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limiting factor with this control scheme. If real-time changes in the desired
trajectory have to be accommodated, the computational efficiency has to be improved
using recursive relations to cimpute the adaptive gains. The necessary recursive
relations are derived and presented in this report.
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ABSTRACT

This report preseuts a control scheme for accurate trajectory following with robotic
manipulators. The method uses feedforward control using model-based torques for fast operation
and gross compensation, and adaptive feedback control for correcting deviations from the desired
trajectory under feedforward control. The adaptive controller eliminates trajectory-following errors
in the least squares semse. The control scheme takes into account dynamic nonlinearities (e.g.,
coriolis and centrifugal accelerations and payload changes), geometric nonlinearities (e.g., nonlinear
coordinate-transformation matrices) and physical nonlinearities (e.g., nonlinear damping) as well as
dynamic coupling in manipulators. Computer simulations are presented to indicate the effectiveness
and robustness of the control scheme. When the desired trajectory is completely known before the
control scheme is implemented, then off-line computations can be used to generate the adaptive
foedback gains and the computational efficiency will not be a major limiting factor with this
control scheme. If real-lime changes in the desired trajectory have to be accommodated, the
computational efficiency has to be improved using recursive relations to compute the adaptive

gains. The necessary recursive relations are derived and presented in this report.
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1. INTRODUCTION

Many robot applications today and in the future will require accurate tracking of a prespecified
continuous path. Common examples of these tracking applications include seam tracking, arc
welding, cutting (laser and water jet), spray painting, contours inspection, co-ordinated parts
transfer and assembly operations. These tracking paths are usually specified with respect to the
end effector of the robotic manipulator and can specify trajectories with respect to time as well
as position. The problem with achieving this objective of temporal path following is that strong
nonlinearities in the dynamics and geometry, unknown parameters, modeling errors, measurement
errors, unplanned changes in operating conditions, and other disturbances are present in the

manipulator and they make accurate control of the manipulator very difficult.

To achieve this goal of accurate path following, a control system is needed, which

1. accurately tracks the desired end effector trajectory, often in terms of time as
well as position;

2. rejects a wide class of disturbances, such as parameter variations (i.e., changing
payload), vibrations and the effects of static friction, and measurement errors;

3. has minimal complexity, is computationally fast, can accommodate a high
sampling rate;

4. is very reliable, particularly in terms of robustness of the control scheme.

Many control systems, which meet these requirements with different degrees of success, have been
proposed and some have been implemented. The control scheme developed in this report can
accurately follow a prespecified trajectory while rejecting many classes of disturbances by using a
feedback control scheme that minimizes position and velocity deviation in the least squares sense
while allowing for the changing of the feedback control parameters to account for unknown
changes in payload or desired ftrajectory. A two-link manipulator simulation shows the
effectiveness of this control scheme for trajectory following. However, the computationai effort
required with this control scheme is high enough to limit the maximum sampling frequency
allowed for manipulator control in real time. Therefore the maximum trajectory-following
accuracy that this control scheme can achieve is also limited by the computational effort, if the

desired trajectory is not known a priori, and is changing in real time.

"‘*“L WA
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1.1 Control Schemes

Linear servo control is the most common type of control in commercial use today [3). Ths
control method involves having a separate feedback loop closed over each manipulator joint that
fecdbacks the position (and sometimes velocity) of that joint. This control method has several
problems which limit its commercial usefulness. Since each control loop is closed independently
over cach manipulator joint, it has poor compensation for the dynamic coupling (i.e., particularly
coriolis forces and coordinate coupling) between joints because the effect of the motion of one
joint on another is viewed as a disturbance which the feedback controller of the second joint
must compensate for. At low speeds, these “disturbance™ forces are small and can be easily
compensated for, but at high speeds, these forces are major components in the dynamics of the
manipulator, and the controiler will fail to totally reject these “disturbances™ and the end effector
will no longer be following the correct path {8]. Another factor is that the servo parameters
usually are tuned for one set of operating conditions and can not be changed to meet changing
conditions like payload variations during robot operation. Furthermore, classical servo control

assumes linear plants, which is not close to reality in the case of robotic manipulators.

Other control schemes have been proposed that climinate some of these problems but none have
been commercially implemented. These methods include Model-Referenced Adaptive Control,
Sliding Mode Control (a method of designing switching feedback regulators based on minimum
b time, bang-bang control), optimal control, nonlinear feedback control and feedforward control.

Application of these control techniques, particularly for real-time control, is hindered by the
L: , complexity of the associated control algorithms, which increases the computation-cycle time and
decreases the control bandwidth.

ﬁ In model-reference adaptive control [4, 5], feedback controller parameters are adaptively
o changed to drive the manipulator response toward that of a reference model. This reference model
need not represent the actual manipulator and is chosen to suit the required dynamic behavior. For
example, a simple oscillator (a linear second-order differential equation) could be used as the

reference model for each joint of the manipulator.

Controller parameters are adjusted according to a differential law that uses the error signal (the

difference between response of the reference model and the actual robot) as the input. There exist

v 7-‘-.v.,4
: . )
R

several drawbacks in this scheme, including the following:

1. Structure of the feedback controller is not automatically generated by the control
scheme.

2. The adaptive law has to be derived from scratch for the particular reference model
chosen.

3. The control law is completely independent of the robot model.
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4. Tbe conmtrol action has to be generated faster than the speed at which the nonlinear
terms in the robot change.

5. The adaptive law is derived on the assumption that some of the nonlinear terms in
the robot model remain constant.

It is clear that even though this technique can produce satisfactory results, particularly due to
the presence of adaptive feedback loops, there is no guarantee that the required accuracy is

obtained in a given situation of trajectory following.

A control technique that strives to obtain linear behavior from a nonlinear manipulator is known
as sliding mode control [9]. In the generalized case of this method (only the two dimensional
case is presented by Klein and & Maney [9]), the state space is partitioned into several regions
that are bounded by a space trajectory conformal to the desired linear behavior. The objective of
the control would be to drive the manipulator along the desired trajectory. This is accomplished
by assigning a different control law for each region in the partitioned state space. If the
manipulator deviates from the desired trajectory and enters a particular region of the state space
the corresponding control law is switched on. This will drive the manipulator back into the
desired trajectory. If it overshoots, however, the control law of the new region which the
manipulator entered will be automatically switched on to drive the the manipalator intg the
desired trajectory. If the alternative control laws that are assigned to the various regions cam be
switched on at infinite frequency, which is of course pot realistic, it is possible in theory, wo
oblain ideal bebavior. In practice, however, the response will chatier about the desired trajectory.
The amplitude of chatter will depend on the manipulator dynamics as well as control gains used.
In addition the switching frequency will depend on the deadband of control. These shortcomings
of sliding mode control can be aggravated by the fact that the control laws are selected in a
beuristic manner, without even employing a model to represent the actual dynamics of the
manipulator. At its best, sliding mode control usually brings about time delays (non-synchronous
response) in addition to chatter. This technique too, has not been implemented in commercial
robots.

