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CHAPTER I
INTRODUCTION

Discrete data sampling at the Nyquist rate (or better) for the
reconstruction of continuous waveforms is well known., However, the
application of the sampling theorem [1,2] is often limited to one
dimensional problems. This report will explore an application of the N
dimensional sampling theorem to inverse scattering. More specifically,
the application is on the reconstruction of the spatial impulse response
of a finite object using different sampling criteria. The different
aspects of the N dimensional sampling theorem are investigated to
produce efficient sampling criteria in the wave number space such that
the spatial impulse response of a finite object is sufficiently
characterized. In addition, the impulse response concept is extended to
create possibly an image of the object.

The impulse response [3,4] is important both in target
identification and imaging. The impulse response concept, as most
people understand, is a far field one dimensional time response concept.

This time response waveform when applied in scattering can be plotted on

a distance abscissa after the factor due to the speed of the wave is
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accounted for. If one can obtain the frequency responses of a finite
object for all aspect angles over the 4w solid angle, the inverse
Fourier transform of the total frequency response into the spatial

domain forms an image which is called the spatial impulse response.

i.e., the impulse response of a finite object at X is

a1 - glkex)
f(x) =03 [ Flke dk (1-1)
where F(k) = the far field frequency response of a finite
object at k in the space-frequency domain
x = (x), xp, x3)

ﬁ k = (k]_, kz, k3)
_ df = dk; dk, dky

The three dimensional function f(x) for all x's in the x-space

!i constitutes an image called the spatial impulse response.

The spatial impluse response can be divided into two types - the

monostatic and the bistatic. The monostatic spatial impulse response

uses monostatic frequency responses of all aspect angles. The bistatic
spatial impulse response uses the bistatic frequency responses of all

receiving aspect angles. The spatial, two dimensional, or one

dimensional impulse responses discussed hereafter will all be referring
to the monostatic case unless otherwise stated. The data used are also <
monostatic data. However, the theory to be discussed is also applicable

to bistatic cases. Furthermore, only two dimensional frequency data are s




used in the discussion, so this report will emphasize the two

dimensional impulse response only.

In the introduction, the theme and purpose of this report are
defined. A brief description on each of the following chapters is also
included. In Chapter II, the impulse response, sampling theorem and
their relationship are discussed. The basics of the one dimensional
impulse response concept and the one dimensional sampling theorem are
first reviewed. Using the idea of the settling time, one can relate the
impulse response to the sampling theorem. Then the one dimensional
impulse response concept is extended to the three dimensional space.
Lewis and Bojarski's [5,6] work in the area is also briefly contrasted.
A decision rule based on Petersen and Middleton's [7] definition of
sampling efficiency is introduced so that one can decide on the more
efficient sampling grid. There is also a discussion on Petersen and
Middieton's N dimensional sampling theorem and its different forms which
depend on the different types of sampling techniques. Then Mensa
et al.'s [8] polar transformation and single frequency approach to two
dimensional Fourier transform is rederived. Their approach presents a
new perspective to the Nyquist sampling criteria.

Some practical aspects of the theory in Chapter II are considered
in Chapter III, Even though the discussion is in one dimension, it is
also applicable to two and three dimensional analyses. The real signal
requirement on Fourier transform is rederived. This helps to clarify

the problem of non-zero imaginary parts during data processing. Using

the sampling theorem interpolation scheme, the frequency bandwidth's




relationship to target size and spatial resolution is considered. A
common problem that may be easily overlooked in data processing is the
periodicity of the Fourier series representation to solve the Fourier
integral. This is also restated in the last part of Chapter III.

In order to build some confidence in the different forms of
Petersen and Middleton's sampling criteria, results of interpolating one
dimensional impulse responses are presented in Chapter IV, The
interpolation scheme used is the same as in the sampling theorem, except
the infinite summation is a finite summation, The interpolated results
using one dimensional sampled data appear first in the chapter to
preview the interpolation via two dimensional sampled data. Later, an
example is chosen to compare the efficiency of different sampling grids.
Two dimensional impulse responses computed using discrete two
dimensional Fourier transform are compared with results using Mensa et
al.'s approach to Fourier transformation in Chapter V. The potential of
using the spatial impulse response for target imaging is explored in the

last part of the report.
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. Some of the basic concepts on impulse response and one dimensional
sampling theorem are individually reviewed. Then the two concepts are

: combined and extended to three dimensional space. The different aspects

: of N dimensional sampling theorem are introduced. Finally, Mensa

;; et al.'s approach to two dimensional Fourier transform and sampling is

“ also discussed.
tf If an impulsive electric field is incident on a target, the

- normalized far zone time domain scattering will be the impulse response
of the target at that particular aspect angle and polarization. The
approach to be used herein to obtain the impulse response is similar to
deconvolution. First, the scattered field (a complex function of

frequency) is divided by the spectrum of the incident wave. This result

. is then inverse Fourier transformed to produce the desired impulse
response,

r.

&

'.
viata
(&4

-----



Let f(t) be the input signal in time
F(w) be the input frequency spectrum
h(t) be the impulse response of the target
H{w) be the frequency response of the target
c(t) be the output signal in time

C(w) be the output frequency spectrum

Flw) Hiw) Clw)

Figure 2-1. Block diagram depicting system analogy

S %
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By the convolution theorem of Fourier transform theory [2]

C(w) = Fw)H(w) (2-1)
C(w)
<=> H(w) = T{ay (2-2)

Fourier transformed,

co

o

(w) Jjut

1
ht) =2v | Fla e

- 00

do (2-3)

According to Kennaugh and Moffatt [3], the impulse response will
decay exponentially for large values of (t - %)
where t -time
r -distance between observation point and the origin
¢ -speed of light
Therefore, one can define a settling time when the impulse response has
its amplitude embedded in the noise level. For all practical purposes,
the settling time will be the end of the impulse response. Thus, the
impulse response is a time limited signal. From the sampling theorem
(1,2]): "A time limited signal can be reproduced from its discrete
frequency values, if it is sampled over the complete frequency domain
using the Nyquist rate." As a consequence, the impulse response may be
reproduced by measuring its frequency spectrum at the Nyquist sampling

rate (fg), (i.e., fg < 1/2T; where the signal is limited in time to

£T)

..........
.......................
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Or, if

f(t) =0 [t} » T
then
N nt  sin(wl - pw)
Flo) = L F(T) ~wr-nr (2-4)
n = -

where the samples are taken at w = nn/T, but n is taken from -» to =,

Now, let's consider the concept of marching in time. An impulsive

magnetic field incident upon a solid conducting body, sets up current

J on the surface. As a result, J =n x AT will start generating a

scattering field in all directions., After the wave passes over the
target, the current created decays exponentially. The scattered field
behaves similarly. At one aspect angle, the time, where the onset of
the scattered waveform is observed, corresponding to the time required
for the wave to reach the initial scattering point on the target and
return to the radar, is designated as the initial time T;, The time

(Tf) before the final exponential decay occurrence defines the end of

the target.

Let x be the length of the object along the line of sight

at one aspect angle

At be the time difference between the initial time and

a e ey

the final time at that aspect angle

¢ be the speed of light
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At =Tg - 14
then,
2x = cAt
x = c(Tf - Ty) (2-5)
R

Any physical object has finite dimensions. If it is located in a
rectangular coordinate system (x: X1»X9,X3), then it can be said to
have limited dimensions in the X coordinates. Namely, the object is

confined by:
b
x] < X] < X
b

a b
x3 < x3 < x3

a

b b
where x,, x;, xg, X1 xg, x3 are some real constants.

The confinement of an object in space is equivalent in saying its
spatial impulse response is time limited, as the impulse response has a
settling time for every aspect angle. Using the above argument, if the
impulse response measurement is obtained at all aspect angles, then an

image of the object may be generated from the data.

.......................................................
..........................
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The approach taken here is a little different from Lewis-Bojarski's
work [5,6]. They use physical optics approximation to arrive at the
formulation for imaging. In another words, they do not use the
information on the shadowed side. The object is illuminated in every
direction. Information on the 47 solid angle is required, even though
measurement on the complete solid frequency sphere is difficult to be
implemented. With the help of the N dimensional sampling theorem, which
is described later, the implementation becomes more practical. If one
requires information over a finite frequency range, then the infinite
iﬁ number of samples over the 47 solid angle is converted to a finite
number of samples. The N dimensional sampling theorem defines a

| sufficient sampling criterion to characterize space limited or wave

number limited signal. Thus, the response at any point may be
interpolated from the sampled data using the reconstruction scheme
defined by the sampling theorem,

To employ the sampling theorem, the signal must be limited in time

or frequency. In this case, the object is limited in three dimensions.
The transformed space will be the wave number space. Ideally, the

frequency response or the k-space response can be reproduced by sampling

n
in the k-space discretely but over the infinite space. To obtain the -
spatial impulse response, a three dimensional inverse Fourier transform
is performed on the k-space response, =

10 -
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While there is only one sampling theorem, there are different forms
of the sampling that satisfy the sampling theorem. In one dimension,
the different forms depend on how the time limited signal or the
frequency limited signal is assumed to repeat itself. In three
dimensions, the forms depend on how the target is placed in the
reference plane (xj, x2, x3), and how the target's images are repeated
in the three dimensional space. Theoretically, there are infinitely
different forms of the sampling, as there is an infinite number of
different target shapes, sizes and orientations. One would prefer a
general sampling scheme that is applicable to all, or at least most,
objects with any orientation. This is where the canonical containment
cell fits in. These canonical containment cells are usually of simple
geometries so that a wide variety of targets can be confined by their
boundaries. Examples of these simple geometries are sphere,
paralielepiped, ellipsoid, finite cylinder. Thus the forms of the
sampling depend on the choice of the canonical confinement units and
how the unit's images are repeated in the three dimensional space.

Two simple canonical units to be treated in this report are the
sphere and parallelepiped. A decision rule between these two types of
units will be discussed. First, the concept of sampling efficiency will
be defined. The following efficiency formula is a modified version of

the original formula defined by Petersen and Middleton [7].

11
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CONSERVATIVE ESTIMATE OF THE VOLUME OF THE OBJECT

Ng = VOLUME OF THE SMALLEST SPHERE ENCLOSING THE OBJECT (2-6)
= Efficiency for isotropic sampling
i CONSERVATIVE ESTIMATE UF THE VOLUME OF THE OBJECT
3 “p = VOLUME OF THE SMALLEST PARALLELEPIPED ENCLOSING THE OBJECT
(2-7)
= Efficiency for parallelepipedic sampling
Rule:
Ng > np use spherical confinement
(2-8)

Ns < "np use parallelepiped confinement

The N dimensional sampling theorem obtained by Petersen and

']

Middleton [7] is: "“A function F(E) whose inverse Fourier transform f(;)

Ll

vanishes over all but a finite portion in x-space can be everywhere

reproduced from its sampled values taken over a lattice of points

12
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(1007 + 125 + oos + TnUnds 11, 12, eew, Tn =0, £ 1, £ 2, ... provided
that the vectors {aj} are small enough to ensure non-overlapping of the
x~-space signal f(;) with its images on a periodic lattice defined by the
vectors {;1}, which ;1,63 = 2néjj."

Let's consider the non-overlapping condition in the N dimensional
sampling theorem. The requirement is ‘non-overlapping' of the object
cell f(;) with its images on a periodic lattice., Thus, the periodic
lattice is not uniquely defined. Any one of Figure 2-2, 2-3, or 2-4 has
a valid two dimensional periodicity. Their respective periodicity is
defined by their respective {;1, ;2}. This non-uniqueness provides
flexibility on the choice of the confinement cell.

However, an efficient sampling lattice may be defined. Pete:sen
and Middleton [7]: "An efficient sampling lattice is one which uses a
minimum number of sampling points to achieve an exact reproduction of a
space limited function.” In another words, the closest packing of the
object cell and its images without overlapping will be efficient.

{Vl’ ;2, ;3} will be changed if the images are rotated around the
object cell; hence, the sampling lattice is still not fully defined
(Figures 2-2 and 2-4). Nevertheless, any set of {;1, ;2, ;3} defined by

the above criterion will have the same efficiency, or the same number of

sampling points.

13
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Figure 2-2.

................................
...................................

Periodicity of the canonical unit: parallelogram (shaded)
with its images (dotted lined) defined by 31 and ;2

14

.....................................
...........

U A

A




El e e e B SO ) ) (S fansn fad Twravreerw - - v - r J— I
RO RSN i tacih et Aniaiindt A Sl itk i At | i At AN S AL Aol and atd s arih-ar fl ol e ROl sind afieand RAOL NI L PO

| Ahe — L Z A R
| (A A A S o
. // Yava /// //
| )

- Figure 2-3, New v, and v, defining a similar periodicity as Figure 2-2
except for the extra guard band
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Figure 2-4. New V; and v, defining a similar periodicity as Figure 2-2 —
except the images are rotated around the unit,
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The application of the sampling theorem for the reconstruction of

the original signal needs only an interpolation formula, provided the
non-overlapping condition is met. In this application, if one has the
following:
a) A signal limited in x-space and its images are specified
by Vl, ;2 with non-overlapping condition met.

b) The sampling lattice in k-space is defined by the vector:

Tjup + 1pup, where 1), 1, =0, £1, 2,3, ..,

with Gi_aj = 2n6ij : cij = Kronecker delta
or
U= 2nyT
where
U= Luylupd
vV = [V1|V2]

-T is the notation for the transpose of the matrix
inverse of V
c) The interpolation formula
then one can reproduce the two dimensional impulse response. The
procedures are:
1) Sample the k-space response at the sampling lattice for
F(10; + 15up).

2) Interpolate other required points, if necessary.

17
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The interpolation formula taken from Petersen and Middieton [7].

F(Ry, k) = T : I OF(yly + 1,0,)G(kpky + koky = 19y = 15i5)

1 2°°"
(2-9)
where k1 = klkl
Ky = Kok,

3) Inverse Fourier transform the k-space response to obtain the

two dimensional impulse response,

fxys xp) =72 [ Flkpky)e? dk ydk, (2-10)

With the ease of calculation in mind, the periodicity of the object

cell and its images are defined as in Figure 2-5 for this report. Its

corresponding sampling lattice is shown in Figure 2-6.

The reconstruction function for the parallielogrammatic

sampling [7]:

in 7w
s 1

sin T,
6oy ) = ) ) (2-11)
n Ull Li (1)2

w is in the direction of uy

Wy is in the direction of uy

18




Figure 2-5,
containment unit
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19

.........

......
......

A choice of periodicity for the parallelogrammatic

.............



Figure 2-6. Sampling lattice defined by the choice of periodicity in
Figure 2-5 N

Lty
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For the sphere or isotropic confinement, the configuration is
adopted from the concept of closest packing of spheres by Coxeter [9].
The configuration chosen for this report is as shown in Figure 2-7. The
corresponding sampling lattice is shown in Figure 2-8.

For the two dimensional case [7,9]:

Y3 |~ ~
- ? - 0
-1 _
—-?— B
(2-12)
=7 I~ 1
- /3 - /3
up = (2w/R) u, = (2w/R)
0 1
where R is the radius of the isotropic cell., The reconstruction
function [7]:
1
Glwp, w) = 2 2 2. X { 2wycos (Rwy/v3)cos (Rwp)
-2wjcos (2Rwy/¥3)
-2/3wpsin(Rwy/¥3)sin(Rwp) }
(2-13)*
where

%y is in the direction of U

sy is in the direction of U,

(* There is a wy factor missing in the third term of this expression

in reference [7]. See Appendix A for details of the derivation).

21
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Figure 2-7, A choice of periodicity for the circular containment cell
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Figure 2-8, Sampling lattice defined by the choice of periodicity in
Figure 2-7
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Since this report only deals up to two dimensional sampling, the reader
is referred to Petersen and Middleton's paper on the three dimensional
reconstruction function G(wl, s w3).

The N dimensional sampling theorem gives the minimum sampling
lattice or criterion which will sufficiently define the k-space signal.
A1l other non sampled k-space values can be interpolated via an
extension of Equation 2-9, The k-space signal can be inverse Fourier
transformed into the spatial domain to give a representation of the
spatial impulse response. In another words, the spatial signal is also
characterized by those k-space lattice samples.

If one is interested only in the two dimensional impulse response,
then Mensa et al, [8] presents a different view on the sampling
criterion., Unfortunately, it is only applicable to the two dimensions.
First, rectangular to polar coordinate transformation is applied to the

two dimensional Fourier integral (Equation 2-10):

-]

1 Jlkyxy + Kox,)
1*1 ¥ KXo
flxys %p) = 772 I/ Fkys kyle dk, dk, (2-14)
(tet 2 =i+l P 6= tanTH(ky/k)
(2-15)
p2 = x% + xg : 9 = tan-l(lexl) }

24
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=2 | [ rf(r, ¢)e32"°c°s(¢ ar do (2-16)
r=0 ¢=0

Then the double integral is reduced to a single integral by considering
only a particular frequency ring (i.e. §(r-wj)),

wj 2 j2nw;pcos(4 - 6)

file, 8) =372 [ Fluy, ¢)e dé

$=0

(2-17)

Thus, the two dimensional Fourier transformation is reduced to a
convolution type integral. F(ky, k2) is the frequency response of the
target in the two dimensional k-space. The notion of &(r-wj) represents
information taken only with one frequency. Subsequently, the two
dimensional impulse response is obtainable via one integration., If
information from other frequency rings are available, then superposition
of every frequency ring response in the spatial domain will give a wide

band two dimensional impulse response representation,

frixy, x2) =1 fi(e, 0) (2-18)
i
where
Xy = pcos®
Xy = psin®

Naturally, the Nyquist spacings between the frequency rings and between
angular samples must be used, before the total two dimensional time
response obtained can be considered a sufficient representation of the
true two dimensional time response,

25
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The angular increment which satisfies the Nyquist criterion is

given by Mensa et al. [8]:

A
<720 A << 2D
-1,
A8 < sin  (7D) A <20 (2-19)
Lt
< 7 A5 2D

where D = maximum dimension of the object

A

wavelength of the frequency to be used

(Assumption: The origin of the x-space coincides with the middle of the
object.)
The author would like to propose the following for the frequency

increment:

o
Af < T FXD (2-20)

where D = maximum dimension of the object

¢ = speed of light

K = some safety factor

The aspect angle which has the longest dimension of the object is
assumed to have the longest settling time in its impulse response. All
other aspect angles require Nyquist frequency increments larger than or
equal to this aspect angle. The value of the safety factor is the best
estimation achievable by other means. The reason for the safety factor
is not all impulse response signals are limited to the length of the

object at any aspect angle. Furthermore, in the GTD sense, some of the

26

r




O

multiple scattering effects may be eliminated or included by employing a

smaller or larger value of the safety factor. This is equivalent to

truncation of the signal in time during measurement.
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CHAPTER 111

PRACTICAL CONSIDERATIONS

In this chapter, the practical aspects of the previously described
theory are presented. Since negative frequencies cannot be physically
generated, an assumption on the negative frequency response must be
made. First, the assumption of a real measured signal is discussed.
The frequency limits are then considered in relation to the object's
size, its impulse response and the data processing requirement. For
clarity, the practical aspects are discussed in one dimension.
Extension to the higher dimensions can be easily accomplished.

In general, a true impluse is hard to generate; instead, a Gaussian
puise is often used. There are also times when good narrow Gaussian
pulses are not readily available. In these cases, the approach of
frequency sweeping may be used. The bandwidths of most oscillators,
waveguide components, transmitting and receiving antennas are limited.
In essence, the frequency band can only be swept from % to %y (Figure
3-1). To overcome part of the problem, let's consider the one

dimensional sampling theorem (1, 2]:
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Figure 3-1., Frequency information available
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If f(t) =0 for |t] > T "
then F(w) can be uniquely determined from
m‘- 14
Fn = F( T) -
and
g nm  sin{(wl - nm)
F(o) = L F(T) ~ Wl - nm (3-1)
n:-co A
{Note: If F(w) is even, then the required measurement
nm
information is F("7); forn =0, 1, 2, ...} >
Consider the inverse Fourier Transform
L jut g
f(t) =2r [ F(w)e’ du (3-2)
1 j _ -
=77 | F(w)cos(ut) dw +7% [ F(e)sin(ut) dw (3-3)
;;
30
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If F(w) is even, then the integrand in the second integral is an
odd function of w, It follows that the second integral is zero.

Therefore,

1
f(t) =27 [ F(w)cos(wt) dw (3-4)

[}

- 00

real function, if F(w) is even

(Note: If F(w) is complex, then Re[F(w)] = Re[F(-w)] and
Im(F(w)] = -Im[F(-w)] are the conditions for f(t)
to be real).
In this discussion, the object is real. It follows that f(t) is
also real. Now, information from -4y < @ < =& apg ¥ < @ < 4y §g
available. (Figure 3-2)
Next, the Rayleigh Law is used to determine the scattered field at
d.c. or zero frequency. From Kennaugh and Cosgriff [3]: "“As the source
frequency tends to zero, all finite scatterers follow the Rayleigh Law,
giving a scattered field intensity which diminishes as the square of
frequency." The scattered field intensity at d.c. will be zero.

