/2 is introduced to simplify
later expressions.) An uabiased minimizer can be obtained
only if J'(6o) == 0. We need to show that J/(9) = 0 in
cases 1 and 2, and that J'(0) 7% O in case 3. We have

KA EED  PB ATy @)
where &(9) is givea by (3), and &(9) & g{z(Z,), where

Re{z.#}}, Casel
Bi=1

1 ..
FESARY 7 Z Zt-pii_y, Case? (9
¢ p=0
icyg, Case 3
and
hmifh A=pl H=pCa
P2 Yo Yoot Yooy, =Utaty oo o —Bt—iy. 1o
- ii-h LERX] -i.l-"l'lr
Note that g is 3 linear operator.

Now, J(§) v 0 ilf Ecée(d)glp,770) = 0. ic cases 1 and
2, lle) MO = J(0pj = 0.

Ia cagse 3, we have

J'(80) == Eq(5i(8e) ~ 03, )20 ] 0o 1)

b E.:?io. "'%.Eucv'?t
It suffices to show J(ds) »& O for constaat o, = oy,
no interfereace, and degenerate channel 9 a= 1. In this
case, yo = 2 = mycos(e), my = V30, and 5 =
2o. The error-surface gradient is thea J'{dy; = E.:,
o2 Eis?. Setting m, == 1 2ad ¢¢ = wet, we find E,25 =
Ee cos?(wel) == 1/2 while Epz! = Eicostfwet) = 3/8
o3 Ees? = (1/2)%. Thus, case 3 necessarily yields 2 biased
sohltion under gradient desceat.

4. _Asymptotic Convargence

Deflnition 4. An m-dimensional matrix R of order n
is defined as any scalur function over a set of m-tuples

Rliy.ia,...,im| where each index i; ranges from 1 to n,
J =+ 1,2,....,m. Sach a matrix will be called an (m.n)
matrix.

Deflnition 3. The j-product of aa (m. n) matrix R times
2 (1, n)-matrix 2 (n-vector) is defined as the (m = 1.n})-

CRMC i AR ande i -




.
A A A

- AR AR

.t
~2

matrix

N
Rizjm 3 Rlivis....imlslij, 1Si<m (12)

sjemi

Definition 8. An (m, a} matrix R is said to be nonsin-
gular if its j-product with any nonzero n-vector is nonzero
for all j, i.e.. R z; == 0 for some j implies z = 0.

Deflnition 7. A signal y¢ is said to be persistently
ezciting (PE) of order (m, n) if the (m, n)-mstrix

Ry R Eiei\Yimiy' Viim) j = L.coon (13)

is aonsingular. This definition can be regarded as apply-
ing to the received realization y; of sn underlying random
process. Normally we expect such a random process to be
PE with probability one (wpl). Note also that the weight-
ing we used in the time-averaging operator E¢ can affect
whether y, is PE.

Deflnition 8. A signal y is said to be persistently
ezeiting of order (4, n) with respect to the scalar function g
il the (4. n)-matrix

Rkl & Ecqtyeittm; )9Vttt (14)
is sonsingular.

Deflnition 9. A convergent gradient descent algorithm
is any iterative algorithm for 9 (of the form dy,, = /,,(0,,))
{3! which converges to either a stationary point 8" of the
error surface J(9) (in which case J*(9°) = 0), or to a point
on the coastraiat boundary for # (if any). Normally this
property is obtained by using a diminishing non-summable
step-size (such as 1/k) in the gradient descent iteration {4].

Theorem 10 (Global convergenes). In the model
compiete case, yp persistently exciting of order (4, &q) with
respect to g (of (9)) wpl, no interference, iy = 7, = 0,
then any unconstrained coavergent gradient desceat CMA
will coaverge with probability one to

9" = 20 == {ag,a,89,....0n,,0,...,0|7 (13)
in cases 1 and 2, (or any noazero initial parameter vector

#0) % 0.

Proof. The stationary points of a gradient descent al-
gorithm oceur at points 9 where the gradient J'(6) is zero.
The Arst goal is to Bud all such points.

Let §° degote any local minimizer of the cost fuuction
J(8) nven by equation (8). By definition, J'(#") == 0. By
lemma 3, #° = 4y is one such minimizer. Let

ndeld, AT
Bl 0=-0" )=~ (18)
ﬁcf Q =t Vi)

B AL
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and define ¢( - ) as in (9). Expanding J(9) in a Taylor series
about 8" gives (exactly)

J(8) = J(8%) + 0+ éz.[y’(é:ic) + e.(i')g(if)]
: (17)
+ %E‘g(z‘ O FE) + -Eu-’( 3

and
J'(8) = Ec[ﬂ(i;:’-cly(i:ﬂ) + éc(é')y(imc)]
+ sEAH )30 + 23Tk F o)
+ %E.g(i’)g(i.m) (18)
- %r-.‘.[(b-é ) dzeel)(0+07) ][g(,..,, ]
+ E.g{e.(é‘)g:.g, }(e -4 )

Coasider first cases | aud 2. Without loss of generality we
can set 8" == dq in (18). This gives immediately J'(do) =
J!(=fg) == J'(0) == 0. Thus we have found three stationary
points for cases | and 2. We now show that these are the
9nly stationary points. The /th row of equation (18) with
8" set to Gy (valid for cases 1 and 2 only) can be rewritten

as
ro =23 Y el kel (19)

© iy jun) kel

where a; = (8 + do)(}, J; == 9(j], and m = {§ — doj(k].
The (4, ae)-matrix RYli. j, k. 0] & Eeglyemdem;)olve-iyeai)
caa be interpreted as a type of [our-dimensional covariance
matrix. We see that a sufficient condition for the three
solutions § € {0,9y, =99} to be the oaly solutions is to have
RY be nousingular. But this hoids whenever y; is persis-
tently exciting of order (4.7iq) with respect to 3. Heace,
0,80, and ~d, are the only stationary points in c2ses 1 and
2 with probability oae.

It remains to be showa that @ = 0 is an snatadle station-
ary point, while § == &8y are stabdle stationary poiats for
the gradient. A stationary point §° is stable if the matrix
J*(8°) is positive definite. and unstable if J”(9") is aegacive
definite (2]. It is scraightforward to show that

J7(0) == =J"(28,)/2 (20)

That is, the curvature of the error surface at 3 == 0 is equal
to =1/3 the curvature at # == 9, and the curvature at
= equals that at 6. It is always true that J¥(6p) 2> O
(see the third cerm ia (17)), and y; persistently exciting of
order (4, Ag) with respeet to g implies J"(dy) > 0 (positive
definite).

- ., . -

AR R A ~'h‘
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Thus J*(0) < 0. making & = 0 a0 uastable stationary
point. {ln all current forms of the CMA, @ caa never be
allowed to equal zero. for this will in fact “freeze” a gradieat
descent algorithm.)

The two remaining solutions . <{q are stable station-
ary points. [J"(—d) = J¥(6s) > 0]. Under the assumed
conditions, # == &0, are the only stable stationary points
of the complex or the real CMA (cases 1 and 2). Siace
in practice H yy(d) is divided through by dq, the sign am-
biguity in #° becomes a sign ambiguity in Hy(d); 2 sign
chsnge in a signal is normally negligible. It is interesting
to note that this sign ambiguity corresponds to the phase
ambiguity in tbe complex-channei case (3.

Further E .

Theorem 10 immediately exteads to the case which in-
cludes interference canceling (/y 2> ny > 0). Similar global
couvergence resuits may hold for the model-complete cases
in which ne > 0: for example, the techniques in {1] might
go through. It has been showa (9] that either noise (v 3
0) or model-incomplete interference (Hqy 7 Hyy ¥8) will
cause bias in the parameters. For case 3. theorem 10 can be
extended to prove global convergence to a biased solution
in which the bias caa be simply approximated as in {8].

Convergence results for specific algorithms can be ob-
tained using the analytical spproach described in [1]. In
the model incomplets case, the general model (5) should

converge to 3 local minimum of the error surface J(4); the
number of sub-optimal local minima can be large in the
model-incomplete case.

We expect that if y¢ =8 Hyy(d)mee/* and ¢ is randomly
distributed with almost any non-discrete distribution, then
RS will be nonsinguiar with probability one for any number
n of parameters. [t seems, however, that (or good aumeri-
cal conditioning, further restrictions are necessary on the
modulating signal. For example, it might be appropriate
to require yp O possess at least n distinet frequencies of
high spectral power, analogous to the situation in least-
squares system identification [4]. Further work is necessary
to specily precisely the modulation characteristics which
maximize the equalization accuracy.

The error minimized iz the model-complete case is ex-
actly described by 3 fourth-order Taylor series (cf. equation
{17)). A fourth-order type of gradient-descent algorithm.
analogous t0 Newton's method for least squares problems,
should yield the [astest-converging algorithms. To this end,
- note that all solutions to the ensuing third-order “vector

. polynomisl® for the gradient can be expressed in closed
i form.
T Conclusjons
O
fay Some coavergence properties of the Constant Modulus
SN Algorithm (CMA) for channel equalization were described.
P Subject to mild restrictions on the modulation signal. the
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Abatracs

The Coastant-Modulus Algorithm (CMA) compuates 2ad
applies an adaptive channe equalizer for coastant-amplitude
signals such 13 [requescy- aad phase-modulatioa. This
paper presents several exteusions to the CMA iscludiag OR
equalization. & real-signal version haviag properties as good
a8 the compiex version, use of the Gause-Newtoa method in
slace of gradieat desceat, interference rejection. 1ad more.

1l._latroduction
The Corstant Modulus Algorithm (CMA) was introduced
by 1. R Treichler ot ol (4.7.5,9.12 a8 2 metbod for adap-
tive equalization of cartain types of commuaications signals.
The CMA calibrates a linear channel equalizer by seeking
t0 make t3e squalized signal have constaat moduius. Such a
teckaique caa be used with frequency-modulation (FM) aad
phase-moduiation (PM] commuanicacions systems. wien cie
amplitude 2aveiope is constaat or kaown ia the abseacs of
distortios. Tas CMA is oge exampie of adaptive chanael
equalizstion bdased oa restoring iavariaac properties of the
uadiscorted signal ;0|
Ia (o] the received signal is asvamed available as 2 com-
plex sigaal of the lorm ¢*. [ this case, the modulus is
axaetly coustant whes chaanel distortions are absent. [n
(8,12, a real-caly version of the CMA is developed. Mast
recantly, the CMA bas bewn extended Lo knowa-amplitude
{32 opposed to coastant-amplitade), snd to muitichanael
equalization. I iil cases, the equalizer is (armed by apply-
iag » Gxed-step gradieat-descent algorithm similar to the
Widrow LMS algorithm [1].
The purpese of this paper is to Sresent several extensions
to the oasie CMA:
o The channel equalizer s aa arbitrary raticaal Alter
Ipoles and teres), or infaite-impuise-respoass ([IR)

lter, rasher than being costrained to a Snite-impulss

response (FIR) ail-2ero Qlter a3 ia earlier works. Use
of aa all=pole equalizer, for «xample, allows 22 exact
iaverse to FIR ckasael discortions such ss maitipach.

* A 3ew type of resl-only aigorithm is derived. The
3ew reakcnly vertion is based oa a more dasirabie
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Extensions of the Canstant Modulus Algorithm

Julius Q. Smith
Benjamin Friedlander

Systems Control Techuology [ae.
1801 Page Mill Rd.. Pala Alto CA, 94303

error dednition which is equivalest %0 the compiex
case whea cthe igscancaaeous carrier period i used.

e The Recursive Gauss-Newton method (RGN) {2.6|
replaces the gradient desceac method {or obtasing
the equalizer coefficients. This modidcation ¢caa im-
prove the coavergence rate 3ad asymptotic aceuracy
of the equalization.

o A aew typeof RGN agonichm is presented i3] waica
allows 3 trade-of between properties of the more
receat recursive {orms aad tBe original “odlige” or
*bateh” forms.

e A tschaique for removing parually-known iaterfereace
is incorporated into the aigorthm.

Ia section 2. the basic prodlem ‘ormuiation is preseated.

aad section 3 Jerives the agorizam.

2sBroblemn Formulaticn

Let 3¢ denote the received signal for t = 1,2.....T. (2
the complex case. 7 is assumed Lo be of ide lorm

e = Heyldz = Hegldlue = Heyidve (1)

where 2, = my, ¢/ is the transmitted signal {o¢ is the real
valued information-beariag signal), v is additive aoise, 3,
is aa interference signal (assumed at least partially kgown),
and Hiyld) 30d Hey{d) are the linear timesinvariaat caaa-
ael diters associsted with 2, aad ue cespectively:

An0ass Hy0adg
Ald) R dg = ayd = aed® = =g, 1™ (N
Bl g Hdebdyad e by ™
Cldialeedresd = . =cq o™

where (3, 0;,¢;] sre real The usit-delay operator d is
defined by the reiation d™ 3¢ w» 2,4 lor 22 arbitrary signal
2. We assume the modulus m,, of the transmitted signal
2¢ is kaowa for al L.

Tie novel feacures introduced 30 {ar ar the pravisica or
Heyld) 20d u: to model partislly-cown interference. 2ad

+113 #GPX «13 SUGDOPIE2 Dy “he J.S. Atr Fores (AFSC), me Afr sevelacment Centar,

Jnder Cantract Yo. $£30602-3L+3-301S.
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the polynomial Cld) ia the channel tracsfer function Hey(d)
for modeiing FIR distorticn types.