In optimal control, the feedback control law is designed by optimizing a suitable performance
index using a dynamic model for the manipulator. Control laws obtained in this manner can be
highly complex except in a very few special cases. A nonlinear control approach that has been
proposed for robotic manipulator control is aimed at obtaining a desirable linear behavior from
the manipulator by employing a highly nonlinear feedback law [6, 1]. Unlike the model-
referenced adaptive control method, this control law is derived from an accurate nonlinear model
for the robot. The main disadvantage of the method, as has been warned by Asada & Hanafusa,

(1] is the feedback law that is so complex, it is virtually impossible to compute the feedback
parameters in real time for practical robots. Furthermore, performance of this nonlinear control

system is known to be quite sensitive to fidelity of the robot mode! that is employsd.




2. CONTROL

This control scheme developed in this report involves the combination of feedforward control

with a least squares adaptive feedback control scheme.

2.1 Feedforward Control

This is an open loop control method. This method involves calculating the torques that must be
applied at each manipulator joint so as to have the end effector follow the desired trajectory.
These torques are computed by from the differential equation which models the dynamics of the
n-degree of freedom robotic manipulator. This is known as the inverse-dynamics problem;

M(qW)q + f(q.qW) = r(t) (1)

where
W : payload

q : vector of generalized joint positions
M(q,W) : inertia matrix (n x n)

£(q.q,W) : vector representing centrifugal,
coriolis, dissipation and gravitational forces

r(t) : input torques or forces at the
manipulator joints

In practical manipulators, input signals (e.g., field voltages, servovalve commands) produce
motor torques at the joints, with some dynamic delay. Motor torques are converted into the
torques that are actually applied to the links of the manipulator, with additional dynamic delay.
Manipulator displacements are a result of these joint torques. It is thetefore clear that, by either
measuring or computing joint torques it is possible to eliminate part of the delay in a
manipulator control system. Consequently, feedforward control has the advantage of speeding up
the manipulator response. Furthermore, torque disturbances can be calculated or measured, they
can be completely rejected using feedforward control. A main disadvantage of feedforward
control, in the present context, is that due to model errors and unknown disturbances, the
calculated torque is not the ideal torque and as a result errors can grow in an unstable manner

unless some form of feedback control is used.

Since in inverse dynamics a mathematical model of the manipulator is used to calculate the joint
torques required, when these torques are applied to the actual manipulator it might not follow the
desired trajectory accurately. This would be due to the cumulative effects of modeling
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inaccuracies, computational limitations, and unaccounted for effects like wvibrations and static
friction. Therefore, for accurate tracking using feedforward control a precise dyvamic mode! has
to be employed and the manipulator must be made very rigid witb stror; structural links and
precision gear trains and actuators. Another problem with this method 15 that the computational
effort required to accurately compute the necessary torques 1 a real-lime situation can become
very significant if the desired trajectory is not known a priori and may bot allow a sufficiently

high sampling rate for good control bandwidth

Ap adaptive feedback is used in the present control method to correct for these problems.

2.2 Background Theory

In most instances, feedforward control needs a feedback cobtroller to correct for unaccounted

disturbances in the system. Since linear-servo control offers only a limited ability to compensate
- for nonlinearitics, model errors, measurement errors and disturbances a more adaptive feedback
controller was developed by R.P. Paul [2]. This controller is based on a nonlinecar coupled
dynamic model of the manipulator, and therefore takes into account effects that linear control
usually neglects. It also allows for updating the control parameters to take care of unknown

external disturbances and payload variations. The basic block diagram for the control system is
seen in figure 1.
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Figure 1. Basic control diagram for the manipulator
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2.2.1 Linearization

We can linearize the nonlinear set of differential

AR AN iAo S el A A Ak Al Aakt Sl St Sudl Jhdl Tagh W

equations (1) with respect to small

perturbations, 4q, from the desired trajectory, qd(t). caused by small torque disturbances, Jr(t)

v .. OM of of
M(q.d.W)6q+ng—(qd.W)6q+a—-(qd.qd,W)5q+g-(qd.qd.W)5q = §r(l) (2)
q q q

where

- oM Koo
7] 2%
aq 1 k=1 aqj
This equation can be rearranged in vector-matrix form

i 0 éq 0 i
. «OM , Of ot
o M é = Al
. 9 93a 3a 34 o

oq ]
= Sr(v) (3

5q !

where, [ ] e denotes terms evaluated in terms of the desired trajectory, qd(t).

This is, in fact, a state space representation with the state vector and the input vector given by

x=[3q 691 . us=Jr

thus,

x = Ax(?) + Bu(®)

where, the system matrix

| 0 0
A(@. 4.9 W) = -

0 M aa_M+§_’

s Oq Oq

and the input gain matrix is

0
g(qd. W) =

M-l

]

(4)
-1

(s)
3t
da 4

(6)

Since what is developed would be implemented as a digital control scheme, we need the discrete

form of the slate space representation

...............
.....................
.........

................

......
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for 2 = Ax + Bu(?)

du

The solution to this linear differential system starting at t=t, can be represented as

H
x(t) = d(et)x(t) + S &t /) 8(Bu( f)d B (N
1

(]

which assuming time invariance in the neighborhood of the perturbations, can be expressed as the

set of difference equations

x(k+1) = $x(k) + [uk) k = 0,1,2,3....

in which

e =  state transition matrix

- LT A8 . . .
r S° e 7dpB input gain matrix

T = data sampling period

2.2.2 Minimization

Since the state vector X represents the deviation in position and velocity, from the desired
trajectory, then the objective of the minimization is to drive X to zero as fast as possible. This
will be accomplished in the least squares sensc by using the following objective index

Least Squares Minimization Performance Index :
N

J= z (#x(k) + Tub)]™ Q@ [$x(k) + Tub)] (8)

where Q is a diagonal weighting matrix. Q is used to weight the relative importance of each
joint position or velocity. This allows the motions of critical joints to be more heavily weighted
than the motions of other joints.

