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\\:/Di-crctc event simulations are computer models of complex

, systems. The accuracy of the model in reflecting the behavior
of the real system is determined by, among other things, the
values of parameters for distributions used in the model. The
modeller could allocate experimental resources more effectively
without loss of accuracy in the model if he or she could
identify those parameters to which the response of interest
has the greatest sensitivity.

One method of doing this is to try to model the response
as a polynomial function of the model parameters. We are then
interested in those terms in the polynomial which have non-
zero coefficients.>

| Schruben and Cogliano developed a method whereby such
polynomial models can be identified in fewer computer runs
than previous methods allowed. Their concept was to do
analysis in the frequency domain rather than the time domain.

The virtual independence of frequency estimators in a spectrum

means that many parameters can be tested independently within
~ a single experiment using spectral methods.
- -;;This report attempts to extend the Schruben/Cogliano
. methodology to cover a more general class of models which
includes discrete-valued parameters, such as policy decisions
or capacities of queues. We evaluated the use of discrete-

valued functions as a basis for spectral analysis. Several

function sets were considered as possibilities, and walsh
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::. functions were selected as the best chojce.

Our preliminary results indicate that Walsh analysis may

o’

'-j'. present a promising method for identifying significant
N

parameters. However, the method exhibits undesirable behavior

when time lags are present in the model.

:

g7

%

i

LE

:
J{-; Accesion For

NTIS CRAg&|

) DTIC TAB
\j Ur.announced 0
o Justification
S e

- BY o

e Dist ibution) T
" Availability Codes

:::, ) _.Ava'ild g'ﬁ'd ]_Or

- ] Dist Special

-

2
o

Y
-
B A A R g e e e e T e e T




T T W T Y S W YR W T TR T T T TR AR g aii a8 ach ato i B g i SRt At uk el Aa) Wak dal Ash Valol aiieriletAlntida A ._'r"rt"":'w!_‘T

IABLE OF CONTENTS

1) Introductionl......'....‘I..l.....'.l.......l.'..l

2) Orthogonal Representations......cceeveevscsoccecesd

2.1)
2.2)
2.3)
2.4)
2.5)
2.6)
3) Design
3.1)
3.2)
3.3)

General BacKkgrounNd.....eeveeesccescsssssecd
Rademacher Functions.....cceevevveecscseased
Walsh Functions...cecoeeeeesnvsnesescscnsnss?
Haar Functions..cccceeeeessoscnsnnssssesslDd
Characteristics of Walsh Functions.......13
Generating Walsh Functions......cc0000...19
of a Spectral Experiment....coceveevesese2
Distribution of the Spectrum Estimator...22
Sequency Selection....ccretecccrseccessse2d

Design of an Experiment.....ccceeeeeesses28

4) Analysis and COnCluSiONS..ccceessesceccssaconeeeld

4.1)
4.2)

Verification of Walsh Analysis.....c.....32

A Polynomial Modelo.....o...o....o..0000036

5) Future Research.l..0.0..0......0.........o.l..c.39

6) Bibliography‘...-......'...'...l................‘2

7) AppendiX 1: ProgramS..ccsccoecsessossssscssssacesd3

8) Appendix 2: lag effectsS...ccecvestessessscssecesB5




R adan aA L uiladtl LGl o el e madtatie sCd RUA- i e d v -piee mnd e avi - ah mek el ped pologe it gia g g O ACE gl R L A AL Ao Al .V-'JV?".'.‘."}V‘.-JﬁJ'ﬂ'ﬁ

LIST OF FIGURES

1) Example of Rademacher functions......ccvcevovveccceecsasb
2) Example of Walsh functionB....ccceeuvevecsveeccossosssaeB
3) Example of Haar functionB....ccccoeceoveccesoscvscscasnll
4) A nonlinear response BUrfACe.....ccoeesesvssnssssnssssslB
5) Spectrum of signal run with noise component...........34
6) Spectrum of noise component....cvcseeseccsccscscsscss.34
7) Spectrum of signal without noise component............35
8) Spectrum of signal/noise ratio.....cecveetececineees 35

9) Spectrum of signal/noise ratio for polynomial model...38




-------------------------- A S0 B Al At Al i SR YRR S AR AR N RAR Sal el tnl Sl Sub sl Sl Gl Sad AR el Bt il A AR G Sk A UL BB A E Ar i o A aile ai 8 o' 4]

Bection 1 Introduction

The identification of parameters or factors which affect
performance is an important area of operations research and
statistics. Until recently it has been too expensive for many
computer simulation studies, which Hillier and Lieberman state
is one of the major shortcomings of simulation[7]. The
traditional approach to this problem is to make separate
corputer runs for each of many different factor values. The
basic experimental unit is the computer run. Although the

nurber of runs required may be reduced using screening

designs[lol, it increases geometrically with the number of

factors. This approach becomes prohibitively expensive in
terms of both user and computer time for all but the simplest
of models.

Schruben and Cogliano[lzl (S/C) addressed this problem
utilizing an entirely different approach. Normally one views
a parameter as a fixed, possibly unknown, attribute of the
system. However, in a computer simulation the experimenter
has complete control of the model and can alter parameter
values during the run. Hence the terms parameter and factor
can be used interchangeably in simulation. Schruben and
Cogliano proposed varying the parameters sinusoidally during a
run. Each parameter is assigned a unique fregquency, and

spectral estimators are used to analyze the system output at

D

the different frequencies. After performing a suitable

| ol 8

statistical test, if the power spectrum is not significantly
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different from zero at a given frequency it is concluded that
the system is insensitive to the parameter which was assigned
that frequency. By analyzing the spectrum instead of just the
assigned frequencies, one can detect non-linear response
through a relatively simple set of relations specified in the
S/C paper. Most of their paper addresses the technical
aspects of implementing such a procedure.

The advantage of the §/C approach is that analysis is
moved to the frequency domain. The output time series is
represented using trigonometric functions as a linear
algebraic basis. The experimental unit becomes a fregquency
band, and a single run of the simulation contains many almost
independent frequency bands. The number of runs required is
greatly reduced.

Oone limitation of the S/C procedure is that it can only
be used to evaluate continuous parameters. This problem can
be removed by choosing a different set of functions as a

basis. Three alternative discrete-valued function sets are

Rademacher, Walsh, and Haar functions, which are named after

E their inventors. It is the goal of this report to extend the

S/C procedure by considering the use of these alternative

I bases for representing the time series.

; Although this report concentrates on the application of
wWalsh functions to computer simulations, the methodology

i outlined here is egqually applicable for any type of 2"

‘ factorial experimental design situation.
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The following section gives & summary of pertinent
information available in the ljiterature about discrete
functions. The intention is to provide the reader with a
sufficient background to understand the material in subseguent
sections. The method proposed in section 2.6 for detecting
system gain apparently has not appeared in previous
literature. Section 3 contains new material about the
statistical properties of the Walsh spectrum estimator, and
tells how to design an experiment to identify significant
parameters in a model. Section 4 gives an in depth
description and an example of how to use the proposed

methodology. In section 5 we propose a number of extensions

to this work.
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RO 2.1 General backaround

bﬁ' 4 Our notation for trigonometric functions will be

D consistent with that used in the recent Ph.D. report by Vv. J.
o

:R: Coglianols]. The symbol v will denote cycles/time.

-1 We will use the following definition of orthogonality
o~ (Beauchamplz]).

iﬁ Defn - The series (Sn(t)) and (sm(t)) are orthogonal on the

F

- interval [0,T) if

‘ lJTS(t)S(t)dt= kK n=nm , oezt

R T o m 0 negn !

= and are orthonormal if k = 1. (z+ is the set of nonnegative
- integers.)

ﬁ; Any time series y(t) can be approximated over a finite
23 interval [0,T]) by a weighted sum of terms in an orthogonal

- series:

“\-‘_.

2o N-1

o y(t) 2 3} c_S_(t)

i ;_?'j, n=0 nn

T Sn(t) is term n of the orthogonal series

Jif c, is a weight.

iﬁ: The most common measure of precision in such an

o : approximation is the mean squared error, abbreviated MSE.

e i T N-1 2

U MSE = _[ [y(t) -3 cnsn(t)] dt

" 0 n=0

o MSE can be minimized by setting

SN

)

()

= 4

o
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It can be seen that it .iznut is substituted for §.(t) then
this is the familiar formula for calculating Fourier
coefficients.

A basis series should have the property of
completenessls]. One definition of completeness is that there

should not exist any function which is orthogonal to every

element of the basis. This implies
lim MSE = ¢

N-
for all y(t) such that y(t) contains at most a countable
nurber of discontinuities.

The following sections present a brief summary of the
properties of three sets of discrete-valued functions which
might be considered as algebraic bases for y(t). Rademacher,
Walsh, and Haar functions are discussed extensively in all the
literature for discrete spectral methods. It turns out that
only Walsh functions have all the properties needed for the

type of analysis of interest to us.

2.2 Rademacher functions

For the purpose of evaluating a simulation which contains
ET% discrete-valued parameters we want to utilize discrete-valued
13
fﬁ% functions as our input series. One such series is the set of
ié; Rademacher functions, which are illustrated in figure 1. These
E}7 are block pulses which alternate regularly between 1 and -1.
e Each function R(k,t) is a function of the continuous index
L’: 1
aRA
s T T T e e S e e e e e e L
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variable t ¢ [0,T].

By convention T is assumed to be 1 unless

otherwvise stated, but any value can be used with appropriate
scaling. The first Rademacher function, R(0,t) (05 t ¢ T),
is just a line with value 1. Every subsequent function is

constructed by changing the sign on half of each interval in

the previous function, so that the function changes sign in a

regular manner.

R(O,t) +1
-1
R(1,t) ] +i

Figure 1. Example of Rademacher functions

These functions are easy to generate and are orthogonal,

but do not form a complete basis. They therefore cannot be

used to represent a general y(t).