If

then

Fn is known for =N < n < N
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Figure 3-2.
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Frequency information available after assumption is made
about the negative frequency samples

32

.f._'._'{ [

ey wowwe




N=1T[F (3-5)

I{x]=truncation of x's value after the decimal point

n
That is, if the first sampled location (T) is higher than or equal to

W , then information is available from -w; to w,, because one can

interpolate the in between data points using the sampling theorem.
Let

Xg be the object size

K be some safety factor
then the settling time Tg is

Tg = 2(14K)xs with T = T./2
T

One must have the condition:
n
T > 9

2nc

TR > 9

mc 2nc
<=> (1+K)xg 2 A

<=> XL > 2(1+K)xs (3-6)

This puts a limit on the lowest frequency usable, or the largest object

size assumed by a given w ,
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The span (wy - w ) effectively determines the resolution of the

wnlle
impulse response signature. Let x, be the desired resolution on the .
object, then the impulse response resolution is ‘.
2xp
tr = C —;
;‘ 2mc
<=> (ur = '2_);
One has the condition:
2mc :
“H > 2 = 9y =
2rc  m¢
_ -
=A< 2x,. (3-7) -
Conditions 3-6 and 3-7 will help to decide how wide a frequency band may ﬁ:
be used. If the bandwidth is wide enough, then the impulse response can -
be generated to a very good approximation. N
A common problem during implementation may involve the inverse
Fourier transform on the reconstructed frequency spectrum. This
a
waveform miy or may not be a well defined function which can be inverse L
Fourier transformed into a closed form solution. The common approach .
would be to approximate the integration using a summation on a digital P
computer. In effect, this approach will be a Fourier series
representation which requires the time or frequency waveform to be
periodic. Consequently, there are 2 more limitations: ;;
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1) The period (T.) used in the digital computation must be greater
than two times the settling time (Tg) of the impuise response.
(i.e., Tc > 2T)
2) The period (uw.) used in the digital computation must be greater
than two times the highest frequency (wy) swept.
(i.es, e > 2uy)
Fortunately, a standard IBM subroutine FFT (Fast Fourier Transform)
package is available to do the required Fourier analyses.

Furthermore, one dimensional impulse response requires a two
dimensional plot. The two axis quantities are amplitude and time. Two
dimensional impulse response requires a three dimensional plot. The
three axis quantities are the amplitude and the plane axes. Should
anyone consider three dimensional impulse response, one requires a plot
in four dimensional space. Consequently, this report will only deal
with impulse responses up to two dimensions. With the knowledge in
one's mind that the spatial impulse response can easily be obtained by
an extension of this two dimensional approach when there is an

appropriate representation.
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CHAPTER IV
ONE DIMENSIONAL IMPULSE RESPONSES

In this chapter, the interpolation of one dimensional impulse
responses is presented; first, the result of interpolation using one
dimensional data; then, using two dimensional data. The object is a six
inch diameter metallic sphere. This object choice is because the Mie
solution in frequency domain is readily available. In this first
section, the Mie solution frequency data are sampled at different rates
and interpolated either using a straight line or a sinc reconstruction

function,
N ki 1 T -
Flo) = 1 Py Sl o) )
n:- -

where

ull

N =1(7F)

I(x)
wy

truncation of x's value after the decimal point

highest frequency used
[Note: This is Equation (3-1) except the summation is from

"N tO + N]o
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A cosine tapering weighting function [10]: (Figure 4-1) (for the

convenience of the reader, all tables and figures of Chapter IV are

grouped together at the end of the chapter)

T
0.5[1+cos(N7)] n] < Nj
W(n) M i (4-2)
0 In] > Ny

is multiplied to the interpolated frequency data. The purpose of the
weighting or filtering is to reduce the effect of the Gibb's

phenomenon [2]. The resulting data are inverse Fourier transformed into
the time domain discretely to give the impulse response in time.

Figure 4-2 represents a time domain impulse response plot obtained
from the Mie solution for a six inch diameter metallic sphere using the
frequency spectrum from 0 to 12 Ghz with a cosine tapering filter. The
imperfect specular impulse and the ripples around it at the start of the
response are caused by 1) finite bandwidth, and 2) Gibbs' phenomenon.

Figure 4-2 is considered to be the standard for comparison with the
other responses. Its frequency samples are taken every 60 Mhz and
linked together by straight lines. Figure 4-3 has frequency samples
taken every 0.125 Ghz over the spectrum of 0 to 12 Ghz and interpolated
the in between points using Equation (4-1). The differences of the
impulse responses in this chapter from Figure 4-2 (the 'exact' solution)
are shown in figures designated with their respective figure number plus
an 'a' attached. For example, to obtain Figure 4-2 from Figure 4-3, one

adds Figure 4-3a to Figure 4-3.
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Figures 4-4, 4-5, and 4-6 are similar to Figure 4-3, except
frequency samples are taken every 0.25 Ghz, 0.5 Ghz, and 0.75 Ghz
respectively. Figure 4-5 is still recognizable to be Figure 4-2 but
Figure 4-6 is not., Figure 4-6 does not have similar behavior because it
employs a frequency sampling rate below the Nyquist rate. From Figure -
4-2, one can estimate the settling time of the impulse response of the
sphere to be about 1.5 nsec. Equally well, one could use a longer
settling time depending on one's assumption of the noise amplitude.
i.e.,

T = 0.75E-9s

L 1
fs > 2T = 105E"9$

"

0.66 Ghz

A

0.7 Ghz (Figure 4-6)

|

t

Figures 4-2 to 4-5 have sampling rate better than the Nyquist rate.
If the sampling rate is high enough, then one may use straight line
interpolation (Figure 4-2) instead of the sinc reconstruction function -
to save computer time on interpolation. On the other hand, if samples
are scarce but still satisfy the Nyquist criterion, then the sinc

reconstruction function (Equation (4-1)) is preferred for more pleasing

BRI

results. (Figures 4-3, 4-4, 4-5)
Now, the reconstruction of the one dimensional impulse responses
from data obtained on two dimensional isotropic and cubic sampling

lattice is presented.

F(Ky, kp) = ; g F(13up + VoUp)6(kgky * kpkp = 1qup = Tpu5p)

2 (4-3)
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1.

where
1. ==+ 1, are summed over 1y and 1, which satisfy

KL < Mup + aupl <y

and

K and ky define the frequency bandwidth used.

(Note: This is Equation (2-9) with finite summation.)

Samples are taken out of the Mie's frequency solution on the isotropic

sampling lattice defined by ﬁl and 62 in Equation (2-12), and the cubic
sampling lattice defined by :
i o) @ )

U = 2n [U up = 2m [1 (4-4)

.04,

samples are taken over ]161 + ]262 for 1), 1, =0, £ 1, £2, ..,
(4-5)

This sampling lattice is generated by the program PTGRID (see Appendix
B). The frequency response for an aspect angle is interpolated using
Equation (4-3) in conjunction with either Equation (2-13) for isotropic
sampling or Equation (2-11) for cubic sampling. This interpolation work
is done by the program INTERPOL (see Appendix B). The resulting
frequency response is again cosine tapering low pass filtered to reduce
the Gibb's phenomenon. After the filtering, the frequency spectrum is
inverse Fourier transformed discretely into the time domain to give an

impulse response picture for .he six inch metallic sphere. The
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filtering and the discrete inverse Fourier transform are functions of
FTRAN [11] (see Appendix B).

Sampling at every 0.5 Ghz for a six inch diameter metallic sphere,
is equivalent to assuming a signal having four times the diameter of the
sphere in one dimensional space. Therefore, the two dimensional
confinement cell is assumed to contain the sphere and has a quard band
of 1.5 times the maximum dimension of the sphere surrounding the
sphere. The safety factor thus chosen is 1 (i.e., 2(14K)=4 <=> K=1),
The frequency range sampled is U to 12 Ghz.

Figures 4-7, 4-8, 4-9, and 4-10 are one dimensional impulse
responses reconstructed from two dimensional isotropic sampling data,
for aspect angles of 0, 0.719, 1,438, 30 degree respectively. The CPU
time taken for interpolating each waveform is about 5 minutes for 200
plotting points. Figures 4-11, 4-12, 4-13, 4-14 are reconstructed from
cubic sampling data, for aspect angles of 0, 1,193, 2,386, 45 degrees.
The CPU time taken for these waveforms is about 2.5 minutes for 20U
plotting points. Less time in interpolation for cubic sampled data is
probably due to the simplicity of the reconstruction function (Equation
(2-11) versus (2-13)). These angular choices are arbitrarily chosen.
One should note the close resemblance of all these figures (4-7 to 4-14)
with Figure 4-5, Next, let's consider the case of more samples taken.
Effectively, the safety factor is chanyged from one to three but the
frequency range remains the same. Figures 4-15, 4-16, and 4-17 are
reconstructed one dimensional impulse responses using isotropic samples
for aspect angles of 0, 0.352, 30 degrees respectively. Again

discrepancy is not high (Figures 4-15a, 4-16a, and 4-17a). Since the

a0

.

1 N




.............
.........

LA aMar A gt Bt A S AN AL SPA G A AN & oA e i & LA SR E Rl

density of samples taken is finer, or more samples participated in the
interpolation, the CPU time has incresed to about 20 minutes for 200
plotting points.

If both the isotropic and cubic sampling can perform competitively,
how does one decide on which sampling yrid? Tne answer lies in the
efficiency definition defined previously. However, the area is
considered in a plane instead of the volume in a three dimensional

space.
i.e., one modifies Equations (2-6) and (2-7) to

o AREA OF A CROSS-SECTION ON THE OBJECT
Efficiency = ARER OF THE SAME CROSS-SECTION ON THE TWO (4-6)
DIMENSIONAL ENCLOSURE

but the decision rule: Equation (2-8), remains the same.

Efficiency, as mentioned before, is defined as a minimum sampling
requirement. Three objects: a six inch diameter sphere, a 3Y2 inch
cube and « sphere cap cylinder are shown in Figure 4-18 on their major
axis cross-section. Their respective cross-sectional areas; closest
circular, squared, rectangular enclosure cross-sectional areas; and
efficiencies are tabulated in Table 4-1.

The definition of Equation (4-5) is used to locate the sampling
lattice. The number of these locations over a frequency range is summed
to give the minimum number of sampling, defined by the sampling theorem,
to sufficiently characterize the spatial impluse response in that
frequency range. This work is done by the program PTGRID (see Appendix

B). The numbers are tabulated in Table 4-2 and plotted in Figures 4-19,
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4-20, and 4-21. A safety factor of one is used in the computation. The

sizes of the objects are chosen such that the circular enclosure is the
same for all three objects for easy comparison in the graphs.

As the frequency range becomes larger and larger, the significance
of the efficient sampling yrid becomes more and more important. Let's
take the example of the sphere cap cylinder (Figure 4-19). The use of
the rectangular enclosure will provide an efficiency of 0.96. The
number of samples required over U to 12 Ghz is 696, The use of the
squared enclosure can only give an efficiency of 0.38. The number of
samples required is 2.5 times that of the rectangular enclosure. The
use of the circular enclosure has an efficiency of U.45. The number of
samples is about 2.3 times that of the rectangular enclosure. As the
frequency range is expanded, saving in measurement time by the proper

choice of the enclosure becomes very substantial.
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EFFICIENCY COMPARISON ON 3 OBJECTS USING 3 TYPES OF CONTAINMENT CELLS

TABLE 4-1

Object SPHERE CUBE SPHERE CAP CYLINDER
Area on 182.4 116.1 82.2
major axis

Area of closest 182.4 182.4 182.4
circular enclosure

Area of closest 232.3 116.1 214.7
squared enclosure

Area of closest 232.3 116.1 85.9
rectangular enclosure

Efficiency of 1 0.64 U.4%
circular enclosure

Efficiency of 0.79 1 0.38
squared enclosure

Efficiency of 0.79 1 U.96
rectangular enclosure

(Note: the areas are

in units of squared centimeters)
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TABLE 4-2

THE NUMBER UF SAMPLING PUINTS FOR 3 TYPES OF SAMPLING
ON 3 OBJECTS UVER VARIOUS FREQUENCY RANGES

| Object SPHERE CUBE SPHERE CAP CYLINDER
Type of enclosure | circular | squared | squared | rectangular | squared
Frequency ranges -
from U up to
(Ghz)
1 12 12 8 2 8
2 42 48 24 20 44 .
3 96 120 60 46 108 -
4 186 212 100 80 192 :
5 282 324 160 116 292
6 408 472 240 174 436
] 558 640 324 236 592
8 720 823 420 310 768
9 yl12 1048 516 384 972 -
10 1134 1304 656 476 1200 =~
11 1368 1564 176 H82 1456 -
12 1620 1876 949 696 1740
4-1y - - 4-19 4-19
Plotted in 4-20 4-20 - - - i
Figure
4-21 - 4-21 - -
[ Notation: | x | ) | 0 [ o | o
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Figure 4-2, Impulse response of a 6" metallic sphere with frequency
samples taken every 60 Mhz over the range of 0 to 12 Ghz
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Figure 4-3. Impulse response of a 6" metallic sphere with frequency
samples taken every 125 Mhz over the range of 0 to 12 Ghz
and interpolated using Equation (4-1)
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are taken every 500 Mhz
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Impulse response of a 6" metallic sphere at 0° aspect angle
with the 1-D frequency reiponse interpolated from 2-D
isotropic lattice samples taken with a safety factor of 1
over the range of 0 to 12 Ghz using Equation (4-3) and

and (2-13)
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Figure 4-11., Impulse response of a 6" metallic sphere at 0° aspect
angle with the 1-D frequency response interpolated from
2-D cubic lattice samples taken with a safety factor
of 1 over the range of 0 to 12 Ghz using Equation
(4-3) and (2-11)
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Figure 4-15, Impulse response of a 6" metallic sphere at 0° aspect
angle with the 1-D frequency response interpolated from a
2-D isotropic lattice samples taken with a safety factor
of 3 over the range of 0 to 12 Ghz using Equation (4-3)
and (2-13)
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(Diameter of sphere = 6 inches)
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CHAPTER V
TWO DIMENSIONAL IMPULSE RESPONSES

Thus far, the discussion has focused only on the number of samples
required. The smaller the number of samples, the less measurement time
is required. However, if the two dimensional impulse response is of
interest, then the transform method must also be considered. This
chapter will discuss the potential time consumption problem of
multi-dimensional Fourier transform plus some possible solutions. Image
reconstruction using the spatial impulse response is also considered.

While an isotropic enclosure may be more efficient to enclose a
sphere than a cube, it is not as easy to do three dimensional discrete
Fourier analyses as the cubic enclosure. Most of the discrete Fourier
transform techniques are developed to fit equally spaced data. In
another words, programs are written to perform readily on the cubic
sampling lattice. Any other sampling grid data must be interpolated to
the cubic grid either before or after the discrete Fourier transform
step; otherwise, the proper representation cannot be achieved.
Sometimes, interpolation may also be desired for the cubic

sampling grid data, as in the case of higher resolution requirement than
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measured. This type of interpolation reqiires a lot of computer time as

pointed out in Mensa et al.'s paper [8].
Q% Let's consider an example to estimate the time involved.
.

From Chapter IV:
1) Interpolation for 200 plotting points using 1626
i: isotropic samples is about 5 mins.
2) Interpolation for 20U plotting points using 1876
cubic samples is about 2.5 mins.,
3) The number of samples required on a sphere cap
cylinder for circular, rectangular and squared
enclosures are 1626, 696, 1740 respectively.

(Table 4-2)

Compact range measurement facility at O. S. U. per Walton [12]:

The measurement system response time is about:

AN
’{All‘- .

1) 0.2s/data point, if frequency scan is used.

2) 1 min/frequency ring, if angular scan is used.

The time estimation for each type of the sampling measurement on the
sphere cap c¢ylinder and two dimensional interpolation is presented in
Table b-1. (For the convenience of the reader, all tables and figures fi
of Chapter V are grouped together at the end of the chapter.) The .

interpolation time for the rectangular enclosure data may also be .
i considered zero. By remembering a scale factor, the data can be

% processed as in a squared grid. If the proper signal representation or

a finer resolution is required, the interpolation step is still -

::: 82 u'_:
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unavoidable, Therefore, the numbers in the table do give a fair
comparison, as all data are brought to the same level - squared grid
representation. The interpolation step plays an important role on the
decision of which type of sampling to use. The saving in measurement
time is sometimes balanced out by the data processing time.

The Nyquist criteria (Equations (2-19), (2-20)) plus the polar
transformation (Equation (2-15)) described earlier give new perspective
for the efficient but non-cubic enclosure. Now one only needs to
interpolate for a sufficient number of frequency rings. This work is
done by program INTERPOL(see Appendix B). Each frequency ring is
transformed to the spatial domain individually and summed together to
get the total time response. The former is the work of program INTEGFFT
(see Appendix B); the latter is the job of program SUM3D (see Appendix
B). The interpolation performed this way may require as much time as
the interpolation onto the squared grid. It nevertheless gives an
alternative way to the solution of the problem. Now, another question
may be raised: Why perform interpolation if it is so time consuming?

The interpolation may be avoided, if the two dimensional time
response is the only interest. All one has to do is to measure the
frequency rings and then process the data as described before. However,
if one desires the impulse response of a target at a particular aspect
angle or the response over a frequency ring other than those measured,
one is required to develop a different interpolation scheme than the one

described in the theory section. A possible way to reduce the
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interpolation time is to derive a faster interpolation scheme or a
general multi-dimensional Fourier transform technique which operates on
any grid. A parallel processor which uses optics may be another
possibility in terms of hardware. A lens system has a Fourier
transform relationship between the source and the image [13]. -
The Mie solution for a sphere is a very good data example; except |
its backscattered response is isotropic. A proper choice of test object
must have non-isotropic property. The sphere shifted off the centre of
the plane is one possibility, but it only has variation in the phase
term and not in the magnitude term. Since most of the other exact
solutions are not readily available, a first order UTD solution for a
finite circular cylinder [14] is used; with the caution that UTD gives a
valid approximation to the exact solution at high frequency.
The size of the circular cylinder is chosen to be six inches in -
length and three inches in diameter. Having chosen the size of the =
cylinder, one has defined the low frequency limit of this UTD model to .

about 2 Ghz. Since the step and ramp response of an object reduce the

<1

need for the high frequency information, only the impulse response of
this cylinder solution is considered here.

Figure 5-1 is the two dimensional impulse response (Eguation (2-9)) .
for the above circular cylinder. The frequency samples are first
generated on the grid points defined by Equation (4-5) over only 180°.
In this case, the spatial impulse response is assumed to settle after
the wave has passed over four times the length of the object at every

aspect angle. The rectangle so designated has dimensions: 24" in

My
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length and 12" in diameter. The periodic lattice is chosen as in Figure

2-3. Consequently,

- 1 - U
Vl = 24" [U] VZ = 12" [1]

The guard band is 9" on each side of the cap of the cylinder and 4.5"

on the circular surface. Then,

;o2 1, - 2m g
up = 25 (o] up = 17w (1]

Since,

Tuy = Tqluplkg

‘2“2

11k

where
1, lp=0, %1, %2, £3, ...

Therefore, the sampling lattice is defined by:
U PR N RS P TS

<=> points on the k-plane:

ky = 11lugl and ky = 1, uy|
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Then the sampled data are Fourier transformed discretely into the
spatial domain. The discrete two dimensional Fourier transform is
performed by an IBM subroutine HARM (see Appendix B). The frequency
range used is 2 to 5 Ghz., The safety factor of one is used. The
vertical polarization data are taken from the UTD solution on a major
axis cut. Figure 5-la is the contour plot of Figure b-1, Figure 5-2 is
also a two dimensional impulse response for a cylinder solution that has
the same previous description, The differences are the technique of the
Fourier transformation and the sampling locations in the frequency
plane. It employs Mensa et al.'s method on 6 different frequency rings:
2.5, 3, 3.5, 4, 4.5, 5 Ghz. {Equation (2-18)) Tne samples are taken so
that Equations (2-19) and (2-20) are satisfied. Again the samples are
taken over 180°, Figure 5-2a is the contour plot of Figure 5-2.

Comparing Figures 5-1 and b5-2, one can see many similarities. The
differences can be deduced by recalling their respective generating
methods. Figure 5-1 has information scattered all over the frequency
range; while, Figure 5-2 has vaules only over those frequency rings
mentioned before. There is also the processing error involved.

One interesting thing is to be noted in Figure b5-1, or 5-2. If one
records just the highest points within its neighborhood, one can trace

out a rectangle. This may be easier to see on a contour plot (Figure

5-la, 5-2a). This looks like one cross-section of the target. If 2n

w1




. RD-R162 533 PACE-FREQUENCY SRWPLING CRITERIA FOR ELECTROMAGNET )
SCATTERING OF A FINITE OBJECT(U) OHIO S ﬂ%ﬁ UNIY 1c w3
COLUMBUS ELECTROSCIENCE LAB F ¥ FOK AUG 83
UNCLASSIFIED ESL-714190-11 N09@14-82-K-0037

7




v w.wg

- Sl § v w
R RS, HERYCALAEA AN

l s 28 2.5

V w

——— T ”2.2
Lo M=
e zo

rr
r
re

IS s e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 A




solid angle information is available, then an image of the target can
indeed be produced. Of course, the resolution is still governed by the
highest frequency used. In this case the bandwidth used is quite
narrow; hence, the resulting resolution is not high.

