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COST UNCERTAINTY ASSESSMENT METHODOLOGY:
A CRITICAL OVERVIEW

K. T. Wallenius
Clemson University

OVERVIEW

An appraisal of the quality of methodology
and software for performing cost@ uncertainty
analysis will be given. It will be argued that

4 the standard practice of developing a "most
likely cost" and then generating an
uncertainty distribution associated with that
figure is a consequence of historical
precedent and places the cart before the
horse. Decision theoretic considerations
require that uncertainty assessment precede
-total cost estimation. This fact underscores
the priuacy of cost uncertainty analysis as a
a tool in the overall cost analysis process.

* methodology for encoding subjective
probability distributions are out of date,
being, for the most part, modifications of
the PERT techniques of the sixties. These
techniques, ignoring the implications of the
vast behavioral science literature on
uncertainty elicitation and calibration,
sacrifice human cognitive capability on the
altar of mathematical convenience. This may
explain, at least in part, the general
reluctance of cost analysts to undertake a
serious assessment of cost uncertainty.

@ The term "cost" is used in a generic way Accession For
this paper. Its meaning will depend on the -
purpose of the analysis. (e.g. first unit NTIS GFA

DTIC TABcost, nonrecurring cost, LCC, etc.) VTn"CnoTuiB
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0 methodology for processing elemental
uncertainty assessments into uncertainty
distributions over higher order structures
(e.g. subsystem CER's or total system cost)
often ignores important sources ot
variability. This may explain why
UmcJL-aitdistributione over total cost are
usually too tight. CER compendia which omit
covariance data (see reference [4), for
example) are of little value in quantifying

.- uncertainty.
* -extant computer software designed to

implement cost uncertainty analysis
methodology is often poorly written and, in
some cases, may lead to conclusions which are
inconsistent with the inputs. While "garbage
in, garbage out" is axiomatic, users of
comput3r software who expend the time and
effort to generate reliable inputs have the
right to expect output fidelity.

THE PRIMACY QF COST UNCERTAINTY ANALYSS.

Providing an answer to the question "How much
will it cost?" is job one for the cost analyst a:d
has a long historical precedence over the (morel)
important question "How sure are you of that
figure?". This Is probably due to the facts that
it's easier to come up with a single number than a
probability distribution, and, budgets of the past
were based on most likely costs. Many of today's
directives require a quantification of cost
uncertainty and some budgeting processes allow
component-program cost uncertainties to enter into
the total budget calculations (e.g. TRACE). The
form of these directives Is revealing: usually,
they refer to the "uncertainty associated with a
most likely cost" implying the cost estimate comes
first. The modern approach [18) to decision making
dictates that uncertainty considerations come
first. It is one of the two prerequisite inputs
needed for developing an optimal estimate of cost
(the other being a consideration of the relative
seriousness of overestimates and underestimates.)

The problems of generating an uncertainty
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distribution over total cost are discussed below
but, for now, suppose design specifications,
engineering information, contractor performance
requirements, historical data, subjective
assessments, etc. have been correctly processed
resulting in such an uncertainty distribution. As
such, this distribution summarizes the totality of
available information. Besides answering
important probabilistic questions, this
distribution is the cornerstone for generating
estimates of total cost. Standard texts on
decision making, for example [18], develop optimal
estimates which account for the relative
seriousness of the difference between the estimate
and the actual cost. If C and C denote the
estimate and the cost, respectively, and e - --
is the error ( e>O is an underestimate or a cost
overrun), it is customary to code the error
seriousness in terms of a regret function R(CC)
having the properties that R is nonnegative, is
zero when e = 0, and is nondecreasing as the error
moves away from zero in either direction. Some
typical examples are shown in fiaure 1.