The orthogonality can be shown by considering any two
distinct Rademacher functions R(n,t) and R(m,t), where n and m
are sequence numbers of the Rademacher functions. By the
construction of the series, the number of intervals for each
function is a power of two. Each interval of constant value
is of equal length for a given function. Let m be greater

than n. Then each interval of fixed value for R(n,t) will
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correspond to an even number of egqual length intervals with
alternating signs for R(m,t), so the integral of the product
of the two functions on each interval will be zero.

The incompleteness of a Rademacher basis can be seen by
noticing that there is always an odd number of sign changes.
Using Rademacher functions corresponds to restricting Fourier
analysis solely to the use of unshifted sine functions. 1In
fact, one way of defining Rademacher functions is

R(n,t) = sgn[ sin( 2™not ) J,

where n is the segquence number of the Rademacher function

+1

sgn[ x ] = { -1 p g

x
X .
Any cosine function of the form cos(znut) is orthogonal to the
basis. Attempting to complete the basis by supplementing it
with terms sgn[ sin( n2not ) ), where n is not a power of 2,
and sgn[ cos( m2not ) ], where m is any positive integer,
destroys the orthogonal property.

Since Rademacher functions do not have the requisite

properties of completeness and orthogonality, they cannot be

used as a basis for spectral analysis.

2.3 Walsh functions

Walsh functions are a set of discrete-valued functions

Fﬁ which assume only the values (-1,+1}. They are orthogonal and
E; complete, having both even and odd symmetry. They can be

I constructed recursively, as products of Rademacher functions,
L

-. or by constructing Hadamard matrices and sorting. Details of
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construction will be presented later.

Each function is defined by convention on a fixed
interval t ¢ [(0,T), and is written WAL(n,t). As with the
Rademacher functions T is usually assumed to be 1 but can be
any value if the function is scaled appropriately. The value
n is an index which corresponds uniquely to the average number
of zero crossings on the interval, which is called the
sequency of the Walsh function in an analogy to freguency in
trigonometric functions. Walsh functions are paired by even
and odd symmetry and referred to as CAL and SAL functions,

respectively. These are defined as follows:

CAL(k,t) = WAL(2K,t) K e 1w
SAL(k,t) = WAL(2k-1,t) '

where k is the sequency. Figure 2 illustrates four Walsh
functions. The fifth and sixth Walsh functions are shown to

illustrate that wWalsh functions are not periodic in their

variations.

WAL(O,t) iy
- WAL(1,t) | 3
5 -
% WAL(S, t) l I I N | -1
8 +1
g WAL(6,t)" ] I l | l ] 21
ii: 0 T
x Figure 2. Example of Walsh functions
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Walsh and Fourier spectra have a one to one

correspondence. This can be seen from the following sets of
relations, which are used to represent a time series y(t) in

terms of a Fourier and a Walsh basis, respectively:

®© ®
(Fourier) y(t) = a, +;§lamcos 2nmt +;§lbmsin 2nmt

© -4
(Walsh)  y(t) = Aj +n§lAnCAL(n,t) +nZanSAL(n,t)

where ay, bi' Ai' and Bi are the Fourier and walsh
coefficients, respectively, denoted as cn's in section 2.1.
Frox this set of equalities it is shown by Maqusi[11] that

AL =2a

0 0
and
® 1
A = 3 ay I cos 2nmt CAL(n,t) dt W
n=1 0
» N = l,o
o 1
B, = Z b J sin 2nmt SAL(n,t) dt J
m=1 0
or
a_ = 3 A I CAL(n,t) cos 2rmt dt
B pa=1 Mo
 m = }],o,
© 1
b, = ) B, J SAL(n,t) sin 2nmt dt ]
n=1 0

Clearly Walsh and Fourier spectra can be converted back

and forth. We have found the linear change of basis

E} transform, regardless of the fact that both bases are

P infinite. From linear algebra we know that for any complete
; series we consider we will be able to find a transformation to
ég the familiar Fourier spectrum. By considering alternative

N

bases we have neither gained nor lost information relative to

o ra
o

SEs! Tankanac
.

a Fourier based spectral analysis. However, there are gains

\
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to be had by using the Walsh representation.

The first advantage for Walsh analysis lies in the number
of terms needed to approximate a discrete or discontinuous
time series from the simulation output. Walsh functions are
more efficient than trigonometric functions for this purpose,
since it generally requires a large number of trigonometric
terms to adequately approximate a discontinuity. For the
purposes of altering the value of a discrete input parameter
of the model, trigonometric functions are inappropriate.

The second advantage is computational. According to
Beauchamp it takes n logzn conplex multiplications and
additions to evaluate a fast Fourier transform. Since the
Walsh function can only have the values +1 or -1, evaluation
requires only n 1og2n additions if the analogous fast

transformation is used. Although the degree of improvement in

efficiency is machine dependent, addition is much faster than

multiplication on digital computers using current technology.

2.4 Haar functions

Haar functions are discrete~valued functions which are

defined as

= 1 0gtc<l/2
HAR(1,t) { -1 1/2<t<1
v 2P n/2P < t < (n + 172)/2P
HAR(2P+ n,t) = { -v 2P (n +1/2)/2P < t < (n + 1)/2F
0 elsewvhere.

T e S T T
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This definition allows for a seqguential unigque numbering
system. The first seven Haar functions are illustrated in
figure three. Notice that there is no unigque seguency

correspondence such as exists with the Walsh functions.

HAR(O,t) +1

HAR(1,t) - +1

HAR (2, t) \E:

HAR(3,t) T V2

HAR(4,t) 2

HAR(S,t) R ;

HAR(6,t) . 2

HAR(7,t) ] .

0
Figure 3. Example of Haar functions

A different indexing scheme groups Haar functions by

degree i, the number of zero crossings in width 271 The

definition then becomes

PR -\- o ,"
e R A R A S A B
m‘f\ﬂrﬂ‘n.‘&nﬂ?‘k»‘ 'm. .&. 1.&;{‘1\-14&-
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HAR(0,1,t) = 1 0g t g1
v 24 (4 - 11728 < £ g (3 - 172728
HAR(4,9,t) = { -v 2P (3 - 1/2)728 ¢ ¢ < 3724
0 elsevhere
{=01,2,... 3=1,...,2%

Only one term of each degree can be utilized if Haar
functions are used for identification. Otherwise it would be
impossible to distinguish whether an observed outcome was due
to a specific parameter or due to a lag effect from a
different parameter. This property could actually be

advantageous for the purpose of identifying lagged models.

Furthermore, there is a fast Haar transform which requires
only 2(N - 1) additions.

These gains are offset by two disadvantages. The first

AR bechucm 2
AL
- A A Yty et

is that Haar functions consist of three states and so cannot

P ST ]

be used as input for binary parameters. The second and major

disadvantage is that there is not a convenient product

R o
3

relationship for Haar functions such as exists for Walsh and

E o e ¥

.
4 -

trigonometric functions. The product of two Haar functions is

ﬁ either zero if there is no overlap of the non-zero intervals,
?; or + Ai HAR(k,t), where Ai is the amplitude of the Haar

E; function with the larger non-zero interval, and HAR(k,t) is
= the function with the smaller non-zero interval. This makes
-

the use of Haar spectra to identify interaction terms or
higher order polynomial terms infeasible.
The remainder of this report will concentrate on Walsh

functions since they appear to have the most desirable

]
; |
by properties.

L

]
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It should be noted that both Walsh and Haar analyses are
coxputationally stable procedures, since they involve only
addition operations. This is not true of Fourier analysis.
Addition is order preserving for finite precision numbers,

while multiplication is not.

2.5 Characteristices of Walsh Functjions

At this point we must make the transition from continuous
Walsh functions into the discrete domain. This is done by
scaling the time axis relative to the highest order Walsh
function of interest, and sampling the value of the continuous
function over unit intervals. We will end up with a vector of
N numbers which correspond to sampling WAL(k,t) at N equal
intervals, i.e. at spacings of T/N. Thus WAL(k,1i)

WAL(k,t)
where i is the integer portion of [(Nt/T)+1). WAL(k,.) will
be used to denote the vector consisting of WAL(k,i) for
i=1,...,N.

The value of N must be chosen so that each Walsh function

has a unique vector associated with it. 1If k is the largest

sequence number we wish to observe then we set N = 2r1°g k],
where the log is base 2 and {x] is the smallest integer
greater than x. As an example, if we were interested in Walsh
functions up to order 5, we could represent them as vectors of
length 8 whose elements assumed the values +1.

WAL(O0,.) = (1,121, 1,1, 1,1, 1, 1)

WAL(5,.) = (1,-1,-1, 1,-1, 1, 1,-1)
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Arithmetic operations on Walsh functions make extensive
use of the ® operator, which is called a dyadic sum. The

dyadic sum is a bitwise XOR operation, where p XOR q is
defined by the following table.

qpl 0 1
0 0
1 1 0
examples of @ operator:
7 111 9 1001
e 5 <=> @& 101 ® 3 <=> @& 0011
2 010 10 1010

We present a short list of interesting properties of

Walsh functions. The list is not comprehensive. The

following definitions will be used.

N is the number of observations
is the ith parameter in the model

Yy is the jth term in the output time series

Y(k) is the kth tern in the output series after transformation

Yc(k) and Ys(k) are the kth CAL and SAL terms, respectively

P(k) is the spectrum estimate of power at sequency k

It is worthwhile to note here that the Y's above are the
estimates for the A's and B's used in the series
representation in section 2.3. We are using the notation
Yy I+ Y to emphasize that the original observations and the
estimated coefficients are a transform pair, either of which

could be used to fully reconstruct the other.
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multiplication
properties

wWalsh
transformation

spectrum
estimator
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observed frequency.

