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Advances in the Study of Separated Flows /1
Zhuang Fenggan (Beijing Institute of Aerodynamics) and Zhang

Hanxin (Chinese Aerodynamic Research and Development Center) .

Abstract
This paper is divided into two parts. The first part -deals
with the discussion of numerical simulation of separated flow in
which problems requiring further investigation using the NS
equation are identified. The second part involves the use of
differential topology for the quantitative analysis of a flow
field. Furthermore, some preliminary investigation on three-

dimensional separation and vortex formation is discussed.

I. Introduction

For a long time, people believed that flow separation should
be avoided in order to obtain good aerodynamic properties. 1In
reality, separation always occurs. For instance, separation
always occurs on the lee side when an aircraft flies at a large
attack angle. In addition, we also discovered that the leading
edge separation vortex could improve the 1lift of the airfoil.
Hence, the important task is to understand and control the
mechanism of separation and vortex motion in order to create the
condition for implementing active control. This paper will not
discuss any experimental techniques. It only discusses the most

important progress in digital simulation and qualitative analysis

from the theoretical angle.
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II. Numerical Simulation of Separated Flow

First, we must have a mathematical model. One model is used
to simulate a steady flow and the other is to simulate a real
time flow. The steady and non-steady NS equation can be used as
an accurate mathematical model, respectively. This also includes
turbulent flow. Of course, equations can be simplified in many
cases. Various turbulent flow models have to be used in '
calculating a turbulent flow. Different simplications procedures
may be used in different regions. In the solution finding
process, iterations can be performed in order to match it between
regions. This method is very often suitable for a steady flow.
Even for a steady flow, iterations between regions may also be
lengthy. Therefore, we employed'simplified NS equaiion which
satisfy all regions within a specific accuracy range. The
current simplified NS equations include: the simplified NS
equation introduced by Davis[1] based on Zheng Xiangi's viscous
thin shock wave layer theory, which is accurate  to the Re'1 order
of magnitude and is called the viscous shock wave layer equation,
the parabolic NS equation, i.e., the PNS equation, introduced by
Lubard and Helliwell[Z] by omitting all diffusion terms related
to the flow direction in the steady NS equation, and a thin layer
approximation equation which omits all diffusion terms in the
flow direction and transverse direction. In two-dimensional
cases, PNS equation is identical to the thin layer equation. In
steady conditions, the viscous shock wave layer equation is

parabolic in both the flow and transverse directions. However,

due to the presence of a subsonic region, the equation is also




weakly elliptical. PNS equation is parabolic in the flow
direction. However, it is elliptical in the transverse
direction. It can be used to simulate a transverse separation
problem where the flow separation region is not too large.
Similarly, because of the presence of a subsonic region, the
pressure gradient along the flow direction should be specially

treated in performing iterationms.

This paper was received on June 26,. 1984

When a separation region is present, a single scan most often
cannot yield accurate results. Therefore, it is necessary to
perform repeated scans or overall iteration. A simplified
equétion ls only suited for a separation region which is not very
large. Normally, the complete NS equation will have to be relied
on to directly deal with the problem.

Currently, the use of NS equation (including simplified NS
equations) to simulate a viscous separated flow is in the
developing stage.- A great deal of work has beeh done on laminar
and turbulent flows. Simulation is partially successful in
dealing with some typical flows such as shock wave boundary layer
interference, two-dimensional compression turning, flow around
the airfoil and flow ar;und a hemispherical cylinder. Especially
in laminar flow conditions, the data are basically in agreement
with the experimental results. In the case of turbulent flow,

there is usually a larger difference because there is a iack of

reliable turbulent flow models in the separation region and the

neighboring regions. In addition, the Reynold's number used in

/2




the simulation, which is to some extent related to the turbulent
model, is not high enough. Therefore, current numerical
simulation of NS equation cannot yet be used extensively to solve
separated flow problems in engineering due to the limitation of
computer and turbulent model. In spite of these limitations,
numerical simulation of NS equation is very useful to the further
understanding of the flow mechanism. Furthermore, it creates
conditions for engineering application on the long run. In '
steady conditions, NS equation is hypobolically elliptical.
Because of the elliptical nature, its numerical simulation is
very complicated. After taking the development of new computers
into congideration, we leaned toward a time correlation method,
which can reflect real time simulation, to solve NS equation. In
order to make practical numerical simulation feasible, we must
properly solve the following problems.

1. The coordinate system and mesh chosen must have a
sufficiently high resolution to describe the physical
characteristics of the flow field. Currently, a body coordinate
is most frequently used to turn the physical space to solve the
equation into a simple regular region (such as a rectangular
parallelepiped or a sphere). The boundary of the physical space
is the boundary for the simple region. The early TTM method[3]
using elliptical equation to solve the problem is usually
considered as the most popular method. The elliptical nature

ensures the smoothness of the solution. Furthermore, we can

adjust the distribution of the nodal points of the mesh by
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choosing an appropriate control function. The disadvantage of
this method is that it takes more computer time and memory space.
A simpler approach is to use a mesh formation method for
algebraic equations[4]. A typical algebraic method is to
introduce several layers of control surfaces between the inner
and outer boundary based on the characteristics of the physical
problem so that the boundary corresponds to plane in the simple
region. Then, the corresponding relation of internal nodal
points is found by intrapolation of algebraic expressions. As
for recent advances, in addition to using various methods to
generate meshes, the study of optimization of meshes and self-
adapting .meshes is more important which ailows the autoriatic
capture of shock wave and vortex surfaca. It can aécurately
reflect the spatial flow in the large gradient region. The key
is to correctly present a guideline for optimization and self-
adaption.- This is a problem worth further investigation.

2. The selection of a difference scheme can directly affect
the stability and rate of convergence of the solution. Explicit
time dependent methods were used in earlier simulation. Howevear,
due to limitation of stability conditions, the allowed time step
in the calculation is too small. Therefore, many implicit methods
have been developed. Here, only implicit difference schemes are
analyzed.

First, the center of our discussion is implicit difference
methods, which include the non-iterative implicit factorization

4L6107]

metho y ADI method and time sharing implicit center

difference method[8]. It was proven that these three methods are
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interchangeable within the range of second order precision.
Moreover, all three use center difference. These are feasible
methods. The Courant number, which is related to the time step
length, can reach an order of magnitude of several hundreds br'
thousands. However, in the calculation, especially in dealing
with problems with hidden shock wave, it is necessary to add an
artificial dissipation term. This is a key technical measure to
control oscillation and it is highly empirical. In addition, it
is necessary to form viscous and inviscous Jacobian matrices and
to solve three diagonal matrices by chasing in the calculation.
Hence, the computation and programming workload is large.

Another important implicit scheme was introduced by
MacCormack in 1981(9]. As compared to the method described
above, it has the following advantages. First, the difference /3
scheme employed is a two-point single side difference.
Therefore, it is only necessary to chase two diagonal matrices.
Second, it is only necessary to calculate the inviscous Jacobian
matrix in the computation. However, the effect of viscosity is
taken into account in the stability condition when we calculate
the absolute matrix. Third, when the time step satisfies the
explicit expression stability condition, it is able to

automatically change into the early stage MacCormack explicit

scheme. These special features reduce the workload. However, we
must still calculate the characteristic value of the Jacobian
matrix. Moreover, it is necessary to create an absolute matrix.
This cancels some of the advantages. Unfortunately, an empirical

artificial dissipation term must still be added to eliminate
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oscillation in the calculation of a separated flow field with

shock waves.

(101,

In order to solve this problem, Coakley introduced an

implicit windward difference method. As a matter of fact this
method originates from the separation coefficient matrix method
used to solve hypobolic equations. The basic idea is to use the
characteristic value of the inviscous portion of the Jacobian
matrix in the NS equation to control the spatial derivative of
the inviscous part. When the charécteristic value is greater
than zero, a second order difference directed toward the rear is
used. When the characteristic value is less than zero, a second
order difference directed forward is used. The spatial
derivative of the viscous portion employs center difference.
This scheme, in theory, is dissipating. There is no need to add
another dissipation term. Examples of shock wave and boundary
layer interference calculation show that this method is highly
accurate and stable. The time step for calculation is large.
The convergence rate is fast. Furthermore, it does not need an
added artificial dissipation term. A detailed analysis indicates
that the region where the characteristic value changes sign
indicates that the region where the characteristic value changes
sign may require special treatment. Coakley was inspired by
Harten's work [11]t0 create dissipation functions. These are
problems to be studied further. Other difference schemes are not
discussed individually.

3. In implicit calculation, it is very important to provide

the computation condition on the boundary.

If it is not properly
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difference equation set and boundary condition make the problem
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In the following equation
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if the region for calculation is Ogxge,-o<y<e, t>0, they proved

;_ that if the backward Euler implicit scheme or Crank-Nicolson
{ ':\‘}
i¥{ implicit scheme is used to solve the above equation, then

(1) the computation is stable if the boundary condition is

e Usp=2Us; -Uss

(2) the computation is stable if the boundary condition is

U:t=2U;5,-U;s;

Here, the first subscript represents the nodal point in the x-

;%q direction where "0'" represents x = 0. The second subscript is

%g; the nodal point number in the y direction. It is easy to see

! that the first boundary condition is implicit and the second

':35 boundary condition is triply explicit.

;;:3 4. Accelerated convergence in the computation is also an ’
?t: important problem. There are many measures introduced in the

;%; literature. We believe that we should pay more attention to

:ég multi-mesh and the self-adapting mesh technique mentioned above.

i The multi-mesh technique was first introduced by ) }
_ﬁé in 1962[13]. Later, Brandt[14] made further advances. Its basic

ne
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advantage is that the coarse mesh can eliminate errors caused by
low wave number and the fine mesh can eliminate errors caused by

high wave number. This technique has already successfully been

used in the calculation of the transonic small perturbation equation,-

complete velocity potential equation and Euler equation. 1In
addition it is beginning to be applied to the computation of NS
equation. Stubbs[15] combined this technique with MacCormack's /4
implicit scheme and obtained very good results. In the

following, we will use a one-dimensional problem as an example to
split the NS equation into inviscous and viscous portions and to
employ the method suggested by Stubbs to explain the procedure of
multi-mesh calculation for the inviscous portion. Let us assume

that the inviscous part of the equatioun is

The procedure is:

(1) to use MacCormack's implicit method to calculate GU? =
(U?+1—U?)h on the fine mesh nodal points (assuming the mesh
spacing is h).

(2) to use the Ni scheme to calculate 6U§h on the nodal
points of the coarse mesh (assuming the mesh spacing is 2h and
nodal points are j, j+2, j+4,...)

QUit=2{oUt +8U! +BL 4, 80 - A, 8 LD
+ 1 ANB,L QUL+ B, )|
where A = 3F/aU, B = 9G/3U. According to this result, the values
on other nodal points of the original fine mesh may be obtained

by linear intrapolation.

(3) If the mesh is still not coarse enough, we can use the

Ni scheme to calculate the values on nodal points of a coarser

. O TS O T O I P P L S N R O S R g g P e S T TN e
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mesh (j, j+4, j+8,...):
| oUs =L [oUit +aUIt + (48U - 4,8 U

4--;—31(3,-; U, +B.,, 60’;’2;)]
Values on nodal points of the fine mesh can be obtained by linear
intrapolation.

(4) to use MacCormack's method to perform implicit fine mesh
calculation based on the values obtained with the coarse mesh
nodal points. Then, steps (2) and (3) are repeated until a
stable solution is obtained.

0f course, the problems discussed above are the major ones
to be seriously studied if numerical simulation NS equation of
separated flow is going to become practical. To some extent,
these are fundamental problems. On one hand, we need theoretical
studies. On the other hand, we must rely on a great deal of
numerical experiments to solve these problems. As a part of the
theoretical work, differential topology will be applied to the

qualitative analysis of the flow field.

III. Qualitative Analysis of the Flow Field

Separation starts from the surface of an object. Then, the
vortex penetrates deep into the flow region. The study of
separation can begin with the study of the flow pattern on the
surface of the object. Lighth111[16] is the pioneer in this
field. He introduced the friction line concept and assumed that
friction is a continuous two-dimensional vector field. We
usually believe that surface friction line is the limiting stream

line. If an x,y coordinate is introduced to the surface and

10
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t and o are the friction components in x and y direction,
respectively, then the differential equations defining the

friction line are:
Td;—=r (x,y;s Re, M, a, )

%%—xo (x,ys Re,M,a, )

where Re, M, a... are parameters such as Reynolds number, Mach
number and attack angle, and A is a chosen variable. Relative to
different parameters, the distribution of the surface friction
line is different, i.e., with various types of topologic
structures. From the qualitative theory of differential equation
we know that the topological structure is determined by the
number of singular points (pointé where 1=0=0), the.property of
each singular point and the connection of mutual friction lines
between singular points. Furthermore, according to qualitative
theory, a structurally stable singular point can only be a first
order singular point. One type is the settle point whose
Pcincare index is -1. The other type includes focal point, nodal
point and center point, and the corresponding Poincare index is
+1. For an enclosed curve surface, the total singular point
index S is )

S = 2-2g
where g is the topological seed value of the curve surface. For
a curve surface topologically equivalent to a spherical surface,

g=0, g=1 if it is equivalent to an annular curve surface.

Therefore, there are 2 more nodal points (including focal points

and centers) than settle points on a spherical surface. Hence,

/5
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ggl their topological structure can only be N2, N3, S1, N4’ SZ’ NS’ S3
R N_S , where N represents a nodal point and S represents a
n“n-2
N\ o . .
L settle point. The subscript represents the number of that
o
1 particular point. Bippes[17] obtained a dozen or so different
'\'
flow patterns up to NSS3 in the hemispherical cylinder oil flow
“of
?§ experiment. We are not going to investigate very complicated
348
ﬁ flows here. Instead, we will use the flow around an ellipsoid
PLA ’
with an attack angle studied by Wang Guozhang as a typical
gg example for analysis. In addition, we hope to clarify some
-
) controversies. Based on experimental results and theoretical
' analysis, Wang divided the basic flow into the following three
3 .
gt regions: _
3 (1) O<a<a__, closed separation emerges at the tail as shown
Li sV
in Figure (1a);
5 (2) « ,<u<a__, open separation begins on the leeward side,
ﬁxi together with the formation of a small second order closed
i3y
‘ separation region in the rear, as shown in Figure (15);
ey
¢ (3 «>a ., another closed separation appears on the leeward
€
$- side as shown in Figure (l1c).
)
3 ]
A
N L]
7
s
2
l' g
;T'
Lt
4
<
1Y




0oy
ot
)
,’

V«. i

- _ L.
:;l 4 Py
£hy s
:'.'g‘.’/,g L WANM AN 3.

v as) 0<e<e.

ARl cxn b .

. Lzt aain :
l"(' . S P . . .
it M= am—
%ﬁk 7 Tumm (. g
3,
,:(g:h ) aw a.sccs..
L !‘t‘ - -
)
A = =
k P ° .
‘i% ar ae) a<e '
A) .
R Figure 1. Basic Patterns of Flow Around an Ellipsoid with an

Attack Angle

W
W‘ 1. separation line
‘g‘.": 2. side view
At 3. top view
D 4. open separation line
5. second order separation line
Pt 6. side view
il 7. top view
f&ﬁ 8. separation line
b 9. side view
! 10. top view
0y
f': The boundary of each region shown in the figure is related
e
ﬁ%. to the aspect ratio of the ellipse when the incoming flow is
"".
NEN identical. This flow pattern is quite different from the flow
ﬁ{; around a slender body at a large attack angle. Here, the shape
%Qﬁ : of the head and the tail, especially the head, has an important
A
. effect. Before analyzing these patterns, several points are
.
? obvious from the topological viewpoint. The separation line and
i
sxﬁ re-adhesion line must be the limiting stream lines. The limiting
wl
L4 stream lines on both sides of the separation line will be drawn
;3 closer to the separation line. The limiting stream lines on both |
KoL |
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sides of the re-adhesion line, however, are moved away from it.
The separation line may be a part of the limiting stream line or
may be the entire limiting stream line. A limiting stream line
must be from a singular point to a singular point. Or, it must
be an enclosed curve. It cannot terminate at a regular point.
With regard to closed separation, there is no controversy.
Figure (1a) shows that the separation line is the line of
friction from S to Ns, which agrees with the N3S1 topological
structure model. The open separation Wang introduced to Figure
(1b) was in fact first observed experimentally by Maskell.
Wang pointed out that this open separation is a eraration
without any singular point. It is not related to Lighthill's
singular point separation at all. In addition, Wang also made
a transition from closed separation to open separation and
attributed it as the so-called tongue splitting[19]. These
conclusions warrant further investigation because tongue
splitting does not agree with laws of topology.. In addition, as
shown in Figure (1b), the open separation line must be located on
the line of friction connecting Na1’ to Ns. If the line

terminates at a new N then it obviously does not satisfy

s?
Poincare's law of topology. Open separation is an important
three-dimensional separation mode from the formation of vortex.
There is practical significance to study it further. We noticed
that Tai[ZOJ pointed out that drawing limiting stream lines
together alone is not enough to create vortex separation. It

also requires ''collision" with the inviscous stream line on the

outer fringe of the boundary, just as the pattern shown by

14
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Maskell earlier. Thus, we analyze that separation and vortex
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formation must be studied as a whole. Dallmann[21] first pointed
~§y; out that the spatial topological structure corresponding to an
identical surface flow pattern is not unique. We still do not-
have a complete topological theory in a three-dimensional space.

}A, However, if we consider any surface in the space and the

-5% continuous velocity field on the surface, this surface can’
hy . . . $ ot

intersect with the surface of the object. By defining the
'l \l .
Wl singular point on the body surface is a semi-nodal point N' or
one
;a# semi-settle point S', then Hunt[22] proved that
.v.:"‘n
P G=( Evt2-Zw)~(Zs+ 125 )=1-n
,}:!:g. - . 27X 2
Bl .
ﬁkﬁ where zy is the total nodal point number, Ig is the total settle
ot
e point number, zN.is the total semi-nodal point number, 2S,is the
ﬂx# total semi-settle point number and n is the chosen degree of
]
f:; surface connection. For a single connected region n=1. For a
b1

double connected region, n=2.
ey
Q& This law can be used topreliminarilyanalyze the basic flow
)
Eﬁ% pattern around a slender body at a large attack angle. Nielsen[23]
"
D0
s and Ericsson[24] summarized the experimental results from low
.‘&'I
gsa velocity to a transonic- flow with a transverse Mach number Mc of
3.‘.‘.‘
E;: - less than 0.5. According to the size of the attack angle 8,
!

the state of flow can be divided into five regions:
e
'ui. n 0<a<asv, the flow is adhered to the body as shown in
L2 :
3%, Figure (2a);
ff (2) asv<a<aav,symmetric stationary vortices appear in the
yeghhy
;g: leeward area as shown in Figure (2b);
o
@
’“?' g
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.( (3) aav<a<abv,asymmetric stationary vortices appear in the
leeward area as shown in Figure (28);

r 4) abv<a<abv,a1ternating non-stationary vortices appear in
the leeward area as shown in Figure (2d); and

(5) a>a > the leeward area becomes non-stationary vortices

vﬁ“l and tailing of random vortex motion.

eerrioa
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D 20 o <<t (20) &, <o

. Figure 2. Basic States of Flow Around a Slender Body at Large
el Attack Angle (in A-A cross-section)

(3%

ﬁt The flow at Mc <0.5 is often called a subcritical flow.

' h

A Conclusive opinions on supercritical flow at Mc 20.5 are still to
 §2 be further studied. The classification into five regions is also ]
A.‘:‘..,‘! -

-}:ﬂ a rough one. The actual flow is far more complex than those

HEYA

Al drawn here. A topological structure analysis of the flow pattern
2

0! shows that the transition from one region to another is an

f:; ' important subject. First, let us look at Figure (2a). There are
L)

I only two semi-settle points on the plane, G=-1, which agrees with
?§¥ the topological law. Figure (2b) only shows 4 semi-settle points
10

:f% and 2 nodal points. Obviously, there is another settle point in
k ‘»')

£
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the upper flow field. The topological format is N28184'. Figure
(2c) shows the generation of an asymmetric lateral force on the
slender body in region (3). Before it is developed into an
asymmetric vortex, a second order separation and interaction
between the primary separation vortex and the secondary vortex
exist on the body surface. In the early stage, some people /7
believed that asymmetric vortices are created by asymmetric
separation on the leeward side. However, G. Chapman et al found
experimentally in 1975 that asymmetric vortices are not primarily
created by asymmetric separation. Instead, they are due to fluid
dynamic instability. Peake and Tabak[25] believed that the
asymmmetry of a fluid is related to the instability of the
velocity cross-section at the upper settle point on the cross-
section of the object. Furthermore, this mechanism was
qualitatively interpreted based on its topological structure.

The study on the control and breakup of asymmetric vortex is

still in its infancy.