{n the case of real signals. the tragamicted signal is as-
semaed to be of the lorki 2; s my, cos{@y) 2ad u; 3ad 11 are
real intarference and idditive noise, respectively. We also
ASUME 0 ™ uel + wy whare [Fwy/Ft € . [ this case
the knowa-moduius property caa be replaced by the inown-
envelope property. However, to retain 3 least-squares probd-
lem. we use instead sn eppremimetely inown cversge power
property. Thua, in the resl-signal case,

’l-t
p. Z 3., =, (3)

where P, is the ‘iastantanecus period” of 2, aad o3, i
dedaed as the “instantanecus power,” or “iverage power”
of 2,. For simplicity, we later use equality in (3). The
perturbations ia (3) due w0 discrete £, aad modulation by
@ can be compensated i desired by waveform interpolation
aad sedednition of costinuwous P; 1o absoed the carrier-cyecle
support distortioa uader integration.
T Broop Cricerion

Beiow we dedae three error critena for the CMA. The
three error criteria correspoad to the case of complex z,
i#, real 2¢, and a simplified version for eal 2, (8,12}. These
=il be referred 0 a8 cases 1.2, aad 3, respectively.

Case 1: Error for Comolex Signals

[s the complex case. the CMA minimizes
, | & .
AED A3 ) wid i) 4
lamy

with respect to the equalizer parameter-vector 9, where
i) &) 2| = m3,
28 AH:,'M{,. - F:..m-.]
4 Gl B4
230

Hz'(‘) H-"d) i—
Ald) ($)

A Die+ard - g+ +la B
A a hd+bhid + v
Sl alraideisd oo oigd™

. ’ - -
oAia..a......a...s,,....a.,.z.,....e..

aad 7 is 3 nou-aegasive weighting ‘unctioa. Te signals
26, Yoo %4 are complex, while the equalizer parameters &,, 5;,
and é; are teal

We stow in (11jthat if vy M 0, ny e ne = 0, n, >
Re, Ay 2 ny, 38d 2y i3 permslently ezerling ia & 2avel

14

sense. thea the oaly parameters 9 which locally minimize
LieD are # = 299 (where Sy is exteaded witd zeros to
the size of 9 if aecessary). This is valuable to kaow siace
it mesas that the oaly minimizers of Jy(&; ) are globai
minimizers. [a such a case. gradieat desceat methods caa
be used with confdence in the so-called “modei-compiete”
case (i.e.. when the channel model can exactly describe
the true chaone discortion). Furthermore, the persistence
of-excitation conditioas bolds for “simost ail” informatioa-
ladea modulatioa signals o¢.

Case 2: Erroe for Real Siznals

We deflne the resi-only case as minimizing

kN az }_‘_ wee () (8)

where

YUFY- Z £l - ()

and ail ather quantities are formally the same as in (3} wth
21, y¢, 8¢ teal. Tlus the maia difference becweea the com-
plex and real-ouly cases is that the “instaataneous error”
€. 9 replaced by an error &3¢ which is ag averige over
the “instaataneous period” P;. This dedaition for the real-
signal case 3 equrvaient in principie %0 the compiex-aignai
case whea the imaginary part is coastructed at the receiver
from the real part.

Wiile (7) may seem like the aagurai error Lo use in the
real-only case. it requires 3o sstimate of Lhe iastaacaneous
period P; which depends oa the moduiation signai 3. The
counterpart ia tde complex CMA s 0 define the imaq-
BaZY part as a quarter-cycle deiay of .3e real pars, waere
the quartercycie delay is cne-fourth of the curreat :astan-
taneous period. Note that messurement of :he instaa-
tageous period requires using 3 cacrier {requency Much aigaer
thaa the sigaal bandwidth.

Asn alteraative to tracking the iastancaaeous period is to
ix P; tc a 7alue which spans magy cveles of the carrier
under ail modulation conditions. The counterpart in the
complex CMA is o use the Hilbert traasform to creste
the imaginary part of 2 (as is typicaily doae in dractice).
Avesaging over many carrier cycies has the advaatage of
20t fequiriag A2 stimate of iastagtageous period. dut the
disadvaacage of limiting the potestial convergeace rate of
the equalizer parameters 4.

Case 3: Simolified Errer for Real Signals
A simplified real-only CMA [8.12! minimizes

HikTaz) V weéd ,(9) i8)
l-l

D
N
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where
G0 & 20~ {9)

Wihile this is 3ot obviously an sppropriate error criterion
{ar soo-conscaat sigusls 2, it caa beshown {11} that (9) has
asymptotic properties very similar to those of (7). Incui
tively, the reasom is that the periodic Suctuations of the
error in (0) as the instantaneows casrier {requency average
out. The error simplifieation introduces asymptotic biss
(oftea approximable by a simple scale factor {8,11{) and 3
slightly diflerent asymptotic parsmeter varisgce reistive to
the optimal versioas (4) aad (6) (11].

3. The Aleorithm

Prior tressments of the CMA have been based on gradi-
eat dascent {4.7.9,9.12{. Gradient descent can be seen u
a linearization method, while Newton desceat moves each
iteration to the bottom of a quadratic local approximasion,
{a Newtaa descent. close to the minimum poist. coaver-
gesce is quadratie while gradient descent convergm linearly
{3]. Thus. Newton's method comverges faster near a loeal
minimum (asseming the Hessian is aossero).

The Ganm-Newtos method (3] is a robust spproximate
Newton's mechod. 13 is preferabie over Newtos's mechod
when time-recurnive agorichos are desired. [n this see
tion. we derive the Gauss-Newton method as applied to the

The CMA cost function caa be cxpressed is

r
NeT A f3 T owdlti (10
°°% wm

where we is a J08-0egative real-valued weightiag (aaction,
aad

|tadr| =m3,, Case 1: Comples Sigmais

R § IR
W= 3 5 T o ~el, Cose: Rl Siguai
p—s

#(#) -3, Case 3: Simplifed Real

(11)

The factors of 1/2 in (10) and (11) Rave bees introduced %o
simplily later expressicns. Let

i & 0 )
13
,( P a 0’:.(”
The Gaass=Newtoa IGN) Method
Let #° desote a local migimizer of /(#: 7). Whea the

7700 i¢ can be drives 0 tero as # approaches I, or énd’)

.

cand

yo

A

aad &(9°) are ugcorreiated, the Hessia caa be closeiy ap- EI».:.
proximased by T, 4#" The Gauss-Newton (3] method is ol
dedned accordingly as follows. Givea an isitial parameter .
atimate 74, carry out the following iteration uacil coaver- o
geaee is achieved: ,"-;‘::
oo

Rb;T =z Z‘, wdlbtd) = D
R

by b~ R"(l.. nJsé; n ::":,-;r'i

The Hemiaa approximation serves :wo purposes. First. it ~
eliminates the aeed for second-order difersntiation—tie \\
gradient aloae drives the parameter updates. Second. the i
matrix R(4; T is more likely 0 be positive defnite acd DR

inveruble thaa is J"{&: T [3I.

Exact Recursive GN Usdates

The Gauss-Newroa aigorithm (13) can made recursive.
where the parameter acumate 3 is updated for each t. We
now cousider oaly ooe pass through the T data points.
Therefore, the pass-gumber i ia (13) is dropped for 3ota-
tioaal simplicity. The inicial vaiue 4; {rom the previous
pass is denoted Jo. and the Jual estimate ¥, obtamed at
the ead of pass ¢ 20w decomes dr

Defae
r T
Rr a L Z wél{91é,l00)T Cr a L Z weétidolérida;
wr =] wr lamy
{14)
Thes

By = f Ry + i‘.(b.g)i"(b.g)r
Gt =8 A (Gl + &i{folii(do)

{131

where A\¢ 2 w1/t is knowa as the “forgetting factor.”
Typically )¢ is xed between 0 28d 1 to obtain 3 Sxed ex-
poneatial fadiag of past observations (witk sa 1pproximate
time coastaac of 1/(1 = 1) sampies). It caa be showa '3
that for A aay integer between ! and ¢,

= 8- RY'G,
t
Z 2 %)  x

it Q]

X 1
'- - ‘—
=d-a =& C (18)

,‘v‘(‘ﬂ) - (3')) (’[-‘ - ,0).‘

This secursive form is exactly equivaient %0 :he “o3-line”
eounterpart (13).

Bloek-Recursive Gauss-Newtoa { BRGN)

The BRGN {3{ is obtained by repiaciag the inttial <on-
dition #g by receatly computed sstimates 7 at periodic is-
tarvals. When o is replaced by 9;. »e effectiveiy splic :he
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data iato more thaa one *Sateh.” The Arst bateh consists
of data up through time & aad it is ased to produce the
atimate ;. The second batch begins at time t = |, and it
is witislized %0 the estimate produced by the drst dateh.

Lot P; denote the “Dateh size’ in an od-line Causs-Newton
method implemented recursively via equation (16). Assume
{or simplicity that A divides P;. Thea (18) becomes

0' - 3¢.’. -R?‘Gl
¢
Y N -R"'.i Z i (bp) X

(e Y (17}

!‘itl 31-’, ) - al‘b‘-’l ’ r(éi-u\ - él-Pq )]
L

Ths adaptive algorithm allows iaterpoistion betweea the
propertias of 2a “of-line” or *bateh” opumizatioa aad the
truly ume-recursive aigorithms which sre used extessively
in the ideaudcation literature. The practical importages
of the BRGN lor the CMA is thas it allows parameter o
Amates Jer-perved in the real-oniy cese. The carrier period
can be mtimated by BRGN itself or it caa derived (rom the
demoduiated signal ia 3 *decisioe-directed” mode.

Recursive Gause-Newtoa (RCN)

Sy setuag e block size P to | (foreing A o0 1), the
BRGN reduces 20 the recurssve Conso-Vewton method (RGN)
which is somewhas of a staadard metbod for ARMAX sys-
tem deatification {8|:

b = by = R7 (00, )ﬁ'(it-d (18)
Re = AoRiwy = &{0ay {011 )T
Liung [6] sad ochers bave shows that, under geaeral coadi-
tions. the repiacement of fo by even the mast receatly avail-
adle parameter estimates ¢, does oot aiter the asympeotic
couvergence properties of the Gause-Newtog method.
To tailor GN, BRGN, or RGN 0 a specifie application,
t3e iastantaneous error & aad its gradieat & with respect
to the most recently computad parameters 7 are aeeded.

The “astastaceces gradient” of # with respect w0 9 is
aven by 4(0) & N where

Re{#:¥,}, Case 1: Complex Signais
Pt

A4#) a{F 3 tophho, Cuse Real Signals
p=g

##,, Case 3: Simplified Real
(19

..............
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[a ail cases.

toaal?

. . t
B BP0 Ttmay =Bt =Sty et = Etman

ig[a..a......a...s......t...é......é..

Ymil di=tiile, =tadly— -

- é... ;I—ﬂ.

(20)
These quaatities determige the error & aad its Fadieat 4
aeeded to drive the Gauss-Newtor algorithm.

Because the recursioas for £, aad ={ avoive the applica-
tiow of the ume-varviag Glter 1/C id). it 15 2ecessary 328
Cud) be stable 3t all umes. Our sirategy lor stabuiity
projectioa is as lollows: If aay root of Cl <} lies oa or outside
the umit cirele. the roots are coatracted uniformly by :be
factor p == 0.95 repeatedly uatil all rots are iaside. Thn_
aagle-igvariant projection preserves the tuaing of spectrai
resoasaces 1o the equalizer (e.g. Multipacth auils).

Ia the RGN algorithm. >/ = 3,/Cld), where C 3 o0~
staatly beisg replaced by the latest availsbie estimate. 3iace
#, is computed usiag Ji—. the Srst oceurrence of 2 ig
27 depends also on Fi-,. [t bas bees observed o :Be
analogous system ideatiication coatext that coavergeace 3
accelerated by recomputiag & usiag #¢ before usiag 1 2
the recursion for ,-{ .

Algoricam Summary

v =y =tmiillley = = e neiren,

b' - ':’l-- s Jleag TStmty oo s SBtmny, =Dty 2 Dimay
}" -[’{.....,{_‘.,-u{_.,....-c{..'.—2{_‘ ..... -_-{_‘.:f
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Case |: Complex Signals

H{ =3, Cased: Simplifed Real
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Py=y
4=ip Y ftmpihey. Case 2 Real Sigais
! peme

Case 1: Complex Signais
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Canelnatons

The Coastant Modulus Algorithm (CMA) for chaanel
equalization has beea exteaded ia several ways. The axten-
sions were aimmed primarily at improviag coavergeace rate
aad resistaace to ooise. The structural extensions include
use of the recursive Gauss-Newtoa (RGN) method in place
of gradient descest. 3 form of RGN which interpolates be-
tween batch and recursive (orms. aa ister{lerence casceling
{acility, sad extensiog to moviag-sverage channels.

We =tesded the CMA from a gradiest desceat to 3
Newtos dwmcent. This exteads 3 Grstorder Talyor-serim
approximation of the error surface W 3 secoad-order one.
However, the error migimized in this case is exactly dacribed
by a (ourth-order Talyor seriaa. A fourth-order type of de-
seant algorithm should vield fastar coavergencs. Note that
all solutioas to the third order “vector poiysomial® for the
gradient caa Ye «zpressed ia closed form.