R~o) P(e)
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FIGURE i: Some Regret Functions

In figure la, the seriousness of an error is
proportional to the absolute value of the error
with underestimates k times as serious as
overestimates. In this case, the optimalO cost

SAn optimal estimate for the purposes of this
paper is one that minimizes expected regret.
"There are other definitions of optimal. The cost
uncertainty distribution and the regret function
are needed for most reasonable optimality criteria
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estimate is the k/(k+l)th percentile of the
uncertainty distribution. If k - 3 for example,
the 75th percentile would be optimal. In figure
ib, the seriousness of an error is proportional to
the square of the error. In this came, the
optimal estimate is the mean of the uncertainty
distribution. In figure ic, the regret ia zero if
the estimate is within tolerance, and very large
otherwise. A regret function similar to this
might be appropriate when errors outside a given
range are not tolerable (e.g. h - 1.15 might be
used to protect against a Nunn Ammendment
cancellation). In this case, optimal estimates
depend on the values of I, L, n, and H but are
near the mode of typical unimodal uncertainty
distributJons.

Most cost uncertainty directives and
technical papers use the term "most likely cost"
referring, presumably, to some sort of modal
value. This implicitly says something universal
about the relative seriousness of estimation
errors which, in fact, will differ between
organizations (perhaps even between different
levels within the same organization). The point
here is that the optimal estimate logically
depends on its intended use. The cost uncertainty
distribution is of fundamental importance in
generating the optimal estimate and is the job of
the cost analyst. Generating the cost estimate is
the perogative of the cognizant command and should
reflect the relative seriousness of errors. This
functional separation allows each organizational
unit to focus on tasks best suited to their
expertise and responsibility.

Thus, the cost uncertainty distribution
should not be an afterthought, tagging along
behind the point estimate. It is the cornerstone
upon which that estimate is based. So, what is
the state-of-the-art in cost uncertainty
assessment methodology? What tools (training

:%;".
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programs, books, comujuter software, documentation,
etc.) are available to assist cost analysts to
perform this pivotal taik? It is not feasible to
survey the entire literature in a paper of this
type nor is the entire itterature available for
such a survey (viz. proprietary documents and
software). Comments will be organized around two
component tasks: (1) quantifying uncertainty at
the most minute level of disaggregation, (2)
processing of these "particle" assessments to
produce an uncertainty distribution over total
cost,

1. QUANTIFYING UNCERTAINTY

Disaggregation of complex systems into cost
components allows the analyst to focus on
subproblems with relatively few variables thus
simplifying individual assessments. (Of course,
this requires aggregation of these component
assessuents to generate a total cost uncertainty
distribution but that's more a mathematical
problem than a cognitive one.) Suppose the
quantity of interest is dollars-per-athe of
debugged software for a midcourse guidance
computer. What guidelines and decision aids are
available to help the cost analyst quantify
uncertainty about this component cost? If he has
read the 1984 state-of-the-art survey in the
Journal of Cost Analysis [15), he might try to fit
a 4-parameter beta distribution by specifying 3
quantities: a mode (m), a least possible cost (1),
and a highest possible cost (h). A fourth
specification pertaining to the spread (s) of the
distribution is also required to mathematically
nail down a unique member of the beta family. The
analyst ray alleviate the cognitive pain of
specifying s by using some ad hoc nominal value
(e.g. the PERT formula for a) but, by so doing, a
decision about s is nevertheless made. Three of
the four specifications, (1, h,and s) are quite
difficult for me to think about and m is also a
little unnatural. It's hard to think about a
number h such that there is positive probability
that the cost can get arbitrarily close to h and,
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at the same time, feel secure in bctting your life
against a jellybean that the cost will not exceed
h !

