| Ao-nie2 698 ggcsggff" Egs : m‘wm'
RALLY

F/G 972

TLRITIC DRRTHOUTH C(NOVA SCOTIA)
UNCLASSIFIED DRER-TC-85/.

et
o

2

I
: [l

’ E=—— 1.8

‘ I s e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS — 1963~ A

o

FEEEE

EEER
B

(rERE
re

N
o

MO I Pariand

> v
. . O

MG FILE COPY

UNLIMITED DISTRIBUTION (izg)

l* National Defence Défense Nationale

AD-A162 698

Research and
Development Branch

Bureau de Recherche
et Développment

TECHNICAL COMMUNICATION B85/3i2
AUGUST 1985

GETWRD PACKAGE UPDATE:
NEW FEATURES AND MODIFICATIONS
TO THE GETWRD PACKAGE

David Hally

DTIC

ELECTE
DEC 26 1985

Defence Centre de |
Research Recherches pour la
Establishment Défense

Atlantic Atlantique

-

This document has been cp:?‘:)\'s-d
c1 public rzlease aad rale; 143 ‘

: distzibution is unlimited.

85 12 26 017

A el . . A i v q Cirnd o
RS T S N e A A A o Sl A T B 20 NI ARC AN SRRDSUE

- DEFENCE RESEARCH ESTABLISHMENT ATLANTIC CENTRE DE RECHERCHES POUR LA DEFENSE ATLANTIQUE

9 GROVE STREET P.O. BOX 1012 9 GROVE STREET c.p. 1012

- DARTMOUTH, N.S. TELEPNONE DARTMOUTH. N €.

- 82y 327 (9021 426.3100 82y 327

: -
r.

i

. i
. ‘

.....................

UNLIMITED OISTRIBUTION

I * National Defence Défense Nationale
Ressarch and Bureau de Recherche
Development Branch et Développment

GETWRD PACKAGE UPDATE:
NEW FEATURES AND MODIFICATIONS
- TO THE GETWRD PACKAGE

David Hally

AUGUST 1985

Approved by T. Garrett Director/Technology Division

DISTRIBUTION APPROVED BY / W
/70

TECHNICAL COMMUNICATION B85/3t2

gl f This document has been approved gs i “L
CaIlada ' f:r public release and sale; its PRI RS TTLU L
, distribution is unlimited. ‘ f‘:a SR A 0
0

I e B S ARl T

Abstract

The GETWRD Package is a library of procedures designed to ease the

implementation of command languages using FORTRAN 77. it allows the user to interpret a

word of user input by matching it with one of the entries in a user-supplied dictionary.

’ Features designed to increase the friendliness of the program/user interface include a

o type ahead facility, recognition of abbreviations, word completion and understandable
error messages.

4
- This memorandum describes enhancements to the GETWRD Package. While most of
- the enhancements are of most benefit to the programmer, a major improvement to the
_ program/user interface is the iInclusion of a spelling corrector which will catch most
typographical errors committed by the user. Other improvements include the ability to
3 interpret the word of input as a simple string with no dictionary matching, a logical
_ variable, the answer to a Yes-No question, or a number in a specified range; greater
- flexibility for the programmer in formatting prompt and help messages; and a sorting
) routine which can be used to ensure that the dictionary is in alphabetic order.

Ail changes have been implemented to be upwardly compatible with the original
. version of the GETWRD Package so that no changes need be made to existing code
: which calis GETWRD Package procedures.

L e

.

......

.....

Résumé

Le progiciel GETWRD est une bibliothéque de procédures destindes
2 faciliter la mise en oeuvre de langages de commande faisant appel au
FORTRAN 77. Ce progiciel permet & l'utilisateur d¢'interpréter un mot
d'une entrée de données en appariant ce mot & un de ceux qui sont
contenus dans un dictionnaire fourni par 1l'utilisateur. Diverses
fonctions - commande anticipée, reconnaissance des abréviations, capacité
de compléter les mots et messages d'erreurs compréhensidbles - accroissent
la facilité d'utilisation du systéme.

Le présent document décrit les perfectionnements apportés asu
progiciel GETWRD. Bien que la plupart de ces changements concernent le
programmeur, l'usager bénéficie aussi d'une amélioration importante; en
effet, un dispositif de correction des fautes d'orthographe permet
désormais de supprimer ls majorité des erreurs typographiques commises
par l'usager. Parmi les autres nouvesutés, citons aussi la capacité
d'interpréter un mot d'introduction comme une simple suite de caractéres
sans l'apparier aux mots du dictionnaire et d'interpréter également une
variable logique, la réponse (oui-non) i une question ainsi qu'un nombre
dans une fourchette donnée. Le systéme offre sussi au programmeur plus
de souplesse dans la mise en forme des messages guide-opérateur et des
messages SOS et un programme de tri qui permet de s'assurer que le

_Gictionnaire est en ordre alphabétique.

Tous les changements introduits sont & compatibilité ascendante
avec le progiciel GETWRD original, de sorte qu'il n'est pas nécessaire de
modifier le code d'appel actuel des procédures du progiciel.

H

R S A AL

Table of Contents

Section

Abstl’.ct ® e e o s o s o o e e s e o & s

. INTRODUCTION s e e e e s e s s e s

-l

. USEOF THENEW FEATURES .'.
2.1 FORMATTING ENHANCEMENTS
2.2 CORRECTION OF TYPOGRAPHICAL ERRORS . . .
2.3 CORRECTION OF AMBIGUOUS WORD COMPLETIONS
2.4 INPUT OF CHARACTER STRINGS e e e e e e
2.5 INPUT OF LOGICAL VARIABLES AND YES-NO ANSWERS
2.6 INPUT OF NUMBERS IN A SPECIFIED RANGE .« ..
2.7 SORTING THEDICTIONARY . . © 4 & s o o o & &
2.8 MODIFICATIONS TOUPCASE . . . + « v o o« « &«
2.0 FUNCTIONLENT & « 4 « o o« o o o o o o « & &
2.10 VARIABLE INITIALIZATION e e e

OQDOONNODOO D = =

3. A SAMPLE PROGRAM
4. CONCLUDING REMARKS
Appendix

A. Implementation of the New Features e o o s s s s s e s e e o
A.1 CHANGES IN DATA STRUCTURES c e e e s b s e e s s e
A2 MODIFI.CATIONS-TO INDIVIDUAL GETWRD PACKAGE PROCEDURES

~ A2.1 Subroutine DELETE ¢« . ¢« v ¢ v o ¢ o o &
A.2.2 Logical Function DICCHK .
A.2.3 Logical Function GETNUM .
A.2.4 Logical Function GETWRD .
A.2.5 Logical Function PRMPT . .
A.2.6 Subroutine UPCASE
A.2.7 Logical Function WRDTRM
NEW PROCEDURES IN THE GETWRD PACKAGE
A.3.1 Logical Function CHQOTE
A.3.2 Logical Function CORSPL
A.3.83 Logical Function GETLOG
A.3.4 Logical Function GETSTR
A.3.5 Logical Function GETYN
A.3.6 Logical Function GNMRNG
A.3.7 Subroutine INTVAR o v e e

M e e s T . T T TP e T

A.3.8 Integer Function LEN1 e o s e 6 o s o o s e s s e s
A.3.9 Logical Function QUOTED ® s s e a o o s e 8 8 0 o s
A.3.10 Subroutine SORTCT e 6 s e e s e o s e s s e e e
A.3.11 Logical Function WORDOK ~ . . + « ¢ 4 o o o « « & &

References e ® & @ e 8 S 8 & s e e s e e & s & s s s e ° s > o

SUbjBCt .ndex e & e 8 e e 8 & e 6 6 5 e e 5 s 5 2 B s ° s s o =

R T Y

TR T Y

«
- .‘
.t

T e e ..a\ .. .'. .'.-.
Sty RIS
L

RO A S A M I S e s ol a L ind kg T MR EAMEAE S g Pl i S e S e e e

.....

I

H 1 INTRODUCTION 4

The GETWRD Package‘ is a tibrary of procedures designed to ease the 1
,' impiementation of command languages written in FORTRAN 77. The procedures provide a]
- : friendly program/user interface with very little effort by the programmer. Among the ’ h
. * teatures of the GETWRD Package in its original version were a type ahead facliity,

command completion, recognition of abbreviated commands, the ability to enquire about
possible valid input, and controlled aborts (i.e.the program will abort only when the user
requires it to). Several procedures have been added to the original version of the
GETWRD Package and several of the existing subroutines have been enhanced. All
modifications are completely compatible with any existing code which uses the original
package so that no changes to existing programs need be made to use the updated
versions of the procedures. Most of the modifications will be noticed only by
programmers using the GETWRD Package. They are offered several new featurss which
will widen the applicability of the package and its ease of use. These are the abliity to
have complicated formats for prompts and help messages, a tagged sorting subroutine
which will sort the dictionary into alphabetical order, the ability to input character strings
that will not be matched with dictionary entries, a procedure for returning & yes-no
answer, a procedure for returning the value of a logical variabie, and the abliity to input
numbers which are restricted to a specified range. However, there is one major new
feature that wili be noticed by users of programs in which the GETWRD Package is
invoked: a spelling correction facility has been added that will catch many typographical
errors and much reduce time wasted re-entering commands due to slips of the finger.

2 USE OF THE NEW FEATURES

in the following sections the use of the new features is described in detail. The
manner in which they have been implemented is described in Appendix A.