S

Now let us give a preliminary qualitative analysis on the
spatial flow field. The Cartesian coordinate xj, j=1, 2, 3 is

used. uj is the velocity component in the xj direction. Let a

singular point be the origin. 1Its neighborhood is
“l=a‘.x', a.’=(a" ) )

9z,
The stream line equation can be written as

LY

where
A= a, iy X=(x,%,,%)7,
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Let us assume the eigen value of A is lj’ j =1,2,3 and the

eigen vector corresponding to Aj is Cij' In this case, the eigen
value of AT is also Aj' The corresonding eigen vector is Bij'
Furthermore,

Bii%j =%ik

The solution of the differential equation is

x.=i ¢.C, et
;e

¢, 1 = 1,2,3 are integration constants. A satisfies the

following third order equation

A(u,,u,) | Ou,,u) O (uy,4,) ]A+-a——“'— F_i=0
A —[ 6(::‘,.::,) + d(x,;,X,) + 0(x,,x,) 0x;

where A is the value of the determinant corresponding to A. For

steady flow and incompressible flow, because of the continuity

equation. i:‘

Yt
When the three roo£s are all real, they cannot simultaneously be
positive or negative. This means that singular points cannot all
be nodal points or settle on three mutually perpendicular planes.
Furthermore, we can def@ne three plane

Bij xj =0
These three planes are tangent to regular flow surfaces. Where
one root is real and the remaining two are complex conjugate
roots, it is only possible to define one plane tangent to the

regular flow surface. In this case, there is a singular stream

line. Other stream lines are cylindrical spinals around this

18
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singular stream line. Using the Candan equation and assuming

a("u"g) a(“nu:) +a(“n“t)
1T (x,, %) | 0(x,%)  O(xy,x,)

J

then the necessary and sufficient condition for a pair of

conjugate solutions is

A L I3
I 2

The ordinary vortex we are referring to (including the vortex /8
created by an open separation) is this type of spiral flow. If

our only objective is to determine whether there is a vortex
structure around a specific point, we may choose a coordinate
system which is moving with the velocity of that point and the
above analysis is still valid. By using the results discussed
above, it is very easy to prove that the condition to have a

vortex leaving a symmetric flow plane is that the initial

singular point should be a focal point and the core stream line

of the vortex (singular stream line) is perpendicular to the

symmetry plane. A similar method can be used to study the

spatial flow near the surface which demonstrates that the
formation of a horn vortex originates from a focal point singular
point on the surface. Incidentally, we noticed that the A matrix
is a real symmetric matrix for an imitational motion. All its
eigen values are real. There is, of course, no such vortex

structure,.
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IV. Conclusions
This paper does not involve any practical engineering
problems with complicated separation and vortex motion. The
difficulties in theoretical calculation are apparent. To date,

L26] calculation of asymmetric vortex is most

[27]

Graham and Hankey's
successful. However, from Lamont's experiment , the magnitude
of the lateral force is also related to the tumbling angle and
Reynolds number. Moreover, in turning point situation, the
lateral force is almost decreased to zero. The contribution of
laminar flow separation to the magnitude of lateral force is
comparable to that of turbulent flow separation. However, the
distribution is not consistent. In addition to carrying out
detailed experimental studies on the rolling of spatial vortex,
the mutual interaction among vortices from one topological
structure to another, and the appearance of a random tail flow,
theoretical qualitative analysis will provide us with great
assistance. This discussion covered in this paper only
classifies the status and basis for further studies.

In the preparation of this paper, Comrade Li Suxun was also

very helpful. The authors wish to express their gratitude.
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R ADVANCES IN THE STUDY OF SEPARATED FLOWS

Zhuang Fenggan Zhang Hanxin
SRR (BIA) (CARDC)

*\ Abstract

This paper consists of two parts. The first deals with the numerical
simulation of separated flows and problems need further study are indi-
v,‘,}".,_: cated with NS equations madel. The seco_nd involves an application of

differential topology to qualitative analysis of flow fields and the coune-~
7'- ‘? . . . . .
Ny ction between 3D-separation and vortex production is discussed.
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SYIPALN A

Some Problems in Discrete Vortex Numerical Modelling of
Vortex Motion Behind a Circular Cylinder

Ling Guocan (Institute of Mechanics, Academia Sinica)

Abstract
This is a brief review of the four problems encountered in
the discrete numerical modelling of unsteady flow and vortex
motion behind a circular cylinder, i.e., the discrete method and
the stability of the vortex sheet, boundary layer separation and
the positions of nascent vortices, the secondary vortex problem
and the reduction of circulation of vortices in the wake. The

paper also presents some topics which require further study.

Introduction

For an abruptly started unsteady constant velocity
cylindrical motion (corresponding to an unsteady uniform flow
around a cylinder), the numerical modelling under subcritical
conditions at high Reynolds numbers needs another theoretical
approximation model because the results of the numerical solution
of the existing N-S equation are not dependable. The important
characteristics of the viscous separation flow of a non-stream
line convex object are the formation, concentration, offset, and
consumption of a vortex. In a two-dimensional incompressible N-S
equation (expressed by gand ¢), the distribution of the vortex
function £ with time and space will determine the entire flow(¢).

A simplified theoretical model is based on how to relatively

accurately reflect the distribution of £. For a high Reynolds

/10
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number flow with a valid boundary layer, this type of small
vfscosity fluid flow can be expressed by using the inviscous flow
theory together with the assistance of boundary layer flow,
circulation and concentrated vortex. In the flow field,
continuously or concentrated vortices are expressed, in
approximation, by many discrete small vortices of some strength.
This is the discrete vortex method. In recent years, there are
significant advances in the discrete vortex method in conjunction
with the boundary layer theory. Some numerical experiments on
the circular cylinder flow were successful in calculating the
disengagement frequency. This method is also very simple. The
dimensionless time in the conputation may be as long as over 200,
which is equivalent to travelling a distance more than 200 times
the radius of the circular cylinder after the motion begins.
However, because this flow is relatively complex, the changes of
flow with time include unsteady separation of the boundary layer,
formation and variation of the shear sheet, creation and
development of vortices, alternating disengagement of vortices
and the variation of vortices. To date, the understanding of the
mechanisms and patterns of some problems such as the
characteristics of the rear shear sheet layer, the disengagement
process of vortices and the dissipation of vortices in the wake
is still inadequate. There are also some problems in the
numerical modelling using the discrete vortex method, which
require further discussion and resolution. The following is a

brief review of these four problems.
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I. Discrete Method and Stability of Vortex Sheet Motion
The motion of the vortex sheet is mathematically an initial
value problem. However, the question of the existence of the

solution and its uniqueness remains unproven.

This paper was received on June 14, 1984,

This paper was a part of the National Separation Vortex Flow
Academic Report held on April 10-20, 1984.

In the actual computation of the discrete vortex method, the /11
point vortex group tends to move randomly when the computation

gets too long. In Reference [1], the cause of this random motion
was analyzed in the domain of inviscous flow theory. The induced

conjugate complex velocity q(z,) at any point z, in space by a
i i

continuous vortex sheet with an intensity y(S) should be

2:1 2;—2,

When 2y is located on the vortex sheet, singularity is shown in
the integration. .The principal Cauchy value should be used. If
the vortex sheet is divided into many small segments and the
nodal point in each segment is expressed by k+(1/2), then the

complex velocity can be approximately written as

&, T 1 e -
g @) -_—Z z.'—:.'c T 2w l—si¢;-—si-§l la| -2 (@i—2-p7"

toj

The induced velocity by N discrete point vortices at point zj is

N
g (z)=—1 I

2= &a-z

By comparing the above we know that the velocity of a point

vortex calculated by the discrete vortex method is different from

25 |




'5 the velocity induced by the actual continuous vortex sheet. The
‘i; difference is a logarithmic term. Both are in agreement when
;{% point zj is located at the center of the vortex segment. The i
;%? logarithmic term gets larger when the distances between zj and
o the two ends are unequal. The discrete method was used in
§§g references [1] and [2] to rearrange the positions of discrete
§§: conservation principle to make the new position of each vortex to
e be at the center of the vortex segment. Then, the motion of |
%?‘ these vortices was calculated. Thus, the randomness of the
§ﬁ5 - motion of vortices over a long period of time is significantly
;;f decreased. The above discussion is based on the inviscous flow
é%gi theory. -On the other hand, when two vortices are approaching
;?€7 each other and the spacing is 6<<1, the order of magnitude of the
‘ l induced velocity given by the inviscous flow theory is (1/6)-=,
ﬁﬁ% In order to eliminate the possibility of introducing a vortex
%&i nucleus to the singularity, the induced velocity in the vortex
;w nucleus range can-be calculated based on the viscous flow
:2§£ theory[3]. In order to facilitate engineering calculations,
:ﬁgs induced velocity in the vortex nucleus can be calculated based on
o the Rankine vortex model. The velocity can even be made to be
g%i zero[S]. The use of all above methods can reduce the random
é&i motion of point vortices.
;A Stability analysis of the motion of a non-homogeneous vortex
f“ﬁ sheet in contact with the boundary layer is more complex. As a
i;xs vortex spiral develops towards downstream, the intensity |
;fé; decreases with the expansion of the vortex sheet. Therefore, it 1
;gi is somewhat stable with respect to Helmholtz stability. With
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respect to the Tollmien-Schlichting instability of the portion of
the shear sheet where the vortex is in contact with the boundary
layer, the analysis is still inadequate. This type of
instability must be predicted in the vortex developing

[2]

process .

I1. Boundary Layer Separation and Position of Nascent Discfete

Vortices

The flow around a circular cylinder has a very short initial
unsteady period. Because there are two different separation
guidelines, i.e., Prandtl and M.R.S. guidelines, the position of
the -boundary layer is different. The initial circumferential
separation differs by 40° and the initial dimensionless
separation time (T = Vt/R) differs by 0.3. Correspondingly, the
position and time of the initial separation vortex are different.
Reference [4] pointed out that it is a reasonable consideration
to place the position of a newly created vortex at the location
where the boundary layer begins to thicken significantly and
separation bubble begins to emerge based on the M.R.S. guideline.
This paper also compared the effect of both situations on the
initial wake. After a very short period of time, when t -1, the
variation of the cylindrical boundary layer tends to vary in a
quasi-steady state. Afterwards, there is no-obvious difference
between the boundary layer separation positions predicted by /12

these two guidelines. Thus, the early stage of variation at

t < 1 can often be omitted for the characteristics of a motion




over a relatively long period of time. The computation can begin
with the boundary layer varying in a quasi-state.

When a discrete vortex is newly created, because the vortex
and its image vortex "distort" the local flow field, the boundary
layer will be separated prematurely. The calculated long term
mean separation angle is only 167°[S] or + 77°[2], which is
smaller than the widely believed +82°. One consideration to
minimize this effect is to begin counting the induction effect of
a recent vortex after one or a half-step in time[3]’[6]. This 1is
equivalent to placing the initial position of the recent vortex
at a distance of VjAE or (1/2)Vc&E away from the separation
point. %) and (1/2)7c are the background flow field velocity or
the transfer velocity of the vortex point. In conjunction with
viscous vortex nucleus correction, this method can improve the
calculated results of the separation point. In some engineering
problems focusing on long term flow characteristics, in order to
avoid the above difficulty in calculating the separation point,
it is assumed that separation occurs at the place where the
maximum surface velocity chopped by 5%[6]. This assumption is
very close to actual result. There are different methods to
determine the initial radial position of a recently created
vortex by satisfying the no-slip condition at the vortex at the

d[5]’[2], by choosing an

instance when a point vortex is disengage
appropriate initial value from numerical experiments based on the
stability of the vortex motion, and by using the initial radius

as a half of the thickness of the boundary layer to determine the

28
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initial radial position of the vortex when the viscous vortex
nucleus is corrected[3]. In general, in flow problems involving
the time-dependent separation points, the initial position of a
discrete vortex does not necessarily have to be determined by the

no-step condition.

III. Secondary Vortex, Effect of Secondary Vortex and Mechanism
of Vortex Detachment
The numerical modelling of the-discrete vortex method under
the assumption of high Reynolds number subcritical conditions

[4-6] that the maximum return surface flow in the return

shows
flow region can reach the order of magnitude of the incoming flow
in the initial unsteady stage of the flow around thé cylinder. A
part of the rear shear layer is continuously under the effect of
a reverse pressure gradient after a specific instance.

Theoretical computations[4'6]

assumed that this rear shear layer
would separate and create a secondary vortex in: opposite
direction to the primary vortex. The secondary vortex has an
important effect on the motion and evolution of the primary
vortex, the cancellation of vortex in the wake, the distribution
of pressure on the surface of the object, and the drag and

€31,061,071

transverse force executed on the cylinder Figures 1

and 2 show some examples of the effect of the secondary vortex.
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Figure 1. Effect of Secondary Vortex on the Evolution of the
Primary Vortex
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§% The vortex motion described by theoretical calculation[3’7]
i; agrees with many experimental observations at high Reynolds

;? numbers[8]. Therefore, the effect of rear shear layer separation
{ : and secondary vortex cannot be neglected. On the other hand, in

one experiment conducted at Reynolds number 9500 it was observed /13

1{: ) that there was a pre-wake formation and evolution process

Eﬁ (including the appearance and disappearance of a pair of

i ) secondary vortices) prior to the formation of the primary wake.
12? Afterwards, due to the instability'of the flow, return flow

fa separation, such as the one considered in the theoretical

= calculation, did not take place. As the calculation of the rear
é? shear layer separation point, the time-dependent variation of the
fﬁﬁ separation point was obtained by_using the boundaryilayer

- approximation method (Stratford method) under the assumption of
;:é laminar flow separation in the early stage of the flow in

;'h reference [7]. In long term flow situations, there are only

5 approximation methods[S][6] . Therefore, there is a need to

%;f conduct detailed non-contact experiments on the rear shear layer
f%i in order to understand its special characters so that we can

perform a more delicate theoretical analysis.

There are different theories explaining the mechanism vortex
detachment from the cylinder. There are two different viewpoints
on the breakdown of the primary vortex sheet in its developing
process due to the factor whether the effect of secondary
vortices should be considered[7]’[2]’[5]. Correspondingly,

different methods were used to introduce an asymmetric
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:%a perturbation to the numeric calculation in order to realize
;%y primary vortex detachment. However, the presence and development
E;ﬂ of secondary vortices to fracture the symmetric vortex sheet may
Ef} be one of the conditions leading the vortex to begin an

:. asymmetric motion.

éki IV. Reduction of Circulation of Vortices in the Waké

. With regard to the cancellation and viscous dissipation of
?ﬁ vortices in the wake, the total circulation in the concentrated
A

;fﬁ wake vortex should be much less than the sum of the vortices

;ﬁ. detached from the boundary layer. Experimentally, it is only
i%% approximately 60% of the original value. However, the calculated
\ g result based on the discrete vortex mode 1 is around 80% of the
:\; original value. This problem has not been resolved in the

ﬁ%; theoretical model. It will have an effect, to various extents,
E;i on the separation point, transverse force, wake length, St

- number, size of the vortex and stability region®of vortices.

_{5 Cancellation of vortices is caused by approaching vortices in
e

321 opposite directions and by point vortices less than a specific

distance from the surface of the object. There are three
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possible reasons for opposite direction vortices to approach one

another in the flow behind a cylinder: 1) point vortices

!

ol

generated by secondary vortices and boundary layer separation

%

approach one another behind the cylinder; 2) distorted or cutoff

2 ¥

primary vortex layer is carried into the wake by the inviscous
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A 4 > &
» I‘
ﬁ-’-' ¥

2

2, -4
AT PR

flow; and 3) the vortices are swept apart downstream and thus

R A

distributed in the entire wake. Several numerical experiments
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|£j were conducted to study the extent of vortex reduction by
; different mechanisms[Z]’ESJ’[6]. In some work, a correction

iﬁ; factor, less than 1, was multiplied to the intensity of recently
ga created or secondary vortices in order to match the calculated
drag (or other parameter) with the experimental results[3].

g}é _ The distribution of vortex was studied from various angles. In
%{é reference [2], the assumption of point vortex conservation‘was
i abandoned. It was assumed that the loss of each point vortex in
{iﬁ the wake is proportional to its intensity and its location in the
,ﬁ? recently separated vortex sheet. Certain principles for

%—f turbulent flow loss were obtained through numerical experiments.
j?' The -total- circulation was decreased by approximately 20% in the
'Ei calculated result. However, it is necessary to further determine
N ma jor causes of vortex reduction in real flows and the patterns
i& of variation.

o
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SOME PROBLEMS IN DISCRETE VORTEX NUMERICAL
MODELLING ON VORTEX MOTION BEHIND A
CIRCULAR CYLINDER

Liang Guocan
(Institute of Mechanics, Academia Sinica, Boijing)

Abstract

This is a shortened review which is concentrated on four aspects in
discrete vortex sumerical modelling on unsteady flcw and vortex motios
behind a circular cylinder, i. e. (1) the discrete method and the stability
of the motion of vortex sheet (2) boundary layer separation and the nas-
cent . discrete vortices' positions (3) the secondary vortices problem and
(4) the reduction of circulation of vortices in the wake. Some further
works are also suggested in this rote.
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Calculation of Slender Delta Wing with Leading-edge Separation /21

by Quasi-Vortex-Lattice Method

Xiung Shauwen (Beijing Institute of Aeronautics and Astronautics)

I. Introduction
The leading-edge separation vortex produced by a slender
wing with a large backward sweep at a large attach angle has an
important effect on its aerodynamic characteristics. There are
several theoretical methods to calculate the aerodynamic
properties of the leading-edge vortex. Earlier, there was the

Smith method[1]

, which was based on a slender body assumption.
Therefore, the trailing-edge conditions cannot be satisfied. The
leading-edge suction analogy (and its extensions) is a relatively
simple and accurate method to calculate the forces and moments on
the entire wing. However, it does not provide a detailed load
distribution[ZJ. In reference [3], the vortex lattice method was
extended to wings -with leading-edge separation.. Several discrete
vortex lines were used to represent the actual leading-edge
vortex with a nucleus. The force and moment thus calculated are
more accurate. But, the load distribution is not satisfactory.
Currently, the most realistic leading-edge separation model is
the free vortex sheet method which employs a continuous dipole
distribution to represent the wing and the free vortex sheet,
resulting in a satisfactory pressure distribution[AJ. However,

this method is more complicated and requires a larger computer

and more computer time.

35
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§$; Mehrota and Lan[SJ used the quasi-vortex-lattice method,

}%& which is applicable to flows without separation, on wings with

35. leading-edge separation[6]. This method divides the wing along

k&T its span into several narrow strips. Each narrow wing strip is

;f; replaced by a continuous vortex sheet. The leading-edge

?§§ separation vortex is represented by the discrete vortex line

&55 added onto the vortex sheet as well as from the leading-edge and )
o trailing-edge. The special feature of this method is that

.ﬁg boundary conditions can be met at the leading-edge through a

,Iﬁ: . theoretical treatment of singular points on the leading-edge. In

ff_ addition, it is capable of taking leading-edge separation into

E;ﬁ account. ~The latter may be an appropriate method to calculate a

5&‘ wing strip where separation of the inner wing is different from

5;:; that of the outer wing. Besides, this method maintains the

3?2 relative simplicity of the vortex lattice method. In the

‘ix: meantime, it also gives more satisfactory results.

3.;< In this paper, the theory in reference [5] is used to

,€§ calculate a flat delta wing with complete leading-edge separation

ﬁ?q on a FELIX C-256 computer. Furthermore, the results are compared

Rt with experimental data. X

g -

S “
on II. Calculation Method

f?} 1. Calculation Model

3:? For a large backward sweep thin delta wing, an attached

'FE& vortex sheet represents the wing surface. The discrete free

34 vortex line is used to represent the separated leading-edge
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QE. vortex sheet and the tail vortex sheet in order to simultaneously
v satisfy the airfoil condition, the leading-edge and trailing-edge
e

}i{ boundary conditions, and the conditions that no force is exerted
et :
f?# on the leading-edge and tail vortices. Figure 1 shows the

e, distribution of attached vortex elements and tail vortex

»_""L-. .

bﬂi elements. The positions of attached vortex elements in the chord
Ko :

fﬁ?7 and span direction follow the cosine law, i.e.

- %, =+ (1—cos O0) (1)
:zjy

_,)\x..“p

e This paper was received on June 9, 1984.
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oy yimgliscese (2)

S
where Xy is the x coordinate of the leading-edge of the wing, c
is the local chord length, N is the number of vertex elements
along the chord direction, b is the span length and M is the

number of longitudinal vortex elements parallel to the plane of

symmetry. The longitudinal vortex elements divide the half wing

}

=,
gg& into (M-1) strips paraliel to the plane of symmetry along the

\§§ span direction. The vortex density y is continuous along the

%!! chord direction in every narrow strip. In the same narrow strip,
2?3 the value of y along the span direction remains unchanged.

%Eg The position of the control point (xcp, ycp) is also

Ly

determined according to the law of cosine:

xom i+ S(1-cos %), i=0,1-N (3)
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Yen = ‘(1 COASM)’-J 1,2, (M~-1) (4)

where xlj and cj are the x-coordinate of the leading-edge and

chord length at y When i = 0, the control point is the

cpi’
leading~edge. When i = N, the control point is in the trailing-

edge. .

Figure 1. Distribution orf Attached Vortex Elements and Tail ]
Vortex Elements on the Wing -E
= 1Y
1. control point 2;
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figure 2. A Typical Leading-edge Free Vortex Element
1. leading-edge
2. attached vortex element
3. control point

The initial leading-edge vortex is added to the attached
vortex lattice. Figure 2 shows a typical leading-edge vortex
element AK on a narrow strip of the wing. The free vortex
element consists of many broken vortex segments. The dotted line
represents the initial position and the solid line indicates the
final position. A and K are a chord length Cg away from the
trailing-edge. The vortex linedirections from infinity to A and
that from K to infinity coincide with the direction of the
incoming flow. The initial position of each segment of vortex
line can be determined as follows:

(1) Initially, AE is in the same direction as that of /23

attached longitudinal vortex element. Segment DE is fixed on

39




the wing plane. BC and CD are O.1CR. In order to meet the

trailing-edge contact condition, CD is fixed on the wing plane
and BC is only allowed to vary in the x-z plane.

(2) EF is on the wing plane. It is located between the
leading-edge and the first attached vortex element. It is
located in the position equivalent to the first vortex element
position which divides the attached vortex into (N+1) elements in

the chord direction i.e.

=, + 211 .__1__1
=Xty [l oSN+ D

w21 cos.® ]
X=Xty [l OSSN+ D

" (3) FH is on the wing plane, in the same direction as
another longitudinal attached vortex element. G is the leading-
edge. In order to satisfy the leading-edge boundary condition,
GH is also fixed in the wing plane.

