During the past year the investigators have been able to develop a computer code which has turned out to be quite competitive with a well established code. The new approach implements a variable order finite difference scheme which does not require derivatives of the given function and which uses no information outside a subinterval to approximate the given system in that subinterval. Three papers have been published as a result of this effort, with the following titles, 'An adaptive boundary value Runge-Kutta solver for first order boundary value problems', 'On the solution of sparse non-linear equations and some applications', and 'A quasi-Newton method with sparse triple factorization'. Four additional papers are in press.
ANNUAL TECHNICAL REPORT

September 30, 1984 to September 29, 1985

Grant Number: AFOSR-84-0383

Title: Numerical Methods for Differential Equations

Principal Investigator:

Dr. Reginald P. Tewarson,
Professor,
Applied Math. & Statistics Dept.,
State University of New York,
Stony Brook, N. Y., 11794.

Research Associate:

Dr. Suchitra S. Gupta,
Assistant Professor,
Computer Science Department
Penn. State University,
State College, Penna., 16802.
SUMMARY

The overall long term goals of this research project are: to develop efficient computational algorithms and new, readily transportable, competitive general purpose computer codes for the numerical solution of two point boundary value differential equations; to use these techniques to develop adaptive codes for stiff and non-stiff initial value problems and the method of lines for the solution of partial differential equations; to test the codes on problems arising in diverse application areas, e.g., Physics, Chemistry, Fluid Mechanics, Combustion and Biomathematics.

The short term goal is to develop and implement variable order finite difference schemes which do not require derivatives of the given function and use no information outside a subinterval to approximate the given system of differential equations in that subinterval and use a variation of deferred correction for the solution of the corresponding non-linear algebraic equations.

During the past year the investigators have been able to develop a computer code which, on the basis of some preliminary experiments, has turned out to be quite competitive with a well established code. Extensive test are planned during the coming year. The algorithmic development phase of the research has led
to several useful results. An eighth order method, which has second, fourth and sixth order methods embedded in it has been developed. The method possesses some of the best features of implicit Runge-Kutta and Gap schemes. A multiderivative generalization of the above schemes has also been realized. A sparse factorization for quasi-Newton type methods has been obtained. Algorithms for solving combined systems of linear and non-linear algebraic equations and matrix splitting have also been developed.

Some of our results have been used for the computer simulation of kidney function at the Cornell Medical School in a collaborative research in which the Principal Investigator is involved.

REPORT

Finite difference methods which combine features of both Runge-Kutta processes and Gap schemes have been developed [1]. These methods are suitable for use in adaptive codes for the solution of first order differential equations with two-point boundary conditions. Success has been achieved in finding the order conditions for these methods and also some techniques that can be used to reduce the order number. An eighth order
method which has second, fourth and sixth order methods embedded in it has been developed. This eighth order method as well as embedded methods are A-stable. A technique has been proposed which exploits the natural embedding of methods for the estimation of the error in the numerical solution. This natural embedding of the methods is also utilized to estimate the local truncation error. In turn, these truncation error estimates are used to generate asymptotically equidistributing meshes using adaptive mesh placement procedures. A quasi-Newton method is described in this paper for solving discretized systems arising from the use of proposed methods. It has been possible to develop a preliminary general purpose adaptive code based on these methods.

A general description of sparsity based algorithms that use structural information in handling the model equations is given in [2]. The primary focus is on splitting of equations and variables into two subsets: one large but relatively easy to solve, called the non-basic subset, and the other small but difficult to handle, called the basic subset. The non-basic subset is then solved more often than the difficult basic set. The computer storage is that required by the basic set. Applications in flow networks and energy-economy models are briefly described.
A new quasi-Newton method for sparse matrices arising in various application areas is presented in [3]. In this work sparse triple factorization is used to develop a rank two update.

In [4], multi-derivative generalizations of the processes given in [1] are considered. These use fewer derivatives to yield results analogous to those for Gap schemes. Obviously, these processes instead of Gap schemes should be utilized if the higher order analytic derivatives are not readily available.

An efficient method for handling systems with linear and non-linear subsystems is given in [5]. In this method iterations are needed only for the solution of non-linear subsystems.

Cubic and quintic splines have been utilized in some of the methods for solving differential equations developed by the investigators and others in the past. One of the crucial steps in these techniques involves the solution of band systems. A very efficient general purpose scheme for handling such band systems [6] has been developed. This scheme is also very useful for block banded systems arising in a variety of applications.
Annual Report
Grant No: AFOSR-84-0383

A method of order eight that uses cubic splines on quintic splines for solving differential equations is described in [7].

A class of processes [8] have been found for solving second order boundary value problems of the form \(y'' = f(x,y) \), \(y(a)=A, y(b)=B \). These do not require derivatives of \(f \), and result in nonlinear equations with blocked tridiagonal Jacobians. Specialized techniques have been developed to derive the necessary formulas. The computation of the Jacobians for the discretized systems arising from the use of these formulas is expensive. This makes the ordinary Newton iterations impractical. This paper contains various techniques for approximating and splitting the Jacobians. These techniques are computationally inexpensive and lead to excellent convergence.

The Principal Investigator has given invited papers based on some of the research resulting from this grant at two international conferences [9,10]. One of the problems in the solution of large systems of non-linear algebraic equations arising in the numerical solution of differential equations is to be able to choose the starting approximate solution in the domain of attraction of the desired solution. Continuation type methods are used to enlarge this domain of attraction. An algorithm (based on Moore-Penrose generalized inverse) to
handle the turning points in continuation methods has been developed.

PUBLICATIONS

(a) Published papers:

(b) Papers in Press:

(c) Papers Submitted for Publication:

(d) Invited Talks:

Annual Report
Grant No: AFSR-84-0383

(e) Contributed Talks:
