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1. INTRODUCTION AND SUMMARY

This report summwarizes the work performed on the "Time Domain Algorithms"

project, under contract No. F30602-84-C-0016. The objective of this research

was to address sore of the issues related to the non-stationary, time-varying

nature of signals propagating through a communications channel.

Many communications signals (such as frequency modulation and phase
modulation formats) are characterized by a constant modulus property. The

*propagation of these signals through the communication channel introduces

various types of "distortions" due to muiltipath, fading and similar effects.

These distortions tend to destroy the constant modulus properties of the
*signal. Recently, an adaptive processing technique was developed which has

the capability of correcting the effects of the channel and restoring the
constant modulus property of the signal. This technique has been shown to be

* very useful in commtunications applications. We have analyzed this important

processing technique and developed some useful extensions.

In Appendix A we prove global convergence of the Constant-Modulus

Algorithm (CMA) for the case of a real channel when the model order is equal

to or greater than that of the channel (the so-called "model-complete"

case). The analysis is based on an exact fourth-order Taylor series
representation for the cost function minimized asymptotically by the CMA.

A In Appendix B we present several extensions to the CMA including IIR
equalization, a real-signal version having properties as good as the complex
version, use of the Gauss-Newton method in place of gradient descent,

interference rejection, and more. Some preliminary simulation results are

presented in Appendix F.

The processing and estimation of signals propagating through time-varying
channels requires time-varying filter structures. While the area of time-
invariant digital filters is well developed, relatively little fundamental

work is available on the time-varying case. We investigated some of the basic
questions related to time-varying digital filtering and were able to derive a
novel filter structure for such applications.



In Appendix C we derive the set of finite-order, linear, time-invariant

filters by sampling lossless propagation through a variable-impedance

medium. This leads to a flexible class of time-varying filter structures,

termed "Waveguide Filters" (WIGF) in which signal power is decoupled from

changes in the filter parameters. These structures are "balanced" in the

sense that the decoupling between signal power and time-varying filter

coefficients is maintained for each individual section in the structure. in

addition, limit cycles and overflow oscillations are suppressed, even in the

time-varying case, when implemented with "passive" arithmetic. Finally, the

WGF structures can be interconnected in series or in parallel in a way which

does not disturb the signal/coefficient decoupling or the power balance.

Thus,the waveguide filters are very useful for modeling physical systems, and

the exactness of their physical interpretation enhances their suitability for

the time-varying case. All results are obtained for the multi-input/multi-

output case.

Another topic which was briefly investigated during this study was the

adaptive equalization of rapidly time-varying multipath channels. Due to time

limitations only a conceptual study of this topic was possible. In Appendix 0

we describe on adaptive equalizer for eliminating distortion due to multipath

propagation in high-speed digital radio systems. The equalizer is aimed at

the case of very fast channel fluctuation, where "fast" is defined relative to

the impulse-response duration of the inverse of the instantaneous multipath

transfer function. The method is of the decision-feedback type where the

demodulated symbols are used to construct an estimate of multipath-induced

intersymbol interference. The reconstructed baseband waveform is then delayed

and weighted according to the current multipath parameters, and this simulated

echo is subtracted from the incoming baseband waveform. The distinguishing

feature of our approach is that an explicit model of multipath parameters

replaces the tranvsersal equalizer studied previously.

An important counterpart of the filter design prolem is the problelm of

modeling non-stationary signals. In Appendix E we consider the problem of

estimating sinusoidal or narrowband signals with a time-varying center

frequency. The signal parameters are estimated by fitting an autoregressive

model with time-varying coefficients to the data. The overdetermined modified
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Yule-Walker equations are used to estimate a set of constant model

parameters. Some numerical examples Illustrating the behavior of the

estimator are presented, and its accuracy aspects are briefly discussed. This

particular study was performed only in small part under the current contract,

but was included for completeness.

The work described here represents an important step towards

accomplishing the difficult tasks of modeling and estimation of complex non-

stationary signals. Further research is needed into the fundamental

properties of time-varying processes and Into the development of digital

signal processing techniques for handling such processes.
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Global Convergence of the Constant Modulus Algorithm

.. Julius 0. Smith

System Control Technology Inc.
1801 Par M Rd., Pa• .sto CA. 94303

Thispaperpoe gobal convergene o the Coauat-Modulas real-valued information-beaing signal), u is additive white
.Mlgorithm (CMA) for the cm oa real channel when the mode noise at the channel input. no is an interference signal
order is equal to or Sreacr than that of the channel (the so. *template (,suned known), and H.,jd) and H,(d) ae
called "model-complet" camel. The analysis is based eas exact the unknown linear time-invariant channel filters associated
fourth-order Taylor series represemaLio for the can function with zo and ut respectively:
minimized asymptotcally by the C(A&

The CMA [3.,5.7,8! adaptively equalizes coostant-mod- ae -otd + 2d2 +... + a,.d* 1

alus communications signals such as frequency-modulaion d + l5d2 + - .-4 .
(FM) and phase-modulation (PM) formats. The CMA adap. C(d) _A I + cd + c2d + c..,
tively minimizes a measure of the amplitude-eswer pe dis-
tortion. such as that caused by multipath propagation. us. where {,, 6,, ci) are real. The unit-delsy operator d is
ing some form of gradient deseent (23.4.9.111. The amplitude deined by diz, = z,_. for an arbitrary signal so We
distortion measure is typically a weighted time-average of amume the modulus m, - JzoJ is either constant or known
an error of the form if (1-m,). where ., is the for all t.
modulus of the equalized output signal as time t. By chang- In the 'real-only ease, the transmitted signal is assumed

' -'. in the equalizer parameters based on the gradient of this to be of the form o - m., coer), and at and ut are real
error measure at each time sample, the channel-induced interference and additive noise, respectively. We amume
distortions can be eliminated in many situations [3,81. ot = w .+ vt where

This paper examines the convergence behavior of the
CMA based on gradient decet. Three forms of the CMA a w,/ea 4C W c (3)

, -. -, are considered, correponding to three erto measures. The se
Int is the standard CLM for complex data 131, the second so that poitive and negaive frequency component are not

is a novel real-only form (9,111, and the third is the pre- saed together.
emisting real-only form (6.81. These will be referred to as Cia
cases 1.2, and 3. respectively. Various extensions of the
C.MLA, discussed in [9.111 ar incorporated also. The CMA minimizes

Sectuon 2 gives the C.%LA problem formulation, and sec- 1 T

tions 3 and 4 respectively address asymptotic bias and con- J(G; T . -. wge) (4)
ver sce for gradiet-based implementations of the CA.

• ',."-'-"25 Proble Formitlntion "- "• lrwith respect to the equalizer parameter-vector 9. where

Sicnal Model .2

Si l -id onde o the;sa,,. C ae 1: Com plex Signals*- Let Is donate the reeived signal for 1, 2 ...., T. In

the complex c e, ye is assumed to be of the form ,(O) -; { |- ,, Cas 2: Rea Sign:
yo - Hsv(d*g + If.,,d)u, + IIs,,d)v, ) )

This work was supported by the U.S. Air Force (ASC), Rome k f..) - . Case 3: Simplifed Resi
-Air Devejopme Center. under contract no. F3502-84-C-016. (3
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is the instantaneous error for the three camrn being con- Lemma 3 (Blea). For any gradient-based CMA. cases
sdered. and 1 and 2 are locally asymptotically unbiased in the modol-

complete cae, the minimum eror being J(0) m 0. The

:49) (ft-'141r - k- Simplified Real CNFA Icase 3) is generally asymptotically
- "'I " biased.

-(EI) ,I,.4) . Bd) Proot. Ie, ;0) a imD.. pu&J(A T), where 10: T) a
"....A(d) g" given by (4). (The factor of L/2 is introduced to simplify
. ie +a d + is +..+ di. lar expresions.) An unbiased minimizer can be obtainedA(d) do + id + i2 +... + , ,only if J'() -0 . We need to show tha P() = 0 in

+~ b d +b2 + cam I and 2. and that P(,) IA 0 in ce 3. We have

O-d 1(8)d+ 0+

L
Oe [so, . *.,t. bt , ,.... .] where it(i) is given by (5), and &()--(*.k,), where

if i, > so, then d ,..A Ovk > 0. and similarly f o Ref,.iry. Case I
, In I the real) case : and 3. the modulus ma,, is re- J+;

placed by the root-mean-suare e, (Jusumed coastmnt or g~lk) I ,a
known). The sequence we provide a non-negative weight I.4
function; typically. Wl/ io. MX M constant for a fixed ex- i,Y, Cae 3
ponential decay of put data influience. The sigals it, yt, at
are complex in ase 1. and real in cases 2m nd 3. while the and
equalizer parameters ii, i, and , ar real in every cewe.

Cue 2 sums the 'instantaneous error' it over the 'ins- , l , = d )

tantaneous period' Pt. This er definition for the real. i, W Y Ft-i.... , (10)
signal case i essentially the same as the complex-sipal - "
ewee it the maginary part is constructed at the receiver by
delaying the real pert one quarter of the instantaneous per- Note that g i a linear opermar.
id. Measurement of the instantaneous period is feasible as

long as 3) holds. We assume that the sum ofsignal sample Now., J () - 0 iflr E.ftbg u) 0. ic cases I and
q :from time t t t - P + I is exactly ero: in practice, one . iOO) 0 - P(Nei 0.

may wish to interpolate kt to achieve this j131.  In case 3, we have
sCe 3 is the previously studied real-only algorithm [6.81,

and here it is viewed as an approximation to cue 2. The (at) =- ( )-"h,;t 0
simplification introduces asymptotic bias and a changed
asymptotic parameter variance. The next section conains n

- . formulas which can be used to compute the asymptotic bias
and variance (the variance being inversely proportional to It sufflen to show J(eo) 0 0 for constaat 'ts, -d 6,
the cnrvaure of the error surface at the minimum point no interference, and degenerate channel to - . In this

, [4j1. case, yj - zj - ms cos(), m2  = /2es, and , =
zt. The error-surface gradient is then I'(%o; - -

3. As mptotic Bias 4,fi . Setting ms - 1 and ot =, jt, we And .4 -
Defnnition 1. The weighted time-average ecpos 2tation (s2tet) - 1/2 while Z4 = - l?. cos%(S) = 3/8 ;A

operator is defined by , - (1/212. Thus, case 3 necessarily yields a biased
solution under gradient decent.

-Lu. a u .n tlg (7) 4. Asvmptotic Convergence

Definition 4. An n-dimensional matrix R of order a
where we is a died non-negative weight function. is defined as any scalar function over a set of rn-tuples

Debdtlon 2. The model-Iomplete casn of the CMNA R ~it, 2.... imj where esch index ii ranges from I to n.
is defined s the case i, > a.. A6 Ac , me , and j as 1.2. m. Such a matrix will be called an (m. nI
:t, a 0. That is. the model coefficients can be set to exactly matrix.
represent the true channel and interference given yo and u,. DinItIon 5. The j-pruc of an in. i) marix R time

a (1, )-matrix : (n-vector) is defined as the Im- L-

-. -I "



matri and define gj •) as in (g). Expanding 1(i) in a Taylor series
about 9 gives (exactly)

'3-'~~ 1(9 J(' + it, g2(k.i ) +
- 4

Deflnitios S. An (m, a) matrix R is said to be s . 2nji• + 1 z2)
pier it its jprpduct with any nonzero )-vector is nonzero 2

for l j, i.e.. RJz i = 0 for some j impiesz0. and

DefiItion 7. A signal It is said to be persitently

estiting (PE) 01 order (In, ns) if the (m,. nj-matrix 40 - tA 1 1( 1 + hergitt)1

R, -4 rlit-it ,,, ij a .. (131 I . ..

is aousingular. This definition can be regarded as apply- + -tg( )gfi.~o¢) (18)
in. to the received realization vs of an underlying random 2
process. Normally we expect such a random process to be + ( ~ 'd ~ f~
PE with probability one (wpl). Note also that the weight- 2 #

ing we used in the time-averaging operator Ccam + eu&e9'iecjewhether yj is PE. + rg 'W(")pr 0

