(U) Nonspecific Resistance Induced by an Immunopharmacologic Agent Derived From Bordetella pertussis

Winters, Alvin Leo; LeBlanc, Paul Arthur; Sloan, Gary Lee

Administration of Bordetella pertussis vaccine intraperitoneally induces resistance to mouse adenovirus infection. Subcellular fractions of B. pertussis are capable of inducing resistance also. Boivin antigen, a trichloroacetic acid-soluble extract of whole cells, is capable of inducing resistance in the dose range of 0.2-2.0 μg when adsorbed to alum. Biochemical analysis of Boivin antigen indicated that the lipopolysaccharide and protein components were not complexed, but were co-extracted. The lipopolysaccharide (endotoxin) moiety was responsible for the antiviral activity and the endotoxin-associated proteins potentiated the antiviral effect.
18. gel electrophoresis, Western Blot
1.0 BACKGROUND. Administration of Bordetella pertussis vaccine (BPV) intraperitoneally renders a mouse resistant to a subsequent lethal dose challenge of mouse adenovirus. A similar activity has been reported when type 1 herpes simplex virus was used as the challenging virus. During the first contract year we established that the antiviral activity of BPV was not associated with a given phase of B. pertussis, but was associated with a variety of phase I and phase IV B. pertussis strains (1, see attached reprint). Several subcellular fractions of B. pertussis were shown to have antiviral activity, i.e., an 1.0 M NaCl extract of whole cells (produced by Dr. R. D. Lassen, Connaught Laboratories, Inc., Swiftwater, PA), a cell surface polysaccharide removed from whole cells by shearing in a Waring blender, and lipopolysaccharide (LPS) extracted by the phenol-water method of Westphal. All of these fractions contained endotoxin as detected by the Limulus amoebocyte assay (2).

2.0 IDENTIFICATION OF A BPV COMPONENT WITH ANTVIRAL ACTIVITY. Drs. Barnet Sultzter, John Craig, and R. Castagne, Downstate Medical Center, SUNY, Brooklyn, NY, reported a marked adjuvancy activity following treatment of mice with endotoxin-associated proteins (EP) derived from B. pertussis (3). EP is derived from Boivin antigen, a trichloroacetic acid soluble LPS-rich extract of whole cells. We extracted Boivin antigen from B. pertussis cells and observed antiviral activity. The EP were co-extracted with LPS, but not complexed with LPS. LPS alone induced antiviral activity, but the presence of EP potentiated the activity tenfold or more. Hereafter, Boivin antigen will be designated as EP-LPS to indicate that the antigen contains both lipopolysaccharide and endotoxin-associated proteins.

EP-LPS was extracted in the following manner. B. pertussis cells, strain 10536, were obtained from Dr. Lance Gordon, Connaught Research Institute, Ontario, Canada. Trichloroacetic acid was added to obtain a final concentration of 2.5% and incubated at 4°C for 3 h. Cell debris was removed by centrifugation at 4,000 x g for 30 min. The supernatant was decanted and the cells were extracted twice with 2.5% trichloroacetic acid. The supernatants, bright yellow in color, were pooled and filtered through Whatman No. 40 filter paper to remove floating debris, and dialyzed (molecular weight cutoff 12,000-14,000) against chilled tap water overnight. The dialyzed supernatants were concentrated approximately tenfold by flash evaporation. A slight precipitate developed and was removed by centrifugation at 4,000 x g. EP-LPS was precipitated by addition of ethanol (68% final concentration) and incubation overnight at -18°C. The precipitate was sedimented by centrifugation at 4,000 x g for 30 min and washed with 95% ethanol. The sediment was resuspended in endotoxin-free water and dialyzed against distilled water overnight. The solution was frozen and lyophilized. The resulting light brown crystalline powder (EP-LPS) was stored at -18°C.
The EP-LPS antigen contained 1-10 mg endotoxin per mg (dry weight) as measured by the Limulus amoebocyte assay and 680 ug of protein per mg (dry weight) as measured by the Lowry method. Polyacrylamide gel electrophoresis in the presence of SDS (SDS-PAGE) followed by fixation and staining with PAGE blue 83 revealed seven major polypeptides (62K, 57K, 44K, 39K, 34K, 23.5K, and 18K) and 2 minor polypeptides (90K and 32K). Silver staining of gels by the method of Hitchcock and Brown (4) revealed two species of LPS similar to other *B. pertussis* strains (5).

Treatment of C3H/HeN mice with *B. pertussis*-derived EP-LPS antigen rendered the mice resistant to mouse adenovirus infection (Table 1). A dose of 20 ug induced resistance, whereas, a dose of 2.0 ug was not effective (Table 1).

Table 1. Antiviral Activity Associated with EP-LPS Extracted from *Bordetella pertussis*

<table>
<thead>
<tr>
<th>Treatment*</th>
<th>Mortality (Deaths/Total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP-LPS, 20 ug</td>
<td>3/10</td>
</tr>
<tr>
<td>EP-LPS, 2.0 ug</td>
<td>10/10</td>
</tr>
<tr>
<td>Water (endotox.-free)</td>
<td>9/10</td>
</tr>
</tbody>
</table>

EP-LPS was suspended (1.0 mg/ml) in endotoxin-free water and diluted tenfold in endotoxin-free water. Each preparation (0.5 ml) was injected intraperitoneally seven days prior to intraperitoneal inoculation of mouse adenovirus. Experiments were terminated 21 days after infection.