X = WAL(k,1i), then

15

WAL(k,i) = WAL(1i,Kk)
WAL(X,1)WAL(9,4) = WAL(J,4)WAL(k, 1)

WAL(X,i1)WAL(3,i) = WAL(k ® 3,1)
CAL(k,3i)CAL(3,i) = CAL(k © 9,1)
SAL(k,i)CAL(j,1) = SAL(J @ [k-13],1)

SAL(k,1)SAL(J,i) = CAL([k-1) @ [3-1],1)
N-1

Y(X) = % Y y WAL(X, 1)
i=0
P(0) = Y¥2(0)

P(k) = yi(k) + Yz(k) k=1,2,...,(N/2)-1

P(N/2) = Y2(N/2)

There is a shift theorem for trigonometric functions
which states that shifting a trig function does not change the
There is no comparable theorem for Walsh
functions. Their shift behavior is discussed later.

Two immediate results for the ® operator are that
k ® k = 0 for all k, and k ® 0 = k for all k. Applying these

to the Walsh multiplication properties shows that if
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x2 e x * x = WAL(k ® k,1) = WAL(0,1)
x> = x ¢ x* = WAL(X ® 0,1) = WAL(X,{)
x* = x * x> = WAL(X ® X,1) = WAL(0,4)

By induction all even powers of x will have an indicator
sequency of 0 and all odd powers will have sequency k/2. This
means that we will be unable to estimate any but first order
and interaction terms using a single Walsh function. If the
problem is viewed geometrically this is reasonable, since
using a Walsh function corresponds to sampling the data at
only two points. With two points it is not possible to
determine more than a first order model.

If we are only interested in significant parameter
detection, this presents no difficulty. However, if we hope
to use the data later to estimate a model there may be
trouble. The situation is acceptable in the case of binary
parameters, but there is a pre-“em for continuous or p-state
parameters where p > 2. We would prefer to have a single
procedure which works for both continuous and discrete
parameters. One way to overcome the problem is to use sums of
Walsh functions as the input. A sum of two Walsh functions
with amplitudes Al and A, will yiela {+A, #A,), or up to four
distinct sampling points. This should be sufficient to

construct most non-linear models in practice.
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x(1)

WAL(J,4) + WAL(k,1)

y(i) = a, + a x? (1)

2

- .1 + az[WAL(j,i) + WAL(kli)]z

-a, ¢ az[WAL(j ® j,1) + 2WAL(J e Xk,1i)

+ WAL(k ® k,1))

(a1 + 2a2)WAL(0,i) + ZaZWAL(j ® k,1i)

We would observe an increase in the steady state term,

sequency 0, and an interaction term at sequency (j © k)/2 for

the square term in a model of this form. A linear term in x

would just have sequencies j/2 and k/2 appear in the spectrum.
This form of input may offer a viable approach to

detecting system gain. Gain is the system's tendency to

amplify or attenuate the response at different sequencies. 1If
a parameter has a linear term, in the absence of system gain
the amplitudes of WAL(j,i) and WAL(k,i) should be the same. By
using a combination of high sequencies and low sequencies, and
comparing the spectra of the two sequencies for a given run,
any differences in power should be due to system gain or
stochastic error. We can statistically test the spectrum for
gain by performing an F-test as described later.

According to the literature Walsh functions are
theoretically better than trigonometric functions for parameter
detection in non-linear models. This can be explained by
figure 4. Since input is held at a single value for each time
Egj interval, the system output has the characteristic of

maintaining a single value over the same interval. The
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amplitude of the output is changed, but the number of steps

remains the same and will be detected by Walsh analysis.

S~  —] —  Output

—

Figure 4. A nonlinear response surface

inpu*

A problem in the use of Walsh analysis is that it is not
invariant under phase shifts. According to Beauchamp the CAL
and SAL functions of a given sequency vary inversely to each
other in such a manner that the spectrum estimator is
"relatively insensitive" to changes in phase. However, the
practitioner should be cautious if the simulation model
involves time lags. Our experiments indicate that the power
spectrum is phase shift invariant if the sequency is N/2 or
N/4, where N is the number of terms in the series. For other
sequencies the spectrum will have a spike at the driving
sequency, but there will be spikes of varying heights at other
sequencies as well. The total power in the spectrum remains
constant, and empirical evidence indicates that the bulk of

the power is usually displayed at the original sequency.

Spectra are usually plotted on a log scale, and it is

o
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difficult to discern the primary from secondary spikes.
Furthermore, there are cases where the power is uniformly
distributed across all spikes, making identification
impossible. We have been unable to find an analytical methcd
of predicting the location of the extra spikes, other than by
actually producing spectra of the sequency at a specified

lag. See appendix 2 for details.

2.6 Generating Walsh functjons

The vector notation introduced in the previous section
allows us to use matrices to represent Walsh functions, which
simplifies notation substantially. Throughout the remainder

of this paper we will use WN to denote an NxN matrix comprised

of the first N Walsh functions.

example

1 1 1 1
_1 1 1114
¥, [1-1] ¥4 1-1-1 1
1-1 1 -1

Walsh functions can be generated recursively by the use

of Hadamard matrices. One definition of a Hadamard matrix is
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Hzn Hzn
Hz(ml) - . . ;o OHyp =1 (n 2 0).
220
g;’amglg
1 1 1 1
11 1 -1 1-1
Hz'[l—l] He" 11 1-1 22
1-1-1 1

Notice that Hy contains the first N Walsh functions as its
rows and columns, but not in sequency order. After sorting we
have W, which retains the symmetry property of H. However,
while this is an interesting mathematical viewpoint it does
not provide a convenient and efficient method for obtaining
wWalsh functions.

The discrete Walsh transformation can be viewed as a

matrix transformation using W which performs a change of basis

on a vector y of length N = 20,

1
Y §Wy
By the orthonormal property
W WT =NI

where

T is the transpose operator
N is as defined above
I is the NxN identity matrix

W= Wl since W is symmetric. W is invertible because it is

composed of orthogonal vectors, and so must be of full rank.

We can compute w ! as follows:

a~ . ~ = \~' > n- E k . - - - -~ -
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This means that the Walsh transformation is its own
inverse after scaling by N. This provides us with perhaps the
sirplest method of generating Walsh functions. Just as with
the Fourier transformation matrix, W has redundancies and can
be reduced to a sparser matrix. Use of this sparse matrix
results in a considerable savings in computational time and
corplexity. This is called the Fast Walsh Transform (FWT).

By performing a FWT on a vector which has the value one in the
location corresponding to the desired sequence number and

which is zero elsewhere, we obtain the indicated Walsh

function as output.

example
1 [ 1
0 1| _
W4 ol = 1 WAL(O,.)
0 | 1
s 0 C 1
L of _ |-1] _
o W, | 1| = L-l = WAL(2,.)
0
w 1
;;; A computer algorithm for the FWT is included in appendix 1.
L
w

..................

.........
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Section 3 Desian of a Spectral Experiment

3.1 Distribution of the Spectrum Estimator

We assume that the output from a simulation of a
stochastic system is composed of a deterministic signal term ¢
and an error term £.

Yy =83 v ey

We will show that the spectrum estimator has a x2 distribution
under the assumption that the additive error term has the
distribution of discrete white noise as defined in Jenkins and
Watts. This means that it is normally distributed with mean
zero, variance oz , and cov(ci,cj) = 0 for i ¥ j. Using the

terminology defined in section 2.5 we obtain

=31 -3 P Y 1
Y N Wy N W (s +¢ ) N Ws + §

The random component associated with this is

We.

= 1
Yc N wWe.

Since the only variability in Ya(i) is due to LY clearly the

variance of Y_(i) is o2 and Cov(Y_(i),¥,(3)) = 0 for i = j.

Since Yc(i) is a linear function of a normal random

variable, it is distributed normally. Thus

2,. 2
Y, (1) _ Y, (k)
o 2
%;: Var(Y:(i)) O
ﬁ?: has a x2 distribution with v, the degrees of freedom, equal to
\‘:; i‘

one. Since the covariance of the Yc's is zero the Yc(i)'s are
Lot an g
b independent.
o 22
e
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The sum of two independent x? random variables has a x?

distribution, so

P(i) 2 2 1 2 N
4 [ 4
and y
P(i) 2 N
oz ~ Xl i - o"io

2

The variance of a x“ distribution with v degrees of

freedom is 2v, B8O
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[ P(1) } 4
vVar 02 = {
r 3 2

4 ©
var[ P(i) ) =
20

Ont s

i = 1,2,...,%'1

i= o,g

i= 1,2,...,%-1

i= o,g

and the variance of P(i) is a constant, not dependent on N.
This means that like the Fourier spectral estimator, the Walsh
estimator is not consistent.

If we have two spectrum estimates sl(i) and ﬁz(i) with

the same number of observations, obtained from independent

runs, then
AL . N
P, (1) / P (i) i { Fz,z i=1,...,3-1
A . N
P, (1) / P,(d) Fy i=0,3

and under the hyporeport that Pl(i) = Pz(i)

N
- {Fz'z i‘l,-'c,il
Fia

i=o0,3
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This enables us to perform a statistical test of whether
two independent spectrum estimates are egual. Hence we can
test wvhether an observed spike in the spectrum is due to a
factor effect or is due to error.

