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The offacts of fuel properties on unaided cold startability were evaluated %

using a Detroit Diesel 4-53T engine. The engine was insulated with approx-

imately 3 inches of fiberglass insulation and a chilled coolant was circu-

lated through its cooling passages, An external cranking otor was used to

turn the engine at a constant 150 revolutions per minute (rpm). Cold intake

air was provided by using a vortex tube (Hilsch tube cold air generator).

Then 21 test fuels were blended and run in the engine. The minimum starting

temperature for each fuel was determined by successively cooling the engine

and attempting a start at a particular temperature. The minimum starting

temperature was the average of two "no-start" temperatures and two "start"

temperatures that were no more than 2"C apart. A "no-start" condition was

defined as a failure to attain a self-sustaining running state after 1

minute of cranking at 150 rpm. Analysis of fuel properties and minimum
AM

starting temperatures using a statistical analysis program yielded a stable

minimum starting temperature prediction equation with cetane number, auto-

ignition temperature, viscosity, and ASTR D 2887 50 percent off temperature

as statistically significant independent variables at the 10-percent level

of significance. The prediction equation for MUST using the D 2887 boiling

temperature is:

MUST - 32.5445 + 8.6660 * VISCOSITY -0.1423 * 50Z BOILING

POINT -0.6968 * CETAE + 0.0541 * AUTOIGNITION TEMP

where Minimm Unaided Starting Temperature (MUST) is in *C, 50 percent

boiling point is ASTM D 2887 50 percent off temperature in "C, viscosity is

ASM D 445 kinematic viscosity at 40*C in centistokes, and autoignition

temperature is ASTM E 659 in *C. Fuels that experienced fuel delivery

(i.e., flow) problems or would not start at room temperature were not in-

* cluded in the analyses. ,
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FOREWORD .- A

* This work wasn conducted at the Belvoir Fuels and Lubricants Research Facil-

ity (SwRI) located at Southwest Research Institute (SVRI), San Antonio, TX,

- under Contract Mos. DMAK7O-82-C-OOO1 and DMAK7-85-C-0007 during the period - k

January 1981 through December 1984. The work was funded by the U.S. Army

Belvoir Research and Development Center, Ft. Belvoir, VA, with Mr. F.W.

Schaekel (STRBE-JFT) as the contracting officer's representative and Mr. M.E.

Le~era, Chief of Fuels and Lubricants Division (STRBE-VF), as the project

technical monitor. -
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I. INTRODUCTION

Due to the current world all situation, the U.S. Amy wishes to develop a

capability to utilize sultisource nobility fuels. As the sources of these

fuels change, the basic properties of the fuels will also change. The Army

currently specifies acceptable property limits for its fuels, but future

economic and availability considerations may necessitate expansion of these

tiae-proven limits.

Qualitative fuel property effects on engine startability have long been
known and have been incorporated into existing specification limits. Expan-

sion of these limits requires quantitative knowledge of these fuel property

effects in order to minimize startability problems with Army vehicles.

Figure I illustrates a methodology for evaluating new/synthetic fuels to

assure that there will be no impairment to overall Army mission. (1)* The

work described in this report falls under the heading of Full-Scale Multi-

cylinder Engine Performance Testing and provides feedback information to the

qualification system. , : '

end of this report.
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Fuel properties expected to affect low-temperature startability are kine-

matic viscosity, boiling range, cetane number, autoignition temperature,

flash point, and cloud point. Cloud point relates to the ability of the S

fuel to flov through the screens, hoses, and filters of the fuel system.
Viscosity relates to the pumpability of the fuel in both the fuel pump and

injection system. Viscosity affects the atomization of the fuel when inject-
ed into the combustion chamber. The boiling range of the fuel determines .
how much of the fuel is vaporized at the temperatures encountered in the

combustion chamber under starting conditions. Flash point and autoignition

temperature relate to the initiation of combustion in the combustion cham-

bar. Cetane number is a measure of ignition delay and has been determined

to play an important role in the starting process. (2-4)

Other parameters affecting startability are engine design, cranking rpm, and

ambient temperature. In this study, the cranking rpm was fixed at 150 rpm

using a special variable speed cranking system. This speed is used in other

studies of low-temperature combustion and is a reason-able minimum low-tern-

perature cranking speed for this engine.(5-7) Ambient temperature was

controlled by circulating chilled coolant through the engine, and intake air

temperature was controlled with a vortex tube (Hilsch tube).