2.1 FORMATTING ENHANCEMENTS

One of the limitations of the original version of the GETWRD Package was the iack
of control the programmer had over the format of the prompt and help messages. These
messages were passed to the GETWRD subroutines in the character variables PROMPT
and HLPMSG respectively, and written, when needed, on a single line of the terminal
screen. If the help message was invoked, it was automatically followed by the list of
allowed commands, one command per line following the help message. By setting flags in
the common block / FMTFLG / in the new version, the programmer may create messages
having much more complicated formats. The programmer is given the option of having the
variables PROMPT and HLPMSG interpreted as a simpie string as before, or as a format
specifier which when used in a WRITE statement will result in a formatted message. The
latter option, while slightly more complicated to use, allows the programmer much greater
freedom in the appearance of the messages. The form of the WRITE statement used is
simply,

WRITE (UNITNO, HLPMSG)

or

-l ol

Al

—" RAMRANCIN MM AR ACIAA A e ba i i eSSl Ak -fd An i

2 : Section 2.1

WRITE (UNITNO, PROMPT)

in the latter case, if the buffer is not empty, the writing of the prompt is immediately
followed by the writing of the buffer contents up to the current position:

WRITE (UNITNG, * (" *+°*AS$) * }BUFFER (: BUFPOS)

The '+' in the format string suppresses the line-feed normally inserted before BUFFER is
written: thus, BUFFER will always be written on the same line as the last line of the
prompting message. Thus, the prompt format specifier in PROMPT, should always contain
a slash, /, to start a new line, or a dollar sign, $, to suppress the carriage return normally
inserted at the end of the execution of a WRITE statement. Otherwise the contents of
the buffer will be written at the start of the last line of the prompt, overwriting whatever
has been written there. Note that & dollar sign as a carriage return suppressant is a
widely used but non-ANS!I convention which may not be aliowed on some computers (see
Appendix E, Reference 1). As an example, suppose the following prompt spanning three
lines were to appear on the terminal screen:

Enter a new number between 1 and 18:
=>NEW-NUMBER

where 'NEW-NUMBER' is what is currently in the buffer. This may be achieved by setting
PROMPT to the following format string:

PROMPT = ('’ Enter a new number between 1 and 1B:’°//5X,’’=>""'$)’

The dollar sign at the end of the prompt suppresses the carriage return that would
normally be inserted after the WRITE statement so that when the buffer contents are
written after the prompt they will appear to the right of the arrow, '=>'. |f the $ was
omitted the prompt would appear as

Enter a8 new number between 1 and 18:
NEW-NUMBER

the buffer contents having overwritten the arrow. If a siash were used instead of a
dollar sign, the buffer contents would appear on the foliowing line:

Enter a new number between 1 anc 18:
=>
NEW-NUMBER)
Note that within the format string, single quotes must be replaced by two single quotes Iin
accordance with the FORTRAN 77 standard for representing single guotes in character .
strings. Unfortunately, this often makes the format statements difficult to read. To avoid

this difficuity, the programmer is allowed the option of replacing all single quotes within
the format string with double quotes. In the example above, PROMPT could be set to

PROMPT « (" Enter @ new number between 1 and 108:"//5X, "=>"$)°’

3

Section 2.1

Within the GETWRD Package the double quotes are replaced by single quotes before the
string is used in the WRITE statement. In order to allow the natural use of double quotes,
the replacement of single by double quotes is only an option which may be turned on by
setting a flag in the common block / FMTFLG /.

The programmer is also allowed greater freedom in the way that the list of available
commands is written following the help message. The list may be suppressed altogether.
This is often appropriate when the dictionary is very short and the options can be
inciuded in the help message itself. For example, if the dictionary consists only of the
two words ‘NO' and 'YES', an appropriate help message might be '

H Enter YES or NO.

and the listing of the allowed commands is then superfiuous. When the dictionary is large,
the listing of one allowed command per line often means that the full dictionary cannot
appear on a singie termina! screen. For this reason the programmer is now allowed the
option of specifying the number of allowed commands to be printed per line. The default
is one per line in keeping with the original version of the GETWRD Package. Thus, by
specifying the number of allowed commands per line to be 3, a help message which.
formerly appeared a&s

Enter one of the following commands
ABORT
CEASE

WITHER

would appear as

Enter one of the following commands .

ABORT CEASE BESIST
DIE EXIT GIVE-UP
STOP SURRENDER WITHER

The separation between each column of commands is three spaces. It is up to the
programmer to ensure that the horizontal extent of the commands will not overfiow the
terminal screen.

The formatting options described above are invoked by the programmer by setting
the values of flags in the common block / FMTFLG /:

COMMON / FMTFLG / IPMT, IHLP, IQUOT, NACPL
where
IPMT = 0, indicates that PROMPT is to be treated as a simple string as in the original

varsion of the GETWRD Package. This is the defauit.
=z 1, Indicates that PROMPT is to be treated as a format specifier.

ot

Section 2.1

indicates that HLPMSG is to be treated as a simple string as in the original
version of the GETWRD Package. This is the default.

= 1, indicates that HLPMSG is to be treated as a format specifier.
IQUOT = O, indicates that internal conversion from double quotes to single quotes will
not occur. This is the default.
® 1, indicates that double quotes will be converted to single quotes by the
GETWRD procedures.
NACPL = The number of allowed commands per line to be written after the help message.

If NACPL is zero, the allowed commands will be suppressed completely. The
default value for NACPL is 1.

2.2 CORRECTION OF TYPOGRAPHICAL ERRORS

An annoying feature of the original GETWRD Package is that, If the user makes a
mistake on input, then when prompted to correct the mistake all further input stored in
the buffer is lost. If the type ahead facility has been used, a lot of typing may be
wasted over a simple typographical error. For example, if when prompted the user enters

=>MOVE THE SUQ UP 2 AND THE ASTERISK DOWN 4
meaning the third word to be 'SQU' rather than 'CUQ' so that it would match the dictionary
word 'SQUARE', then the original version of GETWRD wouid respond

?? Word not in dictionary

=>MOVE THE S

end await further input. All the remaining words in the buffer would have been lost. The
new version of GETWRD realizes that the user probably meant 'SQU' and responds instead

?? Uord not in dictionary

Did you mean *SQU’ for *SUQ’ to match with "SQUARE’? (Y or N)

I¥ the user responds 'Y', the mistake will be corrected in the buffer, and the correct
match returned from GETWRD. The user will not be reprompted and the remainder of the
buffer will be processed normally. If the user enters 'N', then there will be a new prompt
for further input and the remainder of the buffer will be lost.

The algorithm used to catch typographical errors Is implemented in the subroutine

CORSPL. It is derived from an algorithm of Durham, Lamb and Saxe? and relies on the
observation that most typographical errors fall in one of four categories:

1) a single character is missing from the word,

2) an extra character is contained in the word,

SO A AR AR A A A A A M N M TR o)
A

TYIVEE ST ew W

Section 2.2 . 13

o S ne 2ae a4

3) two adjacent characters are transposed, or
! 4) a single character has been repiaced by an incorrect character.

1 CORSPL takes the current word in the buffer ("SUQ' in the example above), then checks
¢ - each dictionary word in turn to see if it could be identified with the buffer word by one of
i the four transformations above. If the dictionary word can be matched in this sense, the
X user will be prompted and asked if that is what was meant. If no dictionary words can be
3 matched, then the simple error message will be written and the user reprompted, losing
the remainder of the buffer.

2.3 CORRECTION OF AMBIGUOUS WORD COMPLETIONS

Another mistake which often causes loss of user input is when the completion
character is used but a unique dictionary word is not identified. For example, suppose
when prompted the user enters

=>MOVE THE S$ UP 2 AND THE ASTERISK DOWN &

meaning the third word to match with 'SQUARE'. Howevaer, in the example, 'STAR' is also a
dictionary word. The original version of GETWRD wouid respond

?? Word completion not unique

and await further input. All the remaining words in the buffer would be lost. The new
version of GETWRD tries to recover from this error by prompting the user for the correct
word:)

?? Word completion not unique

Did you mean 'S’ to match with *SQUARE’? (Y or N)

If the user responds 'Y’ the 'S' in the buffer will be substituted by the full word 'SQUARE'
and the match returned from GETWRD. The user wiill not be reprompted and the remainder
of the buffer will be processed normally. If the user enters 'N', the next possibie match
will be tried:

Did you mean S’ to match with 'STAR'? (Y or N)

If the user again answers 'N' and no further words in the dictionary begin with S, the user
will be reprompted for further input and the remainder of the buffer will be lost. Since the
user did not wish any of the allowed completions of the word, the input should begin with
either the Delete Letter Character, the Delete Word Character or the Abort Character in order to
clear the 'S' from the buffer.

R e
AR

' Aa A g e a

] Section 2.4

2.4 INPUT OF CHARACTER STRINGS

The original GETWRD Package allowed two forms of input to the buffer: strings,
whose words were to be matched with dictionary words, or numbers. A drawback of the
original library was the inabllity to allow the user to input other data types such as strings
which would not be matched with dictionary words, or logical variables. For example, a
command might require the input of data from a user-specified file. An appropriate
command sequence might be :

=>GET-DATA-FROM DATA.DAT

where 'DATA.DAT' is to be interpreted as a file name. Clearly It is impossibie to have a
dictionary containing all possible file names. The subroutine GETSTR has been provided
as a means to input character strings which will not be matched with dictionary words. It
interprets the next word in the buffer as a string of characters and returns the word in a
character variable, STRING. The position in STRING of the last non-delimiter is returned in
the variable LENSTR. Prompting and help messages are as in GETNUM as is the presence
ot an Integer error flag, IER. The user will also be warned when the word in the buffer is
to long to iit in the character variable STRING. The special Abort, Completion, Delete Letter,
Delete Word, and Help characters all retain their special functions, though as there is no
dictionary the completion character will result in a message reminding the user that word
completion is not possible. Hence, none of these characters can be included in the input
string. If it is necessary that one of them or one of the delimiting characters be
accepted as part of the string, the programmer may define a Quote character which “turns
off" the character which follows it. For example, if the Quore character is set to '@', and
the remaining special characters have their default values, then the input

=>PS: <HALLY>GETWRD. FOR

would result in STRING having the value 'HALLY>GETSTR.FOR' since '<' is the default
Delete Word character so that 'PS:' is deleted from the buffer. However, :

=>PS: @<HALLY>GETSTR. FOR

results in STRING having the value 'PS:<HALLY>GETSTR.FOR'. The Quote character is
passed via the common biock / QUOTE /. If the Quote character is set to be one of the
delimiting characters, then It is considered undefined and none of the special characters
may be included in the input string. The defauit value for the Quote character is a blank,
which is always one of the delimiters: i.e. the default is that the Quore character is
undefined. If the Quore character is defined and it is encountered in the buffer by the
subroutines GETWRD or GETNUM, it will simply be deleted since there is no purpose for it
in those subroutines. Note that the restriction that none of the special characters
(including the Quote character) can appear in a dictionary word still applies.

2.5 INPUT OF LOGICAL VARIABLES AND YES-NO ANSWERS

A logical function, GETLOG, for getting the value of a logical variable has also been
provided. GETLOG is very similar to GETNUM or GETSTR but returns the logical variable
LVAR via its argument list. Note that the value of the variable is not the returnad value of
GETLOG. rather, GETLOG, like GETNUM, GETSTR, and GETWRD returns TRUE i a value for
the variable has been obtained, FALSE if the user has signailled an abort or if the buffer

IR

Section 2.5 7

has overfiowed. To obtain the value of LVAR, GETLOG calls GETWRD with the simple two-
word dictionary 'FALSE', 'TRUE', then sets LVAR to its appropriate vaiue. For example,
suppose the initial command 'PLOT-FLAG=' requires the user to set the value of the iogical
variable PLTFLG. A call to GETLOG might result in the following prompt

true?=>GET~FLAG=

to which the user must enter 'TRUE' or 'FALSE' or a response that will match one of those.
Note that 'T' or ‘F' is sufficient. ‘ L

Another similar function, GETYN returns the answer to a ‘yes or no' question. The
answer is returned in a character variable, ANS, of length 1. ANS will be either 'Y' or 'N'.
Like GETLOG, GETYN uses GETWRD with the simple two-word dictionary ‘NO', ‘YES'.

