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I. INTRODUCTION

A ramjet-assisted round is under consideration that can reach and main-k
tamn velocities that will permit extended range applications. The round is
stabilized by segmented sleeve flare fins that deploy after it is launched.
It is particularly important that these fins should not deploy in an un-
favorable position in the muzzle blast region.

Figure I is a schematic of the muzzle blast region after the obturator
*has cleared the muzzle. The propellant gases exiting from the muzzle expand

and accelerate within the jet core until they reach the recompression
shocks. Within the core, the gasdynamic properties are almost steady and
depend upon the muzzle-exit gasdynamic properties. Figure 2 shows the
gasdynamic properties along the centerline for the jet-plume region of an
underexpanded steady jet flow. The jet exit Mach numbers for the ramjet-
assisted projectiles have values near 1.5; thus, the centerline properties do
not change with distance until the head of the rarefaction wave emanating from
the tube corner reaches the centerline. Once this occurs, the pressure along
the centerline rapidly falls off with distance from the muzzle while the flow

* velocity increases to levels in excess of the projectile launch velocity.( Should the fins deploy in this reverse flow region, there is the strong
possibility that they would be damaged.

The jet core is terminated at the shock layer, the region between the
air-blast front and the Mach disc. Here, the pressure recovers to above at-
mospheric pressure and the gas within this region moves more slowly than the
projectile. If the fins deploy in the shock layer, the force on the fins will
be as for normal flight.

We want to determine the gasdynamic quantities around the projectile
during residence in the muzzle blast. We can thereby design to avoid deploy-
ment in a region which might cause damage to the fins. The base of the round
consists of a pusher plate which will be discarded after launch. The pusher
plate covers the ramjet exhaust. The intake of the ramjet engine is near the
front of the projectile. Thus, while the projectile is in the tube, the inte-
rior of the projectile pressurizes as the projectile accelerates and compress-
es the air in front of it. After launch, the pressure internal to the motor
relaxes toward the free stream stagnation pressure behind a normal shock. As
the projectile traverses through the jet plume, the pressure on the rear of
the pusher plate declines. At a certain point, the force on the front of the
pusher plate becomes greater than the force on the back of the pusher plate.
The unbalanced force can be utilized to deploy the fins or to simply discard
the pusher plate if the fins deploy by a separate mechanism.

In this work, the gasdynamic quantities are calculated on the front and
the back of the projectile. Two numerical simulation codes are exercised to
calculate the quantities at the projectile rear. The first code is an axi-
symmetric Godunov first-order code1 modified to simulate typical gun-blast

12. G. F. Widhopf, .7. C. Bu~ell, and E. M. Schmidt, "Time Dependent Near Field
* M~uzzle Brake Flowa Simu'nlations," Proceedings of the AIAA/ASME 3rad Joint

Thermo-Phys~ics, Fluids, Plasma and Heat Transfer Conference, ATAA
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problems. This code can only perform the simulation relatively near the
muzzle because the number of cells is limited by the computer being used. It
is utilized to simulate the flow for projectile travels of less than three
calibers. The other code, called DAWNA, 2is used to determine the flow for the
larger distances. Since the original DAWNA code does not asume that there is
a projectile in the flow, we assume Newtonian hypersonic theory to obtain the
pressure on the rear of the projectile.

TI. MODEL

To examine the flow when the base of the projectile is near the muzzle,
the inviscid model developed by Widhopf, et al is used. The model solves a
conservative form of the unsteady Euler equations using a one-component com-
pressive gas and utilizes Godunov's scheme. By solving Riemann's problem, the
fluxes at the cell surfaces are obtained. Boundary conditions are treated
using analytic expressions for one-dimensional wave reflections together with
the condition that the normal component of the velocity is zero at the boun-
dary. The cells for this study are sized so that there are 11 cells between
the bore axis and the radius of the bore. The cell thickness along the bore
direction is one-twentieth of a caliber. A special feature of this code is
its provision for a moving boundary. When the projectile rear passes a cell
boundary immediately above it, a new cell is formed and is coalesced with the
cell behind it. At the same time, the back part of the old cell is returned
to its former state as a distinct cell. By reordering the sequence by which
the wall boundary is moved through the cells, the present author has improved
the accuracy with which the fluid quantities are calculated in the cells adja-
cent to the moving wall. The front of the projectile is not considered in
this simulation; rather, the projectile is treated as semi-infinite in
extent. The pressure in the projectile will be obtained by some simplifying
assumptions.