11. BACKGROUND _

Diesel engines ignite fuel by spraying the fuel into high-temperature,

high-pressure air and allowing the fuel to autoignite. The high tempera-

tures are generated by isentropic compression of the intake air charge. A S

variety of factors affects the temperature of the air at the time of fuel

injection. These factors include ambient temperature, effective engine

compression ratio, cranking speed, duration of cranking time, and injection

timing. Properties of the fuel have a negligible effect on these variables. -

However, fuel properties do play an important role in the autoignition

process. As the fuel is injected into the heated air in the combustion

8
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chamber, the fuel is atomized into droplets of varying sizes and dispersed

as plumes of droplets and entrained air. The droplets are then heated by

the air and partially evaporated. Also during this period, chemical reac-

tions are occurring, which eventually lead to exothermic oxidation reactions

between the fuel components and oxygen. If these reactions liberate suffi-

cient heat quickly enough, the increased temperature further accelerates

these combustion processes, and ignition is said to have occurred. Obvi-

ously, this ignition process is complex and is not understood in its .::.

entirety. However, the total ignition delay period from beginning of injec- '

tion to ignition (injection, atomization, evaporation, mixing) consists of a

physical delay period, and a chemical delay period (chain breaking, radical . 4
generation, oxidation) before ignition. This total process is currently
quantitized by cetane number.

The cetane number of a fuel is determined by operating a special test engine

on the fuel and measuring the engine compression ratio necessary to produce

a 13-degree ignition delay at carefully controlled operating condi-

tions.(8,9) Several researchers have shown that the cetane number is a fuel

characteristic that correlates strongly with the ease of starting of diesel

engines. (2,4)

The cetane number measurement ties together a number of fuel properties.

These include viscosity effects on atomization, boiling point distribution

which influences evaporization, chemical composition, etc. It has been

realized that the peculiarities of the CFR cetane engine may mean that other

diesel engines may not respond identically to fuel characteristic varia-

tions. Nevertheless, cetane number has been an acceptable indicator of fuel

ignition quality for field applications. This was particularly true when

diesel fuels were generally uniform in physical properties and the cetane

number specification was maintained at a sufficiently high level to provide

considerable starting margin under most conditions.

However, with the recent interest in nonhydrocarbon diesel fuels, and non-

petroleum hydrocarbons, indications have arisen that the cetane number mayInot be a totally adequate measure of rapidity of autoignition. This diffi-

culty is further aggravated by a continuing decline in crude oil quality,

9
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making maintenance of high cetane numbers increasingly expensive. For the

military, the prospect of operating its diesel equipment on fuels that fail

to meet current procurement specifications has placed additional emphasis on .,

developing more detailed knowledge of the engine and fuel factors influenc-

ing engine startability. .

One objective of this project was to more closely determine the actual fuel

characteristics required to ensure startability of the Detroit Diesel 4-53T

engine at low temperatures. A second objective was to determine if the

design features of this engine-injection system, air motion, heat transfer

rates, etc.-have changed the relative importance of fuel properties in

determining the total ignition delay. Such changes in the response of this

engine, relative to that of the CFR cetane engine, would result in cetane --.-

number being an inadequate predictor of minimum starting temperatures.

