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I. INTRODUCTION

Roll-lift dispersion of spinning missiles is caused by nonaveraging of

the lift vector in the presence of moment disturbances that perturb the

angle of attack. 1 Lift nonaveraging can occur either from angle-of-attack

variations at constant lift precession rate or from roll rate variations for

a trimmed missile with constant lift. 2 Control of lift nonaveraging should

therefore be possible by controlling either the lift variations, the lift

.. vector precession rate, or a combination of both. The latter method was

" investigated to control the dispersion of an untrimmed missile in which both

angle-of-attack and lift precession rate feedback were used in the control

law. In another investigation to control dispersion of a rolling trimmed

* missile, angle of attack and angle-of-attack rate feedbacks were applied to

pitch and yaw control moments at constant roll rate.4

In this report we consider only roll rate modulation about a steady roll

* rate to control lift nonaveraging. Roll modulation complicates the analysis

*. because the missile equations for complex angle-of-attack motion contain roll

rate terms in the coefficients. The equations are linear for constant roll

rate but become nonlinear when the roll rate is time dependent. The magnitude

-. of the roll coupling depends on the coordinate system used to describe the

" complex angle-of-attack motion. Both body-fixed and aeroballistic coordinates

. are used to investigate different feedback controls. The advantages of the

different coordinate systems are described.

7
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II. ANALYSIS

A. FORMULATION

The equations of motion of a spinning missile can be expressed in

different coordinate systems. Shown herein are the differential equations for

the complex angle-of-attack motion in body fixed coordinates, Eq. (1), and

aeroballistic coordinates, Eq. (2),

+ [v + ip (2 - u)15 + [w2 _ p2 (. -

+ i( + p(v - mW! - im t  ()

+ [~-i[v up]k + [ ipv] ime' pat 2)

for small angle motion. The complex angles of attack in these two coordinate

systems are related by

- e e (3)

where 0 is the roll angle in inertial space, defined by

4 - f pdt (4)

and mt represents pitch and yaw moment disturbances about the y and z axes

divided by the pitch or yaw moment of inertia,

M + iM-+im - Y (5),"m t  m my +iz y l 5

Disturbance moments can occur from various sources. During the reentry

phase of a ballistic missile, asymmetries occur from ablation shape change,

which can cause lift variations leading to dispersion errors. The lift forces

9
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do not average out for each roll revolution giving rise to a net force per-

pendicular to the flight path. The sideways motion produced is called the

transverse velocity and can be calculated by integrating the missile

acceleration in the cross plane. By assuming the missile to be a point mass

in this plane under the action of a rotating lift force, the transverse

velocity, V v + iw, is given by

L6t ijpdt
V V(0) - - f 6epdt (6)

Om
0

L teV =V(O) -- f tdt (7)
m

0

where Eq. (6) is in body fixed coordinates and Eq. (7) is in aeroballistic

coordinates. The lift force derivative L is in general slowly varying and

assumed constant over the time duration of the disturbances.

The nonaveraging lift effects can be compensated for by implementing roll

control. The roll acceleration is defined by

t +t

x c (8)
p M

x

where X is the roll disturbance moment and £ is the control moment.x c

The transverse velocity is a measurement of missile dispersion and is

used as the cost function. There are two additional quantities which are

desirable to minimize the magnitude of the applied control moment and the

deviation of the roll rate from a specific value. The complete cost function

is

I + IVs +w I dt + Wp f - Po 2 dt (9)
'L'0 0

state

where Wc and W are suitable weighting functions.
c p

10
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The second-order differential equation for the complex angle of attack,

Eqs. (1) or (2) involves coefficients that are functions of the roll rate p.

A nonconstant roll rate gives rise to nonlinear terms.

B. STATE VARIABLE FEEDBACK

In this approach, the control moment 2. is assumed to be a linearc

function of the state variables of the form

A~a + AO8 + Cc + D8 + Efa + FfB (10)

x

The equations of motion are linearized in the body fixed coordinates by taking

small perturbations 6+, p+ about quasisteady values 60, Po

6 = 6 + 6 (11)0 +

P = Po + P+ (12)

and neglecting higher order terms.