This minimization is a Linear Quadratic Regulator (LQR) minimization problem so the optimal

feedback gain should be in some form of the steady-state Ricatti equation.




.................

2.2.3 Optimal Feedback Gain
Using straightforward calculus it can be shown that the optimal control law is given by
u(k) = =Kx(k) 9)
where K=(rran'raeé xw (10)
It should be noted that this feedback control law is realizable if

rank( QD) = n (11)

In particular, if
Q is positive definite, we must have

rank(l’) = n (12)

where, n = degrees of freedom of manipulator

2.3 Control Strategy

The complete control strategy for the manipulator is shown in figure 2. First the desired end-
effector trajectory of the manipulator is generated. Then, using some inverse kinematics scheme,
each incremental displacement, velocity and acceleration of the end-effector is translated into the
corresponding motions of the n joints. With the inverse dypamics of the manipulator, the desired
gross torques for each joint can be calculated. These torques are applied to the actual
manipulator in a feedforward manmer. The actual joint positions and velocities are then measured
once every period, Ts. using resolvers or encoders. The difference between the actual and the
desired joint motions is then multiplied by the optimal feedback gain matrix, K, to produce the
vector of torque corrections that need to be added to the gross torque vector for proper control.
A suitable criterion is needed to decide when to update the feedback gain matrix, K. In the
present work the following criterion is used:

e Initially specify the weighting matrix Q and calculate, ®, and ,I'.
® Compute the initial feedback gain matrix, K using equation (10).

e Update the feedback gain matrix, K, according to the criterion

1. If “x“ <€ Skip torque error feedback
2. 1 J|xdl > e, Update #.T,Q, and K
3. If “x" > e, Excessive Error, terminate operation

Note that ¢ < ¢ < ¢, The error norm is defined as | |x]|| = Z“ e |x|

e Update the weighting matrix, Q, by changing the diagonal elements in proportion to
the maximum absolute value of the state, :xi!
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2.3.1 Stability

If the manipulator model is significantly different from the actual robot, then the feedback law
could cause instability in our control system. Stability is guaranieed if the closed-loop state
transition matrix, $°, has all its eigenvalues inside the unit circle on the Z-plane. Note that

- e-TUCTQI)" TTQl¢
where
$ . T = actual plant manipulator matrices

¢° . I'o =  mapipulator model matrices
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3. SIMULATION RESULTS

The effectiveness of the control strategy presented in this report, is examined using a two-
degree-of-freedom manipulator. The manipulator equations are given in Appendix A. Two types of

disturbances were tested for this control scheme:

1. a 7% external disturbance (figures 3.1 and 5.1), and

2. a 7% error in link lengths and a 9% error in link inertias (figure 4.1).
Typical results corresponding to these three cases are presented in figures 3, 4, and 5. In all
. three cases the feedforward control alone produces an unstable trajectory following. By adding
the adaptlive optimal feedback controller the actual trajectory was brought very close (8%
maximum position error) to the desired trajectory.

It appears that our control scheme satisfies three of the four design goals for the controller:
accurately tracks the end effector, rejects a wide class of disturbances, and is very reliable. The
last goal is minimal complexity, or making the scheme computationally fast emough to allow an

adequate sampling rate for on-line trajectory generation and control.

3.1 Two-Link Manipulator Results
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4. COMPUTATIONAL CONSIDERATIONS

The computational time that is required to update ®, I', Q and K, will determine the minimum
error, ¢ , that can be used in the control strategy and therefore determine the accuracy of the
trajectory following. This update time will therefore affect the maximum sampling rate that can
be used in the feedback loop when on-line trajectory generation is necessary. In many high
accuracy applications, the update time will be the minimum sampling period allowed, while in
other less critical situations, the use of the old gain matrix, K, during the time peeded to
calculate the new gain matrix, Kml. will not greatly affect the trajectory error. It is obvious that
we want to minimize the update time so that the maximum sampling frequency is increased

enough to permit good control bandwidth for the robotic manipulator.

The total computation time can be divided into three main computations:

® the feedforward, gross torque calculation,
® the calculation of the A and B matrices, and

® the updating of ¥, ', Q and K.

4.1 Feedback Controller Parameter Calculations

In the two link manipulator simulation, Sylvester's theorem [13] was used in the calculation of
$. This theorem requires the calculation [11) of the eigenvalues of the system, and then the
calculation of $ by use of & = l‘-’lexnT + erxz'r + ..+ FNexNT. For complex eigenvalues,
is written as damped sine and cosine terms, and I' is calculated by a simple integration of these
sine and cosine terms. Ap alternate wmethod of ¢ and I' calculation is the use of the series
expansion method. Specifically,

o]
‘ 1
¢ = Z ATk = ] 4+ Ar+;A’r’ + .. (13)
k=0 .
oo r2 243
A AT
= kpk+l +1) = > — ¢ —
r [Zo ATk 1).]5 [r " _r ]B (14)

This method is found to be computationally faster because the sampling period, T, is
comparatively small so the higher order terms are negligible. Using an m"™ order expansion for

calculating ® and I’ then the number of multiplications for each parametric matrix is

z:':’ (2n)' . Because the computational expense is increasing exponentially when the number of
terms in the expansion is increased, so a small data sampling period, T, is very beneficial
computationally,

.........................
e A LT e .
P S
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The calculation of K
K=Tan'rroe¢
involves matrix multiplications, transposes, and the inversion of the matrix, (I'TQl"). The inversion
of the matrix takes the longest to compute, and using the Gaussian elimination method, the
number of operations is O(n®) for an n x n matrix. All these are standard matrix operations and
codes are avajlable to accomplish these operations in a computationally efficient manner.

The update calculation of Q is done by changing the weights of the diagonal eclements in
proportion to :xi}‘m, which represents the maximum deviation of any joint’s position or velocitly
from the desired motion. It is found that in most cases, the updating of Q does not significantly
affect the feedback gain matrix, K, so updating Q can be ignored if computational time is very
critical.