The next issue is how to increase the degrees of freedom
for the estimator. Consider a run in which all of the
sequencies assigned are less than or equal to k. Let

X = 21109 k], where the log is base 2. Then all crossterms

will also be of order less than K, since the @ operator works
in a bitwise manner. We therefore can restrict the analysis to
batches of K points. If we now let the simulation run for m
batches of length K we will have m independent estimates of
each of the K points under the assumption *hat the error is an
additive discrete white noise term, since we are performing
linear transformations on independent observations. We can

now construct K new estimators from the sum of these m
estizates. The new estimates will be distributed as x? random

variables with v = 2m except at the endpoints, since they are

constructed as a sum of m xz

variables with v = 2. The
endpoint estimators are a sum of m x 2 distributions with

v = 1, and hence will have v = m,

3.2 Sequency Selection
The basic problem is to find a set of seguencies for n
factors such that all of the original terms and the crossterms

have a unique sequency. A straightforward solution is to




% as

$

" assign the factors seguencies which are powers of two, which
\¢ actually assigns one bit to each factor. This will always

N ' yield a unique set of cross terms, and would be ideal if we
were interested in all possible interactions. For example,
for a three factor model with factor i assigned sequency 21'1,

we might observe

“: vy ‘-

sequency - term

 d

LU

X
X

xlx

xlx

XoXq

PO SR B P I U o
Ww N W

X1X%3

If we are interested only in two-term interactions this
v is inefficient. For a first order model there are n original
terms and n choose 2 crossterms, or a total of (n2 + n)/2

. sequencies. We want to minimize the required number of

' observations, and the FWT needs 2k+1 observations to detect a

k-1 k

sequency p in the range 2 € P < 2”7. The number is 2]('4"1

k

rather than 2= because two Walsh functions are used for each

[

sequency estimate. We can obtain substantial savings even for

¢

i

j‘ relatively small n if we can find (n2 + n)/2 terms rather than
; 2" terms. For example, if we have 10 factors we will generate
%} 55 sequencies. If we select the original 10 in such a way

X that all 55 sequencies are less than 64, then we need only 128

observations. This is much more efficient than taking

R L

211(-2048) observations to identify the same model.
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Recall from section 2.6 that in order to detect a square
term we need two Walsh seguencies. 1If the sguare term is
present we will observe the crossterm of the two sequencies in
the output. We can solve the selection problem as i1f we had a
model with twice as many factors, and assign two unique
seguencies per factor. Alternatively we can choose the
sequencies as if there were one extra factor and make one
sequency common to all factors being tested for a square
term. Each of the two proposals has merit. The first one
allows a pairing of high and low sequencies for every factor
s0 that the model can be tested for system gain. The second
has the desirable property of reducing the size of the problem
we must solve to assign sequencies. The user must decide
which of these considerations is more important for his
specific application.

In order to solve the proposed problem we have written a
computer program called SEQ which enumerates sets of n
seguencies, generates the n choose 2 crossterms, sorts, and
checks for uniqueness of all elements. It prints out the
original n sequencies if they constitute a solution. The code

can be found in appendix 1.

If we did this by explicit enumeration of all

configurations the problem would rapidly become too large to

o solve. To find 3 input sequencies, for example, we have 6
:2 terms. We want these to fall in the range 1 to 7. We can
Eg, without loss of generality order them so that the first is
Eié smallest and the third is largest. Then to have uniqueness the
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first can only range from 1 to 5, the second from 2 to €, and
the third from 3 to 7. 1If we call the number of parameters n
and the highest sequency of interest is m, in our example
ne=23and m= 7, Then the number of configurations possible
is m choose n. For our example this is 35. For n = 10 we
= need at least (n2 + n)/2 = 55 gequencies. We might as well
% consider all sequencies up to the next power of two, i.e.
sequencies 0 through 63, since they will all yield the same

batch size. Then there are 63 choose 10 configurations, or

more than 10! possibilities to consider. While there may be

several solutions, it could take a long time to find any of
then.
We can drastically reduce the amount of work required by
noting that for the set {xl.xz,...,xn) to be a solution the
g subset (xl,xz,...,xn_l) must also be a solution. Hence if we
can find a solution to the problem at level k, we can add one
additional element and range through the possible values until
we have a solution at level k+l. If we fail to find any
solutions we return to level k and search for a new solution
there. By proceeding iteratively in this fashion we can build
; the solutions to fairly large problems quite easily. The
2 prograc presented in appendix 1 can handle the case n = 16 in
under three minutes on an IBM personal computer. Some

solutions for various values of n a:s presented here.
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ne=4 (1,2,4,8)
ne=25 {1,2,4,8,15)
n==6 {1,2,4,8,15,16)

ne=16 {1,2,4,8,15,16,32,
51,64,85,106,128,
150,171,219,237)
A separate program called XTERM is included for
predicting all the crossterms from a given set of input
sequencies. Sample output from that program is shown here for

the case n = 4.

enter the number of sequencies: 4
enter the sequencies:
1 2 4 8

1l xor 2: 3

1l xor 4: 5

1l xor 8: 9

2 xXor 4: 6

2 Xor 8: 10

4 xor 8: 12

3.3 Design n eriment

We will now describe a general methodology for designing
a Walsh spectral experiment for identification purposes.

The experimenter must first establish the number of
factors to be identified, and the order of the model to be
fit. If a model of greater than order 2 is desired we
recomrend using sequencies which are powers of two, as
described in sectior 3.2. Otherwise the experimenter can use

the programs included in appendix 1.
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Next the experimenter should decide whether he needs two
sequencies per factor or can utilire a common term approach.
Two sequencies per factor rapidly increases the required
number of seqQquencies, and hence increases the number of
observations. For a minimum number of observations the common
term approach is preferable, but it has two disadvantages.

The first is that it may be more susceptible to system gain
behavior, since not every factor can be assigned both a high
and a lov sequency. The second disadvantage is that it is not
easy to discern the difference between crossterms and square

terms in the model. For example, consider the following two

factors

x, = a, [WAL(p,t) + WAL(q,t)]

x, = a, [waL(p,t) + waL(r,t)]
where a, and a, are the amplitudes of Xy and X, respectively.

Then

2

x2 = a2 [WAL(pep,t) + WAL(geq,t) + 2 WAL(peq,t)]

= 2 a2 [WAL(0,t) + WAL(peq,t)]

?E XX, = alaz[WAL(p,t) + WAL(q,t)] [WAL(p,t) + WAL(r,t)]

ﬁ;} = alaZ[WAL(pep,t) + WAL(p®r,t) + WAL(peg,t) + WAL(gér,t)]
E§ = alaz[WAL(O,t) + WAL(p®r,t) + WAL(peq,t) + WAL(ger,t)]
Eé Both the xl2 and X%, terms share WAL(pég,t) as a common

o identifying sequency. 1In the absence of terms WAL(p®r) and
;g WAL(gér) we would conclude that the spike in the spectrum was
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due to an xlz effect, but if the other terms are present we

cannot exclude the possibility that there is an xl2 effect as
well as an XX, effect. Note, however, that all three spikes
identifying an X, X, ternm should have the same height. 1If the
height at pég is greater than the other two heights, it is

probably due to the addition of an x12 term, although it might

be due to gain.

After deciding on the number of sequencies which will be
needed, the experimenter should select a set such that
crossterms are uniquely identifiable. The program SEQ in
appendix 1 can be used for this purpose.

The user should then run the experiment by varying each
factor according to the even numbered Walsh function which
corresponds to its assigned sequency. The odd sequence number
cannot be used because it does not preserve the ® operator
under which the sequencies were selected, while the even
sequence numbers do. For example, if parameters Xy and x., are

2
assigned sequencies 4 and 8, respectively, then we have the

following.
Seq(4) <=> WAL(7,t) , WAL(8,t)
Seq(8) <=> WAL(15,t) , WAL(l6,t)
If the even terms are used
WAL(8,t) WAL(1l6,t) = WAL(8616,t)
= WAL(24,t)

=> seg(l2)
= seq(864).




3]

If the 0dd terms are used

WAL(7,t) WAL(15,t) = WAL(7€15,t)
= WAL(8,t)
=> gegqg(4)
X seq(8®4).

Thus we can only use the segquency based experimental design if
xS we convert to even numbered Walsh functions.

Finally, the output from the experiment should be
evaluated using a program such as SPECTRUM in appendix 1. The
spectrum obtained from that program can be analyzed for

sequency components corresponding to the factor inputs.
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Section 4 Analysis and Conclusions

4.1 Yerification of Walsh Analysis I
Before proceeding further we wanted to verify the ability \
of Walsh analysis to extract the correct signal in the |
presence of noise. To this end we constructed a file of
random numbers to be used as a signal with additive noise. A
second file consisted of the fractional parts of the numbers
from the first file, and was considered as the noise. A third
file was constructed from the integer portion of the first

file, and considered to be a noiseless signal. The three

files are presented here.

Signal
4.1 3.9 4.1 3.9 3.8 4.7 5.2 6.4
4.1 3.9 4.1 3.9 3.8 4.7 5.2 6.4
Noise
0.1 0.9 0.1 0.9 0.8 0.7 0.2 0.4
0.1 0.9 0.1 0.9 0.8 0.7 0.2 0.4
Noiseless
4.0 3.0 4.0 3.0 3.0 4.0 5.0 6.0
4.0 3.0 4.0 3.0 3.0 4.0 5.0 6.0

All three files were subjected to spectral analysis using
the program SPECTRUM in appendix 1. Each file was plotted
individually, and the signal and noise files were used to form
the signal to noise ratio. The spectral plots are presented
as figures 5 through 8. The signal plot in figure 5 has a

high sequency component which is not present in the noiseless
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plot of figure 7. This noise component is successfully
eliminated by taking the signal to noise ratio in figure 8.
That plot produces spikes in the same location as those in the
noiseless spectrum, indicating that we have identified the
correct sequency components of the true signal in the presence
of noise.