[a case 2, there is the pomsibility of adaptively tracking
the instantageous period of the carrier 5;. Period tracking
is sccomplished by adding £y to the parameter veetor ¢
sad redentving the error gadient. If the carrier [requedcy
is large. the algorithm can emsily track Pi. As 3 further
refinement, the instantansous period cas be extended to
noe-integer values using the techuiques discussed in {10

{2 the case of multipath discortion, the channel model is
of the form L+ 44", wiere tyDically r s maay samples. [tis
unnecasary to comoute all te paramecers of 3 large-order
mverse Siter when tracking sueh a chaasel model. The
zero ccefficients caa be diminated from the model A ligh-
quality method for sdaptively trackiag the (interpolsted)
delay ~ in this coatext is deseribed ia (10].

s digital modulatioa formats, the switching traasients
may be loweegergy relative w0 the sigaal eaergy between
switehing iastaats. Ia order to avoid ill-coaditioning due
to this imbalaace, equation (17) caa be used to skip over
iacra-baud data. [a other words, data iequisition can be
arraaged to oceur oaly ia a aeighborhood of the switehing
ame.

Due 0 the timemthilt structure i the RGN algorithms
we have derived, there exist so-called “fast” versioas which
tequire order n computations instesd of n3 as in the praseat
verzioas. A poiat of departure [rom which such as exten-
sion i straightforward is gives in (2],
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Waveguide Digital Filters

Julius O. Smith
Benjamin Friedlander

Systems Conlrol Technology, Ine.
1801 Page Mill Road
Palo Alto, California, 94303

Abstract

The set of finite-order, linear, time-invariant filters is derived by sampling lossless
propagation through a variable-impedance medium. This leads to a fexible class of time-
varying 8lter structures, termed “Waveguide Filters™ (WGF) in which signal power is
decoupled from changes in the filter parameters. These structures are “balanced” in
the sense that the decoupling between signal power and time-varying filter coeflicieats
is maintained for each individual section in the structure. [n addition, limit cycles aand
overflow oscillations are suppressed, even in the time-varying case, when implemeanted with
*passive” arithmetic. We describe also 3 method for enforcing exact lossiessness in the
realization of an arbitrary digital filter in spite of the presence of round-off errors. Finally,
the WGF structures can be interconnected in series or in parallel in a way which does
not disturb the signal/coeficient decoupling or the power balance. Thus, the waveguide
fiters are very useful for modeling physical systems, and the exactaess of their physical
interpretation enhances their suitability for the time-varying case. All resuits are obtained
for the multi-input/multi-output case.

1. Introduction

Digital filtering techniques have often beec derived from classical or “analog”
techniques [29]. Classical filter design has its roots in “network theory” for describ-
ing linear time-invariant systems accessed by means of “ports” {11|. Network theory
itsell is a body of mathematics built upoa certain assumptions ({7,13] which become
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true in the limit at low-lrequencies according to Maxwell’'s equations for electromag-

netic propagation [8]. Thus, the theory of filters grew originally out of the scalar 5
theory of wave propagation.

Since the emergence of digital techniques, little attention has been paid to ..
the close correspondence between filter computations and physical law. In signal "
processing applications, we normally approximate directly some desired transfor- =
mation of the signal spectrum, and a true physical modeling is irrelevant. g

The mainstream of filtering applications has involved time-invariant filters 4

which approximate an ideal amplitude response such as low-pass, high-pass, baad-
pass, or band-reject characteristics, or which provide a desired phase response such
a8 in equalizers for communications channels [29]. In the time-invariant case, the
amplitude response and phase response completely determine a linear filter [29).

For time-varying filters, there is no longer a simple description in terms of

...1
i
o
S

amplitude and pbase response. (A frequency response requires time-invariance.) In
many cases, time-varying filters have been developed in an ad hoc manner, being
regarded as “quasi-static” in most cases. Such exteasions require the assumption
that the filter coefficients vary slowly relative to the impulse-response duration of
the filter. When the coefficients change too rapidly, unnatural artifacts can occur
due to the incompatibility between the filter state (a function of all prior time in a
recursive filter) and the new filter coefficients.

This Paper

This paper presents a class of recursive digital filters designed specifically to
have the best possible behavior under time-varying conditions in the preseace of
round-off error. We call them “Waveguide Filters” (WGF), because they can be
interpreted as networks of intersecting waveguides. The WGF structares are closely
related to the “wave digital filters” developed principally by Fettweiss {17,28], the
lattice Glter structures arising in geoscience and speech modeling {45,31], and the
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vpormalized ladder filter” discussed by Gray [30,39]. Waveguide filters have the

following characteristics:

1 o The correspondence to physical wave-propagation systems is exact even though
‘ ' time is discrete. No bilinear transformation is necessary to connect digital
x quantities with physical quantities as is usual in the wave digital filter (WDF)
“ context [17]. This allows a priori choice of filter structure to obtain precise
‘n models for physical processes.

e The instantaneous power at each internal filter section is invariant with

jl-l‘_" respect to filter coefficient variation.

' e Generalized versions of the “Normalized Ladder,” “One-Multiplier Lattice,”

-,:::'. and other ladder/lattice filters are derived, all having invariant instantaneous
. s . . .

N power in the time-varying case.

s

e The structures can be coupled at a junction, cascaded, loop=d, or branched,
to any degree of network complexity, and the desirable properties such as

g
stability and power decoupling are retained.

; o A synthesis procedure exists for computing all-pole or pole-zero sections.
-"‘-—‘
, e There is an identification method for determining the coefficients of the
,L structure from measured input/output data. Similarly, there is a “linear
prediction” modeling technique for these structures which provides ARMA
A models for time series.

o No overflow osciilations can occur, even in the time-varying case.

e No limit cycles (also called “granularity oscillations™) can occur if one of
many “passive” numerical round-off strategies is employed, even in the time-
varying case. In the simplest case, the passive round-off strategy reduces to
magnitude truncation (or truncation toward zero).
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e As in the scalar lattice filter and WDF cases, sensitivity of coefficient quaa- '-"
tization can be minimized by properly scaling the network to deliver “maximum -:
power transfer” at frequencies where low sensitivity is required (50]. .

e A perfectly lossless digital realization car be implemented using a number ﬁ
v,‘i

system presented in this paper.

e The desirable structural properties are derived for multi-input, multi-output

(MIMO) transfer-function matrices.

The derivation of the WGF is made exceedingly simple by using three simple
principles of wave propagation in an ideal linear medium. To our knowledge, these
principles have oot been invoked before to derive digital filters. In this respect, we
feel this paper has significant tutorial value. It is a new point of view.

P

2. Related Prior Work

This section reviews some of the most closely related work on digital filter
structures. These include the orthogoaal-polynomial filters of Szegd, the “wave
digital filters” of Fettweis, and the “orthogonal filters” of Dewilde. Naturally, there
are many more related lines of development, in view of the first law of signal
processing.* These represent only the major receat areas closest to our point of

view.

2.1. Wave Digital Filters

The wave digital filter (WDF) approach of Fettweis [16,17,20,28] comes closest
to the point of view taken in this paper. Fettweis obtains a similar class of structures

' 1Y 4
A Ty Ay
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by use of the classical notion of wave variables [13].
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¢ The frst law of signal processing is “Everything is equivalent to everything eise.”
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For example, if v and ¢ denote the voltage and current at a terminal of an
N-port network, the wave variables are defined by z == v + Ri aad y = v - Ry,
where R is an arbitrary “reference impedance.” These wave variables are logically
equivalent to the left-going and right-going “pressure traveling waves” considered
in this paper, and R plays the role of characteristic impedance in the associated =3
transmission line. A generalization of wave variables to the form z = av+4i, y =
~v + &1 and a characterization of the specialization necessary to ensure realizability

is given in [32].

Fettweis describes how to directly model resistors, capacitors, inductors, trans-
formers, gyrators, and circulators using the WDF approach, and he describes the
necessary rules for connecting ports together [17]. The modeling of a capacitor, for
example, is accomplished by scaling the reference impedance R until the capacitor
“reflectance” is exactly a unit-sample delay. (The model is parametrized in fre-
quency so that the wave variables are really phasors.) An inductor also maps to a
upit-sample delay but with a sign-chaage relative to a capacitor. A complete circuit
is built out of basic elements by meaas of “adaptors” [28] which play the role of
the junctions or scattering layers described in this paper; the adaptor accomplishes

interconnection of ports at different reference impedances.

The WDF modeling of inductors and capacitors is limited because the continuous-
time frequency variable is mapped to the discrete-time frequency variable via the
bilinear transform. If the points z = 1 and z = -1 in the complex plane are
identified with zero and infinite continuous-time frequencies, respectively, then only
one more mapping frequency (say %) can be chosen. Thus, the bilinear transforma-

tion provides exact modeling only at the three frequencies 0, ¢, and co.

Erk The WDF formulation models a system of differential equations at three {re-

#‘v quencies, while our approach exactly models wave propagation in lossless media

:ii“j having spatially discrete changes in characteristic impedance. Consequently, in our

Y- {ormulation, a wave variable may be a “voltage” or “current” or s linear combina-

:‘ tion of the two without incurring realizability problems [32]. This is a considerable

é! conceptusl simplification for applications to physical modeling.
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A general result in this paper is that overflow oscillations and limit cycles can be :j

suppressed in all forms of scattering-type filter structures simply by using extended
numerical precision in each scattering section, saving quantization (toward zero) for
the final outgoing waves. The basic principles involved apparently appeared first in
the WDF context [26,39).

PRI 3] IR
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2.2. Ladder and Lattice Filters

N DTk

For some time it has been known that lattice and ladder filtering structures
are superior to the so-called direct form in several ways. These include reduced
sensitivity to coefficient quantization, less dependency of round-off noise on the filter
frequency respoase, ease of stability checking, reduced probability of limit cycles or
overflow oscillations, and section-wise orthogonality in the linear prediction context.
For a discussion of ladder and lattice filters in adaptive estimation, see [45].

Y PO TP
' .‘l,‘ e e B e
L ot gty

Lattice structures have been in use for decades in directly modeling layered
scattering media. The mapping of underground striations in rock density, for
example, is a basic diagnostic tool in oil exploration. The interface between two
subterranean layers of rock of different densities produces a scattering layer because
the characteristic impedance of the medium with respect to sound propagation

changes across such a boundary.

Another example of the use of lattice structures for physical modeling is the
“acoustic tube® models developed for speech analysis and synthesis. In this case,

the vocal tract is modeled as a cascade of coaxial cylindrical tubes with varying

cross-sectional areas and equal length. The change in area from one tube section

to the next provides a change in the characteristic impedance of the air column for .;j

e sound propagation, and so a series of equally spaced scattering layers is obtained. "’1

NN ]

\j\: Apparently, the filter structures developed in the above applications are only )

W b
Q‘ﬁf as general as s single chain of scattering layers with one input and one output, and

the input and output sections are terminated in a non-extendable way. Little if any
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work has explored branching and intersecting chains of scattering layers. In the case
of speech, the use of a separate acoustic tube branching off from the vocal tract to
model the nasal tract would obviously be very natural. Apart from branching, it is
not possible to continue the structures in common use from the output section to
s larger section. This is because the typical arrangement is to assume a perfectly
reflecting termination at the output. Doing this allows maaipulation of the delays
in the scattering network to place them more conveniently and combine in pairs
such that the required signal sampling rate is reduced by a factor of 2. We have
found that the cascade scattering chains, which dominate the recent literature, can
be immediately extended to general acyclic trees with the same basic properties.

Our formulation is more general than even the acyclic-tree extension of prevalent
lattice filters in that arbitrary networks can be constructed. Also, there does not
seem to be an existing treatment of MIMO systems from the acoustic waveguide
point of view, nor the generalization which allows transmission zeros to be an in-
tegral part of the waveguide (without having to add external “taps” for forming a
linear combination of the contents of each waveguide section).

A particularly important antecedent to the WGF in the speech processing
literature is the normalized ladder filter (NLF) developed by Gray and Markel
[23,30,39]. Gray considered oanly the single-input, single-output (SISO) all-pole
case. (Zeros are obtained in the NLF using “taps,” which leads outside the class of
structures considered here.) Their approach was based on orthonormal-polynomial

expaasion (1,2,6] which is closely connected with linear prediction theory [31]. They
showed the following to be true:

o The NLF is optimal in the sense that each internal node has unity power
gain. This means, for example, that the response to a unit impulse cannot
overflow anywhere within a stable NLF filter. Also, if the input signal is
white noise with unit variance, the variance of the signal at each internal
node is exactly unity [30].

e The NLF is stable in the case of time-varying filter parameters {30] as

27
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long as the “reflection coefficients” k;({) are always less than or equal to
some K <1 in megnitude. ([k;(¢)] < 1 is not sufficient for bounded-input,
bounded-output (BIBO) stability unless the input signal energy is finite.) It
was derived incidentally that the total energy entering the ladder eventually
“exits” through the particular delay element at the entrance to the ladder.

]
gy l-‘-'.'-..l.' ..l &. . .

e The NLF has superior roundoff noise properties, especially when poles are

clustered close together and/or close to the unit circle (30].
e The NLF is [ree of zero-input overflow oscillations [39)].

¢ The NLF is free of zero-input limit cycles [39] in magnitude-truncation
arithmetic.