4.2 Feedforward Computation

Many new robot applications require on-line decision making, database access, and interaction
with other machines. Therefore the inverse dynamics need to be computed in real-time to obtain
the gross torques of the manipulator joints, which need to be provided by the joint motors. The
standard method used to derive the inverse dynamics is the standard Lagrangian formulation. Luh,
Walker and Paul [10] have shown that this method would require about 7.9 seconds on the PDP
11/45 to calculate the gross torques for obe position of the Stanford Arm using an efficient

Fortran program. This formulation requires a computational effort of O(n*) because the method is
doubly recursive with many redundant operations. The standard Lagrangian method computes the
torques directly using

2 . aw aw' N aw. aw’ aw.
0 S DT LA P i NPT
1 kel aqi aqx k=l =l aq', Jaqkaq, aqi !

The computational time for this is obviously too long, so various methods of reducing the
pumber of computations have been tried. Since most of the computational effort is devoted to
calculating the triple sums involved in the coriolis and centrifugal forces, many computation
schemes ignore these terms. The problem with this is that a! high speeds, the coriolis and
centrifugal forces dominate in the manipulator dynamics and therefore the burden of compensation
is increasingly placed on the feedback controller. While this method can work at low speeds, at
high speeds this approximation could mean that excessive torques must be applied The controller
might not be capable of doing this and sometimes burnout of equipment could result. Alternative
methods are available using the Newton-Euler [10] or Lagrangian (7] recursive relations. These

methods yield the same torques as the standard Lagrangian approach, but are computationally
o faster because the standard Lagrangian approach involves redundant operations. These recursive
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relations reduce the computational effort required to O(n). Lub's Newton-Euler formulation in
floaling point assembly bas been shown to take 4.5 milliseconds on the PDP 11/45 for the torque
calculation of one position of the Stanford Arm. This will allow a sampling rate for the

manipulator of greater than 60 Hz which insures good control bandwidth for the manipulator. The
Lagrangian recursive relations are presented here because the computational formulation for the

feedback gain matrix, K, is based on this approach.

4.2.1 Recursive Lagrangian Dynamics

In the following, the recursive Lagrangian dynamics procedure [7] is used to calculate the joint
torques. First, all the WiT terms are calculated using equations (17) and going from i=1 to i=n.
Then the Di and ¢, terms are computed from i=n to i=! using the forward recursive relations
(16). Finally, the torques are computed using equation (15). This formulation has 830n - 592
multiplications and 675n - 464 additions which result in 4388 multiplications and 3586 additions

for n=6.
w, aw,
r, = |tr— D) - g'— ci] i = l..n (15)
9gq, 9g,
where

Forward Recursion
For i = n,..,1
D=JW'+A D (16)
i i ivl i+l

c =m'r +A c
i i i i+l il

Backwards Recursion

Fori = 1,..n

W =W, A4

.. 34, .

WI = wl-l Ai + wi-l— qi an
ag,

.o .e . aA| . a2AI . 2 aAl (X

W =W, 4 +2W —gq Wi-l—-z g * W9
3g, 8q, 99,
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4.3 A and B Matrix Calculations

Since the A and B matrices are based on the linearization of the manipulator dynamics about a
desired trajectory, it is suggested that an efficient formulation for their computations may be
based on the Lagrangian or Newton-Euler recursive relations for the solution of manipulator
dynamics.

4.3.1 Derivation

Looking at the séructureaof the Aaand B matrices it is seen that three submatrices need to be
M. f ¢

calculated: M~, é—q + —, and =~ . The Lagrangian approach will be used because the
. q q q
4 formulation is much clearer and the most efficient Lagrangian relations are of the same order of
computational effort as the Newton-Euler method.

The general Lagrangian formulation for the generalized forces, T for and n-link manipulator is

3

b

b .

d j
b

aw, ow’ Lo ow aw’ W,
r = Z[ z <tr(——J—))q +ZZ("(—8—0—Jaqa )q.8)-mg" . Fir] (18)

which also can be written in the form [12]

r= ZDq *ZZD qq (19)

1 kel
where

: W, aw’
D = E tr(—J l’) =  jnertia forces
1 P
pemaxi, aqi aqj

g . w w’
j x tr( S, Y = coriolis and centripetal forces
R p=maxi,j.k aq,aqk P aqi
n
ow
D = z -m gT—P Pr =  gravity forces
] pei P aq P

andwhere

W=°Ww=44.. A4
} 3 1 2 bl

W, = A A A i<j

i1 je2 7 ]
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S 4.3.2 Linearized Matrices

The three matrices, M, —q + —, and ﬂ are necessary lo compute results from the
dq da 99

linearization of the inverse dynamics with respect to small perturbations, Jq.

(a) | — q+-— term:

dq Jq

The first matrix computation formulation is [5— q+— ] This matrix is derived by taking the
partial derivative of the genmeralized forces with respect lo the joints’ position vector. So

om . of e . .
QT | =7, i = 1,..n f=l..n (20)
3¢ 9g 3q,
But Waters [14] proved that instead of the standard Lagrangian, the generalized forces can be
expressed in a form that will permit several backward recursive relations to be derived that will

reduce the computational effort to o).

n
ow .. ow
7, = Z[:r(—" I, W = mg—rr ] i1 21)
pei 9q, 9g,
where the backward recursive relations for velocities Wr and accelerations Wp are :
WP = er AP
. . aAP -
WP = WP_‘ Ap + Wp_l— q’ (22)
99,
. . . 94 A, 34, ..
wo=Ww_ A+zw-—q +W —gqg2+W_—g
P p-l Pla 2 'P i P
aq, aqp aq,,

Using the same formulation for the generalized forces, the derivative of the generalized forces

can be expressed as

M . d=p W, aw

M 2> tr(—"J, w’>-mpg—'3"r] (23)
3g dg dq, 5= 3¢, 99,
n

w . aw. oW’ 3w
= > [r—2 3, Whetr(—" 3, —)-mg'—= r ] (24)

pei 9999, 9q, g, 89,99,

Now
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ow
it j<p then i<~”) =0
ve aqj aqi
w,
and — =0
9g,
since

w="w=44.4
P P 12 P

Consequently, the matrix formulation can be written as

n 2 a7 T 2
M .. of o’w . W W 3w
[— at— .= [tr( L A tr(— J, =)~ m 9" r Prp] (25)
99 9q prmax i~ 99.9q, 9g, 99, 99,99,

for i = l...,nand j = 1,..,n

Now a forward recursive relation can be developed by noting that

where ‘wp =A A .. A i<p

i*l 2 [

Therefore for the two cases of the double derivative we obtain

ifi>j
FW, 5 W,
= —(— W)
99,99, 9q, Jq,
Fw ow, a'w
= iwp + — r
39,9, 9q, dg,
Iw,
= le
aqiaqj
Similarly for j > i
3w aw,
P ) jW

=
aqiaqj aqiaq,.
considered in what follows.