Previous observations obtained with a subcellular fraction of *B. pertussis* prepared by Dr. Robert Lemson, Connaught Laboratories, (1.0 M NaCl extraction, ammonium sulfate precipitation, and Emulphogene treatment) indicated that lower doses of a subcellular fraction (12 ug) could effect resistance against a virus challenge (2). Emulphogene treatment to reduce the LPS content resulted in a hydrophobic, insoluble precipitate; therefore, Dr. Lemson’s subcellular fraction was adsorbed to alum for administration to test animals. The slow release of Dr. Lemson’s fraction from the alum might have increased the potency of the fraction. We adsorbed EP-LPS antigen to the same alum preparation (Alhydrogel) and administered the complex i.p. seven days before challenge with a lethal dose of virus. An increase in potency of EP-LPS antigen was observed (Table 2). As little as 0.02 ug of the alum-adsorbed preparation induced resistance in a portion of the test population.
Table 2. Antiviral Activity Associated with EP-LPS Extracted from *Bordetella pertussis* and Adsorbed to Alum

<table>
<thead>
<tr>
<th>Treatment*</th>
<th>Mortality (Deaths/Total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment 1:</td>
<td></td>
</tr>
<tr>
<td>EP-LPS (20 ug) + Alum</td>
<td>0/10</td>
</tr>
<tr>
<td>EP-LPS (2.0 ug) + Alum</td>
<td>1/10</td>
</tr>
<tr>
<td>Alum (control)</td>
<td>9/9</td>
</tr>
<tr>
<td>Experiment 2:</td>
<td></td>
</tr>
<tr>
<td>EP-LPS (2.0 ug) + Alum</td>
<td>1/10</td>
</tr>
<tr>
<td>EP-LPS (0.2 ug) + Alum</td>
<td>4/10</td>
</tr>
<tr>
<td>EP-LPS (0.02 ug) + Alum</td>
<td>6/10</td>
</tr>
<tr>
<td>Alum (control)</td>
<td>8/10</td>
</tr>
</tbody>
</table>

*EP-LPS was suspended (1.0 mg/ml) in Alhydrogel, E.M. Sergeant Pulp and Chemical Co., Inc., Hoboken, N.J., and diluted to the appropriate concentration in endotoxin-free water. Each preparation (0.5 ml) was injected intraperitoneally 7 days prior to intraperitoneal inoculation of the mouse adenovirus. Experiments were terminated 21 days after infection.

Dr. Barnet Sultzzer separated EP-LPS into EP and LFS using phenol-water precipitation of the proteins. Antiviral activity was retained in the LPS fraction, but not in the EP fraction (Table 3). Twenty micrograms of EP adsorbed to alum induced resistance in only a small portion of the test population; whereas 20 ug of LPS induced resistance in most of the test population. A second experiment with 20 ug of LPS did not demonstrate a great degree of protection; thus a 20 ug dose of LPS may be near the dilution endpoint. Additional testing near the 20 ug dose of LPS is planned to confirm the dilution endpoint of LPS.
Table 3. Antiviral Activity Associated with Endotoxin-associated Proteins (EP) or Lipopolysaccharide (LPS) Derived from Bordetella pertussis EP-LPS and Adsorbed to Alum

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mortality (Deaths/Total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment 1:</td>
<td></td>
</tr>
<tr>
<td>EP (20 ug) + Alum</td>
<td>9/10</td>
</tr>
<tr>
<td>LPS (20 ug) + Alum</td>
<td>1/10</td>
</tr>
<tr>
<td>Alum</td>
<td>8/10</td>
</tr>
<tr>
<td>Experiment 2:</td>
<td></td>
</tr>
<tr>
<td>LPS (20 ug) + Alum</td>
<td>9/10</td>
</tr>
<tr>
<td>LPS (2.0 ug) + Alum</td>
<td>11/11</td>
</tr>
<tr>
<td>LPS (0.2 ug) + Alum</td>
<td>10/10</td>
</tr>
<tr>
<td>Alum</td>
<td>10/10</td>
</tr>
</tbody>
</table>

*EP or LPS was suspended (1.0 mg/ml) in Alhydrogel, E.M. Sergeant Pulp and Chemical Co., Inc., Hoboken, N.J., and diluted to the appropriate concentration in endotoxin-free water. Each preparation (0.5 ml) was injected intraperitoneally 7 days prior to intraperitoneal inoculation of the mouse adenovirus. Experiments were terminated 21 days after infection.