The resulting linear control equations in terms of the perturbations are

+ + + ip0 (2 - u)I+ + [ 2 _ (I -

+ ip0 (V - Vm)]6+ + [2pop+(l -

+ i(p + p+(V - v ))]6 = im (13)

p = At+ + BO+ + C+ + DA+ + EfL + + Ffa+ (14)

Roll moment disturbances are assumed zero. The transverse velocity is

expressed as

V(t) = V(O) - f td 6 )e i T (15)

P (6 + e 

ii'i 11
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where we have defined X

T
X= f -t (16)

o p0

and changed to a nondimensional roll angle variable T defined by

dT= podt (17)

We assume a steady-state condition defined by the initial conditions p = po

and 6 - 60 at t 0. Assuming p - v = 0 and neglecting smaller terms, the

equation for the angle of attack is, with respect to T, where d/dt - po d/dr,

2 (6+) 2 d(6+) 2S+o -- 2 a~ dt + it (18).- dT 2 0

The Laplace transformation of Eqs. (14) and (18) results in

6 (s) O 8(s) + ict(s)

(im) [(2 + '2/po2 ) - 2 is]
T (19)

po2[(8 2 + W2/p 2)2 + 4 s2 1 )

p SA + 22C+ E

p(s) o 2 2 Q(S),~ PO

P s
0

Also in the Laplace transform domain is

X(S) pos  (21)

12
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The transverse velocity can be evaluated in terms of 6(s) and p(s) by the

following procedure: The upper limit of the integral in Eq. (15) is taken to

be sufficiently large to include the time duration of the perturbations.

Without loss of generality this limit can be taken as , and Eq. (15) can be

written in the form

L 0
V - V(O) - - f- ! F(T) e dr (22)

where

F(T) = (60 + 6+) e i)(T) (23)

From the definition of the Laplace transform

F(s) = [F(T)] f F(T) eST dT (24)

0

the integral in Eq. (22) is observed to be the Laplace transform of F(T) with

s = -1, or

L0
V - V(O) - -- [F(s)] (25)• ' P os --i

where F(s) is obtained in terms of S(s) and X(s). By expanding the

exponential in Eq. (23), F(T) can be approximated by

F(t) = 6 + 6+ () + i6 (t)

6 X2 (T)
+ i6+(T)X(T) 0 + ... (26)

-+ 2

which has the Laplace transform with respect to T

6
00F(s) 2 o + 6(s) + i6 7(s) + i){6(t)(t)}

2 (27)

13
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L

Eq. (22) can now be written as

Le 6
V v(0) - [- + 6(s) + iS X(s) + ig{6(T) X(T)}

pom s 0

6
- {A2 (T) + (28)

2 (r)

The velocity caused by the initial angle of attack averages out for each

cycle and is expressed by

V.-Le 
6 o

(29)
0

The velocity which causes dispersion is then the increment

AV -L [6(s) + iS X(s) + i ( {(T)X(T)}
p-m o

0 (t) + s=-i (30)

1. SOLUTION FOR CONTROL

In order to compensate for the lift force asymmetry caused by pitch and

yaw moment disturbances, the roll rate is adjusted throughout the cycle. For

example, the roll rate is decreased when the lift force is in the direction

opposing that of the dispersion. The necessary roll motion is found from Eq.

(30) by setting AV equal to zero

AV - - [F(s)] - 0 (31)

where 0

F(s) - 6(s) + iS 0X(S) + i {6(T) X(T)}
5 0

-- " {X(r)1 +

14
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The solution is the feedbacks that cause the real and imaginary components of

F(s) to vanish when s = -i

F(-i) =0 (32)

Examined first is the case where there is an initial nonzero angle of

attack, So. This is caused by an existing asymmetry, either built-in or

previously caused during flight. The lift vector produced from the initial

angle of attack is of constant magnitude and precesses in space at the roll

rate frequency. With a constant body-fixed angle of attack, the lift force

averages and the missile executes a spiral motion about the mean flight path.