2.8 INPUT OF NUMBERS IN A SPECIFIED RANGE

Another addition to the GETWRD Package is the subroutine GNMRNG which, like
GETNUM, allows the user to input a number, but aiso has the feature that the range of the
number may be specified. If the number input, RNUM, lies outside the specified range an
error message supplied by the programmer will be written. Given the lower and upper
bounds for the range, RNUMLO and RNUMHI respectively, there are nine possibie ways to
specify the range depending whether the end-points are to be included in the range or
not used at all. The range desired is specified by the integer argument IFLAG whose
values for the different range specifications are:

IFLAG = O If neither limit is used (equivalent to GETNUM),

1 if lower limit used inclusively, upper limit not used: RNUMLO < RNUM,

2 if lower limit used exclusively, upper limit not used: RNUMLO < RNUM,

3 if lower limit not used, upper limit used inclusively: RNUM s RNUMHI,

4 If both limits are used inclusively: RNUMLO s RNUM s RNUMHI,

5 If lower limit is exclusive, the upper limit inclusive: RNUMLO < RNUM s RNUMHI,
6 if iower limit not used, upper limit used exclusively: RNUM < RNUMH],

7 if jower limit is inclusive, the upper limit exclusive: RNUMLO £ RNUM < RNUMHI,
8 if both limits are used exclusively: RNUMLO < RNUM < RNUMHI

2.7 SORTING THE DICTIONARY

A subroutine, SORTCT, which sorts an array of character variables into alphabetical
order has been added to the GETWRD Package (see Appendix A in Reference 1 for the
definition of alphabetical order). SORTCT will facliitate the implementation of programs in
which the dictionary is changed during execution. If, for example, a new command is
added to the dictionary, it is sufficient to add It to the end of the array DICT, then invoke
SORTCT to put the new dictionary into alphabetical order. SORTCT uses a linear insertion

sort modelled on an integer sort procedure by George and L. ..

After the dictionary is sorted or changed It is necessary to be able to identify the
appropriate action to be taken when a dictionary word Is identified. For example,
suppose the dictionary is EXIT, GO-DOWN and GO-UP. The word GO-UP is changed to
ASCEND so that the new (sorted) dictionary is ASCEND, EXIT, and GO-DOWN. But now

8 Section 2.7

dictionary word 1 corresponds to what used to be dictionary word 3 so that one cannot
use the position in the dictionary, DICPOS, to point the correct action to be taken since
code such as

o - -
LN

"l-l

IF (DICPOS.EQ.1) THEN
CALL EXIT
ELSE IF (DICPOS.EQ.2) THEN
CALL DOWN
ELSE IF (DICP0S.EQ.3) THEN
CALL UP
END IF

will result in EXIT being calied when the user types ASCEND. Nor can the value of the
dictionary words be used as in

A ? f‘(

- IF (DICT(DICPOS).EQ. EXIT') THEN
CALL EXIT
ELSE IF (DICT(DICPOS).EQ."'GO-DOWN’) THEN

CALL DOWN
S ELSE IF (DICT(DICPOS).EQ.’GO-UP*) THEN
2 CALL UP
of END IF
since now none of the subroutines DOWN, EXIT or UP will be called when the user types
ASCEND.

The solution is provided by an integer tag array, ITAGS returned by SORTCT. If

ITAGS(J) = J for all J upon input to SORTCT, then on output ITAGS(J) will contain the

£y position before sorting of the J® dictionary word. In the example above, if on input

‘-;j ITAGS = (1,2,3) then on output ITAGS = (3,1,2). Suppose now that the dictionary is

AN changed a second time: GO-DOWN will be changed to DESCEND. SORTCT is called with

the unsorted dictionary ASCEND, EXIT, DESCEND and the current tag array

g ITAGS = (3,1,2). SORTCT returns the sorted dictionary ASCEND, DESCEND, EXIT, and the

tag array ITAGS =(3,2,1). Notice that the tag array gives the origina! position of the

words in the dictionary before the first sort. The appropriate code for choosing the
action to be taken when a dictionary word is identified is

) IF (ITAGS(DICPOS).EQ.1) THEN
CALL EXIT
- ELSE IF (ITAGS(DICPOS).EQ.2) THEN
CALL DOWN
ELSE IF (ITAGS(DICPOS).EQ.3) THEN
CALL UP '
END IF

It is only necessary to initialize the tag array before the first dictionary sort. This may be
done In SORTCT by setting the integer argument NCALL to 0. ITAGS will then be initialized .
80 that ITAGS(J) = J, for J = 1,NWRDS, where NWRDS is the number of words in the
dictionary being sorted. SORTCT will aiso increment NCALL by 1 so that on subsequent
calis the tag array will not be initialized. Note, however, that there is no need for the “
elements of ITAGS to be different from one another. A convenient way to implament

Bl i
“NNS

3 Section 2.7 9

synonyms (two commands causing similar action to be taken) is to set their tags to be the

. same. In the example above, if the command ASCEND were to be allowed as a synonym

3 for GO-UP, then the dictionary and tags might be ASCEND, EXIT, GO-DOWN, GO-UP and
{ ITAGS = (1,2,3,1). This example is considered in more detail in Section 3.

2.8 MODIFICATIONS TO UPCASE

The subroutine UPCASE has been modified so that its argument may now be a
character string of any length: formerly its argument was only a single character. This
makes UPCASE convenient for converting dictionary words to upper case if they are
modified by the user, who might not type in upper case characters.

2.9 FUNCTION LEN1

LEN1 is a procedure which is called by the spelling correction subroutine CORSPL
but which is likely to be convenient for more general use. LEN1 is an integer function
with one argument, STRING, a character string of arbitrary length. LEN1 returns the
position in STRING of the last non-blank character. It is useful when one wishes to
suppress the printing of trailing blanks.

2.10 VARIABLE INITIALIZATION

Sometime during the initial execution of the procedures GETLOG, GETNUM, GETSTR,
GETWRD or GETYN, the defauit values for the special characters, the input and output
unit numbers, and the new formatting flags must be assigned to appropriate variables.
The most appropriate means to do so would be a BLOCK DATA sub-program in which initial
values of the variabies were assigned in DATA statements. Then if changes to the
variable initialization were deemed necessary by the programmer, it need only be done in
one place, rather than in each of the separate procedures. Unfortunately a BLOCK DATA
sub-program would cause problems if the /LIBRARY switch were used when loading the
compiled GETWRD Package procedures. (On the DEC-20 computer, if the /LIBRARY switch
is used, only those procedures called by the main program directly or indirectly via
intermediate procedures will be loaded.) Since a BLOCK DATA sub-program is never called,
it would not be loaded and the initialization would not be done. To avoid this difficulty
initialization is done in the subroutine INTVAR which is, for all intents and purposes, a
BLOCK DATA sub-program as it has no executable statements. However, it is called by
each of GETNUM, GETSTR, and GETWRD so that it will be loaded even if the /LIBRARY
switch is used. Since GETLOG and GETYN each call GETWRD, the variables will be
initialized in these procedures too.

3 A SAMPLE PROGRAM

In this section a sample program illustrating many of the new features in the
GETWRD Package is presented. The main program allows the user to enter one of three
commands: EXIT, GO-DOWN or GO-UP. If the command is EXIT the program stops; if it is
GO-DOWN the subroutine DOWN is called, if it is GO-UP the subroutine UP is called.
However, before obtaining these commands the user is allowed to change the dictionary

..............

10 Section 3

by removing commands, defining synonyms for commands, or renaming commands. This is
done in the subroutine DCCHNG which contains most of the features of interest. The
arguments to DCCHNG are DICT, the dictionary to be changed; NWRDS, the currerit
number of words in the dictionary; MXNWRD, the maximum number of words allowed in the
dictionary after synonyms have been defined (the dimension of DICT is MXLWRD which
sets an upper limit on the dictionary size); ITAGS the tag array which allows the main
program to determine the action to be taken when a dictionary word is identified by
GETWRD. Possible changes to the dictionary are obtained by entering one of the
following command strings:

REMOVE dictionary-word
RENAME dictionary-word new-name
SYNONYM dictionary-word synonym

where dictionary-word is one of the words in the dictionary DICT, and new-name and
synonym are character strings. REMOVE causes dictionary-word to be removed from the
dictionary. RENAME causes dictionary-word to be replaced by the string new-name.
SYNONYM causes synonym to be added to the dictionary as a synonym for dictiongry-word.
The command RETURN causes control to pass to the main program listed below.

PROGRAM MOVE

yigle]

C
E Sample program to illustrate new features of the GETWRD Package

CHARACTER BUFFER%8@, DICT (S5)%7, HLPMSG%3S, PROMPT%2
INTEGER BUFPQS, OICPOS, ITAGS(S), NWROS
LOGICAL GETWRD

DATA DICT/’EXIT’, GO-DOWN’,*GO-UP*,"* *,* */, NWRDS/3/,
x PROMPT/’=>’/, HLPMSG/’Enter one of the following commands’/,
* 1TAGS/1,2,3,4,5/

C Call DCCHNG to allow the user to change the dictionary.
CALL DCCHNG (NWRDS,5,DICT, I TAGS)

C Clear the buffer and get the next user command
19 BUFFER~" ’
BUFPOS=8
IEé.?gTigETHRD(BUFFER,NNRDS,DICT.PROHPT,HLPNSG.BUFPOS.DICPOS))
x

C 1f the command corresponds to the original command 'EXIT® then STOP
IF é%BQGS(DICPOS).EQ.l) THEN

C 1f the command corresponds to the original command 'GO-DOWN' then
C call DOWN
ELSE IF (ITAGS(DICPOS)}.EQ.2) THEN
CALL DOWN

C If the command corresponds to the original command *GO-UP’ then

Section 3 11

C call UP
ELSE IF (ITAGS(DICPOS).EQ.3) THEN
CALL UP
END IF
GO TD 18
END

SUBROUTINE DCCHNG (NWRDS, MXNWRD, DICT, I TAGS)

Subroutine which allous the user to alter a dictionary by removing
wWords, renaming words, or adding synonyms.