Adjuvancy activity alone did not account for the antiviral activity. Dr. Bernet Sultzar observed that the EP extracted from EP-LPS possessed immunomodulatory activities associated with adjuvancy, i.e., both polyclonal activation and mitogenicity. In addition, we have examined a gliding bacteria adjuvant (GBA) for antiviral activity. GBA, provided by Dr. William R. Usinger, University of California, Berkley, CA, has notable adjuvancy activity both in vitro and in vivo (6). The complex polysaccharide is active in picomolar concentrations, stimulates the production of macrophage-derived hormones, IL-2 colony stimulating factor, and tumor necrotizing factor, and stimulates B cell proliferation and immunoglobulin secretion; however, the polysaccharide failed to induce resistance to mouse adenovirus under our test conditions (Table 4). We plan to test higher concentrations of GBA (20-200 ug) for antiviral activity.
<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mortality (Deaths/Total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBA (20 ug) + Alum</td>
<td>10/10</td>
</tr>
<tr>
<td>GBA (2.0 ug) + Alum</td>
<td>9/9</td>
</tr>
<tr>
<td>GBA (0.2 ug) + Alum</td>
<td>10/10</td>
</tr>
<tr>
<td>Alum</td>
<td>9/10</td>
</tr>
</tbody>
</table>

* GBA was suspended (1.0 mg/ml) in Alhydrogel, E.H. Sargeant Pulp and Chemical Co., Inc., Hoboken, N.J., and diluted to the appropriate concentration in endotoxin-free water. Each preparation (0.5 ml) was injected intraperitoneally 7 days prior to intraperitoneal inoculation of the mouse adenovirus. Experiments were terminated 21 days after infection.

It appears that the EP in EP-LPS potentiates the antiviral activity of LPS approximately 10- to 100-fold. We are currently examining the activity of both EP and GBA in reconstruction experiments to determine whether the interaction of these adjuvants with B pertussis-derived LPS will potentiate the antiviral activity.

We have examined EP-LPS to determine whether a unique complex of LPS and protein existed. EP-LPS was electrophoresed in a two-dimensional gel. The first dimension consisted of non-denaturing conditions in a cylindrical 5% acrylamide gel and discontinuous buffers (stacking gel, pH 6.8; resolving gel pH 8.8) to separate the proteins of EP-LPS by charge and not by size (7). After a short equilibration of the first dimension cylindrical gel in SDS-buffer (pH 6.8) the proteins were then electrophoresed in a second dimension consisting of denaturing conditions in a slab 10% acrylamide gel and SDS-buffer (pH 8.8) to separate the proteins by molecular size (8). If EP-LPS existed as a complex then the proteins would be detected in a vertical line parallel with the direction of electrophoresis in the second dimension. PAGE Blue 83 staining of the two-dimensional gel revealed the proteins of EP-LPS in the righthand side of the gel and most of the proteins were not oriented in a straight line parallel to the direction of electrophoresis in a denaturing SDS gel (Figure 1). Under the conditions used for electrophoresis the proteins of EP-LPS do not appear to be extracted as a complex.
Figure 1. Two Dimensional Gel Electrophoresis of EP-LPS followed by Protein Stain

Silver staining of LPS followed by PAGE Blue 83 staining revealed the LPS of EP-LPS in the lower lefthand corner of a two dimensional gel and the LPS was well-separated from the proteins (Figure 2).
EP-LPS was separated by two dimensional electrophoresis and transferred to nitrocellulose paper by electrophoretic transfer at a pH of 8.3 (9). The nitrocellulose paper was blocked with 10% nonfat dry milk. The blocked paper was then incubated with rabbit antiserum raised against BPV (Connaught Laboratories, Inc.), washed, and incubated with goat anti-rabbit IgG conjugated with horse radish peroxidase. The immunoblot was developed with 4-chloro-1-naphthol and hydrogen peroxide (10). LPS was the immunodominant antigen in EP-LPS. As observed with the silver stain, the two species of \textit{B. pertussis} LPS was observed in the lower left-hand corner of the two dimensional gel and well separated from the proteins (Figure 3). A single immunodominant protein may have been complexed with LPS during the extraction. This protein migrate poorly in the first dimension and was marginally visible on the PAGE Blue 83 stained two dimensional gels. Taken together, these data indicate that EP-LPS is probably not extracted as a complex, but the components are co-extracted in the 2.5% trichloroacetic acid. Additional two dimensional gels will be silver stained for protein to ascertain the number and characteristics of minor proteins in the EP-LPS extract. We also will examine the purified LPS by Western blot analysis to determine whether the single immunodominant protein observed in EP-LPS was removed by phenol-water precipitation.

Figure 3. Two Dimensional Gel Electrophoresis of EP-LPS followed by Electrophoretic Transfer To Nitrocellulose Paper and Staining with Enzyme-linked Antibody to BPV (Western Blot).

First Dimension (nondenaturing 5% gel)
LPS, derived from strains 3779 BL2S4 (2) and 10536 and purified by two different methods, elicits antiviral activity in C3H/HeN mice. These observations support a hypothesis that LPS plays an important, if not a singular role, in the antiviral activity associated with B. pertussis. Using purified LPS we can now begin to examine in detail the immunomodulatory mechanisms that develop following administration of LPS and hopefully associate given mechanisms with the virus resistant state. In addition we can begin to assess the role of adjuvants in this phenomenon.