Delaitlos 8. A signal y is said to be persistetly
e-iting of order (4, is I mid, reepct to thecaerfunctiong Consider first cases I and 2. Without los of generality we

te(n- xca s - g in (18). This gives immediately J'(99) -

. j I (ld 1 -- 4) -P(01 - 0. Thus we have found three stationary
R li. j, k. lI = ¢-i~#-)git-. #-) (14) points for cases I and 2. We now show that these are the

only stationary points. The Ith row of equation (18) with
[.- is nonigulsr. '" set to $4 (valid for cases I and 2 only) can be rewritten

-Definition S. A convergent gradient descent algorithm -I " .Dt ,k ~(g
is say iterative algorithm for i (of the form ii.-, )i'Tk i, j, k, If (101

(21 which converges to either a stationary point 9' of the - - -
error surface J(O) (in which cae 'CN ) - 0), or to a point where a, - (9 + fe)(i3, Ji & j, sad ' - ( - 9 0j[ki.

on the constraint boundary for i (if ay). Normally this The (4, A.)-matrix RF4ij, k, 4 g( ,. )g(,_.j,_a)
property is obtained by using a diminishing non-summable can be interpreted as a type of four-dimensional covariance
step-size (such as Ilk) in the gradient descent iteration [41. matrix. NVe see that a suffcient condition for the three

Theorem 10 (Global convergence). In the model- solutions GE (0.90, -e}I to be the only solutions is to have
complete case, y, persistently exciting of order (4. .) with My be nonsingular. But this holds whenever yj is persi-
respect to I (f ()) wpL, no interference, Ab = n = 0, tangly exciting of order (4..) with respect to j. Hence.
then say unconstrained convergent gradient desent CMA 0,1o, sad -00 are the only stationary points in ces 1 and
will converge with probability one to 2 with probability one.

j. .as It remains to be shown that 09m is an wasiable station-
S -. " .. *... .01? (1 ary point, while 9 - are etahie stationary points for

in calms I sad 2. for any nonzero initial parameter vector the gradient. A stationary point i" is stable if the matrix
-01 r 0. JW() is positive definite, and unstable if J(i *) is negative

Pvoot, The stationary points of a gradient descent a definite [21. It is straightforward to show that

gorithm occur at points 9 where the gradient 1'1() is zero. 0-L (,..'.... J-(o) - -J*(±oo,)/'2 ) '
The int goal is to fnd al such points.

"- '"Let i denote any loca rninimizr of the coat fuuctior,
Let9denote lcThat is. the curvature of the error surface at - 0 is equal

1(&) given by equation (8). By definition, J(i) - 0. By to -1/2 the curvature at 0 - 9o, sad the curvature at
lema 3, $'- i* is one such minimizer. Let -$e equals that at Se. It is always true that JO(OO) > 0

(see the third term in (17)), sad It persistently exciting of
order (4, A.) with respect to g implies Jf( o) > 0 (positive

iq.;t(t -*) - (18p definite).
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Thus JO(0) < 0. making 9 0 an unstable stationary unbiased versions of the CMA can only converge to plus or
point. fIn al current forms of the CMA. can never be minus the true solution in the model-complete ee.
allowed to equal zero, for this will in fact *freese a gradient
descent algorithm.) ["K. J. .4strom and?. Soderstrom. 'Uniqueness of the

The two remaining solutions no *0, are stable station- ~ Mximum Likelihood Estimaes of the Parameters of an
ary points. .J1(-a) - JI(D.) > 0j. Under the assumed RMA Model," JEXZ Tran.. Astonu. Consr.. vo. AC-
conditions, * - are the oly stable stationary points 19, No. 6. pp. 78-,73. Dec. 1974.
of the complex or the real CMA (cans I and 2). Since (21 P... & Mi, W. Mumy, .ad .L I. Wright. Practical
in practice H/yjd) is divided through by 6e, the sip am- OpiniZ6,6,ti, AlCemic Press. New York. 1081.
biguity in " becomes a sign ambiguity in fte,(d); a sign (31 J. R. Taicbler and EL C. Age. -A New Approach to

change in a signal is normally negligible. It is interesting Multipath Correction o(Constant Modulus Siaals." IEEE
Tras.. so .Acoust.. Speech. and SiuoJl Frae., vol. .4SSP-to note that this sign ambiguity corresponds to the phase 3, pp. 430-472. April 1083.

ambiguity in the complex-channel case [31. 1 I and . L Sodetrom. Thesy nd Prneuc

Further Frteionn o.f Recursive Identil.A. MIT Press. Cambridge MA.~1983.
Theorem 10 immediately extends to the ease which in- 11 M. G. Larimois and J. R. Treichier. 'Convergeace Behavior

eludes interference canceling (fi nb > 0). Simila global of the Coestant Modules Algtwithm." ICASSP.S: Proc.
convergence results may hold for the model-complete eases IEEE Cnf. on MAcouac, Speech, and Si saI Prseeoinq,
in which ni > 0: for example, the techniques in [I might Paper 1.4. Bosto ,MA. Mamh 19-21, 1984.
go through. It has been shown 121 that either noise (vt pi (61 J. R.- Troichler and X G. Larimare. *A Resi-Ar-ithmetic "
0) or model-incomplete interference ( H., 9 14, Vi) will Implementation o the Constant Mod uls Algorihm.'

catuse bias in the parameters. For eae 3. theorem 10 c be ICASSP84." Pree. IEE Coal. a Aeousties. Speech. and

extended to prove global convergence to a biased solution S04. Peee ug, Paper 3.2. San Diego CA. Marh 10-21. j10 8 4 . ."
in which the bias can be simply approximated an in [6I. [71 R... Treichler. ".lgorithms that Restore Signal Proper-

Convergence results for specite algorithms can be ob- ties,' ICASSP44: Pen. IE.E Co. m .4gcostiea.
rained using the analytical approach described in [i[. In Speech, and Sigasl Prvces ing, Paper 21.4. San Diego CA.
the model incomplete ewe, the general model (a) should Mach 19-21. 1984.

converge to a local minimum of the error surface J(8); the (31 J. R. Meichler and M. G. Larimore, 'New Proeming
number of sub-optimal local minim can be large in the Thebniqu Bamed ou the Conta Modulus Adapive Alga-
model-incomplete case. rikhm" to appear.

We expect that if yt - Ks,(d)meiu1 and Ot is randomly (91 J.0. Smith and B. Friedlander. Aaalyss ad - xte-ions
distributed with almost any non-discrete distribution, then o the Constant Modulus .Ugorihm." Tech. Rep. 6502.01.
Rl will be nonsiagular with probability one for any number Systems Content Tech. Oct. 1064.
ai of parameters. It seems, however, that for good numeri- (101 J. 0. Smith and B. Friedlander. 'Simalation Results for
cai conditioning, further restrictions are necessary on the Extesious of the Consum Modulus Ajgorkhm. Tech.
modulating signal For example, it might be appropriate Re(1 . 60. -02. Systems Control Tech, Oct. 1a4. -."
to require go to posses at least i distinct frequencies of( I[I 1.0.Smithan .Fre r, "xensious oftheConstant
high spectral power, analogous to the situation in leat- Modulus AIcritham" Asilomar, Nov. 1084.
squares system identification (41. Further work is necesary (11 J. I. Trehler, 'Captlre Properties othe Comstt Mode-
to specify precisely the modulation characteristics which Ins Algorithm," Asiiomar, Nov. 1084.
maximize the equalization accuracy. (131 J.0. Smith and 9. Frietlnder, "Adaptive Interpolated

TimeDelay Estimtiom," Asilomar. 1983. runl Version to
The error minimized in the model-complete cme is ex. appear in the EZE Tras... Ar..opa e, may ss. '

actly described by a fourth-order Taylor series (cf. equation
(17)). A fourth-order type of g-adient-descet algorithm.
analogous to Newton's method for least squares problems,
should yield the fastest-converging algorithms. To this end,
note that all solutions to the ensuing third-order 'vector
polynomial* for the gradient can be expressed in closed
forn.

Some convergence properties of the Constant Modulus
Algorithm ICMA) for channel equalization were described.
Subject to mild restrictions on the modulation signal. the
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Etam=ions of the Consncai Modulus Algorithm

Julius 0. Smith
Bejamin Friedlander

Systmso Coms4 Tebaaelea In.
1=1 PAW1e il1 Rd.- Palo Ake CA. 043=3

Akan= error deinitio which s equivalent to the tmplex
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the polynomial C~d) in the channel transfer function HSTJd) sense, then the only parameters which locally minzmmar
for modeling FIR diurtion type. J1 ( r) anE * A (where 41 is extended with zewm to

In te cse f rel ipas. e tamiastd spal ~. the six* of j it necessary). This is valuable to know since
naiadto be ofth(Oarta s = Y, a**, sad a# ad uare it Uemin thS" the oiy minismera of ji(i; n a' global
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where P ws the 'inuntaeou peral at o. and isJS~ (5)
asftd the 'isantaneou power, o* at versp power"

ata. o implicity. we lsar we eult n1) h
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where and m(9') are uncorreiated. the Hasia can be closey ap-
jg? promimaz.d by Z:, 4,, The C et.(31 method Ls

deined accordinlty as follows. Gives an initial parameter

While this is mop obviouly a appropriate error cuiterion "nmam 4. carry out the following iteration gu conver-
for wo-csua sCus c, is an bes hown 1111 thai (9) has Iee., is achieved:
asymnpto propetes Very similar to thse or (71. lati-
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3. The ilirithtm elia-anm the med tor second-order differe.tiatoa-the N
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Prior tresaessof the CA have bee based on pd- matix Ri;; T) is more likely -O be positive de*aite &cd
es dues (4.7.4,.121. Gradies damos can be sen am invertible th is JP(i. 2) (31.

v a linearizatioa method, while News doent us'. eack
* - ~iteatiuon to the botom of & quadraid. local apoiue. Exact Recurive GN Codatin

In Newtn dsceas. close to the m mm poin C .oever.
pace is quadraftc whil Vzdies damas env"eqa nearly Tb. Gaaass.Newioo 3anuhm (131 can made retursivo.
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mamma~ eUmin the HNa is alseo, now coomider only one pass through the r data points.

The Q Newtos meod in a tubas a Therefore. the pasaouniber i in 113) is dropped for lot

w.hme alith w4b s PA isl deuced So. and the Snal atimiate - obtained u

Wins. we dive the Gaas.Newos method a applied to the the ed of pas i mow be m 1" i:
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where wt is a non-ooepsave mAi-valued weighting renction. ON 7- 4 + i"olao
and here X Ui.i/t is lnown as the "forpt:zng factor.'

* -, Typicaly Xhf is Seed betweea 0 ad I to obtain a lIed tx-
-- C. an I- 'mpiu Sha penuil fading of pas ob ervastoas (with aa approximate

L, time cmss of 1/1(1- ) samplm. It can be shown 5(
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data into more than *o *ach.' The Ara bach coosits [n anl cast.
of data tup thmoegh tURS .1,and it. iSed to Produce the
agr-it,. noe second batch begms at time I -P . and it
tomiasiud to the simass produced by the Am batch. *jpet
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truly tunMifUwe argstkh whib 3" =o maavl (acluip 0.06 repeatedly autl All rot ane inside- This
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demodulated sga in a *dwwdhdtd* mode. CMPC4 * uia; hit-. the Im5 ocurence Of : in

Recursive Gamw.Newton MGM4 -;j depends also an #I,. It bas bee observed to ?be
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Sy susag -ebock ss P t I Ioring %to 1) the aneelraed byreeompaung .61usEig t before -sinattn
BRGN reduca t he reurs.,e G..ea..,Vewim. a.ihd (RGN) the Mrtin (fo4.

wtzh to somewh.at of a standard method for A4A X sfli- ~ h !mn
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its. the replacement of ieo by eves the am Mooedty avatil. k e, ~ m
Wae panmser intimate itI,. doe a Alter the asymptosac
convnce Properie of the Gaao.News Method. 2 kd j-F Ci.LCope Spl

'To salo G.N. SiGN, or RGN to a specdc application.
the ismasno error it and ia gradient &4 with rupectA

to ~ ~ ~ ~ ~ ~ ~ ~ ~ j vhe .1rcnl opsdp~5 9~~g Case 2- Real Silpais

to ( t -vw SIN Moodyr* CasnIC~ :Z U 3Nple Boeaed I Re4.4 ~,case l: Complex S-igols
The '!ans@eou sdioe of it with rmpeg" to i s P-

ame bV iA i) A 0.414) Whkre M .r k..., Case 2: Real sigma~

Re~hky). Cas I: Complexsio Ic,, CAse 3: Simplilled Real

.4~~ ~ ~ k..,, Case 2: Real, Signalis R,mi%#R1- 1 + oe .lf-It <
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Waveguide Digital Filters

Julius 0. Smith

Benjamin Friedlander

Systems Control Technology, Inc.