Table 1 gives some parameters that were used in this study. Two projec-
tile configurations were considered for the bore diameter, D-l05mm.

TABLE 1. MUZZLE EXIT CONDITIONS AND PROJECTILE PARAMETERS

Slowest Fastest
Projectile Projectile

Muzzle pressure (MPa) 57.0 55.4

Muzzle velocity (m/s) 1,220 1,340

As indicated in the Introduction, DAWNA 2 was used to obtain the gas-
dynamic quantities at large distances. Utilizing DAWNA also affords an

2. .1. Ranlet and J. Erdos, "Descrip o of FO?RA!.' Proarar DAWNA of AnaZ.is..
of 9t.zzZe Blast Field," U. S. Arnry Ballistic Researck Laborator?, Aberdee':
Provinc Ground, Maryland, Contractor Report No. BKLCE-302, ArriZ 1976.
(AD A024485) ..
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opportunity to check the results that are generated by the Godunov axi-
symmetric simulation code. DAWNA is a one-dimensional scheme that simulates
the gun-blast flow along the centerline and assumes that the flow is spher-
ically diverging. Formerly, a separate method-of-characteristics 3 code gener-
ated the flow quantities in the jet plume along the boreline before DAWNA was
run. The present author modeled the flow along the boreline as a spherical
source flow with some refinements and used a least-squares fitting procedure
to obtain the values of the coefficients for the resulting model equation.
The values along the boreline in the the jet plume are now generated as DAWNA
is executing. DAWNA yields sharp discontinuities because shocks are fitted
instead of being captured. The discontinuity trajectories computed by DAWNA
agree well with experiment.

To obtain the pressure on the front of the projectile while in-bore, it
is assumed that the projectile travels down the tube at a constant velocity
equal to the muzzle-exit value. This assumption yields an upper bound for the
pressure inside the projectile and on the front of the pusher plate. Since
the base pressure exterior to the pusher plate declines with distance, utiliz-
ing this assumed pressure on the pusher-plate front gives a lower bound for
the distance at which the pusher plate starts to separate. This in turn
yields the most severe condition to be expected for pusher plate discard and
fi n deployment.

III. RESULTS

The Godunov code1 is used to obtain pressures on the base and for the
cell immediately above and behind the rear of the projectile. Figure 3 gives
these results for the fastest projectile. The curves shown are for different
distances from the axis. The uppermost curve corresponds to the pressure for
the second cell from the axis and is seen to at first increase and then de-
crease. The pressure should stay constant until the rarefaction wave travel-
ing from the projectile corner reaches the field point. The errant behavior
stems from an incorrect treatment of the boundary conditions on the axis. The
error propagates to cells further off the axis but decreases with increasing
distance from the axis. It is seen that after the rarefaction waves sweep
past a point on their way to the axis, the pressures on the base vary consid-
erably with distance from the axis and then tend to coalesce for the larger
distances. Results were also calculated for the slowest ramjet projectile and
are very similar to Figure 3 in appearance.

Figure 4 gives the pressure as a function of time on the base of the
projectile at a point 18.4 mm away from the axis. After the arrival of the
rarefaction wave, the pressure rapidly declines. Figure 5 shows the pressure
on the side of the projectile, 23.6 mm from the base. Initially, the over-
pressure is zero; then it climbs steeply as the blast wave overtakes the point
of interest and then slowly varies during the limited period for the calcu-

3. A. R. Vick, E. H. Andrews, J. S. Dennard and C. B. Craidon, "Coparis:n of"
Experimental Free-Jet Boundaries with Theoretical Results Obtained wiz --k

the Method-of-Chracteristics, " NASA Technical Note D-2327, June !9C4.

NRIS N64-23032)
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lation.

Mach contours were also obtained for the muzzle blast fields. Figure 6
shows a sequence of Mach contours for the fast ramjet projectile. Figure 6b
shows the Mach contours at 44.2 microseconds. The barrel surface corresponds
to the outline of the left rectangle. The rear part of the projectile is por-
trayed to the right. The interval between Mach contour lines is .2 and the
solid curve adjacent to a dotted curve corresponds to the gas flowing at sonic
velocity. By 100 microseconds, the recompression shock is forming and becomes
more distinct at later times. During the times simulated by the Godunov code,
the rear of the projectile is immersed in the jet core and reverse flow occurs
over the rear of the projectile. Figure 7 shows similar results for the slow-
est ramjet assisted round.