CHARACTER BUFFER%88, DICINT (4)x7, DICT (MXNWRD)x(x), PROMPTx188,
x HLPMSGx88, ANS

INTEGER BUFPOS, DICPOS, DICP1, IPMT, IHLP, IQUOT, ITAGS (MXNWRD),
* NACPL, NACPLO, UNITIN, UNTOUT

LOGICAL GETSTR, GETWRD, GETYN

COMMON / FMTFLG / IPMT, IHLP, IQUOT, NACPL
COMMON / TOUNIT / UNITIN,UNTOUT

DATA D}E}NT/'REHQVE'.'RENANE’.'RETURN','SYNDNYH’/. NWRD1/4/,
NACPL=MAXB{1,808/LEN(DICT(1)})

C Cliear the buffer and get the command
18 BUFFER=' *
BUFPQS=8
PROMPT='dictionary change? =>'
HLPMSG="Enter one of the following commands’
IF (.NOT.GETWRD (BUFFER,NWRD1,DICINT, PROMPT (:21) , HLPMSG, BUFPOS,
x DICPOS))IGO TO 18

C 1f command is RETURN return to calling program
: IF (DICINT(DICPOS).EQ. RETURN') RET

C Find word in DICT which is to be changed
PROMPT«'dictionary word? =>'
HLPMSG="UWhich of the following words do you Wwish to change?’
IF(.NUT.GETHRD(BUFFER.NNRDS.D?CT.PROHPT(:19).HLPﬂSG.BUF S,
x DICP1))GOD TD 18

(elelply]
ao000

C If command was REMOVE, remove the identified word from the dictionary
C providing that there uill be at ieast one word left. The user is
C asked to confirm the removal of the word.
IF(DICINT (DICPOS) .EQ. *REMDVE’) THEN
IF (NURDS.EQ.1) THEN
' WRITE (UNTOUT, * (/2A)}’)* ?? YOU CANNOT REMOVE THE ONLY °,
% *DICTIONARY WORD®
G0 TO 10
END IF
BUFFER=" °
BUFPOS=0
L1«LENI1 (DICT (DICP1))

e

12 Section 3

PROMPT=" (1X, "Do you realiy want to delete the command '//
* DICT{DICPI)(:Ll)//'?“/lX,"Ansuer Y or N: =>%$)°

IHLP=1
1QUOT=1
NACPLO=NACPL
NACPL =8
IF (.NOT.GETYN (BUFFER, PROMPT, HLPMSG, BUFPOS, ANS, IER) GO TO 18
IF (ANS.EQ.’Y’) THEN
D0 28 1«1,LEN(DICT(1))
DICT(DICP1) (I31)e’~’
28 CONTINUE
CALL SORTCT (NWRDS,DICT, I TAGS, BUFFER,NCALL , IER)
NWRDS=NWRDS~1
END IF
IPMT=0
IHLP=8
1QUOT=8
NACPL=NACPLO

C !4 the command is RENAME, get the new word from the user,
ELSE .IF(DICINT(DICPOS) .EQ. "RENAME’) THEN
PROMPT="new word name? =>’
HLPMSG="Enter the new word name to replace °//

% BICT(DICP1)
IF (.NOT.GETSTR (BUFFER, PROMPT (:17) , HLPMSG, BUFPOS, BICT (DICP1),
% LENSTR, IER))GO TO 18

CALL UPCASE (DICT(DICP1))
CALL SORTCT (NWRDS,DICT, ITAGS, BUFFER,NCALL, IER)

C 1f command is SYNONYM, add the synonym to the dictionary and set]TAGS
C so that the new uword is equivalent to the old word.
ELSE IF(DICINT(DICPOS).EQ. *SYNONYM') THEN
IF (NWRDS.EQ.MXNWRD) THEN
WRITE (UNTOUT, * (/2A)*)* ?7? No more room in the ',
x ‘dictionary for synonyms’
GO TO 18
END JIF
PROMPT=" synonym name? =>’
HLPMSG='Enter the synonym for the word '//DICT(DICP1)
NWROS=NWRDS+1
IF(.NOT.GETSTR (BUFFER, PROMPT (: 18) , HLPMSG, BUFPOS, DICT (NWRDS) ,
x LENSTR, IER))GD TO 18
CALL UPCASE (DICT (NWRDS))
[TAGS (NWRDS) «1 TAGS (DICP1)
ENDC?%L SORTCT (NWRDS, DICT, 1 TAGS, BUFFER, NCALL, IER)

C Cail DICCHK to check the sorted dictionary
CALL DICCHK (NWRDS,DICT)
GO TO 1@
END

Section 3

Commenﬁ:

1)

2)

3)

4)

)

6)

7)

The dictionary DICT lnltiaily has only three words but is dimensioned to
five so that two user-defined synonyms may be added. Thus, in DCCHNG
MXLWRD is five and NWRDS is initially three.

A user abort at any level within DCCHNG causes the buffer to be cleared
and a new dictionary-modification command to be prompted.

Upon entering DCCHNG, NACPL is set so that several available commands
can be written on one line in response to the Help character. However, in
subroutine GETYN all necessary information is contained in the prompt. It is
desired that the response to a Help character is just the reprinting of the
prompt. This Is achieved by passing an empty help message, setting IHLP
to one, and suppressing the printing of available commands by setting
NACPL to zero. This causes the Help character to be completely ignored
since a WRITE statement with an empty format string does nothing at all.
If IHLP were not set to one, the blank help message would be printed
causing an extra blank line on, the terminal screen. After returning from
GETYN, NACPL is reset to its previous value and IHLP is reset to zero.

When setting the value for PROMPT before the call to GETYN, the integer
function LEN1 is called to determine the last non-blank character in
DICT(DICP1). It is then possible to avoid several superfiuous blanks
between the dictionary word and the question mark: e.g.

Do you realiy want to delete the command GO-UP?
rather than
Do you really want to delete the command GO-UP ?

The prompt used when asking for confirmation of the removal of a word
{passed to GETYN) covers two lines so that it must be passed as a format
specifiar. Hence, before entering GETYN, IPMT and IQUOT are set to one.
They are reset to zero after control is returned from GETYN. -

The contents of a word to be removed are set to '~~~~~' (whatever
length is necessary). Since ~ is the last character in the allowed alphabet
of characters, this ensures that the word will be sorted to the end of the
dictionary where It will be ignored when NWRDS is set to NWRDS-1.

ITAGS Is Initialized in the main program and SORTCT is always calied with
NCALL > O. If NCALL is initialized to 2ero so that ITAGS is initialized during
the first call to SORTCT, a problem arises if the first user command Is
SYNONYM. Suppose the first user command is *SYNONYM GO-DOWN ASCEND’.
in that case, the first time SORTCT is called it is passed EXIT, GO-DOWN,
GO-UP, ASCEND and NWRDS = 4. |TAGS is initialized to ITAGS = (1,2,3,4,x)
with the star standing for an indeterminate fifth element. This overwrites
the value ITAGS(4) = 1 which was set just prior to the call to SORTCT. in
general, it is always safest to initialize the tag array in the procedure in
which the dictionary commands are used (here the main program MOVE)
rather than in the subroutine SORTCT.

.........................
..............
...............

.,i
4
L
+
*

AR I e £ % L A R ie e SRR AMA IV S Nl Sl Aed. At Ani el fodt Sl Al Sl

- PARASYLES. #50 oAl JREC vk A b AE-a/lk st -sdiur - Atue e padims Sas B hdgt Jiat Sing Suse St
A NARAAEIN A RN A A N pafiira i e At

14 ' Section 3

8) The strings new-name and synonym are obtained using GETSTR. Since
these strings will become dictionary words and none of the special
characters are aliowed in dictionary words, there is no point in defining a
Quote character to allow inclusion of special characters in these strings.
Hence, the Quote character is left undefined.

The following is a sample run of the program MOVE on the DEC 20 computer at DREA.
The subroutines UP and DOWN, which are not shown here, cause the simple messages
'MOVING UP...' and ‘MOVING DOWN...' to be written on the terminal screen.

eEXE PS: <HALLY>MOVE,PS: <HALLY>GETWRD/LIB
LINK: Loading
[ILNKXCT MOVE execution]

dictionary change? =>?

L T —
. .‘.‘-‘ L

Enter one of the following commands
REMOVE RENAME RETURN SYNONYM

dictionary change? s>syn ?

Which of the following words do you wish to change?
EXIT GO-DOUN GD-UP

dictionary word? «>SYN go-up ?
Enter the synonym for the word GO-UP
synonym name? =>SYN GO-UP ascend

dictionary change? s>ren ?

Which of the following worde do you wish to change?
ASCEND EXIT GO-DOWN GO-UP

dictionary word? =>REN go-d ?

e E————
" s 8§ & B = A « . st . . PR

Enter the new word name to replace GO-DOUN
new word name? =>REN GO-D descend
dictionary change? s>rem ?

Wnich of the following words do you wish to change?
ASCEND DESCEND EXIT GO-UP

dictionary word? =>REM go-up
Do you really want to delete the command GO-UP? .
Ansuer Y or N: =>?

Do you really want to delete the command GO-UP?
Answer Y or N: w=>y

. » - .

ATt A e e
. s % e b) COR e T T I S
.-.-f o« - . .

- ot s % " . D N Y . .
WV A N YA AR LS AT T A

TN N YT T N

Section 3 . 15

dictionary change? =>return
->?

Enter one of the following commands
ASCEND DESCEND EXIT

=>ascend
MOVING UP...
=>descend

MOVING DOWN...

s>exit

CPU time 1.85 Elapsed time 1:27.18
.

4 CONCLUDING REMARKS

The implementation and use of several new featuraes in the GETWRD Package of
FORTRAN 77 procedures have been described. The new features not only enhance the
user friendliness of the package, but provide greater flexibility and ease of use to the
programmer. This makes the GETWRD Package an even more useful tool for FORTRAN
programmers wishing to implement command languages.

R T N N N T T ¥ F &S "

16 Section 4

Acknowledgement

The author would like to thank Dr.D.D.Ellis for his helpful remarks and criticisms and
for suggesting and supplying the original code (now somewhat modified) for the
subroutine SORTCT.

a s a2 e o

Puliats i e At Shes Sa et it e B A A R

Section 4 17
Appendix A

implementation of the New Features

In this Appendix the implementation of the new GETWRD Package features is
discussed in detall.

A1 CHAﬁGES IN DATA STRUCTURES

To maintain compatibility with existing programs which make use of the GETWRD
Package none of the data structures described in the GETWRD Package Manual have
been changed. However, the following new variables have been defined and are used in
several of the procedures.

IHLP

An integer flag used to indicate whether the character variable HLPMSG is to
be interpreted as a simple character string or as a format specifier (see
Section 2.1).

= 0, if HLPMSG is interpreted as a simple character string

= 1, if HLPMSG is interpreted as a format specifier.

IHLP is Initialized to O in a data statement in the subroutine INTVAR. It is
passed to other procedures via the common block / FMTFLG /.

IPMT = An integer flag used to indicate whether the character variable PROMPT is to
be interpreted as a simple character string or as a format specifier (see
Section 2.1).

O, If PROMPT is interpreted as a simple character string

= 1, if PROMPT is interpreted as a format specifier.

IPMT is iInitialized to O in a data statement in the subroutine INTVAR. it is
passed to other procedures via the common block / FMTFLG /.

integer fiag used to indi¢ate whether double quotes in the variables PROMPT
and HLPMSG are to be replaced by single quotes.

= 0, if no substitution is to be made

= 1, If double quotes are replaced by single quotes.