The NLF is obtainable by transformations of a special case of the WGF struc-
tures derived here. The most significant difference is in the distribution of delay
elements. We will show that delay distribution in the standard NLF is not obtaic-
able from & WGF unless the waveguide is terminated by a pure reflection. This
means, for example, that an NLF cannot be connected to another NLF to build
s larger waveguide system with finite loading from one stage to the next. Also,
the delay distribution chosen for the NLF is such that creating a loop with NLF's
yields s degenerate (non-computable) structure because a delay-{ree loop appears.
Another limitation of the NLF is that the concépt of instantaneous power becomes
artificial for individual sections (although Gray defines & non-physical but similar

quaatity in (39, eq. (2)]).

A disadvantage of the NLF is that it requires four multiplications per pole of the
filter transfer function.® The one-multiplier lattice filter, on the other hand [31]
requires only one multiplication per pole. Because of the choice of delay distribu-
lion in standard lattice-filter theory, only the NLF has been shown to be power-

preserving in some sense. In contrast, we will show that even our counterpart
to the one-multiplier lattice can be made normalized with respect to time-varying

® As a side result, we show that one of these four multiplications can be eliminated.



coefficients. Conceptually, this is achieved by compensating the amplitude of stored
signal samples. The resulting normalized one-multiplier lattice section is computa-
tionally less expeansive than the NLF.

|
i
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The reason that most standard ladder and lattice structures (all but the NLF)
cannot be power-normalized in the time-varying case is that the unnatural distribu-

b sl

tion of delays adopted makes passivity of a section nontrivial to show. This paper
describes how power-normalization, perfect energy conservation, and complete sup-
pression of limit cycles and overflow oscillations can be guaranteed for MIMO
analogues of all ladder and lattice filter structures, with extensions to branching

structures and general terminations.

For the case of reflectively terminated, time-varying, MIMO, acyclic trees,
(which specialize to ordinary lattice/ladder structures in the SISO single-braach
case), we derive efficient equivalent structures in which the delays are moved and
combined to yield computational savings without loss of the desired power-invariance/numerical

properties.

2.3. Synthesis and Approximation

The syathesis procedure we use for the WGF is based on the Schur algorithm
which recursively computes a solution to the Nevanlinna-Pick problem [40,37,43].
The Nevanlinna-Pick problem is to interpolate a rational “Schur function*” through
n complex values at n points in the closed unit disk in the complex plane. The
Schur aigorithm has also been called the “Nevanliana recursion scheme” [43]. In
other contexts, a special case of the the Schur algorithm, which computes oanly
all-pole digital filters, bas been called the “Durbin” (8] or “Levinson” [3] algorithm
[34,40,42,38,31). The complete Schur algorithm constructs a cascade WGF realiza-
tion of a digital filter containing both poles and zeros.

® A Schur function S(z) is defined as s complex function analytic and of modulus not

exceeding unity in {z{ < 1
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The estimation problem has been addressed by DeWilde [40,42]. In this context,
the Schur algorithm provides an ARMA estimation technique in which the pole
estimates are optimal in the mean square sense for the given fixed zeros which are

chosen a priori.

3. Traveling Waves and Lossless Scattering

For concreteness of discussion, we will focus on pressure and flow waves in a
so-called acoustic tube. We could just as easily think of the electric and magnetic
components of light, voltage and current in a transmission line, or force and trans-
verse velocity on a vibrating string. An analysis of the acoustic tube is discussed
by Markel and Gray [31] and Flanagan [19] in the context of vocal-tract modeling.
Further details on the acoustics of sound in tubes can be found in Morse [4]. The
term “waveguide” will be used interchangeably with “acoustic tube.”

A derivation of traveling waves from the basic wave equation is presented in the
appeadix. The result is that in a cylindrical acoustic tube, longitudinal®* pressure
sad fow waves propagate back and forth with speed c¢. Let z denote distance
aloog the tube axis and let ¢ denote time in seconds. Then the instantaneous
pressure P(z,t) and flow U(z, t) is given by the sum of the left-going and right-goiag
traveling-wave componeants:

P(z,t) = P (z, t)+ P (z,¢) (1a)
Ulz,t) = U (z,8) + U (2, 1) (1b)

¢ We assume tbe tube radius is much smaller than the wavelength of sound in the tube,
so that pressure and flow are constant over any cross-section of the tube normal to the
axis. In other words, waves do not propagate up and down but only left and right. For

more details on the assumptions involved in acoustic tube models, see Flanagaa {19].
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3.1. Three Fundamental Constraints

The behavior of waves traveling unidirectionally in a lossless medium is governed
by three laws: (1) the pressure is proportional to flow, (2) the pressure is a continuous
function of position, and (3) the flow variable (e.g. mass or charge) is neither created

nor destroyed in the medium.

Characteristic Impedaace

An ideal linear propagation medium is completely determined by its charac-
teristic impedance! Z(z,t). The characteristic impedance is defined the constant of
proportionality between pressure and flow in a unidirectional traveling wave:

*

P"=2zU" (2a) q

P =-2U" (2b)

When the arguments (z,¢) are omitted, it is understood that all quantities are
written for some constant time { and position z. The minus sign for the left-going

! For an acoustic tube, the characteristic impedance is given by Z == 07Vep/S =

'j:-:'_{ pe/S, where p is the density (mass per unit volume) of air in the tube, ¢ is the speed of
s

.:::'.j-} propagation, Pj is ambient pressure, 4. is the ratio of the specific heat of air at constaat

_,\.j pressure to that at constant volume, and S is the cross-sectional area of the tube. In a

vibrating string, Z = p == pc, where p is string density (mass per upit leagth) and T is

g |

[\_: the tension of the string. In an electric transmission line, Z == /L/C == Le where L and
P" C are the inductaace and capacitance, respectively, per unit length along the transmission
ﬁi line. In free space, Z == \/;T/c; == poc, where po and ¢o are the permeability and
;(:r'" permittivity, respectively, of free space.
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wave P~ accounts for the fact that flows in opposite directions subtract while

pressure waves passing through each other sdd.

We will consider initially a more general situation in which Z = Z(d) is a
¢ by ¢ complex matrix function of the complex variable (or unit-delay operator) d.
For stability of propagation in the waveguide, we require that Z(d) be analytic for E
|[d] € 1. The results also extend to the case of vector 7 = (dy,...,dx], but we

will treat only one complex argument d for notational simplicity. The pressure and ,"._‘_'
flow variables are ¢ by m matrix complex functioas of d. However, keep in mind “
that the physical analogy we are pursuing is for the case of real scalar Z, P, and ;_J
U.

For lossless propagation in the scalar case, the characteristic impedance Z o

must be resl. In the matrix-delay-operator case, lossless propagation will now be
characterized by the requirement that Z be para-Hermilian, i.e.,

Z.(d) = Z(d) (3)
where
Z.(d) AZ(17d) (4)
* denotes the para-Hermitian conjugate of Z(d) {13,40], (-)T denotes transposition,

and (*) denotes complex conjugation. For d = &0, Z.(e%) coincides with the
Hermitian transpose of Z(¢’?). The para-Hermitian conjugate is the unique analytic

F continuation (when it exists) of the Hermitiaa traaspose Zo(e)?) = Z(ela)r from
g the unit circle into the complex plane. Thus, a lossless medium in our framework

is defined as one in which the characteristic impedance is para-Hermitian. The
extension to vector d is obtained by regarding Z(d) as K functions of scalar complex
L variables d;. Note that in the scalar case, Z para-Hermitian impties 7 = Z which
implies Z is real. Henceforth, we assume Z denotes a para-Hermitian characteristic
impedaace. For non-para-Hermitian Z, (2) should be modified to read P~ =
~2Z.U" [13], and & passive medium is one in which Z + Z, is positive semi-definite.
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LS
: It is worthwhile to interpret the various levels of extension we are coasider-
ing for the characteristic impedaance Z. When Z is real sad scalar, we obtain ex-
sctly the ideal behavior of one dimensional traveling waves in a lossless medium.
- Extending to ¢ by ¢ matrix characteristic impedances facilitates development of
e multi-input, multi-output (MIMO) systems which have the desired numerical and
‘ -‘\3 power-invariance properties. The extension to analytic matrix functions of a com-
j§: plex variable provides a generalized scattering medium whose reflectance and trans-
'“’ mission coefficients are themselves rational transfer function matrices. This provides
for nesting of the WGF structures. The complex argument d of the characteristic
” impedance is interpreted as a unit-delay operator, and the meaning of the charac-
\, teristic impedance is attached to its Laurent series expansion with respect to the
' unit circle in the d-plane. Additional complex variables d; in the arguments to the
_‘ characteristic impedance allow the generalized scattering layer to perform filtering
in ‘several domains such as time and space. Since the characteristic impedance is
assumed stable and para-Hermitian, all delay-operator impedance matrices must
be nonrecursive and zero-phase. Therefore, computability, stability, and noalinear
oscillation problems do not arise in the case of multiple domains.
o
7 Pressure Continuity and Medium Coaservation
y
‘ We will be interested in the situation wherein the characteristic impedance
« changes abruptly from one value to another, say from 2, to Z;. The impedance
':.".: discontinuity can be s sudden change along z in the acoustic tube, or it can be
- a change introduced at some time ¢ (as needed for time-varying filters). First we
:j.: consider changes with respect to z. Given the traveling waves impinging on the
‘.j'f.sz junction between Z; and Z2, we seek formulas for the traveling waves leaving the
e junction. To solve this problem, we need two laws in addition to (2) for an ideal
A wave medium:
-.\ 1) Pressure cannot change instantaneously across the junction (5a)
t :.' 2) The sum of flows meeting at the junction is zero (5b)
T
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These constraints are often called “Kirchoff’s node equations™ in the context of
ci=cuit theory. For changes in characteristic impedance with respect to time, (5)
is not applicable. Time-varying characteristic impedances will be implemented as
waveguide transformers, and will be used to obtain power-invariant lossless digital
filters in the time-varying case.

The continuity and conservation constraints (5) together with the characteristic
impedance constraints (2) determice what pressure and low waves emerge from a
junction between waveguide media of differing characteristic impedance, given the

incoming waves.

Consider the case of N waveguides meeting at a common junction. Kirchoff's
laws state that there can be only one resultant pressure P, at the junction, and the
sum of flows entering and leaving the junctica must total to zero. Thus, we have

the constraints

PP=P,=...=Py=PF (6a)
Ui +Us+-- +Uy =0 (6b)
where

Ui=U;+U] P =-ZU!
Z; == Characteristic impedance of the ith waveguide (¢ by ¢)

T; = Z7! = Characteristic admittance of the ith waveguide (g by ¢)

P,-’ == [ncoming pressure wave along the ith waveguide (¢ by m) (8)
U = Incoming flow wave along the ith waveguide (¢ by m)

A L

P; == Outgoing pressure wave along the ith waveguide (g by m)

U; = Outgoing flow wave along the ith waveguide (¢ by m)

Y P; == [nstantaneous pressure wave in ith waveguide just outside junction (¢ by m)
5-‘:--‘.'.: U, = Instantaneous pressure wave in ith waveguide just outside junction (g by m)
o P; = Resuitant pressure in the junction (g by m)

-
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3.2. Reflection at a Junction o
Given a set of incoming traveling pressure waves, P:, i = 1,...,N, the
constraints (2,6) determine the outgoing waves as f{ollows. As before, Z; and hence fj

['; == Z7! are para-Hermitian positive definite. Substituting (1b) and (2) into (8b)

]
L WV S SRR |

yields the resuitant junction pressure: -

N '~
P, = 2(2 r,-) DI ¥ ¢ (10)

fem | jaml]

Let

IQ

N
Z (11)

define the junction admittance, junction impedance, and junction flow, respectively.
(In the extension to non-para-Hermitiaa Z;, U; becomes U = Y (I'; + I';.)P;.)
Relation (10) then reads P; = Z,Uy, or,

N
r,ajyr; z;Aary

Junction Pressure = Junction Impedance X Jumctioa Flow

Since[;P] = U, wehaveU; =27 U7 220" = (U= U |+|UT],
where | - | denotes elementwise complex modulus. That is, the junction flow can
be interpreted as the magnitude sum of the incoming and outgoing current waves.
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Now, given incoming traveling waves P}, U’} and the characteristic impedance
Z; of each branch terminating at the junction. we easily find the outgoing waves

K- P;,U; tobe

o P, =P;-P; (12a)
" *
A . . . . o o . . -
h- Equations (12) specify the scattering at the junction of N intersecting “wave guides,” :
f"’:’ given the incoming waves P: (or U : ) and the branch characteristic impedances Z;.
e
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In view of relations (2), we can consider only left-going sad right-going pres- =
sure waves, since the flow waves can be readily computed from the characteristic Ff
impedance of the propagation medium. At this point, we could instead choose wave \
variables of the form z; = P; + Z;U; and y; = P; — Z,;U; and proceed aloag the ’
lines of classical wave filtering [13]. However, such a path is less fundameantal in the z
present development because we are considering only discrete-time filters. L\

We have treated only a parallel junction of waveguides. A dual set of equations \:
is obtained by considering a series junction. However, pressure waves intersecting ,j
in & parallel junction are equivalent to low waves intersecting at a series junction. »"'j
When using low waves as the primary variables, (12b) can be written 3

U; = U.f -TP; (13a)
N B

pj=2ZJZU: (13bj
tom]

The series pressure junction is obtained by taking the dual of (13). That is, replace
U; by P, and I'; by Z; to obtain

- +*

P, =P, -2,U% (14a)
N
vy=2ry)_ P/ (14b)
L]
ry=2%"" (14c)
N
2% = Z; (14d)
e |

)
a0y

:.,; The junction impedance for a series junction is the sum of the branch impedances,
Wi: while for a parallel junction, it is the parallel combinatioa of the branch imp<dances
- (inverse of the sum of admittances).