(4) HK is rolled up into the leading-edge vortex on top of
the wing by the end of the computation. Its initial position is
in the plane parallel to the plane of symmetry. The initial
position of I is:

X1%"Xu» Y17YH

2,=0.1Cptan(22.5-0.5a) when ag15°
or z;=0.1Cptan a when a»15°
IJ is in the flow direction. The height of J above the wing is
approximately 0.1CR. JK is parallel to the wing.

2. Boundary Conditions and Solution

As described above, the wing surface is divided into (M-1)

strips. Each one has N unknown attached vortex elements and

A R o
A L AN a R Y N .
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one unknown leading-edge vortex element. There are a total of
(N+1) (M-1) unknowns. There are (N+1) control points on each
strip. The total number of control points 1is also (N+1)(M-1).
Boundary conditions are met at each control point. When the
control point is not on the leading-edge, the boundary condition

should be .
(A, Hp, }+ BT} ={~sina} (5a)
If it is on the leading-edge, then based on reference [5], the

equation is ,

(A My ) +[BLF))=lou—sina)  (5p)
where Aij and Bij are the aerodynamic effect coefficients,
attached vortex element and leading-edge vortex element,
respectively. vy is the density of attached vortex elements and r
is the conditioﬁ of the 1eading-édge vortex element; a5 is a
parameter related to the leading-edge suction coefficient. From
reference [5] 3

an=Nvardep (R d ) ()
where M_ is the Mdch number of the flow, 82==VC:;E?, A is the
leading~edge swept back angle of the wing, and Ct is the cross-
sectional leading-edge suction coefficient which can be predicted
in advance. 1If the leading-edge is completely separated, Ct is
zero everywhere, then aik = 0.
Because the density of the attached vortex elements as well

STE as the intensity and position of the leading-edge vortex are not
st

e known,it is required to solve the equation by iteration. The
;\."\-::

;@F position of the free vortex is adjusted in the solution finding

process to make the direction of each vortex segment the same as

XN TN,
GG N
F s :‘n:‘:’]
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,:5 that of the flow velocity at the center. There are two standards
1 , , for judging the convergence of the solution. One is the free

;ﬁ; vortex is subject to the least amount of force in continuous

;f; iterations and the other is that the circulation of the free

;i vortex does not vary by more than 2% in two consecutive

335 calculations. If these two points are satisfied, then it is the
5%5 solution we are looking for.

#tﬂ 3. Load Computation | /24 |
'iﬁ The load on the attached vortex segment in the span

f‘E direction and the load on both ends caused by longitudinal

-
"

vortices are first calculated. Then, the latter is added to the

Wlui's

s P A

caleulation of points in the span vortex segments. The load on a

point along the chord can be obtained by Fourier series

e

expansion.

AY
Y III. Comparison of Computation with Experiments

' In this work we calculated a delta wing with a 74% sweep back. with
k$g%§§59.g§gg.gg§§lly separated and with/

M.=0, We choose

N=6 and M=10. The length of the free vortex segment is O.1SCR.

We calculated three attack angles. In Figures 3 to 6,

tff comparisons of calculated values to experimental data are given.
RS
2§§f The experimental data was taken from reference [7]. When the
s— attack angle is 10° and 20°, calculated 1lift agrees with the
[l \."u‘
l{t experimental value. When the attack angle is 30°, the calculated
e
s
Lja value is on the low side. On the curve of moment, results at all
W
sed these attack angles agree very well with the experimental data.
[ :::‘;’
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fﬂﬁ: As for the cross-section load distribution in the span direction,
1§ -
N calculated results are generally in agreement with the
A
. experimental results near the trailing-edge. Near the leading-
SN g

=2
ﬁ?} edge, the calculated peak ACp is lower than the experimental
S0

- value. Furthermore, the position is closer to the root. This is
-';.._‘ .

N due to the replacement of the actual concentrated vortex by

,Qﬁ discrete vortices. The aspect ratio of the wing calculated in

this work is relatively small (aspect ratio = 1.147). 1If the

’.\. .

g lattices in the span direction can be increased, the calculation
K
Wad may be improved.
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Figure 3. Comparison of Calculated and Experimental Lift Curve

S 1. experimental
NN 2. calculated
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Figure 4. Comparison of Calculated and Experimental Moment
Curve

- - 1. experimental
2. calculated
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A CALCULATION OF SLENDER DELTA WING
WITH LEADING-EDGE SEPARATION BY
QUASI-VYORTEX-LATTICE METHOD

Xiong Shanwen
(Beijing Institute of Aeromautics and Astronautics)

Abstract

The Quasi-Vortex-Lattice method (QVLM) which was used calcula-
ting the thin wing without Separation has been extended to calculate the
slender delta wing with leading-edge separation. The advantage of this
method is that the leading-edge boundary condition can be exactly satis-
fied. It can be used to predict aerodynamic characteristics of wings having
partial leading~edge separation. A calculation has been made here for a
slender delta wing with complete leading-edge separation and the results
are compared with the experimental data. The comparison shows that

QVLM can give satisfactory or reasonable results.
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Calculation of Flow Around Thick Wing with Separation Vortices /27

Zhu Peiye (Institutg of Computer Technology, China Aviation

Institute)

Abstract

A panel method was developed in this work to calculate the
aerodynamic force on a three-dimensional wing with separation
vortices. The model used is simple and visual. Furthermore, it
is suited for any arbitrary planform wings with different
profiles. This method employs a planar quadrilateral lattice as
well as another lattice formed by a parallelogram and four non-
copfanar friangles. A second order doublet sheet distribution is
arranged on each lattice in order to ensure a high accuracy.
Examples used include a rectangular wing and a sweptback wing.
Calculated results were compared with available experimental data
and other theoretical results. They were found in satisfactory

=

agreement.

I. Introduction
A separation vortex type of aerodynamic distribution is
i (1]

often used for fighters and it will be used in the near future .

In this layout, the flow is separated at the leading edge of the

Yo wing tip. A separation vortex is created. It flows downstream
1-_:.) .

i{ from the upper side of the wing. This separation vortex has a
¥

iﬁ great effect on the pressure distribution on the wing, resulting
\',

02

% 47




LIS
XX .

o mTa

in the non-linear rise of the lift coefficient with increasing
angle of attack. The aerodynamic properties of the aircraft can
be significahtly improved if this phenomenon can be effectively
controlled and utilized. The maneuverability will be improved
dramatically. The typical examples include the slender delta
wing, side strip wing and close range coupled duck wing layout.
In recent years, some work was done to calculate the .
aerodynamic load on a wing with separated vortices and the
geometric positions of separation Qortices. For instance,
Belotserkovskii[2], Rehback[3] and Kandilta], used a so-called
vortex lattice method, together with a relaxation technique, to
caleculate the aerodynamic load on a thin wing at a large attack
angle and the positions of separation vortices. In their
calculations, the wing was replaced by an arc with vortex circles
(equivalent to constant doublet distribution). Discrete vortex
lines are used to represent the free vortex sheet, in
approximation. The authors also employed similar method to
calculate the aerodynamic force on a ultrathin large attack wing
with very good results[s"]. This type of method is simple.
But, it only considers a thin wing and cannot calculate the
pressure distribution on the wing. Johnson et al at Boeing[7]
introduced a panel method to calculate a thick three-dimensional
wing. In their model, the separation vortex consists of the free

vortex sheet, vortex core and a cross-section connecting the two

across which the free vortex is transported to the vortex core.
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A first order source distribution was used for the middle surface
of the wing as well as for free vortex sheets. In addition, a
second order curved lattice was used to provide their method with
a higher accuracy. A very good pressure distribution was
obtained. However, we can see that their calculation method 1is
more complex and requires more computer time.

In this work, a method is developed to calculate the
aerodynamic load of a three-dimensional thick wing at large
attack angles. In this method, the wing surface is divided into
lattices. Furthermore, a second order doublet distribution is
employed. The free vortex sheet is represented by broken

discrete -free vortex line in approximation.

This paper was received on March 20, 1984. Revised manuscript
was received on May 31.

As compared to Boeing's method, this separation vortex model is /28

simple. It does not require any geometric data on the middle

plane of the wing. There is also no need to calculate the
concentrated source effect index. It not only is applicable to
various wing profiles but also has a satisfactorily high

accuracy.

II. Mathematical Approach of the Problem
The steady, in viscous and incompressible potential flow of
a three-dimensional thick wing is considered. It is aséumed that
the wing tip has a sharp edge. When there is lift, the air flow

will be separated at the wing tip to create a separation vortex.
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As we all know, this problem satisfies the Laplace equation. The
boundary conditions are that the wing surface Sw and free vortex
sheet Sy are unpenetratable, the pressure on either side of the
free vortex sheet is equal, the perturbation velocity at infinity
is zero and the Kutar condition on the trailing edge and line of
separation. Notice that the shape of the free vortex sheet is
not known in advance. Therefore, this is a second boundarf value
problem with a position of the boundary unknown. This unknown
boundary must be solved by using an iteration method as a part of
the solution to the problem. From Green's formula we know that
the solution to the problem may be expressed by a surface
integral of a source concentration density ¢ and a doublet
density u. In this work, only a‘doublet surface diétribution is
employed. By taking the unpenetratable boundary condition into

consideration, we get the following integral equation

~Vens= _%SSS #(Q)Ea;[alno("%_)]dso 1)
where !/ indicates that the Cauchy principal value is chosen for
the integral, 5 = S ¥, V_ is the free flow velocity, and n is
the unit external normal vector. This is obviously much simpler
than using o and p simultaneously. As for other methods
involving simultaneously using ¢ and u and a comparison of their

results, one can read reference [8].

III. Numerical Method

1. Approximation of Wing Surface and Free Vortex Sheet
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{E Figﬁre‘1: Two Types of Lattices of Approx1mate Wing Surface
) Area Element
3 (a) parallelogram lattice
- (b) non-coplanar plane combination lattice

The wing surface is divided into many small parallelogram
Et area elements (lattices). Each element is approximated by a
§ parallelogram or by a non-coplanar combination comprised of four
™ triangles. Figurg 1a shows the parallelogram QJ1, Q12, Q13, Q14.
ﬁ It is parallel to two diagonals Q4Q; and Q,Q, of the surface
it element Q1Q2Q3Q4 on the wing surface. Furthermore, it is at the
L same distance away from them. Figure 1b shows a parallelogram
) ) ABCD. The apices are located in the middle of the lines /29
; connecting the quadrilateral Q1Q2Q3QA. This parallelogram and
? the four triangles, AABQ1, ABCQZ, ACDQ3 and ADAQQ, are combined
j to create the approximate area element Q1Q2Q3Q4. Obviou;ly, the
53 former is simple and easy to calculate. But, the accuracy is not
L very high. It is usually used when the curvature of the wing

s surface is not very large. The latter is more complicated.
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However, it can more accurately approximate the wing surface,

especially in large curvature areas such as the leading edge,

%€i side and trailing edge. Fﬁrthermore, it also ensures the

Tiﬁ continuity of the geometric shape. In this work, this method is

; used to approximate the wing surface, not only to attain certain

b\; accuracy but also to ensure that the calculation is not too

%&f complicated. ‘
" According to Hzlmholtz theory, the intensity of a free

' ﬁ vortex sheet remain unchanged downstream. Therefore, it is

%ﬁ% ~ possible to turn a free vortex sheet into a discrete vortex lines

of equal intensity. These vortex lines should be stream lines.

3

In numerical computation, they are approximated by broken lines.

Yelu

."/
A AN

The last segment is a semi-infinite line parallel tb the free

ey

flow velocity.

-
Y

2. Second Order Doublet Sheet Distribution

Srissn

S A second order doublet sheet distribution is arranged on
N each lattice . #my)=uo+#,x+u.y+u..x’+n..;y+u..y’ (2)
{E, where (x,y) is the local right angle coordinate on the lattice.
iﬁ# The origin is at the center of the lattice. Hence, L) is the
5& value of the doublet diftribution at the center. This value is
; ?i chosen to be the discrete unknown of the problem. Other
:EE coefficients such as Myr Myeees pyy_are not independent. They are
i:g expressed as a linear combination of discrete unknowns on two
t%a neighboring lattices. .

" u.='§.: bty py= i byuttys -, u..ti by, .4, (3)
] | |
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hd

:': L

&': where My i=0,...8 are the discrete unknowns of the lattice and 8
¥ -

e neighboring lattices. bxi’ Pyi""byyi are constants which can
i, be ca culated by the weighted least square method.

s _
k‘z Strictly speaking, the optimal accuracy can only be obtained

by matching second order doublet distribution with a second order
*#} curved lattice. But, the curvature in most areas on the wing is
f}: usually not very large in most cases. Because a non-coplanar

combination lattice is used, in addition to locally tightening

ihz the lattice, better accuracy can be.obtained. Therefore,

L:f ~ satisfactory results can also be obtained by using a second order
t? doublet distribution and a planar lattice.

_ﬁ% -'3. XKutar Condition

;_}5 With regard to the Kutar condition for the trailing edge,
;7‘ there are many equivalent expressions. In this method, the

t;g condition used is that the vortex intensity vector on the

féﬁ trailing edge is parallel to the local velocity. In general, the
. flow velocity at the trailing edge is nearly parallel to the wing
g} chord. The perpendicular component of the vortex intensity

,Eé vectof in the span direction is equal to zero. This method does
= not require a new equation and does not introduce a new unknown.
hivy

:;ﬁ It is very convenient. -

§§§ ’ 4. Formation and Solution of Linear Algebraic Equations

\_; The surface integral on the right hand side of the discrete
:Zzg approximation formula (1) discussed above is used to obtain a

2§i series of linear algebraic equations to find the discrete un-

%;. know My by letting this equation be satisfied-at all lattice

N

;:33 53
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centers (i.e., control points).

"
where N is the number of wing surface lattices and aij is the |
influencing coefficient. Notice that the kernel of the integral
(1) has the following property

‘5%‘?‘1’;(%)}4&: 5y 130
where S is an enclosed curve. If errors in the discretization
process and numerical computation can be neglected, then the

determinant of the coefficient matrix in equation (4) |a,.| = 0.

ij
These equations have infinite sets of solutions differing by a
constant. For this reason, we let uN=0 and use the least square
metﬂod to-solve.N-1 unknowns from N equations. The.linear
equations are solved by the method of elimination. The method of
elimination is always reliable and effective for equations of
reasonable order.

5. Relaxed Iteration of Free Vortex Line

If the geomet;ic postion of the free vortex is known, then
the method described above can be used to find the doublet
intensity distribution on the wing. By using the method of
superposition, it is possible to calculate the velocity at any
point in the flow field. In our problem, the geometric position
of the free vortex is not known. It requires a relaxed iteration
technique to simultaneously determine the doublet intensity and
the geometric position of the free vortex. This relaxed‘itera-

tion process can be simply described in the following.
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The doublet intensity distribution is calculated by using
the above method with a given initial free vortex position, i.e.,
given free vortex lines from the trailing edge of the wing as
well as from the separation line. In the flow field defined by
this doublet intensity distribution, the position of the free
vortex line is corrected based on the condition that a free
vortex line is a stream line in order to make it closer to the
stream line. The calculation is repeated by using the corrected
free vortex line as the initial value until the maximum
correction of two consecutive iterations is less than a specific
accuracy requirement.

IV. Examples

1. Rectangular Wing

A symmetric rectangular wing with an aspect ratio 2, the
Boeing TR17, is under consideration. The distribution of wing
thickness along the span direction is -

dky>=3.11cor%-y,y€£0,u» (6)

The half wing span is divided into 4 lattices along the span and
12 lattices in the chord direction according to the law of cosine
to allow the leading edge to have a tighter mesh. Thus, the half

wing span has 96 lattices. Figure 2 shows the calculated

separation vortex.

4
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;*)} - Figure 2. Side Separation Vortex of a Symmetric Rectangular
S Wing

%%' (a) separation vortex in space o = 19°
ey : - (b) cross-section of separation vortex
L across the x = const. plane, a = 109

Figure 3. Lift Coefficient and Pitch Moment Coefficient of a
Rectangular Wing

This work

. 1lift line theory

vortex lattice method

this method without separation vortex
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Figure 2a shows the separation vortex at an attack angle o« = 19°, /37

Figure 2b shows the cross-section of the separation vortex across

L

a plane x = const. in the span direction when a« = 10°., From

o
Y
<N
_‘\

5
<

these two figures one can see the curling of the separation
vortex and the spatial position of the free vortex line.

Figure 3 is a comparison of total lift coefficient and total
pitch moment coefficient calculated by using this method to fhose
obtained with other methods. In the figure, curve 1 is obtained
using the method, curve 2 is based on the lift line theory, curve

.3 is by using vortex lattice methodtg], and curve 4 is also based
on this method but without considering separation vortices. When
the attack’ angle is small, all methods are comparable. With
increasing attack angle, this method results in largér non-linear
lift and pitch moment.

In order to demonstrate the adaptability of this method to
various wing profiles, it was used to calculate the same wing
with an asymmetric profile, the E-603 wing. The results are
satisfactory. Figure 4a is the separation vortex diagram
calculated at « = 22°. An interesting result was obtained when
we calculated the situation that o« = 10°. In this example, the
wing tip is not straight. Ins;ead, it is the middle arc of the E-603
profile. At the leading edge, this middle arc has a local angle of
attack B=20° and since @100, a local negative angle of attack of
approximately -10° occurs at the leading edge. Therefore, the separation

,“:i begins curling outward and does not curl inward as under normal conditions-

-1 T e cress-sectional view of the separation vortex on the x=const.
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plane shown in Figure 4b clearly illustrates this point. Each
cross-sectional curve begins with an outward curl and then curls
inward (as compared to Figure 2b). This shows that our method

can be used to calculate complicated separation vortices.

‘:"_370 0F a4 08 68 1.0
Figure 4. Side-fringe Separation Vortex of a Rectangular Wing
With Asymmetric Profile .

(a) spatial diagram of separation vortex, o 22°
(b) cross-section of separation vortex at x = const.,
a = 10°
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Wing Top Separation for a 45° Sweepback Wing With

[]
Figure 5.
Aspect Ratio 2 at o« = 10°

(a) spatial diagram of separation vortex
(b) cross-section of separation vortex on x = const.
plane

2. Sweepback- Wing :

Let us consider an equal chord length, 45° sweepback wing
with an aspect ratio of 2. This wing has the same profile and
span thickness distribution as those for the above rectangular
wing. Figure 5a shows the spatial shape of the calculated
separation vortex at a« = 10°. Figure 5b shows the cross-section
of this vortex on the x = const. plane. We can see that this
method is also capable of calculating the geometric shape of the

wing top separation vortex of a sweepback wing.
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Figure 6. Total Lift Coefficient of the Sweepback Wing
1. this method

2. linearization theory
o experimental

Figure 6 shows the calculated total lift coefficient of the
sweepback wing (curve 1) and compared it with results obtained
using other methods, as well as with experimental data. Curve 2
is based on a linearization theory, curve 3 is based on Gersten's
theory, and curve 4 is based on Bollay's theory. These /32
theoretical results and "the experimental data are directly
brought over from Reference [10]. At small attack angles, all
theoretical results are in agreement with the experimental data.
At medium attack angles, the results obtained with this method

fit the data better. As the attack angle further increases, such

as greater than 20°, all theoretical results deviate
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significantly from the experimental data. This may be due to the
breakage of the separation vortex over the wing in the experiment

which leads to a rapid drop of the lift.

V. Conclusion

In this work, a panel method was developed to calculate the
flow around a three-dimensional thick wing with separation
vortices. This method employs a simple model and is applicable
to any arbitrary planar wing of various profiles as long as the
wing has sharp fringes. Examples shown in this paper indicate
that the accuracy of calculated results is satisfactory.

- The method not only can be used to calculate the flow around
a thick wiﬁg with separation vortices, but also can be extended
to complicated situations such as leading edge separation vortex
and leading and trailing edge interference of a slender wing.
For a smooth body with symmetric separation vortices, such as the
fuselage and missile head, as long as the position of the
separation line is known, this method can also be used to perform
the calculation. By using the Planck-Glow theory, this method
can easily be extended to calculate a subsonic subcritical flow.
Appendix

This work was completed by the author at the Institute of
Mechanics at Stogadtt University in West Germany. All the
computations were carried out in the university computer center.
The author wishes to express his gratitude to the director of the

institute and his advisor Professor R. Eppler for their assistance.
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Abstract

The present paper has developed a panel method predicting the non-
linear aerodynamic loads on thick wings with separation vortices. The
model used is simple and visual. The method can be used for arbitrary
planform wings with different profiles. Planar quadrilateral panel and
panel that consists of a paralielogram and four triangles are used. In
order to obtain a high accuracy, the wing is represented by piecewise
continuous quadratic doublet sheet distributions. The aerodynamic loads
on rectangular wing and sweepback wing are computed. They agree well

with ¢xperimental tests and other theories.
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The Split Coefficient Matrix Difference Method for Supersonic /41

Three-dimensional Flow
Zhang Lumin and Shan Xiaonan

(China Aerodynamic Research and Development Center)

Abstract
In this paper, a split coefficient matrix (SCM) difference
method is introduced to calculate the inviscid steady flow over a
non-symmetric three-dimensional body. This method is based on
the mathematical theory of characteristics. In the split

coefficient difference method, the coefficients are split

according to the slope of the characteristic line. These
coefficients are multiplied by an appropriate unidirectional
difference. The forward difference is related to the negative
characteristic value. The backward difference is related to the
positive characteristic value.

A blunt sphefical cone is used as an exampie in this paper.
Furthermore, we compared this method with reference [2] and found
that the SCM can still maintain a high accuracy with few meshes.

I. Basic Equations
In the cylindrical coordinate O-zrg, let us assume that the
body surface and shock wave surface are respectively expressed

as:

ri=n(z, @) r.=r,(2,9)
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iy Let us introduce the following transformation

Lo A
.t z=2, = I=% » O=¢

;l . .— .