4.0 REFERENCES

5.0 PUBLICATIONS/PRESENTATIONS RELATED TO THIS PROJECT.

Resistance to Adenovirus Infection After Administration of
Bordetella pertussis Vaccine in Mice

ALVIN L. WINTERS,† DAVID W. BAGGETT,‡ WILLIAM R. BENJAMIN,‡ H. KEITH BROWN,§ AND
THOMAS W. KLEIN

Department of Microbiology, University of Alabama, University, Alabama 35486, and Departments of Medical
Microbiology and Immunology* and Anatomy, §University of South Florida, Tampa, Florida 33612

Received 27 August 1984; accepted 13 November 1984

Treatment of mice with *Bordetella pertussis* vaccine rendered mice resistant to mouse adenovirus infection.
The resistant state took at least 5 days to develop, and susceptibility returned to a portion of the test population
35 days after treatment. Transient resistance developed in congenitally athymic mice also. Treatment with a
dose of 25 µg (dry weight) of *B. pertussis* vaccine protected approximately 50% of the test population. Vaccines
prepared from several different strains of *B. pertussis* were capable of inducing resistance, and the induction
of resistance was not dependent on the mouse strain used for testing. Cross-reacting antibodies capable of
neutralizing the virus or protecting against a challenging infection were not induced by treatment with *B.
pertussis* vaccine.

A variety of immunomodulatory activities have been associated with *Bordetella pertussis* vaccine (BPV) (14, 17,
19, 20). Acellular components extracted from the *B. pertussis* cell can mimic some of these immunomodulatory activities
(3, 4, 7, 8, 18, 22, 23). Treatment of mice with BPV or components extracted from *B. pertussis* can modify the
pathogenesis of virus infections. Increased susceptibility to intranasal influenza virus challenge was observed 5 to 7 days
after intraperitoneal (i.p.) injection of BPV (21). Increased resistance to intracranial rabies virus challenge was observed
when an extract of *B. pertussis* was administered by the subcutaneous, intravenous, or i.p. route at the same time as
the virus (19). Increased resistance to i.p. herpes simplex virus challenge was observed 7 days after i.p. injection of
BPV; however, resistance was not observed when BPV was administered 3 days before virus challenge (13). Several
acellular fractions of *B. pertussis*, namely, lipopolysaccharide, glycolipid, lipid A, or lipid X, induce a state of
resistance to an i.p. challenge of encephalomyocarditis virus or a subcutaneous challenge of Semliki Forest virus when
the *B. pertussis*-derived fractions were administered i.p. 24 h previously (1, 3). Discussions with the late Charles W.
Fishel concerning the immunomodulatory activities of *B. pertussis* and the reports of antiviral activity of BPV suggested
that BPV might modulate mouse adenovirus infection by a plaque-type variant of mouse adenovirus strain FL. The
plaque-type variant strain, designated MAd1p4, induces an interstitial pneumonia and death (25). Increased resistance to
an i.p. challenge of mouse adenovirus was observed when BPV was injected i.p. 7 days before virus challenge (14). This
report extends the characterization of BPV-induced resistance to mouse adenovirus infection.

MATERIALS AND METHODS

Animals. Female mice, strain BDF1/Cox (C57Bl/6 Cox × DBA/2 Cox) were obtained from Laboratory Supply Co.,
Indianapolis, Ind. A colony of C3H/HeN (mammary tumor virus positive [MTV+]) mice with the nude gene mutation
was obtained from Carl Hansen, National Institutes of Health, Bethesda, Md., and bred and maintained at the
University of South Florida, Tampa, Fla., as described previously (24). Male mice heterozygous for the nude gene and
female mice homozygous for the nude gene were used in this study. A colony of C3H/HeN (MTV+) mice was obtained
from Carl Hansen and bred and maintained at the University of Alabama, University. Both male and female mice were
used in this study.

Vaccines. BPV was provided by Connaught Laboratories, Swiftwater, Pa., and was adjusted to approximately 4.0 mg
(dry weight) per ml in saline-thimerosal diluent (0.15 M NaCl in 0.02% thimerosal). Vaccines were made also from *B.
pertussis* strains 18323 (James L. Cowell, Food and Drug Administration, Bethesda, Md.) and Tohama I (Stanley
Falkow, Stanford University, Stanford, Calif.). The organisms were maintained on BG agar base (Difco Laboratories,
Detroit, Mich.) supplemented with 17% defibrinated sheep blood. Vaccines were made by harvesting 4-day growth from
Cohen-Wheeler agar in phosphate-buffered saline (pH 7.2) and inactivating the cells by heating (56°C for 30 min) in the
presence of 0.02% thimerosal. The vaccines were adjusted to 4.0 mg (dry weight) in saline-thimerosal diluent and stored
at 4°C.

Virus. MAd1p4 was propagated in L cells (NCTC clone 929; American Type Culture Collection, Rockville, Md.).
The virus titer of infecting stocks was determined by a plaque assay (24).

Leukocytes. Mice were bled from the retroorbital plexus with heparinized capillary tubes. Samples (10 µl) of peripheral
blood from each mouse were placed into tubes containing 490 µl of Turk solution (9), mixed, and counted with a
hemocytometer.

Electron microscopy. Cells obtained by peritoneal lavage were sedimented by centrifugation at 450 × g for 10 min.
The cell pellet was covered with fixative (25% paraformaldehyde–3% glutaraldehyde in 0.1 M cacodylate buffer, pH
7.3) and postfixed with osmium tetroxide. After the cell pellet was embedded in epon, ultrathin sections (60 to 70 nm)
were stained as previously described (24).
RESULTS

Induction of resistance. Treatment of mice with BPV induced resistance to an MA11p4 challenge (Table 1). Animals were injected i.p. with BPV; 7 days later, lethal doses of MA11p4 were administered. The animals were observed thereafter for clinical disease and death accompanied by hemorrhagic lungs at necropsy. Treatment of mice with BPV induced a resistant state to as much as 250 pg of BPV (dry weight) of BPV 7 days before i.p. virus challenge.