A

:"Z‘ Equation (12a) is a computationally efficient way to implement an V-port
ﬁ; scattering junction. In the case NV =2, the well-known one-multiplier lattice fiter
f! section (minus its unit delay) is obtained immediately from (12a). More geaerally,
'\.:“
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sn N-way intersection requires /V multiplies and /V — 1 sdditioas to obtain Py,
and one addition for each outgoing wave, for a total of N multiplies and 2N — 1
additions. The dual junction (14) also requires N multiplies and 2/V ~ 1 additions.
In the next section, a method for trading one multiplier for another /V —1 additioas
(28] is described.

NS | I DRIV

3.3. oa-parameters

One parametrization of all passive /V-junctions is the set of N braoch im-
pedances with positive-definite para-Hermitian parts (cf. §5.1). This section describes

N
':-f
-4
-1
R
o

another parametrization, analogous to that used in the WDF context [28].

One parametrization of all passive /N-junctions is the set of /N branch im-
pedances with positive-definite para-Hermitian parts. This section describes another
parametrization, analogous tc that used in the WDF coatext [28].

Define

a; =2Z,T; (13)

which is twice the junction impedance times the ith branch admittaace. (Ia the
non-para-Hermitian case, a; = Z,(T'; + T';,).) Then the junction pressure can be

written as a linear combination of the incoming pressure waves in terms of the ay

as
N
P;=3 a,P (16)
fam]
Since va_, T;ary,
N
Y ai =21, (17)
temt

where [, is the ¢ by ¢ identity matrix.
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In matrix form, (12a) can be written
\

”,,:: rP- ] F oy — 1 as an 7 [ P! 7
wl: 1| 1 q T 1 :{f
Yo _
v P; ag oz2=ly ... an P; -
I = . . : . (18) »
P P;lj ay az "W"’qJ Py
or

o B"=cp’ (19)

S
';Z:iu_- where
I, [a1az...an]

O Iq

L E24-1Ing A2] (20)
\.;‘-:..t Iq J

- The matrix £ is called the scattering matriz of the junction. Since P; = (a;=/,)P]

" -\‘ . 0 . . .

';3::- when P; =0 for all j 3£ i, we define the reflection coefficient at the ith port by
o
pidai-1I, (21)

S

1) \:'

Y . . .
hY <! Equations (123,16,17) combine to give
e

o
oS N *
- + +*

2 Pl =P+ a;P]-P]) (22) 2
ol - A~
bl j,‘:
Lol Vo
:':)" :.;—w
Savy Thus, aj; can be interpreted as the fraction of the pressure differential between ‘j
branches j and ¢ which is reflected back along the ith branch with P.-’, for any . T
,:l_‘_:-_?_; Use of this expression saves one matrix multiply but entails 3V —2 matrix additions. )
: If one multiply is worth N —~ 1 additions or more, then (22) is less expensive to

- implement than (12a).
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3.4. Pure Delays =5

Up to now we have been concerned only with the scattering of traveling waves
at a single impedance-discontinuity junction. We now allow for many such junctions
interconnected by waveguides for lossless, reflectionless propagation. Physically, an
interconnection between junctions is a length of material at a single characteristic

impedance. It is implemented digitally using bi-directional delay lines.

Consider the interconnection of two /N-port junctions. Between the two junc-
tions is a section of pure waveguide which is a lossless medium having characteristic
impedance Z;;. Let ¢ denote the speed of propagation in this waveguide section,
and suppose the distance between the junctions is L. Then the propagation time
from one junction to the other and back is T, = 2L/c. Coansider a pressure wave
impulse P'(z=ct) = 6{z — ct) traveling from junction 1 to junction 2 starting
at time ¢ = 0. At time T,/2 it reaches junction'2, and a reflection P (z + ct) =
p13d8[z +c(t —T,)] starts out to the left from junction 2, heading back to junction 1.
A fragment of the pulse is also sent out along all waveguides connected to junction
2, according to the relative branch impedances. At time ¢t = T,, the reflected pulse

reaches junction 1, and scatters away again.

A section of waveguide joining two junctions by a propagation delay T,/2 is
called a unit delay. If the speed of propagation is everywhere the same, then all

ugit delays are of the same length L = ¢T,/2.

An important observation to make at this point is that the impulse response
at a particular junction of a network of junctions interconnected by waveguides of
leagth ¢T,/2 is nonzero only at times which are integer multiples of T,. Thus, such
& network is a simulation of a digital linear system with sampling rate Fo = 1/T,.

Consider a linear chain of junctions. The input is defined as the pressure enter-
ing at the far left (junction 0), and the output is defined as the pressure emerging
from the far right (junction M). Again, this structure is an exact simulation of a
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digital system with sampling rate F, = 1/T, provided M is even. If M is odd, we
obtain samples separated by 7, seconds at the output, but there is s time shift of
T,/2 relative to the sample instants at the input.

Now consider the more elaborate interconnection of junctions in an arbitrary
network. Unless every path from the input to the output crosses an even number
of upit delays, the impulse response of the network will be nonzero at multiples of
T,/2, yet the minimum delay in any feedback loop is T, seconds. Thus, it is not
possible to simulate a general digital system having sampling rate 2/7T, even though

such a sampling rate is required to compute the response.
Two cases arise:

(1) Half-rate structures which require an even number of branches on every
path from the input to the output, plus possibly a single odd section
which causes a half-sample shift of the output relative to the input. In
the latter case, we do not allow the resulting structure to be placed in a
feedback loop. These restrictions leave us with a general class of linear

digital filter structures.

(2) Full-rate stryctures in which the most general transfer function between

two junctions is of the form

byz7l 4 o by, 2™

H(z) = .
(<) l1+04+a2272+ - +an, 2" "

(23)

:'f;_.- in the scalar case, where nq > 2 and ny > 1 are integers. In the full-rate

::E.’;::Z case we must settle for the class of rational flters in which a, = 0. The
_, corresponding digital flter design methods must support this constraiut.
;. Therefore, techniques based on linear programmiag seem natural in this
e coatext (38]. In the estimation context, the methods described in [49] can
: be adapted to this problem.
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4. Cascade Waveguides

We now specislize discussion to the case of cascade waveguide sections. The
junction between two waveguides of differing characteristic impedance will create
a scattering junction. The stretch of pure waveguide material between scattering
junctions will provide delay lines for the propagation signal. From these structures
all digital filters can be built in such a way that they behave anicely with respect

to time-varying parameters and numerical roundoff/overflow. Note that almost all

s
g
X
3

special properties in the cascade case carry over to arbitrary acyclic trees.

4.1.  The Two-Port Junction

If there are only two waveguides meeting at a junction, we obtain the classical
“scattering theory” in which an incoming wave is split into a “reflected” and
“transmitted” part. From (15), the a-parameters are

oy =227+ Z7Y) 20 = AT, +T2)™ Ty =21, + ZiT,)

- (24)
oy =227+ 2347 25 = o) + T2) ™' T2 = 2y + Z2T))
From (22), the reflected pressure waves are
P =o3(P; = P{)+ P = (a1 - [)P} +azP;
(25)

P; =a (P} = P;)+P; =P} +(az - )P}

It P] == 0, then the incidence of P, produces a reflected wave P{ =(a, ~ Ij)P;.

Thus, we define the following reflection coefficients:

i mlai-ly=(Z~2)Z+2)" =, +T2)"" ([, —T3)
ol A (26)
[ P2=02—Iq=—pl
41
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It is now apparent that if the reflection coefficient at port 1 is p; = p, then at
port 2 the reflection coefficient is —p. Another point of view is that inverting the
impedance-step ratio from Z,:2; to Z;:2; merely changes the sign of the reflection
coefficient. It is easy to show that for scalar Z;, exchanging pressure waves for flow
waves also toggles the sign of all reflection coefficieats in the network. Thus, left is
the dual of right as pressure is the dual of flow(and parallel is the dual of series).

In the matrix-impedance case (¢ > 1), however, replacement of pressure by
flow changes p to —(I'y 2z = I}y 22 + I;)™"! which equals —¢ only if Z; commutes
with Z;. Two Hermitian matrices commute if they have the same eigenvectors, i.e..
their “principal axes of dilation” are aligned. There exists a unitary tragsformation
of any Hermitian matrix which commutes with any other Hermitiaa matrix; that is,
s Hermitian matrix can be “rotated” until it commutes with any other Hermitian

matrix. For waveguides with impedance matrices so aligned (all Z; have the same
eigenvectors on the unit circle), junction reversal is equivalent to wave-variable

exchange; either causes a sign reversal in all reflection coefficients. a

4.2. The Scattering Matrix N

In block-matrix notaticn, the junction output is given by

P, =[01-Iq @ ]Pr _[ P [q"'Pt]P: A TP (o
P; az 2=l P} L=on  —-p P} |T7 7

or

P =tP" (28)

This is called the scattering formulation, and L is called the scaltering matniz. It
is a special case of the N-junction scattering matrix defined in (18).
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Ky 4.3. The Chain-Scattering Matrix
| Y
In the two-port case only, we can also define the chain-scaltering matlnz via
:. + -
P‘_ =o|” 2 (29)
X Pl P2 d
- where 0. Ou 1
612 O:; |
o While the scattering matrix computes outgoing waves from incoming waves, the
chain-scattering matrix computes the left-going and right-going waves in section 1
given the left-going and right-going waves in section 2. The relation between the
" scattering matrix L and the chain-scattering matrix © is given by
' O =3 012 = -L3'Ex
- (31)
; O =155 82 =E-I,55'E:
- and
. Tu= e‘:xel-ll Y =65 - 62,9;‘012
- -1 (32)
L2 =0y, 22 =—6,,6,2
s
. 4.4. One-Multiplier Forms
Hs. Equations (25) and (26) combine to give
‘ - +
- - . (33)
where
aP A p(P} - P})
(34)
PR =1-a
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Thus, only one matrix multiplication is necessary to compute the reflected waves L
from the izcoming waves. In the scalar case, this reduces to the so-called one- 'P
multiplier lattice section [31] (minus the unit-sample delay ordinarily associated o
with each section). It is well-known that any rational digital filter can be built :~
Bl

using one-multiplier lattice sections [31]. In fixed-point implementations, the only o
source of error would typically be in the computation of AP. _L
To ensure the absence of limit cycles and overflow oscillations, the additioas ia

in (33) must be performed before rounding, and the final rouading to obtain P, %

and P; must be porm reducing. (In the scalar case, magnitude truncation is
sufficient.) The added expense for postponing round-off until the final outgoing
waves are computed is typically negligible, requiring only logic to determine the
desired direction of truncation from the signs of P; and AP, and the low-order
product of AP. In other words, the double precision computations required are

only conceptual because the low-order half of the incoming waves is zero.

e

_‘_I‘
« L
C o4
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Another one-multiplier form is obtained by organizing (25} as

P; =P, +a(P; - P})
(33)

+

P; =P +(P{ -P;)=P;~P;

where @ & a;. As in the previous case, only one multiply and three adds are
required per section. An advantage to (35) is that the computation of P, is noiseless
(assuming roundoff only after multiplication). This can be used to simplify hardware

for suppressing limit cycles.

In the scalar case, the single scction parameter p of (35) must lie between —1
and 1, while in (34), the single section parameter a must lie between O and 2.
Otherwise, the junction is not passive. The practical implication of non-passive

junctions is potential filter instability in the presence of feedback.
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5. Signal Power In Lossless Waveguldes

This section presents basic definitions of signal energy and powerin s waveguide.
These concepts provide the necessary handles on filter stability, passivity with
respect to numerical round-off and overflow, and energy modulation due to time-

varying parameters.

5.1. Instantaneous Propagating Power

The instanlaneous power in a waveguide containing instantaneous pressure P

and flow U is defined as the m by m product of pressure and flow:
P=PU (36)
The total instantaneous power is defined as the trace of the instantaneous power:
Pr 2 Te{P} = Te{P.U} (37)

The total instantaneous power is a complex scalar measure of power fow. It can
be interpreted in a manaer similar to the complex power in scalar transmisstoa-
line theory in which sinusoidal phasors are propagated in either direction. The

instantaneous power can be expanded into four terms as follows:
P=PU=(P,+P U +U)=(U]=UJ)ZU" +U")
=P U +P U +P.U+P]U"

* . - - - - - + (3&)
=P.rP*-P, TP  +P TP -P. TP
=UlzU* -UIZUT —UlZUT + U ZU”
The right-going and left-going power are defined, respectively, by
P*=PU* =UZU* =P.TP"
(39)

P =P.U =-U_2U =-P, TP

45

L L Y U B o . A T PN .- . - PO

S - ol RIS =TT

VT N T TN T e s

R R ORI R e e e e e T T g e e LT e e e,

SR T T T T D
N SRt R S AV TRV T P P T T O A T A T S RO




- R _..,..,.,-.,-‘,-vv-uw'wwm“t‘l‘"!‘l"‘l"! T hnf A
R " r bl S aoa o A s v A Ak 2 Y v haide ol
g " “.-' L4 o K4 - - o - - d Ty AL a4

i

Since Z is para-Hermitian, P * and P~ are Hermitian forms, zad can be expressed -
u 3
m .

PT=3 Ny, g

l'-[ _:.\

m (40) .