;'T where r, z,9 represent the radial, axial and circumferential

N!
§;: coordinate of the cylindrical coordinate, respectively. ry and'rS
g
are the body and shock wave radial coordinates.

:-‘.:.‘

iif By making the variables dimensionless, i.e., dividing p and »
~‘._|\.-- .

';Aﬁ by flow parameters p_ and p_, dividing velocity by y/p_/p,, and by

’ dividing lengths such as z and r by the radius of the blunt RN'

-55? the three-dimensional inviscid steady Euler equations are

u a5 | Ad,+Bdy +Cdy+ D=0

- u'+v'+w'+,-;z—_v—i %:C, (1)
£ . ° C,= : _27

_: =7 M +7—1

e where u, v, w are the axial, radial and circumferential velocity

components, y is the specific heat, p is pressure and p is

density.

b d = (u,v,w,p)T pa’ 0 0
. i A=]| P8 0.0 1

o D ew -
R 0.0 p 0

—
?fﬁ This paper was received on January 9, 1984. Revised manuscript

' was received on May 22.
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Ty, rbv, re, and rs‘p are first derivatives of ry Oor ry with

respect to the subscript. L
with respect to the subscript.

ITI. Split Coefficient Equation
The Euler equation (1) is hypobolic. Hence, there exists a

similarity transformation which can be written as

Ao+ A TA2aT ' Ady + A 'SAcaS™ * Adg+ A D=0
B=A"'B=A"'T AT 'A
Let CmA'C=A'SHS A

/42

g, and EW are first derivatives of
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Apa and Ac, are diagonal matrices formed by the characteristic

values AB and AC

of matrices B and-E, respectively.

Asa=diag (A4S, 25,4
deo=diag (A5, AR 2520
A=i}={iu
1= o wr-o o 2o (v + 28 )+ r-an(s+ 22 | /43
B==w/ru
A= W(wia\/m)

-— — _—
—~

xg and Ag‘correspond to the "+" sign and 2B and
correspond to the "-" sign. [ _&-ah ]
1 —z—' | 0
3
0 0 rz, 1
T tm
5 4B
Q—af‘—’l -&=-ah =g -
U—div —-ad - -‘%J
0 1 1 5
0 1 -1 o
S
L e o ==
W o, z ' =a
B ASu o’ AS 0 r ]
By using the inverse 7! and S'1, we can obtain T and S.

Based on the sign of the characteristic value, the diagonal
matrix A can be divided into two parts; A= A+ A_ where A, is
only A>0 and A_ for a<0.

Therefore, the split coefficient matrix can be separated as

B=A'TApu, T ' A+ AT Ay T A=g .+ 5.
é =A SAC‘.+S-'A+A-'SA¢:‘-S°' A‘é .""6 -
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The split coefficient equation for the three-dimensional steady

Euler equation is:
du+E.d!.+§-dl‘+e,‘~:¥6_d.{+vk"'baol ' (2)
The subscript b represents the backward difference and

represents the forward difference. The above equation is an

interior point calculation equation.

III. Boundary Treatment
(1) Body Surface Boundary (g = 0)
Based on the steady Euler equation (2), the characteristic
compatibility relation is established as follows:
T'd,+T'B 4, +T(C doy+C do)+T 4" D=0
On the body surface, the impermeable condition should be

satisfied:
L—I=° A.f,.=0

The negative characteristic value Az should be taken according to
the physical significance. Using 3p/3z as an example:

The split coefficient expansion is:

pr=— (A} Pe-+g)— p:f, {(’b- Up . + r’.: u;n-)}-?+

L1}

r w
1"( rs: G, _gl+_;:"g:)— [ ury,., 4+ r; ( Tie, — r'—.ﬂ'—)]}

where
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Aeh The subscripts b and f represent the backward and forward
P .
!y difference, respectively.
9
‘i?:. (2) Shock Wave Boundary (g = 1)
a8
R2 On the shock wave surface, the Rankine-Hugoniot relation is
0T

. used:
A X 2 =r+ 1 Y 1
qq:.‘r: . Vs _—‘2 P+ ——2
i
2‘{“ P=02/A+v,l-p)
Knky o1

T= W{“.(U-—w- r.elr) + U x

e __

2“'_‘: XV (Va—war,o/r)+ (w2 —0,0) (147, [ri )}
'..ﬂ 1" ———
%‘Q v =v.+v.-(l-—1-)/\/l+rf.+r3-/rf

4 P
ot ‘ ) .
— uw=u,(v-0))r,
: Vo w -w-— (v - v‘.)".,r.
SIS . .
L% . <
. v is the normal velocity in front of the wave. u_, v_ and w
Fmo ne @® © ©
[V o

are the incoming flow velocity components.

‘ (T Mososmcos f

‘.P  Oaw t{?”.\/m-qos (9—0)

':': .= - vvM .\/: 1=cos’ acosP-sin (wh—— a)

o : o=tg~'(tg B/siz@) . . . °

4%h

f%g o and B are the attach angle and slip angle, respectively. /145

As for pressure behind the shock wave p, the pressure
o characteristic compatibility relation is established by using
NS equation (3). In this case, we should take the positive

characteristic value Ag, and dgf is changed to dEb'

'vﬁ IV. Difference Scheme

The MacCormack second order explicit scheme is used in this

'Q; work[1]. In order to adapt to the special feature of the split

o s e
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i& coefficient method and to ensure the second order accuracy, a two

point and a three point formula are used.

T i v
U= 25he
:;': 6T,£= -2p,+?&’..—p.u
S dp _ 20 =3p P
ddl AD AD
xiw If Af and 6, are used in predicting step, then b and b¢ should
:éh; be used in the correcting step.
0
;;a V. Stability Condition
,;}% " The step Az must be limited by the stability condition. For

‘Pl a MacCormack explicit difference equation, stability is a

N necessary condition. With respect to any point in the area where
r

! 2 solution is sought, the development region of the differential

equation must be totally included in the dependent area of the

- difference equation, i.e.
e
A“¥
LN Moo omax (00,6 (0,0 (0,0}
4 o~ Az 1%t
7§y 1<tk
where

L (lu it +vd, +wkein) —atd, | +

oy (0, +wl,/r)'+ (w—a’) (€3 +£3/r) }

0,= '(ull_a.) Ai{luw{+ o witw —a' }
d,-;—:—.—,”u[ u£.+v£.+—!:—( ot gi‘)]—a'£.|+

+.J[ug,+_';_(g.+ %ﬂH (u' —a') [££+(£.+AA,§;,-)'/" ]}
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Az= pAE/max{(a,),,g, GO (U:)y.l}
i1€jg],
ledgh,

VI. Calculated Results and Analysis
In this paper, the equation to calculate the supersonic flow
of a non-symmetric (rb° # 0) re-entry warhead with « and 8 is
given. In order to explain the special feature of this method we
calculated the flow fields and aerodynamic forces of a 9°
spherical cone at M =5, 7, 9 and « = 0°, 3°, 6°, 9°, 10°. The
results are compared to those obtained with the conventional

difference method[2] (see Tables 1 and 2).

Table 1. Comparison of Pressure Coefficients Cp at M = 5,
a =0°

z(axial position) difference(27x13) difference(11x7) SCM(11x7)

30 0.0575 0.0548 0.0586
36 0.0588 0.0563 0.0598
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Table 2. Comparison of Pressure Center (Cm/CN) at M = 5,
a = 3°

z(axial position) difference(27x13) difference(11x7) SCM(11x7)

30 0.7165 0.7200 0.7131
36 - 0.7114 0.7145 0.7086

From the above tables we know that the SCM method can still
maintain a high accuracy with few meshes. Due to the fact that
the split coefficient method has goéd physical significance, it
is more appropriate than the conventional difference method when

the transverse flow gradient is large.
References
[1] Daywiff, J., AIAA 81-0115.
[2] Zhang Lumin and Guo Zhiquan, Numerical and Approximate
Calculation of Inviscid, Steady Supersonic Flow of a

Non-symmetric- Body with a Side Slip Angle,>Journal of

Aerodynamics, 4(1983).
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THE SPLIT-COEFFICIENT MATRIX METHOD FOR
SUPERSONIC THREE DIMENSIONAL FLOW

r

Zhang Lu-mi_n . Shan Xiaonan
(Chine Aerodymamic Research and Development Centre)

Abstract

The Split Coefficient Matrix (SCM) {inite difference method for
solving inviscid steady supersomic flow over pon-symmetrical body is
presented. This method is based on the mathematical theory of characte-
ristics. In the SCM approach, these coefficients are split according to the
sign of the characteristic slopes. The split coefficients are multiplied ' by
appropriate one-sided. Forward differences are associated with negative
characteristic slopes, While backward differences are associated with
positive slope values.

The cumerical example of the blunt sphere-cones have been worked

in this paper and compared with ref. 2 to demonstrate good accuracy ol
SCM in rare mesh.
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Investigation on Some Characteristics of the FLIC Method and Its /48
Application to Calculation of Pitot Pressure of Dusty-éas Shock

Tube Flow

Du Xixin

(China Aerodynamic Research and Development Center)

Abstract

In this paper, a trial method is used to explore some of the
features of the FLIC method. The ofiginal mass flow calculation
method is modified. This modified FLIC method is used to
calculate the Pitot pressure of a dusty-gas flow. The result
reveals the variation of pitot pressure with loading ratio and
time. The stationary part of the Pitot pressure agrees with the
analytical solution of the effective flow in the equilibrium

region.

I. Introduction .
The FLIC method! 13 have many attractive features. (1) As

compared to the point mass lattice method, it does not require

many point masses. For a given problem, this will significantly

-y reduce memory storage and computer time. Furthermore, the

;gﬁ fluctuation which is characteristic to the point mass lattice

!%P method can be avoided. (2) It can be successfully applied to the
%&: calculation of two-dimensional flow problems[1]. However, just
Eﬁi as other difference methods, an artificial viscosity term must be
Llw®

introduced to the FLIC method to improve the stability of the

calculation. Just as reference [2] pointed out that the

72

LAV A BN

RICRaS '-'_.-'\-". R e T
AR LU O A Y

........




‘.}‘ - - o - - Sl e aERR ot o GAa R Sho i il S b okt w TEEE W IET R T VL aTwy
L)

et artificial viscosity term will blur the shock wave and contact

}N‘g surface. For a dustf-gas flow, details of the flow

E;QE - characteristics caused by the presence of dusty particles will be

:?ﬁf smeared. The flow pattern is distorted. Even, the reality may
yjj be desproyed. To this end, an attempt is made in this work to
fij minimize the appearance of discontinuous surfaces in FLIC

gﬁg calculations.

oy As we know very well that dusty-gas shock tube flow problems
%gz have very important practical significance. Until now, this

{kﬁ problem has already been widely studied[3'7]. Therefore, some
)23 basic phenomena in a dusty-gas shock tube flow, such as the

2&3 effect of particles on the structure of the shock wave and

'ﬁﬁi contact surface, the presence uof a non-equilibrium region behind
- the shock wave, and the formation of an effective flow in the

Eii equilibrium region to follow, are thoroughly understood.

?3§ However, studies on the characteristics and variation of the

iih effective flow in the equilibrium region and two-dimensional

EEE dusty-gas flow problem are still inadequate. Therefore, there is
;ig a need to further investigate these problems.

This paper was received._on January 11, 1984. Revised manuscript
was received on June 14,

II. The FLIC Method /49
;ﬁ 1.. Brief Introduction
?ig A detailed introduction of the FLIC method can be formed in
W:ﬁ reference [1]. Here, we are only going to explain its major
. ES characteristics. In order to find the solution, a volume

-
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including the fluid is divided into several lattices, as shown in
Figure 1. The center coordinate of a typicai lattice is i, j,
which is determined by the position (i-1/2)6x and (j-1/2)6y. A
finite difference approximation method for the equation of motion
of the fluid is used to bring the quantity in each lattice

. forwara with time. Each computation cycle consists of two steps.
First, the median values of velocity and specific internal energy
are calculated by considering the accelerating effect of the
pressure gradient alone. This means that there is no mass flow
across the boundary of the lattice. The second step includes the
calculation of the migration effect. It is assumed that the mass
flow across the lattice boundary is directly proportional to the
density of flow out of the lattice. This is the so-called '"flow
out of lattice'" difference method. The advantage of this method
is that the calculation is very stable in the low velocity
region. Furthermore, the possibility that a lattice is empty is
eliminated. Therefore, the final values of den;ity, velocity and
specific internal energy can be obtained from the conservation of
mass, momentum and energy. As time progresses, these

calculations are repeated for every time increment.

“
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dyw 138
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2 ()

Figure 1. Schematic Diagram of the Calculation Lattice

2. Exploration of Some Features

Two different schemes are used to calculate an ideal shock
tube flow. Figure 2 shows the result obtained using the original
method in reference [1], where the coefficient for the artificial
viscosity term B = 0. In the original method, the equation to

calculate the mass flow across the lattice boundary is as

. . ~.1N
follows: if ui+%, 3 > 0
AM: 4., =Sty Pl ity & (1)
~n
If Ui o4y, i < 0, then .

M:¢§,=S.'4§P:n:i;:¢§:.6' (2)
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Figure 2. Solution to an Ideal Shock Tube Wave (94/p1=10, B=0)

a. density distribution
b. velocity distribution

where aAM is the total mass flow across the right lattice boundary /%0

within a time increment 6t, s¥ is the area of the right
i+% &

n
or p.

i+17 ] is the so-called density of the

lattice boundary, p?,j
flow into our out of the lattice, U is the x-component of the

median velocity, and the superscript n represents the cycle

).

number of the calculation. ﬁ? by S (1/2) (ﬁ?,j +ﬁ?+1,j
From Figure & we can see that when B = 0 there are obvious
overshoots and fluctuations for parameters such as velocity and
density behind the shock wave. Furthermore, the contact surface
is blurred. 1In the FLIC method, the calculation of the mass flow
is extremely important. In order to overcome these difficuities,

the original method to calculate the mass flow is modified.

Figure 3 shows the result of the modified mass flow calculation
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method. The mass flow calculation equation is:
If W%, . >0
ith;]
If " . <0, then
i+k,] ) AM? g, =513 Phur i ien O
(4)
From Figure 3 one can see that the shock wave front and the
contact surface are very clear. Furthermore, there is no
overshoot and oscillation behind the shock wave front. However,
with increasing calculation time, it becomes unstable, as shown

in Figure 4.

0.8
)[ V. AKO®
0.

T R S W R L X Sy % R

(a) (b)
Figure 3. Solution to an Ideal Shock Tube Wave (p4/p1 = 10,
B = 0).

a. density distribution
'‘b. velocity distribution

3. Overcoming the Difficulties
In order to overcome this difficulty, these two methods are
used alternatively to stabilize the calculation. In addition,

the overshoot and oscillation become very small. The
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discontinuous front, however, remains very clear, as shown in

Figure 5.

b, A A o
s ¢ 6.2 0.4 .8 0.0 5 1.0

Tigwre 4. Solution to an Ideal Shock Tube (p,/py = 10,
B = 0)

1. density distribution

10.9
.
s.
. “l. ‘
Y ._
2.
.. . L —
v 83 0i 08 eix 1.0
Figure 5. Solution to an Ideal Shock Tube (p,/pq = 10,
- B =0)
‘w"::f‘.
ftg 1. density distribution
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IIT. Calculation of Pitot Pressure of Unsteady Dusty-gas Shock
Tube Flow

Pitot pressure is a very important aerodynamic parameter.
Methods to calculate and measure it have very important practical
and theoretical significance. For dusty-gas flows, the study on
Pitot pressure is not enough. To this end, the aforementioned
modified FLIC method is used to calculate the pitot pressufe of
an unsteady dusty-gas flow.

1. Basic Equations

Let us assume that a dusty-gas mixture flow through a tube.
In order to determine the equation of motion for this mixture, it
is necessary to make some assumptions. The gas is a total gas.
With the exception of interaction with solid particies, its
viscosity and thermal conductivity can be neglected. The
particles are uniform spheres which are incompressible. There is
no variation of mass. Their number must be large enough so that
they can be treated continuously. However, there must be so few
that that their total volume can be neglected. Other detailed
assumptions can be found in reference [6].

Let p, p, T, ug and vg correspond to the pressure, density,
temperature and x and y-components of the velocity of the gas,
repsectively. Let o, ®, ue and vp correspond to the mass
concentration, temperature, and x and y components of the
velocity of the particle, respectively. Under the above
assumptions, the equations of mass, momentum and energy

(%)

conservation of the gas and the dust are:
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‘i& Continuity equations:
Kt 9P 0 (e pin=g  (5)
:r: oi Jdx el Oy pYI=U
'::: d_a;i,(au\.'_ J . ‘
9 of T ox (THIT gy (0=0 ()
gfﬂ Momentum equations:
Y ,
o Du, _ _0p 0 (7
e ) P Dt‘ 0x m D. )
Dv ap a

v, p____;___:________D.

g t d
~'.-',"1,. D y ™ (8)
o
o (9)
L Dy, _ o

3 “Dr w
o :

'Y p Dv, o
- - Dt m
(10)

150
:}ﬁ Energy equations:
8 S DI duy | v
,5...) p#?"p(T:‘-+—B—!,L)—-%[(U,jL’,)D+Q] (11)
(MW -
ﬂ,," o DI= [+ Q
(> . .. !i ‘r
;:-E m (12)
b 2 . 2%

e where U_ = (u” + v_) I =¢C I =¢C m is the mass of a
PN e g g g ? g J’ p m@’

single particle, and Dy and DJ represent the x and y components
of the drag D on the spﬁere by the flow. Q represents the heat /52
exchange between the particle and the gas. The equation of state
of the gas can be expressed as:
p = (Y-1)Igp - (13)
From these equations, the mutual interacting factors between

the particle and the gas are the drag D and the heat exchange
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rate Q. In order to obtain a set of closed equations, the
dependence of D and Q on the flow parameters must be given. In

this work, the following drag equation is used:

D=_’;_d=p(u,_,u,)|u,—u,tcp (14)
where
Cp=0.48=28 Re "' " (15)
The heat exchange formula is:
Q=xd uC,Pr i (T-0)Nu (16)
where
Nu=2,0+0.6 Pr'i’ Re'’? (17)

where Cp is the isobaric specific heat of the gas, u is the
viscosity coefficient of the gas, and Re is the Reynolds number
calculated based on the diameter d of the particle and the
relative velocity of the particle:

Re=p.?U.—U:|d/u (18)
Pr is the Prandt number .

Pr=wC,/K (19)

where K is the thermal conductivity of the gas.

Because the surrounding environment of the particle may
experience very fast temperature changes, the temperature
dependence of the viscosity coefficient g and thermal
conductivity K must be considered. The viscosity coefficient of

air can be expressed as:
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where M is the viscosity coefficient at the reference
temperature Tr' Because the temperature dependence of K is
sidilar to that of u and Cp is a constant, the Prandt constant is
still a constant Pr = 0.75. In this calculation, the particle'is
a small glass ball. The density of the material is Z.Sg/cm3 and
the diameter is 10 micron.

2. Effect Flow and Its Pitot Pressure in the Equilibfium

Region

From references [6] and [7] we»know that the particles in
the flow reach the limiting velocity and temperature.of the gas
after a relaxation region behind the shock wave, i.e., the dust-
gas -mixture reaches an equilibrium. The mixture, in equilibrium,

L6l _ an effective gas. The

may be considered as a new total gas
effective parameters such as specific heat and soundspeed of this
effective gas had been derived and explained in reference [6].

In order to facilitate the following description, we are
introducing two important parameters here: (1)  frozen Mach
number Mf which is defined as the ratio of the flow to the local
gas sonic speed and (2) equilibrium Mach number Me which is
defined the ratio of the flow to the local effective sonic speed
of the mixture. B

For this type of effective flow in equilibrium, the Pitot

pressure can be expressed as: When Me < 1

r,/(v,- 1§

pilow=r(1+ 25y (21)
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IV. Results and Discussion
The modified FLIC method is used to solve the partial -
differential equations (5) - (12) for a dusty-gas shock tube

flow. Furthermore, the variation of Pitot pressure with time is

if calculated at various loading ratios.

Ef 1. Dust-gas Shock Tube Flow

{§} Flgure 6 shows the velocity distribution (u51ngvr5_7;— to
fiﬁ make it d1men51on1ess) and density distribution (using p_ to make
28 it dimensionless) of a dusty-gas shock tube flow. The distance x
733 is made dimensionless by using 1 = (4/3) (pp/pc)d. Py is the

‘:?i density of the material. The high pressure section of the shock
.%ﬁ tube is filled with pure air and low pressure s?ction is filled
,éﬁ with the dust-gas ﬁixture. The diaphragm pressure ratio pa/p1 =
33&; 10. From Figure 6 we can see that the presence of particles

“{:_ makes the shock wave decay. It is followed by a non-equilibrium
aﬁh region where the partic}es exchange momentum and energy with the
§$0, gas. When the velocity and temperature of the particle reach the
; corresponding values of the gas, the flow is in equilibrium.

tig From the density distribution we can see that the decayipg

xg% contact surface has a fixed area. The calculation grasped the
ﬁ@f major features of the dusty-gas shock tube flow. In this sense,
;%; the modified FLIC method is reliable.
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;:’.:-} 2. Pitot Pressure
X Figure 7 shows the variation of Pitot pressure with time.
-

"‘j The loading ratio a = 1.0, Ms=3.6 and dp=10 micron. One can
e see that a pressure jump is created when the shock wave sweeps Coe
EG

across the pressure probe. After an unsteady process, Pitot
'*" pressure maintains at a constant level. The flow between the
- ‘
;'.::: shock wave front and the end of the probe is a non-equilibrium
Y ’ -
flow. Therefore, the Pitot pressure measured is the non-

'-'-'.j'-'-" equilibrium Pitot pressure of the dusty-gas flow under supersonic
ACH s
-f-iﬂ conditions.
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- 1. d = 10 micron

Figures 8 and 9 show the variation of Pitot pressure with
i
- time at Ms = 1.6 and @ = 0.4 and 1.0. We can see an interesting /54
.
L phenomenon, which is that there are many small fluctuations
-’ superpositioned onto the unsteady part of the Pitot pressure. As
?5; the cause was investigated, it was discovered that when the
fg equilibrium Mach number in the equilibrium region Me<1, this
phenomenon exists. When Me>1, these small fluctuations
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Figure 8. Variation of Pitot Pressure with Time in a Dusty-gas
Flow

Figure 9. Variation of Pitot Pressure with Time in a Dusty-gas
Flow ’
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Figures 10 and 11 represent the variation of the steady
value of Pitot pressure with o« at MS = 1.6 and 3.6, respectively.
One can see that (1) the analytical solution (equation (22)) of
the effective flow in the equilibrium region is very close to the
constant Pitot pressure in non-equilibrium. However, there is a
region in Figure 11 where the analytical equation (equation (21))
is very different from the numerical value. This region V
corresponds to a<0.6, i.e., M <1. (2) The steady value of Pitot

pressure increases with increasing a.