The noise component in this case does not meet the
assumption of being normally distributed with mean zero. This
indicates that the discriminating ability of Walsh spectra is
not necessarily dependent on the distribution of the error
terms. That distribution is important only in being able to
construct a statistical test for identifying signficant
terms. If the assumptions of section 3.1 hold, the values to
the left of the signal to noise ratio plot are F values, and

can be used directly after computing the appropriate degrees

of freedon.
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enter the name of the signal file:
signal

enter the name of the noise file or the word "nul":
nul

enter the number of batches and batch size of the files:

1 16
2.0362650E+01 O %A RARAR R AR R SRR R AR S A RS AR AR AR AR RN AR S AR AR
0.0000000E+00 +
4.1281260E-01 FRERRARARANR RN KRR
0.0000000E+00 +
1.5156250E-01 FRARRAAAARA RN
0.0000000E+00 54
9.9062500E-02 LRI T
0.0000000E+00 +
4.5156280E-02 thRRR

Figure 5. Spectrum of signal run with noise comgonent

enter the name of the signal file:
noise

enter the name of the noiese file or the word "nul":
nul

enter the number of batches and batch size of the files:

1l 16
2.6265620L=-01 Of RARARARRRARARRRARARRA KRR AR R AR R AR AR ARk hkk
0.0000000E+00 +
1.2812500E-02 frRhkrhahhd
0.0000000E+00 +
1.4062500E-02 RhARRRRA AR
0.0000000E+00 54
3.6562490E-02 FRAA AR R AR AR E AR AR AR
0.0000000E+00
4.5156240E-02 FRARRARAARRARARR AR A AR AR

Figure 6. Spectrum of noise component
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enter the name of the signal file:
noiseles

enter the name of the noise file or the word "nul":
nul

enter the number of batches and batch size of the files:

1 16

1.6000000E+01 0+*.ﬁﬁi******ﬁt***.itiittiti*iii**ttt*****
0.0000000E+00 +

5.0000000E-~01 +**ti*****i***

0.0000000E+00 +

2.5000000E-01 fARRRR R

0.0000000E+00 5+

2.5000000E-01 fRRenRan

0.0000000E+00 +

0.0000000E+00 +

Figure 7. Spectrum of signal without noise component

enter the name of the signal file:
signal

enter the name of the noise file or the word “nul"“:
noise

enter the number of batches and batch size of the files:

1l 16
7.7525870E+01 OF AR AR AR R AR AR R AR RRRRRRRAIAR KRR KRR AR AKX
1.0000000E+00 S Babeb Al R A
3.2219520E+01 fREERR AR R R R AR R AR R AR R AR R ARk hh ok h
1.0000000E+00 fRrRkrdd
1.0777780E+01 AR AR R AR AR R R AR AR R AR Rk
1.0000000E+00 Sttrkhhrs
2.7094020E+00 FRERARE AR R AR AR RS
1.0000000E+00 ® Babeabd A A
1.0000010E+00 FRARRRRR

Figure 8. Spectrum of signal/noise ratio
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4.2 A Polynomial Model

We next tested a model with &4 factors. The model is as

follows:

X X
- 2 2,t 2,t73,¢
Ye "X, et X0t T3 ! 3 + .001 x, , + error

4, t

where x1 through x4 are factors

error, = .8 error, , + .6 z
z ~ N(0,1).

The spectral plot included as figure 9 is based on 3 batches

of 32 observations. Sequencies were assigned as follows,

using the common term scheme.

x.: sed(l5)

+

) seq(8)

X, seq(15)

+

seq(4)
X, sed(15) + seq(2)
X, seq(15) + segq(l)
We would predict the following sequencies to be observed.

x1 : seq(8),seq(ls)

xl2 : seq(0),seq(7?)
X, seq(4) ,seq(1l5)
X, Xq2 seq(0) ,seq(6),seqg(1ll),seq(13)

X, 3 seqg(l) ,seq(15)
The derivations of the linear terms should be evident. We

will derive the X, X4 crossterm as an example.
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X,Xq = [seqg(15) + seg(4)] [(seg(15) + seqg(2))

= [s0q(15)%) + [seq(15) seq(2)) + [seq(15) seq(4))
+ [seg(4) seq(2)]

= g6qg(15615) + seq(1562) + seg(1564) + seq(4®2)

= seqg(0) + seqg(1l3) + seq(ll) + seg(6)

Spikes were observed at all predicted locations, and as
expected the spike for x, was negligable. The spike for the
x2/3 term was small but noticable, and would probably be

accepted as significant if more observations were taken

.05
(FG,G 4.28).
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enter the name of the signal file:

sig.run

enter the name of the noise file or the word *"nul":

nse.run

enter the number of batches and batch size of the files:

3 2

4.4337260E+01

9.9835490E-01

9.9959980E-01

9.9999940E-01

1.5021450E+00
1.0000000E+00
1.1210890E+01
2.1937100E+02
4.2658360E+01
1.0000000E+00
1.0000010E+00
4.941306CE+01
9.9999920E-01
1.0608800E+01
9.9999960E-01
1.4179650E+02
9.9999980E-01

Figure 9.
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Spectrum of signal/noise ratio for polynomial model
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Section 5 Future Research

We present here several topics which are interesting

extensions of the current work.

5.1 Generalized Walsh functjions

While walsh and traditional spectral analysis can be
applied to any time series, it is preferable to tailor the
analysis to the type of system being analyzed. One area for
future research is to investigate the use of generalized Walsh
functions for analyzing p-valued parameters. Elementary Walsh
functions are binary, and can be used to evaluate binary
parameters. Generalized Walsh functions are series which have
the orthogonality and completeness properties while assuming p
discrete values, where p > 3. Using these functions as the
basis for spectral analysis, it would be theoretically
possible to evaluate systems with multi-valued discrete

parameters by spectral methods.

5.2 Parameter Estimation

Once the significant factors have been identified a
logical next step is to attempt parameter estimation for our
model of the system. This problem will potentially be
complicated by non-linearities in the system. After some
preliminary readings we would recommend an iterative least

squares approach.

39
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5.3 Minimal 1/0 System Estimation

One extension of parameter estimation would be to attempt
to reduce the matrix of coefficients to find a minimal
representation for the I/0 behavior of the system. A
representation of this sort would have many possible
applications. It could be used for stability/sensitivity
analysis of the system via analytic methods. It could alsoc be
used as an external control system for variance reduction of
the computer simulation. It might be fruitful to investigate
whether there is a relationship between minimal 1/0 systens

and minimal representations of the simulation using event

graphs.

5.4 Parameter Optimization

Optimization using computer simulation is generally
regarded as a poor idea. It quickly becomes an expensive
proposition if one employs the traditional approach of using
each run as a single observation. However, using spectral
methods it should be possible to use simulation for
optirization at a substantially reduced cost. One possible
approach would be to try to converge iteratively within a
single run. Another approach would be to try to solve the

problem analytically after estimating the system.

5.5 Aid to Varijance Reduction

We have already mentioned the possible use of control

variate variance reduction if we have estimated the I/0 model
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. y o
SRR B

~ of the system. However, it is still possible to improve
variance reduction without estimating a model by using term
sensitivity to indicate which variance reduction technique is
appropriate. For example, antithetic variates should only be
e used if the response surface is monotonic, so the presence of
- non-linear polynomial terms would contraindicate the use of

this method. |

s 5.6 Multiple-Input/Mu - t Models
.?? Thus far all work done by Schruben, Cogliano, and Sanchez
= has focused on single output models. Work needs to be done so

1& that the procedure can be applied to more general simulation

models.

o 5.7 statistical Design of Experiments
It is worth noting that the charts found in many
experimental design texts for setting factor levels in a 2k

P,
PRERE S 5
L L

factorial experimental design are matrices of Walsh

functions. One can conjecture that a spectral approach to

e
.

experimental design has been overlooked prior to now because
most statisticians are familiar only with the traditional
Fourier spectrum. It may be possible to gain additional

s insights into design problems by using discrete spectra. For
é; instance, generalized Walsh functions may be useful for

e designing and analyzing pk factorial experiments.
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Appendix 1

All programs were implemented in the Pascal language.
Pascal was chosen for its readability and transportability.
Standard features are used throughout with the exception of
the program for enumerating seguencies. That program makes
use of the IBM and Turbo Pascal compilers ability to do XOR
operations on integers. Several programs were developed on
the Purdue UNIX system and then implemented on an IBM
personal computer.

The first program is a procedure which does a Fast Walsh
Transform using the signal flow diagram in figure 3.3 of
Beauchamp.

The second program generates permutations of sequencies
and cross-terms for a given number of parameters. After
generation the sequencies are sorted using a quicksort
algorithm. They are checked for redundant values. If there
are no redundancies the input sequencies are printed.

The third program will take a list of sequencies as
input, and generate all the crossterms as output. This
procedure is described in section 3.2,

The fourth program is a general procedure for doing
Walsh analysis on an input data set. It prompts the user for
the location of the data, number of batches, and size of each
batch. It then does the Walsh analysis and prints the output
as a barplot. If two input files are specified it produces a
signal to noise ratio barplot using the first file as the
numerator and the second as the denominator. Barplots are

produced on a log scale so that smaller spikes will not be
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excluded from visibility. The raw value is printed to the
left of the plot, and in the case of a signal to noise plot
can be regarded as an F ratio if the assumptions of section

3.1 are met.
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procedure walsh(var v: vector;start,lgth_v: integer):
(itt.ittﬁ..ﬁﬁﬁt'ttiti.it.'.i.ﬁ"tiﬁttt.titittttttttttt*ttit
procedure to perform fast walsh transform on a vector of
length n. Note that n must be a power of 2. Also of
interest is that by the symmetry of the FWT this algorithm

is its own inverse, and can be used to generate walsh
functions.