III. EXPERIMENTAL PROCEDURES AND EQUIPMENT

A. Test Engine and Setup _

The Detroit Diesel 4-53T engine was chosen as the test engine due to its

relatively high recommended minimum unaided starting temperature, low fuel

consumption, small size, and density of the 53 series engines in the Army's

fleet. Detroit Diesel recommends the use of starting aids at temperatures

less than 4°C (400F).(10) The engine and a list of specifications are shown

in Figure 2 (note that the picture is not from this test program). The

engine was insulated with 3 inches of fiberglass batting, and plumbing was

installed to circulate chilled coolant through the engine. The circulating -

coolant was 60 percent by weight ethylene glycol and 40 percent by weight

water, The circulating coolant was chilled by passing through a coil

immersed in Stoddard solvent and dry ice. Temperatures in the engine were

controlled by varying the flow rates of the circulating coolant and control-

ling the amount of dry ice in the Stoddard solvent tank. Figure 3 depicts

the cooling system.

10.-...
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Model: 4-53T (5047-5340)
Engine Type: Two-cycle compression

ignition, direct injection, uniflo
scavenging, turbosupercharged

Cylinders: 4, inline 3
Displacement: 3.48 L (212 in.3)
Bore: 9.84 cm (3.87 in.)
Stroke: 11.43 cm (4.5 in.)
Compression Ratio: 18.7:1
Fuel Injection: DD 5A60 unit injectors
Rated Power: 127 kW (170 BHP)

at 2500 rpm
Rated Torque: 545 N.M (402 lb-f t)

at 1800 rpm

FIGURE 2. DETROIT DIESEL 4-53T TEST SETUP
AND ENGINE SPECIFICATIONS
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INSULATED - "-
I ~ COOLANT

ENGINE TANK ~ %r:
WATERI
JACKET I..

PUMPI
II

l[ ~~FUEL "2:"

_ __EX HANGER

NOTE: ALL PIPES AND VALVES

FLOW CONTROL INSULATED
VALVES

FIGURE 3. COOLING SYSTEM SCHEMATIC

:A

Inlet air temperature was controlled by running dried compressed air through

a vortex tube (Hilsch tube). Figure 4 depicts the inlet air system. In

practice, cold air was allowed to escape from the inlet air pipe until the

engine was cranked. More air was supplied to the inlet air tube than the

engine would take in. Excess air vented through the inlet air tube and was .-.. -

observed with a telltale (see Figure 3). No air filter was used for this

test,

Engine cranking speed was controlled at 150 rpm with a variable speed

external cranking system. The cranking system was equipped with an over-

running clutch (sprag clutch) so that the engine could start and come up to

idle speed.

% 
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TEMPERATURE

P U REGULAlING VALVEPRESSURE
GAUGE

ENGINE I
;L

AIR"'-'"

THERMOCOUPLE
INLET AIR_________
TUBE W/
TELLTALE

FIGURE 4. INLET AIR SYSTEM SCHREATIC

The fuel system consisted of the normal engine-mounted lines, filters, and

pumps except that the primary fuel filter was removed. Fuel supply was from

a 1-gallon reservoir resting on a fuel scale at engine height. Return fuel

was routed back to the 1-gallon container. Fuel lines were supported using

a laboratory stand such that the fuel weight in the reservoir could be

determined before and after the start attempts. The fuel filter and fuel

heat exchanger were cooled in order to assure that the test fuel would be at

or near the test temperatures. The fuel supply can was not cooled due to

the problems of accurately weighing an insulated cooled container. The fuel

system schematic is illustrated in Figure 5.

B. Lubricant

The engine lubricant used throughout the test was a qualified MIL-L-46167

Arctic engine oil. This lubricant was chosen as being representative of

13
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INSULATION AROUND ENGINE ft
- -- - . . ... -- - ---

HEAT FUEL FILTER I RETURN LINE

EXCHANGER I SUPPLY

I IJ LINNTIERE' .¢I ENGINE 
LN

1-GALLON
* CONTAINER

I FUEL SCALE

COOLANT
OUT COOLANT IN

FIGURE 5. FUEL SYSTEM SCHEKATIC

Army field use and providing good low-temperature viscosity and flov charac-

teristics.

C. Test Fuels

Twenty-one hydrocarbon fuels were evaluated in this program. Ten of the

fuels were designated neat fuels, meaning that they contained no additional

additives nor were blends of different neat fuels. Eleven of the fuels were

blends of the neat fuels and several additives.