Figure 5-3 is generated similarly as Figure 5-2. It is generated
using Mensa et al.'s method on 16 different frequency rings: 2.5, 3,
3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10 Ghz. Figure
5-3a is the contour plot of Figure 5-3. The dimensions of the rectangle
defined by the high peaks do correspond to the major axis cross-section
of the circular cylinder described earlier. One may wonder how a
rectangle is concluded from Figure 5-3a. There are a few clues
available. The Tj's are quite obvious from the high peaks on the
illuminated side. The final time (T¢) of the one dimensional impulse
response, as one recalls, is defined by the beginning of the exponential
decay of the signal. The final peaks at the coordinates (b,3) and
(5,-3) are indeed higher than any point x; > 5. The ridges and valleys
on the shadow side (xj > 5) of the cylinder is fairly straignt.

Let's consider the case where this imaging theory converges to
Lewis-Bojarski's work., Figure 5-4 is the same as Figure 5-3 except
data are taken over 360°, or illuminated in every direction on the two
dimensional plane. Figure 5-4a is the contour plot of Figure 5-4, As
expected, the peaks (or Ti's) in the figure trace out a rectangle which
is the major axis cut of the circular cylinder. One may note that
literature today usually presents data plots using the absolute value

of the amplitude., One must be careful when confronted by these plots.
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As Figures b5-5 and Y-ba have shown, the absolute value of the amplitude
does not usually tell the whole picture. Figure b5-5 plots the absolute
value of the amplitude in Figure 5-4, Figure 5-5a is the contour plot
of Figure 5-5, The major axis cross-section is no longer as well
defined by the peaks as in Figure 5-4 or 5-4a. Nevertheless, producing
an image using the spatial impulse response is very promising.

Although this thesis' imaging theory is not as 'rigorous' as Lewis
and Bojarski's work, the theory is more flexible in application. The
object is only required to be illuminated at the aspect angles over a 2w
solid angle. The shadowed side information is also employed in the
image reconstruction process. There is no need for any assumption on
the object's shadowed side geometry. If the start and the end of the
object's one dimensional impulse response for every aspect angle over
half of the 4m solid angle are well defined by Ti's (illuminated) and
T¢'s (shadowed) as described ear':er, then an image of the object may be
produced using the Ti's and T¢'s. For Tj's and Tf's not defined
distinctly, careful interpretation on the spatial impulse response must
be used. In the case of a full 4m illumination, the image may be
reconstructed using only Ti's information. This converges to
Lewis-Bojarski's identity. This theory is better in utilizing data
information available but it lacks a concrete proof.

Let's investigate this imaging possibility further using a six inch
diameter metallic sphere whose centre is located three inches off the

centre of the reference plane on the xj-axis. The cubic sampling
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lattice used has a safety factor of three. The frequency range used is
0 to 12 Ghz, Again, the frequency data are taken out of the Mie
solution. The sampling lattice is defined by Equation (4-5) over half
of the plane (m<8<2v), The data are weighted by the two dimensional
cosine tapering function. The two dimensional version of Equation (4-2)
is replacing the variable n by the radial distance from the centre of
the k-space. The shape of the function is Figure 4-1 rotated around the
weighting axis. The weighted data are Fourier transformed into the
spatial domain and presented as Figure 5-6., Figure 5-6a is the contour
plot of Figure b5-6.

Again the initial speculars trace the illuminated side of the
sphere nicely. The Tf's are not as well defined as the finite cylinder
case. More interpretation work is required. The valley on the shadow
side shows a curvature. This may be indicating the back side of the
object having a curvature. The radius of the valley's curvature is
about 37 inches, which is the equivalent distance a wave would creep
before scattering back in the transmitting direction (Figure 5-7). The
radius of the curvature created by the initial speculars is about six
inches, which is the 2R distance travelled by the wave., The first R is
the distance travelled to the target. The second R is the distance
travelled by the wave scattering back from the target. Using this

information, the circle with the three inch radius can be formed.
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Of course, if one uses data over the full plane as Lewis-Bojarski's
work, then there is no need for the previously described type of pattern
recognition interpretation. The initial speculars usually define the
perimeter of the object, if it is a smooth convex body. The perimeter
indicated is only one cross-section of the target on the major axis. If
more cross-sectional information of the target is available, then an
image of the whole object may be produced. The potential on the image
reconstruction is high, but more research work is required in the area;

particularly in the pattern recognition area.
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TABLE 5-1

AN EXAMPLE: TIME ESTIMATION

NS
PO U S e L AT
AR NI, Sy B Ry

Type of Measurement Interpolation | Total
enclosure time time time
(mins) (mins) (mins)
circular 5.42 40.09 45,51
rectangular 2,32 8.47 10.79
squared 5.80 - 5.80
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Contour plot of Figure 5-4
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Figure 5-7., Path length of a creeping wave on a metallic sphere
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CHAPTER VI

CONCLUSIONS

If a signal is limited in the spatial domain (or wave number
domain), this signal is sufficiently characterized by its values over
the discrete sampling lattice in the wave number domain (or the spatial
domain). In the two dimensional case, the sampling locations in the

wave number space are specified by the vector:

[Vyuy + 15u,]
where

]1’]2=0’t19t29t3 see

The 51 and 62 are related to 31 and ;2 by the following:

[iy 1571 = 2nLey 1320

where

-T :the transpose of the inverse of the matrix formed ‘

)

4

\
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The ;1 and ;2 are specified by one's choice on how the space limited
signal is assumed to repeat itseif in its domain. ;1 is pointed to the
centre of one of the closest images in the periodic lattice. 92 is
independent of 91, and it points at the centre of another close image.
By defining the settling time as the end of the impulse response, one
has a space limited three dimensional impulse response signal. In the
finite circular cylinder data presented in Chapter V, the signal is
assumed to be 4 times the size of the cylinder in the two dimensional
spatial plane. The choice of 4 is equivalent to choosing the one
dimensional impulse response of having a settling time four times as
long as the wave would travel over the length of the object at any
aspect angle. Or the safety factor is chosen to be one. (i.e.,
2(1+K) = 4 <=> K = 1) This factor provides sufficient results in both
Chapter IV and V.

In Chapter V, the example of the finite circular cylinder with
dimensions: 6" in length and 3" in diameter, the two dimensional
containment unit is chosen to be a square. The squared repetitive

lattice in the spatial domain is defined by,
- 1 - 0
"1=R[u] V2=R[1]

where

R = 6"

and the safety factor K is chosen to be 1. With these inputs to the

program PTGRID (see Appendix B), the program outputs the sampling

lattice defined by U; and u,, Tne data output is arranged with the

[
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aspect angles and the corresponding frequency increment. One makes the

. .
«

necessary data extraction at the proper aspect angles, and increments

the frequency until the highest frequency is reached. One could also

. -
N
R

have defined a rectangular repetitive lattice. Then

-
- 1 - 0
Vi =R [yl v = R [g,5]
where
R = 6"
i; Or, for a circular repetitive lattice,
V3
- 2 - 0

™
r\':lb-'

- where

/AR

B
=
]

6.708"

Again these ;1 and ;2 values can be input into the program PTGRID (see
Appendix B) to obtain the sampling lattice.

Thus, one can sample discretely and interpolate in the wave number
space to reproduce the frequency response of an object. Fourier

transforming this wave number signal into the spatial domain gives a

representation of the spatial impulse response of the object. The
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spatial impulse response is defined as the image function obtained by
three dimensional Fourier transforming the far field frequency response
of a finite object at all aspect angles defined over the 47 solid angle,
Since most objects have different shapes, sizes, and orientations, their
corresponding spatial impulse responses are different. Their
corresponding sampling lattices will also be different. One general
sampling lattice that is applicable to a set of objects is desirable.
This is accomplished by introducing different types of canonical
containment units to confine the spatial impulse responses. Two common
canonical cells are parallelepiped and sphere. Two dimensional examples
are shown in Figures 2-5 and 2-7, with their corresponding sampling
lattices shown in Figures 2-6 and 2-8 respectively.

In Chapter IV, a six inch metallic sphere is chosen as an example
to compare two types of sampling lattices -cubic and isotropic. The
comparison is performed on the interpolated one dimensional impulse
responses at different aspect angles using the interpolation scheme
defined in the sampling theorem. As one expects, the results turn out
to be competitive for the two types of sampling. Efficiencies, in the
sense of the least number of sampling points, are different for

different canonical containment cells used on the same object.

Efficiency in using one type of canonical containment cell:

n = CONSERVATIVE ESTIMATE OF THE UBJECT'S VOLUME
IO o GRLe PO CORTALMENT




Efficiencies among a sphere cap cylinder, a sphere and a cube using

cubic, isotropic, and rectangular box confinement units are presented in
Chapter IV, The efficiency definition proves to be a very good concept
in deciding the type of sampling lattice for an object or a group of
objects. This is under the assumption that the settling time of the
spatial impulse response is shaped similarly to the object; e.g., the
settling time of the impulse response of a sphere is the same in every
aspect angle,

To obtain an approximation to the spatial impulse response from the
sampled data over a finite frequency range, one can use the discrete
Fourier transform. Because of today's digital computer design, the
different sufficient characterization cannot be readily processed
without interpolation; except, of course, the cubic lattice data sets.
The interpolation step which most people like to avoid, is very time
consuming. This may be referred back to the time estimation example on
a sphere cap cylinder presented in Chapter V. The interpolation step is
another factor that affects an engineering decision. The avcidance
helps Mensa et al. to arrive at the time response faster. The price
they paid is the limitation of their method's application to two
dimensional Fourier transform. Their approach is thus not recommended
because of its inability to be expanded into higher dimensions. The

sampling criteria accompanying their method are,
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the angular increment:

A
<20 A<« 2D

c =1, A
A® <sin T(75) A< 2D

m

<7[ Ay 20

the frequency increment:

[}
Af < ZTT+KD

A where
h? D = maximum dimension of the object
: A = wavelength of the frequency used
¢ = speed of light
K = some safety factor

In the finite circular cylinder example,

D =17.08 cm

ol
"

0.75

A f < 0.503 Ghz

at the highest frequency of 10 Ghz,
A =3 cm

A 8 < 5 degrees

Therefore,
the frequency increment chosen = 0.5 Ghz

the angular increment chosen = 1 degree
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Nevertheless, processed results from UTD solution on a finite circular

': cylinder support the convergence of Mensa et al.'s method to two |
dimensional discrete Fourier transform.

Lewis-Bojarski's identity requires either the object be illuminated

= at all angles or assumption be made on the shadowed side. Results on a F

7 finite metallic circular cylinder and a metallic sphere indicate that

} ; the spatial impulse response approach does not have the above

restriction, though proper interpretation may be required. Furthermore,
the use of the spatial impulse response to imaging can converge to

Lewis-Bojarski's results. There is also an indication that the

v presentation in the form of the absolute value of the amplitude does not
necessarily provide the proper picture for pattern recognition. The
plain amplitude representation with positive and negative values is

II sometimes more appropriate. This is concluded by comparing the
Figure 5-4, or 5-4a with 5-5 or b5-5a, The perimeter of a major axis
cross-section of a finite circular cylinder is shown more distinctly

|l using the plain amplitude presentation, Judging from the two

dimensional impulse responses, one can deduce the substantial potential
of the spatial impulse response in image reconstruction.

The spatial impulse response has numerous applications including
target identification and imaging. Although smooth convex metallic body
examples are considered here, tomographic applications on other types of
bodies are possible., 1In all, the N dimensional sampling theorem

provides new insights into the sampling criteria in the wave number

space for a finite object. The potential in reduced management time on
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two or three dimensional data is enormous. The two dimensional impulse

response also projects a promising target imaging technique using the

spatial impulse response.

e ke ann g
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CHAPTER VII

RECOMMENDATIONS

Traditionally, two and three dimensional data are presented in
cubic lattices, for which present day digital computers are designed.
Although the digital computer of today manages data in cubic lattices,
the cubic lattices are not necessarily the most efficient in terms of
the least number of data samples. The most general approach to solve
this computer problem requires the cubic data management structure of
the digital computer be modified into a more general data structure. In
another words, data organized in any random fashion can be processed by
this computer. If this general approach is not practical, the next best
step is a faster interpolation scheme either in hardware or software.
The lowest level on the hierarchy of improvement is the improvement for
specific application. In this thesis, a general Fourier transform that
can perform on any data lattice, fits into this category.

After some of the computer problems are solved, the next step in
the development is to account for the experimental noise. How does one

extract the true information that is embedded in noise? Without this

113 ,
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generalization, this report is only useful in information storage and
retrival on noise free data. Noise free is in the sense that the noise
effect in measurement is eliminated before storage. The full
development of this report's theory will enable significant reduction in

time on data measurement, processing and storage.

The whole report is focused on the monostatic data. It would be
interesting to see how this theory holds up with the bistatic data.
Using the definition of the three dimensional Fourier transform, one can

derive a similar method that parallels Mensa et al,'s approach.
By converting the k-space coordinates into spherical coordinates:
k1 = pSinecos ¢ k2 = psinBsing k3 = pCOS O (7-1)

equation (1-1) becomes:

o T 2w - -
- 1 - jlxlecos < (x, o) 5
f(x) =573 | / [ Fle, 8, ¢)e p sined¢dddp
0=0 =0 ¢=0 (7-2) -
where
= /2 2
x| = /2 + x3 + x4 -
(Rotate the k-space coordinate system so that the k3-axis is in line
with x : => < (x, p) = 8). ;f
-
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Then,

s _ 1 ” b 2n ilx|pcos® 2
f(x) =53 /] [ [ F(e, 8, de 0“sin8dédode
5 p=0 820 ¢=0 (7-3)

By considering one particular aspect angle: ¢m, ei

sinbj ~ | x| pcos8; 2
fim(x) = 8n3 [ F(e, 81‘, bnle p dp

p=0

f: With all aspect angular data,

f. (x -5
121 m§1 in(x) (7-2)

f(x)

the impulse response of the finite object at Xx

o Even though Equation (7-4) requires the integration over all
frequencies, the integral can be approximated over three regions: the
Rayleigh, the resonance, and the optical., Thus, the integral in
Equation (7-4) is not impossible to be solved. There are problems
associated with this approach. The Nyquist angular requirement is
frequency dependent (Equation (2-17)). In order to satisfy the Nyquist
angular requirement at high frequency, the signal is excessively sampled
at the low frequency spectrum, but sampied only adequately at the high
frequency spectrum for a finite frequency range of interest.
Nonetheless, the approach is viable if one does not intend to extend the

bandwidth of the approximated spatial impulse response.
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With the help of the different sampling criteria, the infinite
number of samples required to reconstruct the impulse response over a
finite frequency range has changed to a finite number. Though the
number is finite, the measurement time can be very substantial when an
expanded frequency range in two dimensions, or three dimensions is
required. Professor Leon Peters suggested another approach to further
reduce the measurement time [15]. At high frequency, a target's
frequency response is mostly contributed by its major scattering
centres, If one can make a set of different canonical scattering centre
measurement, then most targets' high frequency response can be built
using the proper phase shift factors. For most scattering centres,
their frequency responses are relatively simple. As a result, the
Nyquist criteria for these centres in the frequency domain are more
relaxed than complete structures. These canonical scattering centre
data can be reused to reconstruct the high frequency response of other
targets, In another words, after the canonical scattering centre data

are available, one only measures the low frequency spectrum before the

one dimensional, two dimensional, or three dimensional impulse response
of an object can be reconstructed. This would be another interesting

area for further exploration. However, more development work is

L
required in all these described areas to extend this report into a more -
useful engineering tool. -
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o APPENDIX A
- THE DERIVATION OF EQUATION (2-13)

Rwy \
2wy cos \V3 J cos (Ru,)

o 1 <2R w]
Wy wy) = -2w, cos \V3 5
L 520 T2 (2 - 34 {
Ruy
-2/3 wy sin <7ﬂ§{) sin (sz)

/

Equation (65) of Petersen and Middleton [7]:

.L'o‘"
6(@) (—;) (—Zl—) f1 e
R 3
Regular

Hexagon

Equation description for the regular hexagon: (see Figure A-1)

X2 = R
©)
-R R
@) <n <(5)
x2 = -/3 x] + R
®

117




Figure A-1l.

Hexagonal integration limit
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x2 =/3 x] - R

®
(8) cn < @)
@2 "
(@) < <(8)
® x2 = /3x -R
() en (3
x2 =43 Xx] + R

() <n (#)

6(d) =

then

7 (11 + 12 +13)

where

J(wpxy + wpx2)
L= J [ e dx2 dx]

J(wixy + w2 x2)
e dx2 dxi

(A-1)

(A-2)

(A-3)




Jlwixy + w2 x2)

I3 = [ e dx2 dx] (A-4)
NORS
¢ Equation (A-2):
| -R
<}§> /3x1+2R

Jwixy  jwzx
i / e e dx2 dxi

-2R _
X1 =\ V3 /) x2 = /3x]-2R

-R . (3x1 + R)
/3 ) Juzx2
jwixy e
/ e o) dx]
—2R -(3x1 + R)
X1 =\Y3
-R
a —— —
1 Jwixy | jwa(v3x1 + R) -juwz(Y3x] + R)
jwp e e -e dx}
-2R
X1 = \V3
-R
/3 _ _
1 J(w] + Y3uwp)x1 + 2jRup  j(w1-Y3wp)x] - 2jwgk
Jjwp f -e dx]
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J(w] + V3w2)x) + 2jRwp
e

Therefore,

2jRup
e

wz(wy + /3up)

-ZJsz
e

+
wp(w] - ¥3wp)

J(w

e

e

+ Y3uw2)

j(®1 - V3uwp)x] - 2jRw
e

R
/3

~2R

(o - /_gwg)

-j(wy - v’ng)(/g) -j(w) - /3(»2)(;’;)
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Equation (A-3): _
. .
3 R
J{wixy + wox
I = ¢ / e 1x1 2 2)dxz dx}
-R x2 = R -
X] = /3

R _ _ R -
- - 73 -
Juix) jwzx2
e e
B Jwy jw2
— -R — —
- V3 -R -
2 wiR 2
= w) / sin \V3 w2 / sin (wzR)
"
Therefore, B
,= [_4 (U
2 ';;;; in (wR) sin{ 73
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Equation (A-4),

2R
V3 -/3x; + R
J(wpxy + wpx
3= | | AN 22)dx2dx1
R —
X1 =\/3 x2 = v¥3x] - R
2R -/3x; + R
7§> !
Jwyx jwax
- SO | Juexe ax1
Jw2
R —
X1 =</§> /3x] - 2R

L Jopxy [ jwa(-/3x1 + R) jwp(/3x) - R)
= Ju e e -e dx]
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. ZR —
o _ 73‘ .
J(0p - V3up)xy + 2jRw2
1) e
T Jwp o i) i
Jiwp - /3w R
/3 —
2R
_ V3
Jj(wp + v3w2)x1 - 2jRwp
e
jlep + V3up) R .
/3 o
Therefore,
> 2jRw (0] - V3up)( Ry  j(w - /3wp) (R
X . 2 J(w) w2)( Ny (e 2)(73)
13 = e - e
wp(wy - /3uwp)
-2jRuwy Jjlowp + /sz)(ZR) Jj(wy + /-3_w2)( R)
e 73 3 ~
+ e -e

w2(w) + V3w2)

N
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Now,
I1 + 13
=il(w + V3w)2R - Rw i[(w] + /3w)2R - 2Rw)]
] . JL(wm 2)73 2] . eJE( 1 2)73_ 2
w2 (wy + V3uwp)
-il(wy + /3 R - 2R j + V3w) R - 2Rw
- e 1 “2)73 w2} Jl(w 2)73, 2]
-il(wy - /3wp) R + e i[(w] - Y3wp) R + 2Rwp]
) . 1 2)73, 2] . eJ[( 1 2)73_ 2
+
w2 (w) - ¥3wp)
=il(wy < V3w 2R + 2Rw i[(wp - Y3w2)2R + 2Rw
e 1 2)73 2) _ illa 2)73 2]
1 2cos | (w] + Y3wp)2R - Rwp
= v3

w2 (wy + /3uwp)

= 2cos | (w) + /3uwp) R - Rap
[: 73

(This expression continues on the next page.)
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1 - V3 -—
N 2cos [(“’1 /3w2)/§_ + 2Rw2] -

wa(wy - V3wp)
- 2cos | (wp - /§m2)2R + Rwp -
[ 73

1 1
- [Since: cos a - cos B = -2 sin7 (a+ 8) sin? (a - 8)]
-4 1 1 _
= sin 7 3R)(m1 + /_3_(»2) - 4Rw? sin 2 ( R)(wl + /3w?) N
wp(w] + V3wz) 73 /3
s 1) _ IS _ -
sin 2 (wp - /3wp) + 4Rwp | sin 2 (w1 ~ V3wp)
wz(wy - /3wz) | el Vel
{
-4 YRwp  Rwp Rul Rwp -
= sin 7 -"7 /) sin \7V3 + 7, '

wa(wy + ¥3uwp)

T
{

4 R/3w]  Rwp Rwp  Ruwp
_ sin \T 7+ sin \ V3 - "7
w2(w) - ¥3w2)
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1 1
[Since: sin asin 8= 7 cos (a-8) - 2 cos (a+ B)]

-
-2 73 . 1\/R9l). Rw 3+ 1) Ru
= — cos /3' T 2l - cos /3’ T
w2 (w] + v3w2)
r 2 (/'37 - 1)(R“1)+ Rw ("_3-+ 1) Ruj
+ cos YIIN"7 2 1 - cos 3] "7
g w2 (w) - ¥3w2)
R
- 2 R(Dl - Rw 2Rw1
= cos (’7’5 2) - COS(’W)
wp (wy + /3wp)

R9L 4 Ru 2Rw}
+ cos 73 2 - cOos Y3
Y3uw2)
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[
4
r
L
P
o
L
1
E
"
8
1
1
k
4
d
[
L
4
L
[
4
4
4
£
L
4

2
v
4

o
(758
.
P" .