IQUOT

ntead

IPMT is initialized to O in a data statement in the subroutine INTVAR. It is
passed to other procedures via the common block / FMTFLG /.

i NACPL = Integer whose value indicates the number of aliowed dictionary words to be
written on each line following a user plea for help via the Help character (see
Section 2.1). If NACPL is zero nune of the aliowed dictionary words will be
written. NACPL is initialized to 1 in a data statement in the subroutine INTVAR. 1
It is passed to other procedures via the common block / FMTFLG /. :

YT

QOTCHR = Character variable of length 1 containing the character to be used as the
special Quote character (see Section 2.4). If QOTCHR is the same as one of the !
delimiters then It is considered to be turned off and will have no effect.

A ShaasRan) . anotan

S S A A A Al A A b A il Sl e A A afe e tate i A" S RinCbe e Ja iR S0 SR A S |
R AR A RN I S U S ERE e I ML

18 Appendix A

QOTCHR is initialized to ' ' (always a delimiter) in a data statement in the
subroutine INTVAR. It is passed to other procedures via the common block / _
QUOTE /. -

A.2 MODIFICATIONS TO INDIVIDUAL GETWRD PACKAGE PROCEDURES -

in this section the modifications to each of the existing GETWRD Package
procedures are described. The procedures CLBUFF, DLIMIT, INSBUF, MDICW, and NXTWRD
have had no modifications.

A.2.1 Subroutine DELETE

The subroutine DELETE is called by the subroutine PRMPT after user input. It
checks the buffer for the special Delete Letter and Delete Word characters and then modifies
the buffer accordingly. DELETE has been modified to allow the special Quote character to
"turn off" the Delete Letter and Delete Word characters.

wﬁfwﬁv-

New common block: COMMON / QUOTE / QOTCHR

internal variables:

v vvvr
.

DELON = Logical variable which is TRUE if the current delete character is not
quoted.

DELPOS = integer whose vaiue is the position in BUFFER(IBUFF:LEN(IBUFF)) of the
next Delete Letter or Delete Word character.

IBUFF = integer whose value is the position of the last Delete Letter or Delete
Word character found in the buffer. Initially IBUFF is BEGWRD+1.

1BPDM2 = |BUFF+DELPOS-2 = Position Iin the buffer of the character preceding the
Delete Letter or Delete Word character.

QUOTON = Logical variable which is FALSE if QOTCHR is a delimiter, TRUE If It is not.
QUOTON is use to avoid repeated calis to DLIMIT.

Algorithm:

Begin
Determine value of QUOTON
Set IBUFF to BEGWRD+1
While there is another Delete Letter character beyond IBUFF in BUFFER do
DELPOS = position in BUFFER(IBUFF:LEN(BUFFER)) of Delete Letter character
If the Delete Letter character is the first character in the word delete
the Delete Letter character only
Eise if QUOTON is TRUE and if the Delete Letter character is quoted set
IBUFF to IBUFF+DELPOS
Eise
Delete Letter character and the preceding character
If the preceding character was quoted, also delete the Quote character
If deleted characters before BUFPOS, adjust BUFPOS

-
. -
-
L‘-.
.
3
L -
3
b -
3
3

.................................
.......................

TN

..................

Appendix A

End If
End do

Set IBUFF to BUFPOS+1
While there is another Delete Letter character beyond IBUFF in BUFFER do
DELPOS = position in BUFFER(IBUFF:LEN(BUFFER)) of Delete Word character
If the Delete Word character is the first character in BUFFER then delete
the Delete Word character
Eise if QUOTON is TRUE and the Delete Letter character is quoted set IBUFF
to IBUFF+DELPOS
Eise
Search for backwards in the buffer for the first non-quoted Delimiting
character
Delete all characters from the Delete Letter character back to but not
including the Delimiting character
If deleted characters before BUFPOS, adjust BUFPOS
End if
End do
Return
End

A.2.2 Logical Function DICCHK

DICCHK is used to check the dictionary for errors. The only change that has been

T T S TNTR ST .A"-. Dl e S e ‘v—v.-.-_v_v.-—_r_‘—‘,.‘i.—_.i.—.—r,_'..']

19

made is to check that the Quote character does not appear in any dictionary words. This is
implemented simply by extending the iength of the string ENDC1 to 6 and including the
QOTCHR in it (See the GETWRD Package Manual, Appendix D.3). There is no need to
check to see if the Quore character is turned on, since if it is turned off it is equal to a
delimiter which also is not allowed In a dictionary word. The common block / QUOTE / is
also included to pass the Quote character to DICCHK.

A.2.3 Logical Function GETNUM

The logical function GETNUM used to interpret the next word of input in the buffer

as a number, has been modified in the following ways.

1) The common blocks / FMTFLG / and / QUOTE / have been included to pass
the formatting fiags IHLP, IPMT, IQUOT, and NACPL and the Quote character.

2) A call to subroutine INTVAR is included to Initialize variables (see Section
2.10).

3) If IQUOT is 1, CHQOTE is called to change double quotes in HLPMSG and
PROMPT to single quotes.

4) If a Quote character is found in the word of input it is removed since It has
no special meaning in this context.

5) If a Help character is found, the help message is written according to the
value of IHLP (see Section 2.1), If IHLP is O, HLPMSG is written as a
string:

............
.........

Appendix A

WRITE(UNITND, ® (/1X,A) * YHLPMSG

If IHLP is 1, HLPMSG is used as a format specifier:
WRITE (UNI TNO, HLPMSG)

A.2.4 Logical Function GETWRD

The logical function GETWRD used to match the next word of input in the buffer with
one of the words in a dictionary, has been modified in the following ways:

1) The common blocks / FMTFLG / and / QUOTE / have been included to pass
the formatting flags IHLP, IPMT, IQUOT, and NACPL and the Quote character.

2) A call to subroutine INTVAR is included to initialize variables (see Section
2.10).

3) If IQUOT is 1, CHQOTE is called to change all double quotes in HLPMSG and
PROMPT to single quotes.

4) If a Quote character is found in the word of input it is removed since it has
no special meaning in this context.

§) If no word in the dictionary matches the word input, logical function
CORSPL is calied to determine whether a dictionary word could be matched
if allowance was made for simple typographical errors (see Section 2.2).
If & match is found the user is asked whether the the corrected word
should be matched with the dictionary word.

Aigorithm:

Begin
Call INTVAR to initialize variables
if IQUOT is 1 changed double quotes to single quotes in HLPMSG and PROMPT
If no charscters past present point in BUFFER then
Call PRMPT to get user input
If PRMPT returns FALSE return GETWRD = FALSE
Ena if

Repeat
Get next character in BUFFER
Change character to upper case
If character is word terminator
if valid word has not been found then
Clear BUFFER from present position to end
Call PRMPT to prompt user and read input
End it
Eise if character is Abort character set {ER to -1 and return
Else if character is Quore character remove It
Eise
Find first possible matching word in the dictionary
If no valid word can be found then

DR R T i sy P ™ ey v v
r_ . A o A ¥ v s ARCA AN S A A e AREAAR LAR- Al - v, A A A A AN SAL At S Ate bio A Na SARAie S 4T Bua Sre s B 8 e S I L SR

Cara‘aa’

e - w
-

Appendix A 21

Call CORSPL to check for typographical errors
If none then
Clear BUFFER from present position to end
Call PRMPT to prompt user and read input
If PRMPT returns FALSE return GETWRD = FALSE
. End if
End if
End if
Until finished word
GETWRD = TRUE
Return position of word in dictionary
End

A.2.5 Logical Function PRMPT

The logical function PRMPT is used to prompt the user and then to read new input
from the terminal. Subroutine DELETE is then calied to process any Delete Letter or Delete
Word characters in the buffer. PRMPT has been updated to allow the character variable
PROMPT to be interpreted either as a simple character string or as a format specifier
(see Section 2.1). If integer flag IPMT (passed via common block / FMTFLG /) is O,
PROMPT is interpreted as a string, while if IPMT is 1, PROMPT Is interpreted as a format
specifier. The WRITE statements in PROMPT are as follows.

1) Iif IPMT = O and BUFPOS = 0, then PROMPT is written as a string and the
contents of the buffer are not written.

WRITE (UNTOUT, * {/1X, AS) *) PROMPT

2) If IPMT = O and BUFPOS > 0, then PROMPT is written as a string foliowed
by the contents of the buffer up to BUFPOS:

WRITE (UNTOUT, * (71X, 2A8) *) PROMPT, BUFFER (: BUFPOS)

3) if IPMT = 1 and BUFPOS = 0, then PROMPT Is used as a format specifier
and the contents of the buffer are not written:

WRITE (UNTOUT, PROMPT)

4) 1f IPMT = 1 and BUFPOS > 0, then PROMPT is used as a format specifier
and the contents of the buffer up to BUFPOS are then written in a
separate WRITE statement:

WRITE (UNTOUT, PROMPT)
WRITE (UNTOUT, * (*"+" " A8) *) BUFFER (: BUFPOS)

A.2.6 Subroutine UPCASE

A\
bt i

The subroutine UPCASE is used to convert characters from lower case to upper
case before attempting to match them with characters in a dictionary word. However, If

Rt A A AR

22 Appendix A

the dictionary is to be modified by the user it is convenient to use UPCASE to ensure that
new dictionary words are in upper case. Hence, UPCASE has been modified to accept
strings of arbitrary length and convert them to upper case. As pointed out in the GETWRD
Package Manual, Appendix E, note that UPCASE is intrinsically non-ANS! since lower case
characters are not inciuded in the ANSI standard FORTRAN character set.

A.2,7 Logical Function WRDTRM

The logical function WRDTRM is used to process the special characters, Help
character, Completion character and any Delimiting characters. WRDTRM has been modified to
allow the character variable HLPMSG to be interpreted elther as a simple character string
or as a format specifier (see Section 2.1). If integer flag IHLP (passed via common block
/ FMTFLG /) Is O, HLPMSG is interpreted as a string, while if IHLP is 1 HLPMSG is
interpreted as a format specifier. in addition, WRDTRM has been changed so that in
response to the Help character, the number of aliowed dictionary words written per line is
specified by the variable NACPL (also passed via the common block / FMTFLG /). The
separation between each column of aliowed dictionary words is three spaces. It is up to
the programmer to ensure that the horizontal extent of the commands will not overfiow
the terminal screen.

The WRITE statements for the help message in WRDTRM are now as follows:

1) If IHLP Is O, HLPMSG is written as a string:
WRITE (UNITNOD, * (71X, A) * JHLPMSG
2) If IHLP Is 1, HLPMSG is used as a format specifier:
. WRITE (UNITNO, HLPMSG)

WRDTRM has aiso been modified so that when the completion character is used but
fails to match a unique word in the dictionary, WORDOK is calied to attempt to correct the
word. If WORDOK is successful, the remainder of the buffer is processed normally. This
prevents the loss of additional input in the buffer. i{f WORDOK falls the user is prompted
for new input and the remainder of the buffer is lost. Previously an ‘error message was
written immediately and the user prompted for new input; any words in the buffer beyond
the mistake were lost.