1801 Page Mill Road
Palo Alto, California, 94303

Abstract

The set of finite-order, linear, time-invariant filters is derived by sampling losaless

propagation through a variable-impedance medium. This leads to a flexible class of Cime-

varying filter structures, termed 'Waveguide Filters" (WGF) in which signal power is

decoupled from changes in the filter parameters. These structures are "balanced" in

i the sense that the decoupling between signal power and time-varying fiter coefficients

is maintained for each individual section in the structure. In addition, limit cycles and

overflow oscillations are suppressed, even in the time-varying case, when implemented with
"passive" arithmetic. We describe also a method for enforcing exact Ioslessness in the

realization of an arbitrary digital filter in spite of the presence of round-off errors. Finally,

the WGF structures can be interconnected in series or in parallel in a way which does _

not disturb the sigal/coeffcient decoupling or the power balance. Thus, the waveguide

filters are very useful for modeling physical systems, and the exactness of their physical

%%- interpretation enhances their suitability for the time-varying case. All results are obtained

for the multi-input/multi-output case.

1. Introduction

Digital filtering techniques have often been derived from classic-l or "analog"

techniques [291. Classical filter design has its roots in "network theory" for describ-

ing linear time-invariant systems accessed by means of 'ports" [ll. Network theory

itself is a body of mathematics built upon certain assumptions [7,131 which become

21 PJSSAGE .:-:-, -'. .



I.

true in the limit at low-frequencies according to Maxwell's equations for electromag-

netic propagation [gJ. Thus, the theory of filters grew originally out of the scalar

theory of wave propagation.

Since the emergence of digital techniques, little attention has been paid to
the close correspondence between filter computations and physical law. In signal
processing applications, we normally approximate directly some desired transfor-

mation of the signal spectrum, and a true physical modeling is irrelevant.

The mainstream of filtering applications has involved time-invariant filters
which approximate an ideal amplitude response such as low-pass, high-pass, band-

*-- pass, or band-reject characteristics, or which provide a desired phase response such

as in equalizers for communications channels [291. In the time-invariant case, the
amplitude response and phase response completely determine a linear filter 1291.

For time-varying filters, there is no longer a simple description in terms of
amplitude and phase response. (A frequency response requires time-invariance.) In

many cases, time-varying filters have been developed in an ad hoe manner, being
regarded as *quasi-static' in most cases. Such extensions require the assumption
that the filter coefficients vary slowly relative to the impulse-response duration of
the filter. When the coefficients change too rapidly, unnatural artifacts can occur
due to the incompatibility between the filter state (a function of all prior time in a
recursive filter) and the new filter coefficients.

This Paper

This paper presents a class of recursive digital filters designed specifically to
__have the best possible behavior under time-varying conditions in the presence of

round-off error. We call them "Waveguide Filters" (WGF), because they can be
interpreted as networks of intersecting waveguides. The WGF structures are closely
related to the 'wave digital filters" developed principally by Fettweiss 117,281, the

lattice filter structures arising in geoscience and speech modeling 145,311, and the

22
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*normalized ladder filter" discussed by Gray [30,391. Waveguide filters have the

following characteristics:

" The correspondence to physical wave-propagation systems is exact even though

time is discrete. No bilinear transformation is necessary to connect digital

quantities with physical quantities as is usual in the wave digital filter (WDF)

context [171. This allows a priori choice of filter structure to obtain precise

models for physical processes.

• The instantaneous power at each internal filter section is invariant with

respect to filter coefficient variation.

Generalized versions of the "Normalized Ladder,* 'One-Multiplier Lattice,"

and other ladder/lattice filters are derived, all having invariant instantaneous

power in the time-varying case.

e The structures can be coupled at a junction, cascaded, loopped, or branched,

to any degree of network complexity, and the desirable properties such as

stability and power decoupling are retained.

* A synthesis procedure exists for computing all-pole or pole-zero sections.

a There is an identification method for determining the coefficients of the

structurt from measured input/output data. Similarly, there is a "linear

prediction" modeling technique for these structures which provides ARMA

models for time series.

a No overflow oscillations can occur, even in the time-varying case.

v No limit cycles (also called 'granularity oscillations') can occur if one of

many 'passive' numerical round-off strategies is employed, even in the time-

varying case. In the simplest case, the passive round-off strategy reduces to

magnitude truncation (or truncation toward zero).

23

.4-'- -.. '- -- ,- % -'''-' : ,'.'.i. '-'.-.- .. -.;. - - .i.". -?. - -. -. < --- .--.-.. .-. -'.'



* As in the scalar lattice filter and WDF cases, sensitivity of coefficient quan-

tization can be minimized by properly scaling the network to deliver 'maximum

power transfer" at frequencies where low sensitivity is required [501.

e A perfectly lossless digital realization can be implemnted using a number
system presented in this paper.

e The desirable structural properties are derived for multi-input, multi-output

(MIMO) transfer-function matrices.

The derivation of the WGF is made exceedingly simple by using three simple

principles of wave propagation in an ideal linear medium. To our knowledge, these

principles have not been invoked before to derive digital filters. In this respect, we

feel this paper has significant tutorial value. It is a new point of view.

2. Related Prior Work

This section reviews some of the most closely related work on digital filter

structures. These include the orthogonal-polynomial filters of Szeg6, the 'wave

digital filters" of Fettweis, and the "orthogonal filters" of Dewilde. Naturally, there

are many more related lines of development, in view of the first law of signal

processing.* These represent only the major recent areas closest to our point of

view.

2.1. Wave Digital Filters

The wave digital filter (WDF) approach of Fettweis 116,17,20,281 comes closest

to the point of view taken in this paper. Fettweis obtains a similar class of structures

by use of the classical notion of wave tvarabies [131.

* The first law of signal proceWsinUg is 'Everything is equivalent to everything else."
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For example, if v and i denote the voltage and current at a terminal of an

N-port network, the wave variables are defined by z v + Ri and V v - Ri,

where R is an arbitrary *reference impedance." These wave variables are logically

equivalent to the left-going and right-going "pressure traveling waves" considered

in this paper, and R plays the role of characteristic impedance in the associated

transmission line. A generalization of wave variables to the form z = av + fi, y -

YV + i and a characterization of the specialization necessary to ensure realizability

is given in [321.

Fettweis describes how to directly model resistors, capacitors, inductors, trans.

formers, gyrators, and circulators using the WDF approach, and he describes the

necessary rules for connecting ports together [171. The modeling of a capacitor, for

example, is accomplished by scaling the reference impedance R until the capacitor
.reflectance' is exactly a unit-sample delay. (The model is parametrized in fre-

quency so that the wave variables are really phasors.) An inductor also maps to a
unit-sample delay but with a sign-change relative to a capacitor. A complete circuit

is built out of basic elements by means of 'adaptors" 1281 which play the role of

the junctions or scattering layers described in this paper; the adaptor accomplishes

interconnection of ports at different reference impedances.

The WDF modeling of inductors and capacitors is limited because the continuous-

time frequency variable is mapped to the discrete-time frequency variable via the

bilinear transform. If the points z = 1 and z = -1 in the complex plane are

identified with zero and infinite continuous-time frequencies, respectively, then only

one more mapping frequency (say 0) can be chosen. Thus, the bilinear transforma-
tion provides exact modeling only at the three frequencies 0, 0, and oo.

The WDF formulation models a system of differential equations at three fre-

quencies, while our approach exactly models wave propagation in lossless media

having spatially discrete changes in characteristic impedance. Consequently, in our

formulation, a wave variable may be a "voltage" or 'current" or a linear combina-

tion of the two without incurring realizability problems [321. This is a considerable

conceptual simplification for applications to physical modeling.

... -
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p- -1

A general result in this paper is that overflow oscillations and limit cycles can be

suppressed in a forms of scattering-type filter structures simply by using extended

numerical precision in each scattering section, saving quantization (toward zero) for

the final outgoing waves. The basic principles involved apparently appeared first in

2.2. Ladder and Lattice Filters

For some time it has been known that lattice and ladder filtering structures

are superior to the so-called direct form in several ways. These include reduced

sensitivity to coefficient quantization, less dependency of round-off noise on the filter

frequency response, ease of stability checking, reduced probability of limit cycles or
overflow oscillations, and section-wise orthogonality in the linear prediction context.

For a discussion of ladder and lattice filters in adaptive estimation, see 151.

Lattice structures have been in use for decades in directly modeling layered

scattering media. The mapping of underground striations in rock density, for
example, is a basic diagnostic tool in oil exploration. The interface between two

subterranean layers of rock of different densities produces a scattering layer because

the characteristic impedance of the medium with respect to sound propagation

changes across such a boundary.

Another example of the use of lattice structures for physical modeling is the
aucoustic tube" models developed for speech analysis and synthesis. In this case,

the vocal tract is modeled as a cascade of coaxial cylindrical tubes with varying

cross-sectional areas and equal length. The change in area from one tube section

- - to the next provides a change in the characteristic impedance of the air column for

sound propagation, and so a series of equally spaced scattering layers is obtained.

Apparently, the filter structures developed in the above applications are only

as general as a single chain of scattering layers with one input and one output, and

the input and output sections are terminated in a non-extendable way. Little if any
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work has explored branching and intersecting chains of scattering layers. In the case I
of speech, the use of a separate acoustic tube branching off from the vocal tract to

* * model the nasal tract would obviously be very natural. Apart from branching, it is

not possible to continue the structures in common use from the output section to

a larger section. This is because the typical arrangement is to assume a perfectly

reflecting termination at the output. Doing this allows manipulation of the delays

in the scattering network to place them more conveniently and combine in pairs
such that the required signal sampling rate is reduced by a factor of 2. We have
found that the cascade scattering chains, which dominate the recent literature, can

be immediately extended to general acyclic trees with the same basic properties.

Our formulation is more general than even the acyclic-tree extension of prevalent

lattice filters in that arbitrary networks can be constructed. Also, there does not

seem to be an existing treatment of MIIMO systems from the acoustic waveguide

point of view, nor the generalization which allows transmission zeros to be an in- ".

tegral part of the waveguide (without having to add external "taps" for forming a

linear combination of the contents of each waveguide section).

A particularly important antecedent to the WGF in the speech processing

literature is the normalized ladder filter (NLF) developed by Gray and Markel
[23,30,391. Gray considered only the single-input, single-output (SISO) all-pole

case. (Zeros are obtained in the NLF using "taps," which leads outside the class of

structures considered here.) Their approach was based on orthonormal-polynomial
expansion [1,2,61 which is closely connected with linear prediction theory (31]. They

showed the following to be true:

The NLF is optimal in the sense that each internal node has unity power
gain. This means, for example, that the response to a unit impulse cannot
overflow anywhere within a stable NLF filter. Also, if the input signal is

white noise with unit variance, the variance of the signal at each internal

node is exactly unity [301.

-- e The NLF is stable in the case of time-varying filter parameters [301 as
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long as the "refdection coefficients" ki(t) are always less than or equal to

some K<1 in magnitude. ([ki(t)l < I is not sufficient for bounded-input,

bounded-output (BIBO) stability unless the input signal energy is finite.) It
was derived incidentally that the total energy entering the ladder eventually

exits" through the particular delay element at the entrance to the ladder.

a The NLF has superior roundof' noise properties, especially when poles are

" clustered close together and/or close to the unit circle [30j.

The NLF is free of zero-input overflow oscillations 139.

.e The NLF is free of zero-input limit cycles [391 in magnitude-truncation

arithmetic.