, 2Rw1
- 9] - /3w2) COS(—T?)

Rwy
- (W) 4 /302) cos(7‘§ ' Rw2>

:'-; 2Rw)
+ (w1 4 /3w2) COS(-7§>
g
5 -2 Rwy _ Rwi
k N 2 5 (w1 [cos( 73 sz) - cos<7’5 * sz)]
3 wp(w” - 3up”)
[

Rwp _ Rwl
- V3 w2 [cos{ 73 RwZ) + cos(ﬁm's ¥ sz)]

2Rwy N
+ 2 V3 w2 cos(‘?j) -
- -
% 1 1 =
Since: cos a + ¢cos B = 2 cos?2 (a+ B) cos 2 (a - B)
1 1 =
cos @ - ¢cos B = -2 sin 7 (a + B8) sin 2 (a - B) .
i <
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1/ 2Rwy 1
n N 2 2 wp | 2 sin '2'(—7'3‘) sin 7 (ZRw,)
. v2luy? - 307d)

1 /2Rwy 1 (.
- /3 wp [ 2 cos E(“T{;’) cos 7 ( 2““’2) ]

.
P
!
2Rw)
? + 2/3 w2 cos _75)
Therefore, I + I3
r -4 Ruwy
= 2 2 4w Sin(’TS) sin (Rup)
- wz(wl - 3w ]

Rwy
- V3 w2 cos(‘?:{) cos (Ruwp)

DR o e o g
N TN
-
‘.

2Rw)
+ /3w COS(“7‘3>

Now, I1 + I2 + I3

2Rw) 2 Rwy
A /3wgw] cos 7’5) + w] sin(’73‘> sin (Rwp)

wlwz(w12-3w22) Rw]
- v3 wiw2 cos| 73 ) cos (Ruwp)

2 . o U
- 0" sin (wR) sin( 73

WIR
+ 3 w22 sin (wR) sin(_7'3‘>
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2Rw] Rw}
-4 Y3 w1 cos (’7‘3 - /3 w] cos<7'§ cos (Rw)
2 2
wp (01" - 3wp")

WiR
+ 3 wp sin (wR) sin |73

Equation (A-1),

M "‘wv ! R

- 1
G(w) =—— (I1 + 12 + 13)
2/ R
/ Rwl \
2 w cos('7§> cos (Ruwp)
1 2Rw)
=2 2 2 x<-2w1 cos<_7’3'>
Rowp(wp - 3up)
Ruw)
k- 2 /3 w2 sin<'7§) sin (sz))

Equation (2-13). )

O
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PROGRAMS DEVELOPED
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SINGLE
FREQUENCY

MEASUREMENT

OVER 380°

AR
.
ll .l )

R
%Yy

.
[y
A

PTGRID

1

2-0
SAMPLING
SRID

2-D
MEASUREMENT

ot s
inTerrr (] FREQUENCY INTERPOL POR 1 e rraan®
DATA ASPECT
l ANGLE
R 1-0
-D IMPULSE -
HESPONSE b ocuse | IMPULSE
FOR $INGLE |1 enio RESPONSE .
FREQUENCY | DOATa | REPRESENTATION, :
| I | “
T DATA
SAMPLED -~
sSuMSD OVER THE -
2-0 cunic -
1 sRiD
TOTAL 2-D
1MPULSE
RESPONSE :
REPRESENTATION
=
Figure B-1., Flow chart showing the relationship among the written
programs N
-
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PROGRAM: RECONSTID

THIS PROGRAM WILL TAKE A DATA SET:'COEFF' IN REAL AND IMAGINARY FORMAT
AND INTERFOLATE THE FOINIS IN BEIWEEN SAMFLES USING SAMPLING THEDREM
APPROACH. PRESENTLY, THIS
PROGRAM IS ALLOWED TO TAKE 100 SAMPLES. IF MORE IS REQUIRED, PLEASE
CHANGE THE ARRAY SIZE OF QOEFF AND THE VALUE OF NUM.

MSIZE:THE ARRAY SIZE=2* (NUMBER OF SAMPLES) +1

NUM:NUMBER OF SAMPLES

XINC: INCREMENT
THE SAMPLES ARE TAKEN AT DELTA FREQUENCY OF 'FRED'.
THE FREOUENCY RANGE FOR INTERFOLATION IS SPECIFIED BY 'INITIAL'
AND 'LAST'- THE NUMBER OF FOINTS IN 'DATA' IS 'NP1'. THE
OUTHUT FILE IS SPECIFIED BY 'FNAME2'.

THIS PROGRAM WILL LINK WITH SINC, JPLOT, SUMLD AND 'PLOTLIB

(e XeXeNoeNsNeXeNeNale e e e NeXe e NeYe)

REAL INITIAL. LAST

COMPLEX CQOEFF (201) ,SUM, DATA (200)

CHARACTER*10 FNAME] .FNAME2

CHARACTER (DML

NUM=100

MSIZE=2*NUM +1

NSTEP=200

INITIAL=6.E7

LAST=12.E9

XINC=(LAST-INITIAL) / (NSTEP-1)
PI=3.14159265

THE SUMMATION IS FROM =N 10 +N
CQOEFF ~ THE ARRAY OF COEFFICIENTS FOR iTH TERM IN THE SUMMATION
WHERE THE INDEX -N IS RESPRESENTED BY 1
+N IS RESPRESENTED BY 2*N +1
T - ASSUMED CUIDFF TIME= 1/ (2*SAMPLING FREQUENCY)

DATA STRUCTURE OF FNAMEL

N sNUMBER OF FOINTS IN THE FILE (*)
FMIN :SMALLEST FREQUENCY USED(*)

FREQ «SAMPLING FREQUENCY (*)

CQOEFF (1) ; (REAL. IMMGINARY) (*)

TYPE *,'TYPE FILE NAME CONTAINING (DMPLEX QOEFFICENTS'
ACCEPT 2.FNAMEL

FORMAT (Al10)

OPEN (UNTT=8,NAME=FNAMEL .TYPE='CLD')

READ(8,%*) N

READ(8,*) PMIN

READ(8.*) FREQ

T=1./(2.*FRED)

IP (N.GT.NUM) GO 1D 8888

[eXeNsXeNeXeXeNeXeXeXeNeXe)

~
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(e XeXe]

[

0

aOO0n

—a00aE
3 N

00008

[N ﬂﬂnt;

NDIM=2*N +1
INITIALIZATION

DO 5 I=1,MSIZE
QEFF(I)=(0.,0.)
QONTINUE
READ(8,*) QOEFF (NUM)
DO 10 I=1.N-1
READ(8,*) COEFF(NUM+I+1)

FILL IN COMPLEX QONJUGATE FOR THE NEGATIVE FREQUENCY

COEFF (NUM+1-1) =CONJG (QOEFF (NUM+1+1) )
QONTINUE
CLOSE (UNIT=8,DISP='SAVE')
NZERO=0

SET ANY FREOUENCY INTERFOLATION SPECIFIED BELOW FMIN D ZERO
NZERO: NUMBER OF ZEROS D BE PLACED

IF (FMIN.LE.FRED) GO IO 127

NZ ERO=INT (FMIN/XINC)

DO 123 1=1,NZERD
DATA(I)=(0.,0.)

CONTINUE

STARTS THE INTERFOLATION
(THE SUMMATION IS PERFORMED BY FUNCTION SUMID)

ILAST=INT ( (N-1) *FREQ/XINC)
IF (ILAST.LT.NSTEP) INDEX=ILAST
IF (ILAST.GE.NSTEP) INDEX=NSTEP
O 20 I=NZERO +1.INDEX
DATA(I) = SUMID(((I-1)*XINC+INITIAL)*T*2.*PI,QEFF,MSIZE, NDIM)
QONTINUE

SET ANY SPECIFIED FREQUENCY INTERFOLATION HIGHER THAN FMIN+N*FRED
T ZERO

DO 133 I=INDEX +1.NSTEP
DATA(I)=(0.,0.)
QONTINUE

PLOT AND OPTIONAL WRITE INID A FILE: FNAME2

CALL JPLOT (DATA, NSTEP, INITIAL . XINC, 0 . NSTEP-1)

WRITE (6,*) 'WRITE THE INTERFOLATED DATA INTD A FILE?'
WRITE(6.*) 'l)YES, IN AMPLITUDE AND PHASE (RADIAN) FORM'
WRITE(6,*) '2)YES, IN REAL AND IMAGINARY FORM'
WRITE(6,*) '3)ND, FORGET ITI®




) i 2 ynaii secth s et s et 4 T

- ACCEPT 25,C0ML
25  FORMAT(AL)
w IF (COML.ED.'3") GO ‘D 9999
s IF ((COML.NE.'1') .AND. (COML.NE.'2')) GO D 23
WRITE (6,%) 'SIORAGE FILE NAME:'
ACCEPT 30, FNAME2
30  FORMAT(A10)
IF (COML.ED.'2') Q@O D 35

CONVERT ‘T0 AMPLITUDE (LINEAR} AND PHASE (RADIAN)

DO 33 I=1,NSTEP
XREAL=CABS (DATA(I))
XIMAG=ATAN2 (AIMAG (DATA (1)) ,REAL (DATA(I)))
DATA (I) =CMPLX (XREAL - XIMAG)

QONTINUE

OUTRUT TO FNAME2
STRUCTURE OF FNAME2:
DATA(I) :FREE COMPLEX FORMAT (*)

000

w .
»
nnnng

w0

5 OPEN (UNTT=8, NAME=FNAME?2 . TYPE= ' NEW"' )
0 40 I=1.NSTEP
WRITE (8.*) DATA(I)
.- 40 QONTINUE
. CLOSE (UNIT=8,DISP='SAVE'}
- G0 O 9999
8888 WRITE(6,*) 'ERROR:NOT ENOUGH SPACE SPECIFIED IN THE PROGRAM'
9999 g.gp
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C
C
C
C
C
C
C
C
C
C
C
C
Cc
C
C
C

[eX2Xe]

(e XsXe]

10

=O0n0n

SUBROUTINE: JPLOT

THIS SUBROUTINE WILL DO RECTANGULAR PLOT ON A COMPLEX ARRAY:'DATA'
FOR REAL AND IMAGINARY PLOT OR MAGNITUDE (LINEAR) AND PHASE (RADIAN)
PLOT.

DATA sARRAY NAME

NFOINT :THE ARRAY SIZE

FMIN :SMALLEST ELEMENT OF THE ABSCISSOR

FIN(R :THE INCRMENT SIZE

NSTART :THE START PLOTTING INDEX

NLAST :THE LAST PLOTTING INDEX
IF (NLAST.GT.NFOINT) THE LAST FOINT PLOTTED IS NFOINT

THIS REQUIRES THE SUPFORT OF 'PLOTLIB.

SUBROUTINE JPLOT (DATA, NFOINT, FMIN, FINCR. NSTART, NLAST)
CHARACTER QDM

COMPLEX DATA (NFOINT)

DIMENSION YAXIS] (9000),YAXIS2(9000) ,XAXIS (9000)
PI=3.14159265

MSIZE=9000

INITIALIZATION

00 3 I=1,MSIZE
YAXIS1(1)=0.
YAXTS2(I)=0.
XAXIS(1)=0.
CONTINUE
WRITE(6,*) 'DO YOU WANT REAL AND IMAGINARY PLOT?Y/N'
ACCEFT 6, (DM
FORMAT (Al)
IF (NLAST.GT.NFOINT) NLAST=NFOINT
NP=NLAST-NSTART+1
IF (COM.ED.'N') GO D 15
IF (COM.NE.'Y') GO D 5

REALL AND IMAGINARY PREPARATION

0o 10 I=1,NP
YAXIS1 (I)=REAL (DATA (I+NSTART) )
YAXIS2 (1) =AIMAG (DATA (I+NSTART) )
XAXIS(I)=(I~1+NSTART) *FINCR + FMIN

QONTINUE

Go T 25

GENERATE AMPLITUDE AND PHASE

DO 20 I=1.NP
XAXIS (1) =(I+NSTART-1) *FINCR +FMIN
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a YAXTSL (1) =CABS (DATA (I+NSTART) )
IF (REAL (DATA (I+NSTART} ) .£0.0.) GO D 18
- gXISZZ(‘])I) =ATAN2 (AIMAG (DATA (I+NSTART) ) ,REAL (DATA (I+NSTART)))
D
18 IF (AIMAG (DATA (I+NSTART)).PQ.0.) YAXIS2(I)=0.
IF (AIMAG (DATA(I+NSTART)).LT.0.) YAXIS2(I)=-PI/2
. IP (AIMAG (DATA(I+NSTART)).GT.0.) YAXIS2(I)=PL/2
- 20  CONTINUE
25  CALL PLTPKG(XAXIS.YAXIS1.9000.NP,1.0.1)
CALL PLTPKG (XAXIS. YAXIS2.9000,NP,1.0.1)
RETURN
BD
g
S

N

".

G
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CQOMPLEX FUNCTION : SUMID

THIS SUBROUTINE WILL DO SUMMATTON

X ~ NEW PARAMETER

Y ~ (OEFFICIENT ARRAY

MSIZE-SIZE OF THE QODEFFICIENT ARRAY

N - NUMBER OF QOEFFICIENT ARRAY ELEMENTS THAT HAS NON-ZERO VALUES
NOTE:BOTHE MSIZE AND N ARE ODD NUMBERS

C
C
C
c
C
C
C
C
C
C

COMPLEX FUNCTION SUMLD (X,Y,MSIZE,N)

EXTERNAL SINC

QOMPLEX Y (MSIZE)

PI=3.14159265

MED=MSIZE/2 +1

SUMID=Y (MED) *SINC (X)

DO 5 1I=1,N2

SUMID=SUMLD+Y (MSIZE/2-1+1) *SINC (X+I*PI) +Y (MSIZE/2+1+1) *SINC (X-I*PI)

S C(ONTINUE

RETURN

END
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FUNCTTON: SINC

THIS SUBROUTINE WILL CALCULATE SIN(X)/X
WHERE X IS ASSUMED T0 BE IN RADIANS

| |
nanaana

FUNCTION SINC(X)
. IF X.B0.0) @ B 5
o SINC=(SIN(X)) /X
i GO ' 10
5 SINO=1.
10 RETURN
END
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PROGRAM : PIGRID

THIS PROGRAM WILL GENERATE ALL THE ANGLES AND FREQUENCIES S
FOR THE GRID IN THE FREQUENCY DOMAIN. THE DATA ARE
ARRANGED IN ORDER FROM SMALLEST ANGLE T0 THE LARGEST ANGLE.

(0 I 2*PI) THE SMALLEST FREDUENCY

RADIUS IS STORED. SO AT THE TIME OF MEASUREMENT, ONLY _"
MULTIPLICATION OF THE RADIUS IS NECESSARY. 4

THE GRID :OINTS ARE WRITE INID FILE:'OUT.DAT'
THE DATA FORMAT OF 'OUT.DAT':
PMIN. FMAX :FREOUENCY RANGE SPECIFIED(2E15.8)
FDELTA :SAMPLING FREOUENCY (E15.8) N
NFOINT :NUMBER OF FOINTS IN THE FILE(18)
1S0, RADTUS :1SO=N, NON=-ISOROPIC SAMPLING IS USED(A2)

:1SO=T, ISOTROPIC SAMPLING IS USED o
RADIUS :RADIUS OF THE ISOIROPIC CELL IN MM(E15.8) -
vi.v2 VECTORS USED TO DEFINE THE SAMPLING LATTICE (4E15.8)
ul.02 :VECIORS USED TO DEFINE THE PERIODIC LATTICE (4E15.8)
DATA(*,1) 'mTA('nz) : DATA(4E15.8) ':-‘
DATA(*,1) IS THE MEASUREMENT ANGLE AND FREQUENCY ARRAY
DATA(*,2) IS THE INDEX SPECIFYING HOW MANY UNITS OF
V1.V2 ARE USED

WARNING: SIZE OF DATA IS (10000,2) -
LINK PTGRID, GENL,GEN2.SEARCH. INSERT, FUSH. NORMAL . ' SSP

leXeXeXeXeReXeXeXeXeXe ke e e e Xe XeXe NeXe e e KeXe XaXeXe Xale]

COMPLEX V1.V2.V3,V4.Ul.U2.DATA(10000.2) o
DIMENSION WORKI(2) ,WORK2(2)
REAL MAGL.MAG2 .MAX1,MARGIN.MATRIX (4) o
CHARACTER IS0

MSIZE=10000 -
PI1=3.14159265 o

START WORKING

NOOO

WRITE (6.%*) ' LOWEST AND HIGHEST OPERATING FREQUENCY IN HERTZ' NG
ACCEPT ‘l FMIN, FMAX f--
IF (FMIN.GE.fMAX) GO O 2 :
WRITE (6.%*) ' DD YOU WANT 0 D0 ISOTROPIC SAMPLING 2 T/F '

ACCEPT 4.1S0 -
4 FORMAT (Al) ’
IF (ISO.B0.'F') QO I 5

IF (ISO.NE.'T') GO 10 3

WRITE (6.*) ' DIAMETER OF NDRMALIZATION IN MM?' )
ACCEPT *,RADIUS :

W

DEFINITION OF ISOTROPIC VECTORS

[eXeXe!

l ‘l:"l,
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v, -

S e XoXp]

[eXeXeNeXeKeXeXe X BN s X2 K2l

[eX e X 2]

naon

X1=(SORT(3.))/2.
Yl=-0.5

X2=0.

Y2=1.

D6

CASE OF PARALLELPIPEDIC (ONFINEMENT

WRITE (6,*) 'THE OBRJECT IS ASSUMED TO BE CONFINED TO A PARALLELOGRAM!'

WRITE (6.*) ' NORMALIZATION FACIOR IN MM'
ACCEPT *,RADIUS

WRITE (6.*) * VECIORlL IN X,Y :°

ACCEPFT ¢, Xl.Y1

WRITE (6.,%*) ' SAFETY MARGIN FACTOR ON THE TIME WAVEFORM'
ACCEPT *,MARGIN

Ul=CMPLX (X1-Y1)

U2=QMPLX (X2.Y2)

MATRIX(1)=(X1)

MATRIX (2) =(Y1)

MATRIX (3) =(X2)

MATRIX (4) =(Y2)

MINV WILL DO MATRIX INVERSION. THIS SUBROUTINE IS IN SSP
CALL MINV(MATRIX,2.D, WORK1,WORK2)

NDTE THAT V1 AND V2 IS TAKEN FROM THE TRANSFOSE
OF THE INVERSE OF MATRIX. THIS IS 10 BE CONSISTENCE WITH
DOT PRODUCT OF U(I) AND V(J) = DELTA(LJ)

U IS IN SPATIAL DOMAIN
V IS IN FREOUENCY DOMAIN
ALSO V1=(X-~COMFONENT, Y~COMFONENT)

V1=QMPLX (MATRIX (1) ,MATRIX(3))
V2=CMPLX (MATRIX(2) ,MATRIX (4))
MAGL=CABS (V1)

PHASE1=ATAN2 (ATMAG (V1) ,REAL (V1))
MAG2=CABS(V2)

PHASE2=ATAN2 (AIMAG (V2) ,REAL (V2) )
THETA=ABS (PHASE1-PHASE2)

PHASES ARE NORMALIZED 10 THE RANGE 0:2*PI

CALL NORMAL (PHASEL)
CALL NORMAL (PHASE2)

SFACTOR: FREQUENY SAMPLING FACIOR
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SFACTOR=(3.E11) / (RADIUS*MARGIN)

IF ((SFACTOR.LE.FMIN) .OR. (FMIN.EQ.0.)) FDELTA=SFACTOR
IF ((SFACTOR.GT. FMIN) .AND. (FMIN.NE.O0.)) FDELTA=FMIN
RADIUS=1/ (FDELTA*2.)

MAX1=(FMAX/FDELTA)

STORE ™E FIRST TWO VECTORS INTO THE ARRAY °'DATA'

IF (PHASE2.LT.FHASEl) GO 0 11
DATA (1,1) =QMPLX (PHASEL . MAGL )
DATA(1,2) =CMPLX (1.0)

DATA (2.1) =QMPLX (PHASE2 . MAG2)
DATA (2.2) =QMPLX (0.1)

0 D 12
DATA(1,1) =QMPLX (PHASE2 . MAG2)
DATA(1,2) =CMPLX (0.1)

DATA (2.1) =CMPLX (PHASEL . MAG1)
DATA(2.2) =(OMPLX(1.0)
NFOINT=2

TO GENERATE THE FIRST QUADRANT FOINTS
FOINTS ARE GENERATED AND STORED IN SUBROUTINE GEN1 AND GEN2

IF (THETA.LE.PI/2.)
& CALL GEN1 (V1,V2.MAX1.MAX1,DATA,MSIZE, NFOINT,1,1)
IF (THETA.GT.PI/2.)
& CALL GEN2(V1.V2.MAX1,MAX1,DATA, MSIZE, NFOINT,1,1)
IF (NFOINT.GT.MSIZE) GO IO 888

V3=Vl

PHASE3 = ATAN2 (AIMAG (V3) ,REAL(V3))

CALL NORMAL (PHASE3)

V3=QMPLX (PHASE3 ,CABS(V3) )

SEARCH FOR LOCATION :LOC TO FLACE THE FOINT
LOC=SEARCH (V3 . DATA. MSIZE, NFOINT)

INSERT THE FOINT INTO THE PROPER LOCATION
CALL INSERT (LOC, NFOINT,DATA,MSIZE,V3.-1.,0.)
TO GENERATE THE 2ND QUATRANT FOINTS

IF (THETA.LE.PI/2.)