The DAWNA code 2 was used for the later times. The larger region for
computation necessitates the use of larger cells for the Godunov scheme but
the resolution decreases with increasing cell size. Figure 8 shows the dis-
continuity trajectories obtained with DAWNA for the fastest projectile; the
starting conditions are supplied by the Godunov code. The rear of the pro-
jectile leaves the region of reverse flow after the projectile travels little
more than five calibers from the muzzle. As shown in Figure g, similar condi-
tions prevail for the slowest ramjet assisted projectile. Figure 2 shows the
gasdynamic quantities in the flow along the centerline as a function of pro-
jectile base position. The jet core is assumed in DAWNA to be the flow for a
steady jet. The centerline properties of the jet core are calculated by an
approximation procedure developed from a least squares fit to method-of-
characteristics calculation results for steady flow. The flow of interest
ranges from the exit tube to the Mach disc. As the projectile rear passes the
Mach disc, the f'jid velocity declines sharply to less than that possessed by
the projectile.

Using this jet flow, we can calculate the base pressure in the reverse
flow. We assume that the pressure can be approximated by applying Newton's -
theory which is applicable to hypersonic theory for blunt bodies. For the
fastest ramjet assisted projectile, Figure 10 shows the calculated base pres-
sures for the two codes. It is seen that the Godunov code yields higher pres-
sures; this result is consistent with muzzle brake flow simulations where the
calculated pressures for the inner part of brake baffles were higher than the
experimental values. 1  Figure 11 shows the base pressure for the slowest ram-
jet assisted projectile. Again, similar results are obtained.

To get an estimate of where the pusher plate starts separating, we need
to compare the base pressure with the internal pressure. Since the maximum
internal pressure is that which occurs within the gun bore, a conservative
estimate of the separation distance may be developed by neglecting venting
after separation and taking the internal pressure as constant at the in-bore
value. Landau and Lifshitz4  show

4. L. D. Landau and E. M. Lifshitz, Fluid .echanics, Pergamon Press, 1959,
pp 330-357.
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I- + V + 1 ( + )( ).'
4c 2  p c 16 2"-(1

where

P2/p. = Pressure of compressed air in bars

V = Velocity of projectile

c = Sound speed in ambient air

y Specific heat ratio for air.

Substituting the values for the slow projectile, the pressure ratio is 23.6bars. For the fast projectile, the pressure ratio is 28.1. -

To examine the adequacy of this approximation, consider the time for a
rarefaction to propagate from the ramjet inlet, along the internal length of
the projectile, to its base. The velocity of the rarefaction wave front is
found from

2Vr  = (Y-l) P- + (Y+1) P21 2. :.-

= [(y-1) + (Y+1) (P2 /P-)] [c/(2y)] (2)

Substituting the pressure ratio obtained for the fast projectile, the sound
speed is 2.38 times the ambient sound speed. The time for the front of the
rarefaction wave to reach from the ramjet inlet to the base region would be
approximately 0.7 ms, a larger time than it takes to traverse the jet plume
region. The same conclusion can be drawn about the slowest projectile.

Figure 12 shows the base pressure and the upper bound internal pressure
as a function of time for the slowest ramjet assisted projectile. The upper
bound internal pressure exceeds the base pressure for slightly more than 0.2
mseconds. An idea of the movement of the base and fins relative to the pro-jectile can be obtained by making some plausible order-of-magnitude supposi-

tions. Suppose the pusher plate were 1 cm thick and the specific weight of
the material were 3. Furthermore, suppose that the net pressure during this
interval is 10 bar. Then neglecting the mass of the fins and any friction,
the pusher plate velocity relative to the projectile is calculated to be -

11"



approximately 20 m/s after 0.2 ins. The total movement rearward would be
approximately 7 mm. During this time the fins would be approximately aligned
with the flow even if the fins had also moved back 7 mm. The net forces on
the fin would be expected to be small.

IV. SUMMARY AND CONCLUSIONS

Using two numerical schemes, we calculate the fluid dynamic quantities on
the base of the projectile. We then compare the pressure on the exterior of
the pusher plate with the upper bound pressure on the pusher plate interior
to the projectile in the jet plume region. Considering the problem of a
piston traveling with constant velocity in a tube, we find an upper bound
value for the interior pressure. In the region where the assumed internal
pressure is greater than the external base pressure, it is possible for the
fins to deploy while the pusher plate is discarding. Nevertheless, the time
interval for the pusher plate discard process to occur in the jet plume region
is so small that with the pressure differences expected, the fins would no*
have the opportunity to deploy to the extent that they would be vulnerable to
damage.
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