REAAARRARAR AR AR AR AR R AR ARSI AR AN AR AR R A AN AAR R AN AN AR AR R AR AR RS

var temp:vector:
half 1lgth, i, j, k: integer:

begin;
half_lgth := 1lgth_v shr 1;
J := gtart;
for i := start to (start + half 1lgth - 1) do
begin:
k := i + half lgth;
temp(i) := v([J) + v[i+1);
temp(k] := Vv{J] = V[]+1);
if ((1i - start) mod 2) = 1 then temp{k) := -temp[k]:
I =3 + 23
end;
for i := start to (start + lgth v - 1) do
vi{i) := temp(i];
if (half_lgth > 1) then
begin:;
walsh(v,start, half lgth);

walsh(v, start+ha1f _lgth,half 1lgth):;
end;

end; {(walsh)
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program seqg(input,output):
(tiﬁi.tiitiil'ttti.iii.i.ﬁt..ittﬁttﬁttittttt*titiitttttﬁtt&
Program for generating seguencies whose crossterms
are unigue. Generates permutations, sorts, and

compares adjacent elements for eguality.
htti*.iﬁitttiiitlittttittittitittttitﬁitttt*ttitt*tttttttﬁ)

type vector = array(l..210) of integer;

var v,p: vector:;
i,n_param,length,uplim: integer:

procedure permute(var v: vector; n: integer);
{generate the n choose 2 interaction terms for n parareters)
var 1,3,index: integer;

begin;
index := n:

for i :t=1 to (n - 1) do
begin;
for j := (i + 1) to n do
begin;
index := index + 1;
v[iindex] := v[i] xor Vv[]j):
end;
end;
end; (permute)

procedure sort(var v: vector; lower,upper: integer):;
{sort of a vector v of length n using recursive quicksort)

var pivot: integer;

procedure partition(var v:vector;lower,upper:integer;
var pivot:integer);

procedure swap(var v:vector:;j,k:integer):
{swaps the contents of two vector locations)

var temp: integer;

begin;
temp := v[j}
V(3] = v(k]
v(k] := temp
end; (swap}{
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begin;
pivot :e lower;

repesat

repeat
lower := lower + 1;
until ((v[lower] > v[pivot]) or (lower >= upper)):

while ((lower < upper) and (v[pivot) < v[upper)))
do upper := upper - 1;

it (lower < upper) then swap(v,lower,upper);
until (lower >= upper):;

if v(lower] < v[pivot) then
begin;
swap(v,lower,pivot);
pivot := lower;
end
else
begin;
swap(v,lower-1l,pivot);
pivot := lower -1;
end;

end; (partition)

begin; (quicksort)
partition(v,lower,upper,pivot);
if (pivot - lower) < (upper - pivot) then
begin;
if ((pivot - lower) >= 2) then sort(v,lower,pivot-
1)
if ((upper - pivot) >= 2) then
sort (v,pivot+1,upper);
end
else
begin;
if ((upper - pivot) >= 2) then
sort (v,pivot+l,upper) ;
if ((pivot - lower) >= 2) then sort(v,lower,pivot-
1)
end;

end; (sort){
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function accept(var v: vector; n,length: integer): boolean;

{accept or reject a set of parameter seguencies as having
unique elts)

var i: integer:
result: boolean;

begin;
permute(v,n):
sort(v,1,length);
result := true;

i = 1;

repeat
if v[(i) = v[i+1] then
result := false;
i =3+ 1;
until (result = false) or (i >= length):;
accept := result;
end; (accept}

procedure add_lvl(var v,p: vector;
current_lvl,n_param,tot_lgth: integer);

{given unique elts at level n, add elts at level n+l})
var i,j,length: integer;

begin;
length := (sqr(current_1lvl) + current_1lvl) div 2;

for i := (p[current_1lvl-1]+1) to (tot_lgth-(n_param-
current_1lvl)) do
begin;
for J := 1 to (current_lvl - 1) do v[]] := p[i]);
v{current_1lvl] := i;
if accept(v,current_1vl,length) then
begin;
plcurrent_1vl] := i;
if current_1vl < n_param then
add lvl(v,p,current lvl+l,n _param,tot_lgth)
O else
- . begin;
2o for j := 1 to current_1lvl do write(p[j}:4):
- : writeln;
end; (write)
end; {accept block)
end;{loop}
end; (add_1vl){
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begin;

write('enter ¢ sequencies needed:');
readln(n_param);

A length := (sgr(n_param) + n_param) daiv 2;
- uplim := 1;

while uplim < length do uplim := uplim * 2;

for i := 1 to (uplim - (n_param - 1)) do
begin;

pll) := {i;

add_1vl(v,p,2,n_param,uplim);
end;

end. (SEQ)
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program xterm(input,output);
(QQittiiti‘.tttii*itttﬁtttttttttt.tttttttiltﬁtt*‘*t&.tttit

Frogram to calculate the crossterm seqguency locations
.t.iit*iittiti**ittitﬁttﬁt.ttttt*i'itltiiittittti*.tttﬁti)

type vector = array(l..20) of integer:

var v: vector;
i,n: integer:;
result: text:;
fname: string(l4};

procedure permute(var v: vector; n: integer):

{generate the n choose 2 interaction terms for n parameters)
var i,3,index: integer;

begin;
for i := 1 to (n - 1) do
for j := (i + 1) to n do
writeln(result,v(i):3,' xor ',v[J]}:3,"':', v[i]) xor
vijl:4);

end; {permute)

begin;
writeln:
write('enter the output filename:'):;
read (fname) ;
assign(result, fname);
rewrite(result);
writeln(result):;
write(result, 'enter the number of sequencies:');
wvriteln:;
write('enter the number of sequencies:');
readln(n);
writeln(result,n):
writeln('enter the sequencies:');
writeln(result, 'enter the sequencies:'):;
for i := 1 to n do read(Trm,v([i}]):
for i := 1 to n do write(result,' ',v[i]):
writeln(result):
permute(v,n);
close(result):

end.

.......................
.......................
----------------
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program spectrum(input,output);
(ﬁiittitiititti'ttﬂﬁtttttdtttttititttittttt..tttt.tttttttii*tt

This program reads in the simulation output from a signal
run
and 8 noise run, or from just a signal run. It prompts the
user for which type of input he has, the number of batches,
and size of each batch. It then calculates the sequency
spectrum if there is only one input, or calculates the
signal
to noise ratio if there are two. Plots are on a log scale,
and data values are printed to the left of the plot. Output
is written to a file of the users choosing.
i**ttiii****ttiittttﬁt**iﬁtttti*t*tt*t*tttﬁt*tttt***ttttitt*)

const size = 1024;
half size = 512;

type runtype = (signal,noise);
vector = array(l..size)] of real;
sequency = array[0..half size) of real;

var data: array(runtype] of vector;
run,uplim: runtype:;
seq: array[runtype) of sequency:
plot: text;
infile: array[runtype] of text;
signal_file,noise_file,plot_file: string[l4}:
b _size,n_batches,n_seq,i,Jj: integer;{

....................
.................
.........

CoaS-ai i and SAR el are aia BrA Bea dei B-aol: tu ok bak ik ank o bt N -.17_*---;1




%% Lpad - i - L apd LRt AR REAL ]
A abilialiai L ot i Lt s il el A et e~ s aneliat sug i he s on b~ SRARASCaE-nith=al AC AR NN ] nh° ot ast aad ghihcaibh-ahvkoa A il JtAE RS aCh I Il B R
-

-?\'{;
_.:::{
L 52
. "‘:‘
}}i- procedure initieslize;
. begin
A write('enter the name of the signal file:'):
N readln(signal _file):
N assign(infile[(signal),signal_file):
ot reset (infile(signal)):
;‘-b writeln;
L write(

‘enter the name of the noise file or the word "nul":'):;
AN readln(noise_file):
AN if (noise_file = 'nul’')
e then
S uplim := signal
aad else

begin

N assign(infile[noise),noise_file);
e reset (infile[noise])):
SR uplim := noise:;
e end;
W writeln;
¥ write(
;j{ ‘enter the number of batches and batch size of the

files:'):;

- readln(n_batches,b_size):
k.- writeln;

TEVES n_seq := b _size shr 1;
for i := 0 to n_seq do

b for run := gignal to uplim do
seq[run][i] := 0.0;
o write('enter the name of the output file:');
T readln(plot_file):
Rade assign(plot, plot_file):
;),‘ rewrite(plot):
NN writeln;

write(plot, 'enter the name of the signal file:'):
S writeln(plot,signal_file):;

writeln(plot):;
* write(plot,

- '‘enter the name of the noise file or the word "nul":');

- writeln(plot,noise_file);
S writeln(plot);
TN write(plot,
T '‘enter the number of batches and batch size of the
ARy ‘ files:');
. writeln(plot,n_batches,' ',b_size);
Ny writeln(plot);
b writeln(plot):;
o end;{initialize){
£
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procsdure logplot(var v: sequency; lgth: integer);
(A procedure to produce a log scale barplot from vector v.
The plot is scaled by the largest difference in v.)

var 1,3: integer;
max,min,range: real;

begin
max := 0.0;
min := 1E37;
for 1 := 0 to 1lgth do
begin
if v(i) > max then max := v[i);

if (v(i) < min) ana (v[i) > 0.0) then min := v{i):
end;

max := ln(max):;

min := ln(min/2.8);

if min >= max then min := 0;
range := max - min;

for i := 0 to 1gth do F
begin {loop) |
write(plot,v[i}): -

if (i mod 5) = 0

then |
write(plot,i:5,'+') |
else
write(plot, +'):

if v{i] > 0.0 then
for j := 1 to trunc(40*((ln(v{i))=-min)/range)) do
write(plot,'2*');
writeln(plot);
end; {loop)
end; {logplot)

procedure crunch(var v: vector; var sedq: segquency;
lgth,s_lgth: integer):

{procedure to calculate spectrum estimator for vector v,

result placed in vector seq.)