Summaries of the test fuel descriptions and test fuel properties are shown

in Tables I and 2, respectively. Neat fuels were Caterpillar 1-H/1-G refer-

ence fuel, Jet A, BTX Bottoms*, VV-F-800 grade DF-1, Stoddard solvent,

kerosene, MIL-T-5624 grade JP-4, Type 1 referee fuel, Type 2 referee fuel, ,.---

and gas oil. The Type 1 and Type 2 referee fuels listed in Table 1 are -.

* TX bottoms consist of C and higher aromatic compounds and are the end
product of a petroleum refining process in which benzene, toluene, and
xylene are extracted.

* 14
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* TABLE I* TEST FUEL DESCRIPTIONS

Test -

Fuel Code AL Number Description .

1 11372 Caterpillar 1-H/i-C reference fuel

2 10582 Jet A

3 10716 BTI Bottoms (C9 and heavier aromatics)

4 9294 VV-F-800 grade DF-1

5 11232 Stoddard solvent

6 11233 Kerosene

7 10583 NIL-T-5624 grade JP-4

8 10849 Gas oil

9 11514 JP-4 + 15 percent PAO P--

10 11515 Stoddard solvent + 15 percent PAO

11 11516 Jet A + 15 percent PAO

*12 11517 DF-1 + 15 percent PAO

*13 10999 Type 1 referee fuel

14 11017 Type 2 referee fuel

15 11571 JP-4 + 0.11 percent Amyl nitrate

16 11636 Type 1 referee fuel + 1.1 percent amyl nitrate

17 11637 Type 2 referee fuel + 0.19 percent amyl nitrate or

18 11638 Jet A + 3.0 percent BTX bottoms

19 169 Caterpillar 1-H/1-G + 35.0 percent BTX bottoms

20 11640 DF-1 + 23.0 percent BTX bottoms

21 11641 Gas oil + 22.0 percent BTX bottoms

115
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proposed Army referee fuels. Type 1 referee fuel was blended to exhibit

high volatility and low cetane number. Type 2 referee fuel was blended for

low volatility, low cetane number, and high viscosity. A polyalphaolef in

(PAD) compound (6 cSt at 210oF) was added to four of the neat fuels to

increase the viscosity of the fuels.(1) The PAO compound also increased

the cetane number of the fuels. Anyl nitrate was added to three of the neat '-,

fuels in order to increase their cetane numbers.(12) BTX bottoms were -

added to four of the neat fuels in order to decrease their cetane numbers. -. -

Viscosity range for the test fuels was 0.78 to 7.91 cSt at 40*C. Ten per-

cent boiling point by D 2887 ranged from 84.10 to 285*C. Cetane numbers for

the fuels were 5.0 to 61.0. Autoignition temperatures by E 659 were from

1800 to 475"C. Cloud points by D 2500 were from <-60"C up to 14*C. Flash

points by D 93 ranged from -22" to 135.6*C. Blending of the additives was

done on a volume basis. Test fuels were selected to obtain wide variations

in the selected fuel properties.

D. Test Procedure

Dry ice was added to the insulated coolant tank in order to begin the cool-

ing process. The coolant pump was turned on (see Figure 3), circulating the

chilled coolant through the engine block, oil sump heat exchanger, and fuel

heat exchanger. Temperatures at the airbox, oil sump, and fuel heat ex-

changer were adjusted to the desired test temperature by adding dry ice to

the coolant tank and controlling the flow of coolant with individual flow

control valves. Temperature stabilization required approximately 3 hours of

dry ice and flow adjustments. After the desired test temperatures were

achieved, the vortex tube on the inlet air stream was pressurized and

adjusted to the test temperature. A sensor on the inlet air pipe assured

that sufficient quantities of cold combustion air were supplied to the

engine. Pretest temperatures at the airbox, exhaust manifold, oil sump,

water jacket, fuel heat exchanger, and inlet air pipe were recorded. In

addition, the weight of fuel in the fuel reservoir was recorded.r -- .

18 . ..
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? -.