A.3 NEW PROCEDURES IN THE GETWRD PACKAGE

A.3.1 Logical Function CHQOTE
Purpose

CHQOTE changes ail double quotes in its argument string to single quotes. It is used
to pre-process heip messages, error messages, and prompts when these are format
specifiers (see Section 2.1).

Arguments: STRING

Lok s Bl

“ - .o~ Dl - ~ - 3 - . - A

Appendix A 23

where

STRING = Character variable containing the string whose double quotes are to be
changed.

. internal variables:
LQOTE = Integer variable whose value is the position in STRING of a double quote.
Algorithm:
Begin
Do while STRING contains a double quote
Change first double quote to single quote

End do
End

T Y " R Sy

A.3.2 Logical Function CORSPL

Pyrpose

CORSPL attempts to detect a user typographical error ¥ GETWRD cannot find a
match between the word in the bufter and any of the dictionary words. CORSPL returns
TRUE if there is a word in the dictionary which would match a dictionary word if one of the
following modifications were made:

1) two letters were transposed,

2) one letter was changed to another letter,
3) one letter was added, or

4) one letter was deleted,

. and if the user has confirmed that the corrected word Is, indeed, the word that was
’:' meant. The algorithm is derived from one due to Durham, Lamb and Saxe?.

:: Arguments: NWRDS, DICT, BUFFER, BEGWRD, BUFPOS, DICPOS
F where
NWRDS, DICT, and BUFFER are as in GETWRD Package Manuai, Appendix C

1
:- BEGWRD = Integer variable containing the position in BUFFER of the first character
é - in the word belng checked.

BUFPOS = |nteger variable containing the current position in BUFFER (as in
GETWRD, GETNUM, etc.). When CORSPL is called BUFPOS will NOT be the
position of the first delimiter before the current word as it is in most

3 other procedures; rather, it will be the position in BUFFER of the first

character in the current word which caused a mismatch with the

dictionary words.

..........
........

............

...........

ORI I R R R

[N A TR IR S,
AR

W VU Y YR TP T

AR Sl Aok Jhas

Chuliiedl el
ot P

Nt
-

DICPOS = The position in the dictionary of the word matched if CORSPL was
successful. If CORSPL returns FALSE, then DICPOS will have the value It
had on input.

Internal variables:

ENDWRD = Integer variable whose value is the position in BUFFER of the last
character in the current word of input.

0 . JRSEAS o

LCORW = Integer variable containing the length of the corrected word of user
input if a unique match is found.

LDICT = Integer variable containing the length of the current dictionary word not
including trailing blanks.

LMATCH = The number of letters for which the word of user and the current

’ dictionary word match. Note that LMATCH <LWRD since If
- LMATCH = LWRD there would have been a match in GETWRD (or
ambiguous words) and CORSPL would not have been called.

LWRD

= Integer variable containing the length of the word of user input.
NBUFF = integer variable containing the lengtl.': of BUFFER
Algorithm:
Begin

Save DICPOS in DPSAV
CORSPL = TRUE
Find the last character in the word of user input
Convert remaining characters of user input to upper case
Caiculate LWRD
Do for each word in the dictionary
Set DICPOS to the position in DICT of the current word
Caiculate LDICT, the iength of the word minus trailing blanks
1f LWRD > LDICT+1, go to next iteration of loop since no match can be made
Find LMATCH :
if LWRD = LMATCH+1 (there is a match by the "additional ietter” or the
"incorrect letter" criteria) then .
If user confirms the match correct BUFFER and return
Eise go to the next iteration of the loop
End if
End if
if LMATCH+2 < LDICT and LWRD < LDICT then
Check for transposition of letters.
If match is found
It user confirms the match correct BUFFER and return
Else go to the next iteration of the loop
End it
End if
End i
If LWRD < LDICT then
Check for an incorrect letter in the word

Appendix A 25

If match is found
If user confirms the match correct BUFFER and return
Else go to the next iteration of the ioop
End if
End if
End if
If LWRD-1 < LDICT then
Check for an additional letter in the word
If match is found
if user confirms the match correct BUFFER and return
Else go to the next iteration of the loop
End Iif
End if
End if
If LWRD+1 < LDICT then
Check for a missing letter in the word
If match is found
If user confirms the match correct BUFFER and return
End if
End if
End do
Reset DICPOS to DPSAV
Return CORSPL = FALSE
End

A.3.3 Logical Function GETLOG

Purpose

GETLOG interprets the next word of user input as a logical variable, returning TRUE
if successful and FALSE if the user has signalied an abort (by entering the Aborr character)
or if the buffer has overflowed. GETLOG calis GETWRD to match the word of input with
the two word dictionary 'FALSE','TRUE'.

.' Arguments: BUFFER, PROMPT, HLPMSG, BUFPOS, LVAR, IER
P where
t_'- BUFFER, PROMPT, HLPMSG, BUFPOS are as in GETWRD Package Manua!, Appendix C

- LVAR = Logical variable containing the value corresponding to the word of input.

C, The value of LVAR will be changed from its input value only If GETLOG is
successful: i.e. If GETLOG returns FALSE, LVAR will return the same value
it had on input.

IER = |nteger error flag
= -1 if there is a controlied abort
= -2 if the buffer has overfiowed

Algorithm:

Begin

...

26 Appendix A

SetIER to O
Call GETWRD to match the next word in BUFFER with FALSE or TRUE
if GETWRD returns TRUE then
GETLOG = TRUE
If word matched was TRUE, LVAR = TRUE
Else LVAR = FALSE
End if
{ER=0
Else
GETLOG = FALSE
IER = DICPOS
End if
Return
End

A.3.4 Logical Function GETSTR

Purpoge

GETSTR interprets the next word of user input as a simple character string,
returning TRUE If successful and FALSE if the user has signalied an abort (by entering the
Abort character) or if the buffer has overflowed. If a Help character is found, the help
message is written according to the value of IHLP (see Section 2.1). If IHLP is O,
HLPMSG is written as a string:

WRITE (UNITNO, * (71X, A) " YHLPMSG
M IHLP is 1, HLPMSG is used as a format specifier:
WRITE (UNI TNOD, HLPMSG)

If a Completion character is found an error message is written followed by the help message
as word completion is not possible in GETSTR.

Arguments: BUFFER, PROMPT, HLPMSG, BUFPOS, STRING, LENSTR, IER
where
BUFFER, PROMPT, HLPMSG, BUFPOS are as in GETWRD Package Manual, Appendix C
STRING = Character variable in which the input string is returned. The value of
STRING will be changed from its input value only if GETSTR is successful:
i.e. If GETSTR returns FALSE, STRING will return the same vailue It had on
input.

LENSTR = Integer variable containing the length of the input string not counting
trailing delimiting characters.

[ER = Integer error flag
= =1 if there is a controlied abort
= -2 If the buffer has overfiowed

T R N T T Ty Iy Ty Ty Ty e s et ittt b ai all ‘ol Aad o §

.
v

RPN A

Appendix A ' 27

Common blocks: (see the GETWRD Package Manual, Section 5)

COMMON / ENDCHR / HLPCHR,CMPLT,DELLTR,DELWRD,ABORT
COMMON / FMTFLG / IPMT,IHLP,IQUOT,NACPL

COMMON / QUOTE / QOTCHR

COMMON / IOUNIT / UNITIN,UNTOUT

internal variables:

QUOTON = Logical varial:;le which is FALSE if QOTCHR is a delimiter, TRUE If It is not.
QUOTON is use to avoid repeated calls to DLIMIT.

Algorithm:

Begin
Call INTVAR to initialize variables
Determine value of QUOTON
If IQUOT = 1 change double quotes in PROMPT and HLPMSG to singie quotes
Initialize BEGWRD
if no characters past the current point BUFFER then
Call PRMPT to get user input
if PRMPT returns FALSE return GETSTR = FALSE
End if

Repeat
Get the next character
If the character is a Quote character, set BUFPOS to BUFPOS+1
Elise if the character is a delimiting character then
Set value of LENSTR
Find true length of input string not counting Quote characters
Check that input string will fit in the variable STRING
if it wili not then
Write an error message
Call PRMPT to prompt the user for input (the user must use the
Delete Letter or Delete Word cheracters to shorten the string)
If PRMPT returns FALSE, return GETSTR = FALSE
Else
Strip the QOTCHRs from the word in BUFFER
GETSTR = TRUE
Return
End If
Eise if current character is the Help ckaracter then
Write HLPMSG according to the value of IHLP
Call PRMPT to get user input
If PRMPT returns FALSE, return GETSTR = FALSE
Else if current character is the Completion character then
Write an error message
Write HLPMSG according to the value of IHLP
Call PRMPT to get user input
if PRMPT returns FALSE, return GETSTR = FALSE
Else if current character is the Abort character then
GETSTR = FALSE and IER = -1
Return

.......................

............................

Appendix A

End if
Until end of BUFFER word
Return

End

A.3.6 Logical Function GETYN
Purpose

GETYN interprets the next word of user Input as one of YES or NO, returning TRUE If
successful and FALSE if the user has signalled an abort (by entering the Abort character) or
if the buffer has overfiowed. GETYN calis GETWRD to match the word of input with the
two word dictionary 'NO','YES'.

Arguments: BUFFER, PROMPT, HLPMSG, BUFPOS, ANS, IER
where
BUFFER, PROMPT, HLPMSG, BUFPOS are as In GETWRD Package Manual, Appendix C

ANS = Character variable of length 1 containing 'Y' if the word of input
matched 'YES' and 'N' if it matched 'NO'.

1IER = Integer error flag
= -1 {f there is a controfled abort
= =2 if the buffer has overfiowed

Algorithm:

Begin
Set IER to 0
Call GETWRD to match the next word in BUFFER with NO or YES
If GETWRD returns TRUE then ’
GETYN = TRUE
ANS = first letter of dictionary word matched
IER=0
Eise
GETYN = FALSE
IER = DICPOS
End if
Return -
End

A.3.8 Logical Function GNMRNG

Burpose

GNMRNG interprets the next word of user input as a number but only accepts It if it
Is within a range specified by the arguments RNUMLO and RNUMHI. GNMRNG returns TRUE
it successful and FALSE If the user has signalied an abort (by entering the Abort character)

- Pl ~ - - — ey "y ——
- ‘.__ _". A)v_ - - g Ol) 1‘.v..v LA i CRARCR ! R St —— v

- “rvva

Appendix A 2§
or if the buffer has overflowed. GNMRNG uses GETNUM to obtain the number from the
buffer.