The NLF is obtainable by transformations of a special case of the WGF struc-

.*. tures derived here. The most significant difference is in the distribution of delay

elements. We will show that delay distribution in the standard NLF is not obtain-

able from a WGF unless the waveguide is terminated by a pure reflection. This

means, for example, that an NLF cannot be connected to another NLF to build
a larger waveguide system with finite loading from one stage to the next. Also,

\-.), the delay distribution chosen for the NLF is such that creating a loop with NLF's

yields a degenerate (non-computable) structure because a delay-free loop appears.

Another limitation of the NLF is that the concept of instantaneous power becomes

artificial for individual sections (although Gray defines a non-physical but similar

quatity in [30, eq. (2)1).

A disadvantage of the NLF is that it requires four multiplications per pole of the
.4 .p filter transfer function.* The one-multiplier lattice filter, on the other hand (311

requiwes only one multiplication per pole. Because of the choice of delay distribu-

Otin in standard lattice-filter theory, only the NLF has been shown to be power-

preserving in some sense. In contrast, we will show that even our counterpart

to the one-multiplier lattice can be made normalized with respect to time-varying

As a side result, we show that one of these four multiplicatiou can be eliminated.
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coefficients. Conceptually, this is achieved by compensating the amplitude of stored

signal samples. The resulting normalized one-multiplier lattice section is computa-

' .. tionally less expensive than the NLF.

The reason that most standard ladder and lattice structures (all but the NLF)

*cannot be power-normalized in the time-varying case is that the unnatural distribu-

tion of delays adopted makes passivity of a section nontrivial to show. This paper
describes how power-normalization, perfect energy conservation, and complete sup-
prasion of limit cycles and overflow oscillations can be guaranteed for MIMO

analogues of all ladder and lattice filter structures, with extensions to branching

structures and general terminations.

For the case of reflectively terminated, time-varying, ?MIMO, acyclic trees,

(which specialize to ordinary lattice/ladder structures in the SISO single-branch

case), we derive efficient equivalent structures in which the delays are moved and

.. combined to yield computational savings without loss of the desired power-invariance/numerical

properties.

2.3. Synthesis and Approximation

The synthesis procedure we use for the WGF is based on the Schur algorithm

which recursively computes a solution to the Nevanlinna-Pick problem [40,37,431.

The Nevnlinna-Pick problem is to interpolate a rational "Schur function*" through

as complex values at n points in the closed unit disk in the complex plane. The

Schur algorithm has also been called the "ANevanlinna recursion scheme" [431. In

other contexts, a special case of the the Schur algorithm, which computes only

al-pole digital filters, has been called the TDurbin" 181 or TLevinson" [31 algorithm

134,40,42,38,311. The complete Schur algorithm constructs a cascade WGF realiza-

tion of a digital filter containing both poles and zeros.

* A Schur function $(z) is defined as a complex function analytic and of modulus not
exceeding unity in Izs < I
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The estimation problem has been addressed by DeWilde 140,421. In this context,

the Schur algorithm provides an ARMA estimation technique in which the pole

estimates are optimal in the mean square sense for the given fixed zeros which are

chosen a priori.

3. Traveling Waves and Loaless Scattering

For concreteness of discussion, we will focus on pressure and flow waves in a
so-called acouatic tube. We could just as easily think of the electric and magnetic

components of light, voltage and current in a transmission line, or force and trans-
verse velocity on a vibrating string. An analysis of the acoustic tube is discussed

by Markel and Gray 1311 and Flanagan 111 in the context of vocal-tract modeling.
Further details on the acoustics of sound in tubes can be found in Morse [41. The

term "waveguide" will be used interchangeably with "acoustic tube."

• . A derivation of traveling waves from the basic wave equation is presented in the

appendix. The result is that in a cylindrical acoustic tube, longitudinal* pressure
and flow waves propagate back and forth with spee c. Let z denote distance
along the tube axis and let t denote time in seconds. Then the instantaneous
pressure P(z, t) and flow U(z, f) is given by the sum of the left-going and right-going
traveling-wave components:

P(z, t) P+(z, t) + P(z, t) (Ia)

U(z,t) U+(z, tl+)U-z, ) (Ib)

* We assume the tube radius is much smaller than the wavelength of sound In the tube,

so that pressure and fow are constant over any cross-section of the tube normal to the
axds. In other words, waves do not propagate up and down but only left and right. For

more details on the assumptions involved in acoustic tube models, see Flanagan 1191.
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3.1. Three Fundamental Constraints

The behavior of waves traveling unidirectionally in a lossless medium is governed

by three laws: (1) the pressure is proportional to flow, (2) the pressure is a continuous

function of position, and (3) the flow variable (e.g. mass or charge) is neither created

nor destroyed in the medium.

Characteristic Impedance

An ideal linear propagation medium is completely determined by its charac-

teristic impedancet Z(z, t). The characteristic impedance is defined the constant of

proportionality between pressure and flow in a unidirectional traveling wave:

ft. -

P ZU (2a)

P- -zU- (2b)

When the arguments (z, t) are omitted, it is understood that all quantities are

written for some constant time t and position z. The minus sign for the left-going

t For an acoustic tube. the characteristic impedance is given by Z - ~~ S-

p' S, where p is the density (mass per unit volume) of air in the tube, c is the speed of

propagation. Po is ambient pressure, -1, is the ratio of the specific heat of air at constant

pressure to that at constant volume, and S is the cross-sectional area of the tube. In a

vibrating string, m - pc, where p is string density (mass per unit length) and T is

the tension of the string. In an electric trans~mission line, Z - -W LeU where L and

C are the inductance and capacitance, respectively, per unit length along the transmisionL, line. In free space, Z - - poe, where p.s and to are the permeability and

permittivity, respectively, of free space.
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wave P- accounts for the fact that flows in opposite directions subtract while

pressure waves passing through each other add. .

We will consider initially a more general situation in which Z - Z(d) is a

q by q complex matrix function of the complex variable (or unit-delay operator) d.

For stability of propagation in the waveguide, we require that Z(d) be analytic for

Idl < 1. The results also extend to the case of vector r  [dI,...dKI, but we

will treat only one complex argument d for notational simplicity. The pressure and

low variables are q by m matrix complex functions of d. However, keep in mind

that the physical analogy we are pursuing is for the case of real scalar Z, P, and

U.

For lossless propagation in the scalar case, the characteristic impedance Z '-

must be real. In the matrix-delay-operator case, lossiess propagation will now be

characterized by the requirement that Z be para-Hermitian, i.e., .,

Zd) = Z(d) (3)

where
-T

Z.(d) a Z1 ~ (4)

denotes the para-Hermilian conjugate of Z(d) (13,401, (-)T denotes transposition,

and fl denotes complex conjugation. For d - e', Z.(e') coincides with the

Hermitian transpose of Z(eis). The psra-Hermitian conjugate is the unique analytic

continuation (when it exists) of the Hermitian transpose Z.(eiO) - Z 7" from

. the unit circle into the complex plane. Thus, a losless medium in our framework
is defined as one in which the characteristic impedance is pars-Hermitian. The

extension to vector d is obtained by regarding Z(d) as K functions of scalar complex

variables di. Note that in the scalar case, Z para-Hermitian implies Z = Z which

implies Z is real. Henceforth, we assume Z denotes a para-Hermitian characteristic

impedance. For non-para-Hermitian Z, (2) should be modified to read P = I
-Z.U- 1131, and a passive medium is one in which Z + Z. is positive semi-definite.
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It is worthwhile to interpret the various levels of extension we are consider-

ing for the characteristic impedance Z. When Z is real and scalar, we obtain ex-

actly the ideal behavior of one dimensional traveling waves in a lossless medium.

Extending to q by q matrix characteristic impedances facilitates development of

multi-input, multi-output (MIMO) systems which have the desired numerical and

power-invariance properties. The extension to analytic matrix functions of a com-

plex variable provides a generalized scattering medium whose reflectance and trans-

mission coefficients are themselves rational transfer function matrices. This provides

for nesting of the WGF structures. The complex argument d of the characteristic

impedance is interpreted as a unit-delay operator, and the meaning of the charac-

Nteristic impedance is attached to its Laurent series expansion with respect to the

unit circle in the d-plane. Additional complex variables di in the arguments to the

characteristic impedance allow the generalized scattering layer to perform filtering

in several domains such as time and space. Since the characteristic impedance is

assumed stable and para-Hermitian, all delay-operator impedance matrices must

be nonrecursive and zero-phase. Therefore, computability, stability, and nonlinear

oscillation problems do not arise in the case of multiple domains.

Pressure Continuity and Medium Conservation

We will be interested in the situation wherein the characteristic impedance

changes abruptly from one value to another, say from Zt to Z2 . The impedance
discontinuity can be a sudden change along : in the acoustic tube, or it can be

a change introduced at some time t (as needed for time-varying filters). First we

consider changes with respect to :. Given the traveling waves impinging on the

junction between Z, and Zz, we seek formulas for the traveling waves leaving the
junction. To solve this problem, we need two laws in addition to (2) for an ideal

wave medium:

1) Pressure cannot change instantaneously across the junction (5a)

2) The sum of flows meeting at the junction is zero (5b)
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These constraints are often called "Kirchoff's node equations? in the context of
€;-cuit theory. For changes in characteristic impedance with respect to time, (5)

is not applicable. Time-varying characteristic impedances will be implemented as
*waveguide tranformers, and will be used to obtain power-invariant lossleSs digital

filters in the time-varying case.

The continuity and conservation constraints (5) together with the characteristic

impedance constraints (2) determine what pressure and flow waves emerge from a

junction between waveguide media of differing characteristic impedance, given the

incoming waves.

Consider the case of N waveguides meeting at a common junction. Kirchoff's

laws state that there can be only one resultant pressure P, at the junction, and the
sum of flows entering and leaving the junction must total to zero. Thus, we have

X the constraints

A P ==""-PN= PJ (6a)

Ut +U 2 +..+UN =0 (6b)

where

i iz i (7):;.. Ui = U+ + UT ,P. = -ziU+ '):

Zi =Characteristic impedance of the ith waveguide (q by q)

W, ri sm == w~s Characteristic admittance of the ith waveguide (q by q)

P7 =w Incoming pressure wave along the ith waveguide (q by m) (S)

U7 a Incoming flow wave along the ith waveguide (q by m)

P7" - Outgoing pressure wave along the ith waveguide (q by m)

Ui" =a Outgoing flow wave along the ith waveguide (q by m)
.Pi Instantaneous pressure wave in ith wavegide just outside junction (q by m)

4:. U, = Instantaneous pressure wave in ith waveguide just outside junction (q by m)

Pj - Resultant pressure in the junction (q by m)
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Sq -79

3.2. Reflection at a Junction

Given a set of incoming traveling pressure waves, Pi, i - ,...,N, the

constraints (2,S) determine the outgoing waves as follows. As before, Zi and hence

r, -=Z7' are para-Hermitian positive definite. Substituting (ib) and (2) into (5b)

yields the resultant junction pressure:N fN
PJ -- E r, Er,P,. (10)

Let
N N

2define the junction admittance, junction impedance, and junction flow, respectively.

(In the extension to non-para-Hermitian Zi, Uj becomes U+ E(ri + r,)4P.)
Relation (10) then reads Pj = -- jUj, or,

Junction Pressure J Junction Impedance X Junction Flow

Sincerip = U- , wehaveUj -1 2 U+ A 2U I j1 -U +I-U 1,
where I " denotes elementwise complex modulus. That is, the junction flow can

be interpreted as the magnitude sum of the incoming and outgoing current waves.

Now, given incoming traveling waves P+, U+ and the characteristic impedance

*'"" Zi of each branch terminating at the junction. we easily find the outgoing waves

p, U7 to be

p- =. "' - (12a)

= (12b)

Equations (12) specify the scattering at the junction of N intersecting 'wave guides,"

given the incoming waves P+ (or U ) and the branch characteristic impedances Zi.
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In view of relations (2), we can consider only left-going and right-going pres-

sure waves, since the flow waves can be readily computed from the characteristic

impedance of the propagation medium. At this point, we could instead choose wave

variables of the form z: = Pi + ZUi and gi = Pi - ZiUi and proceed along the

lin of classical wave filtering [13). However, such a path is less fundamental in the

preent development because we are considering only discrete-time filters.

We have treated only a parallel junction of waveguides. A dual set of equations

is obtained by considering a series junction. However, pressure waves intersecting

in a parallel junction are equivalent to flow waves intersecting at a series junction.