var i: integer;

begin
seq(0] := seq[0] + sqr(v{ll/1lgth);
seq[s_lgth] := seq[s_lgth) + sqgr(v[lgth])/lgth);

for i := 1 to s_lgth-1 do
begin

seq[i) := seq(i] + sqr(v[2#*i}/lgth) +
sqr(v{(2*i)+1)/1gth):
end;

end; (crunch}{(

............................
....... k

.
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(61 walsh.pas)

begin
initialize;
for jJ := 1 to n_batches do
for run := pignal to uplim do
begin
for { := 1 to b_size do read(infile{run),datarun){i]);:
walsh(data(run),1l,b_size):
crunch(data[run),seg(run),b_size,n_seq):
end;
if uplim = noise then
for { := 0 to n_seq do
if (seg[noise)[i) > 0.0) then
seg{signal)[i) := seq[signal)(i) / seg[noise)[{i)

else if((seg[noise)[(i) = 0.0) and (seg(signal){i] = 0.0))
then

seg{signal)[i) := 1.0;
logplot(seq[signal),n_seq):
close(plot);

end.
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;ﬁ Appendix 2
si
§§ Since there is no analytical method for evaluating the
-~ impact of a lag upon the Walsh spectrum, we resorted to
= expirical methods. It was hoped that we would observe a
_id - clear spike at the original sequency, and at worst a small
amount of noise elsewhere. What we actually observed was
;5 that while the original sequency usually has the largest
;3 spike, at times it does not have any spike at all. We
o present here 18 spectral plots of different sequencies with
‘:3 different lags. All plots were constructed from 64
;ﬁ observations. The filename for input is descriptive of the
;f original sequency and lag. For example, LAG602 contains
if Walsh sequence number 60 lagged 2 periods. Recall that:
3 sequency = integer[(sequence § + 1) / 2]
i Notice that segquence numbers 63, 31, and 15 are
;? completely periodic with periods 1, 2 and 4, respectively. We
}3 consequently need not lag them more than their period lengths
)éi to have completely identified their behavior.
,;% We include the program TESTLAG, which was used to
.Ei generate the lagged Walsh functions. The output was plotted
{j using SPECTRUM.
I
-
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b~ program lageffect (input,output);
$ (.ii.tttt.QQltQtQitiQttitttiittttﬁiﬁttttﬁtttttﬂttt

, Generate Walsh functions of s specified lag
‘;. .Qiittittt.Qttttttittti*tttttt.ﬁti*ttitttﬁtittitt)

type vector = array[0..1023) of real;

var v : vector:;
seq,size,lag,i : integer:

28 outfile : text;

. fname : string{l4);

($i walsh.pas})

begin;(lageffect)
F write('enter size, sequence #, and lag:');
N readln(trm,size,seq,laqg):
r.- write('enter the output filename:'):;
ool readln(trm, fnane) ;
- assign(outfile, fname);
rewrite(outfile):;
for i := 0 to (size - 1) do v[i) := 0;
* [seq] = 1;
: walsh(v,0,size);
Fd for { := 0 to (size - 1) do
N writeln(outfile,v[(i-lag) mod size):3);
close(outfile):;
end. {lageffect)
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enter the nane of the signal file:
a:lagsl

snter the name of the noise file or the word "nul":
nul

enter the number of batches and batch size of the files:
1 64

0.0000000E+00
7.8125000E~-03
0.0000000E+00
6.6406250E-01
0.0000000E+00
3.9062500E-02
0.0000000E+00
7.8125000E-02
0.0000000E+00
7.8125000E~03
0.0000000E+00
3.9062500E~02
0.0000000E+00
3.9062500E-02
0.0000000E+00
7.8125000E~03
0.0000000E+00
7.8125000E-03
0.0000000E+00
3.9062500E-02
0.0000000E+00
3.9062500E~02
0.0000000E+00
7.8125000E-03
0.0000000E+00
7.8125000E-03
0.0000000E+00
3.9062500E~-02
0.0000000E+00
3.9062500E-02
0.0000000E+00
7.8125000E-03
0.0000000E+00

0+

+**tittt

+***.ti.i*.i.t*ﬁit..t‘t****t*************

+

5+***ittttit*ttt*iﬁt*

+

+iﬁ**itﬁ
R LLITTY
10+
FRREERRRR AR R AN R RN NS
FRRRRAARRRARRRRR AR R
154hsannan

+

+****t**

+***tt*****t****iit*
20+

+***it**************

+*****t*

25+nnnRnnn

+i*ﬁt*t****i*******t

+

FRARRRARARRRAR AR R AR
30+
fhhknknn

+
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enter the name of the signal file:
ailags2

nter the name of the noise file or the word "nul":
nul

enter the number of batches and batch size of the files:
1 64

0.0000000E+00 0+

3.1250000E-02 ek AL AL L L]

0.0000000E+00 +

4.0625000E-01 GARAR AR AR R R R AR R RN RARRR AR AR R AR N R A ARk A R AW
0.0000000E+00 +

1.5625000E-01 SHARARRARRARRARAARRR AN AR AR AR RRS
0.0000000E+00 +

3.1250000E~02 tRRANRARRR AR

0.0000000E+00 +

3.1250000E-02 I

0.0000000E+00 104

1.5625000E-01 FRRRRRAARRRAR AR RN A AR R R AN ARA
0.0000000E+00

1.5625000E-01 FARARRRARARR AR R AR R AR RARRRARRR
0.0000000E+00 +

3.1250000E-02 154 khnhhhhhnn

0.0000000E+00 +

0.0000000E+00 +

0.0000000E+00 +

0.0000000E+00 +

0.0000000E+00 204

0.0000000E+00 +

0.0000000E+00 +

0.0000000E+00 +

0.0000000E+00 +

0.0000000E+00 25+

0.0000000E+00 +

0.0000000E+00 +

0.0000000E+00 +

0.0000000E+00 +

0.0000000E+00 30+

0.0000000E+00 +

0.0000000E+00 +
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enter the name of the signal file:

a:lag5l

enter the name of the noise file or the word "nul":

nul

enter the number of batches and batch size of the files:

1

0.0000000E+00
7.0312500E-02
0.0000000E+00
2.2656250E~01
0.0000000E+00
3.5156250E-01
0.0000000E+00
7.0312500E-02
0.0000000E+00
7.8125000E-03
0.0000000E+00
3.9062500E-02
0.0000000E+00
3.9062500E~02
0.0000000E+00
7.8125000E-03
0.0000000E+00
7.8125000E-03
0.0000000E+00
3.9062500E-02
0.0000CO0E+00
3.9062500E-02
0.0000000E+00
7.8125000E-03
0.0000000E+00
7.8125000E-03
0.0000000E+00
3.9062500E-02
0.0000000E+00
3.9062500E-02
0.0000000E+00
7.8125000E-03
0.0000000E+00
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0+

+Qit¢*iititttit...ti.ttiiﬁ*

+

+Qt*itti‘t*i*iittt**‘******i**ti*t***

+

5+tii*ti.tt*t**i*tﬁiti*t******ti*****i****

+

+i*tit**.*itittttl**ti*****

+

+*****i**
104
+**i*i***t**t**titt*t*

+t*****i*i****.titt**t

+

1540 ahanann
eI
FRRARRARR AR N AR R AR R AR

204
L T T R T
SRIIIIIT L

254 A nkhhn R
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60

enter the name of the signal file:

a:lagsd

enter the name ©of the noise file or the word "nul":

nul

enter the number of batches and batch size of the files:

b

0.0000000E+00
1.2500000E-01
0.0000000E+00
1.2500000E-01
0.0000000E+00
6.2500000E-01
0.0000000E+00
1.2500000E~01
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00

0+
FRARRRRN G R AR AR

+

+*titil**it*ti*i

5+i*tt**i*****i*t****t******i*************
ii***tﬁ*********
+
+
104
+
+
+
+
154
+
+
+
+
20+
+
+
+




bk saadl S il el Sl Shafih SURL SR
WY  aiaida 2t Zan Aot div 2 - navneraad-asdc il e aM o R el B Al WYY W pall &
TN TR TR N L et Bad il s Aat Bat Sal el -

-

.

o
¥
AT

™Y
‘l

61

enter the name of the signal file:

:1lag5s

nul

1

0.0000000E+00
1.9531250E-01
0.0000000E+00
1.0156250E-01
0.0000000E+00
3.5156250E-01
0.0000000E+00
7.0312500E-02
0.0000000E+00
7.8125000E-03
0.0000000E+00
3.9062500E-02
0.0000000E+00
3.9062500E-02
0.0000000E+00
7.8125000E-03
0.0000000E+00
7.8125000E-03
0.0000000E+00
3.9062500E-02
0.0000000E+00
3.9062500E-02
0.0000000E+00
7.8125000E-03
0.0000000E+00
7.8125000E~-03
0.0000000E+00
3.9062500E-02
0.0000000E+00
3.9062500E-02
0.0000000E+00
7.8125000E-03
0.0000000E+00

‘‘‘‘‘‘‘‘‘

W T e . TR '

enter the name of the noise file or the word "nul":

enter the number of batches and batch size of the files:

0+

+Qtitt*titiﬁttlii*ﬁt**‘.ttﬁtiitt**t*

+*tt**t*ﬁilti*t**t***.iQi*it*ﬁ
5+iit**t*i**t**tt*t***ﬁit*iit***t*t**i****

+*iti*****t***i*********t**

+

tReRRR AR

10+
FRARNRER RN AR IR R AR R Rk
FRARRAAR R R AR AR AR AR Rk

154k hasnnrs
RIS
FRRRRRR AR AR R AR R AR AR AR

20+
FEARRA AR RN R R R ARk R Rk
21111 31L

254k hhkknkR
FRAARRR IR AR KRR AR Rk AL
FREARR AR IR R R AR KRR RRRR

30+
+***i***t

+
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enter the name of the signal file:

:lag60l

enter the name of the noise file or the word

nul

enter the number of batches and batch size of the files:

1 64
0.0000000E+00 0+
0.0000000E+00 +
3.1250000E~-02 thkRakARdS
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00 5+
3.1250000E-02 AR RR AR AR,
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00
3.1250000E-02 10t hrhknhhns
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+0O +
3.1250000E-02 thRANRR AR
0.0000000E+00 15+
0.0000000E+00 +
0.0000000E+00
3.1250000E~02 S mab A LR L L L
0.0000000E+00 +
0.0000000E+00 20+
0.0000000E+00
3.1250000E-02 RRkRRA kR AR
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00 25+
3.1250000E-02 S mab AR AL L L
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00
7.8125000E-01 30+************ti***t**********************
0.0000000E+00 +