The kinetics of the induction of the resistant state suggest that BPV was not interacting directly with the virus. The resistant state did not develop immediately after administration of the vaccine, but was observed initially 5 days after BPV treatment (Table 3). The resistant state was transient, and susceptibility returned to a portion of the test population 35 days after BPV treatment.

A functioning thymus was not necessary for induction of the resistant state. Congenitally athymic mice were very susceptible to MA11p4 infection (Table 4). The kinetics of disease and death after high-dose virus infection was similar in both thymus-bearing and athymic animals. Infection with low doses of the virus produced no overt disease or death in thymus-bearing animals, whereas low-dose infection of athymic animals produced a chronic wasting disease and death with hemorrhagic lungs after an extended period of time. A transient BPV-induced resistant state was observed also in congenitally athymic mice. In contrast to the thymus-bearing animals, the athymic animals succumbed to high-dose infection and disease after the resistant state decayed (Table 4).

TABLE 1. Induction of resistance to MA11p4 challenge by BPV administration

<table>
<thead>
<tr>
<th>Mouse strain</th>
<th>Treatment*</th>
<th>Virus dose (PFU)</th>
<th>Mortality (deaths/total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3H/HeN (+/nu)</td>
<td>Diluent</td>
<td>1.0 x 10⁸</td>
<td>0/10</td>
</tr>
<tr>
<td>C3H/HeN (+/nu)</td>
<td>BPV (Connaught)</td>
<td>1.0 x 10⁸</td>
<td>0/20</td>
</tr>
<tr>
<td>BDF₁</td>
<td>Diluent</td>
<td>1.0 x 10⁸</td>
<td>0/20</td>
</tr>
<tr>
<td>BDF₁</td>
<td>BPV (Connaught)</td>
<td>1.0 x 10⁸</td>
<td>0/20</td>
</tr>
<tr>
<td>C3H/HeN (MTV⁻)</td>
<td>Diluent</td>
<td>2.2 x 10⁷</td>
<td>0/21</td>
</tr>
<tr>
<td>C3H/HeN (MTV⁻)</td>
<td>BPV (Connaught)</td>
<td>2.2 x 10⁷</td>
<td>0/21</td>
</tr>
<tr>
<td>C3H/HeN (MTV⁻)</td>
<td>Diluent</td>
<td>2.8 x 10⁷</td>
<td>0/10</td>
</tr>
<tr>
<td>C3H/HeN (MTV⁻)</td>
<td>BPV (I3323)</td>
<td>* 8 x 10⁷</td>
<td>0/10</td>
</tr>
<tr>
<td>C3H/HeN (MTV⁻)</td>
<td>Diluent</td>
<td>2.5 x 10⁷</td>
<td>0/5</td>
</tr>
<tr>
<td>C3H/HeN (MTV⁻)</td>
<td>BPV (Tohama I)</td>
<td>2.8 x 10⁷</td>
<td>0/5</td>
</tr>
</tbody>
</table>

* Animals were injected i.p. with either saline-thimerosal diluent or 250 μg (dry weight) of BPV 7 days before i.p. virus challenge.

TABLE 2. Dose response of BPV-induced resistance to MA11p4 in BDF₁ mice

<table>
<thead>
<tr>
<th>Treatment*</th>
<th>Mortality (deaths/total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diluent</td>
<td>0/10</td>
</tr>
<tr>
<td>2.5 μg of BPV</td>
<td>0/10</td>
</tr>
<tr>
<td>12.5 μg of BPV</td>
<td>19/47</td>
</tr>
<tr>
<td>25 μg of BPV</td>
<td>1/10</td>
</tr>
<tr>
<td>125 μg of BPV</td>
<td>0/10</td>
</tr>
</tbody>
</table>

* Mice were injected i.p. with the designated amounts (dry weight) of BPV (Connaught Laboratories) 7 days before i.p. virus challenge with 1.0 x 10⁸ PFU.