When using flow waves as the primary variables, (12b) can be written

U7 uj - rP (13a)
N

.i= 2z! U (13b)

The ser'es pressure junction is obtained by taking the dual of (13). That is, replace .-

Ui by Pi and r, by Z, to obtain

P- P+ - ZiU, (14a)
N

2r, P (14b)

r,= (14c)

z5 4J Zi (14d)

The junction impedance for a series junction is the sum of the branch impedances,

Id. while for a parallel junction, it is the parallel combination of the branch imp'dances

(inverse of the sum of admittances).

Equation (12a) is a computationally efficient way to implement an N-port

scattering junction. In the case N = 2, the well-known one-multiplier lattice filter

section (minus its unit delay) is obtained immediately from (12a). More generally,
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a N-way intersection requires N multiplies and N - I additions to obtain P1,

and one addition for each outgoing wave, for a total of N multiplies and 2N - I

additions. The dual junction (14) also requires N multiplies and 2N - I additions.

* In the next section, a method for trading one multiplier for another N- I additions

[281 is described.

3.3. o-parameters

One parametrization of all passive N-junctions is the set of N branch irn-

pedances with positive-definite para-Hermitian parts (cf. §5.1). This section describes

another parametrization, analogous to that used in the WDF context [28].

One parametrization of all passive N-junctions is the set of N branch im-

pedances with positive-definite para-Hermitian parts. This section describes another

parametrization, analogous to that used in the WDF context [281.

Define

a 2z r (15)

which is twice the junction impedance times the ith branch admittance. (In the

non-para-Hermitian case, a = Zi(Pn + ri.).) Then the junction pressure can be

written as a linear combination of the incoming pressure waves in terms of the ;

N

P,= a ()

Since r r,

where 1. is the q by q identity matrix.
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In matrix form, (12a) can be written

. 4.P, at,- 1', C12 ... O'N P,
P- at a2 ,= ... aj,, As

(18)

N'-,.. *2 0i "' N --Iq P N

or

where
[Oft a2 ... aN

AJ - Nq (0

The matrix E is called the acattering matriz of the junction. Since P- - (ac- l4)P
when P4 = 0 for all j i s, we define the reflection coefficient at the ith port by

A -Iq (21)

Equations (12a,18,17) combine to give

P. = + 0,-(p+ - p, (22)

Thus, o/ can be interpreted as the fraction of the pressure differential between
branches j and i which is reflected back along the ith branch with P+, for any i.

'. .... Use of this expression saves one matrix multiply but entails 3N-2 matrix additions.

If one multiply is worth N - I additions or more, then (22) is less expensive to

implement than (12a).
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3.4. Pure Delays

Up to now we have been concerned only with the scattering of traveling waves
at a single impedance-discontinuity junction. We now allow for many such junctions

interconnected by waveguide for lossless, reflectionless propagation. Physically, an
interconnection between junctions is a length of material at a single characteristic

impedance. It is implemented digitally using hi-directional delay lines.

Consider the interconnection of two N-port junctions. Between the two junc- -A
tions is a section of pure waveguide which is a lossless medium having characteristic

impedance Z12. Let e denote the speed of propagation in this waveguide section,
and suppose the distance between the junctions is L. Then the propagation time
from one junction to the other and back is T. = 2L/c. Consider a pressure wave
impulse P (z - ct) = 6(z - ct) traveling from junction 1 to junction 2 starting

at time t = 0. At time T./2 it reaches junction 2, and a reflection P-(z + ct) -

p1 6[z +(t- T,)j starts out to the left from junction 2, heading back to junction I.

A fragment of the pulse is also sent out along all waveguides connected to junction
2, according to the relative branch impedances. At time f T., the reflected pulse

" ~ reaches junction 1, and scatters away again.

A section of waveguide joining two junctions by a propagation delay T./2 is
called a unit delay. If the speed of propagation is everywhere the same, then all

unit delays are of the same length L " cT,/2.

An important observation to make at this point is that the impulse response
at a particular junction of a network of junctions interconnected by waveguides of

length cT./2 is nonzero only at times which are integer multiples of T,. Thus, such
a network is a simulation of a digital linear system with sampling rate F. I/T..

Consider a linear chain of junctions. The input is defined as the pressure enter-

ing at the far left (junction 0), and the output is defined as the pressure emerging

from the far right (junction M). Again, this structure is an exact simulation of a
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digital system with sampling rate F. 11T. provided M is even. If M is odd, we
obtain samples separated by T. seconds at the output, but there is a time shift of-

T./2 relative to the sample instants at the input.

Now consider the more elaborate interconnection of junctions in an arbitrary

network. Unless every path from the input to the output crosses an even number -

of unit delays, the impulse response of the network will be nonzero at multiples of
T./2, yet the minimum delay in any feedback loop is T. seconds. Thus, it is not

possible to simulate a general digital system having sampling rate 2/T. even though

such a sampling rate is required to compute the response.

* Two cases arise:

* ,-*(1) Half-rate structures which require an even number of branches on every

* path from the input to the output, plus possibly a single odd section

which causes a half-sample shift of the output relative to the input. In
the latter case, we do not allow the resulting structure to be placed in a

feedback loop. These restrictions leave us with a general class of linecar
digital filter structures.

(2) Full-rate structures in which the most general transfer function between

two junctions is of the form

Ff(:)6 = bZ-1 +.. + b,,(3
1+ 04a 2 : z- + a, :-ne

in the scalar case. where n, 2 and n6  1 are integers. In the full-rate

case we must settle for the class of rational filters in which aL I 0. The
corresponding digital filter design methods Must support this constraitit.

we Therefore, techniques based on linear programming seem natural in this

context (381. In the estimation context, the methods described in [491 can
be adapted to this problem.
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4. Cascade Waveguldes

We now specialize discussion to the case of cascade waveguide sections. The

• .junction between two waveguides of differing characteristic impedance will create

a scattering junction. The stretch of pure waveguide material between scattering

junctions will provide delay lines for the propagation signal. From these structures

all digital filters can be built in such a way that they behave nicely with respect

to time-varying parameters and numerical roundoff/overflow. Note that almost all

special properties in the cascade case carry over to arbitrary acyclic trees.

4.1. The Two-Port Junction

If there are only two waveguides meeting at a junction, we obtain the classical

"scattering theory" in which an incoming wave is split into a "reflected" and

"transmitted" part. From (15), the a-parameters are

=, ," + Z' 2(r + r 2 )-'r= 2(I + z,r 2 )
,-,-. (24) :.--.-- a, = _2(z;, + z.,) -I , -(r,1 + r,)-, 21/ ~,

02 = (j'+- 2[1+rrr (Iq + z 2 r,) (4

From (22), the reflected pressure waves are

P, = a 2 P - P+) + P+ = (at - Iq)P+ + 0 2 P

2: (- 1 1 1.5 2
P2 = ' (P -P) + 0P , P+(a.,P- 2,))

It P 0, then the incidence of P' produces a reflected wave P' - (a, - Iq)P.

Thus, we define the following reflection coefficients:

:.:.: : , at - iq (z. - Z,)lz, + z,- (r, + r:)-i r -r.) -,,
(26)q -
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It is now apparent that if the reflection coefficient at port I is pi =P, then at

port 2 the reflection coefficient is -p. Another point of view is that inverting the

impedance-step ratio from Z,:Z 2 to Z1:Z 1 merely changes the sip of the reflection

coefficient. It is easy to show that for scalar Z;, exchanging pressure waves for flow

waves also toggles the sign of all reflection coefficients in the network. Thus, left is

the dual of right as pressure is the dual of flow(and parallel is the dual of series).

VIn the matrix-impedance case (q > 1), however, replacement of pressure by

flow changes p to -(Frz 2 - lq)(rz2 +iq)- which equals -P only if Z, tommutes

with Z 2 . Two Hermitian matrices commute if they have the same eigenvectors, i.e..

their "principal axes of dilation" are aligned. There exists a unitary transformation

• .of any Hermitian matrix which commutes with any other Hermitian matrix; that is,

a Hermitian matrix can be "rotated" until it commutes with any other Hermitian

matrix. For waveguides with impedance matrices so aligned (all Z, have the same

eigenvectors on the unit circle), junction reversal is equivalent to wave-variable

exchange; either causes a sign reversal in all reflection coefficients.

4.2. The Scattering Matrix

In block-matrix notation, the junction output is given by

Cp -I , P Pi 1 q +P, P] 4P (27)
J; 02 P-Vq j P P, -P, P+2

or

E EE (2S)

This is called the acattering formulation, and E is called the ocaltering ma tri. It

is A special case of the N-junction scattering matrix defined in (18).
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4.3. The Chain-Scattering Matrix

In the two-port case only, we can also define the chain-acattering matrix via

[P 1 [ (2g)P[ ]
where

e-r e,, e21 1  (30)

While the scattering matrix computes outgoing waves from incoming waves, the

chain-scattering matrix computes the left-going and right-going waves in section I

given the left-going and right-going waves in section 2. The relation between the

scattering matrix E and the chain-scattering matrix e is given by

- = v' i'-' e-2 = - (31): -

(321 E '22

and

=, = l 0 22 = -e,,e, 2  (3:)

4.4. One-Multiplier Forms

Equations (25) and (28) combine to give

PI = ,2, + 41P .
'4.. ..4.4

(33) "<"4..

p2 =P +AP AP,'

where
AP App -p

(34) .."
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Thus, only one matrix multiplication is necessary to compute the reflected waves

from the :.-coming waves. In the scalar case, this reduces to the so-called one-

multiplier lattice section [311 (minus the unit-sample delay ordinarily associated

with each section). It is well-known that any rational digital filter can be built -

using one-multiplier lattice sections [311. In fixed-point implementations, the only

source of error would typically be in the computation of AP.

To ensure the absence of limit cycles and overflow oscillations, the additions ;-

in (33) must be performed before rounding, and the final rounding to obtain P_ J

and P must be norm reducing. (In the scalar case, magnitude truncation is

sufficient.) The added expense for postponing round-off until the final outgoing

waves are computed is typically negligible, requiring only logic to determine the

desired direction of truncation from the signs of P+ and aP, and the low-order

product of _AP. In other words, the double precision computations required are

* only conceptual because the low-order half of the incoming waves is zero.

Another one-multiplier form is obtained by organizing (25) as

*P 1 =4I + (P;-4t
P.: P7-+ (P P+) P,-P. 3

where a a,. As in the previous case, only one multiply and three adds are

required per section. An advantage to (3.5) is that the computation of P. is noiseless

(assuming roundoY only after multiplication). This can be used to simplify hardware

t'I.for suppressing limit cycles.
In the scalar case, the single section parameter p of (35) must lie between -1

- L and 1, while in (34), the single section parameter or must lie between 0 and 2.

Otherwise, the junction is not passive. The practical implication of non-passive

junctions is potential filter instability in the presence of feedback.
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5. SIgna Power In Losale Waveguldes

This section presents basic definitions of signal energy and power in a waveguide.

These concepts provide the necessary handles on filter stability, passivity with

respect to numerical round-off and overflow, and energy modulation due to time-

varying parameters.

5.1. Instantaneous Propagating Power

The instantaneous power in a waveguide containing ir.stantaneous pressure P

and flow U is defined as the m by m product of pressure and flow:

P =P.U (36)

The total instantaneoua power is defined as the trace of the instantaneous power:

P A Tr(P) = Tr(P.U) (37)

The total instantaneous power is a complex scalar measure of power flow. It can

be interpreted in a manner similar to the complex power in scalar transmission-

4 line theory in which sinusoidal phasors are propagated in either direction. The

instantaneous power can be expanded into four terms as follows:

SP = P.U =(P; + P.)(U +U- + =(U: -U.Z.(U + U)

=P.U + PU + P.U + P.U
- - + p:rp- - prP

-= u zu - L U - :zu + u zu

The right-going and left-going power are defined, respectively, by

'P u =u:zu* ,.rp"

P =pu- -u zu- -P=-rP-
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Since Z is para-Hermitian, P and P- are Hermitian forms, .rnd can be expressed

.444, = - (40)

where 2t is the ith eigerivector of P+, and X. is its ith (real) eigenvalue. The

m-vectors ri& can be chosen orthonormal. Similar remarks apply to the eigenvalues

and eigenvectors of P-. It can be shown that the waveguide is passive if and only

if )tX- > 0. Consequently, we will assume in the sequel that

X, > 0, X7 > 0, i=1, 2,...,m (41)

This implies P and P are positive definite Hermitian matrices. The orthonormal
- vectors 2t and 27 (which are vector analytic functions of d), indicate "directions'

along which power flows in the m-dimensional manifold determined by U (or P,)

and Z.