PT =) N "

tum | e

where ¢! is the ith eigenvector of P*, and A} is its ith (real) eigenvalue. The 5
m-vectors LT can be chosen orthonormal. Similar remarks apply to the eigenvalues g
and eigenvectors of P, It can be shown that the waveguide is passive il and only

if A1, A7 2 0. Consequently, we will assume in the sequel that
APD0 AT>0, i=1L12...m (41)

This implies »* and P~ are positive definite Hermitian matrices. The orthonormal
vectors Y7 and Y7 (which are vector analytic {unctions of d), indicate “directions”
slong which power flows in the m-dimensional manifold determined by U; (or P,)
and Z.

In the non-para-Hermitian case, the medium is passive iff

Z(d)+ Z(d) >0, V|d| < 1 (42)

That is, the para-Hermitian part of the characteristic impedance of a passive
medium must be positive definite in the unit circle. It can be shown using the
maximum modulus theorem (5] that (42) holds if Z + Z. > 0 for |d| = 1.

We define the cross power by

P  =UlZU” (43)

N The instantaneous power (38) can now be written as

- P=(P*=PT)+(P =P (44)
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which we interpret as a sum of a net traveling-power term P * — P” plus the skew-
pars-Hermitian part of the cross-power. In the real scalar case, P* = P and the

cross power is zero.

Since the eigenvalues of a Hermitian matrix are purely real, we define the
difference between the right-going and left-going power P* =P~ as the active power.
Similarly, since the eigenvalues of a skew-Hermitian matrix are purely imaginary,
we define the skew-para-Hermitian part of the cross-power P X —pX as the reactive
power. These definitions parallel those of scalar transmission-line theory. The total

power in each case is defined by the correspoading trace.

5.2. Power at a Junction

For the /V-way waveguide junction, the constraints (2,6) vield

N N N
PrA 3 PulUi=} PiUi=P; 3 Ui=0 (45)

sem] tam) faml

Thus, the /V-way junction is lossiess; no net power, active or reactive, fows iato or

away (rom the junction.

5.3. Quantization Effects

While the ideal waveguide junction is lossless, finite wordlength effects, can
make exactly lossless aetworks unrealizable. In fixed-point arithmetic, the product

of two numbers requires more bits (in general) for exact represeatation than either of

f a0
&
'S
Ed

.
LSl
v . LI
'y (A
P T R S RS
. L A |

the multiplicands. If there is a feedback loop around a junction, the aumber of bits
needed to represent exactly a circulating signal grows without bound. Therefore,

?"3; some sort of round-off rule must be included in a finite-precision implementation of a
:“-; WGF. The guaranteed absence of limit cycles and overflow oscillations is tantamount
’H to ensuring that all finite-wordlength effects result in power absorption at each
‘C-‘_': junction, and never power creation.
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The sum of power flows entering a junction is given by

N
=RUA Y P

famy
N

Y (Pi+Pr)(vi +U7) (46)

fam1
N

=Y (Pr.+PR)ri(Pi - P)

li>

where [; = Z7! is the characteristic admittance of the ith waveguide. Define

(47)

lzlp & Z zi.[izi = [ £

1!
Thesa by { 16),
=<e’+e B -B >
L
. I (48)
2 p+ (e - (ee)
C r r

-le

The junction is passive if

Py+Pre= 2[| 2[- |2 ||;:] >0 (49)

2|2
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Since I'; > 0, the quadratic form z,I';z forms aa elliptic orm for z. By the -11
norm equivalence theorem, condition (49) can be written 7o)

el<le] o

where the porm is arbitrary [18|. Let P.- = P; —¢,; denote the quantized value
of P;. Then a sufficient condition for the absence of limit cycles and overflow

oscillations in an ;V-port junction is
ﬂ P, ﬂ <|e7| (51)

Since the norm is arbitrary, two coavenient choices are the L! norm (maximum
sbolute column sum) and the L* norm (maximum abolute row sum) [18]. Alternately,
8 sufficient condition for the abaence of overflow oscillations and limit cycles in

nelworks built from N -port waveguide junctions is that magnitude lruncation be

used on each element of the final 7 by m outgoing wave variables P;

“ 5.4. The Normalized I,adder Section
b We can normalize the pressure and flow variables by the Hermitiaa square root
- of the characteristic impedance to obtain propagation waves in units of root power:
. .- -1 -
P az P Piéz.-’P,-
(52)
-+ I3 .- A o
U; QZ,’L U, A2Z7U;
where
1 i
Z.-’. =7 (33)

S
-‘ -
E.x .

is the unique para-Hermitian square root of Z;. The para-Hermitian square rool of
Z; is defined as the analytic continuation of the Hermitian square root of Z;(e/9).
Uniqueness is inherited from uniqueness of both the Hermitian square root and the

T
5.3 8 ®
D 4
f

X

;5.',

process of analytic continuation.
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In the non-para-Hermitian case, we normalize the traveling waves by ;
P;ARTIP] P ARTHP] g

. L (54) :-‘:

- - - - o

U: ARU;  U; AR;U; 5

where :
R A Yz + 2. 3

2 " o

(55) =

R}, = R} 5

1
That is, R? is the para-Hermitian square root of the para-Hermitian part R; of the
ith branch impedance Z; [13].

By restricting all waveguides to normalized waves, we obtain the WGF generaliza-
tion of the normalized ladder form (NLF). As a result of this normalization, the
stored power in each WGF section is unaflected by time variation of the characteris-
tic impedance in each waveguide. This means that the signal power is decoupled

from time variation in the filter coctficients.

8. Conclusions

We have derived a general framework for recursive digital filtering which has
many desirable properties (stated in the introduction). This architecture for digital
filtering is most valuable in the case of time-varying recursive networks ia which it
is desired to eliminate limit cycles and overflow oscillations. The added complexity
relative to the best pre-existing recursive filter architectures is negligible. Therefore,
these structures are likely to find plentiful use in advanced time-varying filtering

applications.
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7. Appendix—The Wave Equation

For an ideal waveguide, we have the [ollowing wave equation.
Pi(z,t) = c?Pys(z, 1), (56)

where P(z, () denotes longitudinal pressure displacement in the tube at the point
along the tube at time ¢ in seconds. If the length of the tube is L, then z is taken

to lie between 0 and L. The partial derivative notation used above is defined by

d (0P
P, & —| — 57
zY —_az(ay)' (a )

The constant ¢ is given by ¢ = \/T /p where T is the tube “tension,” and p is the
mass per unit length of the tube. An elegant derivation of the wave equation is
given by Morse [4].

The general traveling-wave solution to (58) is given by
Pz, ) =P (z—ct)+ P (z+ct). (53)

This solution form is interpreted as the sum of two fixed wave-shapes traveling in

opposite directions along the tube. The specific waveshapes are determined by the
initial pressure P(z,0) and flow U{z, 0) throughout the tube. o]
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APPENDIX D

ADAPTIVE EQUALIZATION OF RAPIDLY TIME-VARYING MULTIPATH CHANNELS
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Adaptive Equalization of Rapidly Time-Varying Multipath Channels -

Julius O. Smith
Benjamin Friedlander

Systems Control Technology, Inc. e
1801 Page Mill Road A
Palo Alto, California, 94303

Lo

Abstract =

An adaptive equalizer is proposed for eliminating distortion due to muitipath propaga- .’-{:fﬂ

tion in high-speed digital radio systems. The equalizer is aimed at the case of very fast 3
channel Suctuation, where “fast” is defined relative to the impulse-response duration -

of the inverse of the instantaneous multipath transfer function. The method is of the
decision-feedback type where the demodulated symbols are used to construct an estimate
of multipath-induced intersymbol interference. The reconstructed baseband waveform is
then delayed and weighted according to the current mulitipath parameters, and this simu-
lated echo is subtracted from the incoming baseband waveform. The distinguishing feature
of our approach is that «n explicit model of multipath parameters replaces the tranvsersal
equalizer studied previously.

1. Introduction

Microwave systems using digital modulation have developed rapidly since their \n
introduction in the early 1970’s. This rapid growth is due in part to the tendency ol
toward digital encoding of all types of data, better transmission quality in digital e

formats (especially in an interference environment), ease of digital switching, and i
the rapidly falling costs of digital electronics.

Multipath propagation is often the primary source of error in high-speed digi- ]
tal radio, just as it is in the more familiar FM modulation systems. However, the N
effect of multipath on microwave-frequency communication differs from its effect on
analog FM, and different compensation techniques naturally arise. For narrowband
FM radio, outage is a function of thermal noise or flat-fade margin [12,2]. For
digital transmission, frequency-selective fading causes severe amplitude and delay
distortion which yield errors in excess of flat-fade margin predictions [5,6]. As in-
formation rates can be on the order of 100MHz, even small levels of delay distortion
can cause intersymbol interference. For example, a 6ns multipath delay can cause
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complete digital eye closure in a 22Mbps 4-QAM system operating at 6GHz, even
though the received signal power falls only 10dB [12].

Techniques for minimizing multipath distortion include frequency diversity,
spatial diversity, and equalization. The first two involve transmission on multiple
frequencies or use of multiple antennas; when multipath degrades one frequency
band or antenna signal, the receiver switches or fades to another frequency/antenna.
Spatial diversity alone can reduce multipath outage by a factor of 8 to 12 [4].
Amplitude equalization alone gives approximately a factor of 6 improvement [4].
When spatial diversity techniques are combined with amplitude equalizers, the im-
provement is surprisingly a factor of 100 to 800, because maximum power combiners
convert in-band fade notches to slope, and slope is what is corrected by many
amplitude equalizers [12,7]. For a minimum-phase multipath fade, slope equalizers
often substantially correct the delay distortion as well as the amplitude fading.
However, for noominimum-phase fades, a slope equalizer attempts to double the
phase-delay rather than reduce it.

Adaptive transversal equalizers have been employed recently to equalize both
phase and amplitude [9]. Typically five taps are used, where each tap multiplies
the received signal over the time of one symbol. Thus, a linear combination of
five symbol periods is adaptively optimized. The two error criteria curiently in
use are the “zero forcing” (ZF) and “least mean square” (LMS) errors [12!. The
LMS techaique is generally regarded as superior in performance, but more complex
to implement. An important advantage of the transversal equalizer is that it is
equally effective against nonminimum-phase as weil as minimum-phase fades. In
one study [10], outage reduction using spatial diversity with transversal equalization
was a factor of 3.3 better than that achieved using the same spatial diversity with
amplitude (notch) equalization [12].

A further improvement can be obtained using a so-called “decision-feedback”
equalizer (DFE) (1,16,14,15,20,21]. Unlike the transversal equalizer, which ap-
proximately inverts the multipath channel transfer function, the DFE uses demodu-
lated symbols to subtract out intersymbol interference (ISI) on later symbols. With
added processing delay, ISI can be subtracted also from earlier symbols. An LMS
version of the DFE is described in [1]. The DFE is theoretically superior to linear
equalizers in the case of deep in-band notches [17,18,18]. The DFE approach is
similar to echo cancellation (3] wherein the echoes to be canceled are constructed
from the estimated symbol-stream and channel model.

An exact inverse filter for the multipath transfer function is recursive, and for
minimum-phase multipath an adaptive inverse filter can be utilized [11,13]. Since
the inverse filter must be constrained to a stable set, nonminimum-phase multipath
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a stabilized inverse filter even in the non-minimum-phase case [13].

¥
transfer functions cannot be inverted by a recursive equalizer. However, under _:_:
certain conditions the multipath delay can be accurately estimated by tracking with “ﬁ

~or oy

S AR

In practical high-speed digital radio systems (line of sight microwave links), we
have the following characteristics [12]:

PO N

e Only two or three paths usually matter.
e Delays range up to approximately 11ns (multi-GHz radio).

e Distortion is due more to intersymbol interference caused by multipath delay
than by the fading associated with multipath.

o Fadenotch depth —~20log|l — |g¢|| can vary as fast as 100dB per second,
where g; is the multipath secondary-path gain.

e Notch frequencies k/n¢, k = 1,2,..., can change as fast as 50MHz per
second, where n; is the multipath delay.

e Nonminimum-phase fades occur 30 to 40 percent of thg time, i.e.,{g{ > 1

Under these conditions, it is not very practical to attempt inversion of the
multipath transfer function H(d,t).

This paper outlines a multipath equalizer which is based on “decision-directed”
simulation of the multipath channel baseband output using the demodulated data
stream. The simulated channel output contains estimated echoes due to multipath
which are subtracted from the incoming baseband signal. Our approach differs from
the DFE's currently proposed in that the multipath is modeled explicitly rather than
using a transversal equalizer to approximately model the effect of multipath on the
baseband. The effect of hetrodyning the multipath channel output is absorbed into
a complex multipath gain which is is a function of the multipath parameters and
the frequency shift. All known features of the modulation format are thus exploited
to constrain the online optimization.

P 2. Formulation

v

‘; Assume that the modulation format of the transmitted signal is 4-QAM at
b o s radian frequency w. = 27 f.. Let w(t) denote the instantaneous carrier frequency,
5! wm == 27 /m the modulation rate, z{(t) the baseband waveform (the convolution of a
5
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rate wm 4QAM impulse train with a Nyquist shaping pulse), and u(t) = z(t)eswet
the transmitted waveform.

LA | L TR R S R

A model for a time-varying multipath channel is

H(d, f) = 1+ gud™ (1)

where g; is the gain of the secondary path at time f, n, is the instantaneous E
multipath delay, and d is the unit-sample delay operator. g
The received signal is then v(t) = H(d, t)u(t) = u(t)+g:u(t—n¢). The recovered -
baseband signal is iy
2

y(t) = oft)e it = o(t) + (que= e Jalt = n) A sft) + auz(t—ne)  (2)

Thus, the baseband signal appears as a multipath-distorted signal itself where the
gain of the secondary path is now complex:

ag B gre~Iwene (3)

This observation allows application of multipath cancellation techniques which are
intended for the modulated carrier. (The modulated signal being in the GHz cannot
easily be dealt with directly.)