0.0 0.4 0.8 1.2 1.6 g2.0
Figure 10. Variation of Pitot Pressure with a, Ms=1.6

1. numerical solution
2. analytical solution
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Figure 11. Variation of Pitot Pressure witha, Ms=3.6

1. numerical solution
- - 2. analytical solution

V. Conclusions

Through the above discussion, we can reach the following
conclusions. (1) Details of the effect of the presence of the
particles in a dusty-gas shock tube on the flow can be calculated
by using the modified FLIC method. This indicates that the
modified method is reliable. (2) The pressure of numerous
particles in the flow increases the Pitot pressure. The Pitot
pressure when MS=1.6 and o=2 is 1.8 times that of o=0. When M
=3.6, it increases by 3.1 times. From this we can see that the
effect of particles on Pitot pressure also increases with
increasing Mach number M, . (3) When the incoming flow is steady,
Pitot pressure reaches a steady value aftera relaxation period.
When Me>1, the steady Pitot pressure value can be calculated

approximately by using the analytical solution (equation (22)) of
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(3]
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(61
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[8]

effective flow in equilibrium.
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The trial calculation is used to explore some of the features of FLIC.
The original approach to the mass flow calculation of FLIC is modified
through the caiculation. The modified FLIC method is used to compute
the dusty-gas shock tube flow and its pitot pressure. The results obtained
here show clealy both the decay of a frozen shock wave and a contact
surface and other details of the flow. The results also show the variation
of the pitot pressure with loading ratio and time. The stationary part of
the pitot pressure is in good agreement with the analytical value of the

effective flow in the equilibrium region of a dusty-gas shock tube flow.
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o An Experimental Investigation of Flap Turbulent Heat Transfer /56

p - and Pressure Characteristics in Hypersonic Flow

- Gao Ruifeng (China Aerodynamic Research and Development Center)

- Abstract

This paper introduces the experimental results of the -heat

) . transfer and pressure characteristics of a flap installed on a
N blunt cone model obtained in a shock tunnel. Effects of flap

;ﬁ deflection angle, attack angle, Mach number and unit Reynolds
Sﬁ number on heat flow and pressure characteristics are discussed.
;f' The results indicate that flap deflection angle and Mach number
.. are detefﬁining factors affecting the flap heat transfer,

3 pressure characteristics and control effectiveness. The paper
) also gives the correlation between the peak heat flow and heat
:é pressure, dmax/ac = (pmax/pc)0'7, as well as an empirical formula
& to calculate peak heating. )

3; |

;; I. Introduction

4: The three-dimensional flow and its separation

:é characteristics near one flap on a conical body are interesting
3%: problems for us. When the flap deflects, it usually results in
‘%: the interference between shock wave and the boundary layer which
;;f frequently leads to the formation of a separation flow.

x% Interference separation can change the apparent pressure

KE distribution and heat distribution on the aircraft as well as on
i
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the flap. Consequently, it may affect the stability and control
effectiveness of the aircraft, as well as may cause serious local
heating of the surface. Therefore, it is necessary to
investigate this type of complicated attached and separated
flows.

The re-entry model of a hypersonic vehicle is shown in
photograph 1. Experimental studies on similar models were-

reported in references [1] and [2]. Berman et a used sharp

and little blunt cone models to measure the heat transfer,

pressure and drag increase on large deflection angles (45°, 60°
and 75°) interference sweeps at M_~11 and Re°=2x106 (based on the
length of- the model). Kim and Parkinson used Calspan's shock
tunnel to measure the heat transfer, pressure and ffictional drag
of the flap behind a slender cone at M_=7.8+~13.3 and Re°=3.3x10§v
70x106/foot. However, the flap deflection angles were small, 10°
-30°. The purpose of this experimental study is to adopt this
model (see Photograph 1) to increase the flap ddflection angle to
measure the heat flow and pressure on the flap and the cone
surface in order to determine the effect of factors such as flap

deflection angle, Mach number, Reynolds number and attack angle.

Photograph 1
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I1. Experimental Conditions

-t

This experiment was conducted in a shock tunnel. The

experimental gas is nitrogen. The Mach numbers of the flow are

7.15 and 10.97.

LIS QO 16 a NP

}ﬁn This paper was received on May 16, 1984

Sl )

; The corresponding Reynolds numbers are 4.34x10'7m-1 and 4».1‘4x107 /57
‘ ) m'1, respectively.Experimental observation of a great deal of

A A .

%ﬁ boundary layer status data indicates that the flap is totally in

el

Mol turbulence.

The half conical angle of the model is 10°. The bluntness

TR ‘

i% ratio is 0.061. The WiN9d deflection angle 6 is 22~51°. The

: angle of at_tack"is -6°~10°. The angle between the flat surface

" behind the conical model and the axis of cone is 5.5°. The two

;ﬁ flap chord lengths are 80 and 36mm, respectively. The spans are

i

5 94mm and 37.5mm. The heat flow rate and pressure were measured
with a thin film platinum thermister and a piezoelectric pressure

B

iz transducer, respectively.

>

.

%

N III. Results and Discussion

f$ All experimental results are expressed in terms of the heat

.

;;ﬁ g flow rate ratio (d/dc) and pressure ratio (p/p_) where the

reference dc and p, are the surface heat flow rate and pressure
in front of the shaved flat surface on the rear of the cone where

there is no interference.

RN

The flow rate near the flap of the aircraft is three-

-

dimensional. When the flap is deflected and the interference

Y X
A .
Y ST
[
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ol
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increases, the strong pressure gradient causes the separation of

the attached boundary layer, the shock wave and the interference
between boundary layer and the shock wave. Therefore, the flow
field is even more complicated (see photographs 2, 3 and 4). The
pressure distribution varies violently on and near the flap
surface and the heating rate increases significantly. Many
characteristics of this spatial flow are related to variou§
influencing factors (such as flap deflection angle, span, chord
length, flap profile, tip profile, érevice, Mach number, attack
angle and Reynolds number). Effects of various factors on the
thermal environment are described and discussed in the following.
Heat Transfer and Pressure Characteristics on Flap Surface. At M_
=7.15 and 10.97.and Re°=4.24x10'7m'1, the flap heat'transfer rate
and pressure distribution at various deflection angles are shown
in Figure 1. Apparently, the heat transfer and pressure exhibit
both a boundary layer and a separation flow pattern, in agreement
with the general that the flow is attached or separated when the
interference is weak or strong. As compared to the results
obtained with a flap on a plate, the peak positions of heat
transfer and pressure are lagging behind for the flap on a cone.
They vary between 50% chord length to 80% chord length. When the
deflection angle is around 36°, the heat flow distribution in the
mid chord is slightly distorted. This may be due to the
interference of the expansion wave at the shaved flat surface.
The following correlation formula is satisfied by the peak heat

flow and peak pressure in reference to the rear cone values:
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where n = 0.7. The correlation power iridex found by Berman et al
is n=0.8 0.8, and n = 0.8 by Kim[2]. The difference may be-
due to the difference in the local geometrical profile of the

model. Therefore, we believe that the correlation index is

determined by the local flow field characteristics.

‘l
| TS YRTEY . gl

o ’
%18 = 2
30,40,§0.81,0C 69.3040608130¢

J. oBRee

;i-.- IRITT 2 B

Figure 1. Heat Flow Distribution and Pressure Distribution at
the Center of the Flap Wing

1. Re= = 4.34 x 107m7]

2 Re» = 4,14 x 10'm™

3. heat flow distr?bugﬁon
4, Reo = 4,34 x 107m -1
5. Reo» = 4,14 x 10'm

6. pressure distribution

From an engineering angle, on the basis of the anal&sis
given in reference [2] and by using the experimental results in

this work, the following empirical formula to calculate the peak
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L&ﬁ heat transfer is obtained

'::”' -%-_-:-=s.1se-. 18,39 8- (23.105-56.08 8 pi=,

%ﬁ‘ where 6¢ is in radians and Re_ is the unit Reynolds number (m'1}. (58
"R The applicable range is: 28°<6f§45°, ec=8.5°~11°; M_=7~11; and

éii small pluntness. The error in most cases is less than +10%. The

‘-§ formula shows that the peak heat flow is proportional to the flap

g(ﬁ deflection angle and Mach number, and inversely proportional to

a2 Re 0!

Eig Characteristics of Heat Flow in Separation Region. The

i?j - deflection of the flap causes the thermal environment near the

:t; flap to vary significantly. Observation of the shadow (see

fgz phoiégraﬁhs 2, 3 and 4) and measurement of the heat flow indicate

?$3 that the separation shock wave shifts forward with increasing

éé‘ deflection angle. The region influenced by separation is

expanding (see Figure 2). *~

3\
g 33%8° 397167 50°30°
' dv © a e o o @
. :: ot LI LS U Y
“
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f;f Figure 2. Heat Flow Discrioution in Separation Region
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| 6= 36°18 ' 0 = 45°
,y ; (photographs)
o
‘{, Effect of Attack Angle: Under a specific separation
el
"‘ condition (6f=39°16'), the attack angle of the model was changed
ﬁiﬂ to ~4°,0°, 4 and 10° to measure the heat flow and pressure on the
A flap. The results are shown in F1§Pre 3. It was found that the
3 (within a small angle ¢ of attack range

s heat flow varies s113ht1§)\ (~4°<a <4, Hence, the heat transfer
 %§ ratio at zero attack angle can be roughly used to represent the
ot
P o

a
v

€t
Beh
r‘\.“'
s ¥V g

heat transfer ratio in the range of small attack angles.
However, when the attack angle is over 10°, the heat flow on the

;;v flap is decreased significantly.
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Figure 3. Effect of Attack Angle on Flap Heat Flow Distribution

" Under the condition of attached flow (6f=22.5°), the heat

transfer ratio and pressure ratio on the flap decrease as the

attack angle decreases from 0° to -4° and -6°, i.e., the flap is

the leeward surface. The flap heat and pressure increase must

be slower than the corresponding values on the rear cone surface.

Effect of Reﬁnolds Number. In this work, the Mach number
was kept unchanged, i.e., M_=10.84. When the unit Reynolds

number Rem=2.82x107m"1 and 4.14x107 1

m~ ', the measured flap heat
transfer ratio and pressure ratio basically do not vary.
Therefore, we believe iﬁat the dependence of characteristics
controlling the flap heat transfer ratio and pressure ratio on
unit Reynolds number is weak in the experimental conditions
studied (see Figure 4).

Effect of Mach Number. When the flap deflection angle is
7 -1

36.5° and the Reynolds number is approximately 4.24x10'm” ', at
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M_= 10.97 and 7.15, experimental results show that the heat
transfer ratio and pressure ratio on the flap are strongly
dependent on the Mach number. With increasing Mach number, the

heat transfer and pressure ratio will increase (see Figure 5).°

Figure 4. Effect of Unit Reynolds Number on Flap Heat Flow and
Pressure

4.14 x 107m'1(hollow)
(M;¥10.84,Re°= 7 -1
2.82 x 10'm™ '(solid)

1. heat flow
2. pressure
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o 7 -1 10.97(triangle)

Y - : <%f=36.5°, Re_=4.24x10'm " ,M_

e : : 7.15(circle)

e

ahh 1. heat flow

2. pressure

:%ﬁ Iv. Conclusions

afﬁ Under the experimental flow condition, we reach the

7gf following conclusions in studying the turbulent thermal

335 environment on a flap in a blunt cone model:

Y 't”'.'i

_S”i 1. The heat flow and pressure are distributed in a boundary
Q‘T layer or separation flow pattern on the flap. The peak heat
“ -

Rg- transfer and peak pressure (in reference to the value on the rear

N
454¢ body) satisfy the following correlation:
fmez)
Sk q. D




‘.h\‘n
Y

29
A}

A 2. The variation of flap re-attached flow with attack angle

G is similar to that of rear cone heat flow with attack angle (in

B3 <

ey -

j.v the small attack angle region).

3’_ 3. The re-attached heat flow and pressure characteristics
. of the flap are strongly dependent on the Mach number. Their
'-‘_ﬂ_i .

3?_-;;7 dependence on the unit Reynolds number is weak.
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2 AN EXPERIMENTAL INVESTIGATION OF FLAP TURBULENT
; HEAT TRANSFER AND PRESSURE CHARACTERISTICES
a5 IN HYPERSONIC FLOW
ﬁ» |

B Gao Ruifeng .

e (China Acrodynamic Research end Deveiopment Tenter)

“~§ Abstract

hty) .

N‘,f.j This paper preseats experimental results of flap heat transfer and

e pressure characteristics on a blunt cone in shock tunnel. Effects of
" ) flap deflection angle, angle of attack, Mach number and unit Reynolds

" pumber are discussed.

LEQ ) Results have shown that flap deflection angle ard Mach number are

3 decisive factors, which cossiderably affect the flap heating, pressure

characteristics and control effectiveness. This paper gives a correlation

of peak heating and peak pressure. »qé"‘z(-p;"«) ", also gives an empi-

rical folmula for estimating peak heating.
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LDA Measurements for Leading Edge Vortex Core Velocity of a
Strake-wing
Lu Zhiyong (Beijing Institute of Aeronautics and Astronautics)

and Cheng Yuangzhong (Institute No. 304 of Aviation Ministry)

Abstract
The axial velocity distribution of a vortex core on a
strake-wing was measured by a two-dimensional laser Doppler
anemometer (LDA) in a water funnel. Furthermore, the spatial
position of the strake-wing vortex and the variation of the
vortex breakdown point with the angle of attack are given.

It is demonstrated in this paper that the axial velocity
distribution at various attach angles can be expressed by one
curve by choosing an appropriate non-dimensional parameter. But,
this is not true at downstream of the vortex breakdown point

because of the violent change in velocity.

Introduction
Over a long period of time, the aerodynamic characteristics
and the flow phenomena of slender delta wings and strake-wings
have been widely studie&[1’2’3]. It was found that the
aerodynamic characteristics of these wings at large angles of
attack are determined by the leading edge vortex (see Figure 1).
As we all know very well that the leading edge vortex originates

from the separation of the shear layer at the leading edge of the
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}ﬁ winrg. Most of the vortex moment is concentrated in the vortex
. i core. The flow field of a vortex core has been studied

Qﬁj extensively. However, most of the studies limited to the

iﬁ: measurement of heat and direction[4’5’6]. Different from those
e methods mentioned before, LDA shows its unique advantage that it
\ 'Hu‘ .

:" will not interfere with the flow field[7]. In addition, its

A -

T measuring signal is transmitted at the speed of light. In

conjunction with a processing system including a computer, it is

S capable to perform real time measurement. This is very useful to

-

A v

roa_ &L
[N

the study of a vortex core flow field and the measurement of
turbulent parameters in the vortex core. The accurate
measurement of the flow field can further deepen the study on the

leading edge vortex, which will facilitate the creation of more

7
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appropriate mathematical models.
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f;i Figure 1. Leading Edge Vortex of a Delta Wing
:Rﬁ Experimental Apparatus and Model
h.j‘
Sy
Water Tunnel
'ﬁ} The measurement of the flow field of the vortex core of a
éj- strake-wing was performed in the water tunnel at Beijing
-
% :n K4
B Institute of Aeronautics and Astronautics. The experimental
P
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SN 102




o Npam s S
P |

SRR,
Fatalse

;"6”

XL
ST LI AT

-

Sl ath e ¥ =~
X i

]
.”

-
Se
L

A
B A

P
o h

2

section of the water tunnel is 0.4x0.4m" in square cross-section.
It is 6m long. The Reynolds number based on the average chord

length of the model as the reference is Re=12000.

This paper was received on June 10, 1984

Hydrogen Bubble Generator /62

The principle is shown in Figure 2. When the aluminum.model
is placed between the platinum wire and the carbon rod, the model
itself becomes an electrode. Hydrogen bubbles are generated at
its leading edge. When the model is at a certain angle of
attack, the hydrogen bubbles display the core of the leading edge
vortex. When we perform the LDA measurement, hydrogen bubbles
are used as the tracing particles; The size of the-hydrogen

bubble is usually below 4 microns.

Y- -
£17 11 )
iy T I\

ARARFR .
Figure 2. Hydrogen Bubble Generator

. 1input end
transformer
relay

to metal wire
polarity switch
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e The DISA two-dimensional Laser Doppler Anemometer (LDA)

The LDA system is shown in Figure 3. In the experiment, the

g
5]

R
ERE

optical system of the LDA is shown in Figure 4.

e
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) Block Diagram of the LDA System

Figure 3.

laser

beam modulator and converter
light detector

signal processing display
receiving PDP11/03

terminal

1
2
3
4
5
6

L Figure 4. Optical Arrangement of the LDA System
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AAOAE

-%‘ 1. mixed
A 2. blue

\ 3. green

- 4. mirror M

X 5. polychromatic light

3 6. blue and green light

S 7. optical element

B 8. laser

e 9. cover plate P

5}: 10. receiver

! :::‘::

b Model

& X

The profile and size of the strake-wing is shown in Figure

;;; 5. The sweepback angle of the leading edge of the strake is X=76° ' r
RN

*& . The sweepback angle of the primary wing is X=30°.

S9h) - .

: = I - .
s _J A~ L’A\ -
\ 2 ] ’ +\ c.-. .
", A =1 ==
:r' BB \ . DNy 30
n:' /\A 'l
3
™ ‘ 4
4 ' 7
::::;. e 1 40, 7
ﬁi Figure 5. Profile of the Strake-wing
z Results and Discussions
g
Joi 1. Position of Vortex Core and Breakdown of Vortex Core
J'.;f
2} Figure 6 shows the positions of the vortex core at various
s angles of attack, which were obtained through the use of hydrogen
ML,
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bubbles and laser measurements. Figure 7 shows a comparison of
the breakdown point of the vortex core for a strake-wing to that
of a delta Qing. In the current experiment, the breakdown point
has already reached the trailing edge when the attack angle a=18°."
This is slightly lower than the result obtained from wind tunnel
measurement. It should be pointed out that the position of the
breakdown point does not remain unchanged after it is moved'onto
the primary wing. On the contrary, the breakdown points of the
two primary vortices are located on either side. Each of them is
moving back and forth around a specific average position. The
phase of this movement differs by 180°.
-'2. Axial Velocity Distribution of the Vortex

According to reference [8],~the space occupied.by the
leading edge vortex can be divided into three regions, as shown
in Figure 8. The parameters D and V' vt are the major
characteristics of these three regions. D represents the
distance between the spiral vortex sheets, Vvt 1s the viscous /63
diffusion distance and v is the dynamic viscosity coefficient. t
is the characteristic time which can be expressed as x/U_, where
x is the coordinate in the direction of the primary flow and u,
is the incoming flow velocity. The viscous region is D<<y vt.
In this region, the vortex core (also called the subcore) is also
spinning as a solid. There is only axial velocity and no

rotational velocity on the axis of the vortex.
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Figure 6. Position of Vortex for a Strake-wing

o} * RARRARE 1.
o T EAZARAMRE 1,
3.

o ARETA. DRR

S = I O % )
Figure 7. Comparison of Breakdown Position of Strake Vortex
1 Strake-wing Tunnel Experiment

2: 75° Sweepback Delta Wing Water Tunnel Experiment
3. Hydrogen Bubble in Water Tunnel, Strake-wing

Figure 9 shows the axial velocity distribution of the vortex
core at 4 different angles of attack. When a=12°, based.on
hydrogen bubble observation, the breakdown point is far away from

the trailing edge. The axial velocity begins to increase from
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the apex. This is because that vortex moment is continuously
added to the vortex core along the leading edge'from the top.
Their trajectory can be considered as a series of spiral lines.
An axial velocity component pointed downstream is created with
respect to the vortex center. Near the trailing edge, because of
the inverse pressure gradient, the axial velocity of the vortex
core drops. When a=18°, the breakdown point of the vortex ﬁore
has already reached the trailing edge. 1In this case, the axial
velocity of the vortex center drops abruptly behind the breakdown
point. The deceleration gradient is very large. It is not the
same as the deceleration gradient near the trailing edge at a=12°
. At a=25°, the breakdown point has already moved forward to the
wing surface, approximately at 81% of the root chora. At a=35°,
the vortex breakdown point has moved to 52% of the root chord.
Because the vortex intensity increases and the induction effect
of the vortex intensifies, the negative pressure on the wing
(relative to the static pressure of the incoming flow) increases,
and the maximum axial velocity also increases. The axial
velocity can be 2.4 times the incoming flow velocity. It should
be pointed out that this value is lower than that for a
corresponding delta wing. This is because the primary wing of

the strake-wing cannot further reinforce the vortex.
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Figure 8. Structure

oL

the Vortex

Figure 9. Axial Veloc1ty Distribution Along the Center of the

Vortex

3. Similarity Curve of Axial Velocity Distribution at the

Vortex Center

Upstream from the vortex breakdown point, the curves of

axial velocity vs. attack angle a have some similarities. At a
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fixed angle of attack, the maximum axial velocity UC is used as
the reference velocity to render velocity non-dimensional. The
distance between the maximum velocity point on the vortex axis
and the apex of the wing, Sm’ is used as the family of curves
shown in Figure 9 can be expressed as the curve in Figure 10.
However, it is not possible to express it downstream from the
vortex breakdown point by one curve. Whether this properti has a

more generalized significance remains to be further verified.