& CALL GEN2(V1.V2 -M-M-D\T&PSIZE.NR)M.’LI)

IF (THETA.GT.P1/2.)

& CALL Gml (Vl .VZ-MXI .MX]. :D\TA:PSIZE.N'K)INT:‘I Il)

IF (NFOINT.GT.MSIZE) GO 10 888
Vi=-\2

PHASE4 = ATAN2 (AIMAG (V4) ,REAL (V4))
CALL NORMAL (PHASE4)
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V4=CMPLX (PHASE4 .CABS (V4) )
LOC=SEARCH (V4 .DATA, MSTZE, NFOINT)
CALL INSERT (LOC, NFOINT, DATA, MSIZE,V4.0.,-1.)

NOW D GENERATE THE OTHER TWO QUADRANTS

IF (THETA.LE.P1/2.)
& CALL GEN2(V1.V2.MAX1.MAX],DATA,MSIZE, NFOINT,1,-1)
IF (THETA.GT.P1/2.)

& CALL GEN1 (V1,V2.MAX],MAX],DATA,MSIZE, NFOINT,1,-1)
IF (NFOINT.GT.MSIZE) GO TO 888

IF (THETA.LE.P1/2.)

ry
.

R
(e X2Xe]

- o

L Gt

'_ & CALL GEN1 vl N2 oM.MXl.h\TAJGIZE:NR)M"l.'l)
| IF (THETA.GT.PI/2.)
& CALL GEN2(V1,V2.MAX1,MAX],DATA, MSIZE, NFOINT,-1,-1)

IF (NFOINT.GT.MSIZE) GO TO 888

OUTHUT GRID FOINTS INTO FILE: 'OUT.DAT'

0nno

OPEN (UNTT=8,NAME="'OUT' , TYPE="'NEW')
WRITE (8.301) FMIN.FMAX
301 FORMAT(2E1S.8)
WRITE (8,305) FDELTA
305 FORMAT(E15.8)
WRITE (8,310) NFOINT
310 FORMAT(18)
WRITE (8,315), 1SO,RADIUS
315 FORMAT(A2.E15.8)
WRITE (8.320) v1.V2
320 FORMAT(2E15.8,2E15-8)
WRITE(8.320) ul.U2
DO 20 J=1.NFOINT
WRITE (8,320) DATA(J,1) ,DATA(J,2)

20 CONTINUE
CLOSE (UNTT=8,DISP='SAVE')
® D 999

888 WRITE(6.%) 'ERROR:SPECIFIED ARRAY SIZE 00 SMALL!'

939 SDP ]
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SUBROUTINE:: GEN1

THIS SUBROUTINE WILL GENERATE ALL THE GRID FOINTS WITHIN THE WO
VECIORS V1.V2 ON THE TWO DIMENSIONAL PLANE. THAT IS IF THE ANGLE
Is MUTE.

vl sFIRST VECTOR

2 :SEQOND VECTOR

MAX sMAXTMUM FREQUENCY IN EACH VECTOR DIRECTION
AMAX sABSOLUTION MAXIMUM FREQUENCY

DFILE :DATA ARRAY FOR STORAGE

MSIZE :SIZE OF DFILE

M sNUMBER OF ROINTS GENERATED

NISIGN :SIGN OF N1 (N01*V1)

N2SIGN :SIGN OF N2 (N2*V2)

THIS REQUIRES THE SUPFORT OF SEARCH.NORMAL.INSERT
SUBROUTINE GEN1 (V1.V2,MAX, AMAX, DFILE, MSIZE, M, Nl SIGN, N2SIGN)
EXTERNAL SEARCH

CQOMPLEX DFILE(MSIZE.2) ,VECIOR,V1.V2

REAL MAG,MAX

CALCULATE THE NUMBER OF UNITS IN EACH VECTOR DIRECTIONS

NL=INT (MAX/ (CABS{V1))) +1
N2=INT (MAX/ (CABS(V2))) +1

05 I=l.\2
Do 10 J=1.N
VECTOR=J*V1*N1SIGN +I*V2*N2SIGN
MAG=CABS (VECTOR)

IF (MAG.GT.AMAX) @ TO 5

PHASE=ATANZ2 (AIMAG (VECTOR) , REAL (VECTOR) )
CALL NORMAL (PHASE)

VECTOR=QMPLX (PHASE, MAG)

SEARGH THE LOCATION
LOC=SEARCH (VECTOR, DFILE, MSIZE, M)
RJ=FLOAT (J)
RI=FLOAT(I)

INSERT THE DATA

IF ((NLSIGN.LT.0) .AND. (N2SIGN.LT.0))

& CALL INSERT (LOC,M, DFILE, MSIZE, VECTOR,=RJ.=RI) .

IF ((NLSIGN.LT.O0) .AND. (N2SIGN.GT.0))

& CALL INSERT (LOC,M,DFILE,MSIZE, VECTOR.-RJ,RI)

IF ((NLSIGN.GT.0) .AND. (N2SIGN.LT.0))

E Sl Adh B AT AP S are ai gl g il S srgit DAL SV m

& CALL INSERT (LOC,M,DFILE, MSIZE, VECTOR,RJ,=RI) r.

IF ((NLSIGN.GT.0) .AND. (N2SIGN.GT.0))
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SUBROUTINE : GEN2

THIS SUBROUTINE WILL GENERATE FOINTS BEIWEEN VECTORS V1.V2 IF
THE ANGLE BEIWEEN THEM IS MORE THAN 90 DBGREES BUT
LESS THAN 180 DEGREES

Vi :FIRST VECIOR
X 2 :SECOND VECIOR
MAX :MAXIMUM FREQUENCY IN EACH VECTOR DIRECTION

AMAX sABSOLUTION MAXIMUM FREQUENCY
DFILE :DATA ARRAY FOR STORAGE

MSIZE :SIZE OF DFILE

M sNUMBER OF FOINTS GENERATED
NISIGN :SIGN OF N1 (N1*vV1)

N2SIGN :SIGN OF N2 (N2*V2)

THIS REQUIRES THE SUPFORT OF GENI.INSERT,SEARCH

OO0 ONONON

SUBROUTINE GEN2 (V1 .V2.MAX.AMAX, DFILE, MSIZE, M, Nl SIGN, N2SIGN)
EXTERNAL SEARCH
COMPLEX DFILE(MSIZE,2) ,VECIOR,V1,V2
REAL MAG,MAX
LOGICAL SAME
PI= 3.14159265
- THETA=ABS (ATAN2 (AIMAG (V1) ,REAL (V1)) -ATAN2 (AIMAG(V2) ,REAL(V2)))
A XMAX=MAX/SIN (THETA)
. CALL GEN1 (V1.V2.XMAX, AMAX, DFILE. MSIZE, M, NLSIGN, N2SIGN)
IF (THETA.EO.PI/2.) GO MO 555
s N1LQORRECT=0
- N2QORRECT=0
IF (AMOD (XMAX, CABS(V1)) .GT.0.) NLQORRECT=1
. IF (AMOD (XMAX. CABS(V2) ) .GT.0.) N2CORRECT=1
Nl =INT (XMAX/ (CABS(V1)}) + NLCORRECT
N2=INT (XMAX/ (CABS(V2))) + N2CORRECT
. I2=INT (MAX/ (CABS(V2) ))

TO GHECXX OUT WHICH REGION ARE THE VECIORS IN

annn

- VECTOR=V1*N1SIGN + V2*N2SIGN

B IF ((REAL (VECTOR) *AIMAG (VECTOR)) .GT.0) SAME=.TRUE.
IF ((REAL (VECIOR) *A1MAG (VECTOR) ) .LT.0) SAME=.FALSE.
IF ((REAL(VECTOR) *AIMAG (VECTOR)) .NE.0) @O D 3
VECTOR=2.*V1*N1SIGN + V2*N2SIGN
IF ((REAL (VECTOR) *AIMAG (VECTOR) ) .GT.0) SAME=.TRUE.
IF ((REAL(VECIOR) *AIMAG (VECIOR)) .LT.0) SAME=.FALSE.

- 3 CHECK=0.

", S J=1.M ‘_".

- 0o 10 I1=12.\2 -

IF(CHECK.GE.2.) Q0 D S0
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VECTOR=J*V1*N1SIGN +I%V2*N2SIGN
MAG=CABS (VECTOR)

MAKE SURE THAT CHECK IS INCREMENTED PROPERLY

anon

IF ((NOT SAME).AND. ( (REAL (VECTOR) *AIMAG (VECTOR) ) .GT.0))
& CHECK=(QHBCK + 1.
v IF ((SAME) .AND. ( (REAL (VECTOR) *AIMAG (VECIOR) ) .LT.0))
L & CHECK=CHECK + 1

MARE SURE THE FOINT GENERATED IS INSIDE THE CIRCLE

-
.

IF (MAG.GT.AMAX) GO D §

-,

MARE SURE THAT CHECX IS DECREMENTED PROPERLY

0oan 000

IF ((NOT SAME) .AND. ( (REAL (VECTOR) *AIMAG (VECTOR) ) .GT.0))
CHECK=CHEXK - 1.
IF ((SAME) .AND. ( (REAL (VECTOR) *AIMAG (VECTOR) ) .LT.0))
& CHECK=CHECK -~ 1.
PHASE=ATAN2 (ATMAG (VECTOR) , REAL (VECTOR) }
CALL NORMAL (PHASE)
VECIOR=CMPLX (PHASE, MAG)
LOC=SEARCH (VECTOR, DFILE, MSIZE, M)
RI=FLOAT (J)
RI=FLOAT(I)
IF ((NLSIGN.LT.0).AND. (N2SIGN.LT.0))
& CALL INE!RT ([DC,H.DFILE.DSIZE.VWDR--RL-RI)
IF ((NLSIGN.LT.0) .AND. (N2SIGN.GT.0))
& CALL INSERT (LOC,M,DFILE,MSIZE,VECIOR,-RJ,RI)
IF ((NLSIGN.GT.0) .AND. (N2SIGN.LT,.0))
& CALL INE!RT (LDC,HpDE‘ILE.PSIZE.VMDR.M.-RI)
IF ((NISIGN.GT.0) .AND. (N2SIGN.GT.0))
& CALL INSERT (LOC,M,DFILE,MSIZE, VECIOR.RJ,RI)
10 CONTINUE
5 CONTINUE
50 I1=J-2
Do 15 1=12.N2
DO 20 J=11.M
VECIOR=J*V1"N1SIGN +I*V2*N2SIGN
MAG=CABS (VECIOR)
IF (MAG.GT.AMAX) GO D 15
PHASE=ATAN2 (AIMAG (VECIOR) ,REAL (VECTOR) )
CALL NORMAL (PHASE) g
VECTOR=QOMPLX (PHASE, MAG) .4
1LOC=SEARCH (VECTOR, DFILE, MSIZE, M) -4
RI=FLOAT (J)
RI=FLOAT (1)
IF ((NLSIGN.LT.0) .AND. (N2SIGN.LT.0))
& CALL INSERT(LOC,M,DFILE, MSIZE, VECIOR,~RJ,~RI) T
IF ((NLSIGN.LT.0) .AND. (N2SIGN.GT.0)) -

e
n

Faw
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& CALL INSERT (LOC, M, DFILE, MSIZE, VECTOR, =RJ,RI)
IF ((NLSIGN.GT.0) .AND. (N2SIGN.LT.0))
& CALL INSERT (LOC, M, DFILE, MSIZE, VECTOR, RJ, =RI)
IF ((NLSIGN.GT.0) .AND. (N2SIGN.GT.0))
& CALL INSERT (LOC,M, DFILE, MSIZE, VECIOR,RJ,RI)
20 CONTINUE
15 QNTINUE
555 RETURN
END
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FUNCTION: SEARCH

THIS FUNCTION WILL SEARCH THE LOCATION WHERE THE ELEMENT

FITS INID A DATA ARRAY. THE ARRAY ASSUMES AT LEAST WO

MEMBERS. THE ELEMENT MAY HAVE 3 FOSSIBILITIES:~
1) THE REAL PART IS THE SAME IN THE RETURNED LOCATION
2) THE REAL PART IS THE SAME IN THE RETURNED LOCATION +1
3) THE REAL PART IS BETWEEN THE ABOVE TWO

THIS FUNCTION EMPLOYES BINARY SEARCH TEGHNIQUE 0 LOCATE

ELEMENT :CQOMPLEX ELEMENT 10 BE PLACED WITH PRIORITY OF THE
REAL PART OVER THE IMAGINARY PART

DFILE :ARRAY FILE 0 BE SEARCHED AND INSERTED

MSIZE :SIZE OF DFILE

LAST sNUMBER OF ELEMENT IN DFILE

OO0 OON0NANANDNAOAN

FUNCTION SEARCH (ELEMENT, DFILE,MSIZE, LAST)
CQOMPLEX DFILE(MSIZE,2) ,ELEMENT
LOC2=LAST
1oCl=1
IF (REAL(ELEMENT) .LT.REAL(DFILE(LOC],1))) GO D 147
IF (REAL (ELEMENT) .GT. REAL(DFILE(LOC2.1)}) GO D 1
120 ILoM = (LOC1 +LOC2)/2
IF(LOOM.EO0.LOC1) GO D 150
IF (REAL (ELEMENT) . LT. REAL (DFILE (LOQM,1)
IF (REAL (ELEMENT) .GT. REAL (DFILE (LOCM, 1)
G 'O 145
125 10C2 =LOQM
GO D 120
130  LOC1=LOM
GO D 120
140 SEAR(H = LOC2
GO D 155
145 SEARGH = LOOM
GO O 155
147 SEARGH = LOC1-1
G D 155
150 SEARG = LOC1
155 RETURN
END
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200

202

280

285

290

295

SUBROUTINE : INSERT

THIS SUBROUTINE WILL INSERT THE ELEMENT INTO THE DFILE
IF THE ELEMENT HAS A DIFFERENT PHASE OR A SMALLER
MAGNTTUDE. THE FHASE HAS A SENSITIVITY SPECIFIED BY THE ERROR.

NSTART :LOCATION OF THE ELEMEMNT

LAST :NUMBER OF ELEMENTS IN DFILE
DFILE  :ARRAY FILE 1D BE INSERTED
MSIZE :DIMENSION OF DFILE

ELEMENT :COMPLEX ELEMENT TO BE INSERTED
VIINDEX :NUMBER OF V1 USED

V2INDEX :NUMBER OF V2 USED

SUBROUTINE INSERT (NSTART, LAST, DFILE, MSIZE, ELEMENT, V1 INDEX, V2 INDEX)
COMPLEX DFILE(MSIZE,2) ,ELEMENT

PI=3.14159265

ERFOR= 0.01*PI1/180.

IF (NSTART.NE.LAST) GO O 200

IF (ABS (REAL (ELEMENT) ~REAL (DFILE (LAST,1) ) ) .LT. ERROR) GO IO 290
LAST = LAST +1

DFILE (LAST, 1) =ELEMENT

DFILE (LAST, 2) =CMPLX (V1 INDEX, V2 INDEX)

@ D 295

IF (NSTART.PD.0) GO TO 202

IF (ABS{REAL (ELEMENT) ~REAL (DFILE (NSTART,1))) .LT.ERROR) GO TO 285
IF (ABS(REAL(DFILE (NSTART+1,1) ) -REAL (ELEMENT) ) .LT.ERROR) Q0 1D 280
CALL PUSH (NSTART+1.LAST,DFILE, MSIZE)

DFILE{(NSTART+1,1) =ELEMENT

DFILE (NSTART'+1 , 2) =COMPLX (V1 INDEX, V2 INDEX)

G T 295

IF (AIMAG (ELEMENT) .GE. AIMAG (DFILE (NSTART*1,1))} GO M 295

DFILE (NSTART+1.1) = ELEMENT

DFILE (NSTART+1 ,2) =CMPLX (V1 INDEX, V2 INDEX)

@ T 295

IF (AIMAG (ELEMENT) .GE. AIMAG (DFILE (NSTART,1))) GO D 295

DFILE (NSTART, 1) =ELEMENT

DFILE (NSTART, 2) =(CMPLX (V1 INDEX, V2 INDEX)

@ T 295

IF (AIMAG (ELEMENT) .GE. AIMAG (DFILE(LAST,1))) GO TO 295

DFILE (LAST, 1) sELEMENT

DFILE (LAST, 2) =CMPLX (V1 INDEX, V2 INDEX)

RETURN

END
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SUBROUTINE: PUSH

THIS SUBROUTINE WILL FUSH ALL THE DATA IN 'DFILE' BY 1 FOSITION
THE OPERATION IS SPECIFIED BY NSTART1 ~THE BEGINNING OF PUSH
=THE LAST LOCATION OF DFILE

SUBROUTINE PUSH (NSTART1 .LAST1 ,DFILE.MSIZE)

COMPLEX DFILE (MSIZE.2) ,TEMPl,TEMP2

N=LAST1- NSTART1 +1

DO S I=1.N
TEMP1=DFILE (LAST1+1-I,1)
TEMP2=DFILE (LAST1+1~1,2)
DFILE (LAST1+2-1,1) =TEMP1
DFILE(LAST1+2-1,2) =TEMP2

QONTINUE

LAST1 = LAST1 +1

RETURN

END
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SUBROUTINE: NORMAL

THIS SUBROUTINE WILL NORMALIZE A PHASE RANGE OF (-PI TO FI)
0 A RANGE OF (0 10 2*PI).

ALPHA: ANGLE IN RADIAN 10 BE NORMALIZED

SUBROUTINE NORMAL (ALPHA)
PI=3.14159265

IF (ALPHA.LT.0) ALPHA=ALFHA + 2.*PI
RETURN

END
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PROGRAM: INTERFOL

THIS PROGRAM WILL INTERFOLATE FOR 3 OPTIDNS.

FILE FNAME STORED THE GRID POINT INFORMATION GENERATED PREVIDUSLY.
THIS PROGRAM WILL REPEAT ITSELF, EXIT ONLY BY QONTROL C

THIS PROGRAM LINKS WITH 'PLOTLIB

THIS PROGRAM RBQUIRES AN INFUT OF A MEASUREMENT FILE :FNAME
THE STRUCTURE OF FNAME:
FMIN. FMAX -MAXIMUM AND MINIMUM FREQUENCY USED IN HZ (2E15.8)
FDELTA ~NORMALIZATION FACTOR IN FREQUENCY(1E1S.8)
NROINT ~NUMBER OF FOINTS IN THIS FILE(IS8)
IS0, RADIUS~ISO='T' IF ISOTROPIC SAMPLING WAS DONE (A2)
~ISO='F' IF ISOTROPIC SAMPLING WAS NOT DONE
~RADIUS IS THE ISOTROPIC CIRQLE RADIUS USED IN SECOND(E15.8)
vi.v2 ~VECTORl AND VECTOR2 IN FREQUENCY DOMAIN(4ElS.8)
u.m ~VECTORl AND VECTOR2 IN TIME/SPACE DOMAIN(4E15.8)
*,%,%,%*-REAI, AND IMAG MEASUREMENT;N1,N2 FOR THE MEASUREMENT (4E15.8)
(MAKE SURE ALL THE ABOVE ARGURMENTS ARE SEPARATED BY COMMAS IN FNAME!)