0.0000000E+00
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"nul":

+
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enter the name of
a:lag602

enter the name of
nul

1 64

0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
g 0.0000000E+00
b 0.0000000E+00
g 0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
1.2500000E-01
0.0000000E+00
0.0000000E+00
0.0000000E+00
1.2500000E-01
0.0000000E+00
0.0000000E+00
0.0000000E+00
1.2500000E-01
0.0000000E+00
0.0000000E+00
0.0000000E+00
6.2500000E-01
0.0000000E+00
0.0000000E+00

-----
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enter the number of batches and batch size of the files:

63

the signal file:

the noise file or the word "nul":

o

w
+F 4+ 4++F

[
(o]

+F+++

[
(84
+ 444+

+************t**
+
20+
+
+**tt****t******
+
+
25+
+********t**t***
+
+
+
30+******************t*********************
+
+
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enter the name of the signal file:

a:lagé6ol
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enter the name of the noise file or the word "nul":

nul

enter the number of batches and batch size of the files:

1

0.0000000E+00 0+
0.0000000E+00 +
3.1250000E~02 e LA L AL L
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00 5+
3.1250000E~02 FRRRAR AR A AN
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00

3.1250000E~-02 104 annddaddnd
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00 +
3.1250000E~-02 FrARR R AR RN
0.0000000E+00 154
0.0000000E+00 +
0.0000000E+00

3.1250000E-02 I EIITE L
0.0000000E+00 +
0.0000000E+00 20+
0.0000000E+00

3.1250000E~-02 RERRAARARS
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00 25+
2.8125000E-01

0.0000000E+CO +
0.0000000E+00 +
0.0000000E+00

$.3125000E-01

0.0000000E+00 +
0.0000000E+00 +

'y iL‘\ ":4 .:"\q.A \ -{"x ) r‘\\;'\- AR o

+**t*it***********t*t***t**t**t***

30+**************t**i*i********************
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enter the name of the signal file:
tlag604

enter the name of the noise file or the word "nul": |
nul

enter the number of batches and batch size of the files:
l 64

0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00 25+

5.0000000E-01 FRRARRRRRRRRARRR AR R AR R R AR AR AR Rk kR ke k kR
0.0000000E+00 +

0.0000000E+00 +

0.0000000E+00

5.0000000E-01 04 R RRARRARRARRARRRARRRR KRR R R R ARk hh Rk kR A k&
0.0000000E+00 +

wm o
+ 4+ ++

o
+F++

o
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0.0000000E+00 +
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enter the name of the signal file:

a:lag6os

66

enter the name of the noise file or the word "nul":

nul

enter the number of batches and batch size of the files:

1

0.0000000E+00
0.0000000E+00
3.1250000E-02
0.0000000E+00
0.0000000E+00
0.0000000E+00
3.1250000E-02
0.0000000E+00
0.0000000E+00
0.0000000E+00
3.1250000E-02
0.0000000E+00
0.0000000E+00
0.0000000E+00
3.1250000E-02
0.0000000E+00
0.0000000E+00
0.0000000E+00
3.1250000E-02
0.0000000E+00
0.0000000E+00
0.0000000E+00
3.1250000E~-02
0.0000000E+00
0.0000000E+00
0.0000000E+00
2.8125000E-01
0.0000000E+00
0.0000000E+00
0.0000000E+00
5.3125000E~01
0.0000000E+00
0.0000000E+00

0+

+t*i*tt*tti

+
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enter the name of the signal file:
a:lageos

enter the name of the noise file or the word "nul":
nul

enter the number of batches and batch size of the files:
1 64

s 0.0000000E+00
. 0.0000000E+00
. 0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
‘ 0.0000000E+00
> 0.0000000E+00
Y 0.0000000E+00
B 0.0000000E+00

0.0000000E+00

0.0000000E+00

s 0.0000000E+00
e 0.0000000E+00
o 0.0000000E+00
. 0.0000000E+00
- 0.0000000E+00
e 0.0000000E+00
0.0000000E+00
0.0000000E+00
1.0000000E+00
0.0000000E+00
0.0000000E+00
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> enter the name of the signal file:
. a:lagéDlé

ko enter the name of the noise file or the word "“nul":
'O nul

8- enter the number of batches and batch size of the files:
A 1 64

S 0.0000000E+00
R 0.0000000E+00
: 0.0000000E+00
0.0000000E+00
) 0.0000000E+00
o 0.0000000E+00
- 0.0000000E+00
- 0.0000000E+00
- 0.0000000E+00
W 0.0000000E+00
" 0.0000000E+00
- 0.0000000E+00
O 0.0000000E+00
- 0.0000000E+00
' 0.0000000E+00
0.0000000E+00
_ 0.0000000E+00
o 0.0000000E+00
e 0.0000000E+00
o 0.0000000E+00
' 0.0000000E+00
) 0.0000000E+00
0.0000000E+00

- 0.0000000E+00
e 0.0000000E+00
- 0.0000000E+00
0.0000000E+00
0.0000000E+00
= 0.0000000E+00
: 0.0000000E+00
1.0000000E+00
0.0000000E+00
0.0000000E+00
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enter the name of the signal file:
atlagéll

enter the name of the noise file or the word "nul":
nul

y T
e e

enter the number of batches and batch size of the files:
1l 64

P
‘L

o
“+ 4+

o 0.0000000E+00
" 0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
) 0.0000000E+00
o 0.0000000E+00
. 0.0000000E+00
b 0.0000000E+00
0.0000000E+00
0.0000000E+00
> 0.0000000E+00
) 0.0000000E+00
~ e 0.0000000E+00
L 0.0000000E+00
, 0.0000000E+00
- 0.0000000E+00
N 0.0000000E+00
g 0.0000000E+00
v 0.0000000E+00
" 0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
o 0.0000000E+00
0.0000000E+00
» 0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
1.00000002+00 +**t****************t********************
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enter the name of the signal file:

a:laglll

enter the name of the noise file or the word "nul":

nul

enter the number of batches and batch size of the files:

l

0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
1.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
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enter the name of the signal file:
alagllz

e enter the name of the noise file or the word "nul":
- nul
enter the number of batches and batch size of the files:
p\ 64
- 0.0000000E+00 0+
- 0.0000000E+00 +
N 0.0000000E+00 +
~ 0.0000000E+00 +
_ 0.0000000E+00 +
- 0.0000000E+00 5+
o 0.0000000E+00 +
= 0.0000000E+00 +
D 0.0000000E+00 +
- 0.0000000E+00 +
A 0.0000000E+00 10+
i 0.0000000E+00 +
- 0.0000000E+00 +
- 0.0000000E+00 +
e 0.0000000E+00 +
> 0.0000000E+00 15+
1.0000000E+00 +***i*t***t*****tt****t******************
2 0.0000000E+00 +
2 0.0000000E+00 +
! 0.0000000E+00 +
v 0.0000000E+00 20+
‘ 0.0000000E+00 +
. 0.0000000E+00 +
v 0.0000000E+00 +
< 0.0000000E+00 +
~ 0.0000000E+00 25+
o 0.0000000E+00 +
- 0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00 30+
- 0.0000000E+00 +
- . 0.0000000E+00 +
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enter the name of the signal file:

a:laglsl

enter the name of the noise file or the word "nul":

nul

enter the number of batches and batch size of the files:

1 64
0.0000000E+00 0+
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00 5+
0.0000000E+00 +
0.0000000E+00 +
5,00000002-01 +‘**ttit**i********i*iti***tt*it*********
0.0000000E+00
0.0000000E+00 10+
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00 15+
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00 20+
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00
5.00000002-01 +******t*tt.******tt****it***********i**t
0.0000000E+00 25+
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00 30+
0.0000000E+00 +
0.0000000E+00 +
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enter the name ©of the signal file:
a:lagls2

enter the name of the noise file or the word "nul":
nul

erter the number of batches and batch size of the files:
l 64

0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
1.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
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enter the name of the signal file:
a:laglbl

enter the name ©of the noise file or the word “nul":
nul

enter the number of batches and batch size of the files:
l 64

0.0000000E+00 0+
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00 54
0.0000000E+00 +
0.0000000E+00 +
5.0000000E=-01 AR AR AR ARAR AR RN R AR AR R AN AR KRR R h kKR
0.0000000E+00
0.0000000E+00 10+
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00 15+
0.0000000E+00
0.0000000E+00 +
©.0000000E+00 +
0.0000000E+00 +
0.0000000E+00 204
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00
5.0000000E-01 FhARRR AR AR AR AR AR RN AR AR AR AR AR AR A AR AR kA
0.0000000E+00 25+
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00 30+
0.0000000E+00 +
0.0000000E+00 +
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jdentify those parameters to which the response of interest
has the greatest sensitivity.

One method of doing this is to try to model the response
as a polynomial function of the model parameters. We are then
interested in those terms in the polynomial which have non-
zero coefficients.

Schruben and Cogliano developed a method whereby such
polynomial models can be identified in fewer computer runs
than previous methods allowed. Their concept was to do
analysis in the frequency domain rather than the time domain.
The virtual independence of frequency estimators in a spectrum
means that many parameters can be tested independently within
a single experiment using spectral methods.

This report attempts to extend the Schruben/Cogliano
methodology to cover a more general class of models which
includes discrete-valued parameters, such as policy decisions
or capacities of queues. We evaluated the use of discrete-
valued functions as a basis for spectral analysis. Several
function sets were considered as possibilities, and Walsh
functions were selected as the best choice.

our preliminary results indicate that Walsh analysis may
present a promising method for identifying significant

parameters. However, the method exhibits undesirable behavior

when time lags are present in the model.
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