In the mon-para-Hermitian case, the medium is passive if"

Z(d) + Z(d) 0, V1 dI 1 (42)

That is, the para-Hermitian part of the characteristic impedance of a passive

medium must be positive definite in the unit circle. It can be shown using the

maximum modulus theorem 151 that (42) holds if Z + Z. > 0 for dj = I.

We define the cross power by

- K ~U:zu- (43)

The instantaneous power (38) can now be written as

-46
P=(P -%P)+(P -P;) (44)
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which we interpret as a sum of a net traveling-power term P- P- plus the skew-

para-Hermitian part of the cross-power. In the real scalar case, P P_ P and the

cross power is zero.

Since the eigenvalues of a Hermitian matrix are purely real, we define the

difference between the right-going and left-going power P -P- as the active power.

Similarly, since the eigenvalues of a skew-Hermitian matrix are purely imaginary,

we define the skew-para-Hermitian part of the cross-power p x -P. as the reactive

power. These definitions parallel those of scalar transmission-line theory. The total

. ,. power in each case is defined by the corresponding trace.

5.2. Power at a Junction

For the N-way waveguide junction, the constraints (2,6) yield

[U.° -. =P" :U
-- N N N "

-. Thus, the N-way junction is loisless; no net power, active or reactive, flows into or

away from the junction.

5.3. Quantization Effects

While the ideal waveguide junction is lossless, finite wordlength effects, can

make exactly lossless networks unrealizable. In fixed-point arithmetic, the product

K> of two numbers requires more bits (in general) for exact representation -than either of

the multiplicands. If there is a feedback loop around a junction, the number of bits

needed to represent exactly a circulating signal grows without bound. Therefore,
some sort of round-off rule must be included in a finite-precision implementation of a

WGF. The guaranteed absence of limit cycles and overflow oscillations is tantamount

to ensuring that all finite-wordlength effects result in power absorption at each

junction, and never power creation.
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The sum of power flows entering a junction is given by A

N

N

a e-I + e- U! + U (46)

where ri = Z t is the characteristic admittance of the ith waveguide. Define

N.." 1 (, E~ Y; zi~riyi

N __.___-t(47)

Then by (16),

(I r +) _ P- P +K--r K)) ($

The junction is passive if

..PJ + pj.=2[-- PI- >__ 0 (4g)

Ilrip III I e
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Since ri > 0, the quadratic form z.riz forms an elliptic norm for :. By the

norm equivalence theorem, condition (49) can be written

< (50)
.

-.

where the norm is arbitrary (181. Let P = P" - denote the quantized value

of P. Then a sufficient condition for the absence of limit cycles and overflow

oscillations in an N-port junction isp7 j! 1 iJ II(

Since the norm is arbitrary, two convenient choices are the L' norm (maximum

abolute column sum) and the L' norm (maximum abolute row sum) [181. Alternately,

a suffieient condition for the absence of overflow oscillations and limit cycles in

networks built from N-port waveguide junctions is. that magnitude truncation be

used on each element of the final q by m outgoing wave variables P7.

5.4. The Normalis,d Ladder Section

We can normalize the pressure and flow variables by the Hermitian square root

of the characteristic impedance to obtain propagation waves in units of root power:

+ I= +

U(5ZLT}67 '"u

where
A. 1. ..-

is the unique para-Hermitian square root of Zi.The para-Hermitian square root of

Z, is defined as the analytic continuation of the Hermitian square root of Zj(e'9 ).

Uniqueness is inherited from uniqueness of both the Hermitian square root and the

process of analytic continuation.
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In the non-para-Hermitian case, we normalize the traveling waves by

Pd. R .2 P- - I(54)

where

R .(Z, + Zi.)

L I A

That is, R! is the para-Hermitian square root of the para-Hermitian part R of the

ith branch impedance Zi [131.

By restricting all waveguides to normalized waves, we obtain the WGF generaliza-

tion of the. normali:ed ladder form (NLF). As a result of this normalization, the

stored power in each WGF section is unaffected by time variation of the characteris-

tic impedance in each waveguide. This means that the signal power is decoupled

from time variation in the filter coelficients.

6. Conclusions

We have derived a general framework for recursive digital filtering which has

many desirable properties (stated in the introduction). This architecture for digital

filtering is most valuable in the case of time-varying recursive networks in which it
is desired to eliminate limit cycles and overflow oscillations. The added complexity

relative to the best pre-existing recursive filter architectures is negligible. Therefore,

these structures are likely to find plentiful use in advanced time-varying filtering

applications.
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7. Appendix-The Wave Equation

For an ideal waveguide, we have the following wave equation.

P,(z, 1) = C2pZZ(Z, 1), (58)

where P(z, t) denotes longitudinal pressure displacement in the tube at the point z

along the tube at time t in seconds. If the length of the tube is L, then z is taken

to lie between 0 and L. The partial derivative notation used above is defined by

plyy

The constant c is given by c = V/7 where T is the tube "tension," and p is the

mass per unit length of the tube. An elegant derivation of the wave equation is

given by Morse [4.

The general traveling-wave solution to (56) is given by -.
P(Zt) P ( - et) +P(r+). (.5 ,..

This solution form is interpreted as the sum of two fixed wave-shapes traveling in

opposite directions along the tube. The specific waveshapes are determined by the

initial pressure P(z,0) and flow U(z, O) throughout the tube.

%..'. ,
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Adaptive Equalization of Rapidly Time-Varying Multipath Channels

Julius 0. Smith
Benjamin Friedlander

Systems Control Technology, Inc.
1801 Page Mill Road

Palo Alto, California, .9408

Abstract

An adaptive equalizer is proposed for eliminating distortion due to multipath propaga-
tion in high-speed digital radio systems. The equalizer is aimed at the case of very fast
channel fluctuation, where last' is defined relative to the impulse-response duration
of the inverse of the instantaneous multipath transfer function. The method is of the
decision-feedback type where the demodulated symbols are used to construct an estimate
of multipath-induced intersymbol interference. The reconstructed baseband waveform is 7

then delayed and weighted according to the current multipath parameters, and this simu- . '
lated echo is subtracted from the incoming baseband waveform. The distinguishing feature
of our approach is that 6n explicit model of multipath parameters replaces the tranvseral
equalizer studied previously.

1. Introduction

Microwave systems using digital modulation have developed rapidly since their -'.*

introduction in the early 1970's. This rapid growth is due in part to the tendency
*" toward digital encoding of all types of data, better transmission quality in digital

formats (especially in an interference environment), ease of digital switching, and
the rapidly falling costs of digital electronics. ,.. -

Multipath propagation is often the primary source of error in high-speed digi-
tal radio, just as it is in the more familiar FM modulation systems. However, the
effect of multipath on microwave-frequency communication differs from its effect on
analog FM, and different compensation techniques naturally arise. For narrowband
FM radio, outage is a function of thermal noise or fiat-fade margin [12,21. For
digital transmission, frequency-selective fading causes severe amplitude and delay
distortion which yield errors in excess of fiat-fade margin predictions 15,B1. As in-

-l formation rates can be on the order of 100MHz, even small levels of delay distortion
can cause intersymbol interference. For example, a 8ns multipath delay can cause

IOS AG
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complete digital eye closure in a 22Mbps 4-QAM system operating at 6GHz, even
though the received signal power falls only 10dB 112].

Techniques for minimizing multipath distortion include frequency diversity,
spatial diversity, and equalization. The first two involve transmission on multiple
frequencies or use of multiple antennas; when multipath degrades one frequency
band or antenna signal, the receiver switches or fades to another frequency/antenna.
Spatial diversity alone can reduce multipath outage by a factor of 6 to 12 [41.
Amplitude equalization alone gives approximately a factor of 6 improvement [41.
When spatial diversity techniques are combined with amplitude equalizers, the im-
provement is surprisingly a factor of 100 to 800, because maximum power combiners
convert in-band fade notches to slope, and slope is what is corrected by many
amplitude equalizers [12,71. For a minimum-phase multipath fade, slope equalizers
often substantially correct the delay distortion as well as the amplitude fading.
However, for nonminimum-phase fades, a slope equalizer attempts to double the
phase-delay rather than reduce it.

Adaptive transversal equalizers have been employed recently to equalize both
phase and amplitude [19. Typically five taps are used, where each tap multiplies
the received signal over the time of one symbol. Thus, a linear combination of
five symbol periods is adaptively optimized. The two error criteria curi-ntly in
use are the "zero forcing" (ZF) and "least mean square" (LMS) errors [12!. The
LMS technique is generally regarded as superior in performance, but more complex
to implement. An important advantage of the transversal equalizer is that it is
equally effective against nonminimum-phase as well as minimum-phase fades. In
one study 1101, outage reduction using spatial diversity with transversal equalization
was a factor of 3. better than that achieved using the same spatial diversity with
amplitude (notch) equalization [121.

A further improvement can be obtained using a so-called "decision-feedback"

equalizer (DFE) 11,16,14,15,20,211. Unlike the transversal equalizer, which ap-

proximately inverts the multipath channel transfer function, the DFE uses demodu-
lated symbols to subtract out intersymbol interference (ISI) on later symbols. With
added processing delay, ISI can be subtracted also from earlier symbols. An LMS
version of the DFE is described in [1]. The DFE is theoretically superior to linear
equalizers in the case of deep in-band notches (17,18,191. The DFE approach is
similar to echo cancellation 131 wherein the echoes to be canceled are constructed
from the estimated symbol-stream and channel model.

An exact inverse filter for the multipath transfer function is recursive, and for
minimum-phase multipath an adaptive inverse filter can be utilized 111,131. Since

- the inverse filter must be constrained to a stable set, nonminimum-phase multipath
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transfer functions cannot be inverted by a recursive equalizer. However, under
certain conditions the multipath delay can be accurately estimated by tracking with
a stabilized inverse filter even in the non-minimum-phase case 1131.

In practical high-speed digital radio systems (line of sight microwave links), we
have the following characteristics [121:

" Only two or three paths usually matter.

" Delays range up to approximately lins (multi-GHz radio).

Distortion is due more to intersymbol interference caused by multipath delaythan by the fading associated with multipath.

* Fade-notch depth -201ogj1 - Igali can vary as fast as 00dB per second,
where g, is the multipath secondary-path gain.

e Notch frequencies k/ne, k -= 1, 2,., can change as fast as 50,MHz per

second, where nj is the multipath delay.

e Nonminimum-phase fades occur 30 to 40 percent of the time, i.e., > 1.

Under these conditions, it is not very practical to attempt inversion of the
multipath transfer function H(d, t).

This paper outlines a multipath equalizer which is based on "decision-directed"
simulation of the multipath channel baseband output using the demodulated data
stream. The simulated channel output contains estimated echoes due to multipath
which are subtracted from the incoming baseband signal. Our approach differs from
the DFE's currently proposed in that the multipath is modeled explicitly rather than
using a transversal equalizer to approximately model the effect of multipath on the
baseband. The effect of hetrodyning the multipath channel output is absorbed into
a complex multipath gain which is is a function of the multipath parameters and
the frequency shift. All known features of the modulation format are thus exploited
to constrain the online optimization.

2. Formulation

Assume that the modulation format of the transmitted signal is 4-QAM at
radian frequency w -= 2rf,. Let wl) denote the instantaneous carrier frequency,
wm = 2lfm the modulation rate, z(t) the baseband waveform (the convolution of a
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~~rate w:m 4-0A" impulse train with a Nyquist shaping pulse), and u(t) -x (1)0'

~the transmitted waveform.

A model for a time-varying multipath channel is

.. H(, t) - I + g" )

where gi is the gain of the secondary path at time 1, nat is the instantaneous
multipath delay, and d is the unit-sample delay operator.