A first-order approximation to F(s) is

F (s) = 6(s) + iS X(S) (33)
1 0

The complete expression to determine the gains for an arbitrary moment

disturbance, mt, is obtained by substituting Eqs. (19) and (21) into

Eq. (33) and setting Fl(-i) - 0 which yields

--- (MI {[G] + i[HI}I[K (34)
0

where

(M] --
y z

(a + -( 0) -2p0 0 2

G) p0 3(( O 1)2 [4)- - 0  -2: 2 03 -2

(@ (0--1) [ 2p1

o 0 - 0 (a O 0- 0 + -t)

-'1).- [2po  0 0 p2 o-) 0 -(0-11

[KJT = IA B C D E F]

15



L1
The magnitude of the control moment must be minimized. Examination of

the solution reveals that the gains are inversely proportional to the initial

angle of attack. The lift force resulting from the angle of attack provides

the muscle needed to control dispersion. For a very small angle of attack the

control moment might be too large and cause large roll rates. The assumption,

P > > p+ must be upheld. Also, roll rates of great magnitudes are not

practical.

Three types of control are examined: derivative, proportional,

integral. The expressions for the gains are shown in Table I for the case

where 6 -i . The magnitude of the control moment is the product of the

gain, the feedback variable, and the roll moment of inertia.

By neglecting the higher order terms in Eq. (30), we find the feedbacks

to be independent of the type of disturbance (i.e., impulse, step). However,

the direction of the disturbance is important because linear superposition

principles do not hold. For an arbitrary moment disturbance with components

in both the y and z directions, two nonzero feedbacks are required to satisfy

Eq. (34). They are dependent on the ratio of the directional components of

the disturbance. For a disturbance about one axis, only a single feedback is

required. The feedback variable is the same for either case, my or m z . The

gain depends on the direction of the disturbance but is independent of its

magnitude.

An initial angle of attack a° requires the nonzero gain to be B, C, or E

for a disturbance either in the y or z direction. If the disturbance has

components in both directions, A, D, or F must also be nonzero. These results

are summarized for proportional control with 6 =a
0 0

Case I - mt - my

2 2 4]

p U--I

16
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Table 1. Gains for 6 ia
0 0

Control Type

Moment Derivative Proportional Integral

Direction p-C& p a + Efct+

Illy~ 2 p

2

-( - 1)

Gains -k x (expression from table)

km [( 4]
k x 0a(a2

17



Case IT - t - ifz

p2  B B20

2 2
-po [(a- 1) - 4

B2  a o(a + )(a- 1)

Case III - mt - my + imz

p3  A3  +
B

A3 = 2 (B 2 B1 )
+ y

2
B = _- 2 B1 + 1 B2

l+y l+y

where

y = -my/M
y z

If the initial angle of attack is 60 0 the feedback variable in Casesb0

I and II is a. The single feedback has always zero initial value. The

perturbation from the nonzero Initial angle of attack does not have to be

calculated.

For the case of zero initial angle of attack, 6 - 0, the expression for

F(s), Eq. (27) reduces to

F(s) = 6 (s) + i 2 [6+(T)(T)i

1 T ) .2 ( T ) +
+ rJ ' (35)

18
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The first-order approximation will no longer hold because the feedbacks do not

appear in any linear terms. A second-order approximation of F(s) is required

F(S) - 6 +(S) + i Y' [+ (T) X( )] (36)

The solution for zero dispersion is found from Eq. (31) by setting F(-i) -0.

The first term in Eq. (36) is easily evaluated. With s - -i Eq. (19) becomes

t..

4(-i) t= (37)
PO (a +

The higher order term in Eq. (36) must be evaluated using a Laplace trans-

form multiplication theorem 5 . If fs(t) and f2(t) are -transformable func-

tions having the 9+-transforms Fl(s) and F2 (s), respectively, and if

FI(s) A AI(s)/Bl(s) is a rational algebraic fraction having q first-order

poles and no others, then

9, [f (O f(t0J '( F F(s - s (38)1B 2 k

By substittiing f(t) - 6(r) and f2(t) X() into Eq. (38) and setting s - -.

the second-order term can be obtained.

For an impulsive moment disturbance the solution required for m fMu -

m[2p B- P 0 C + ip ( + 1)-li 0 (39)y 0 0 0

and for mt -im,

m z[2p 0A + p 0D -+ ip 0
1 (4(a + 1)] 0 (40)

No solution exists. Addition of the third-order term in F(s) gives the same

results. An impulsive moment is uncontrollable by this approach. There is no

angle of attack to provide the lift force required for control.