Nlw1,N2*V2 SFECIFIES THE SAMPLING LATTICE

LINK INTERFOL,WFILE, UM, CONST1.QONST2,FUNC1, FUNC2 ., FUNC3,SINC, =
RALOT, ELIM, ' PLOTLIB

OO0 OO0OONA0OOONONONNNNONN

. COMPLEX SUM,DATA(360) ,V1.V2.Ul,U2.FRED, (OEFF (10000,2) , TEMP1
CHARACTER ISO

CHARACTER*10 ENAME

MSIZE=10000

NDATA :SPECIFIES THE NUMBER OF ANGULAR FOINTS
NOM sSPECIFIES THE NUMBER OF FREQUENCY FOINTS

aonon

. NDATA=360
5 NUM=201
PI=3.14159265
.. WRITE (6,*) ' FILE WHICH HAS GRID FOINT MEASUREMENT?'
ACCEPT 50, FNAME
-~ 50  FORMAT(A10)
OPEN (UNTT=9 , NAME=FNAME , TYPE='OLD" )

READ IN NECESSARY DATA

[eXeXe]

READ(9,550) FMIN.FMAX
550 FORMAT(2E15.8)
READ(9,551) FDELTA
- 551 FORMAT(E15.8)
( READ(9,552) NFOINT
552 FORMAT(I8)
IF (NFOINT.GT.MSIZE) GO D 8888

’ .
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= READ(9,553) 1SO.RADIUS

553  FORMAT(A2.E15.8)
READ(9.554) V1.V2
554 FORMAT(2E15.8,2E15.8) -2

READ(9.554) ul.U2
V1=2.*PI*FDELTA*V1
V2=2.*P] *FDELTA*V2

& Ul=Ul/ (FDELTA) R
U2=U2/FDELTA
c |
c OPTIONS D GUARD AGAINST MEASUREMENT DATA IN FORMAT :
C OTHER THAN REAL AND IMAGINERY
c
S70 WRITE(6,*) 'DATA IN WHICH FORMAT:1) REAL AND IMAG'
WRITE (6,%) ' 2) AMP(LINEAR) AND PHASE (RADIAN) '
WRITE (6,*) ' 3) AMP(DB) AND PHASE (RADIAN) *
WRITE(6,%) ' 4) AMP(DB) AND PHASE (DEGREE) '
ACCEPT *, NCOML
IF ((NCOM1.GT.4) .OR. (NOM1.LT.1)) GO IO 570 -t

DO 560 I=1.NFOINT
READ(9.554) XREAL.XIMAG, COEFF(I,2)
IF (NOML.BQ.1) GO T 580
AMP=XREAL -
PHASE=XIMAG o
IF((NCDML.ED. 3) .OR. (NCOML.EO.4) ) AMP=L0** (AMP/20)
IF(NCOML.BO.4) PHASE=PHASE*PI/180.
XREAL=AMP*COS (PHASE) =
XIMAG=RAMP*SIN(PHASE) N
580 QOEFF (I,1)=QMPLX (XREAL . XIMAG)
560 CONTINUE
CLOSE (UNIT=9,DISP="SAVE')

ASK FOR THE TYPE OF INTERFOLATION

[V e XeKe]

WRITE(6,% ' 3 CHOICES :1) INTERFOLATE FOR 1 ASPECT ANGLE AND OUTRUT' -
WRITE (6.%) ' 201 FREQUENCY FOINTS.'
WRITE (6.%) ° 2) INTERFOLATE FOR 1 FREQUENCY AND OUTRUT
WRITE (6,%) ' 360 DBEGREE FOINTS.'

WRITE (6,%) ' 3) INTERFOLATE INTO 2-D SQUARE GRID'

ACCEPT *, NCOM

THE BRANCGHING OF DECISION

[eXeXg]

IF (NOM.EQ.2) GO O 200 -
IF (NCOM.EQ.3) GO 'O 300
IF (NCOM.NE.1) GO T 5

0 INTERFOLATE FOR 1 ASPECT ANGLE BUT 201 FREQUENCY POINTS

SOOO

WRITE(6,*) 'FREQUENCY RANGE? LOW T0 HIGH IN Hz' -
ACCEPT *, PMINS, FMAXS

[
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- IF (FMINS.GE.FMAXS) GO D 10

WRITE (6.%*) ' WHICH ASPECT ANGLE? (degree)'

ACCEPT *, ANGLE

F ANGLE=ANGLE*P1/180.

- FINCR= (FMAXS-FMINS) / (NUM-1)

- DO 15 1=1,NJM

WRITE(GI*) 'PORKIIG N: '-Il' LAST ONE: 'an
AFRED=FMINS + FINCR*(1-1)

IF (AFREQ.EQ.0.) @ ' 13

C
C MARE SURE THE INTERFOLATION IS DONE BETWEEN THE MEASURED FREQUENCY
C RANGE
", c
) IF (((AFREQ) .GT.MAX) .OR. { (AFRED) .LT.FMIN) ) GO 10 13
FREQ=CMPLX (AFREQ*Q0S (ANGLE) ,AFREQ*SIN (ANGLE) )
DATA(I)= SUM(FREQ, QOEFF,MS1ZE,V1,V2.Ul.U2.1SO0, NFOINT, RADIUS)
GO D 15
13 DATA(I)=(0.,0.)
15 QNTINUE
C
C PLOT AND WRITE FILE
C

CALL RHELOT (DATA, NUM, FMINS, FINCR)
CALL WFILE (DATA, NDATA, NUM)
@S5

C
C SEQND SECTION OF THE PROGRAM

C T0 INTERFOLATE ‘FOR 1 FREQUENCY, BUT 360 DEGREE FOINTIS
C

2

00 WRITE(6.*) 'WHICH FREQUENCY?(HZ)'
ACCEFT *, AFREQ
DO 205 I=1.NDATA
WRITE (6,*) 'WORKING ON: ',I,' LAST ONE: '.NDATA
ANGLE=(1-1)*P1/180.
IF (AFREQ.]Q.0.) GO IO 203

MAKE SURE THE INTERFOLATION IS DONE BETIWEEN THE MEASURED FREOUENCY
RANGE

NnoOnon

IF (((AFREQ) .GT.PMAX) .OR. ( (AFREQ) .LT.FMIN)) GO IO 203
FREO=QMPLX (AFREQ*COS (ANGLE) ,AFREQ*SIN (ANGLE) )
DATA(I)= SUM(FREQ,QDEFF,MSIZE,V1.V2.Ul.U2.150, NFOINT, RADIUS)
GO I 205

203 DATA(I)=(0.,0.)

CONTINUE

PLOT AND WRITE THE FILE
FOLARP :A SUBROUTINE IN 'PLOTLIB

onnng
wn

CALL FOLARP(DATA,3.5.3.1.NDATA,1.1)
CALL WFILE(DATA, NDATA, NDATA)
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THIRD PART OF THE PROGRAM

TO INTERFOLATE INTD A 2-D SOUARE GRID

(DUE O TIME CONSUMFTION, THIS IS NOT IMPFLEMENTED. BUT IT CAN
BE DONE SIMILARILY AS PART 1 AND 2)

wOOnOOONON

00 WRITE(6.*) 'NOT READY YET!'
. G D5
- 8888 WRITE(6.*) 'ERROR:THE SIZE OF INFUT FILE IS LARGER THAN SPECIFIED!'®
A DS
END
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CQOMPLEX FUNCTION: SUM

THIS FUNCTION WILL D0 THE SUMMATION OF F(N1*V1-+HN2*V2) %G (W-N1*V1-N2#V2)
(EQUATION 2-9 IN THIS WRITE UP)
FOR ALL AVAILABLE VALUES OF N1 AND N2 IN THE FILE FNAME

FRED :COMPLEX (F1,F2); LOCATION IN THE FREQUENCY PLANE
COEFF  :COMPLEX ARRAY STORING THE SAMPLED VALUES

MSIZE :SIZE OF QOEFF

Vi.v2 :VECIOR 1 AND 2 IN THE FREQUENCY DOMAIN

Ul.U2 :VECIOR 1 AND 2 IN HE SPACE DOMAIN

IO sT=ISOTROPIC SAMFLING , F=NON-ISOTROPIC SAMPLING (Al)
NEQINT :NUMBER OF NON~ZERO ELEMENTS IN QOEFF

RADIUS :RADIUS OF THE ISOTROPIC CELL

- -
- s

THIS REQUIRES THE SUPFORT OF CONSTI.CONST2

[eNeReXsReNeNe e e e e XeKeXe X2 XoXa)e)

COMPLEX FUNCTION SUM(FREQ.CDEFF, MSIZE,V1.V2.U1,U2, ISO, NFOINT, RADIUS)
GHARACTER 1S0

[ COMPLEX FREQ,V1,V2-UL,U2.W, COEFF (MSIZE, 2)

PI=3,14159265

- SUM=QMPLX (0. ,0.)

CONVERSION OF FREQUENCY INTO RADIAN FREQUENCY

. FREO=2. *PT*FREQ
DO 5 I=1,NFOINT

W=FREQ-REAL (COEFF (I, 2) ) *V1-AIMAG (COEFF (I, 2) ) *V2
s IF (ISO.EQ.'T') SUM=SUM + QDEFF(I,1)*CONST] (RADIUS,W)
IF (ISO.EQ.'F') SUM=SUM + COEFF(I,1)*CONST2(U1.U2.W)
5 CONTINUE

RETURN
BD

ann
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[eXeNeNe e K Xa e Ke]

FUNCTION :QONST1
THIS FUNCTION IS FOR REQONSTRUCTION OF ISOTROPIC SAMPLING

CALQULATING :
(L/ ((R**2) W1 * (WL*#2-3%52%*2) ) ) *{ 2%W1*QDS (RW1/S0RT (3) ) *CDS (RWW2)
~2%W1*Q0S (2*R*"W1/S0RT(3))
~2*SORT (3) *W2*SIN(R"W1/SQRT (3) ) *SIN(R*W2) }

THIS REQUIRES THE SUPFORT OF FUNC1,FUNC2.FUNC3,ELIM

R:CONSTANT
W:QOMPLEX (Wl.W2)

FUNCTION QONST1 (R, W)
COMPLEX W

DIMENSION AB(3,4)
TOLER=]1.

W1 x=REAL (W)
W2=ATMAG (W)
C=SORT(3.)
Dl=(W1-C*"2) *R
D2=(Wl +C*W2) *R

THE RECONSTRUCTION FUNCTION WILL BLOW UP WHEN 1)Wl=0 OR
2) WL *#2=34y2%*2

IF ((ABS(D1).GE.TOLER) .AND. (ABS{(D2) .GE.TOLER)) GO TO 999
IF ((D1.F0.0.) .OR.(D2.F0.0.)) GO I 888

THERE IS ONE MORE PROBLEM DURING IMPLEMENTATION:

THE (OMFUTER'S UNDERFLOW PROBLEM.

THEREFORE FOR TDLER=1l., THE FUNCTION IS INTERFOLATED

WITH THREE FOINT MATCHING FOLYNOMINAL.

THE QUEFFICIENTS OF THE FOLYNOMINAL IS CALCQULATED BY GAUSSIAN
ELIIMINATION. THIS PROGRAM IS FURNISHED BY MR. BING KWAN
ELIM(AB,3,4.3)

IF ((ABS(D2)).LT.TOLER) GO O 555
AB(1,2) =((W1*R)+(TOLER) ) /C
AB(2.2) =(W1*R/C)
AB(3,2) =((W1*R)~(TOLER))/C
GO ™ 777
AB(1.2) = ((TOLER) +(W1*R)) /C
AB(2.2) =W1*R/C
AB(3,2)=((TOLER}-W1*R) /C
AB(1,4) =FUNC1 (R,W1, (AB(1,2}) /R)
AB(2.4) =FUNC2 (R, (AB(2.2) ) /R)
AB(3,4)=FUNC1(R,W1.,(AB(3,2))/R)
DO 800 J=1,3

AB(J,3)=1.0
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AB(3,1)=((AB(J,2))4*2.)
800 CONTINUE
CALL ELIM(AB,3.4,3)
CONST1=(FUNC3 (AB(1.4) ,AB(2.4) ,AB(3,4) ,W2*R))
GO D 1000
888  CONST1=FUNC2(R,W2)
GO ‘O 1000
T 999 Cnisntﬂm (R:m W2)
o 1000 RETURN

—
3
.

- »;—.

END
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FUNCTION: FUNC

THIS IS THE RECONSTRUCTION FUNCTION WHEN THE DENOMINATOR IS
NOT ZERO.

FUNCTION FUNC](R.Wl,W2)

C=S0RT(3.)

Dl=(Wl-C"2) *R

D2=(W1+C*W2) *R

X1=(Q0S (R*W1/C) ) * (QOS (R"W2) )

X2=-QS (2. *"R™1/C)

X3=- (W2*R) * (SINC (R"W1/C) ) * (SIN(R*W2) )
FUNC1=2.* (X1+X2+X3) / (D1*D2)

RETURN

END

(eXeNeXeKele]
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c FUNCTION: FUNC2 :

c
r C THIS IS THE RECONSTRUCTION FUNCTION WHEN W1%%2 - 3%{2%#2 =Q :
> C K
- FUNCTION FUNC2(R.W2) .

Cl=(2./3.) *SINC (2. "R"W2)
T C2m(1./3.) * (SINC (R"42) ) #%2,
[ FUNC2=C1+C2
- RETURN
END
B
r, e
e", :
.-
-
}.
.
.
. ;
¥
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FUNCTION: FUNC3

THIS FUNCTION WILL PRODUCE THE LINEAR INTERFOLATION FORTION
OF THE REQONSTRUCTION FUNCTION -
WHEN THE UNDERFLOW PROBLEM OOCQURS

C
C
C
C
C
C
C

FUNCTION FUNC3 (A,B,C,W2)
X1=A* (W2#4*2)
X2=B402

FUNC3=X1+4X24C
RETURN

o

.
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FUNCTION:: QONST2

THIS FUNCTION IS T0 REQONSTRUCT RECTANGLUAR SAMPLING

CALQULATING :
(SIN(.5* (V1.W) )} * (SIN(.5* (V2.W) )} /(. 25% (V1. W) * (V2.W) }

NDOOONDNOONO

i e

THIS FUNCTION REQUIRES THE SUPFORT OF SINC

FUNCTION QONST2(V1.V2.W)
.- COMPLEX V1,V2.W
. X1=REAL (V1) *REAL (W) +AIMAG (V1) *AIMAG (W)
" X2=REAL (V2) *REAL (W) +AIMAG (V2) *AIMAG (W)
CONST2=SINC (X1/2.) *SINC(X2/2.)
RETURN
v END

r‘v‘.‘r"
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SUBROUTINE: RPLOT

THIS SUBROUTINE WILL DO RECTANGULAR PLOT
FOR REAL AND IMAGINERY PLOT OR MAGNTTUDE AND PHASE PLOT.

DATA sCOMPLEX ARRAY TO BE PLOTTED(SIZE=360)
LAST :LAST ELEMENT IN THE ARRAY

FMIN :SMALLEST VALUE ON THE ABSCISSOR
FINCR  :INCREMENT ON THE ABSCISSOR

C
C
C
C
C
C
C
C
C
C
C

SUBROUTINE RPLOT (DATA, LAST, FMIN. FINCR)
CHARACTER (DM
CQOMPLEX DATA(360}
DIMENSION YAXTIS1(201),YAX1S2(201),XAXIS(201)
5 WRITE(6,*) 'DO YOU WANT REAL AND IMAGINERY PLOT?Y/N'
ACCEPT 6, QOM
6 FORMAT (A1)
IF (OOM.EO.'N') @O O 15
IF (COM.NE.'Y') GO D 5
DO 10 I=1,LAST
YAXTS] (1)=REAL(DATA(I))
YAXIS2 (1) =AIMAG (DATA(I))
XAXIS (I)=(I-1) *FINCR + FMIN
10 CONTINUE
GO O 25
15 DO 20 I=1,LAST
XAXIS(I)=(I-1) *FINCR +FMIN
YAXIS] (I)=CABS(DATA(I))
IF(REAL(DATA(I)) .BQ.0.) GO O 18
YAXIS2 (1) =ATAN2 (AIMAG (DATA(I) ) ,REAL (DATA(I)))

G T 20
18 YAXTS2(I)=0.
20 QONTINUE
25 CALL PLTPXG (XAXIS.YAX1S1,201.201.1.0.1)
CALL PLTPKG (XAXIS, YAXIS2,201,201.1.0.1)
RETURN
END

STy
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SUBROUTINE :ELIM

THIS SUBROUTINE IS COURTESY OF MR. BING FKWAN(16)

SUBROUTINE ELIM(AB,N, NP, NDIM)

DIMENSION AB (NDIM,NP)
THIS SUBROUTINE SOLVES A SET OF LINEAR BQUATIONS.
THE GAUSS ELIMINATION METHOD IS USED, WITH PARTIAL PIVOTING.
MULTIPLE RIGHT HAND SIDES ARE PERMITTED, THEY SHOULD BE SUPPLIED
AS (QOLUMNS THAT AUGMENT THE QDEFFICIENT MATRIX.
PARAMETERS ARE:

AB (DEFFICIENT MATRIX AUGMENTED WITH R.H.S. VECIORS.

N NO. OF EQUATIONS

NP TOTAL NO. OF QOLUMNS IN AB

NDIM NO. OF ROWS IN AB

BEGINS THE REDUCTION
NMI=N-1
DO 35 I=1,NM1
FIND THE ROW NUMBER OF THE PIVOT ROW. WE
INTERGHANGE ROWS TO THE PIVOT ELEMENT ON THE DIAGONAL.
IWVT=1
IP1=I+1
DO 10 J=IP1,N
IF(ABS(AB(IVT, 1)) .LT.ABS(AB(J,I})) IPVTI=J
CONTINUE
CHE(XX T0 BE SURE THE PIVOT ELEMENT IS NOT TOO SMALL, IF SO
PRINT A MESSAGE AND RETURN.
IF (ABS(AB(IWVT,I)).LT.1.E~5) GO D 99
NOW INTERCHANGE , EXCEPT IF THE PIVOT ELEMENT 1S ALREADY ON
THE DIAGONAL, DO NOT NEED TO.
IF(IVT.FQ. 1) GO O 25
D0 20 JOOL=I,NP
SAVE=AB (I, JQOL)
AB(I,JOOL) =AB (IPVT, JOOL)
AB(IPVT,JQOL) =SAVE
CONTINUE
NOW REDUCE ALL ELEMENTS BELOW THE DIAGONAL IN THE I-TH ROW.
QHECK FIRST TO0 SEE IF ZERO ALREADY PRESENT. IF SO
CAN SKIP REDUCTION FOR THAT ROMW.
D0 32 JROW=IP1,N
IF (AB (JROW, I) .EQ.0.0) GO O 32
RATIO=AB (JROW, 1) /AB(I, I)
DO 30 ROOL=IP1,NP
AB (JROW, ROOL) =AB ( JROW, KCOL) ~RATTO*AB (I, ROOL)
CONTINUE
QONTINUE
QONTINUE
WE STILL NEED TO (HECX A(N,N) FOR SIZE.
IF(ABS(AB(N,N)) .LT.1.E-5) G0 0 99
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C NOW WE BACK SUBSTITUTE.
NP1=h+1
DO 50 KOOL=NP1,NP
AB (N, KOOL) =AB (N, KOOL) /AB (N, N}
DO 45 J=2,N
NVBL=NP1-J
L=NVBL+1
VALUE=AB (NVEL, KOOL)
DO 40 K=L,N
VALUE=VALUE-AB (NVEL, K) *AB (K, KOOL)
40 CONTINUE
AB (NVBL, ROOL) =VALUE/AB (NVEBL, NVBL)
45 CQONTINUE
50 CQONTINUE
RETURN
C MESSAGE FOR A NEAR SINGULAR MATRIX.
99 WRITE (66,100)
100 FORMAT(/,'SOLUTION NOT FOSSIBE. A NEAR 0 FIVOT ENCOUNTERED. ')
RETURN
D
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SUBROUTINE: WFILE

THIS SUBROUTINE WILL WRITE A COMPLEX 'DATA' ARRAY OF SIZE
'MSIZE' INIO A FILE 'FNAMEL'. THE NUMBER OF NON 2ERO
ELEMENT IS SPECIFIED BY 'NUM'.

SUBROUTINE WFILE (DATA, MSIZE, NUM)
QOMPLEX DATA (MSIZE)
CHARACTER*10 FNAMEL
CHARACTER WRI
WRITE (6,*) '[O YOU WANT TO WRITE INTO A FILE?Y/N'
ACCEPT 9010, WRI
IF (WRI.EQ.'N') GO D 9999
IF (WRI.NE.'Y') GO D 10
WRITE (6,*) 'SIORAGE FILE NAME:'
ACCEPT 9020,FNAMEL
OPEN (UNTT=8, NAME=FNAME] , TYPE= ' NEW' )
DO 30 I=1.NUM
WRITE (8,*) DATA(I)
QONTINUE
CLOSE (UNIT=8,DISP='SAVE')
FORMAT (Al)
FORMAT (A10)
RETURN
END
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[oNeXe]

anon

[eXeXeKe]

PROGRAM : INTEGFFT

THIS PROGRAM WILL READ FROM A COMPLEX DATA FILE:FNAMEL (MSIZE)

WHICH IS PART OF AN INTERGRAND FOR INTEGRATION.

THE DATA ARGUMENT HAS A RANGE OF (0.360).

(I.E. MSIZE IS USUALLY A MULTIPLE OF 360 <680)

FOR 8192>MSIZE>512 CHANGE M,NPl AND THE ARRAY SIZE OF: DATAl,.DATA2.S
THE OTHER PART OF THE INTBGRAND IS SPECIFED IN

FUNCl. THE INTBEGRATION IS LIKE A QONVOLUTION.

THEREFORE, THE INTEGRATION IS USING Fi'T APPROACH

A RECTANGULAR TO FOLAR COORDINATE FILE MUST BE SUPPLIED
THIS IS FOR THE TIME PLOT WHICH IS FNAME3.
THIS FILE IS GENERATED BY PROGRAM:RECTFOLAR
FNAME3 FORMAT:
NUMBER OF POINT: (*)
RADIUS. ANGLE (RADIAN) , X~(OORDINATE, Y-(DORDINATE (4E15-8)

THE ONLY PART THAT IS RELATED TO THE MENSA'S ACTUAL INTEGRATION IS
SHOWN AT A LATER SET OF COMMENT BEFORE TEMP1 IS CALCULATED

LINK INTEGFFT,APIORI, EXPAND, PICK, 'SSP

QOMPLEX DATAL (512) ,DATA2(512) ,FACTOR, FOLAR (10000) ,RECT (10000) , DUMMY
DIMENSION S(128)

CHARACTER*10 FNAMEL.FNAME2.,FNAME3

CHARACTER (NE,OID

M=9

NP1=512

NPL=129

NFOLAR=10000

PI=3.14159265

XNOR IS USED TO NORMALIZE THE AMP OF THE OUTPUT
XNOR=1E-9
THIS TIME FACIOR IS EACH UNIT OF THE TIME PLOT

TIME=1/(0.49212598E9*31.)