TABLE 3. Kinetics of BPV-induced resistance to MA11p4

<table>
<thead>
<tr>
<th>Expt</th>
<th>Mouse strain</th>
<th>Time of treatment* (days)</th>
<th>Virus dose (PFU)</th>
<th>Mortality (deaths/total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BDF₁</td>
<td>0.02</td>
<td>1.0 x 10⁸</td>
<td>0/5</td>
</tr>
<tr>
<td></td>
<td>BDF₁</td>
<td>7</td>
<td>1.0 x 10⁸</td>
<td>0/10</td>
</tr>
<tr>
<td></td>
<td>BDF₁</td>
<td>14</td>
<td>1.0 x 10⁸</td>
<td>0/10</td>
</tr>
<tr>
<td></td>
<td>BDF₁</td>
<td>21</td>
<td>1.0 x 10⁸</td>
<td>0/10</td>
</tr>
<tr>
<td></td>
<td>BDF₁</td>
<td>35</td>
<td>1.0 x 10⁸</td>
<td>4/10</td>
</tr>
<tr>
<td>2</td>
<td>C3H/HeN (MTV⁻)</td>
<td>1</td>
<td>2.1 x 10⁷</td>
<td>5/5</td>
</tr>
<tr>
<td></td>
<td>C3H/HeN (MTV⁻)</td>
<td>2</td>
<td>2.1 x 10⁷</td>
<td>5/5</td>
</tr>
<tr>
<td></td>
<td>C3H/HeN (MTV⁻)</td>
<td>3</td>
<td>2.1 x 10⁷</td>
<td>5/5</td>
</tr>
<tr>
<td></td>
<td>C3H/HeN (MTV⁻)</td>
<td>4</td>
<td>2.1 x 10⁷</td>
<td>5/5</td>
</tr>
<tr>
<td></td>
<td>C3H/HeN (MTV⁻)</td>
<td>5</td>
<td>2.1 x 10⁷</td>
<td>0/5</td>
</tr>
<tr>
<td></td>
<td>C3H/HeN (MTV⁻)</td>
<td>6</td>
<td>2.1 x 10⁷</td>
<td>0/5</td>
</tr>
<tr>
<td></td>
<td>C3H/HeN (MTV⁻)</td>
<td>7</td>
<td>2.1 x 10⁷</td>
<td>0/5</td>
</tr>
</tbody>
</table>

* Mice were injected i.p. with 250 μg (dry weight) of BPV (Connaught Laboratories) and challenged with virus at the designated times of treatment. Both experiments included diluent injected groups of mice as controls; the control groups exhibited 100% mortality.

TABLE 4. Dose response of MA11p4 in normal, athymic, and BPV-treated athymic mice

<table>
<thead>
<tr>
<th>Mouse strain</th>
<th>Virus challenge (PFU)</th>
<th>Time of death (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDF₁</td>
<td>1.0 x 10⁸</td>
<td>10/10</td>
</tr>
<tr>
<td>BDF₁</td>
<td>1.0 x 10⁷</td>
<td>10/10</td>
</tr>
<tr>
<td>C3H/HeN (+/nu)</td>
<td>1.0 x 10⁸</td>
<td>10/10</td>
</tr>
<tr>
<td>C3H/HeN (+/nu)</td>
<td>1.0 x 10⁷</td>
<td>10/10</td>
</tr>
<tr>
<td>C3H/HeN (nu/nu)</td>
<td>1.0 x 10⁸</td>
<td>10/10</td>
</tr>
<tr>
<td>C3H/HeN (nu/nu)</td>
<td>1.0 x 10⁷</td>
<td>10/10</td>
</tr>
<tr>
<td>CH/HeN (nu/nu)</td>
<td>1.0 x 10⁸</td>
<td>15/15</td>
</tr>
<tr>
<td>CH/HeN (nu/nu)</td>
<td>1.0 x 10⁷</td>
<td>15/15</td>
</tr>
<tr>
<td>BDF₁</td>
<td>1.0 x 10⁸</td>
<td>15/15</td>
</tr>
<tr>
<td>CH/HeN (nu/nu)</td>
<td>1.0 x 10⁸</td>
<td>15/15</td>
</tr>
</tbody>
</table>

* Mice were injected i.p. with 250 μg (dry weight) of BPV (Connaught Laboratories) 7 days before virus challenge.

* The survivor was sacrificed by cervical dislocation 149 days after infection.

* Mice were injected with vaccine diluent or 250 μg (dry weight) of BPV (Connaught Laboratories) 7 days before virus challenge.
TREATMENT OF BPV TO INACTIVATE PERTUSSIS (80°C FOR 30 MIN) (19) DID NOT AFFECT RESISTANCE-INDUCING ACTIVITY WHEN ASSAYED IN C3H/HeN (+/nu) MICE, BUT DECREASED ACTIVITY WHEN ASSAYED IN BDF1, MICE (TABLE 5). THE HEATED VACCINE FAILED TO INDUCE LYMPHOCYTOYSIS IN THE PERIPHERAL BLOOD OF MICE (TABLE 6).

EFFECTS OF TREATMENT WITH BPV. HIGH-DOSE MADLP4 INFECTION DID NOT AFFECT A NOTABLE GENERALIZED IMMUNE RESPONSE (SPLENOEMAGLY) WITHIN 3 DAYS OF VIRUS INOCULATION (TABLE 7). TREATMENT OF MICE WITH BPV INDUCED A THREEFOLD INCREASE IN SPLEEN SIZE, AND THE SPLENOEMAGLY WAS RETAINED DURING 3 DAYS OF HIGH-DOSE VIRUS INFECTION.