19
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For a step moment disturbance about the y- or z-axis, the solution

requires one nonzero feedback. The expressions for the gains in the case mt =

imz are shown for the three types of control.

2. PROPORTIONAL

A" 2p~mz(/QI + w/Q2 + 1/Q3 ) (41)

3. DERIVATIVE

D 2 3(42)
po 2 (a - )mz

4. INTEGRAL

F mW/QI + 1/Q2 + (a- 1)/Q 3 ] (43)

where

4p0
4a5 (2w 2 + 2p 0  - p0

2 )

a+1

" "Po4 o5 2

Q""4 Pa(2 2 
- 2p 0 W - p 0

2 )""Q2 =  a+ 1

W2 p 3 [(a - 1)2 4]
L-Q3 ar+ I

The gains are inversely proportional to the magnitude of the

disturbance. The controlling force is the angle-of-attack lift force caused

by the disturbance. An examination of Eqs. (41), (42), and (43) shows that

the gains are very large. With the values a - 24 and po 1 l0w rad/s the gains

are calculated as A - -4.78 x 106, D - 1.64 x 10 4 , and F = 1.62 x 1 Roll

rates with these feedbacks are abnormally large and impractical. The initial

assumption of Jpol >> Ip+j no longer holds, which suggests that the control is

ineffective.

20



5. NUMERICAL EXAMPLES

The equations of motion, Eqs. (1) and (6), can be expressed by equating

the real and imaginary components

a + va + p(2 - )j + [ w p( -)a

+ + p(v - V )18 m (44)
In y (4

8+ V; -p(2 - u~i+ [w 2 p 2( 0 0)0

-[ + p(v - v )]a -m z(45)

Le
V = V (0) - f (scosO - asin#)dt (46)

y y

Lo

Vz = (0) - f (acost + 8sinO)dt (47)

These were integrated numerically for both open- and closed-loop responses to

impulse and step disturbances in the y-z plane. Cases of a nonzero initial

angle of attack are shown. The moment producing the initial angle of attack

is found from the equations of motion in steady state.

The following examples show undamped behavior. The first-order feedback

gains were used in the closed-loop cases. Inputs and system parameters are

included in Table 2. The gains are summarized in Table 3.

Open- and closed-loop responses to an impulsive moment about the y-axis

are shown in Figs. I and 2. The impulse was approximated by a rectangular

pulse of 0.0001 s duration. The magnitude of the disturbance was such that

the open-loop oscillation was roughly 0.1-deg amplitude. The closed-loop

example is a case with derivative control where p - C&. The dispersion

velocity crossplots are shown for both the open- and closed-loop in Figs. la

and 2a, reepectively. Fig. lb is the open-loop response of a, the angle of

attack component directly affected by the my disturbance. The closed-loop

21
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A

Table 2. Inputs and System Parameters

m - 22.68 kg

L = 3.275 x 105 N/rad

Po  = 10 w rad/s

a - 24

-- 0

(0)= 0

v (0) = -40.109 m/s

w (0) = 0

a(O) = 5 deg

$(0) = 0 deg

m (steady state) = 1980.96 s 2

mz (steady state) = 0

Table 3. Gains for a = 5 deg0

A B C D E F

my 0 118,755 330 0 - 324,410 0

mz  0 - 10,325 -3780 0 3,730,730 0
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Fig. la. Open-Loop Response to Moment Impulse. Dispersion
velocity crossplot.
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behaviors of the roll rate and a are shown in Figs. 2b and 2c. The open-loop

mean value of the dispersion velocity w is -0.16 m/s. With the closed-loop,

the roll rate oscillates with only a 0.6 rad/s amplitude, and the mean value

of the dispersion velocity becomes virtually zero.

Figures 3 and 4 show the response to a step moment resulting in a 0. 1-deg

step in 8. The open-loop behavior of a is shown in Fig. 3b. The closed-loop

example demonstrates proportional control of the form p - BO. The open and

closed-loop crossplots of the transverse velocities are shown in Figs. 3a and

4a. In addition the behavior of the roll rate, p, and the feedback, 0, are

shown in Figs. 4b and 4c for the closed-loop case. The mean value of the

dispersion velocity is reduced from an open-loop value of 0.8 m/s to a closed-

loop value of zero. The roll rate amplitude is approximately 1.3 rad/s.