. ) o
. =18’
. . %

a8

ValVe

PR

3 TS TS

Figure 10. The Similarity Curve

4. Velocity Variation at the Vortex Breakdown Point

The breakdown phenomenon itself is also on unsteady process.
As described before, thé position of the breakdown point varies
with time. The velocity near the breakdown point also varies
randomly. Table 1 shows the mean velocity distribution in a very
short period of time at the breakdown point. It also shows the
corresponding mean square root velocity values. Therefore, we

should measure dynamic parameters in order to understand the

breakdown phenomenon well and to know the dynamic characteristics
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of the flow field after the breakdown.

For delta and strake-wings with a sharp leading edge, the
ma jor parameters affecting the breakdown characteristics are the
angle of attack a and the sweepback angle X. The effect of
Reynolds number is secondarytg]. The direct cause for vortex

breakdown is the effect of viscosity and inverse gradient in the

vortex core. This is a commonly accepted viewpoint.

Table 1 Velocity and Its Mean Square Root

-t EH—IHAFSTHRB0LIPR

Ew— BXEh 100 X,
- o) GIDAES |01 DA
RUMEES | S VU | WULUs
1 1,7 ! 18% h
2 .. x 19%
s J% 3%
4 -. 0 ! I 9%

sampling time sequence¥

average velocity within 0.1 sec,‘UA/U
root mean square within 0.1 sec, U, /U
* The time in each time sequence nﬁmber is
0.1 sec. There are 100 samplings

W -
. . L]

Conclusions
1. With increasing attack angle, the angle between position
of the vortex axis and the wing surface increases and the angle

between the plane of symmetry of the wing and the vortex axis

decreases., This is an important factor for the presence of the
non-linear (upward) torque on a single wing.

2. The axial velocity on any point on the vortex axis

begins from the apex and reaches its maximum at a point in front




LY.

ot

".
’ax of the trailing edge. Then, it begins to decrease. At the wing
f: surface where breakdown takes place,  the decrease of velocity is
jy‘ caused by an inverse pressure gradient, leading to the breakdown
~5{ of the vortex.

: 3. Appropriate non-dimensional parameters are used to
;?é ) expresé the velocity distribution at any point along the vortex
’1 axis of a strake-wing and can be expressed as one curve. Beyond the /65
v - breakdown point, this general curve does not exist.
;tﬁ In the research process, some éomrades from the 506 teaching
;g% ~ and research offices and the 304 Institutes assisted in the work.
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LDA MEASUREMENTS FOR LEADING EDGE
VORTEX CORE.-OF A STRAKE-WING

Lid Zhiyong
(Beifing Institute of Aeronagutics end Astromautics)
Cheng Yuanzhong
(Institute No.304 of Aviation Miristry)

Abstract

=

" The axial velocity distribution along leading edge vortex core of a
strake-wiag were measured by means of 2-Dimensional L. D. A and hy-
drogen bubble technique in the water tunnel, The trajectories of the vortex
core asd the vortex breakdown point which vary with angles of attack
are presenud It has bees showa that axial velocity distribution at -dif-
fereat a:glcs of attack can be fitted with s londunensuual curve, But this
is sot ff., at dovuteau of vortex breakdown point bocuse of dramatic
change of the nlocnty. -
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I. Introduction
In order to improve the takeoff and landing characteristics
3@ _ of an aircraft, it is necessary to conduct low speed multi-

component wind tunnel experiments in the design and selection of

%;} various devices to enhance lift.

fﬁ The height to width ratio of a conventional two-dimensional
f@ experimental section is relatively large and the geometric aspect
.;? ratfd of the model is small. Thg boundary layer on'the wall in
f;f the experimental section will affect the experimental result.

- The narrower the model is, the more serious the effect becomes.

;; The turbulent boundary layer of the tunnel wall expands toward

;;E the laminar flow region at the leading edge of the model in a

: wedge area, which moves the turning point omn the middle cross-

:% section of the model forward. When a pressure gradient exists in
", a two-dimensional airfoil experiment, the flow at the wall
becomes extremely complicated. The total intensity is equivalent
to the scatter of the vortex circulation of the airfoil on the
tunnel wall in all direc;ions. Induced velocity and induced

attack angle are created on all cross-sections in the airfoil.

:& Consequently, the two-dimensional nature of the flow is affected.
¢
ag The most important effect is the premature separation at the

model-tunnel wall junction. Far before separation takes place on
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AN
K _ the middle cross-section of the model, the boundary layer near
Z'L the model-tunnel wall junction is separated under a relatively
;Eif small inverse preessure gradient. Furthermore, it propagates
si%; approximately along a 45° angle toward the middle of the model.
o For models with an aspect ratio less than 2, premature flow
;gi separation at the tunnel wall has already affected the pres§ure
gﬁ: measurement at the middle cross-section[3]’[2].
3%
:ﬁ; II. Experimental Apparatus, Blowing System, Model and Experi-
g&i mental Technique
e The experiment was performed in a direct flow, closed, low
%ﬁ speed, two~dimensional wind tunnel. The cross-section in the
;&iﬁ experimental section is rectanguiar. It is 2m high‘and 0.2m
D! wide. The boundary layer thickness on the side wall of the
3§£ experimental section was measured to be 3Omm[3]. The
3%5 experimental wind speed is V=45m/sec and the Reynolds number
o Re=1.2x10°. : *
Eﬁ% The blowing system has 6 blowing slots which are installed
‘fgg symmetrically on both sides of the turning wheel (See Figure 1).
ool The front slot is located on the upper surface of the leading
Eﬁi edge of the airfoil. It is 150mm long. The middle slot is
ig: located at 65% chord length from the leading edge. It is
B perpendicular to the wing chord and symmetric. The total length
‘iii | is 330mm. The rear slot is located at the upper surface of the
T;;; slap. It is 80mm long.
[ Each blowing slot is 2mm wide. Compressed air is blowing
A

'i*{ out of a pressure stabilizer along the tuunel wall surface. It
3
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was measured that more than 90% of the flow blowing out of the
slot along the blowing direction is homogeneous. Furthermore,
the flow blowing from the slots to eliminate the wall boundary
layer does not have a significant effect on the tunnel flow field

itself[3].

This paper was received on December 27, 1983 and revised manu-
script was received on April 16, 1984,

The experimental models are single and double slotted flap /67

airfoils. There are 54 pressure measuring holes on the model.
The chord length of the basic airfoil is 400mm.
~The plowing amount is controlled by a blowing coefficient a,

which is expressed as:

t=q. q. (M

9 =F. —p. (2)

A= ~po g, (3)
where qj--dynamic pressure at the outlet of the blowing slot, q_-
-dynamic pressure in the experimental section; and p_--static
pressure in the experimental section. There is a pressure
measuring hole on the side of the pressure stabilizing box. The
pressure sensed through the hole is considered to be the total

pressure of the blowing jet p This pressure is connected to a

oj"
pressure gauge. The pressure gauge reaching is used to

accurately control the blowing quantity.
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Figure 1. Blowing Slot Installed on the Upper Surface of the
Model

According to the measured pressure distribution on the
surface of the airfoil, we can calculate the pressure coefficient
Cp. Then, through numerical integration and tunnel wall
interference correction, it is possible to obtain the lift, drag

and torque coefficient of the whole airfoil. The airfoil drag is

obtained by measuring the total pressure loss in the wake.

III. Expefimental Results and Discussion
From the part of experimental curve already obtained (See
Figure 2) we can see that the slope of the lift curve C; and the
maximum 1ift coefficient C are relatively low when not

ymax
blowing. When the wall boundary layer was blown away by blowing
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‘%ﬁz a

‘ij an amount of air corresponding to Ay and Ag equal to 10, Cy and Cymax‘
;i_ are apparently larger. This blowing quantity already made the
;§§ flow separation appear in the middle cross-section of the

;%% model, instead of at the junction of the mode and the tunnel

;j| wall. Blowing through the front slot is more effective in

i?ﬁ preventing separation of the tunnel wall boundary layer. When
:?& the blowing coefficient exceeds 15, C; essentially remains.

§ unchanged as the blowing quantity increases. In other words,
‘Ei? once the blowing exceeds the requiréd quantity to avoid the

;éﬁ premature separation at the model-tunnel wall junction, the

;z effect of blowing is no longer obvious. Based on the

?g experimental results obtained with multi-component airfoils with
ii? three relative thicknesses at 16.5%-18% in this work, the

,: appropriate blowing coefficient should be controlled between 15-
‘éﬁ 20. Blowing away the tunnel wall boundary layer restores C; and
i%é Cymax‘ They are increased by 15%-30% and 0.3-0.4, respectively,
. as compared to those obtained without blowing. "

e

e
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,1: An-front slot blowing coefficient

N 2%

\:& As-middle slot blowing coefficient

D

' 1. double-slotted flap airfoil, flap deflection

: angle ¢ = 0°, 15°, 20°

oY
j-f-', Because the width of the experimental section is very

Ly
o narrow, when the blowing coefficient is too large, an overblowing
1S
e effect will appear in the experiment, which will directly affect
3:1:;: the pressure measurement at the middle cross-section of the

7 model. This is reflected on the C; curve. The slope of the lift
7o

o
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‘%ﬁ curve remains unchanged. The curve is shifted upward and the

i zero lift attack angle increases. Therefore, the control of the

%3§ blowing quantity in a small wind tunnel will affect the

féz reliability of the experimental result.

i:: When comparing the pressure distribution with that without /68

;;; blowing, its slope remains unchanged. The surface area beneath

’{ﬁ‘ the airfoil is essentially unchanged, while the upper surféce
area is increased (premature separation at the tunnel wall

i&i affecting a larger region). |

;ﬁ _ In an actual two-dimensional flow, the pressure differential

:{ drag obtained from the pressure distribution should be less than

tiﬁ the -airfoil drag measured in the wake. The latter is the sum of

fﬁf pressure differential drag and friction drag. However, the

t airfoil drag when there is no blowing is smaller than the

;S& pressure differential drag (See Figure 3). As described before,

ii? the vortex from the tunnel wall changes the attach angle at every

6{ cross-section. The induced drag is already included in the

; pressure measured at the cross-section in the middle (See

i&§ Figure 3).
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Figure 3. Effect of Blowing on Pressure Differential Drag and
Airfoil Drag

(a) double-slotted flap 6=0°
(b) double-slotted flap,6=38°

1. differential drag
2. cd airfoil drag

IV. Conclusion and Prospect

1. Using a tunnel wall boundary layer control technique, it

is possible to establish an approximate two-dimensional flow

state until stalling. Reliable C; value can be obtained.

2. The location of the blowing slot is not the key to
preventing the large area flow separation beyond the slot. (In
this experiment, the position of the front slot was changed,
however, we could not see any obvious effect on the experimental

result). Nevertheless, blowing slots perpendicular to the local
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flow are optimal.

3. Blowing from the slot is most effective on suppressing
the effect of the tunnel wall boundary layer. Only the front and
middle slots are needed for satisfactory experimental results.
In the double-slotted flap, the blowing quantity from the front
slot should be higher than that from the middle slot.

The experimental research of using a blowing control
technique for the boundary layer is still preliminary. These
preliminary conclusions are obtained based on the experimental
study of airfoils with large relative thickness. For airfoils
with a smaller relative thickness such as modern airfoils
incltuding the supercritical airfoils, what combination of blowing
quantities can be used to obtain'reliable two—dimenéional
experimental data and whether a reliable Cymax value can be
obtained by blowing and the appropriate correction of the Re
number still remain to be studied and explored.

This work received the guidance and assistance from comrades
Xia Yushun, Xi Zhongxiang and Bao Guhua. Comrades in the
laboratory also actively coordinated the experimental work. The

author wishes to express his gratitude to them.
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‘AN EXPERIMENT RESEARCH OF BOUNDARY
LAYER CONTROL TECHNIQUE FOR
MULTI~COMPONENT AIRFOILS

~ Wang lie
w7t . . {Norshwestern Polytechnical University)
- ~ : . )
- . - Abstract

;-

% fl'he present pipsr describes some research results of boundary layer
control on the wall of a two dimensional low speed wiad tunnel with blow~
ilg system. In the experimental research ‘the airfoil models with siagle
and double slotted trailing edge flap were adopted. The boundary layer
control is a very effective method to prevent the premature flow sepa-
ration in the junction corner between the tunnel wall and the airfoil model
and to get rid of three dimensional effect for single or multi-component
airfoil rescarch.

In the paper, some of costrast tesearch results are given by figures
and the selection of blowing quantity and the disposition of the blowing

slots are described.
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A Simpler Implicit Method to Solve N-~S Equation /70

Zhang Hanxin, Yu Zechu and Lu Linsheng

(All of China Aerodynamic Research and Development Center)

1. Introduction

In the past decade, a great deal of progress was made in
solving the N-S equation of a separation flow by numerical
methods. Explicit finite difference methods have been developed
to a mature stage. However, because of the limitation of
stability conditions, it takes longer to calculate a stable
solution. In order to overcome this difficulty, implicit
metﬁéds,.such as the implicit fa;toring method and implicit
alternating direction method, were developed. However, these
methods require solving three diagonal matrices. As compared to
explicit methods, the program for an implicit method is more
complex and the computation time needed for every step is longer.
In order to avoid the difficulty in the iteration of the three

k[1] introduced a new implicit method

diagonal matrices, MacCormac
and its iteration process involves the chasing of two diagonal
matrices. On the basis of reference [1], an even simpler
implicit method is intfbduced in this paper. 1Its iteration
process only involves scalar chasing. Examples given in this
work show that this method is capable of giving results in
agreement with those obtained by explicit methods. Its
efficiency is comparable to that of reference [1], but it is

simple and easy.
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o 2. Difference Scheme

1. Model Equation

-

Let us study the following equation:

e P
ala s

A A A
Y
Lo d
o
®
9
R
~~
o
-
A

sl where
b F,=eu (G 0) (2.2)

rl
% Fymv 3 (2.3)
» *

' a and v are constants. Let us use the following second order
&} accuracy implicit difference scheme:
|

X) — T - ' . .
= ¥, =y} -% [A-P(F;~F D+BFi] - FT,T,)J—{; (F3,-F;3,.0
o V=TT - L gy (FTT - FTD - FT1 - FTTH]- (2.4)

.?.:F Az re i
e . -8 - FED
l‘ R Rk ' .
s

1
i
Ly This paper was received on May 14, 1984. The content of this

paper was introduced in the Fluid Mechanics Computation Class at
L Qinghua University in June 1983.
o
b where B is constant determined by o« and v. If the first step is /71
b
Co¥ to pick a backward difference, then choose B so that B(8F/8u) =Ba
o >0. If the first step is to pick a forward difference. then
._;'
K1 choose B so that 8(aF/au)=Ba<0. Let
N
el el _ :

= du, ";= “___ (2.5)
f';‘j dui =ut -l
o F=F,+F,

Using Taylor expansion, equation (2.4) can be written as:
X
b
N {
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(I+J—AL)6¥TJ i‘.L(F:_F:_l)-d.._t.du:f'.

0 Ax

F At g i¥io At (g7 Ty 44, AL 5T (2.6)
(1rd g5) = — g FII-FiTDvde g il |
- .:”su:1—~; (6“:777"6“—:—'—1)

2N Here, d=Ba>0. If a stability analysis is performed on equation
.ﬁ% (2.6), it is found that in order to satisfy the stability

. condition d should be:

):" d: ! [i -‘-2_v —ﬁ]

w3 max { 2 (a' Ax) 2:t) 0} (2.7)
o

iy where k is an insurance index which is larger than 1. One can
P see that the difference formula (2.6) thus derived is
’-.\ . N

P MacCormack's implicit formula. When d=0, it is MacCormack's

:n explicit formula.

< 2. One-dimensional Unsteady N-S Equation
4

O This equation is oU _oF, [ oF, _, (2.8)
‘,-:t\ ot Ox Ox
AR

A'!‘

Here, U is an n dimensional vector, F1=F1(u) iss a function of a

ey n-dimensional vector which is not dependent on viscosity, and F

NN
o
' is a function of an n-dimensional vector which is dependent on
ot
" viscosity. Obviously, equation (2.8) can be written as:
f}.: _
,;::; PYS4 oU ,OF, _
AR At e (2.9
3
oy where A = (aF1/0U). Let us assume that it is possible to express
S - -
‘:i; A as A=SAS ! Here, A=diag(xi) and xi is the eigenvalue of A. S 1
A5
]:E; is the lift eigen vector matrix of A and S is its inverse matrix.

In order to solve equation (2.9), in analogy to the model
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B is a constant to be determined. (aU/ax)jb, and (aU/ax)jf
represent the first order backw:rd and forward difference
quoiient'at point j, reépectively. Let F = F1 + FZ‘ By

rearranging the above formula it becomes

=i (35, -ocsa - [(42)7 (2]

w700 () T s (-

(2.11)

tn“=U:434«n"-ur5+aﬁ“-unJ

because

SEL);‘ 1 T3 = (2.12)

Let d, =8 r, >O then A8=diag (dl)' Let
D=5 4,5 (2.13)
then to a second order accuracy, equation (2.11) can be written

as the following:
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where I is a unit matrix.
In the following let us investigate the problem regarding
the selection of dl' The d1 which satisfies the stability

condition is:

d’zm“{[ 3 ("“*2’;) zAAit]’ °} (2.15)

Therefore, we may choose

"“"‘“{[_(“' )=l 4 (e

This is MacCormack's method. However, just as we pointed out in
the introduction, this choice requires operation involving two
diagonal matrices. In order to further simplify the computation,

=

dl’ may be chosen as:

Ad,=d,== ------ d.=n;ax . max{[-;—(llil 'r‘z:) ‘.‘,ATxt] }"d (2.17)

Here, d is not varying with 1. It satisfies the largest among n
parameters in the stabiiity condition. Substituting equation
(2.17) into (2.13) we get

= dI

By substituting this equation into (2.14) we get:
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(1+d' A')AU'” ‘ L (Fi-Fi.o+di. 2‘ U /73
AT I At TTI_RTTy 4 151 B guTTl (2.18)
(1+d,~ TN = — 2L (F 7T

fed '.‘A

Ui =Us + (U7 0UTT)

This is a simple implicit calculation scheme consisting of an
scalar equations. Furthermore, each scalar equation is
independent. They can be solved by the scalar chasing method.
In addition, it is also possible to change equation (2.14) into a
characteristic form. 1In that case, each equation will have its
own one-to-one corresponding d1 (1 =1,2,......n). By using
these local d"s, we also can obtain an implicit formula with n
scalar equations. Obviously, that method is also very simple.

3. Example

The sample implicit method described above was used to
calculate the laminar separation of a supersonic flow around a
two-dimensional compressible corner. The incoming flow condi-
tions are: M_= 3.0, Re, = 1.68 x 104, a = 10°. The wall is
adiabatic. The initial N-S equation, coordinate transformation
and lattice formation are identical to those used in reference
(2]. 1In the calculation rigorous implicit condition was used for
the body surface boundaiy. Figures 1 and 2 show the distribution
surface pressure and that of frictional drag, respectively.
Furthermore, the results are also compared ﬁith those obtained
with the explicit method in reference [2] and those with im-
plicit formula in reference [1]. Results show that the time

for each step is less than that of MacCormack's method. But,
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the overall efficiency is comparable. Similar to the situation

in reference [1], after the computation is done to a certain

stage, the time step must be continuously reduced to improve

accuracy.

o mkFE
— BRXBER®E
o MUMHE

-~. 378 —0.12 0.1 . 0.6
Mo =30, Réaw =1,68x10*
ax1iy,

Figure 1. Distribution of Wall Surface Pressure

o explicit method

- maximum stability condition method
& method used in reference [1]

Cux3p

- BNk
— RRXQR&E
. * muinnR

» » o ©
s ™= o

B 0.128 6.178 U.
Hood,0,Ren=1.00x 10
es1V

Figure 2. Distribution of Wall Surface Frictional Drag
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Comrade Jie Xinxing also participated in a portion of this

MacCormack, R.W., A Numerical Method for Solving the
Equations of Compressible Viscous Flow, AIAA Paper 81-110.
Zheng Hanxin et al, Numeical Method for Separation of
Supersonic and Hypersonic Viscous Gas Flows, Journal of

Mechanics, 4 (1981).

o explicit method
- maximum stability condition method
a method used in reference [1]
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A SIMPLER IMPLICIT METHOD SOLVING N-S EQUATION

Zhang Hanxin, Yu Zechu, Lu Linsheng
~ 4{The Cbluq Aerodynamics gweh and Develop-u!u Centre)

’ T Abstract

-

' .A simpler implicit mc;thod based os the reference 1] is presented. .
The process of iteration is only of scalar operation. The calculation shows
that the results are in agreement with those given by the explicit method,
and that the method is as efficient as MacCormack’s, but present method

is simpler.
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Numerical Calculation of Separation Flow Over Severely /75
Indented Blunt Body
Gao Shuchun and Gu Gangmin

(China Aerodynamic Research and Development Center)

During re-entry, a vehicle experiences mostly turbulent flow
in the process. Due to high temperature chemical attack and
particle cloud erosion, the head is indented. Thus, the
calculation of separation flow over an indented body is very
significant. Due to flow separation and some complicated flow
field interference effects, the structure of the flow field

becomes very complex. In recent years, although this type of
[1-31]

research has been initiated abroad , yet there is very little
progress. In particular, calculated results of turbulent flows
are far apart from experimental data. This is primarily related
to factors such as the selection of the turbulence model, the
determination of the position of the turning point, and the
roughness of the surface. In particular, the mechanism of the
turbulence is still not very clear. Consequently, there is some
blindness in the determination of models and the establishment of
numerical methods. Many people doubt the validity of using the
hybrid theory to study the separated turbulent flow. Despite
these reasons, people are still using the simplest turbuylent flow

(1,21 o

model to simulate a flow field with separation present
believe that this is the simplest treatment before many compli-

cated phenomena are understood. Moreover, it is able to solve
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SO some practical problems.