Rewriting the matrix formulation as

............ e et et e, .
....................

Ny *% s SRR Y L IR N S P U AL T T P S R
AR ANRIRYY ‘J\‘h WA VY IR VO AN "'.-v' .'"L'-. LAY

Because of the symmetry of the equations of the double derivative, only the case i 2 j will be

L te -
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............
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M .. df w, . ow. aw, a w,
é— q+ é— ] Z[m W W W -w, ']
! 39,9, 99, aqj aq dg;
2 v T 2
M . of oW, aw, aw LW,
i +9— Z[m WJ W — W “iw, o]
99,99, 9g, dq, aqaq
thcn the reformulation can be written as
oM .. of
— q+— Is
dg 9qg " .
W, . aw, w' W, o
[erc > WJ W T)m(— ‘W, —)-g" > mw, ]
9q.9q, v~ 9q, i 9g, 99.9q, r-i
Let
- n i e T
Di zp_i WPJPWP
o b T » i+t > T
wiJiwi * Zr'i’l Ai*l erPwv
Now since iWi = |
. 1
we get Dl, = JiWi + Am DM
Also, let
- a i P,
< z’_i m W’ r
i
ci * mi ti * Ai’l ci*l
and
A
N 2 W
aw
h‘ . J + A N
9. i1 i*l
3
Now for i 2 j the matrix is simply written as
2
[g—q—] [tr(———D)+ tr(-—N)~g ' ci]
99,39, 99, 99,99,
By a similar procedure we get
for j2i
aM _. af 8’w aw aw.

D)+ tr(—N) ~g' > ¢

aq ]" ["(aq 39, 3q, 39,94, ]

(26)

Q27

(28)

(29)

(30)

(3D

(32)

(33)
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:- where

‘ D=JW'+A D (34)

b ] i I

i € =m ’r. + A ¢ (3%
] | Mg

i ow '

! N=J—+A N (36)

8 i Jaqj o I

(b) [g—:] term:

Using a procedure similar to what is given in the previous section, the [Q] term can be
simply formulated as a set of linecar recursive backward and forward relations. This matrix term
is derived by taking the partial derivative of the gemeralized forces with respect to the joints’

velocity vector. So

[ ]u = _.‘ T i = lewn  j=l..n (37

Now using Waters gencralized forces formulation. the matrix becomes

[ ] z tr (38)
pei aq
w,
/If j>p then — =0
aqj
Consequently the matrix equations are wrilten as
. -
of ow ow
[=], - 2 m—ty =5 (39)
og pomax ii 9, aq,.
Consider first the case of
Ifi>j
w, aw T
[ .]U Z m— w3 —) (40)
o9 pei 9g;
W' W T
i 4
[ ]u = tr( z w3 —) (41)

dq, i oq

i

.......................
....................................................
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Now, it can be shown that
WT W'
— = (42)
99, dq,
Which leads to the reformulation
T v T
[=], = 5 W, —) (43)
oq dg, v aq,.
that produces the forward recursive relation by letting
n .
aw T
i P
Q=2 W,
pei aqj
awT
OisA”O +J (44)
+ i+l
aqj
So the matrix compuation is simply formulated as
of awi
[=]) = r—a (45)
oq 9gq,
Considering the other case and by applying similar arguments we get
for j 2 i
1
[ ] z tr(-——- J 2
rj aq
T o T
of oW, aW
[=] = —w, > w9 —) (46)
9q 9gq, P aq,
Then the matrix is formulated as
of awi .
[=) = r—w, 0 a7
oq 9q,
aw
Q=A Q +J (48)
i 1 e i
a9q.
i
(c) Mij term:
The next matrix to be calculated is the inertia matrix, M. The recursive relations are derived in
the same manner as the other matices. Specifically,

- - .
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. W aw*p
M =D = tr(—J ) (49)
Y . pemaxi,j a aq
q, ;
Fori 2 j
n T
ow ow
M o= > tr—iw g —D (50)
i - Pp
i 9g, 9q,
n T
awi ' ow )
Mi. = tr(—-—z 'wJ ) (51)
j - PP
aqi pei aqj
the forward recursive relation is
n
aw’
P o= wJs—7D
. ()
pei aqj
owT
P =A P <+ J (52)
1 il i+l i
aqj
and the matrix is computed simply by
ow,
Mi. = tr(— P) (53)
j i
9g,
for j 2 i
— dw, W
M, = er(— 'w'wJ ) (54)
j : i P
P 8q| aqj
In this case the matrix formulation and forward recursive relations are
awa ,
M. = tr(— 'W._P) (55)
i i
9q,
aw;
Pj = .«QNP‘iﬂ + Jj— (56)
<’9qj
ow ow
The last terms that need to be calculated are the 3—' and -a——" terms. The backward linear
q q.
recursive relations needed to calculate these terms are now presentedj.
awp
(dd — term:
aqj




A S AL e il i Sl Al dag Al S Gag e Sl Sufl Al st St el Sulie S i-B A aed S Bae s e 0o s g o - ——r——r——
31
For p 2 )
ow ow.
— . —iw
3, dq, '
ow_ oW, ow, .
— =W o+ — W (57
dq,  8q, 99,
owW_ oW, ow. ow.
—L o —iw +—iw + —iw
P p P
dg,  9g, 3q, 9g,
and for j 2 p
w =iw_ A
P p1 P
L * L . aAp .
wo=Ww_ A +W_ —gqg (58
9q,
. BA . A e dA
W= W A 21Wp_la—— % * We, 3q 2 9% * Wl G
ql‘ qP [ 4
For j = 1,....,n
. . 94,
W=W_ A+W —gq
J Fo rla i
. 9;
ow, . 34 FA .
— =W, —+w —g (59)
a9q. 9g. d%q.
J J ]
- .- . 9A G’Aj . aA, .
W=W, A"+ zwrla— q* ng—; 9 Wj-l'a_' 9;
. 9, 9, 9;
aw,. . OA . a’Aj . a’Aj . a’Aj .
— =W, AW — g W ——q W — g (60)
dq, dg, dq/ dq,’ dq;