Arguments: RNUMLO, RNUMHI, BUFFER, PROMPT, HLPMSG, ERRMSG, BUFPOS, RNUM,
IFLAG

where
BUFFER, PROMPT, HLPMSG, BUFPOS are as in GETWRD Package Manual, Appendix C

RNUMLO = Real variable whose value is the lower end of fhe aliowed range for the
input number.

RNUMHI = Real variable whose value is the upper end of the allowed range for the
input number.

ERRMSG = Character variable used to write an error message if the input number is
out of range. ERRMSG is treated just as HLPMSG: It is interpreted as a
simple string if IHLP is O, as a format specifier if IHLP is 1.

RNUM = Real variabie containing the number input by the user. The vaiue of
RNUM will be changed from its value before GNMRNG was calied only if
GNMRNG is successful: i.e. If GNMRNG returns FALSE, RNUM wili return
the same value it had before GNMRNG was called.

IFLAG = Integer filag used on input to indicate how the end-points of the range

are to be treated, and on output to signal a user abort or buffer

overfiow. On input:

0, If neither limit is used (equivalent to GETNUM)

1, If lower limit used inclusively, upper limit not used: RNUMLO < RNUM

2, If lower limit used exclusively, upper limit not used: RNUMLO < RNUM

3, If lower limit not used, upper limit used inclusively: RNUM £ RNUMHI

4, If both limits are used inclusively: RNUMLO £ RNUM < RNUMHI

5 (f lower limit Is exclusive, the upper limit Iinclusive:

RNUMLO < RNUM < RNUMHI

6, if lower limit not used, upper limit used exclusively RNUM < RNUMH!

7, i lower Ilimit is inclusive, the upper Ilimit exclusive
RNUMLO £ RNUM < RNUMHI

= 8, If both limits are used exclusively: RNUMLO < RNUM < RNUMHI

On output:
s -1 if there is a controlled abort
= =2 if the buffer has overfiowed
=3 if RNUMLO > RNUMHI and IFLAG on input was 4, §, 7, 0or 8

Common blocks: (see the GETWRD Package Manual, Section 8)

A COMMON / FMTFLG / IPMT,IHLP,IQUOT,NACPL
COMMON / IOUNIT / UNITIN,UNTOUT

internal variables:

Te
e
‘.'.'-

30 Appendix A

RO B %

N

BPSAV = Integer variable used to save the input value of the buffer position
BUFPOS.

INRNG = Logical variable which is TRUE if the input number is in range.

RNMSAV = Real variable used to save the input value of the variable RNUM so that ‘
it may be restored if the user aborts a call to GETNUM.

Algorithm:

Begin
If IQUOT is 1 replace double quotes in ERRMSG by single quotes
If RNUMLO > RNUMHI and IFLAG is 4,5,7 or 8 set IER to -3 and return
Save RNUM in RNMSAV and BUFPOS in BPSAV
Repeat
Call GETNUM to interpret the next word in BUFFER as a number
If GETNUM returns FALSE, return GNMRNG = FALSE
If input number is in range return GNMRNG = TRUE
Else write ERRMSG according to vaiue of IHLP
End if . .
Reset RNUM to RNMSAV and BUFPOS to BPSAV
Clear BUFFER past BPSAV
Until number in range is found
End

A.3.7 Subroutine INTVAR
Purpoge

INTVAR is used to initialize the default values for the special characters, for the
formatting flags, and for the logical input and output devices. See Section 2.10.

.y Fami L s Sl et gat1
AN O AR R

Arguments: none
Common blocks: (see Appendix A.1 and the GETWRD Package Manual, Section 5)

COMMON / FMTFLG / IPMT,IHLP,IQUOT,NACPL
COMMON / IOUNIT / UNITIN,UNTOUT

@

Algorithm:
INTVAR contains no executable statements. It is used in preference to a BLOCK

DATA sub-program to initialize variabies using DATA statements. N

A.3.8 Integer Function LEN1 -
Burpose

LEN1 returns the length of a character variable not including trailing blanks. Note
that on many machines a character variable which is not initialized will be fllled with
characters other than spaces 8o that in this case LEN1 will not return 0.

SO aucarsos aasme
. - .o . t

it hRd
“

.....

et et A LA L T L . L T T L T S S P
SR R M e e T T e ot . - T . LR I A L . et R e PP S - .'.~‘ - -'\-‘\-‘-'
B B .-, . . T L L P SN . . . A et LN P MR I P P T L PR P . N

- . P . . .'.'.'..'.‘. L. L L. - N _'-_. - . e R L L U T ".’A'.‘.‘u\‘. -..‘.
. - . - N - - - - - - . . - - - - . - - -

[B S T e - ot et D T e . et e et . - .- . . - A - ., - - . Ld . - -
PR AT IR UL B P T T N S P S e et e e N RO R I S AR
. LIPS AL A P N PO R R i T - D O N T DAY PO SR A R -

..........

S . . e _ i RO IR
A A G S, W R A AT S o Sk, W T AT S D APV WA W T D DR DA R DAE IR I T DL, 5 A)

TR T a T m T m T g TN e W W W e W W N T y ——
| S P R N N R S e e e R S O Y T T T T T T ¥~~~ w—¥ r_ﬂ.r—j

Appendix A 31

:J
>
X
g
Arguments: STRING

where

STRING = Character variabie whose length is to be determined. R
Algorithm:

Begin
Do for each character in string starting from the end
If character is not a blank, return LEN1 = position in STRING
End do
Return LEN1 =0
End

DRIV LR

A.3.9 Logical Function QUOTED

Purpoge

QUOTED determines whether a character in the buffer is guoted or not. It assumes
that the Quote character is turned on. It is not sufficient to check whether the preceding
character is a quote character since the quote character itself may be quoted. QUOTED
returns TRUE if there are an odd number of Quote characters immediately preceding the
character to be checked.

Arguments: BUFFER, BUFPOS
where

BUFFER as in GETWRD Package Manual, Appendix C

T

BUFPQOS = Integer variable whose value is the position in BUFFER of the character K
to be checked. K

; Common block: COMMON / QUOTE / QOTCHR (see Section A.1) 1

]
Algorithm: q

Begin
Find number of Quote ckaracters preceding BUFPOS in BUFFER
If even number of Quote characters QUOTED = FALSE
Else QUOTED = TRUE
End if
Return
End 1

N SR

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
R P R L R R I
............. FOSNAAAN

SRR L S E RS SAS
Al s et et nt

32 Appendix A

A.3.10 Subroutine SORTCT

Purpose

SORTCT is a tagged linear insertion sort procedure designed to sort an array of
character variables into alphabetic order. Alphabetic order is defined by the ASCII
collating sequence (see the GETWRD Package Manual, Appendix A). SORTCT is a

modification of an algorithm by George and Liv®.
Arguments: N, CHARS, ITAGS, CTEMP, NCALL, IER
where

N

integer variable containing the length of the character array to be
sorted.

CHARS = Character array of length N containing the variables to be sorted.

ITAGS Integer array of length N containing the tags by which one can

determine the original position of any word in CHARS (see Section 2.7).

CTEMP = Character variable whose length is at least as long as the elements of
CHARS. CTEMP is used as a temporary variabie when swapping
elements of CHARS. For most applications using the GETWRD Package
the buffer variable BUFFER is a convenient variable to use for CTEMP.

NCALL = Integer variable used as a flag. !f NCALL = 0, the tag array ITAGS will
be initialized to the identity permutation: ITAGS(J)=J, J= 1N
Otherwise ITAGS the input value of ITAGS will be used (see comments in
Section 2.7).

IFLAG Integer variable use as an error flag:

0, If no error occurred

1,ifNs O

2, If CTEMP is not long enough.

Internai variables:

ITEMP = Integer variable used as temporary variable vthen swapping elements of
ITAGS.

Algorithm:
Begin
1f Ns O return IER = 1
If LEN(CTEMP) < LEN(CHARS(1)) return IER = 2
Else IER =0
End if
If NCALL = O, Initialize ITAGS to the permutation identity

Do for each element of CHARS (and ITAGS) from 2 to N (K = 2,N)

TR AL T W T W WW W pw w v -
DRSS AN AU A A Dal iUt St St R IRt A falh G s St s Sou et oty Ll e A AN S g b 4 A A Al ek e e e v

Appendix A

insert the current element of CHARS into its correct position in
CHARS(1)-CHARS(K~1). (Note that this sub-array is already
sorted).
For every pair of elements of CHARS swapped, swap the same pair of
elements in ITAGS

End do

Return

End

A.3.11 Logical Function WORDOK

Purpose

where

BUFFER, BUFPOS, DICPOS are as in GETWRD Package Manual, Appendix C

in the word being checked.

Faena . anood

blanks.

* Common blocks: (see the GETWRD Package Manual, Section §)

COMMON / ENDCHR / HLPCHR,CMPLT,DELLTR,DELWRD,ABORT
COMMON / IOUNIT / UNITIN,UNTOUT

- Interna! variables:

Begin

Repeat
Obtain answer

Arguments: BUFFER, BUFPOS, BEGWRD, ENDWRD, DICWRD, LDICT, LCORW, DICPOS

Write prompt asking for confirmation of the correction of the user's input

Al ek et Sl i Sl -8 Sl g

33

WORDOK asks the user for confirmation that a dictionary word matched by CORSPL
with the word of user input is, indeed, the word which the user wanted. If so makes the
correction in BUFFER and returns TRUE. Else returns FALSE. If the user types an Abort
character when prompted, WORDOK returns TRUE but DICPOS is -1. This will cause CORSPL
to return TRUE to GETWRD, which then interprets the value of DICPOS as an abort flag.

BEGWRD = Integer variable containing the position in BUFFER of the first character

DICWRD = Character variable containing the word in the dictionary to be matched.

- ' LDICT = Integer variable containing the length of DICWRD not including trailing

LCORW = Integer variable containing the length of the corrected word of user
input: l.e. DICWRD(:LCORW) is what the user should have typed.

? ANS = Character variable of length 3 used to obtain & Yes-No answer from the
- user.
) Algorithm:

PP ST W e)

WS e R i

i

E::‘_T'- e e e ST R PR A A i e e S AR Y |
:
34 Appendix A
If answer is YES
WORDOK = TRUE
Correct BUFFER setting BUFPOS to the delimiter foliowing the word s
Eise if answer is NO
WORDOK = FALSE
Else if user has signalled an abort N
WORDOK = TRUE
DICPOS = -1
Else Write error message
End if
Until valid answer received
Return
End
i.:.?
b .
2
3
.
p.
.
%
é
2
3 ')
......... O R B e
.............. W \\ . AR ‘._‘... '-..-‘
L) \- A X -

AR T S S A At BN A o il fn i N TNrTTYw
; : S TSI A DA S A SA S i e el b o AR TS I A A @ e s et e S
- 3 . < - . . - .1

References

1. Hally,D.; Dent,C.A.; GETWRD Package Manual, DREA TM/84/D

2. Durham,l.; Lamb,D.A.; Saxe,J.B.; "Spelling Correction in User interfaces"”, Comm. A.C.M.
26, 764(1983)

3. George,A.; Liu,J.W.; Computer Solutions of Large Sparse Positive Definite Systems,

Ch.6, Prentice-Hall Inc., Englewood Cliffs, N.J., 1981

.....................