WRITE (6,*) 'FILE NAME OF MEASURED DATA:'
ACCEPT 9000,FNAMEL

WRITE (6,*) 'FREQUENCY USED: (HZ)'

ACCEPT*, FRED

WRITE (6,*) 'NUMBER OF POINTS IN THE FILE:'
ACCEPT*.MSIZE

IF THE NUMBER OF POINTS IN THE FILE IS LESS THAN NFL,
THEN THE DATA MAY BE ONE QUADRANT DATA ONLY
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IF (MSIZE.GT.NP1) GO TO 998
IF (MSIZE.GT.NPL) GO 10 110
» 120 WRTTE(6,*) 'IS THIS ONE QUADRANT DATAZY/N'

: ACCEPT 9020,0NE
. IF (ONE.R.'N') GO D 110

IF (ONE.NE.'Y') GO O 120

. 130 WRITE(6.*) 'COMPLEX CONJUGATE IN 2ND AND 3RD QUACRANTS?Y/N'
; AMCCEPT 9020.,0DD
g IF ((ODD.NE.'Y') .AND. (ODD.NE.'N'}) GO TO 130

c
C ‘IO GUARD AGAINST FOSSIBLITY OF MEASUREMENT IN OTHER FORMAT
C
110 WRITE(6,*) 'FORMAT OF DATA:  1)REAL AND IMAGINARY'
WRITE(6,*) 2)AMP(LINEAR) AND PHASE (RADIAN) '
WRITE(6,%) * 3)AMP(LINEAR) AND PHASE (DEGREE) '
, WRITE (6,%) 4)AMP(DB)  AND PHASE(RADIAN) '
WRITE(6,%) ' 5)AMP(DB)  AND PHASE (DEGREE) '
| ACCEPT *,NFORM

IF ((NFORM.GT.5) .OR. (NFORM.LT.1)) GO TO 110

WRITE (6,*) 'SIORAGE FILE NAME:'
' ACCEPT 9000.FNAME2
- WRITE(6,*) 'NAME OF THE RECTANGULAR 10 FOLAR FILE:'
" ACCEPT 9000,FNAME3

INITIALIZATION
i D0 10 I=1,NP1

DATAL (1) =(0.,0.)
CONTINUE

(e XeXg!

[=]

READ IN MEASUREMENT DATA

(oo Xe N

OPEN (UNIT=8,NAME=FNAMEL . TYPE='OLD' )
n DO 60 I=1.MSIZE
READ (8,9030) DUMMY
o CALL APTORI (DUMMY , NFORM)
DATAL (1) =CUMMY
60  CONTINUE
CLOSE (UNTT=8,DISP='SAVE')

EXPAND TO FILL THE HALF OF THE SPAN OF THE FFT REPETITIVE UNIT

ann

o— IF (MSIZE.LE.NPL)CALL EXPAND (DATAl .DATA2,NPl.MSIZE, NPL)
‘ 1IF (MSIZE.GT.NFL)CALL EXPAND (DATAL.DATA2,NP1.MSIZE,NP1)
IF (MSIZE.GT.NPL) GO M 170

CASE OF FULL PLANE DATA INFUT

C
C
C
N IF (ONE.EQ.'N') CALL EXPAND (DATAl,DATA2.NP1,NPL,NP1)
IF (ONE.EQ.'N') €O O 170
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160

165

170

[eXeKe]

100

anon

[eNeNeNeNe]
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FILL IN THE OTHER HALF OF THE SPAN BY COMPLEX CONJUGATE OR
THE SAME

MSIZE=NPL
DD 160 I=1,MSIZE-2
IF (ODD.BQ. 'N')DATAL (I+MSIZE)=DATAl (MSIZE-I)
IF(ODD. B0. 'Y') DATAL (I+MSIZE)=CONJG (DATAL (MSIZE-I))
CONTINUE
MSIZE=2*MSIZE-2
DO 165 I=1,MSIZE
IF(ODD.BQ. 'N') DATAL (I+MSIZE)=DATAL (I)
IF (ODD.BO.'Y') DATAL (I+MSIZE)=CONJG(DATAL(I))
CONTINUE
MSIZE=MSIZE*2
IF(MSIZE.GT.NP1) GO 1O 998
MSIZE=NFl

DELTA :SIZE OF EACH ANGLE INCREMENT

DELTA=2.*P1/MSIZE

OPEN (UNIT=8,NAME=FNAME3 , TYPE="OQLD")
READ(8,*) NEOINT

IF (NFOINT.GT.NFOLAR) GO TO 998

READ THE RECTANGULAR T0 FOLAR (DORDINATE CQONVERSION FILE

D0 100 I=1,NFOINT
READ(8,9005) POLAR(I),RECT(I)
QONTINUE
QLOSE (UNIT=8,DISP="'SAVE')
CALL FORT (DATA1,M,S,1.IFERR)

THE VALUE OF AMP1l =] IS ONLY A DUMMY TO START THE ROUTINE

AMPl=-1.
DO 200 J=1.NFOINT
WRITE(6.*) 'WORKING ON:'.J,' LAST ONE:'.NFOINT
IF (REAL(FOLAR(J)) .BQ.AMPl) GO TO 50
AMP1=FOLAR (J)
DO 17 1=]1,NP1
DATA2 (1) =(0.,0.)
CONTINUE
DO 20 I=1,MSIZE
THETA=(1-1) *DELTA
PHI=2,*PI* (REAL (FOLAR(J))) *TIME*FREQ*CQOS (THETA)

FUNCl: EXP(JWT)
THEREFORE, XREAL=QDS (PHI)
YIMAG=SIN(PHI)

XREAL=(DS (PHI)
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300

998

9000
9005
9010
9020
9030

999

YIMAG=SIN(PHI)
DATAZ (1) =CMPLX (XREAL, YIMAG)

CONTINUE
GO 0 FREQUENCY DOMAIN
CALL FORT (DATA2.M,S.2.IFERR)
QONVOLUTION IN TIME <=> MULTIPLICATION IN FREQUENCY

DO 25 1=1.NP1
DATAZ2 (I)=DATAL (1) *DATA2(I)
ONTINUE

GO BACK TO TIME DOAMIN
CALL FORT (DATA2.M,S.—2.IFERR)

NOW FOLAR(J) IS THE INTEGRAL VALUE OF 2D FOURIER TRANSFORM
WITH IMPULSIVE RADIUS VALUE (MENSA'S INTEGRAL)

ANGLE=AIMAG (FOLAR(J))

POLAR (J) =PICK (DATA2 .NP1,0. ,DELTA, ANGLE)

FOLAR (J) =(POLAR (J) /FLOAT (MSIZE) ) *FREQ*XNOR
CONTINUE

WRITE OUT THE FILE

FILE FORMAT:

NFOINT:NUMBER OF FOINTS(I10)

REAL, IMAGINARY, X~COORDINATE, Y-COORDINATE (4E15.8)

OPEN (UNIT=9,NAME=FNAME2 . TYPE="'NEW' )
WRITE(9,9010) NFOINT
DO 300 I=1,NFOINT
WRITE (9,9005) POLAR(I),RECT(I)
QONTINUE
CLOSE (UNIT=9,DISP='SAVE')
@ T 999
WRITE (6,*) 'ERROR: SIZE OF FILE DO LARGE!'

FORMAT STATEMENTS

FORMAT (A10)
FORMAT (4E15.8)
FORMAT (110)
FORMAT (A1)
FORMAT (2E15.8)

SIOP
END
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SUBROUTINE: EXPAND

THIS SUBROUTINE WILL EXPAND AN ARRAY DATA(MSIZE) QONTAINING ‘'NFILL'
DATA ELEMENTS INIO 'NEXP' DATA ELEMENT USING LINEAR INTERFOLATION
2<NFILL<NEXP

WORK: A DUMMY ARRAY FOR TEMFORARY STORAGE

OOOOO0O0O0O0

SUBROUTINE EXPAND (DATA, WORK,MSIZE, NFILL, NEXP)
QOMPLEX DATA (MSIZE) ,WORK (MSIZE),DIFF
ERROR=1E-6
DELTAl=1./FLOAT (NFILL~1)
DELTA2=] ./FLOAT (NEXP-1)
DO 10 I=1,NFILL
WORK (1) =DATA(I)
10 CONTINUE
DATA (1) =WORK (1)
DATA (NEXP) =WORK (NFILL)
DO 20 I=1.NEXP-2
X=(I)*DELTA2
Ne=INT (X/DELTAL) +1
REMAIN=AMDOD (X, DELTA1)
RATID= (X-DELTA] *FLOAT (N-1) ) /DELTAL
DIFF=(WORK (N+1) -WORK (N) ) *RATID
DATA (I+1) =WORK (N) +DIFF
20 CONTINUE
RETURN
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COMPLEX FUNCTION: PICK

THIS FUNCTION WILL RETURN A LINEAR INTERFOLATED QOMPLEX
VALUE BACK.

DATA: ARRAY

MSIZE: SIZE OF THE ARRAY

FIRST: FIRST/DELTA IS THE FIRST INDEX

DELTA: INCREMENT OF EACH STEP IN THE ARRAY

VALUE: VALUE/DELTA IS THE LOCATION IN THE ARRAY

N sEXACT LOCATION OR LOCATION -1

VARY :AMOUNT OF ANGLE DIFFERENCE

FACIOR :ADJUSTMENT 10 DATA2(N)

COMPLEX FUNCTION PICK (DATA,MSIZE, FIRST, DELTA, VALUE)

COMPLEX DATA (MSIZE) ,FACTOR

IF ((VALUE.LT.FIRST).OR. (VALUE.GT. (MSIZE*DELTA +FIRST))) GO IO 998
N=INT( (VALUBE-FIRST) /DELTA) +1

VARY= (VALUE) - ( (N~1) *DELTA+FIRST)

FACTOR=( (DATA (N+1) -DATA (N) ) /DELTA) *VARY

PICK=DATA(N) +FACIOR

GO T 999

WRITE (6,*) 'ERROR:INTERFOLATED FOINT IS CUTSIDE THE RANGE!'

RETURN
END




C
C SUBROUTINE: APIORI
C
C THIS SUBROUTINE WILL CONVERT AMPLTIUDE AND PHASE (VALUE) INTO
o REAL AND IMAGINARY (VALUE).
C BY SPECIFYING N
C N=1:VALUE IS ALREADY IN REAL AND IMAGINARY FORM
C N=2:AMPLITUDE (LINEAR) , PHASE (RADIAN)
C N=3 : AMPLITUDE (LINEAR) , PHASE (DBGREE)
C N=4:AMPLITUDE (DB) + PHASE (RADIAN)
C N=5:AMPLITUDE (DB) + FHASE (DEGREE)
C
SUBROUTINE APTORI (VALUE,N)
CQOMPLEX VALUE
IF (N.EQ.1) QO 0 999
PI=3.14159265
AMP=REAL (VALUE)
PHASE=AIMAG (VALUE)
IF ((N.EQ.4) .OR. (N.EQ.5)) AMP=10.0**(AMP/20.)
IF ((N.BQ.3).OR.(N.BO.5)) PHASE=PHASE*PI/180.
VALUE=CMPLX (AMP*Q0S (PHASE) ,AMP*SIN (PHASE) )
999 RETURN

END
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PROGRAM : RECTFOLAR

THIS PROGRAM WILL CHANGE RECTANGLAR (OORDINATES IO
FOLAR QOORDINATES. THE FILE 'FNAME' OUTRUTS IN THE
FOLLOWING FORMAT:

RADIUS, PFHI (RADIAN) ,X,Y (4E15.8)
THE FILE WILL ALSO BE ORGANIZED FROM SMALLEST RADIUS
TO THE LARGEST RADIUS.
NOTE THE MAXIMUM X COORDINATE VALUE: 'MAX' WILL GIVE
(MAX#2) **2 +2%2¢MAX +1 DATA FOINTIS
THEREFORE A GRID OF 256X256 CAN ACCOMMDDATE MAX=127

ke
. ., .

ey

LINK RECTFOLAR,GEN.SEARCH] , INSERT1 , FUSH . NORMAL

AOOOOOOOONNNNOON

. COMPLEX DATA(65536.2)
o CHARACTER*10 FNAME
b- WRITE(6.*) 'FILE NAME FOR STORAGE OF RESULTS:"
ACCEPT 5.FNAME
5 FORMAT (A10)
WRITE(6,%) 'MAXIMUM X COORDINATE VALUES:'
‘j'. ACCEPT *,MAX
“ MSIZE=65536
PI=3.14159265
M=0

MeMtl
DATA (M, 1) =CMPLX (0. ,0.)
DATA (M, 2) =CMPLX (0. ,0.)

C
i o THIS DO LOOP GENERATES ALL THE AXIS FOINIS
C

DO 10 J=1.MAX
X1=FLOAT (J)

M=pMrl
F DATA (M,1) =CMPLX (X1,0.)
DATA (M, 2) =(MPLX (X1,0.)
M=M+]l
DATA(M,1) =CMPLX (X1,PI/2)
- DATA (M, 2) =CMPLX (0. ,X1)
L M=M+1
s DATA (M, 1) =QMPLX (X1, PI)
DATA(M.Z)-O&H.X(-XLO.)
- Mep+]
V- mTA(H,l)WOu.3.“PI/2.)
. DA'm(Hﬂ)-QAH..x(O..-xl)
10 CONTINUE
] WRITE(6.*) 'CALQULATING FIRST QUADRANT FOINIS!'
b CALL GEN (MAX, DATA,MSIZE,M,1,1)
i WRITE (6,%) 'CALQULATING SECOND QUADRANT FOINTS{'
CALL GBW(MAX.D\TA.HSIZE.H:-LI)
WRITE(6.*) 'CALQULATING THIRD QUADRANT FOINTS!'
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CALL GEN (MAX,DATA,MSIZE,M,~1,-1)
WRITE (6,*) 'CALQULATING FOURTH QUADRANT FOINTS!'®
CALL GEN(MAX,DATA,MSIZE,M,1.-1)
OPEN (UNIT=8,NAME=FNAME, TYPE='NEW')
WRITE (8,*) M
D0 20 I=1.M
WRITE (8,1000) DATA(I,1),DATA(I,2)
CONTINUE

1000 FORMAT(4El15.8)
SIDP
END
176
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SUBROUTINE: GEN

THIS SUBROUTINE WILL GENERATE OFF AXIS FOINTS
FOR V1=(1,0) ,v2=(0.1)
THIS IS A MODIFIED VERSION OF GENl IN PIGRID

MAX

DFILE

MSIZE :DIMENSION OF DFILE
M sNUMBER OF ELEMENT

NISIGN :SIGN OF Nl (N1*V1)
N2SIGN :SIGN OF N2 (N2*2)

THIS REQUIRES THE SUPFORT OF SEARQGH1 ,INSERT1,NORMAL

SUBROUTINE GEN (MAX.DFILE,MSIZE,M,NLSIGN, N2SIGN)
EXTERNAL SEARGH1
COMPLEX DFILE(MSI2E,2) ,VECIOR,V1.V2
REAL MAG
V1=MPLX(1.,0.)
V2=OMPLX (0.,1.)
DO 5 I=1.MpAX
WRITE(6,%) I
DO 10 J=1.MAX
VECTOR=J*V1*N1SIGN +I*W2*N2SIGN
MAG=CABS (VECIOR)
PHASE=ATANZ (AIMAG (VECTOR) ,REAL (VECIOR) )
CALL NORMAL (PHASE)
VECTOR=(MPLX (MAG, RIASE)
LOO=SEARCHI (VECTOR,DFILE,MSIZE, M)
RI=FLOAT (J)
RI=FLOAT(I)
IF ((NLSIGN.LT.0).AND. (N2SIGN.LT.0})
CALL INSERTI (LOC,M,DFILE,MSIZE, VECTOR,-RJ,~RI)
IF ((NLSIGN.LT.0) .AND. (N2SIGN.GT.0))
CALL INSERTI (LOC,M,DFILE,MSIZE,VECIOR,=RJ,RI)
IF ((N1SIGN.GT.0).AND. (N2SIGN.LT.0))
CALL INSERTI (LOC,M,DFILE,MSIZE, VECTOR,RJ,=R1)
IF ((N1SIGN.GT.0) .AND. (N2SIGN.GT.0))
CALL INSERTI (LOC, M, DFILE, MSIZE, VECTOR,RJ,RI)
CONTINUE
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FUNCTTION: SEARCH1
THIS FUNCTION WILL SEARCH THE LOCATION WHERE THE ELEMENT
FITS INTO A DATA ARRAY. THE ARRAY ASSUMES AT LEAST TWO
MEMBERS. THE ELEMENT MAY HAVE 3 POSSIBILITIES:~
1) THE REAL PART IS GREATER THAN THE RETURNED LOCATION
2) THE REAL PART IS THE SAME
BUT THE IMAGINARY PART >RETURNED LOCATION VALUES
3) THE REAL AND IMAGINARY PART ARE THE SAME
AS THE RETURNED LOCATION VALUES

ELEMENT :OOMPLEX ELEMENT TO BE INSERTED
DFILE :COMPLEX ARRAY TO BE SEARCHED

MSIZE :SIZE OF DFILE

LAST :NUMBER OF NON-ZERO ELEMENT IN DFILE

FUNCTION SEARCHI (ELEMENT, DFILE,MSIZE, LAST)
COMPLEX DFILE (MSIZE,2) ,ELEMENT
LOC2=LAST
LOC1=1
IF (REAL (ELEMENT) .LT.REAL (DFILE(LOC1,1))) GO TO 147
IF (REAL (ELEMENT) .GT.REAL (DFILE(LOC2,1))) GO 10 140
IF ((REAL(ELEM:NT).BO.REAL (DFILE(LOC1.1))) .AND.
(AIMAG (ELEMENT) . LT. ATMAG (DFILE (LOC1.1)))) GO O 147

1
IF ((REAL (ELEMENT).BQ. REAL (DFILE(LOC2,1))) . AND.
1

(AIMAG (ELEMENT) .GT. AIMAG (DFILE(LOC2.1)))) GO 1D 140
LOQM = (LOC1 +L0C2)/2
IF(LOM.EQ.LOC1) GO IO 150
IF (REAL (ELEMENT).LT.REAL (DFILE (LOM,1)))
IF (REAL(ELEMENT) .GT.REAL (DFILE (LOQM,1)))
IF (AIMAG(ELEMENT).LT.AIMAG (DFILE (LOQM,1)
TF (AIMAG (ELEMENT) . GT. AIMAG (DFILE (LOCM, 1)
G D 145
LOC2 =LOM
GO D 120
LOC1=LOM
GO O 120
SEARGIL = LOC2
GO I 155
SEARCH1 = 10M
GO I 155
SEARGHL = LOC1-1
G D 155
SEARGH1 = 10C1
RETURN
END

&
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SUBROUTINE : INSERTA

THIS SUBROUTINE WILL INSERT THE ELEMENT INTO THE DFILE
IF THE ELEMENT HAS A DIFFERENT REAL AND/OR IMAGINARY PART.
THE REAL PART HAS A SENSITIVITY SPECIFIED BY THE ERRORI.
THE IMAGINARY PART HAS A SENSITIVITY SPECIFIED BY ERROR2.
HE PRIORITY IS REAL PART FIRST THEN IMAGINARY PART.

NSTART :LOCATION OF THE ELEMENT

LAST :NUMBER OF NON~ZERO ELEMENTS IN DFILE
DFILE :ARRAY FILE 10 BE INSERTED

MSIZE :SIZE OF DFILE

ELEMENT :QOMPLEX ELEMENT T0 BE INSERTED
V1INDEX :NUMBER OF V1 USED

V2INDEX :NUMBER OF V2 USED

SUBRWTINE INSERT] (NSTART, LAST,DFILE,MSIZE, ELEMENT, V1 INDEX, V2 INDEX)
COMPLEX DFILE (MSIZE,2) ,ELEMENT

PI=3.14159265

ERRORl= 1.E-6

ERROR2=0.01*P1/180.