The engine was cranked at 150 rpm in the full rack position for a maximum of

1 minute. A finite cranking time was selected to improve reproducibility.

With the external cranking system employed, the engine could be motored for

long periods and thus reduce the minimm starting temperature. This is ,"-

because extended cranking would heat the combustion chamber through ring/

liner friction and heat transfer from the air charge. This heating would .

reduce the beat lost from the air during the compression event, raising the

air temperature at injection and improving the starting. However, in the

field the cranking time is limited by the available battery energy and the

time to overheat the cranking motor. The 1-minute continous cranking period

was chosen as a compromise of these factors. If the engine started and

continued running after I minute (or less) of cranking, then this was con-

sidered a "start" and the after test information recorded. If the engine

failed to start or continue running after I minute of cranking, then this

was considered a "no-start" condition, and the after test information was

recorded. This procedure was repeated at different target temperatures

until two "start" and two "no-start" runs were completed that were no more

than 2*C apart. The average of the two start and two no-start airbox tem-

peratures was considered to be the minimum unaided starting temperature

(MUST) for that fuel. Fuel flushing of the injection system consisted of

running I gallon of the next test fuel through the engine with the fuel

return line routed to a dump can. This was done at room temperature with

the engine running under its own power. In all, 21 test fuels were run

using this procedure.

IV. DISCUSSION OF RESULTS

Figure 6 graphically depicts the results of the cold starting tests. Three

types of results were obtained using this procedure. The first type is

* demonstrated by teat fuel 3(AL-10716) (see Tables 1 and 2) which had an

extremely low cetane number of 5. This fuel failed to start in the engine

at room temperature (12*C). Failure to start was due to the high-aromatic,

lov-cetane, high-autoignition nature of the fuel. This fuel was excluded

from statistical analysis since no numerical value could be placed on its

startability.

19

________________________________________~ .~ ~~;-~v&*.'..
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .- --___________________________________________ * .*.°.



A NO START

12. £VI -

V~V A

U V A V

6 WV V a A VYa

V

~ VA VV A& AJRA
12./

AV V AAA

V11 V VA

-12.R A . STRIGDT

Thesecnd ypeof esut anietdisl nts ul (L189 n

A1A-14) Ths ul*aldt tr eas ffo-eae rbes

Strin ih hs fes a imtdbyteclu pit o h fesThsfo alr a eetdb oioigtebfr-etfe eevi

5.-



The third type of result obtained was the true combustion-related MUST.

Eighteen of the test fuels exhibited valid MUST's. MUST's for all the test

fuels are shown with fuel properties in Table 2. The SAS (14) stepwise

linear regression computer software package was utilized to find the best

set of variables to predict MUST. The set of independent variables included

viscosity, cetane number, autoignition temperature, flash point, and the

boiling point temperature distribution (IBP, 10, 20, 30, 40, 50, 60, 70, 80,

90, EP). Correlations were examined among variables entering the prediction -.

equation through the stepwise regression program. Those variables with high

correlation were analyzed, and the appropriate variable was dropped from the

set of independent variables. Scatterplots were analyzed for possible

variable transformations, and none were found to be necessary. '1_

ASD( D 2887 and ASTm D 86 boiling point temperatures were used in separate

stepwise linear regression analyses. There did not appear to be any advan-

tage of using one method over the other in predicting MUST for this set of

data. Although cloud point was determined for each fuel, it was not in-

cluded in the analysis because of the nou-numeric nature of some of the

results (e.g., the less than -60"C results). The prediction equation for

MUST using the D 2887 boiling point temperature is:

MUST - 32.5445 + 8.6660 * VISCOSITY -0.1423 * 50% BOILING (1)
POINT -0.6968 * CETANE + 0.0541 * AUTOIGNITION TEMP

The prediction equation for MUST using the D 86 boiling point temperature
is:

MUST - 32.8953 + 8.6748 * VISCOSITY -0.1459 * 50% BOILING (2)
POINT -0.6968 * CETANE + 0.0541 * AUTOIGNITION TEMP

In the equations, MUST is in *C, 50 percent Boiling Point is ASTM D 2887 or

ASTM D 86 50 percent off temperature in °C, viscosity is ASTM D 445 kine-

matic viscosity at 40C in cSt, autoignition temperature is ASIM E 659 in

°C, and cetane is ASTM D 613 cetane number.