Note also that
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W, 9A,
— =W _— (61)
aqp 9q,
j = l..p-l
W 9A,  dA
= W W _ — (62)
aqpaqj a"j aqp
a=wp 82AP
_—_ = WP'I—_z for j = p (63)
2
aqp aqp
.k 4.4 The Summary of Recursive Relations
oM ? ot
Now, to summarize the procedure for computing the M a—q + 5—. and 5— matrices. First,
q q q

the backward recursive relations (64) are used to compute all the W‘T terms from i = 1 to i=n.
SWf a&f a;:

aqj ' a‘l’ ' aqj

for i=]1 to i=n and j=) to j=n, but only for the cases of i 2 j. Next the forward recursive

Then all the terms are computed by the recursive relations (65), (66) and (67)

relations (68) and (69) are used to calculate D|. and c, for i=n to i=1, and relations (70), (71)

and (72) are used to calculate PU. Qij. Nij for j=1 to j=i. Finally, the necessary coutrol

%‘"3 + O ana O are computed by (73), (74), (75), (76), (17) and (78) for

dq dq

qQ
i=] to i=n and j=1 to jsn. Noting that many of the terms are the same as those calculated for

. -1
matrices, M,

the feedforward computations if the feedforward calculation is incorporated in the conmtrol loop,

then many of these computations need not be repeated.

4.4.1 Backwards Recursion

r'-vr

Fori = 1,...n

o W, =W, A4

E:.' . . aAI .

: Wo=W,A4+W, —g (64)
. 3%,

| N . 94 O°A 94 ..

Wi = w|-| Ai + zwl-l— ql + Wi-l q|2 + Wl'l— qn

:. aq| aq.z aql

J

’

.....
..........
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For 1 £ i

W=

W

W

For j = l,...0

w_ A
i-l i
aAi .
w A +W_—4q
i i i=1 i
99,
. OA ?
W A+ 2jwi-l_— qi + JWI“
ql aqi2

aw, . oA A

— =W, W 9

a9, g, 9,

W, 34, . A A,

Thow —eaw —g+w, — g

aq it aq J laq.z } )“aq.s J
J ) ) ]

For i 2 |

oW, ow.

e —liw

g, 99,

AW, oW, w,

_ e liw + —iw

a9, 9q, ag,

W W W, . AW, ..

—_ _—le_-}__—,jw.-}——-’.iw_

3q, dq, 3q, 3,

..........
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4.4.2 Forward Recursion
For i = m,...,1
D =JW'+A D (68)
i i i*] i+l
c =m 't *A_c (69)
i i i i*]l i+l
For { = 1,....i
owT
5 P =A P  +J (70)
ij i+l i+l i
dg;
b ow !
- Q. =A_Q.  +J (71)
L - ij i+l i+1j i
- aqj
owT
N. =A N +J (72)
ij itl i+lj i
99,
For i=1...n, j=1..Nn
(a) M. term:
i}
Fori2j
ow,
M. = tr(— P) (73)
ij i
v 9g,
For j 2 i
awi .
M = tr(— 'W_P) (74)
— ij j

a9q.
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oM . of azwi awi azwi
— q+— ]aj' [tr( Di)+ tr(— st) - g’ ci] (715
99 9q 99,99, 9q, 99,99,
If j2i
M .. 3f o’w, w, W,
— a+— |= [ D)+ tr— N,) - g~ ] (76)
399 Jgq aqi&qj 99, <3qi8¢7j
(c) [-—— term.
oq
fori2 j
of awi
[=] = —ap (1M
oq 99,
for j > i
of awi )
[——.]u. = tr— 'wa) (78)
oq og.

The number of multiplications involved with the matrix calculations is 1062n® - 1021n - 128
and the number of additions is 1037n’ - 621n -96. This means that for n=6, the number of
multiplications is 40,594 and the number of additions is 37,926 for each update of the A and B
matrices. Therefore, the number of multiplications and additions is of n’ dependence and for n=6

the number of operations is 10 times the number of operations involved in the recursive
Lagrangian dynamics relations.

% 4.5 Recursive Parametric Matrices Using 3 x 3 Matrices

o The previous formulation reduces the computational effort to O(n’) for each matrix, which is
the lowest order that can be achieved. The only way to further reduce the computational cost is

to use 3 x 3 rotation matrices instead of 4 x 4 rotation-translation matrices. The 4 x 4 matrices

are inefficient because of some sparseness and because of the combination of tramslation with
rotation -[7). The 4 x 4 matrices require 64 multiplications for each matrix multiplication, while
3 x 3 matrices only require 27 multiplications, so a 58% reduction in coefficient multiplications
is effected.

The 3 x 3 rotation matrix Aj relates the orientations of coordinate systems j-1 and j, and Wj
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and in are defined as before except the A matrices are 3 x 3. Using these relations, the

oM, of of
derivation of the formulations for computing M?' —q + =, and —, using 3x3 matrices is
oq oq

o4

oM. of of
presented in Appendix B. The procedure for calculating the M’', —q + =, and =, matrices

dq 3q oq

using 3 x 3 rotation matrices is now summarized. First, the backward relations (64), (65),

GW,T awT a\'i/T ap_T a;,.r 8;_7
(66), (67) and (79) are used to compute all the =, —, and the ——, ——, =,
qu aq‘i aqj aqj aqj aq,
terms for i=} to i=n and j=1 to j=1. Next, the forward recursive relations (80), (81) and (82)
are used to calculate Di, e and <, for i=n to i=1, and relations (83), (84), (85), (86), (87) and

(88) are used to calculate Pij. kij. Qij, bij. Ni,“ lij. for j=1 to j=i. Finally, the necessary control

4 oM of of
matrices, » =9 + =, and Tare computed by )s . . ), (93) and (94) for
M 39 39 d 34 (89), (90), (91), (92), (9 (94) fi

i=l to i=n and j=1 to j=n.
4.5.1 Backwards Recursion
awiT aw'iT awT

The aq * 3" 3 terms are calculated with the same recurrence relations (64), (65), (66)
q

) J J
and (67) as before except the matrices are now 3 x 3.

Fori = 1,..,n

i s
P,*P., " wi P,
For j = I,...i

apl ap‘i-l aWi i ¢

¢ " 3g, & T

3, 9. oW

Dl Sl R 79
dq dq dq P, 9

.....................
....................
......................
.................................
........................