L In this work, the simplified NS equation was used as the

§ starting point to calculate hypersonic flow field over a severely
o

L :

BN indented axi-symmetric blunt body by using a time dependent

implicit spatial factor decomposition method[1] and by adopting

ﬁﬁ: the Cebeci-Smith double layer vortex viscosity approximation[z’AJ.
-

A A

£‘§ The results are more or less in agreement with the calculated and
"N

. experimental results obtained abroad.

{;; The example used in this work is Re_=6 x 106, M_=9.0, T_=200°
-:"r'_:..'y T'IT. = 3 o“,

R R:Aand the shape of the object is the same as that in reference
0 ’

-t [ 2] .

-

- . Figure 1 is the pressure distribution in the wall surface,
QE: which is close to those described in references [1,2].
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Figure 2

_Figu?e 2 is the heat flow distribution on the wall surface
which is close to the result reported in reference [1]. It is
also close to the experimental value on a small wall. However,
it is quite different from the result reported in reference [2].
There are many reasons for this discrepancy. For instance, in
the initial equation the spacing between meshes: the numerical
method, and the specific algebraic model can lead to such
differences. We believe that these factors are not essential.
Why is there such a large discrepancy in the heat flow when the
results of wall pressure are basically the same? This is because
the heat flow is not a directly calculated qﬁantity. Instead it
is a quantity derived from the calculated result. Its magnitude
is determined by the temperature gradient and thermal

conductivity near the wall surface:

This paper was received on June 10, 1984,
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Figure 2

_Figu;e 2 is the heat flow distribution on the wall surface
which is close to the result reported in reference [1]. It is
also close to the experimental value on a small wall. However,
it is quite different from the result reported in reference [2].
There are many reasons for this discrepancy. For instance, in
the initial equation the spacing between meshes: the numerical
method, and the specific algebraic model can lead to such
differences. We believe that these factors are not essential.
Why is there such a large discrepancy in the heat flow when the

v | results of wall pressure are basically the same? This is because

the heat flow is not a directly calculated quantity. Instead it

g is a quantity derived from the calculated result. Its magnitude |

%

is determined by the temperature gradient and thermal
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conductivity near the wall surface:
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Figure 3 compares the frictional drag distribution in a
laminar flow to that in a turbulent flow. The frictional drag in
the turbulent flow was calculated using a formula similar to
equation (3).

Figure 4 compares the shock wave position in a laminar flow
to that in a turbulent flow, which agrees with the conclusion in
reference [2].

Figures 5-7 show the iso-M, iso-density and isobaric contours
of the turbulent flow, respectively. The structure of the flow
field is described in detail.

From Figure 5 we can see that the shock wave becomes steeper
after the separated flow is re-attached. Hence, there is a

second subsonic region.

Figure 3

1. turbulent flow
2. laminar flow
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Figure 4 Comparison of Laminar and Turbulent Shock Wave

1. turbulent flow
2. laminar flow

Figure 5 Iso-Mach Number Lines for Turbulent Flow

Figure 8 shows the flow pattern in the separated region.
There is a ''Secondary Separation Bubble', which is in agreement
with the conclusion in reference [5]. This effect was not found

in calculating a turbulent flow.
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N After approximately 3000 iterations, the flow field of the
i turbulent flow could basically be created. We were inspired by
o /77
,j: the work in reference [2] to observe this effect. Our conclusion
3% also agrees with theirs. The authors of that paper believed that
o
it was caused by the interference of the separation bubble and
8]
f;? the subsonic band of the blunt body. They also pointed out that
0 )
/Q{ a similar effect could be found in calculating a laminar flow.
However, we did not observe this oscillating phenomenon in our
l“ P
o laminar flow calculation.
o
7
£
e
% :
1:\: Q
e
S
e Figure 6 Iso-density Contours of Turbulent Flow
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Figure 7 Isobaric Lines of Turbulent Flow
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%5; Figure 8 Velocity Trend in Separated Laminar Flow

fib; With a time-dependent technique to solve a separated flow ’

o N

;%g% field, because the variation rate of a physical quantity with .
hgye time oscillates periodically, the flow field does not converge
fiﬁr consistently. However, in a certain sense of averaging, the flow
A 4;?\1 :

?iﬂ‘ field is convergent. Therefore, we should establish specific

ey

vl criteria for an average convergence. Of course, such criteria
:}@ may vary. The NS equation for a laminar flow is quasi-linear
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and the turbulent flow equation, even in the simplest algebraic
model, is non-linear. There are difficulties in the solution
finding process which are not encountered in the laminar flow
calculation. Therefore, we cannot copy a laminar flow model 1in

the calculation of a turbulent flow.
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NUMERICAL CALCULATION OF SEPARATION FLOW
OVER SEVERELY INDENTED BLUNT BODY

Gao Shuchun, Gu Gangmin

e L
(China Asrodynamic Research & Development Centre)

‘,‘ K W ‘

! v -Abstract

A .tAime.Agigpe,pd‘e'nt space Inc;ored implicit numerical procedyre solving
simpliﬁe'd"Navier-Stokes equations is used to calculate axi-symmetric
hypersoaic. viscous flow over a severely indented blunt body. A simple
slgebraic turbulent model is adopted. The results are compared with ano-
ther numerical solution in ref 1. A good agreement is found for the wal
presure and heating distribution, although there are some discrepancy in
detail for flow structure. A secondary separation bubble is seen clearly is
laminar numecricsl results and high frequency oscillation phenomena are
found to be the same as that in the turbulent calculation of ref 2.
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E{ An Implicit Technique for Calculating Separated Base Flow /79
o Dong Changquan
3R .
Sj‘ (Beijing Institute of Information and Control)
1998
...1‘»
- 1. Introduction
(gl
."‘h I 2 I3 3 ]
}43 In solving the Navier-Stokes equation with an explicit
n'JP:'. .
o~ technique, its stability is often limited by the time steps.
- When it is applied to a high Reynolds number viscous flow, we
Y
RO have to pay a high price even in a two-dimensional case. One of
fi . the major problems in any implicit technique is the treatment
AN -
a3 of the non-linear convection and pressure terms. Earlier com-
 ;§ putation 'shows that an alternating direction implicit scheme in
f;} conjunction with the quasi-linearization of non-linear terms
L)
o could be used to calculate the separated base flow field. This
rols
‘fﬁ type of scheme is obviously able to accelerate the stabilization
3
Vf; process, as compared to explicit method, in order to save compu-
e ter time. :
Ao
- The scheme used in the work is based on the SCM technique
T
%A} developed by Steger and Warming for solving Euler equations and
. MacCormack's 1980 algorithm. (The advantages of these schemes
fgj' is to avoid solving three diagonal or three diagonal block
Lo
é?; equations and to directly create an iteration scheme to simplify

b the mathematics in each iteration.) A matrix similarity trans-

formation is used to solve the N-S equation by the SCM technique.

[6]

The viscosity terms are treated by CayfibeB's treatment for

diffusion terms as well as by a technique similar to that used
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by Allen-Cheng-BpauxoBcKad. This algorithm can eventually derive

tava Catac Ky KN
s 1'_‘!‘_ s fl’? .‘

an upper or lower triangular matrix. The direct iteration method

r™
P

can save the amount of computation in each iteration as compared
to a tridiagonal chasing method.

Finally, it should be pointed out that in order to meet the
stability requirement it is very important to add an appropriate
dissipation factor in the process. In addition, the boundary
condition must be approached in a way consistent with that in the
.:1 SCM technique. The algorithm has an accuracy to the second
- order.

2. Basic Equations

f& - The following is the non-dimensional Navier-Stokes equation:
90 L OF , 0G _dF., 0G,_ 3F 4P | dGp +iF) (N
Y af+ax+6y—dz+6y— ox + dy
.\‘r'
7‘.,}.:
- o .
oy The reason to decompose the viscosity terms ?v and ﬁv into V, +V,
i and W, +W, is to facilitate the treatment of mixed derivatives.
A
:gﬁ It also facilitates the use of CaysbeB's or Allen-Cheng-Bpaux-
o
:ff oBcKafd's viscosity treatment. A detailed expression is shown in
o reference [4]. The region of computation and the boundary
==
A condition are defined using the same method as that used in
b «
O,
v reference [4].
Ny
3. Computation Technique
# 7
E% Almost at the same time as MacCormack introduced his
?i algorithm in 1980, Steger-Warming[3] presented the SCM method
5
':} This paper was received on June 14, 1984
A
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for solving Euler equations. Furthermore, based on whether the /80
eigen value of the Jacobi matrix A or B is positive or negative,
the derivatives are approximated by off-center differences. The
coefficient matrix of the derived linear algebraic equation is an
upper or a lower triangular matrix to facilitate direct
computation. Consequently, the tridiagonal chasing method
commonly required in the Beam-Warming factoring method can be
avoided to reduce the load of computation in the stabilization
process. We employed this technique to solve the Navier-Stokes
equation with the objective of making the computation more
economical.

. According to the second order three layer format introduced

by Beam-Warming[3]:
-, 8At 2 no At . £ A-
AU=1TF or GO +7r 5t T+ AU (2)
From equation (1) we get
oAt (3 .. 2 cem_ At (3F 3G\, pE
AU+1+£ ox "*a B)AU' l+5(dx+6y)+RHs
_06At o o 4 9At .
RES= 1+£{ (P-R)+-2 } 5{ Q- s.)*ws} AT
0A¢ 6A[7 2 &AW, aF. aG 3 .-t
+1+£ ax T dy ] 1+£( + ) 1+£AU
where _9F oG o7, o, oW,
=35 B=3 P=%r R-ort QM‘S—&U.

Because F and G are homogeneous functions of U, it is possible to

introduce the following similarity transformation:

A=QM,Q '=Q(A3+1)Q = A"+ A
B=QA,Q"'=Q(A;+43)Q '=8*+B"
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Therefore:

where

. 2(y=DAu+A(u+c) +4,(u~c)
A » s Ag =L ¢
Fludy A= ) DA+ Aty

| =D w'+0D +iz'- Cut+e)*+v*]+

NPT Y S E £
2 P L. \-’ P St gy, °
Wim 8=P Ritd)e

! 2(y~1

[ﬂv—nj,+j,+§.
. P20 -D J.u+ Tut Ju
G(/i.’,iyj.)':_' ~ - -

2y 2(p—D A,v+ 1,(v+c)+ ] (v-0)

(P~ 3, W +od) + iz—’ [u'+ (v+c)3]+

|
i

Wn - (3-?)(2 1+ ‘j‘)C'
- 2(y—-1

+j2—‘tu’+(v-c)'J+Wn /81

The splitting of the eigen value is not unique. There are other
ways to divide it into positive and negative parts. In order to
overcome the critical state of A¥ and A", appropriate small

quantities e; and e, are introduced. Hence
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F*=FA+e, Av+e, Al+e), F-=F(As—~2, A ~2, A ~¢)
G =G(ji+e, F1i1+8, Jive), G =G(li-¢&, Ii-e, 1i-¢e)

In the following, we will discuss the modification of the left

hand side terms by RﬁS. Let us approach second order terms by

CaynbeB's method[6]:
PRI . . _ _
Se = 3w Riw—RD = glr (R -RITD
6‘}?"‘ e o
o= Ri-RIy =L R R

The computation format after the modification is:

__oat - . At N
[1‘_‘ arpas U+ | [ 14l a0 age
At

| = —qgf GF'+8)G +dF 431G I+ RHS

__bat . At S P
[I+ (1+8Ay V.(B +B.)] [I+mA.(A )]A.l] =Al

b f f b
64> 6x’ éy and éy

operators. [ 1 +-(_l:_'§)‘HA.(A-+,§')] [ I+ —(l—_‘:_—AE;—A:—A.(B‘)‘] AG*

are second order single side difference

-T‘:_-‘F B F*+8G*+8.F-+8,G )+ RHS"
At

(+8Ax

0At

. F7o*0 e AFTO®

[1+ 8,8 +pv|[1+
0-00-% (ﬁl+Q'0l+Aaool)

It should be pointed out that a filtering technique consistent

with the algorithm is required for regions with intense

interruption and high gradient such as shock waves. 1In order to

satisfy the stability requirement, it is very important to

8
include some fourth order dissipation factors in the process such /82

as
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w and wy are the dissipation coefficients. The entire scheme is
accurate to the second order. Just as Beam-Warming—Yee[2]
pointed out, the appropriate approximation of the implicit
boundary condition is very important in an implicit scheme. It
is able to createan unconditionally stable algorithm consistent
with the format of the internal points. (Obviously, the boundary
must exist for (At/ax) and (At/Ay) when At, Ax and Ay~ 0.) Due
to page limitation, this cannot be discussed here.

4. Computational Results

In this work, an attempt was made to derive a direct, non-
iterative implicit scheme to overcome the deficiency of the
traditional upwind format. The resolution of the flow field was
improved because the off-center approximation was based on the
sign of the eigen value of the coefficient matrices A and B.

We calculated the results in several cases corresponding to
M,=3,4 and Re_=4000, 1.5 x 10* on a Univac 1100 computer.
Compared to the method used in reference [4], each iteration
could save about a half of the computer time. However, it
requires more iteratioﬁs to converge. The entire calculation
saves approximately 20% computer time as compared to the process
used in reference [4]. The results obtained with both methods
are basically consistent. The velocity distribution, dénsity
distribution and temperature distribution on the x=1.5 cross-

section are shown below, in comparison to the results reported
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in reference [41].

Figure 1 Distribution of Velocities u and v on the x=1.5
Cross-section

1. this work

Figure 2 Density Distribution p and Temperature Distribution
T on the x=1.5 Cross-section

1. this work
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AN IMPLICIT TECHNIQUE FOR COMPUTATION
OF BASE FLOWFIELD

Dong Changquan
(Beijing Ingtitute of Information & Control)

Abstract )
) A amew noniterative implicit scheme for computation of the base flow-
fields ars presented. The new implizit scheme for solution of Navier-Stokes
eqs. based on the SCM techumique is developed by Steger & Warmiog (D
for solution of Euler eqs. and some properties of the algorithm analogous
to the MacCormack algorithm (5).

Unlike usual implicit schemes, the preseat algorithm does not require
the solution of a block tridiagonal systems, because it leads to block bidia-
gonal systems. Numerical results indicate rather improvement in accuracy
for circulation-region than (4). Futhermore the computer time required to

obtain a converged solution has been reduced.
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Computation of Compressible Turbulent Separated Boundary Layer /84

Liu Songling

(Northwestern Polytechnical University)

I.

Iﬁ has always been an important problem in fluid dynamics to
predict a separated flow. Although the N-S equation can déscribe
a separated flow, however, it requires a great deal of computer
time to solve this equation using available techniques. Usually
a method to solve the boundary layer equation fails due to the
presence of singular points near the separation point. In recent
years, inverse methods to solve the boundary layer equation,
i.e., to determine the boundary velocity U, outside the boundary
layer and other parameters with given boundary layer displacement
thickness 6* or friction coefficient Ceo have been developed.
Since both displacement thickness and friction coefficient are
unknown, it is necessary to first estimate these parameters in
using the inverse method. The calculated u, value is then
compared to that of an inviscous flow to modify 6%* or Ce for
recalculation until the velocity distribution obtained agrees
with that of inviscous flow.

If a permeation equation is used as an auxiliary equation,
then the incompressible flow equation formed by this auxiliary

equation and the momentum integral equation is
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df .S _(Hip L 0 d. (
dx = x

i!i= dH - c 4 du

O G =, {°f H[§ v § ]

(2)

@ is the boundary layer momentum thickness and H is the shape
factor. Hx=(6-6*)/9,6 is the boundary layer thickness, and cg is
the permeation coefficient. When a forward mode is used, (1/ue)
(dug/dx) is known, cg and cp can be calculated empirically, and
dH/dH, can be determined from H, =H, (H) which has already been

established. Equations (1) and (2) can be written as:
1 ~(H+2) & 9%

u, dx (3)
H, dfi dx 2 du,

As H increases, H, decreases and dH, /dH approaches zero. There

is a singular point in equation (3). If &% and‘uC are specified

as the knowns, then equation (3) becomes:

1 da _cr
H dx 2

Because dH, /dH <0, the determinant of the coefficients on the

A
H

o(F-g)- e

left side is always not equal to zero to avoid any singular
point.
The Lag-Entrainment method developed by Green et a1[1] is

widely used in the computation in aerodynamics. This material
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/85
was used in reference [8] to calculate the unseparated turbulent
boundary layer on the surface of a compressor blade with
satisféctory results. In reference [2], the shape factor
relation H, =H, (H) was modified to be used in an inverse modé
calculation in an example of separation caused by a shock wave.

In this work, this method is used to calculate the separated
compressible flow in the trailing edge by using the measured
displacement thickness to determine the flow velocity Ug»
momentum thickness 6 and friction coefficient ce on the boundary
layer. ‘ |

From the momentum integral equation and permeation equation

we can derive that
0 du. _ 1 (dé* _
u, dx-F,(dx F’)

lzﬁl)jgi_t (3>

) _HC, 2 ( -
F|—~—2—+(l+0.2fM.) Cr D) dHl

= —HH +2-MD+Q+0.2rMD (H+DH, SH

In addition, H=6*/6 and EQ(H+1)/(1+O.2rM;)-1, where r is the

restoration coefficient. The relation between H, and H is the

one recommended in reterence [2]. Equation (5) and reference [1] .
give a closed set of three differential equations. After the
initial values cre specified, Uy H, o and Cp can be solved.
It is demonstrated in practice that, when the initial point
is in an area with a larger shape factor, the value of %

obtained using the method recommended in reference (1] may be
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too large, leading to small u_, and H along the process (Example

e

-2). After changing to the method used in reference [3] to

determine the initial value of CEg and using the same differential
equation as the one in reference [1] to calculate cp along the-

process, the result is improved significantly.

II.
The method described above was used in the following
examples:
(1) Boundary Layer on the Upper Surface of a Supercritical

Airfoil.

0.0t
9.00
9.00

Figure 1

1. this work
2. experimental
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- Figure 1 shows the measured velocity distribution and
r‘_ boundary layer on -an airfoil as reported in reference [4]1. The
L’l"tv
'E@' incident flow M number is 0.75 and Re number is 2 x 106. It is
'~ _).‘;-§
ﬂh separated near the trailing edge. The figure shows calculated
()

results obtained by using forward schemes introduced by Cebeci-

e

Smith and Nash-MacDonald. In the range x/c< 0.85, a forward mode /86

L e

was used. There is a shock wave at x/¢ = 0.2 to make the

boundary layer thickness grow. But, it is not separated. At x/c

P

=0.85, it was switched to an inverse mode. The displacement

thickness, momentum thickness and friction coefficient are in

B AR £
RPNRREA] (BN

P
x
g
»

= agreement with the experimental data. The calculated result at

-.\
L
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the trailing edge is much better than those obtained with both
forward modes. The calculated M number at the externai boundary
of the trailing edge boundary layer is less than 4% different
from the experimental value.

(2) Boundary Layer on the Upper Surface of a Circular Arc
Airfoil in Reference [5]

The thickness of the airfoil is 10%, the chord length is 12
inches, the Re number is 3.6 x 106, and the incident M number is
0.7339. There is a shock wave at 0.€2 chord length. The M
number in front of the shock wave is 1.32, causing a turbulent
boundary layer separation. At approximately 1.05 chord length,
the .boundary layer is readhered. Figure 2 shows the calculated
results, as well as the experimental results given in reference
[5]. The calculated M number and shape factor are in good
agreement with the experimental data. The calculated friction
coefficient is slightly low in the separated region. This method
can be used to predict the separation and re-adhesion of the
boundary layer. The dotted line in the figure indicates the
result obtained using the initial value of Cg as calculated by

the method adopted in reference [1]. After changing to the

method used in reference [3] to calculate the initial value of
Cgp» the solid line in the figure is obtained.

(3) Boundary Layer on the Upper Surface of a Transonic
Compressor Blade

The experimental data obtained on the upper surface boundary

layer of the V1 transonic compressor turbine blade is reported in
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reference [6]. The upstream M number is 0.85, chord length is
0.08 M and Re number is 5 x 106. The calculated results are
shown in Figure 3. As compared to the experimental data, the
maximum deviation of Me is less than 5%. The momentum thickness
is on the low side. After (x/c)> 0.75, Ce is negative. Thus, we
believe that the turbulent boundary layer is already separated in
this region.

(4) Boundary Layer Reported in Reference [7]

The experimental specimen is a circular arc with a thickness
of 18%. The incident M number is 0.7 and the Re number is 4x107 .
Figure 4 shows the results obtained by using the method described
in this paper, together with the solution of the N-S equation
given in reference [7]. The M number at the trailing edge
calculated in this method is 8% lower than the experimental
value. The momentum thickness is slightly larger than that
calculated based on the N-S equation. Both methods agree with
the experimental data to the same extent. The measured
separation point is located at x = -0.02M. The calculated
separation point using either method is located downstream from
the measured point. Based on this example, we find that the
inverse mode technique-is not very different from solving the N-S

equation.
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III. /87

From the above computation we arrive at the following
conclusions:

(1) It is possible to avoid the singular point near the
separation point when using an inverse method to solve the
boundafy layer equation. It can be used to calculate a separated
boundary layer on the trailing edge when the intensity is not too
high. The method described can be used to calculate turbulent
separated boundary layers with satisfactory results.