C. SINUSOIDAL FEEDBACK

The missile response to a sinusoidal roll rate modulation of the form

p = PO + A sin qt (48)

- is examined in order to determine the parameters A and q required for

effective dispersion control. It is convenient for this analysis to use the

* aeroballistic equations of motion for the complex angle of attack, Eq. (2),

which with the roll rate behavior of Eq. (48) can be written

+ (V - ip) + (w2 - iPVm)

= imt exp i[pot + z(l - cos qt)] (49)

where z is the nondimensional ratio A/q. For A small relative to po the roll

coupling on the left side of Eq. (49) is very weak because U and vm are, in

general, small terms. For a first-order approximation to the roll modulation

we assume zero damping v - v - 0 and U - 0, which reduces Eq. (49) tom

+ 2 imt exp i[p t + ; - cos qt)] (50)
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With these approximations it is apparent that the response to an impulsive

moment mt with zero initial angle of attack is not controllable because the

right side of Eq. (50) is defined only at t -0 and is therefore independent

of roll rate. Consider the response to a moment step mt = -imz m H(t). Eq.

(50) can be written

+ W mH(t)e i~~ )[cos(zcos qt)

-i sin(Zcos qt)] (51)

where the sinusoidal terms can be expanded in terms of Bessel functions with

* the relations6

A A k a
cos(zcos 0) = (z) + 2 7 (-1) J (z) cos(2k9) (52)

0k-i 2k

sin(zcos e) -2 (-1)k 2 l (z) cos((2k + 061 (53)

Eq. (51) becomes

2 i(z+p 0t) aa
S+ W iirH(t)e 0 {J(z)- 2J 2(z)cos 2qt + 2J 4(zcos 4qt -.

-i[2J (zcos qt -2J 3(z) cos 3 qt +...]I

i(Z+p t)0
rnH(t)e 0 [1 (z) +.+2(-1ni n (z)cos nqt +.](54)
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The Laplace transform of Eq. (54) gives for E(s)

- iz J (z)V(S) =me o +.
s 2 + 2 Is- ip 0

2(-1) Jn(z)(s - ipo)
+ P°2 2 (55)

(s - ip) + (nq)

The inverse of which is

ieZJ(a) ip t ip

2(t) 2 0 - cost- snwt +...+ eiZn(
W - PO

1 1 i(p +nq)t i(po+nq) I

. .~~ {le P +n) - Cos Wt - sin wt] +2 -
(2 p + nq ) 2 2- (Po nq)2

e i(p o-nq)t i(p 0 - nq)
fe: 0 - Coa( incnt]} (56)

The transverse velocity, Eq. (7), is obtained by integrating &(t) in Eq.

(56). The result is

Lmez ip t ip L iz n z(i

Loe -e0 1 sin wt -p Le's1 in
(Ot2 2 - W 2 - cos Wt)] +..+ L  m

e 0ei(p°+nq)t i(Po + nq)

2 2 I(P + (1 - Cos Wt)
W -(p +nq) 0

i(P -nq)te- I sin wt
+ 2 1 2 1(Po - nq) (I- Cos Wt)]} (57)

W2 -(p 0  nq) 2 i(p 0 -nq)W 2
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For po equal to integer multiples of q, a singularity occurs at n = n. where

po - nsq - 0. If we let po - nsq - e, we can obtain the value of the

singularity as e + 0. The singular term in Eq. (57) having po - nq in the

"" denominator can be written

e - I cos Et + isin ct - I
lim i = lim ic (58)
£40 £ 0

" We are interested in the steady-state or d.c. component of V(t), which is

found to be

iz _n,
iL OTe 2(-i) WJ(z)

Vsteady mp°  [Jow +...+
state 01-(nq/po)

n
+...+ (-i) Sn (Z) (i itpo)] (59)

where i has been replaced by w2 0t, at being the magnitude of the trim step.

In the limit as A and z+ 0, Jo(2) + I and in(') + 0, and Eq. (59) reduces to

the open-loop value for the transverse velocity increment due to a trim step.