KA A o gt

......
......




4.8.2 Forward Recursion
For i = n,...,1

T L il T.T i
D = JQNi YOt A DH- * P

1 in1%ie1
e =c ¢+ nxﬁj-+ in?é&j
i i*l i i i
c = nn,ir, + A ¢
i i i i+l i+l
For j = 1....,i
‘ A
Pu = lthPh1j4.lph1khlj*.Ini__—- +J,
99
i
dp W]
ku = khu + m—— + ”%1
9q. oq.
j i
| T
Q =A Q +ip b +inl—+
i) i*1 i*}j i*) i*lj i i
99,
3pT aw
ij = bhu + m—— + ”Kﬂ
aqj an
. 3B
N =A N _ +ip | +ipTle— 4+
i) i*l itlj i*l i+l i
9qg.
i
apT aw!
ij = INU + m—— + Uﬂt
9, ag,

For i=t,...n , j=1,...n

(a) Mi term:

i

Fori 2 j

ow,
Mij = tr(—— Pi’.) :
ag.

—

ow’!

“

(80)
(81)

(82)

(83)

(84)

(85)

(86)

(87)

(88)

(89)
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For j 2 i
ow,

M. = tr(— ‘W P)

4 J 1]

oq.

M .. of
(b) [— q+— term:

d9q Jq
Ifi>]
W, ow. *w.
[a—M ii+g ]r’ [tr( ' D)+ tr(— Ny - g’ - ci]
g 3g¢ 39,99, dq, 99,99,
fj2i
*w. ow. oW,
[8_A1 q+§-f- ]“s [tr( - D)+ tr(— N,) - g' ' ci]
3¢ dq ¥ 39,99, 3q, 39,99,

of avvi
[=), = n—0)
9q aq.

for j > i

awi .
— ‘wa
aq.

o
[a—:;]ij = tr(

(90)

(S48

(92)

(93)

(94)

The number of multiplications involved with the recursive 3 x 3 relations is 7390’ + 62n -S4
and the number of additions is (1161/2)n’ - (19/2)n - 36. For nx6 the number of
multiplications for each update of A and B is 26922 and the number of additions is 20805. This
is a greater than 40% reduction in the number of operations over using 4 x 4 rotation-translation

matrices.
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5. CONCLUSION

This report has presenled a control scheme for accurate trajectory following with robotic
manipulators. The technique has been based on the use of measured joint displacements and
velocities to generate corrective torques through an adaptive controller that eliminates deviations
of the manipulator from the desired trajectory under feedforward control, in the least squares
sense. The controller has taken into account dynamic nonlinearities (coriolis and centrifugal
accelerations, pay-load change, etc.), geometric nonlinearities (nonlinear transformation matrices).
physical nonlinearities (e.g., coulomb damping), dynamic coupling between joints, and real-time
changes in the desired trajectory. Simulation results have been presented for a two-degree-of-
freedom manipulator. These results have indicated the effectiveness and robustness of the
controller. The stability issue has been addressed. Recursive relations have been developed to
compute the adaptive feedback gains, thereby improving the computational efficiency of the scheme
that makes the controller feasible under real-time changes in the desired trajectory. Two methods
of deriving the recursive relations based on Lagrangian dynamics have been presented: (i) using
4 x 4 rolation-translation matrices, and (ii) using 3 x 3 rotation matrices. For a six degree-of-
freedom manipulator, the 3x3 Lagrangian recursive relations involve 47,727 operations, which is
41% more efficient than the alternative method of using 4 x 4 rotation-translation matrices. The
number of operations involved in updating the feedback gain matrix would limit the maximum
update frequency to about 3 Hz when used with computers like the PDP 11 for six degree-of-

freedom manipulators.
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APPENDIX A. TWO-LINK MANIPULATOR
In this appendix we formulated a dynamic model for a two-link manipulator.
6
1
q-=* (A.D
02
A.1 Kinematics
v llcos(ol) + lzcos(alooz)
p= . (A.D)
v l‘sm(el) . 1zsm<ol*oz)
6“. -llsinﬂl - lzsin(ﬂ‘*az) -I:sin(ﬂ‘*Oz) 801
= y (A.3)
Buy l'cose, + lzcos(0|*02) lzcoswl#oz) 602
. éu
- 3
& = J 3q (A.4)
: su
E y
3
i S e N T
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Velocity
;1 = J-‘ [v v ]T (A.5)
x 0y
Joint Accelerations
T dJ -
(a 3 ) 3 q + Jqg
EiaJ"[[a a]’-éi&] (A.6)
2y o
A.2 Dynamics !
o s, 2
Define : ll 1o+ ( m, ¢ W/g) 1

. 2 2
I2 xnzdz + W/g l2 - Iz

] 2
I3 = 2( mzd2 + W/g lz) Il

*
; \)\Il ® mlgdl + ngll + Wll
*
- W2 = ngd2 + W l2

h Now for
= M(q, W)g + f(q, g, W) = r(0)

. 1" * *

. we have : M, =1 +1" +1 cost,

' * *

I, + 1/2 17 cosf,
* L]

1, + 42 1 cosd

M_=1"

22 2

2 X

2

Cf o= -1/2 x" (29 +8) 6 sinf + wl‘ cosf® «+ Wz'cos(8‘¢02)
* . 3
f = -1/2 13 0| 02 smaz + W2 cos(0‘+02)
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1 0 0 0 0 0 -1 0
A= - 0 1 0 0 0 0 0 -1
0 0 1* Minv AM AM Af Af
2' . 12 11 12 11 12
0 0 Mlnv,2 vazz AM2l AM' 5 Af21 Af22
0 0
B = 0 0
& * *
I2 -(I2 +13 /2 cosﬁz)

[ ] * *
-(Iz ﬂ: /2 cosﬂz) (ll 'rI2 +13 cosﬁz)

where
Miov = -(11‘013‘/2 cosf )
Minv,, = (l"+lz'*l;cosﬂz
AM - lz‘smaz[(wz‘«»x;)sinal»wz‘sm(al+02]
AM = -1 "sind [20 +8,1+1 "cosf [26 +8, 71+1 "sin W *sin(8 +8,
AM, = 1'sind W *sin(g +0,)

- - L R ] 2
AM22 I2 sxn020‘<rl2 c:osﬂ‘ﬂz

® .

Af“ -21z smﬂm
s .