JA ‘ " ... - . . . ’~ te .\"- "- by .
, ot -'.‘ C et . .
. "'-{- - l-l‘l“l DY PR

Subject Index

ABORT 27, 33

Abort character 8§, 6, 20, 25, 26, 27, 28,
33

ANS 28, 33

BEGWRD 23, 33

BPSAV 30

BUFFER 2, 10, 18, 20, 21, 28, 25, 26, 28,
29, 31, 33

BUFPOS 10, 23, 25, 26, 28, 29, 31, 33

CHARS 32

CHQOTE 19, 20, 22-23

CLBUFF 18

CMPLT 27,33

Common biock / ENDCHR / 27, 33

Common block / FMTFLG / 1, 3, 11,17,
19, 20, 21, 22, 27, 29, 30

Common block / IOUNIT / 11, 27, 28, 30,
33 .

Common block / QUOTE / 6, 18, 19, 20,
27, 31 _

Compietion character 8, 22, 26

Correction of ambiguous word completions
5 '

Correction of typographical errors 4-5,
20, 21, 23-25

CORSPL 4, 5, 9, 20, 21, 23-25, 33

CTEMP 32 :

DELETE 18-189, 21

Delete Letter character 5, 6, 18, 21, 27

Delete Word character 5, 6, 18, 21, 27

Delimiting characters 6, 17, 18, 19, 22,
23, 26, 27

DELLTR 27, 33

DELON 18

DELPOS 18

DELWRD 27, 33

DICCHK 12, 19

DICPOS 8, 10, 23, 33

DICT 7,8, 10, 13, 23

DICWRD 33

OLIMIT 18, 27

ENDWRD 24, 33

ERRMSG 29 S

Formatting enhancements 1-4

GETLOG 8-7, 9, 25-26

GETNUM 6, 7, 8, 19-20, 23, 29

GETSTR 6, 8, 12, 14, 26-28

GETWRD 4, §, 6, 8, 10, 11, 20-21, 23, 24,
26, 28, 33

GETYN 7,8, 12, 13, 28

GNMRNG 7, 28-30

Help character 6, 13, 17, 18, 22, 26

HLPCHR 27, 33

HLPMSG 1-4, 10, 17, 18, 20, 22, 2§, 26,
28, 29

iBPDM2 18

IBUFF 18

IER 286, 26, 28, 32

IFLAG 29

HLP 3, 11,13, 17, 18, 20, 22, 26, 27,
29, 30

Input of character strings 6, 14, 26-28

Input of logical variables 6-7, 25-26

input of numbers in a specified range 7,
28-30

Input of yes-no answers 6-7, 28

INRNG 30

INSBUF 18

INTVAR 8, 17, 19, 20, 27, 30

IPMT 3, 11, 13,17, 19, 20, 21, 27, 29,
30

IQUOT 3, 11, 13, 17, 19, 20, 27, 29, 30

ITAGS 10, 32

ITEMP 32

LCORW 24, 33

LDICT 24, 33

LEN1 9, 11,13, 30 -
LENSTR 26 .
LMATCH 24

LQOTE 23

LVAR 25

LWRD 24

36

MDICW 18

N 32

NACPL 3, 11,13, 17, 19, 20, 22, 27, 29,
30

NBUFF 24

NCALL 32

NWRDS 10, 23

NXTWRD 18

PRMPT 18, 20, 21, 27

PROMPT 1-4, 10, 13, 17, 19, 20, 21, 25,

26, 28, 29

QOTCHR 17, 18, 27, 3%

Quote character 6, 14, 17, 18, 18, 20,
27, 31

QUOTED 31-32

QUOTON 18, 27

RNMSAV 30
RNUM 29

RNUMHI 29
RNUMLO 29

SORTCT 7-9, 12, 13, 32-33
Sorting the dictionary 7-9, 13, 32-33
STRING 22, 26, 31

UNITIN 27, 29, 80, 33
UNTOUT 27, 29, 30, 33
UPCASE 8, 12, 21

Variable initialization 8, 20, 27, 30

WORDOK '33-36
WRDTRM 22

LA AR T Al ATl St aadhsad 2o o LIl

........

Porr—— — —
‘ DA iR aaaas

ADE UJdE%
UNLIMITED DISTRIBUTION. .ssrrrep

Seswritly Classiiastion

OQCUMENT CONTROL DATA - R & 0

{Security classlicstian of title, body of sbatrect snd indezing sANOIStion Mwst be eniered when the oversil doaument i1 cissulied)

1. QRIGINATING ACTIVITY 2a. DOCUMENT SECURITY CLASSIFICATION
UNCLASSIFIED
Defence Research Establishment Atlantic 2. GRour

1 OOCUMENT TITLE
GETWRD PACKAGE UPDATE: NEW FEATURES AND MODIFICATIONS TO THE GETWRD PACKAGE

¢ TECENTCAL ORI HATTON® e o

S AUTHONIS) (Last name, liest name, rmiddie initisl)

HALLY, DAVID
6. DOCU{‘QN? QOATE AUGUST 198% 7s. TOTAL NO. QF PAGES Ta. NO. OF REFS 3
8. PROJECT OR GRANT NO. 9s. ORIGINATOA'S COCUMENT NUMBER!(S]
) D.R.E.A. TECHNICAL COCMMUNICATION 85/3i2
8. CONTRACT NO. . ' . OTHMER DOCUMENT NQO.(S) (Aay other numbers that mey te
amigned this document)

10. OISTRISUTION STATEMENT

11. SUPPLEMENTARY NOTES 12, SPONSORING ACTWVITY

13, AGSTAACT .
The GETIWRD Package is a library of procedures designed to ease the

implementation of command languages using FORTRAN 77. It allows the user to
interpret a word of user input by matching it with one of the entries in a
user-supplied dictionary. Features designed to increase the friendliness of
the program/user interface include a type ahead facility, recognition of
abbreviations, word completion and understandable error messages.

This memorandum describes enhancements to the GETWRD Package. While most
of the enhancements are of most benefit to the programmer, a major improve~
ment to the program/user interface is the inclusion of a spelling corrector
which will catch most typographical errors committed by the user. Other
improvements include the ability to interpret the work of input as a simple
|string with no dictionary matching, a logical variable, the answer to a Yes-
No question, or a number in a specified range; greater flexibility for the
programmer in formatting prompt and help messages; and a sorting routine
which can be used to ensure that the dictionary is in alphabetic order.

All changes have been implemented to be upwardly compatible with the
original version of the GETWRD Package so that no changes need be made to

= existing code which callsg GETWRD Package procedures

4
- nyly
b * 1mete

__UNCLASSIFIED

Securily Classification

- .

. PROJIECT OR GRANT NUMBER:

. COMTRACT NUMBEAR"

ORIGINATING ACTIVITY: Enter the nerme ond address ol the
mganizaton nswing the document.

DOCUMENT SECURITY CLASSIFICATION. Enter the oversit
Wity # of the ¢ inciuding speciel warning
terme wheneser spplicadls. .

. GROUP: Sater security reclasnlication group aumber. The tiwes

rouus &e delined \n Appendis A ot the JRB Secury Reguistions.

GOCUMENT TITLE: Enter the complete aocument title in s}
cagital letiers. Tities in oft cases should be unclatsified. Il o
wihciently descrigtive tritle cennot be selertad without clatsifi-
canon. show utie cl.mhuuen vmn hc umol onecanitsh-lettor
g the title.

In per

DESCARIPTIVE NOTES. Enter the eatego’y of document, ¢.g
inchnical report, i hote or ical tevier. 1f apprapee
ate, enter the type of document, 2.9. interimm, Drogress,
wrwmery, snousl or final. Give the inclusive detes wnen »
soncific reporting period iv covered.

AUTHORIS): Enter the namelsl of sutherlsl e thown on or

m the document. Encer last namae, lirst neme, midgle initial.

ll m.mvy sthow rank. The name ot the principsl auther is en
8 requse:

DOCUMENT DATE: Enter the dats (month, yaer) of
£statishmen: sporovel for pudlh of the ¢

L -

. TOTAL NUMBER OF PAGES: The totsl page count thould

tol'ow Aormel pagingtion proceduras, i.8., eater the aumber
of pages contaming information.

. NUMBER QF AEFERENCES. Zmer the towl number of

relorences Cited in the COCUMent.

It sporopriete, snter the
A0 cIDI 1939Ch and development project Or grent number
under which The dOcuMent wes wri{ien,

It appraprinte, enter the applicable
Auinber yadet which the JOCUMEnt was written,

. ORIGINATOR'S DOCUMENT NUMBERIS). Enter ™e

F110 A docyment Aumber by whven the dosument will be
wienntual and controlied by 1he ongnsning seiwity. This
number must be vnigue 10 this document,

9.

10,

1.

9.

14,

KEY WORDS
command language
program/user interface
typographical error correction
input procedures
L]
INSTRUCTIONS

OTHER DOCUMENT NUMBERIS): If the document has been
assigned eny other document numbers (either by the originator
or by the sponeot), siso enter this number(sl,

onsTumu'non SI'ATEM!NT Enter any Hmitstions on
other than thae -moeved
wch s

vm derd

“Qualified requesters mey obtein copws of this
docurnent from their defenca documentatian center,”

In wowity
i)

ination of thiy o
s ROt suthorized mlhwt prior aoavml from
origmating sctwity.”

SUPPLEMENTARY NOTES: Use fer sdditionat explenstary
notes.

SPONSORING ACTIVITY. Enter the neme of the depsrtmenmal
project otfica or taboretory 1onMdring the resssrch and
development. include addrens,

ASSTRACT: Emn an gdetract giving 8 bricl end factuel

vy of the d , Sven though it ray sisd sppesr
elsewhere in the body of the document itesit. It i u-wy
desirabie thet the shatract of i
fied. Each parsgraph of the sbetract shall eng mm -,
indication of the wcurity classilieation of the
n the persgraph luniets the documaent itslf is mwn)
reprenented s (TSI, (S), (Q), (R), or (UL

The length of the stxtrect thovid be limited 10 20 nnglespaced
stenderd typewwritien Lines; T\ wches long.

KEY WORDS: Koy word: are technicsily mesningful terms or
hort ghvenes tThet charectovize » document and could be htlpful
n eataloging the document. Koy words shauld be ssiecied 50
that no security cletiriication i required. dentifiery, such &
equipment madel derignetion, 7ade neme, miiitary project code
ASMe, geoyraphic Io:mon Moy be und - oy words Dut will
be foflowed by an ing o .

40