1. NUMERICAL EXAMPLES

Undamped responses to a step moment with and without the roll modulation

were obtained from numerical integration of the equations of motion. The

open-loop response of the velocity increments is shown in Fig. 5. The mean

value, calculated from Eq. (59), with £ = 0 is w - 0.802 m/s. The two

examples with roll modulation are the cases where q - po (Fig. 6) and q = po/2

"* (Fig. 7). For q - po the roll control is

p - 50w cos 10wt (60)

The amplitude is such that the A of Eq. (48) is roughly equal to 5. The

steady-state response of the transverse velocity components is predicted from

Eq. (59) with n - 0,1 and n. = (po/q) - 1.
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L
I

v -0.317 t + 0.094 (61)

w 1.980 t - 0.791 (62)

For q p Po/2 the roll control is

;fi Io 2 cos 5wt (63)

Using Eq. (59) and taking n = 0, 1, 2 where ns  (po/q) = 2, the response is

calculated to be

v - 0.458 t - 0.090 (64)

w = 0.193 t - 0.865 (65)

The mean values of v and w approximated by Eqs. (61), (62), (64), and

(65) agree well with the values obtained numerically and demonstrate a

capability to compensate for lift nonaveraging dispersion. If we consider

the amplitude A of the roll modulation term to be an equivalent control

deflection, we can write a control law of the form

A -Ar - B; - C f rdt (66)

where r is the missile cross-range dispersion. The control loop is shown in

Fig. 8. A first-order approximation to the feedback gains can be obtained

from the steady-state response to a moment step, Eq. (59). For small values

of A/q, the Bessel functions Jn(i ) for n > I are small relative to

Jo(i)  I and the singularity term dominates the response. For the case

2 q = po' the steady-state transverse velocity is approximately

iz
iL e

v + iw. - 8 [Jo(Z) - - ipot)]
0
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Fig. 8. Roll Modulation Control Loop.
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iz a
With e 1, Jo(z) 0 I and Jz() z/2, the component w is

w -w 0( - ts/2) (67)

where w - L eT/mPo is the open-loop response. If we let r - z and consider

proportional control only, the dispersion z from Eqs. (66) and (67) is

described by

w Atzz+- -
(68)

2 0

The solution to Eq. (68) is

Aw t2 Aw t2
0 t 0

z(t) - e 4 [-w f e 4 dt + z(o)] (69)
0

which with the change of variable T - tiAw /2 can be written
0

w T2  T 2

z(T) -f e dr (70)
0

where

2 2

D(T) e-T f e T dT (71)

0

The function D(T), known as Dawson's integral, is tabulated.6  We can select a

value for the gain A to limit z(r) to some prescribed fraction of the open-

loop dispersion Wot. Shown in Fig. 9 is a comparison of the open- and closed-

*loop response for a gain of A - 100, which from Eq. (70) should give a closed-

loop response approximately 15% of the open-loop value at t - 0.45 sec.
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III. CONCLUSIONS

Transverse velocity resulting from moment disturbances that perturb the

angle of attack can be controlled by modulating the roll rate with state

variable feedback. Without an initial trim angle of attack, the dispersion

velocity is uncontrollable. Feedbacks that cause the transverse velocity to

average zero can be calculated by linearizing the equations of motion in body-

fixed coordinates and obtaining a solution in the Laplace transform domain

without the need to invert the transformed equations. A first-order solution

is sufficient and shows the gains to be independent of the type of moment

disturbance. Numerical examples show effective control with only small

deviations from the steady-state roll rate, indicating small roll moment

requirements. An alternative feedback control adjusts the amplitude of a

small harmonic modulation of the roll rate about a steady value. The roll

modulation frequency required for effective control is derived in the

aeroballistic coordinate system, which results in minimal roll coupling with

the complex angle-of-attack motion. A quasisteady solution for dispersion

velocity with constant amplitude roll modulation is then used with a slowly

varying amplitude to derive a control law to limit dispersion. A first-order

approximation for the feedback gain required produces effective control that

agrees well with predicted values for the magnitude of dispersion relative to

the open-loop response to a moment step.
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ABBREVIATIONS AND SYMBOLS