The corresponding time-varying inverse filter appears as

#(t) = y(t) — &z(t — 1a¢)
== (z(t) + aez{t — ne)} = ae{2(t - ae)} (4)
= 2(t) + ae{z(t = ny) — 2(t - )}

The above inverse multipath filter is robust if |a¢| < 1 and the time variation of
the multipath gain a; is slow compared with n;/(1 — {a¢]). For reasons mentioned
in the introduction, it is not very effective to attempt an exact linear inverse of the
multipath chaonel.

3. Multipath Equalization

Y
T
v

P
]

]i::;_fi This section describes a decision-directed FIR equalizer which nonlinearly es-
':;Z:;:;' timates delayed copies of the baseband signal z(t). These multipath echoes are then
o subtracted out of the received signal y(¢) to give the equalizer output. A block
g disgram of the processing steps is shown in Fig. 1.
‘~
o
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The input to the system is the received signal y(¢). Any number of echoes may

7p(l) is the latest time used in the parameter estimates a¢, fi¢. The equalized signal
z(t) is now sampled synchronously to recover the estimated information sequence.
The estimated amplitudeis quantized to the nearest signalling amplitude. Clearly,
acceptable results will be obtained only when this quantization step produces the
true signalling amplitude with high probability.

be estimated, but for clarity we will consider only one. Thus, y(t) = z{(t) + asz(t — i
n¢). The estimated echo G[rp(¢)]Z{t — fi¢[7p(¢)]; 7a(t)} is subtracted to give ex
Ht) = y(t) = adlrp(O))2{t = faelrpl2)]; 7a(t)} (5)

o

where 7,(¢) is the latest time on which the nonlinear estimate of z(t) is based, and ;_41

Given the information sequence, a simulated baseband Z; is constructed using
knowledge of the Nyquist shaping pulse. This nonlinearly enhanced estimate pos-
seses all known characteristics of the modulation format. The parameters of the
modulation format are estimated to the extent that they are unknown; for example,
the carrier amplitude A and the precise phase of the switching transient would
normally need to be estimated online. The basic idea is to minimize error in the &-
step prediction of the baseband signal with respect to switching-time phase, carrier
amplitude, and perhaps even the information sequence. The number k of steps in
the prediction is determined by the amount of processing delay in the instantaneous
carrier estimator, and 7,(t) = ¢t — k. The mean square of the difference z; — z(t) is
minimized with respect to these parameters.

The multipath parameters are estimated as follows. The simulated transmis-
sion Z; is passed through a simulated channel

A(alrp(0)], Aelrp(0)]) = 1+ Ge[rp()] ™17 (8)

to produce a synthetic version of the received signal
§o = H{G(r(0)], el rpl0)])Ze (?)
The channel parameters &, and i, are adaptively adjusted to follow the multipath
gain a; and delay n¢. They also must be predicted ahead of the processing delay. An

attractive criterion for minimization hereis  the difference between the synthetic
signal y, and the received signal y(¢).
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4. Description of Simulation

| SR .

e A demodulator turns the equalizer output into a symbol stream =-1
e The symbol stream drives a simulated transmitter
o The synthesized transmitter signal is fed to the latest channel model u:
¢ The echoes from the channel model output are subtracted from the incoming E

received signal to produce the equalizer output. '_':4';

Note that the subtraction time, demodulation time, synthesis time, and channel-
model time must all add up to less than the multipath delay. Thus, the throughput
of the whole chain should be on the order of a nanosecond, and must therefore be
implemented in analog form (e.g. optical) in VLSI. The signal-format estimation and
channel modeling proceed in parallel at slower rates. The signal format presumably
is close to constant. The channel model changes at the rate atmospheric changes
take place, which is sufficiently slow that digital computations can be considered.

Clearly, if the signal comes in recordable bursts, the delay from received signal
to cancellor signal is no longer critical, and the multipath cancellation can be carried

out offline.

fis
b 64

...........

F \.'l..'-."'. \“";' L . X SO - ; \" LSRN )

k"J'L %4 j‘\_,-“){(-;'i'. ..... ‘-'\"‘“""‘\;- o AN "5 -
WRREREVR RS 1 \ S ~ -\

e AT Lxch_x.‘ A }L d._(.h-Q«"..“,fxl‘-un}r:‘r.uﬂ ‘;\ )




Received signal
|
l
I\
| ¢ [¢~ee=e= Estimated Echoes
\/
(
|=====> Equalized Signal
|
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| Demodulator |

|
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l
| Syathesizer |

.| Secosdary patis sodel |

|
|seeanccas) Estimated Echoes

Fig. 1 — Block diagram of the proposed equalizer.
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1. INTRODUCTION AR

=l

The need to estimate and process nonstationary signals arises in many T?ﬂ
applications. The nonstationary nature of the signals may be caused by the =T
motion of the signal source or the receiver (e.g., in radar or sonar fff
problems), by the properties of the medium in which the signal propagates, or 2

by other physical phenomena. O0ften the signals are inherently nonstationary
such as in the case of a modulated carrier in a voice communication system.

A commonly encountered type of nonstationary process consists of a
narrowband or sinusoidal signal with a time-varying center frequency and
(possibly stationary) measurement noise. Examples include: the radar return
from an accelerating target, a frequency modulated carrier, and a variety of
acoustic signals.

Much of the work on the estimation and modeling of noisy signals is based
on the assumption that the signals may be considered to be stationary over the
observation interval. Relatively little work has been done to take explicitly
into account the effects of nonstationarity. A promising approach to this
problem, which was recently explored by several authors, is to use time-
varying parametric models to represent nonstationary signals. Linear models
of the autoregressive (AR) and autoregressive moving average (ARMA) types were
considered in [1]-[4]. The parameters of these models are assumed to be time-
varying, and the functional dependence on time is assumed to be known up to a
finite (preferably small) number of parameters.

In this paper we apply the time-varying parametric modeling approach to
the class of nonstationary signals discussed above. The parametric model used
is described in section 2. It is shown that the roots of the time-varying AR
polynomial, evaluated at a particular time point, contain {nformation about )
the instantaneous frequency of the signal, in a manner similar to that of the e
stationary case. In section 3 we briefly summarize an algorithm for "_
estimating the time-varying AR parameters, which is similar to the modified
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Yule-Walker (MYW) method ([5]. Some examples illustrating the behavior of the 5
algorithm are presented in section 4. e

=
In the stationary case the MYW eguations provide an efficient (both in y

the statistical and the computational sense) technique for estimating the AR
parameters of narrowband processes. The structural similarity of the MYW -
equations in the stationary and nonstationary cases may lead one to believe :“
that the accuracy aspects of the resulting estimates will also be similar.
Unfortunately this is not the case. In the nonstationary case, estimation y
accuracy is degraded by the presence of noise much more than in the stationary i
case. The reasons for this behavior are briefly discussed in section 3. :.‘1
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:fﬁt 2. THE TIME-VARYING AUTOREGRESSIVE MODEL

A

:*i= We will say that a zero-mean process x(t) is a time-varying

{;is autoregressive (TYAR) process of order p, if x(t) obey the recursion

{ \: p

‘ x(t) = - 7 ai(t-i)x(t-i) + e(t) (1)
- 1=0

&f%ﬁ where e(t) is a stationary white noise process with zero-mean and variance
{:_ . 2

™

g . The time-varying parameters {ai(t),isl....,p} are assumed to be linear
combinations of a set of basis time functions {fk(t).kso,...,m} .

ig
e a (t) = ° a, f (). (2)

— The TYAR model i{s, therefore, completely specified by a set of constant
g parameters (a,,, l1¢<ic<cp, 0<ckcm; 02} .

The choice of the basis functions fk(t) is an important part of the
modeling process. A convenient choice which will be made here is

pie- t.k
e fi(t) = (1) » (3)
". &
gf&‘ where T is a normalizing constant, equal to the number of data points in the
“{,ﬁ observation interval. This basis set is by no means the best one. Further
W%;Q work is needed to develop a systematic procedure for designing optimal basis
ﬂét& functions for specific classes of nonstationary signals.
"v; By amalogy to constant parameter AR models we can associate a spectral
' 2; function with the autoregressive parameters. Let us define
" ,s“:
N

2t s, lwit) 8 Z/laz 02, zmelv (4)
;f' where
i Alz;t) & 1+a1(t-l)z°1+...+ap(t-p)z'p : (5)
N
Jfﬁ The roots of the polynomial A(z;t) can be evaluted for any given time point.
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The trajectories of these roots provide useful information about the
characteristics of the signal being modeled.

To gain some insight into the properties of the TVAR model consider the
simple case of a sinusoidal signal with 1inearly time varying frequency,

x(t) = sin 2n(fgratit , (6)

where f0 is the initial frequency, and a is the frequency rate of change.
The instantaneous frequency of this signal is given by,

fi(t) = fo + 2at . (7)

Using simple trigonometric fdentities it can be shown that x(t) obeys
precisely the following recursion,

x(t) + bl(tol)x(t-l) + b,(t-2)x(t-2) = 0, (82)

where

sin 41(f1(t)+c)

SERAGAGE (8b)

by (t-1) = -

sin Zt(f (t)-a)

bp(t2) = STE7rTFTERTT (8e)

As the parameter o tends to zero, these coefficients tend

to b1 = -2 COS 21f0, b2 = 1, which are the parameters of the AR representation
of a constant frequency sinusofd. More generally, for sufficiently small
values of a we have

by (t-1) = 2c0s 2alfy*alt-1)], by(t-2) = 1. (9)

Thus, the roots of the polynomial A(z;t) will be (approximately) on the unit

circle at angles tZw[fo+a(t-1)] , corresponding to the instantaneous
frequency at time (t-1). Evaluation of the spectral function Sx(u;t) will,
therefore, produce sharp peaks at the instantaneous sinusoidal freauencies.
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This analysis can be generalized to multiple sinusoids as is discussed in

(6]. Sinusoidal signals whose frequencies change as a nonlinear function of
time can also be approximately represented by TVAR models. This is also true
for signals which are not sfnusoidal but have a non-zero instantaneous
bandwidth. As an example consider the “narrowband” AR process with time-
varying center frequency defined by

x(t)-2reos2ef  (t-1)x(t-1)+rx(t-2)me(t) (10)

where r is very close to unity.
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2 3. THE MODIFIED YULE-WALKER ESTIMATOR -
- ~3
b, !
:_\ The practical problem considered here is one in which it is desired to =§
«*\ fit a TVAR model to a finite number of noisy observations of a signal of the ;i«

v
Sty
r I:l

o type discussed above. Let {y(t),t=l,...,T}be the observed process, "
. y(t) = x(t) + n(t) , (11) :
N
;35 where n(t) is a noise process uncorrelated with the signal and x(t) is a TVAR
o process of order p (1). It is straightforward to show that
"y X
S y(t) = - § aeniyie) s v, (12)
RO 1=l
[+
o where
e v(t) = elt) + (1) + | a (t-Din(eet) (13)
o isl
?I% Assuming that ai(t) are given by (2), we can rewrite (12) as
2
¢ y(t) = = 7 Ajz(t-1) + v(t) (14a)
R i=]
i}; where
Y
o ' A
N z (t) = (folt),...,Ffp(t))y(t) , (14b)
) ._«:..
».: A '
" ' A1 = tafo,-oc,afm] ’ (14C)
lii or in matrix notation (in the so-called autocorrelation form),
o
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y(t) = - |2'(7) 2 i

( o 0 . [ ] . . p-l :

. . *2'(T) .

2 . . 0 . L
Al * . L] L] ..
- | | _ n ¥
i . |
b Ys ZA+V . (15b) Al
38 :-1
‘§;§ Let Z be a shifted down and extended version of the matrix Z, ol
2
; ' 7

: : q rows
,*:* 0 R

e

. 2'(1) .., 2
7y 7-| Pzl : . (16)
.- s Z'(T) ., " .

0 *e. 2'(T)
, K °

S— ——

N(m+l) Columns

The estimate of the TVAR parameter vector A is computed by solving the set of

28 overdetermined MYW equations
(Z'20A = 7'y, (17)

where T'7 1s a block-toeplitz matrix with N-p blocks of size (m+1)x(m+l).
The estimate A can be written as

Aeozrgtemy, (18)

although in practice we would solve equation (17) without explicit matrix
inversion.
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To evalute the performance of this estimator it is necessary to study the
statistics of the estimation error. It {s straightforward to show that

A-A = [z'ii“z]'lz'ii“v , (estimation error). (19)

In the stationary case (with me1) it can be shown that if v(t) {is finitely
correlated and {f the delay parameter q (cf. (16)) 1s appropriately chosen,
then the error A-R will tend to zero as the number of data points T tends to
infinity. In other words, A in (18) 1s a consistent estimator (73. In Q1]
it is stated that the estimator will also be consistent for certain time-
varying ARMA processes.