Afu -212 sm02(01092)
3

Afz| = 21z ol

Afn =0

-«

’ .
b

bl
b
iR
b
b
e
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APPENDIX B. RECURSIVE CONTROL PARAMETERS WITH 3 X
3 MATRICES

In this appendix the formulation for the three matrices. M, é-'ﬁq + o and ﬂ

34 5:. 3% is developed

using 3 x 3 rolation matrices.

Figure B.1 3x3 Vector definitions

p: veclor from base coordinate origin to the joinl i coordinate origin
P vector from the origin i-1 to coordinate origin i.

r: vector from the base coordinate origin to the link i center of mass

| ] vector from coordinate origin i to the link i center of mass

n: r /m

] ]
; jWk: defined as before except it is composed of 3 x 3 rotation matrices.
:E:: Then the generalized force as derived by Hollerbach [7] is
-n': []
o ap op ... oW ow_ . aw
% f, -z [tr( mr-—rb'r" + nlw + —! n g7 + —IJ'WF)-m ’p’—-! 'r'] 8.1
B et aqi aqn aqi aqi aqs
)
BRI e e T e e e e e e
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appab’;

M .. of Fp, .y
— q+— . z tr( m——p ' + m

+
dg g T em ‘3939, " "9q,3q,
dp .. ap GWPT o’w

P PnTWT"""_anT + p pnTﬁpT,.,

" 3¢, 3q¢dq, ’

99,99, LAY}

aw,  dpT FW, .. W, W aw,
P T——+ JW +—9 —)-mg" "rr] (8.2)
9q, aq’. aqiéqj og, aqj aqiaqJ
Now for the case where i £ j
p, = P, + Wip,
dp, oW,
— =—p, (8.3)
dq, 9g,
ow_ oW,
— =W, (B.4)
99, 9q,
Fori 2 j
p, 3w,
ip (8.5

8qi3qj aqjéqj

ow, W,

3939, 99,99,

'w (B.6)

]
M .. of o'W, . , . .
—_— —_— = i -l i T i Ta T
q+ i tr[ 2 (mp PP, + pp”np WP + pr”p P, + 'WPJWP)

d¢g 9Jq dg9q, i
W BT W, 3T  aw,
> — (mlp____ + lp rnT__ + W pnT_. + iw J—"—)]
PP PP PP r
9q, r= ; aqj aqj aqj
AW, =
-g'——2_ mW, 8.7
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Let

n
= innT in P Tw iw P TR T i "
Di ;(mrpvpp * ppnp wv+ anppv * WPJWP)
D =0+0+nTpT +JWT +
1 1 ¥ ) 1

o
p=i+l

D =A D +'p e +nTBT+IWT

i it i+l itl i+l

where

n
T o ppTir T
ei=Z(mppp + Pn W

pei
e=é&," miﬁiT + iniTwiT
Similarly,
a ' A .e
op T oW op '
N, = Z(m‘p—L +iptn T—L & iw o T—2 + iw g
1 - PP P P p P P
e 99, 99, . 99,
. . a"jit aWiT
N=AN +ip | +ipl— +J
i vl i+) i+l i+l i i
3g, 9g,
where
. 3T aw,T
/ = (m—— + "in )
- 3g, 9g,
3BT oW
/1 = /iol + mi——— + lniT
dg, g,

The recurrence relation <, for the gravity term is the same as equation (69).

Fori2 j
2 2
oM .. of o*w ow o*w
[-—— q+— ]u= [tr( 2 Dp)+ tr(——p N p) ~ g cp]
d9¢ 9q 99,99, 9q, CLEL

i) i S Tappy Tz T it Pr T T Yhi
Z LA, " p *p, ) mp +Pn W D+(A T W)(n p +J W]

ow

—2)

9q.

J

(8.8)

(8.9)

(8.10)

(8.11)

(8.12)

ISR
.....




: n ve .o .o .
Opop’ Op. oW W IpT W W
i = (m—— + —op T—F +—Trp T—T +—Fy —F) (B.13)
pemax ij - 9q, aqj 9g, aqj 9q, aqj 99, aq,.
Now,
9p.  dp
_" = —2FP (B.14)
99, 9dq,
3w, oW,
—_— = — (8.15)
dq, 9q,
For i 2 j
dp, W,
— = —ip (B.16)
dq, Jq,
aw_  aw,
—_— — 'WP (B.17)
dq, 9q,
Therefore
W 3p.T ow
[ y = m—Zm p——"— +ip rpT—L + iwrp T—2 4 iw g—2)  (8.18)
P P P P
¢~ 9q, rei dg, aq,. aq,.
Let
n L ] ° »
ow ap T ow
Q = Z(m p—- + p"n —1I 4 iW""n —L2 4+ 'WJ—g)
pei aq aq aqj
ap aw’
= oi = Ai‘loiﬂ pt'lbnl + n — J (8.19)
dq,  dq,
where

............... . - N - I NG|
B R R ST Tt Tt PO S P N N Ao e St e . - et LI N '." \. . LI S -
AP IR I AR SRR R Sy T e A e S S R .&-’ AR OO S L R \': NN :'.

-----------------




___________

- 95T ow T
b = D (m—— + *nT—)
P P
- aqj aq,.
3T awT
b = bi*l + mi + .niT
aq,. 9g,
fori2j
of awi
[2], = n— )
99 9g,
Similarly for j > i
of awi )
[X], = n— wa)
99 9,
. A
Q= A0, * b, Tt
aqj aq,.
By a similar procedure we obtain
(¢) M. term:
ij
For i 2 j
ow,
M, = tr(— P)
§ i
9q,
. AL
P o=A P.*'p k., * inT— + J.
it il i*] i+l i i
aqj aqj
for j 2 i
awi .
M. = tr(— 'W. P)
3 I |
9g,
, _ Tap: awjT
Pi= APy ¥ Pk A,
aqj 9g,
where
dp7 owT
k =k +m— +ipT
i i+ i i
aq, c3qj

The last new terms that meed to be calculated are the p terms.

(8.20)

(8.21)

(8.22)

(8.23)

(8.24)

(8.25)

(B.26)

(8.27)

(8.28)
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Since :
P =Pt W, ‘pi‘
Then
. -W p*
P, * P i P

and for j S i
o, 8p, oW,

- — - lp.t
dq, dq; dq,
op, dp,., W,
— . - — ip* (8.29)

dq, g,

. o % M

» 9¢, 9q; 9q,
[
-
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