(2) Examples show that the result of the inverse method near
the separation point is not too different from that obtained by

solving the N-S equation.
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. THE COMPUTATIONS OF COMPRESSIBLE TURBULENT
g SEPARATED BOUNDARY LAYERS

Liu Songling
(The North-western Polytechnical University)

Abstract

The lag-entrainment method is used in an inverse mode to predict two
dimensional compressible turbulent separated boundary layvers in the trai-
ling edge region. There are reasonable agreements of the predicted values
with those several measured from separated turbulent boundary layers.
Ag example shows that the differences between the results obtained by
present method and the N-S equation solutions are not significant.
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An Inverse Boundary Layer Method for Separated Flow /88

Qin Ning

(Nanjing Aeronautical Institute)

The inverse boundary layer method is a numerical method for
solving boundary layer flows. In this method, the displacement
thickness 6* or the wall shear stress T, is the prescribedi
variable and the velocity distribution u, or the pressure
distribution of the boundary edge flow is calculated with the
boundary layer solution. This can avoid the singularity at the
separation point in the finite-difference calculation and provide
a méaningful method in solving separated flows. This method
requires far less calculations aﬁd storage space cdmpared to the
direct solution of the N-S equation. In practice, it is a good
method of approximation for solving bubble separation in the boundary
layer.

We have based on the inverse boundary layeér method for
separated flows given by Cebeci et al to propose an inverse
calculation method for the incompressible boundary flows[2]. In

this method the displacement thickness 6* is prescribed and the

profile of the boundary layer edge velocity is calculated with

the boundary layer solution. Falkner-Skan coordinates are used

both in direct and inverse calculation regions in order to avoid

h3
N ':1'
R

I's

the matching difficulty between the two regions as that occurred

R

PR
{‘.‘c'

in reference [2] which have used Falkner-Skan coordinates for the

direct calculation region and the physical coordinates for the
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inverse calculation. Inadequate treatment of the solution at the
transiﬁion point may cause jump or divergence of the solution.
With the transformation coordinates, the variation of the
solution at each poin£ is smaller than that with the physical
coordinates and the convergency is faster when the values of
previous solution are used as the initial values for the next
calculation in Newton iteration. Additionally, the use of only
one transformation coordinate allows the use of one general
calculation process from the starting point x=0 of the direct
calculation region to the inverse calculation region containing

separations.

I. Basic Equations and Transformation
The two-dimensional steady state boundary layer equations

for incompressible laminar flows are as follows:

(1a)

%+g—:=o
u Gty S, Gty S (1b)
R (2)

In direct calculation, u_ is given.

e
In inverse calculation, ug is unknown and 6* is given and the

additional boundary condition is obtained from the definition:

S
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Using Falkner-Skan transformation for the above equations

and boundary conditions,

Manuscript received on June 14, 1984

/89

X=x, q-JZy (4)
and it gives ,’
- 1 ’n ! '
.l +1;‘—ff'+mc;—/ Jascf L g U, (5)
n=0, f=f"=0 n=n., f'=1
(6)

In direct calculation, ug is given.
In inverse calculation, Ug is unknown, and the boundary

conditions are

n=1n., f=n.— U ge
J'Z (7)

where f is the dimensionless stream function, ¢=(uevx)% f(x,n),

f'=u/ue, m=x/ue due/dx, the superscript "'" is a/an.

II. Numerical Method
1. The Finite-Difference Scheme
The Keller box scheme is employed. It has the second order
accuracy with unconditional stability. Multiplying equation (5)
by u,, let f=F and ﬁe=W! the differential equation (5) is reduced

to the first order differential equations

F'=U (8a)
u'=v (8b)

1 di dw "o (19U _, OF
wyirt x BawiFre X Sy a-Un=XW( 5 5 Vax) (8¢)
n =0, F=U=0; n =ng, U=1 (9)
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In the inverse method,
=0, Fen-J% 3 (10)

where
o=t X=3F, 3°=8"VRe, L /L
. ll,' 'Z'l CaslL
With X=X, , set up an equation at the point (Xo,n Y203
with X=X,(i>0), set up an equations at point (X Vz)
of tHe two previous equations, and set up an equation at pom% (X--i' n-4)
of the third formula. The partial derivatives are approximated

using first order central-difference operators. The following

finite-difference equations are obtained.

AL, (F,-—F.-.)-—;-(U.-—U,»-.)=o

(11a)
k;! Ui, _l iTV )=
YU ),_ Wi=V,.)=0 (11b)
sy - .y ,
Wy ‘+ {x' o ) ow }(FV) 3t
3
-3(dW ko yichpei[L Uy OF YiTs (11¢)
+X "(‘X Ya Uy I= X [’-57- x),.,
. j=2, 8 = d
and the boundary conditions are . /90
Fi=Uj=0, Uj=1, Fi+- X”’(W yi=n, (12)

The solutions of 3J+1 unknowns (F;, U%, Vl, Wi) can be obtained

J J
from the group of nonlinear algebraic equations formed from the
above equations and the boundary conditions.

2. Linearization of the Equations and Obtaining the
Solutions

Using Newton's iteration method let

Fi=F +dF,, Ui=U;+dU,, V,=V;=d8,, W' =W -0

..............

‘‘‘‘‘‘‘‘
.....................
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and substituting them in equations (11) and (12), the following
linearized equations are obtained with the omission of 6z and

other small quantities.

Rt (6F,—6F,_,)——i—(dU,+6U,-,)= ro,

(13a)
h;i,(w,—w,-.)——;—(dV,+6V,-,)=(r,),-.
(13b)
(.S‘,),él",.,+(S,),éF,ﬁ—(S,),-cSU,.,-+<S.),6U,+(S,).él’,_1
+(S), 0V, + (5,00 =(r), _
j=2,3, =, J (13c)
6F1=(r1))=0' éL’)= (rz)x=0’ 6U1=(r4)1=0
3" =
OF,+ 2(XW)'“6W (r); (14)

The coefficients form a 4x4 diagonal matrix and the solution of
the above linear equations can be obtained directly using the
general forward method.

The converged solution of a fixed point Newton iteration can
be used as the initial value to obtain the solution for the next
point.

3. Treatment of the Backflow Region

The inverse method- can avoid the singularity at the
separation point. However, exponential divergency may still
occur if the backflow region is not treated. A theoretical
analysis has been carried out in reference [6] based on the
suttabiiity of the initial conditions of the parabolic equations.
we have used the approximation method given at Reyhner and

Flugpre-lotz to treat this problem[3l. That is
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at u<0, f£'*=0, f'af'/ax=0

4. The Grids of Calculation and the Growth of the Boundary
Layer

With transformation coordinates, the thickness of the
boundary layer of the attached laminar flow is basically
constant. Unevenly distribﬁted grids are employed along the
normal direction. The grids are denser near the wall. Uneven
grids are also used along the longitudinal direction. The grids
employed in the direct method of calculation for the attached
boundary layer flow are rather sparse, while those employed in
the inverse method of calculation for the region of separation
flow are denser. Since the thickness of the boundary layer

increases due to separation, the grids along the normal direction in
the separation region should be increased.

III. Example
1. For testing the accuracy of the numerical method, we

*

have calculated the laminar separation flow with Re L=105, and
>

two types of &% distribution[4].

The calculation started from X=1.0 and the Blasius solution
was obtained. Inverse<ca1cu1ation was carried out starting from
the second point with given distribution of 6%, AX=0.02. There
were 45 points along the X direct;on and 41 points along the X
direction, which increased to 61 points after the separation
point.

The results of the numerical calculation are shown in /91

Figures 1 and 2 and compared with the results given by Carter[4]

using global iteration calculations.
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1. condition 1
él 2. condition II
> -3. our results
4, reference [4]

A Figure 2.

condition I
condition II
our results
reference [4]
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2. Calculation Based on Horton's Ntim Experimental Data
Given in Reference [5]. Direct method of calculation was carried
ouf for the region from x=0 to X=X1Ny using given experimental
values u,- Inverse calculation was carried out for the region
starting from X=X1NV using experimental values of 6*. With u_
=9.36M/sec, the calculated results are compared with the

experimental values in Figures 3 and 4.

— EXHE \
-0 KR 2=

d*(ne@)

- .- - -

- e

0.6 0.65 Xy 0.7 .75

Figure 3.

1. our calculation
2. experimental result [5]

165

-----
.......
b

Soceroe e

O YR VN U T TR T T VT Y s



2!
T
A1~
[
[\ 1.
i
A %
' 1.4
™ s VY PR
7 HEDRE
») /
N ’: 1.3 -
L
o oiT 56 e 0T 0.75
RS
s
: Figure 4.
- 1. experimental result [5]
Y 2. .our calculation
:i 3. separation point in experiment
L 4. separation point in calculation
fg The calculation was carried our using FACOM 230 computer.
3 The CPU time is about 50 sec per calculation.
)
"ﬂ IV. Discussion
:S By comparison of the results of calculation, we have
e concluded as follows:
b 1. The calculation results using the forward approximation
B method of Reyhner and Flugge-Lotz are consistent with the results
3
j obtained by global iteration calculations. However, the former
ig method used less calculations and storage space and is an
S :
N effective method for calculating the separation of bubbles.
-
v 2.. Using Falkner-Skan coordinates in both direct and
%’ inverse calculation regions can provide smooth transition
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between the two regions and allows the use of the same numerical
procedure for calculation. No jump of the solution will occur at

the transition point.

Qi-peng for the assistance and consultation in calculation and

the preparation of the manuscript.
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Abstract

This paper presents an numerical method for solving 2-D, steady, 1a-
compressible laminer boundary layer flows with separation and reattach-~
ment, In the method, the displacement thickness is prescribed and the bo-
undary layer edge velocity is calculated with the boundary laver solution
so that the singulari;y at separation point is avoided. In the reverse flow
region, FLARE approximation is used, The finite-difference scheme used
here is 2nd ocrder accuracy and unconditionally stable implicit Box meth-
od, Falkner-Skan coordinates are used both in direct and inverse calcula-
tion regions in order to avoid the matching difficulty between the two
regions. The results are compared with global iteration calculations and
experimental data,
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Wall Lift Interference Corrections in Ground Effect Testing /93

Li Jingbai Qi Mengbo

(Nanjing Aeronautical Institute)

Abstract

The wall 1lift interference parameters on ground effects for
octagonal closed wind tunnels have been derived using image-vortex
systems. The fillet vortex system can be added to rectangular
tunnel vortex system. The vortex lattice method can be used to
determine fillet vortex strength. It has been found that the
wall 1lift interference corrections on ground effect have related
to not omnly the wall upwash and streamline curvature effects but
also the normal gradient of the ﬁpwash velocity at fhe horizontal

tail.

1. Introduction

The interference of wall lift in ground effect testing has
been investigated in various wind tunnels since over fifty years
ago. The image vortex systems of the wing model in the
rectangular wind tunnel are two groups of infinite periodic
vortex series. The equation for the wall life interference
parameters can be easily derived theoretically. Batchelor has
designed an image vortex system for application in octagonal wind
tunnels[1].
He has based on the rectangular image vortex system with the

addition of continuous distribution of vortices along the

rectangular peripheries to determine the vortex strength using
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e
%;; the method with predetermined pattern and to calculate the
i{‘ interference parameter of the wall upwash with the wing
{‘Q positioned at the center and away from the center of the wind
%_i tunnel[ZJ
. Fan Jiechuan has applied Batchelor's method to calculate the
g:& interference parameter of wall upwash in an octagonal wind

éﬁ \ tunne1[3]. He has also extended this method in calculation of

-~
e . the ground effects and obtained several equations and charts
{;3 which are suitable for engineering épplications. Garner has
fié indicated in reference [4] that the accuracy of the calculation
{E' of the upwash interference parameter using Batchelor's method is
;%g considerably poor when the wingspan of the wing model is larger
;ﬁ than 2/3 of the width of the wind tunnel. Therefore, we have
Y used the vortex lattice method to determine the fillet vortex
%}% strength. The wall upwash interference parameters for octagonal
E#? closed wind tunnels calculated by this method[5] are quite

;u consistent with the accurate solutions obtained.by the fixed angle
;ﬁ; transformation method[6]. This method has also other advantages
'éié such as it is simple in calculation and better in speed of

?; calculation.
& -
{ig ' 2., The Wall Lift Interference Parameter at the Wing

o A testing section of octagonal tunnel having width of b,
1}; height of h, and fillet length of t is considered. The wing is
ijz assumed to be located at the center of the tunnel and a single
(fé horseshoe vortex having strength, r, and vortex span, 1, is
i
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representing the wing. With coordinate system oxyz and having
the x-axis along the direction of incoming flow, assume that the
attached vortices are on the plan of x=0 and the free vortices’
are extended infinitely to the downstream and parallel to the x-
axis. In the octagonal test, every fillet is divided into q
elements and a fillet vortex having strength Kj is placed on
every 1/4 point (zj,yj). The 3/4 point (zNi’ yNi) is the control
point. With the presence of wall and ground, the image vortex
systems, in respect to the wall and the ground of the tunnel, of
the horseshoe vortex of the wing and the fillet vortices are
shown in Figure 1.

- The calculation of the wall lift interference parameter for
the octagonal wind tunnel can be carried out based on the
calculation for the rectangular tunnel having the same width to

height ratio

Manuscript received on December 25, 1982, revised manuscript
received on April 15, 1984. .

— ]l c— e—e:;;
vs —:.—3“' _zjk /\ f
@=on ke M

Figure 1. The Image Vortex Systems of the Ground Effect Test
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with the additional contribution of the fillet vortices. With
the ground effect, the image vortex systems can be regarded as
four groups of vertical vortex series having base points at (zj +
mb, yj) and interspace of (h+2d), where (zj, yj) j =1,2,3,4 are
the coordinates of the four free vortices locating immediately
next to the origin of the coordinates, and m=0, +1, +2,......,d
are the heights of the wing from the ground. Using the induced
velocity equation for the vertical vortex series having equal
space and same direction of rotation, the equations for
calculating the average wall upwash interference parameter, Ek,
at the wing and the normal derivative, éyoR’ of the upwash
interference parameter at the center of the wing in the
rectangular wind tunnel can be derived (see reference [5] for
detail).

For calculating the additional effect of the fillet vortex,
the image vortex systems of the wing can be regarded as four
equal spaced horizontal vortex series locating at the base
points, [zj, yj+n(h+2d)] with interspace b, where n=0, +1,
+42,...... The normal velocity Ci at any control point on the
fillet of the vortex system can be calculated using the inauced
velocity equation for the horizontal vortex series having equal
space and the same direction of rotation. Similarly, the fillet
vortex systems can also be regarded as 4 q groups of horizontal
vortex series based at [zj, yj+n(h+2d)] having interspace b,
equal vortex strength and the same rotation direction. (zj, yj)
j=1, 2,...q are the coordinates of the vortices on tae four

fillets locating immediately next to the origin of the
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"%} coordinates. The induced normal velocity F; 3 at the control

), o ’

o point of the vortex series having unit strength can be obtained ‘

o using the induced velocity equation for the horizontal vortex

series. With the condition that the normal velocities on the

fillets are zero,

‘ ‘:}:\: «
ﬁ:\::." 2 F,‘,j K,‘=Ci, (l.=1,2'“q)
B i=t n
The fillet vortex strength Kj can be obtained by solving the .
ﬁig above group of linear algebraic equations. The upwash velocities
‘%ﬁj of the horizontal clockwise vortex series, having base points at
N [zj, yj+n(h+2d)] and interspace b, produced near the wing are:
(R v
1y
:‘:“:ﬁ‘ - M _z.!_
o av,=-Ki 5 sin g (a—20) “ @
e, 9 1 <~ 2 o™ 2
ch Y Ly—yi—nth+2d)]- cos = (2—2))

DLy )
?éﬁf Using the above equation to obtain the upwash velocity of the
;Sﬁé wall lift interference can simplify the original two-fold

W

summation formula down to single summation. This will give high

speed and accuracy in calculation. Since the above series

o converges very fast, satisfactory accuracy can be obtained with

NP n=+3o

] —

i? The average value of AVy j can be obtained by integration of
. ’

i equation (2) along the span direction on the wing surface (y=d).

L
A

. .

.

The additional average upwash interference parameter produced on |

g
)]
Lo the wing by all fillet image vortex systems is:
&
ey /95
s" - bh ¢ A_ bh [ 1 " (3)
_‘1 d ’_2[‘7’ 'Z‘ Ve = 27-1 ; -I j-l,’: AV,,dZ
Ry
ot
f‘.)
4
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Obtaining the derivation of equation (2) with respect to y, tue

normal derivative of the additional induced upwash velocity of

the fillet systems at the center of the wing (y=d, 2=0) is

bh? 2 a(AV,,)

nr ZFI (4)

1=l

The parametric area of gf and 6yof is bh and the reference 'length
of the latter is h. The normal derivatives of the average wall
upwash interference parameter of the octagonal wind tunnel and

the upwash velocity at the center of the wing are

(Gt 50C
d=(3etd gy (5)
3= Brunt dup o (6)

respectively, where C is the cross area of the test section of
the octagonal tunnel. The detailed equations of ¥ and 6yoand the
derivation can be obtained in reference [5].

Figure 2 shows the dependence of the wall-interference
parameter 6 on the span-to-width ratio 1/b and the relative
height above ground, d/h, obtained from the NH-2 low velocity
octagonal wind tunnel of the Nanjing Aeronautical Institute (the

dimensions of the octagonal test section are b=3M, h=2.5M,

t=0.4M). It indicates that the wall lift interference parameter &

decreases rapidly with increasing the height of the model above
ground. The value of & with ground effect is smaller than that
without ground effect. The difference can be as high as one

order of magnitude.
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"’ Figure 2. The Average Wall Upwash Interference Parameter of
= _ the NH-2 Wind Tunnel
oo ) ' 1. without floor
T
N
e 3. The Additional Wall Lift Interference Parameter at the
e Horizontal Tail
e
f_l-—:'_. Since the horizontal tail is located downstream of the wing,

) there is an additional upwash velocity increment at. the horizontal
i tail compared to that at the main wing under the influence of mapping
:j,l'_-ff fixed vortex and free vortex systems of the wing. If the projected
- :'-jf length of the distance between 1/4 chord point of the mean aerodynamic
" s

chord of the horizontal tail and the 1/4 chord point of M.A.C. of the
oo wing on the x-axis is L, the additional upwash velocity produced by
';.{:: the wing mapping vortex system and the edge mapping vortex systems in
J,'._h the octagonal wind tunnel according to the Biot-Savart formula is
-y
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, r 1
g n-=7;;h2' (°0.0.)[ 5 + l ] x

X+ M=)’ -+ - 2)-

. x(c‘l—z)
\/x+(n,, y)+(£"_z): ,Z,K Z(UU)X (7)

1 1
x +
N [x'-f- ("u'_y)‘ (ﬂ.j—y) +(£!iTZ) ]
) :(C,.——Z): R :‘ ‘ _‘__’.E.__ -
VE+ W i—g+ L= .

’ where o, o, are +1 or -1 depending on the direction of the
vortex cuov=1 for counter clockwise vortex and ouov=-1 for /96
clockwise vortex in Figure 1, (nvj’guj) =1,2...q are the
coordinates of the wing and the fillet vortices respectively, v
and w are integers (Figure 1) and each vortex is represented by a
set of (u,v). It should be noticed that the firstu§v does not
include (u,v) = (1,1, (-1,1), (1,-1) and (-1,-1). They are
representing the horseshoe vortex and the images with respect to
the ground within the wind tunnel. Since Equation (7) converges
fast, u=v=9 is sufficient for calculation.

From Equation (7), the additional upwash interference

parameter at the horizontal tail can be obtained as[S]

td —'_C—/l'(Lv d, o),

2ri (8)
and the normal gradient of the upwash velocity is[5]
3,=d,,+ Ch oV ~ (9)

21-I a v (L, d, 0,
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(a) interference parameter

(b) interference parameter

1.

The Wall Interference Parameter at t
Tail in the NH-2 Wind Tunnel (1/b=0.

Figure 3.

and

Figure 3 shows the dependences of 6,

no floor

he Horizontal
5)

6

vt on the

relative height d/h above ground and the relatiye distance
between the wing and the horizontal tail, 1/b, in the NH-2 wind
tunnel with a span-to-width ratio of 1/b=0.5. With the attack anrle,
there is a horizontaldistance between the horizontal tail and the
center of the wind tunnel, Ay, , the induced increment of the

attack angle at the horizontal tail is

Aa,= [fa,+a..é,f—'] &S (10)

where C; is the uncorrected wall life interference parameter, S

is the area of the wing. Since the gradient of the wall upwash

v~locity is larger at the horizontal tail and the position of the
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horizontal tail changes with the attack angle, it should give
attention to the fact that the errors of the wall 1ift interference correctiors
of the pitching moment and longitudinal static stability in the
ground effect testing are larger if the second term in Equation
(9) is omitted[5].

4. Conclusions

1. The wall upwash interference parameter with ground
effect testing is smaller, to one order of magnitude, than that
without ground effect. The image vortex method is a simple and
effective method of approximation.

_ 2. The vortex lattice method for calculating the effect of
fillet vortices of the octagonal -wind tunnel is simpler and more /97
accurate than the Batchelor's predetermined pattern method. /9

3. The effect of the normal gradient of the upwash velocity

at the horizontal tail should be considered in correcting the

wall 1ift interference in ground effect testing.
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o ) , Abstract

. The wall lift interference parameters on ground effects for octagonal

closed w_ind tunnels has been derived using image vortex systems. The
- fillet vortex system can be added to rectangular tunnel vortex system.
;_~_

The vortex lattice method can be used to determine fillet vortex strength.

It bas been found that the wall lift interference corrections op ground

5 effect have related to not only the wall upwash and streamline curvature

SO effcets, but also the normal gradient of the upwash velocity at the hori-
A sontal tail.
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