The asymptotic error covariance matrix for the MYW estimates was
presented in [8],[9] for the stationary case. No results of this type seem to
be available for the nonstationary case. However, some preliminary work
indicates that in the case of sinusoidal signals with time-varying
frequencies, the estimation error of the MYW method may be large compared to
the best achievable accuracy predicted by the Cramer-Rao bound. A heuristic
explanation of this fact is as follows: for the MYW method to work well in
the presence of noise it is necessary that the correlation function of the
signal decay relatively slowly (cf. [8]). In the nonstationary case the
entries of the matrix [Z'Z] can be interpreted as averaged correlation
coefficients. It can be shown that for sinusoidal signals with time varying
frequencies this “"correlation function" decays very quickly, leading to

inefficient parameter estimates. In other words, the MYW estimator behaves as
if the signal was wideband, whereas the optimal estimator makes full use of
{ts underlying narrowband structure. See (6] for more details.
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4. SOME EXAMPLES

To 11lustrate the behavior of the TVAR parameter estimator we present a
few examples. In all of these examples the polynomial basis function in (3)
was used.

Examgle 1

The signal consists of three sinusoids with linearly time-varying
frequencies

x(t)=sin 2+(0.4-8x10"¢)tesin 2¢(0.15+1073¢)t (201
+ sin 2x(0.1+8x107%¢)¢

The model ordér was p=6, and the polynomial order me3 (total of 24
parameters). The number of data points was T=128 and the signal was
practically noise free (SNR=50 dB). Figure 1 depicts the trajectory of the
angles of the roots of A(z,t). Triangles depict true values and circles are
the TVAR estimates. Note the good fit achieved by the model, except in the
neighborhood of the frequency cross-over points.

Example 2:

Here the signal was a single sinusoid with linearly time-varying
frequency

x(t) = sin 24(0.15 + 10'4t)t (21)

The model order was ps2, the polynomial order was m=l and T=512. White noise
was added to the signal to give a signal-to-noise ratio of 5 d8. The MYW
equations were used with q = N = 4, Figure 2 depicts the result. A good
model fit is observed throughout the observation {interval.
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Example 3: ;2
The TVAR model can be used for signals with non-linearly varying ;
frequencies. In this example we have a single sinusoid with sinusoidally }
varying frequency, ﬁ
)

o

x{(t) = sin 2x(0.25+0.02 sin(0.01t))t . (22) (*

' :§

The model order was p=2, polynomial order ms3, T=512 and SNR = 0 dB. The MYW ;i
equations were used with q=N=8, and the result {s depicted in figure 3. At ;3
this low SNR the model fit {is not very good in some portions of the o
gl

observation interval. o
‘)

From these and many other examples we can make the following
observations: (i) the choice of a model order p equal to or somewhat larger
than twice the number of sinusoids yielded the best results. (1) the choice
of polynomial order m depends on the maximum rate of change of the
frequencies. (111) At low signal-to-noise ratios the estimator performed
poorly, compared to the optimal processor.
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5. CONCLUSIONS

Parametric models with time-varying coefficients provide a powerful
approach to the representation and processing of nonstationary signals. In
particular, the TVAR model was shown to be useful for representing a class of
narrowband signals with time-varying center frequencies. The nonstationary
equivalent of the modified Yule-Walker method was used to estimate the TVAR
parameters. Some problems related to the accuracy of this estimator were
briefly discussed. It 1s suggested that in the nonstationary case the
performance of this estimator may be different than expected from its behavior
in the stationary case.
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Simulation Results for Extensions of the Constant Modulus Algorithm

Julius O. Smith

oy Benjamin Friedlander
‘ Systems Control Technology Ine.
- 1801 Page Mill Rd., Palo Alto CA, 94303
U Abstract
: The Constant-Modulus Algorithm (CMA) computes and applies an adaptive

channel equalizer for constant-amplitude signals such as frequency- and phase-
modulation. The report “Analysis and Extensions of the Constant Modulus Algorithm™’
by the authors describes several extensions to the CMA. Those which are examined

ke via simulations here include: (1) Extension from FIR equalizers to IIR equalizers
“ (poles as well as zeros allowed in the equalizer), and (2) Newton's method replaces
4 gradient descent.

This work was supported by the U.S. Air Force (AFSC), Rome Air
Development Center, under Contract No. F30602-84-C-0016.
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1. Introduction

This is an attachment to the report “Analysis and Extensions of the Constant '-'-‘"
Modulus Algorithm® by the authors (hereafter referred to as the main report). The
purpose here is to provide simulation results for the algorithms studied there. The
results here are highly preliminary. E}

For convenience, let CMA-LC denote the LMS version of the complex CMA
algorithm (gradient descent), and let CMA-RC denote the RLS version (Newton
descent). The simplified real-only versions are denoted CMA-LR and CMA-RR,

respectively.

The loss function minimized by the algorithm is

J(6) =

[T
3| -

T

&) (1)
fam]

where

PPN L .
() = 1 {lz,(ﬂ), m3,, Complex Signals @)

£3(8)— o2, Simplified Real Case

1.1. Gradient Descent versus Newton Descent

The versions CMA-LC and CMA-LR use gradient descent (essentially the LMS
algorithm), and CMA-RC and CMA-RR use the recursive Gauss-Newton method
(RGN). Prior treatments of the CMA have been based exclusively on gradient
descent.

All four algorithms are implemented in their time-recursive forms, that is, they
attempt to minimize J(0) with respect the & recursively in time as T increases.

The LMS version is
Bt = 8y — pJ"(6s-1) (3)

90
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where J'(ig_ 1) is the gradient estimate of J (5) with respect to 8 at time ¢, evaluated
at & == 8¢, and u is s step-size parameter which is set by the user.

The RGN version is given by
By = Bgmy = J"(Be—1 )" T (60—1) (4)
where J”(0) is the Hessian, or second-derivative matrix of J(#) with respect to 4.
Before proceeding to the examples, we summarize the signal model and aigo-

rithm from the main report.

1.2. The Signal Model

Let y; denote the reccived signal for t = 1,2,...,T. In the complex case, y; is )
assumed to be of the form ' :

9t = Huyld)zs + Huyld)ue + Hapldn )
where -
p—— ©) %

is the transmitted signal (¢ is the real-valued information-bearing signal), v is
additive noise, u; is an interference signal (assumed at least partially known), and
Hgy(d) and Hyy(d) are the linear time-invariant channel filters associated with z,
and u; respectively: -
Cld)
A(d) o
B(d)
Hyy(d) & —
I'( )A A(d)
A(d) 8 a0 +01d + azd® + - - - + ap d™* @
Bd) 8  bid+bad® +--- + by, d™

Cd)R1+cd+cad® + .- +cp,d™

Hey(d) &



where {a;, b;,¢;} are real. The unit-delay operator d is defined by the relation

« Ze A Tt=n (8)

for an arbitrary signal z;. We assume the modulus m; of the transmitted signal z,
is known for all ¢.

In the case of real signals, the transmitted signal is assumed to be of the form
z¢ == my cos(pt) (9)
and u; and v; are real interference and additive noise, respectively. We also assume

Pt == We + Ui where
A

| < we (10)
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1.3. Algorithm Summary

Below, the notation &[s] denotes the ith element of the vector é.

vi=y- byl - - é.-;[n;-]y{_,.,

¢l = lﬂh Ytei1)- -y Yte=ng) —Yt=y,..., -“l-'l‘v =Zpelyooey “zl-n.]r

¢{ = [y{r!’tj—n ceen y{-n.v -u{-lv ceey ""{—np -r{—h ceey -r{-m]r

A

=l
Re{z:#;}, Complex Signals

& = gl2:2}) = {

#:#,, Simplified Real Case

. |13
. $i(0)| —m3,, Complex Signals
é,(a)=.l.{lz‘( )l. m mplex Sign
£7(0) - o3,, Simplified Real Case
{ #, LMS version (Gradient descent)
Ry =

MR-y + &7, RML version (Newton descent)

)‘,=&<1
Wy

6 A [a.[o], def1],...,delmal, bel1], .. ., Belngl, &1, . . ., Eelna) T
By = 8oy — Ry Héy

Ci(2) = Proj{Ci(2)}
2 = 0,

=z —aflfz], ~ = bfny)2]

uf = up=eiftjul_, = = &fnelul_,,
i =g —agle]_, — - = ifng)2]_,,
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2. Series 1 — First-Order FIR Equalizer

In this series of examples, the channel is described by

1
Hold) = o (12
and the channel input is given by
2 = m ® (13)

fort=0,1,2,...,T-1.

The CMA estimates a9 and a,. As shown in the main report, in this case the
CMA is guaranteed to converge with probability one to the true solution [ao, a;]

s long as at least two parameters are estimated and the phase modulation ¢, is
sufficiently rich.

2.1. Example 1-1 — Sinsusoidal FM, No Noise

The specific values used in this example are

Pt = Wel + T sin wyy
T = 2048
go=1
a; = —(0.99

my ==0.1
B = 2.375

wm = 270.10

We == 270.11
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Figure 1a shows the channe! input signal z;, and Fig. 1b shows the channel
output signal y;. The amplitude modulation due to the channel filtering is quite
visible.

Figure 2a shows the angle modulation waveform, and Figure 2b shows the
post-detection version, obtained by demodulating y¢ = Hay(d)z; to obtain ,.
Figure 3 gives the spectra of the curves in Fig. 2. The demodulated signals have
some artificial discontinuities due to wrap-around.

Figure 4a shows a close-up of the inverted normalized loss function

T
1B == Y (1 - m3]? (14
tam]
where
2y = doyy + A1 Y1 (13)

and do = 1. The peak is zero at 4; = —0.99, indicating a lack of bias in the
solution. Note, however, that the vertical axis covers only a small range (near
the machine accuracy limit); thus, the error surface is quite flat near the solution,
indicating a large asymptotic variance is expected in the estimate of 4,. This point
is clearer in Fig. 4b which displays the inverted loss function over a wider range of
;.

Figure 5a shows a close-up of the inverted normalized loss function (14) where
this time 3; = —0.99 and ao is varied. T.e peak is zero at Go = 1 as it must be.
Aguin, however, the error surface is very flat. Figure 5b shows a view from “farther
back.”

A very flat loss function means that both the gradient J' and Hessian J”
are close to zero. This means trouble for RGN which attempts to move in the
direction [J”]~!J'. Newton's method is well-known to be unstable where the
curvature vanishes. Root finders, for example, typically test for this condition and

take countermeasures when necessary. In our case, a reasonable modification is to
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add s small constant times the identity matrix to the Hessian estimate. This is
sccomplished at initialization of the algorithm.

Since the third derivative vanishes for an even function, and since a fourth-order
Taylor series exactly represents the loss function (14), a descent method based on
the fourth-derivative matrix (or tensor) would be expected to converge very rapidly.

Figure 6 is a 3D plot of the inverted error surface (14) versus do and a,. Figure
7 shows the same plot from & different angle. Note how flat the surface is near the
middle. There almost appears to be a ring of equal cost. However, we know from
- analysis that there are only two local maxima in this function.

The LMS CMA
= First we will run the standard LMS version of the CMA to establish a base for
comparison. We found empirically that g4 == 100 was s good setting. Smaller g

gave slower convergence (by decreasing the slope magnitude of the essentially linear
dy trajectory). Larger s was avoided because the estimate is already starting to

oscillate.
}‘\}\ The initial conditions for this and all later examples are o = 1,4, = 0. All
AN other initial state, when required is initialized to zero unless otherwise stated.
e

- _:: Figure 8 shows the estimate of 4, produced by CMA-LC for this example.

;T'jzf:j Figure 9a shows only the first 300 samples of the parameter trajectory CMA-LC

’ so that the details of the received signal y; (Fig. 9b) and the modulus error [|z,[3 -

}; m3]/2 (Fig. 9¢c) can be seen in relationship to the 4, trajectory. The final value of
= d, at sample 2048 is @, == —0.9892 which is very close to the correct value = ~0.99.

2 Figure 10 shows the estimate of 4, for the real-signal aigorithm CMA-LR, and
; Figure 11 gives the close-up view. We see that the asymptotic convergence is very
o slow. In this case, there is no theoretical assurance that the true solution is obtained
) asymptotically.




The RGN CMA

Figure 12 shows the estimate of 4, produced by CMA-RC for this example.
Figure 13a shows only the first 300 samples of the parameter trajectory for CMA-
RC so that the details of the received signal y, (Fig. 13b) and the modulus error
[12¢]2 — m3]/2 (Fig. 13¢) can be seen in relationship to the &, trajectory. The
parameter &, converges almost immediately to a constant (¢, = —0.9929), and the
modulus error rapidly approaches s constant near 0.175. While é¢, = —0.0929 is
close to = —0.99, it is not as close as we expect. Since we know there can be no
biss, it is clear that the CMA-RC algorithm is incorrectly implemented. That is,
we have a “bug” in the simulations program. Unfortunately, time was not available
to track it down. Aside from the bias, note the extremely rapid convergence as
compared with the LMS version.

Figure 14 shows the estimate of 4, for the real-signal algorithm CMA-RR, and
Figure 15 gives the close-up view.

2.2. Example 1-2 — Noise FM, No Noise

This example is the same as example 1.1 in every respect except for the modula-
tion signal which is now
e = Hy(d)e: (16)
where ¢; is unit-variance white Gaussian noise, and Hj(d) is a 6th order elliptic
function lowpass filter with cut-off at one-twentieth the sampling rate (a tenth-band
filter). The remaining figures are exactly analogous to example 1.1.

3. Conclusions

The LMS version of the CMA seems to be working in both the complex and
the real-signal cases. The RML version of the CMA seems to be possibly correct
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a) Angle modulation waveform

b) Demodulation of channel-distorted signal
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