IF (NSTART.NE.LAST) GO O 200

CASE OF NSTART=LAST

IF (ABS (REAL (ELEMENT) -REAL (DFILE (LAST,1) )} ) .GT. FRRORL) GO O 190

IF (REAL (ELEMENT) . GT. REAL (DFILE (LAST,1))) GO D 190

IF (ABS (AIMAG (ELEMENT) -ATMAG (DFILE (LAST,1))) . LT. ERROR2) GO 0 295
LAST = LAST +1

DFILE (LAST, 1) =sELEMENT

DFILE (LAST, 2) =(MPLX (V1 INDEX, V2 INDEX)

@ M 295

IF (NSTART.EQ.0) GO 10 202

IF (ABS(REAL (ELEMENT)-REAL (DFILE (NSTART,1))) .GT. ERRORL) GO IO 202
IF (REAL (ELEMENT) .GT.REAL (DFILE (NSTART,1))) GO 0 202

IF (ABS(AIMAG (ELEMENT) ~AIMAG (DFILE (NSTART, 1)) ) .LT. ERROR2) GO IO 295
CALL FUSH (NSTART+1.LAST, DFILE, MSIZE)

DFILE (NSTART*1.1) =ELEMENT

DFILE (NSTART+1,2) =(MPLX (V1 INDEX, V2 INDEX)

RETURN

END
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PROGRAM: SUM3D

THIS PROGRAM CAN D0 THE FOLLOWING:
1) READ A DATA FILE
2) SUMMING OF DATA FILES
3) PLOT A DATA FILE IN A)3-D PICIURE PLOT
B)CONTOUR PLOT
4) 2-D FOURIER TRANSFORM
5) MODIFIES FREQUENCY DATA BY A) L/JW
B) =1/wW**2
6) QOSINE TAPERING LO4 PASS THE FREQUENCY DATA
7) HIGH PASS THE FREQUENCY DATA
8) WRITE OUT TME FILE

THE INFUT (OR OUTFUT) FILE FORMAT:
NFOINT:NUMBER OF FOINTS IN THE FILE(I10)
DATA, X-COORDINATE, Y-COORDINATE (4E15.8)

THE CONIOUR PLOT LINKS WITH NCAR PLOTTING PACKAGES

THE LINKING REQUIRED IS:

$CASSIGN DRA2: [NCAR2.NCARPLOT. PLOTLIB] NCAR_PLOT LIB
$ASSIGN DRA2: [NCAR2.NCARLIB] NCAR_LIB

SASSIGN [RA2: [NCAR2 . NCARPLOT] NCAR_FLOT

SASSIGN DRA2: [NCAR2.NCARPLOT.CHROME]  NCAR_PLOT. CHROME
SASSIGN DRA2: [NCAR2.NCARPLOT. TEST) NCAR_PLOT_TEST
SASSIGN DRA2: [NCARZ .NCARPLOT. DOC] NCAR_PLOT_DOC
SASSIGN IRA2: [NCAR2 .NCARPLOT. TRANS] NCAR_PLOT._TRANS
SLINK SSUM3D, DPLOT, TRAN2D, WEIGHT, PLOT3D, APIORI, ' SSP, ' PLOTLIB,~
IRA2: [NCAR2 . NCARPLOT. PLOTLIB] NCARCONRE/LIB, NCARDASHC/LIB, -
NCARGRAPP/LIB, NCARGRAFH/LIB, [ NCAR2 . NCARLIB] UTILITY/LIB

QOMPLEX DATA(31,31) ,DUMMY, APTORI, CJ

DIMENSION ARRAY1(31,31),ARRAY2(31.31) ,ARRAYP(31,31)
CHARACTER*10 FNAMEL ,FNAME2

gliagmm ADD, OMEGA, SPRCE, LP, HP

MSIZE=2%*Nl~1

PI=3.14159265

CI=QMPLX (0.1)

K=MSIZE/2+1

INITIALIZATION

DO 5 I=1,MSIZE
00 6 J=1,MSIZE
DATA(I,J)=(0.,0.)
CQONTINUE
CQONTINUE
WRITE(6,*) 'DATA FILE NAME:'
ACCEPT 9000, FNAME1
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WRITE(6,*) 'WHAT IS THE DATA FORMAT: 1) REAL AND IMAG'

WRITE (6,*) ' 2) AMP(LINEAR) AND PHASE (RADIAN) '
WRITE(6,*) ' 3) AMP(LINEAR) AND PHASE (DEGREE) '
WRITE (6,%) ' 4) AMP(DB) AND PHASE (RADIAN) '
WRITE (6,*) ' 5) amp(DB) AND PHASE (DEGREE) '
ACCEPT *,NCDM

IF ((NCOM.GT.5) .OR. (NOOM.LT.1)) GO IO 110

READ IN THE DATA

OPEN (UNTT=10 . NAME=FNAME1 , TYPE="OLD')
READ(10,9010) NROINT
DO 10 I=1,NFOINT
READ(10,9020) DUMMY,X1,Yl
CALL APTORI (DUMMY, NCOM)
M=INT(X1) +K
N=INT(Y1l) +K
DATA(M,N) = DATA(M,N) +DUMMY
QONTINUE
CLOSE (UNIT=10,DISP='SAVE')

PLOT
CALL DPLOT (DATA,MSIZE,ARRAY1,ARRAY2,ARRAYP)
AD ANOTHER FILE

WRITE(6,*) ' ADD ANOTHER FILE? Y/N'
ACCEPT 9030, ADD

IF (ADD.ED.'Y') QO 10 8

IF (AID.NE.'N') GO O 20

WRITE INID A FILE

WRITE(6,*) ' WRITE YOUR DATA INTO A FILE? Y/N'
ACCEPT 9030,KEEP
IF (KEEP.EQ.'N') QO T0 30
IF (KEEP.NE.'Y') GO I 25
WRITE (6,*) 'FILE NAME:'
ACCEPT 9000 ,FNAME2
OPEN (UNIT=8,NAME=FNAME2, TYPE='NEW')
WRITE (8,9010) MSIZE**2
DO 27 I=1.MSIZE
WRITE (8,9020), (DATA(I,J),FLOAT (I-K) ,FLOAT (J-K) ,J=1 ,MSIZE)
CONTINUE
CLOSE (UNTT=8,DISP="'SAVE')

FOURIER TRANSFORM

WRITE(6,*) ' GO 10 FREQUENCY DOMAIN? Y/N'
ACCEPT 9030,0MBGA
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IF (OMEGA.ED.'N') GO O 50

IF (OMBGA.NE.'Y') GO IO 30

CALL TRANZD (DATA,MSIZE,-1)

CALL DPLOT (DATA,MSIZE,ARRAY],ARRAY2.ARRAYP)
@ T 25

INVERSE FOURIER TRANSFORM

WRITE (6.*) ' GO TO TIME DOMAIN? Y/N'

ACCEPT 9030, TIME

IF (TIME.BQ.'N') GO T 60

IF (TIME.NE.'Y') GO IO 50

MODIFY TO PREPARE FOR STEP OR RAMP RESFONSE

WRITE(6,*) ' WANT T0 MODIFY DATA? BY n1

WRITE (6,*) * 2) /W'
WRITE (6,*) °* 3)=1/we2!
ACCEPT *,MOD

IF ((MOD.GT.3) .OR. (MOD.LT.1)) GO O 120
IF OD.ER.1} GO M 95
IF (MD.EK.3) GO D 130

MODIFY BY 1/JwW

DO 125 I=1.MSIZE
D0 127 J=1,MSIZE
We2 . *PI *SORT (FLOAT ( (I-MSIZE/2-1) **2+(J-MSIZE/2-1) **2))
IF(W.NE.O.) DATA(I,J)=DATA(I,J)/(CI*W)
IF (W.:.0.) DATA(I,J)=(0.,0.)

MODIFY BY -1/wt*2

DO 135 I=1,MSIZE
[0 140 J=1.MSIZE
W=2. *PI*SORT (FLOAT ( (I~MSIZE/2-1) **2+(J-MSIZE/2-1) **2))
IF (W.NE.O.)DATA(I,J)==DATA(I,J)/(W**2)
IF(W.EQ.0.) DATA(I,J)=(0.,0.)
CQONTINUE
QONTINUE
CALL DPLOT (DATA, MSIZE, ARRAY1,ARRAY2.ARRAYP)

(OSINE TAPERING LOW PASS
THIS IS BY SPECIFYING THE NUMBER OF HARMONICS

WRITE(6,*) 'WANT 10 DO COSINE LOW-PASS?Y/N'
ACCEPT 9030.LP
IF (LF.BQ.'N') GO O 100
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9010
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IF (LP.NE.'Y') GO O 95
WRITE (6,*) 'QUT-OFF ELEMENT NUMBER:'
ACCEPT *,NQUT
DO 200 I=1.MSIZE
DATA(I,J) =sDATA (I, J) *WEIGHT (NQUT, I,J.MSIZE)
QONTINUE
CONTINUE
CALL DPLOT (DATA, MSIZE, ARRAY1,ARRAY2, ARRAYP)

HIGH PASS FILTERING
AGAIN BY SFECIFYING THE NUMBER OF HARMONICS

WRITE(6,*) 'HIGH PASS FILTERING?Y/N'

ACCEPT 9030,HP

IF(HP.EQ. 'N') Q0 10 400

IF(HP.NE.'Y') GO IO 100

WRITE(6,*) 'CUT-OFF ELEMENT NUMBER:'

ACCEFT *,NQUT

DO 500 I=1,MSIZE

0 600 J=1,MSIZE

RFREQ=SORT ( (FLOAT (I-MSIZE/2-1)) **2 + (FLOAT(J-MSIZE/2-1))**2)
IF (RFREQ.LE.FLOAT(NCUT)) DATA(1,J)=(0.,0.)

QOINTINUE

CQONTINUE

CALL DPLOT (DATA, MSIZE, ARRAY1.ARRAY2,ARRAYP)

DO FOURIER TRANSFORM NOW

CALL TRANZD (DATA,MSIZE,1) .

WRITE(6,*) 'THE DATA ARE IN TIME DOMAIN NOW!'
CALL DPLOT (DATA, MSIZE, ARRAY1,ARRAY2, ARRAYP)
G M 25

FORMAT (A10)

FORMAT(110)

FORMAT (4E15.8)

FORMAT (A1)

SP

END
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SUBROUTINE: DPLOT

THIS SUBROUTINE WILL PLOT 3-D FOR A (DMPLEX ARRAY DATA
EITHER IN A 3-D PICTURE OR A QONTOUR PLOT
THE QONIDUR PLOT LINKS WITH NCAR PLOTTING PACKAGE

DATA :2-D COMPLEX ARRAY TO BE PLOTTED
MSIZE :SIZE OF DATA
ARRAY] .ARRAY2 .ARRAYP:DUMMY ARRAYS WITH SAME DIMENSIONS AS DATA

(e ReXeNeNeNoNeNeYeNels!

SUBROUTINE DPLOT (DATA, MSIZE, ARRAY1,ARRAY2, ARRAYP)
: COMPLEX DATA (MSIZE,MSIZE)
'_._ DIMENSION ARRAY) (MSIZE,MSIZE) ,ARRAY2 (MSIZE, MSIZE) ,ARRAYP (MSIZE, MSIZE)
- CHARACTER ACT, PLO, COM, COM2 ,COM3 , CDM4 . COMS . LINE, PICK
10 WRITE(6,*) 'ID YOU WANT T0 PLOT?Y/N'

ACCEPT 9030,00M
> IF (COM.EQ.'N') GO D 9999

IF (COM.NE.'Y') GO D 10

NORMALIZE THE WHOLE DATA FILE BY SOME FACIOR

g
gnooon

0 WRITE(6,*) 'DD YOU WANT B0 NORMALIZE WITH A FACTORZY/N'
ACCEPT 9030,Q0M5
IF(COMS.ED. 'N') GO D 510
IF (COMS.MNE. 'Y') GO ‘D 500
WRITE (6,*) 'FACIOR: '
ACCEPT *,FACIOR
- GO D 20
510 FACTOR=l.
20  WRITE(6.*) ' PLOT REAL AND IMAGINARY? Y/N'
= ACCEPT 9030, ACT
IF (ACT.BO.'N') GO D 50
IF (ACT.NE.'Y') GO D 20
DO 40 I=1,MSIZE
o ID 30 J=1,MSIZE
. ARRAY1 (I, J) *FACTOR*REAL (DATA (I, 7))
ARRAY2(I,J) =FACTOR*AIMAG (DATA (I, J) )

30 QONTINUE
40 QONTINUE
GO P 100
X C
- C CONVERSION INTO LINEAR AMPLITUDE AND PHASE (RADIAN)
C
50 DO 70 I=1,MSIZE
DO 60 J=1.MSIZE
ARRAY1 (I,J) sFACTOR*CABS (DATA(I,J)) St
e IF ((REAL(DATA(I,J)).EQ.0.) .AND. -
N (AIMAG (DATA(I,J)) .BQ.0.)) GO D 55 -
ARRAY2(1,J) sATAN2 (REAL (DATA(I,J) ) ,AIMAG (DATA(I,J)))
Q0 M 60
g i
1 —
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C
100

10

[sXeXg]

[aNeXe

102

310
300

4001

ARRAY2(I,J)=0.
CONTINUE
CONTINUE

WRITE(6.*) '1)3D PICTURE,2)CONTOUR PLOT'
ACCEPT 9030,PICK

IF ((PICK.NE.'2') .AND. (PICK.NE.'1')) GO O 100
WRITE(6,*) 'PLOT AMPLITUDE/REAL?Y/N'

ACCEPT 9030,00M4

IF(COMA.EQ. ’'N') GO D 150

IF(COM4.NE. 'Y') GD O 101

IF(PICK.ED. '1') GO D 102

QONTOUR FLOT

IF (PICK.ED. ‘2')CALL EZQNTR (ARRAY1.MSIZE,MSIZE)
G0 T 150

FLOT 3 D PICIURE
CALL VPLOTS(0.0.0)

WRITE (6,*) 'PLOT X-LINE,Y-LINE,OR BOTH?X.Y,B'
ACCEPT 9030,LINE

IF ({LINE.NE.'X') .AND, (LINE.NE.'Y') .AND. (LINE.NE. 'B')) GO ‘D 120

CALL SET_LINES 3D(LINE)
CALL SET_ROTATION 3D(0)
XMAX=ARRAY1(1,1)
XMIN=ARRAY1(1,1)
DO 300 I=1.MSIZE
0O 310 J=1.MSIZE
XMAX=AMAX] (ARRAY1 (I,J) , XMAX)
XMIN=AMIND (ARRAYL (1, J) , XMIN)
ARRAYP (I,J) =ARRAY1(I,J}
CONTINUE
CONTINUE
WRITE(6.*) 'SCALE OF AMPLITUDE/REAL PLOT:'
WRITE(6,%) '(MAX=',XMAX,' MIN=',XMIN
WRITE(6,*) ' RECOMMEND SQALE:'.0.5/ (XMAX-XMIN) ,*)*
ACCEPT *,SCALE
WRITE (6.*) 'WHAT IS THE VIEW ANGLE W.R.T. X-Y PLANE?'
WRITE(6,*) ' (RECOMMENDING:45)*
m *,VIEW
CALL PLOT_3D_SURFACE (ARRAYP, MSIZE, MSIZE, VIEW.0.,0. . SCALE)
WRITE(6,*) 'IS THIS THE LAST PLOT?Y/N'
ACCEPT 9030, PLO
IF ((PLO.NE.'Y') .AND. (FLO.NE.'N')) GD I 4001
IF (PLO.ED.'N') NSIGNe-]
IF (PLO.HQ.'Y') NSIGN=l
CALL PLOT(0.,0.,NSIGN"999)
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PLOT IMAGINARY OR PHASE

WRITE(6,*) 'PLOT THE PHASE/IMAGINARY?Y/N'
ACCEPT 9030,00M3

IF (COM3.FD.'N') GO D 5000

IF (COM3.NE.'Y') GO O 150

IF (PICK.EQ.'1') GO D 157

CONIDUR FLOT

CALL EZQNIR (ARRAY2.MSIZE,MSIZE)
G0 10 5000

3 D PICTURE ALOT

CALL VPLOTS (0.0.0)

WRITE(6.%) 'PLOT X-LINE,Y-LINE,OR BOM?X,Y,B'

ACCEPT 9030,.LINE

IF ((LINE.NE.'X') .AND. (LINE.NE. 'Y') .AND. (LINE.NE. 'B')) GO M 220
CALL SET_LINES 3D(LINE)

CALL SET_ROTATION 3D(0)

FIND THE MINIM/M AND MAXIM/M IN THE FLOTTING SET

XMAX=ARRAY2(1.1)

XMIN=ARRAY2(1,1)

DO 400 I=1,MSIZE

00 410 J=]1,MSIZE
XMAX=AMAX] (ARRAY2(I,J) , XMAX)
XMIN=AMINL (ARRAY2(1,J) , XMIN)
ARRAYP (I,J) =ARRAY2(1,J)
CQONTINUE

QONTINUE

WRITE(6,*) 'SCALE OF PHASE/IMAGINARY PLOT:'

WRTTE(6,*) '(MAX='.XMAX,' MINs=',XMIN

WRITE(6,*) ' RECOMMEND SCALE:',0.5/ OMAX-XMIN) ,*)*

ACCEPT *,SCALE

WRITE(6,*) 'WHAT IS THE VIEW ANGLE W.R.T. X-Y PLANE?'

WRITE(6,*) '(RECOMMENDING:45)'

ACCEPT *,VIEW

CALL PLOT. 3D SURFACE (ARRAYP,MSIZE,MSIZE,VIEW,0.,0.,SCALE)

WRITE(6.*) 'IS THIS THE LAST PLOT7Y/N'

ANOCEPT 9030, PLO

IF ((PLO.NE.'Y') .AND, (PLO.NE.'N')) G0 D 4000

IF (PLO.HD. 'N') NSIGN=-1

IF (PLO.EQ.'Y') NSIGN=1

CALL PLOT(0.,0.,NSIGN*999)

WRITE(6,*) 'PLOT AGAIN?Y/N'

ACCEPT 9030, COM2

186

e e S i S N

W




e e S

B

ey

-~
o e
’

i

L

b RN
\i";'\..'r:.';

.-"' -." .

.Y

IF (COM2.ED.'Y') GO D 100
IF (COM2.MNE.'N') GO D 5000
9030 FORMAT (A1)
9999 RETURN
BD

e tatac -,
AR SO A
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. c SUBROUTINE : TRANZD
c

. c THIS SUBROUNTINE WILL FOURIER TRANSFORM ON A COMPLEX ARRAY IN 2D PLANE. ‘3

- c THE PLANE 1S ASSUMED T0 HAVE THE ORIGIN AT THE CENTRE OF THE PLOT. .

- c THE PLANE HAS BQUAL NUMBER OF UNITS ON EACH SIDE OF THE THE AXES.

c 1.E. THE SIZE OF THE ARRAY (MSIZE) IS AN ODD NUMBER.

. c WORKL IS THE WORKING ARRAY WITH SIZE 2**N D JUST FIT THE DATA ARRAY. :i
c o
c DATA  :COMPLEX 2-D ARRAY O BE TRANSFORMED, AND RESULT STORED
c MSIZE :SIZE OF DATA

o c IFSET :41.G0 ID TIME -

. c +-1,G0 T0 FREQUENCY :
c

SUBROUTINE TRANZD (DATA, MSIZE, IFSET)
COMPLEX WORKI (32.32) ,DATA (MSIZE, MSIZE)

2 INTEGER INV(8) ,MM(3) 2
: DIMENSION S(8) =)
- M= (MSIZE+1) /2
MSIZE1=32 ]
MM(1) =5 w2
- MM(2) =5 s
i M1(3)=0 g
. c
- C  PLACE THE CENTRED PICTURE INID THE FOUR CORNERS 3
- c v
DO 10 I=1,MSIZEl d
0 5 J=1,MSIZEl
W(I,J)'(O.,O.) o
5 CONTINUE
10 CONTINUE o
0 20 I=1.N -
0 15 J=1,N
WORKL (I, J) =DATA (N+I-1,N+J-1) -
15 ONTINUE -
20  CONTINUE N
Do 30 I=1,N-1
. 25 J=1,N1 -
WORK] (MSTZE1 —M¥+I+1 ,MSIZE] -N+J+1) sDATA (1, 3)
25 CONTINUE
- 30  CONTINUE
< 40 Is1,N
. 0 35 J=1.8-1 =
: WORKI (MSIZE1~N+J+1,1) »DATA (J, I+}-1)
- WORKI (I, JMSTZE]~N+1) sDATA (I+8-1,3) -
. 35 CONTINUE
: 40  CONTINUE
’ c
- C  FOURIER TRANSFORM o
» c
) CALL HARM (WORK1,MM, IV, S, IFSET, IFERR)
2 )
- -
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PUT THE FOUR (ORNERS BACK T0 THE CENTRE

D0 120 1=1,N
o 115 J=1,N
DATA (N+I-1,NhJ-1) *WORK1 (1,J)
NTINUE
QONTINUE
00 130 1=1,N-1
D0 125 J=1,N-1
DATA (I, J) *"WORK] (MSIZEL-N+1+1,MSIZE1 -N+J+1)
ONTINUE
CQONTINUE
D 140 I=1,N
DO 135 J=1.N-1
DATA (J, I+N-1) sWORK] (MSIZEl -N+J+1,I)
DATA (I+N-1,J) *WORK1 (I, HMSIZEl -N+1)
CQONTINUE
CQONTINUE
RETURN
END
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FUNCTTON : WEIGHT

THIS FUNCTION WILL CALCQULATED THE QUSINE LOW PASS WEIGHTING
WITH THE ASSUMPTION THAT THE FREQUENCY RESFONSE DATA IS LOCATED
IN THE MIDDLE OF THE PLOT

NQUT- QUT-OFF NUMBER FOR THE LOW PASS FROM THE CENTER
NX = X-COORDINATE IN THE MSIZE X MSIZE

NY - Y-(DORDINATE IN THE MSIZE X MSIZE

MSIZE- SIZE OF THE ARRAY

FUNCTION WEIGHT (NQUT, NX, NY,MSIZE)

CHARACTER LP

PI=3.14159265

X=ABS (FLOAT (NX-MSIZE/2-1))

Y=ABS (FLOAT (NY-MSIZE/2-1))

RADIUS=SORT (X*#2+Y**2)

IF (RADIUS.LE.FLOAT (NQUT)) WEIGHT=0.5* (1.+(0S (PI*RADIUS/FLOAT (NQUT)))
IF (RADIUS.GT. FLOAT (NQUT)) WEIGHT=O.

RETURN

BEND
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