HIGH-DOSE MADLP4 INFECTION DID NOT INDUCE AN OBSERVABLE INCREASE IN THE NUMBER OF PERITONEAL LEUKOCYTES 3 DAYS AFTER INFECTION (TABLE 8). SIMILAR TO A PREVIOUS STUDY OF FISHEL AND CO-WORKERS (5), BPV TREATMENT AFFECTED A FIVEFOLD INCREASE IN PERITONEAL LEUKOCYTE NUMBER. THE COMBINATION OF B7V TREATMENT AND HIGH-DOSE VIRUS INFECTION HAD A SYNERGISTIC EFFECT, AND THE PERITONEAL LEUKOCYTE NUMBER WAS INCREASED APPROXIMATELY 10-FOLD. THE ACTIVITY OF THE BPV-INDUCED PERITONEAL LEUKOCYTES INCREASED MARKEDLY. ELECTRON MICROSCOPY OF DILUENT-TREATED PERITONEAL EXUDATE CELLS 3 DAYS AFTER HIGH-DOSE VIRUS INFECTION REVEALED NUMEROUS VIRUS PARTICLES IN THE EXTRACELLULAR MEDIUM AND IN PHAGOLYSOSOMES (FIG. 1A). IN CONTRAST, BPV-TREATED PERITONEAL EXUDATE CELLS 3 DAYS AFTER HIGH-DOSE VIRUS INFECTION EXHIBITED VIRTUALLY NO CELLS WITH VIRUS PARTICLES (FIG. 1B).

ANTIVIRAL ACTIVITY OF B. PERTUSSIS VACCINE

VOL. 47, 1965

<table>
<thead>
<tr>
<th>TABLE 5. Effect of heat on the antiviral activity of BPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse strain</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>C3H/HeN (+/nu)</td>
</tr>
<tr>
<td>C3H/HeN (+/nu)</td>
</tr>
<tr>
<td>C3H/HeN (+/nu)</td>
</tr>
<tr>
<td>BDF1</td>
</tr>
<tr>
<td>BDF1</td>
</tr>
<tr>
<td>BDF1</td>
</tr>
</tbody>
</table>

* Mice were injected i.p. with vaccine diluent or 250 µg (dry weight) of BPV (Connaught Laboratories) 7 days before virus challenge.

<table>
<thead>
<tr>
<th>TABLE 6. Effect of heat on lymphocytosis after BPV treatment of C3H/HeN (+/nu) mice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment*</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>Diluent</td>
</tr>
<tr>
<td>BPV</td>
</tr>
<tr>
<td>Heated BPV*</td>
</tr>
</tbody>
</table>

* Mice were injected i.p. with vaccine diluent or 250 µg (dry weight) of BPV (Connaught Laboratories) 4 days before bleeding.

TABLE 7. Effect of BPV treatment and MAD1p4 infection on spleen weight |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Diluent</td>
</tr>
<tr>
<td>BPV</td>
</tr>
<tr>
<td>BPV</td>
</tr>
</tbody>
</table>

* Groups of three C3H/HeN (+/nu) mice were injected i.p. with vaccine diluent or 250 µg (dry weight) of BPV. Seven days later, the mice were injected i.p. with cell culture medium or virus stock. After 3 days the mice were sacrificed by cervical dislocation, and the spleens were removed, blotted to remove excess fluid, and weighed.

C3H/HeN (MTV') mice was injected i.p. into mice of the same strain and challenged with a high-dose virus inoculum 24 h later. Assuming a plasma volume of 1.1 ml (6), then potentially antibodies would have been diluted approximately threefold. A group of 10 mice treated in this manner succumbed to high-dose infection within 7 days.

DISCUSSION

Mouse adenovirus can be added to the list of virus infections that are modulated by treatment of the test animal with B. pertussis or materials derived from the microorganism. Development of the resistant state was not dependent on the strain of the microorganism. Although the B. pertussis strain from Connaught Laboratories, Inc., and strain 18323 (12) have a common lineage, strain Tohama I was derived from a completely different source (10). Development of the resistant state also was independent of the strain of mouse used.

The kinetics of development and decay of the resistant state indicated that a relatively long-term modification of the immunological mechanisms occurred. The modification probably did not involve thymus-derived lymphocytes in its mechanism of development, since congenitally athymic mice responded to BPV treatment with resistance. However, thymus involvement in the BPV-induced resistance in the thymus-bearing animal cannot be ruled out due to possible compensatory immune functions operating in congenitally athymic mice, such as increased numbers of natural killer cells. Thymus-derived cytolytic lymphocytes are necessary for final clearance of certain virus infections (11); consequently, the mechanism of BPV-induced resistance in thy-

<table>
<thead>
<tr>
<th>TABLE 8. Effect of BPV treatment and MAD1p4 infection on peritoneal leukocytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Diluent</td>
</tr>
<tr>
<td>BPV</td>
</tr>
<tr>
<td>BPV</td>
</tr>
</tbody>
</table>

* Groups of six C3H/HeN (+/nu) mice were treated i.p. inoculation of vaccine diluent or 250 µg (dry weight) of BPV. Seven days later three mice from each group were sacrificed by cervical dislocation, and 4.0 ml of Dulbecco modified minimal Eagle medium was injected into the peritoneum. The peritoneal wall was massaged, 3.5 ml of lavage was withdrawn, and the cells were counted. The remaining three mice in each group were inoculated with virus and sacrificed for lavage 3 days later.
FIG. 1. Electron micrograph of ultrathin sections of peritoneal lavage cells from C3H/HeN (+/nu) mice. Bar, 1.0 μm. (A) Representative cell obtained after treatment with vaccine diluent (7 days) followed by MAdlpr4 infection (3 days). The inset shows an increased magnification of a phagolysosome containing virus particles. (B) Representative cell obtained after BPV treatment (7 days) followed by MAdlpr4 infection (3 days).