The received signal is then v(t) = H(d, t)u(t) - u(t)+gtu(1-na). The recovered
baseband signal is

t- ~l) V(t)ejw Z) + (9 o)z(f - ne) x(L) + a,41 ne) (2)

Thus, the baseband signal appears as a multipath-distorted signal itself where the
gain of the secondary path is now complex:

al A gae-wo", (3)

This observation allows application of multipath cancellation techniques which are
intended for the modulated carrier. (The modulated signal being in the GHz cannot
easily be dealt with directly.)

The corresponding time-varying inverse filter appears as

i.f)= t )M - 61i(t - a,)
=(ZY) + aC( - ne)) -Mid(I - be)) (4)

M z(t) + &,z(t - n,) -.t(t - fit))

The above inverse multipath filter is robust if I,&I < 1 and the time variation of
the multipath gain *I is slow compared with nt/(I - lai). For reasons mentioned
in the introduction, it is not very effective to attempt an exact linear inverse of the
multipath channel.

I.- -

3. Multipath Equalization

S." This section describes a decision-directed FIR equalizer which nonlinearly es-
timates delayed copies of the baseband signal z(i). These multipath echoes are then
subtracted out of the received signal y(t) to give the equalizer output. A block
diagram of the processing steps is shown in Fig. 1.
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The input to the system is the received signal y(t). Any number of echoes may
be estimated, but for clarity we will consider only one. Thus, y(t) = x(t) + agz(t -
at). The estimated echo &6trp(t)J!(t - hfi[rp(t)J; T,(t)) is subtracted to give

i(t) = y(t) - atirp(t)R(t - ia[tp(t)]; ?.(L)) (5)

where r.(t) is the latest time on which the nonlinear estimate of z(t) is based, and
rp(i) is the latest time used in the parameter estimates &,, f,. The equalized signal
i(t) is now sampled synchronously to recover the estimated information sequence.
The estimated amplitude is quantized to the nearest signalling amplitude. Clearly,
acceptable results will be obtained only when this quantization step produces the
true signalling amplitude with high probability.

Given the information sequence, a simulated baseband it is constructed using
knowledge of the Nyquist shaping pulse. This nonlinearly enhanced estimate pos-
seses all known characteristics of the modulation format. The parameters of the
modulation format are estimated to the extent that they are unknown; for example,
the carrier amplitude A and the precise phase of the switching transient would
normally need to be estimated online. The basic idea is to minimize error in the k-
step prediction of the baseband signal with respect to switching-time phase, carrier
amplitude, and perhaps even the information sequence. The number k of steps in
the prediction is determined by the amount of processing delay in the instantaneous
carrier estimator, and r.(t) = t - k. The mean square of the difference it - i(t) is
minimized with respect to these parameters.

The multipath parameters are estimated as follows. The simulated transmis-
sion it is passed through a simulated channel

f-l H(&dTp1IJJ, lRtlpl')I =f 1 + &lpI)IG 'i""t)  (2) -

to produce a synthetic version of the received signal

it =- fti (drt p(1)J, fit rp(i)J)i, (7) . ,

The channel parameters 4& and At are adaptively adjusted to follow the multipath
gain at and delay nt. They also must be predicted ahead of the processing delay. An
attractive criterion for minimization here is the difference between the synthetic
signal i and the received signal y(t).
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4. Description of Simulation

- A demodulator turns the equalizer output into a symbol stream

e The symbol stream drives a simulated transmitter

9 The synthesized transmitter signal is fed to the latest channel model

* The echoes from the channel model output are subtracted from the incoming
received signal to produce the equalizer output.

Note that the subtraction time, demodulation time, synthesis time, and channel- 2
model time must all add up to les than the multipath delay. Thus, the throughput
of the whole chain should be on the order of a nanosecond, and must therefore be
implemented in analog form (e.g. optical) in VLSI. The signal-format estimation and
channel modeling proceed in parallel at slower rates. The signal format presumably
is close to constant. The channel model changes at the rate atmospheric changes
take place, which is sufficiently slow that digital computations can be considered.

Clearly, if the signal comes in recordable bursts, the delay from received signal
to cancellor signal is no longer critical, and the multipath cancellation can be carried
out offline.
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Fig. 1I Block diagram of the proposed equalizer.
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TIME-VARYING AUTOREGRESSIVE MODELING OF A CLASS
OF NONSTATIONARY SIGNALS

1. INTRODUCTION

The need to estimate and process nonstationary signals arises in many

applications. The nonstationary nature of the signals may be caused by the
motion of the signal source or the receiver (e.g., in radar or sonar
problems), by the properties of the medium in which the signal propagates, or

* by other physical phenomena. Often the signals are inherently nonstationary
such as in the case of a modulated carrier in a voice commuunication system.

A commlonly encountered type of nonstationary process consists of a
narrowband or sinusoidal signal with a time-varying center frequency and

*(possibly stationary) measurement noise. Examples include: the radar return
from an accelerating target, a frequency modulated carrier, and a variety of
acoustic signals.

Much of the work on the estimation and modeling of noisy signals is based
* on the assumption that the signals may be considered to be stationary over the

observation interval. Relatively little work has been done to take explicitly
into account the effects of nonstationarity. A promising approach to this
problem, which was recently explored by several authors, is to use time-
varying parametric models to represent nonstationary signals. Linear models
of the autoregressive (AR) and autoregressive moving average (ARMA) types were
considered in 10441. The parameters of these models are assumed to be time-

varying, and the functional dependence on time is assumed to be known up to a
finite (preferably small) number of parameters.

In this paper we apply the time-varying parametric modeling approach to
the class of nonstationary signals discussed above. The parametric model used

-~ is described in section 2. It is shown that the roots of the time-varying AR
polynomial, evaluated at a particular time point, contain information about
the instantaneous frequency of the signal, in a manner similar to that of the L
stationary case. In section 3 we briefly summarize an algorithm for

4. ,

-- estimating the time-varying AR parameters, which is similar to the modified

71

%%....

.. ," ..



Yule-Walker (MYW) method [5]. Some examples illustrating the behavior of the

algorithm are presented in section 4.

In the stationary case the MYW equations provide an efficient (both in

the statistical and the computational sense) technique for estimating the AR

parameters of narrowband processes. The structural similarity of the MYW

*equations in the stationary and nonstationary cases may lead one to believe

that the accuracy aspects of the resulting estimates will also be similar.

Unfortunately this is not the case. In the nonstationary case, estimation

accuracy is degraded by the presence of noise much more than in the stationary

case. The reasons for this behavior are briefly discussed in section 3.

-7
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2. THE TIME-VARYING AUTOREGRESSIVE MODEL

We will say that a zero-mean process x(t) is a time-varying

autoregressive (TVAR) process of order p, if x(t) obey the recursion

'i ~Xlt) a I0a(t-ilx(t-i) + e(t)(1

irn
where e(t) is a stationary white noise process with zero-mean and variance

2 . The time-varying parameters (at(t),i-1,...,p} are assumed to be linear
. combinations of a set of basis time functions ifk(t),k-O,...,m- ,

Uk

ai(t) k 0 a kf (t) (2)
a, kuO ikk

The TVAR model is, therefore, completely specified by a set of constant

parameters (aik, i p, 0 k m ; 2

The choice of the basis functions fk(t) is an important part of the

modeling process. A convenient choice which will be made here is

f(t) k (3)

where T is a normalizing constant, equal to the number of data points in the

observation interval. This basis set is by no means the best one. Further
-* work is needed to develop a systematic procedure for designing optimal basis

functions for specific classes of nonstationary signals.

By analogy to constant parameter AR models we can associate a spectral

function with the autoregressive parameters. Let us define

_.T S (;t) /IAz;t)12, z-ej' (4)

where

1 p2
The roots of the polynomial A(z;t) can be evaluted for any given time point.
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The trajectories of these roots provide useful information about the

characteristics of the signal being modeled.

To gain some insight into the properties of the TYAR model consider the

simple case of a sinusoidal signal with linearly time varying frequency,

x(t) sin 2w(f 0 +t)t , (6)

where fo is the initial frequency, and i is the frequency rate of change.

The instantaneous frequency of this signal is given by,

ft t M fo + 2at ( 7)

Using simple trigonometric identities it can be shown that x(t) obeys

precisely the following recursion,

x(t) + b (t-I)x(t-1) + b (t-2)x(t-2) 0 0, (8a)

where

sin 4Wi(f (t)+C)

b1(t-1) " "sin 2(f1 (t)-Q) (Bh)

b2 (t-2) sin (8c)

As the parameter a tends to zero, these coefficients tend

to b 1  -2 cos 2f 0, b2 - 1, which are the parameters of the AR representation
of a constant frequency sinusoid. More generally, for sufficiently small

Svalues of a we have

b (t-1) * 2cos 2v[fo+g(t-1)], b2 (t-2) - 1. (9)

Thus, the roots of the polynomial A(z;t) will be (approximately) on the unit

circle at angles t2wcfo+c(t-1)] , corresponding to the instantaneous

frequency at time (t-1). Evaluation of the spectral function S (W;t) will,
x

therefore, produce sharp peaks at the instantaneous sinusoidal freouencies.

. -'.....



This analysis can be generalized to nultiple sinusoids as is discussed in

[6]. Sinusoidal signals whose frequencies change as a nonlinear function of

time can also be approximately represented by TVAR models. This is also true

S- W"for signals which are not sinusoidal but have a non-zero instantaneous

bandwidth. As an example consider the "narrowband" AR process with time-

varying center frequency defined by

2
x(t)-2rcos2if (t-l)x(t-1)+r x(t-2)-e(t) (10)

where r is very close to unity.
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3. THE MDIFIED YULE-WALKER ESTIMATOR t

The practical problem considered here is one in which it is desired to

fit a TYAR model to a finite number of noisy observations of a signal of the

type discussed above. Let {y(t),tu1,...,T~be the observed process,

y(t) *x(t) + n(t) ,(1

where n(t) is a noise process uncorrelated with the signal and x(t) is a TYARI
process of order p (1). It is straightforward to show that

where

Assuming that a (t) are given by (2), we can rewrite (12) as

IP

y(t) A - Az(t-i) + v(t) (14a)

where

A1  [ ai0,..*qaim] (14c)

or in matrix notation (in the so-called autocorrelation form),

'S. *.* . . . . . . . . . . . . . . . .



y~~~l). Z' A]

40

y~t M - '(T) v (T)
0",-

0

*~~~ ***qrows

z'(1)*
S * W*tI* (16)

.:.T)

0 Z'(Tr

0

N(nwl) Columns

The estimate of the TVAR parameter vector A is computed by solving the set of
overdeteruined MYW equations -

. Z(Z( -1-Y (-(17)

where Z'Z is a block-toeplitz matrix with N-p blocks of size (m'i)x(m+1).
The estimate A can be written as

Aa-(ZZ!Z-Zf1 Z-Z-y (18)

although in practice we would solve equation (17) without explicit matrix
inversion.
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To evalute the performance of this estimator it is necessary to study the I
statistics of the estimation error. It is straightforward to show that

A-A [ZZZ''Zl 1 Z'V , (estimation error). (19)

In the stationary case (with rol) it can be shown that if v(t) is finitely

correlated and if the delay parameter q (cf. (16)) is appropriately chosen,

then the error A-A will tend to zero as the number of data points T tends to

infinity. In other words, A in (18) is a consistent estimator [7]. In Ell

it is stated that the estimator will also be consistent for certain time-

varying ARMA processes.

The asymptotic error covariance matrix for the MYW estimates was

presented in [83,[91 for the stationary case. No results of this type seem to

be available for the nonstationary case. However, some preliminary work

indicates that in the case of sinusoidal signals with time-varying

frequencies, the estimation error of the tYW method may be large compared to

--- the best achievable accuracy predicted by the Cramer-Rao bound. A heuristic

explanation of this fact is as follows: for the KW method to work well in

the presence of noise it is necessary that the correlation function of the

signal decay relatively slowly (cf. [81). In the nonstationary case the

entries of the matrix [!'Z) can be interpreted as averaged correlation

coefficients. It can be shown that for sinusoidal signals with time varying

frequencies this "correlation function" decays very quickly, leading to

inefficient parameter estimates. In other words, the MYW estimator behaves as

if the signal was wideband, whereas the optimal estimator makes full use of

its underlying narrowband structure. See C61 for more details.
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4. SOME EXAMPLES

To illustrate the behavior of the TYAR parameter estimator we present a

few examples. In all of these examples the polynomial basis function in (3)

was used.