A,B,C,D,E,F feedback gains

H(t) unit step function

i V-
I pitch or yaw moment of inertia

Ix roll moment of inertia

in nth order Bessel function

i roll control moment
c

I roll moment disturbance
x

L lift force

L 8  lift force derivative

m missile mass

m" mt  complex disturbance moment, my + imz

AM At magnitude of disturbance moment

m moment step

MyM z  pitch and yaw disturbances

p roll rate

Po initial roll rate

q roll modulation rate

r y+iz

S Laplace transform variable

S aerodynamic reference area

t time

v y component of transverse velocity

V transverse velocity in cross plane, v + iw

A V transverse velocity increment,

AV + iAw

w z component of transverse velocity

z nondimensional ratio A/q; coordinate

a angle of attack

a 0initial angle of attack
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a+ angle-of-attack perturbation

8 angle of sideslip

8 initial angle of sideslip
0
8+ angle of sideslip perturbation

y-mym z

6 complex angle of attack, 8 + ia
6 initial complex angle of attack,

8 + i0o o

6+ complex angle of attack perturbation

d*(t) unit impulse function

Ad complex angle-of-attack increment

A sinusoidal control parameter

8 angle of attack (Euler angle)

T nondimensional roll angle pot; tVAwo/2, Eq. (70)

Ii moment of inertia ratio, Ix/I

v aerodynamic damping parameter

v yaw moment damping parameter
m

complex angle of attack, 8 + ia

a 2/po2

*i roll angle relative to inertial reference

W undamped natural pitch frequency
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LABORATORY OPERATIONS

The Laboratory Operations of The Aerospace Corporation is conducting

experimental and theoretical investigations necessary for the evaluation and

application of scientific advances to new military space systems. Versatility

and flexibility have been developed to a high degree by the laboratory person-

nel in dealing with the many problems encountered in the nation's rapidly

developing space systems. Expertise in the latest scientific developments is

vital to the accomplishment of tasks related to these problems. The labora-

torles that contribute to this research are:

Aerophysics Laboratory: Launch vehicle and reentry fluid mechanics, heat

transfer and flight dynamics; chemical and electric propulsion, propellant
chemistry, environmental hazards, trace detection; spacecraft structural

mechanics, contamination, thermal and structural control; high temperature
thermomechanics, gas kinetics and radiation; cw and pulsed laser development

including chemical kinetics, spectroscopy, optical resonators, beam control,

atmospheric propagation, laser effects and countermeasures.

Chemistry and Physics Laboratory: Atmospheric chemical reactions, atmo-

spheric optics, light scattering, state-specific chemical reactions and radia-
tion transport in rocket plumes, applied laser spectroscopy, laser chemistry,

laser optoelectronics, solar cell physics, battery electrochemistry, space
vacuum and radiation effects on materials, lubrication and surface phenomena,
thermionic emission, photosensitive materials and detectors, atomic frequency
standards, and environmental chemistry.

Computer Science Laboratory: Program verification, program translation,
performance-sensitive system design, distributed architectures for spaceborne

computers, fault-tolerant computer systems, artificial intelligence and
microelectronics applications.

Electronics Research Laboratory: Microelectronics, GaAs low noise and
power devices, semiconductor lasers, electromagnetic and optical propagation
phenomena, quantum electronics, laser communications, lidar, and electro-
optics; communication sciences, applied electronics, semiconductor crystal and

device physics, radiometric imaging; millimeter wave, microwave technology,

and RF systems research.

Materials Sciences Laboratory: Development of new materials: metal
matrix composites, polymers, and new forms of carbon; nondestructive evalua-

tion, component failure analysis and reliability; fracture mechanics and
stress corrosion; analysis and evaluation of materials at cryogenic and
elevated temperatures as well as in space and enemy-induced environments.

Space Sciences Laboratory: Magnetospheric, auroral and cosmic ray phys-
ics, wave-particle interactions, magnetospheric plasma waves; atmospheric and
ionospheric physics, density and composition of the upper atmosphere, remote
sensing using atmospheric radiation; solar physics, infrared astronomy,
infrared signature analysis; effects of solar activity, magnetic storms and
nuclear explosions on the earth's atmosphere, ionosphere and magnetosphere;

effects of electromagnetic and particulate radiations on space systems; space

instrumentation.
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