Mus-bearing mice is probably an expression of retarded virus growth until the proper T-lymphocyte clones can develop. This conclusion is supported by the similarity of disease patterns in BPV-treated and low dose-infected athymic mice.

The immune response of mice appears to be overwhelmed by high-dose MAdlpr4 infection; death occurs before a systemic response in the form of splenomegaly, leukocytosis, and increase leukocytes in the peritoneum can develop. The treatment of mice with BPV could provide the mouse with a systemic response at the time of virus inoculation; however, one must consider that clinical signs of systemic response might not be involved in the resistant state. We have observed that acellular fractions of B. pertussis have decreased ability to induce splenomegaly and leukocytosis, yet retain resistance-inducing activity (R. S.
Stinson, J. D. Lee, L. Williamson, and A. Winters, Abstr. 19th Natl. Meet. Reticuloendothel. Soc. 1982, abstr. no. 56, p. 70. The mechanism of BVP-induced resistance markedly decreased virus particles from the inoculum or subsequent multiplication in peritoneal lavage cells obtained 3 days after infection (or both).

Study of the molecules or complex of molecules in B. pertussis that are responsible for induction of the virus-resistant state, and investigation of their mechanism of immunomodulation might lead to new methods for prevention and treatment of virus infections.

ACKNOWLEDGMENTS

This work was initiated at the Department of Medical Microbiology and Immunology, University of South Florida, Tampa. Support was provided by University of Alabama Research Committee project no. 1116 and 1143, Public Health Service Biomedical research support grants NIH 5 S07 RR05749-05 and PHS 2 S07 RR07151-05 from the National Institutes of Health, Public Health Service Grant AI 15108-01 from the National Institutes of Allergy and Infectious Disease, and Office of Naval Research contract N00014-83-K-0597.

LITERATURE CITED

DISTRIBUTION LIST

Immunological Defense Program

Annual, Final and Technical Reports (one copy each except as noted)

Dr. John D. Clements
Department of Microbiology and Immunology
Tulane University
1430 Tulane Avenue
New Orleans, LA 70112

Dr. Robert I. Mishell
Department of Microbiology and Immunology
University of California, Berkeley
Berkeley, CA 94720

Francis A. Ennis, M.D.
Department of Medicine
University of Massachusetts Medical School
55 Lake Avenue
Worcester, MA 01605

James J. Mond, M.D.
Department of Medicine
Uniformed Services University of the Health Sciences
4301 Jones Bridge Road
Bethesda, MD 20814

Dr. Edward A. Havell
Trudeau Institute
P.O. Box 59
Saranac Lake, NY 12983

Dr. Page S. Morahan
Department of Microbiology
Medical College of Pennsylvania
3300 Henry Avenue
Philadelphia, PA 19129

Dr. Arthur G. Johnson
Department of Medical Microbiology and Immunology
University of Minnesota School of Medicine
2205 East 5th Street
Duluth, MN 55812

David A. Stevens, M.D.
Department of Medicine
Santa Clara Valley Medical Center
Stanford University
751 S. Bascom Avenue
San Jose, CA 95128

Dr. Matthew J. Kluger
Department of Physiology
University of Michigan Med. School
7620 Medical Science II Building
Ann Arbor, MI 48109

Dr. Barnet M. Sultzer
Department of Microbiology and Immunology
Downstate Medical Center
450 Clarkson Avenue

Dr. Roger M. Loria
Department of Microbiology and Immunology
Virginia Commonwealth University
Box 678, MCV Station
Richmond, VA 23298-0001

G. Jeanette Thorbecke, M.D.
Department of Pathology
New York University School of Medicine
550 First Avenue
New York, NY 10016

Dr. Ernest D. Marquez
Bioassay Systems Corporation
225 Wildwood Avenue
Woburn, MA 01801

Dr. Alvin L. Winters
Department of Microbiology
University of Alabama
University, AL 35486
Annual Final and Technical Reports (one copy each except as noted)

Dr. Jasmine A. Majde, Code 441CB
Scientific Officer, Immunology Program
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217

Administrator (2 copies) (Enclose DTIC Form 50)
Defense Technical Information Center
Building 5, Cameron Station
Alexandria, VA 22314

Annual and Final Reports Only (one copy each)

Commanding Officer
Naval Medical Command
Washington, DC 20372

Commanding Officer
Naval Medical Research & Development Command
National Naval Medical Center
Bethesda, MD 20814

Director, Infectious Diseases Program Center
Naval Medical Research Institute
National Naval Medical Center
Bethesda, MD 20814

Commander
Chemical and Biological Sciences Division
Army Research Office, P.O. Box 12211
Research Triangle Park, NC 27709

Commander
U.S. Army Research and Development Command
Attn: SGMD-PLA
Fort Detrick
Frederick, MD 21701

Commander
USAMRIID
Fort Detrick
Frederick, MD 21701

Directorate of Life Sciences
Air Force Office of Scientific Research
Bolling Air Force Base
Washington, DC 20332

Administrative Contracting Officer
ONR Resident Representative
(address varies - obtain from Business Office)

Final and Technical Reports Only

Director, Naval Research Laboratory (6 copies)
Attn: Technical Information Division, Code 2627
Washington, DC 20375