Example 1

The signal consists of three sinusoids with linearly time-varying

frequencies

x(t)-sin 2,(0.4-8x10"4t)t+sin 2w(0.15+10"1)t (20)

+ sin 2w10.1+8x10"4tt

The model order was p-6, and the polynomial order m3 (total of 24

parameters). The number of data points was T-128 and the signal was

practically noise free (SNR-50 dB). Figure 1 depicts the trajectory of the

angles of the roots of A(z,t). Triangles depict true values and circles are

the TVAR estimates. Note the good fit achieved by the model, except in the

neighborhood of the frequency cross-over points.

Example 2:

Here the signal was a single sinusoid with linearly time-varying

frequency

x(t) -sin 2z(O.15 + 10(2t (21)

The model order was p-2, the polynomial order was mol and T-512. White noise

was added to the signal to give a signal-to-noise ratio of 5 dB. The MYW

equations were used with q - N a 4. Figure 2 depicts the result. A good

model fit is observed throughout the observation interval.
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Example 3:

The TVAR model can be used for signals with non-linearly varying

frequencies. In this example we have a single sinusoid with sinusoidally

varying frequency,

x(t) - sin 2w(0.25+.02 sin(O.Olt))t . (22)

The model order was p-2, polynomial order m-3, T=512 and SNR u 0 cS. The MYW

equations were used with q-N-8, and the result is depicted in figure 3. At

this low SHR the model fit is not very good in some portions of the

observation interval.

From these and many other examples we can make the following

observations: (M1 the choice of a model order p equal to or somewhat larger

than twice the number of sinusoids yielded the best results. (ii) the choice

of polynomial order m depends on the maximum rate of change of the
frequencies. (iii) At low signal-to-noise ratios the estimator performed

poorly, compared to the optimal processor.
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5. CONCLUSIONS

Parametric models with time-varying coefficients provide a powerful

approach to the representation and processing of nonstationary signals. In

particular, the TAit model was shown to be useful for representing a class of

narrowband signals with time-varying center frequencies. The nonstationary

equivalent of the modified Yule-Walker method was used to estimate the TYAR

parameters. Some problems related to the accuracy of this estimator were

briefly discussed. It is suggested that in the nonstationary case the

performance of this estimator may be different than expected from its behavior

in the stationary case.

C.,l
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Simulation Results for Extensions of the Constant Modulus Algorithm

Julius 0. Smith
Benjamin Friedlander

Syatema Control Technology Inc.
1801 Page Mill Rd., Palo Alto CA, 9403

Abstract -

~.0'

The Constant-Modulus Algorithm (CMA) computes and applies an adaptive
channel equalizer for constant-amplitude signals such as frequency- and phase-

modulation. The report "Analysis and Extensions of the Constant Modulus Algorithm" .

by the authors describes several extensions to the CMA. Those which are examined
via simulations here include: (1) Extension from FIR equalizers to HR equalizers
(poles as well as zeros allowed in the equalizer), and (2) Newton's method replaces

gradient descent.

I.-.

This work was supported by the U.S. Air Force (AFSC), Rome Air
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. 1. Introduction

This is an attachment to the report "Analysis and Extensions of the Constant

Modulus Algorithm' by the authors (hereafter referred to as the main report). The
purpose here is to provide simulation results for the algorithms studied there. The

results here are highly preliminary.

For convenience, let CMA-LC denote the LMS version of the complex CMA

algorithm (gradient descent), and let CMA-RC denote the RLS version (Newton

descent). The simplified real-only versions are denoted CMA-LR and CMA-RR,

respectively.

The loss function minimized by the algorithm is

where
MZ2 0 Complex Signals

(0)-o2,, Simplified Real Case

1.1. Gradient Descent versus Newton Descent

The versions CMA-LC and CMA-LR use gradient descent (essentially the LMS

algorithm), and CMA-RC and CMA-RR use the recursive Gauss-Newton method

(RGN). Prior treatments of the CMA have been based exclusively on gradient

decent.

All four algorithms are implemented in their time-recursive forms, that is, they

attempt to minimize J(i) with respect the 9 recursively in time as T increases.

The LMS version is

90
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where P(ft-jL) is the gradient estimate of J(O) with respect to 9 at time 1, evaluated

at b =- ,-., and p is a step-size parameter which is set by the user.

The RGN version is given by

e 9s- - J0 (9t-) - 1( _1) (4)

where JI(b) is the Hessian, or second-derivative matrix of J(b) with respect to b.

Before proceeding to the examples, we summarize the signal model and algo.

rithm from the main report.

1.2. The Signal Model

Let y, denote the received signal for t = 1, 2,..., T. In the complex case, yt is

assumed to be of the form

pg-Hsy(d)zt + Hup(d)ut + Hz,(d)z', (5)

where
.:.,Zg - mi'(6)

is the transmitted signal (jot is the real-valued information-bearing signal), me is

additive noise, ut is an interference signal (assumed at least partially known), and

HsW(d) and H.,(d) are the linear time-invariant channel filters ssociated with zt

and u, respectively:

II, 1(d CA £i...,ld) A(d)

How(d) A B(d)
A(d)--" (7)

-IA(d) aoa+ aid +o 2 d 2 + .+ a.d"(7

B(d) bid + b2d +.. + b,d"

C(d) I + cd + 2 d +... + c,.d"
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where {e,, bi, e,} are real. The unit-delay operator d is defined by the relation

gf'ze zt. (8)

for an arbitrary signal ze. We assume the modulus ms of the transmitted signal ZC

is known for all t.

In the cwe of real signal1s, the transmitted signal is asumed to be of the form

zt - n, cos( jo)() -

and ii, and vt are real interference and additive noise, respectively. We also assume

4:-we + O: where
(10)
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1.3. Algorithm Summary

Below, the notation aft] denotes the ith element of the vector a.

yf y - at-, [is4.... - - it, [na]Yr' :1.* .- -f y ,,1 , . _1+ .

f [ft, Vt-i,.. , Yt-n., - * , - u- , -t-z, _ . ..

-.. { Re(ktgi), Complex Signals

.t igt, Simplified Real Case

=(1 1" t(e) - m2,, Complex Signals
9i (-) -e 2,, Simplified Real Case

-, LMS version (Gradient descent)
,R Rt-, + &tat, RML version (Newton descent) (11)

',Z" °  
".* r = < 1)

.. A 'o- a,[J ,.I, at [nal, at[,.. u. ,]

It = it-

C~z)- .....{_s,.)}

-f. = re - a.[1J!'f.. --. ... I ..- ,

u. =u ,, -- g [I]U - c nau
if t- kga VdI~-
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2. Series I - First-Order FIR Equalizer

:In this series of examples, the channel is described by

Hn(d) ( (12)ao + aRd':

and the channel input is given by

=' mceips (13)

for t O, 1, 2,..., T- 1.

The CMA estimates .o and a,. As shown in the main report, in this case the

CMA is guaranteed to converge with probability one to the true solution [ao, all

as long as at least two parameters are estimated and the phase modulation (pt is

sufficiently rich.

2.1. Example 1-1 - Sinsusoidal FM, No Noise

The specific values used in this example are

og = wt + r# sin m.

T 2048

a-aa

a, - -0.99

mS 0.1

S2.375

.1m 021.1O

- 2W0.11
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Figure Ia shows the channel input signal zt, and Fig. Ib shows the channel

output signal ,,. The amplitude modulation due to the channel filtering is quite

visible.

Figure 2& shows the angle modulation waveform, and Figure 2b shows the
post-detection version, obtained by demodulating yg = Hs,(d)z, to obtain Cbt.

Figure 3 gives the spectra of the curves in Fig. 2. The demodulated signals have

some artificial discontinuities due to wrap-around.

.- Figure 4a shows a close-up of the inverted normalized loss function

-JO) £ [I 12 m2Z] (14)

where
*1 = aops + &,ig,- i (15)

and o= 1. The peak is zero at i = -- 0.99, indicating a lack of bias in the

solution. Note, however, that the vertical axis covers only a small range (near

the machine accuracy limit); thus, the error surface is quite fiat near the solution,

indicating a large asymptotic variance is expected in the estimate of a,. This point
is clearer in Fig. 4b which displays the inverted loss function over a wider range of

Figure 5a shows a close-up of the inverted normalized loss function (14) where

, this time a, = -0.g0 and ao is varied. Tue peak is zero at ao = I as it must be.
Again, however, the error surface is very flat. Figure 6b shows a view from 'farther

back.'
- : .'

A very fiat loss function means that both the gradient P and Hessian J'
are close to zero. This means trouble for RGN which attempts to move in the
direction [J']- 1'. Newton's method is well-known to be unstable where the

curvature vanishes. Root finders, for example, typically test for this condition and
take countermeasures when necessary. In our case, a reasonable modification is to

a A 95
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add a small constant times the identity matrix to the Hessian estimate. This is
accomplished at initialization of the algorithm.

Since the third derivative vanishes for an even function, and since a fourth-order

Taylor series exactly represents the loss function (14), a descent method based on

the fourth-derivative matrix (or tensor) would be expected to converge very rapidly.

Figure 6 is a 3D plot of the inverted error surface (14) versus ao and &I. Figure

7 shows the same plot from a different angle. Note how fiat the surface is near the

middle. There almost appears to be a ring of equal cost. However, we know from

-,: .. * analysis that there are only two local maxima in this function.

The LMS CMA

First we will run the standard LMS version of the CMA to establish a base for

comparison. We found empirically that i = 100 was a good setting. Smaller p
pave slower convergence (by decreasing the slope magnitude of the essentially linear

a, trajectory). Larger p was avoided because the estimate is already starting to

oscillate.

The initial conditions for this and all later examples are 6. - 1, a, 0. All

.)x. other initial state, when required is initialized to zero unless otherwise stated.

Figure 8 shows the estimate of &1 produced by CMA-LC for this example.

Figure 9a shows only the first 300 samples of the parameter trajectory CMA-LC
so that the details of the received signal yt (Fig. 9b) and the modulus error [Jik 2 -

m21/2 (Fig. 9c) can be seen in relationship to the a, trajectory. The final value of

a, at sample 2048 is a , -0.9892 which is very close to the correct value = -0.99.

- Figure 10 shows the estimate of &1 for the real-signal algorithm CMA-LR, and

Figure 11 gives the close-up view. We see that the asymptotic convergence is very

slow. In this case, there is no theoretical amurance that the true solution is obtained
asymptotically.

96
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The RGN CMA

Figure 12 shows the estimate of a, produced by CMA-RC for this example.

Figure 13a shows only the first 300 samples of the parameter trajectory for CMA-

RC so that the details of the received signal y, (Fig. 13b) and the modulus error

[I_4Il - mr]]/2 (Fig. 13c) can be seen in relationship to the a, trajectory. The
parameter di converges almost immediately to a constant (&I = -0.9929), and the

modulus error rapidly approaches a constant near 0.175. While t - -0.992D is
close to = -0.99, it is not as close as we expect. Since we know there can be no

bis, it is clear that the CMA-RC algorithm is incorrectly implemented. That is,
we have a "bug' in the simulations program. Unfortunately, time was not available

to track it down. Aside from the bias, note the extremely rapid convergence as

compared with the LMS version.

Figure 14 shows the estimate of a,. for the real-signal algorithm CMA-RR, and

Figure 15 gives the close-up view.

2.2. Example 1-2 - Noise FM, No Noise

This example is the same as example 1.1 in every respect except for the modula-

tion signal which is now

(p HJ(d)Eg 16

where ef is unit-variance white Gaussian noise, and H1(d) is a 6th order elliptic

function lowpass filter with cut-off at one-twentieth the sampling rate (a tenth-band
"*- filter). The remaining figures are exactly analogous to example 1.1.

3. Conclusions

The LMS version of the CMA seems to be working in both the complex and
the real-signal cases. The RML version of the CMA seems to be possibly correct

;..,9
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in the real-signal case, but definitely incorrect in the complex case.
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