Tables 3 and 4 summarize the statistics associated with predicting MUST

using the D 2887 and D 86 boiling point temperatures, respectively.

21

* . - t *." ".." *,** *

°~~ ---. ~ .~ . ~*~ - . . .. ...... .. ..°......... ... . ... .. .... .... ,



e..

. 4,,..-,. -

TABLE 3. MULTIPLE LINEAR REGRESSION STATISTICS FOR THE DDA 4-53T
ENGINE USING ASTI D 2887 BOILING POINT TD(PERATURES

Engine: DDA 4-53T
Data Points: 18
Multiple R-Square: 0.7811 -. :"-
Standard Error of Estimate: 3.4376 ,

Variable Coefficient Standard Error T P*

Intercept 32.5445 - - -

Viscosity 8.6660 3.0175 2.8720 0.0131

501 BP -0.1423 0.0621 -2.2920 0.0392

Cetane Number -0.6968 0.1088 -6.4050 0.0001

Autoignition Temperature 0.0541 0.0298 1.8130 0.0929

The P value represents the probability that a T statistic would obtain a

greater absolute value than the observed given that the true parameter
(coefficient) is zero. The T statistic is a method for expressing the
significance of a coefficient by its estimated standard error. A P value
of 0.10 represents a 10 percent level of significance.

TABLE 4. MULTIPLE LINEAR REGRESSION STATISTICS FOR THE DDA 4-53T
ENGINE USING ASTM D 86 BOILING POINT TEKPERATURES

Engine: DDA 4-53T
Data Points: 18
Multiple R-Square: 0.7812
Standard Error of Estimate: 3.4363

Variable Coefficient Standard Error T P*

Intercept 32.8953 - - "

Viscosity 8.6748 3.0176 2.8750 0.0130

50% BP -0.1459 0.0636 -2.2950 0.0390

Cetane Number -0.6968 0. 1088 -6.4080 0.0001

Autoignition Temperature 0.0541 0.0298 1.8140 0.0928

* The P value represents the probability that a T statistic would obtain a

greater absolute value than the observed given that the true parameter -.

(coefficient) is zero. The T statistic is a method for expressing the
significance of a coefficient by its estimated standard error. A P value -- -

of 0.10 represents a 10 percent level of significance.
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Figure 7 is a plot of observed MUST against cetane number for the eighteen

test fuels. Obviously, something more than cetane number is affecting the

MUST. A regression analysis using cetane number alone to predict MUST2m

yielded an R2 fit of only 0.599. Using all the fuel properties contained in "

Equation I yields an R2 fit of 0.7811 as shown in Table 3. Figure 8 plots

observed versus predicted values of MUST using Equation 1. The line in

Figure 8 represents the predicted equals observed case.
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FIGURE 7. OBSERVED MUST VERSUS CETANE NUMBER •.-...

V. CONCLUSIONS .---. '."

S It is possible to quantify the unaided cold-starting characteristics of."•'-:"

diesel engines using fuel properties as the independent variables.
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FIGURE 8. OBSERVED MUST VERSUS PREDICTED MUST

0 Viscosity, volatility, autoignition temperature, and cetane number are

statistically significant (P <0.10) predictors of minimum unaided

starting times (MUST's).

* Charts, equations, or computer programs for predicting the MUST's of

fuels could be useful for the utilization of off-specification, alter-

nate, or captured fuels in cold climates.

.o.. ,o.
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VI. RECOMMENDATIONS

0 Future MUST tests should utilize a refrigerated box to obtain cold

ambient temperatures. This would afford more uniform, repeatable, and 9

realistic conditions.

0 Additional MUST tests should utilize more fuels (to ncrease the sta-

tistical sample size), examine more fuel properties, and utilize dif-

ferent types of diesel engines.
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