Since cost element uncertainties must be
aggregated to generate a total cost uncertainty
distribution, it is necessary to express them
mathematically. This usually takes the form of
some parametric family of probability density
functions such as the beta, gamma, or Weibull
families. Over 90% of the cost uncertainty
literature advocates use of the beta family for
this purpose. See, for example references [1)
([2 , [6), [9], [16], [19], and [23]. The
state-of-the-art survey paper [15] focuses
exclusively on fitting beta distributions. The
beta family is shape-rich and fairly adequate in
representing unimodal uncertainty situations. Its
popularity in cost analysis is due, in part, to
the early 60's success of PERT analysis (based on
beta representations of completion time
uncertainty). Many of the 112 references cited in
the bibliography of [15] deal with PERT. In all
the beta fitting techniques cited, the user is
required to specify 1 and h plus either m or the
mean (mu). There is an obvious mathematical
convenience in th1s since 1 and h are two of the
four parameters needed. m (or mu) determines a
linear relation between the two shape parameters
so that just about any fourth condition makes
solving for the shape parameters relatively easy.
In looking at the papers in which this methodology
was developed, mathematical convenience was the
dominate, if not the only, consideration in
designing the subjective input requirements.

But people have to do it. There is an
enormous literature describing how people make
judgments under uncertainty, how biases and
heuristics influence judgment, and about the
degree to which people (ordinary folks and
experts) are calibrated in their judgments about
uncertain events. Reference (8] is a collection
of thirty papers with over 650 references.
Several state-of-the-art papers are "must" reading
for cost uncertainty methodology developers and
users. Among them is "Calibration of
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Probabilities: The State-of-the-Art to 1980" (1[1
and "Encoding Subjective Probabilities: A
Psychological and Psychometric Review" (22). A
particularly relevant finding is that people are
not well calibrated relative to rare events: in
most studies there is strong evidence that
decision makers systematically underestimate tail
probabilities. Thus it may happen that actual
costs exceed corresponding elicited 95th
percentiles one time in five rather than one time
in twenty. It is not too surprising that
calibration is less precise in the tails of a
distribution than in the fleshier parts since we
haven't had as much experience with rare events as
with nominal events. Alternately, even if the
decision maker is viewed as an ideal data
processor, estimates of large and small
percentiles from data have larger variances than
estimates of more central percentiles in general.
If this empirical observation holds true with cost
analysts, then requiring them to specify h and I
of a beta distribution (the most extreme
percentiles) would tend to result in a systematic
understatement of uncertainty. It would be unfair
to criticize the developers of PERT or the early
cost researchers who modified PERT methodology to
deal with cost uncertainty. Requiring (l,m,h)
assessments was a matter of mathematical
expedience and the behavioral research did not

exist then. The fact that the 112 references in

the cost uncertainty state-of-the-art paper [15]
and the 850 references in [8] have no common entry
can be viewed as an exciting opportunity to
improve cost uncertainty methodology by exploiting
a relevant body of related research.

There are no theoretical reasons why the beta
family ought to enjoy such a position of
prominence in the cost uncertainty liturgy. Nor
is there any particular reason for avoiding its
use. Because of its flexibility in shape and
history of application, it will probably continue
to be used in cost uncertainty analysis. That
being th. case, it may be worthwhile to dispel
some common misconceptions:

-I toioL V ALOW~A"
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a) It takes 4 conditions to specify a beta

density.
b) The "asymmetry quotient" AQ - (h-m)/(m-l)

is good measure of skewness.
c) Since cost is bounded above and below, the

beta family with its finite range is better
suited to represent cost uncertainty than
are distributions with infinite range.

Assertion a) is correct, of course, but only in a
strict sense. Suppose, instead of (l,m,h) plus a
4th condition, some less extreme assessments are
made, say the three quartiles are elicited (25th,
50th, and 75th percentiles). These are more
natural quantities to think about (6): for
example, they break the range of costs into 4
equally likely regions. Standard elicitation
techniques require relatively simple scaling tasks
with even, two-to-one, or three-to-one odds.
These three inputs have the effect of tying the
cumulative distribution function (CDF) down at
three points called "knots." While there are
infinitely many beta distributions whose CDF's
pass through the knots, the functional form of the
beta family has the effect of making these
different distributions practically
indistinguishable. Who, but God, is so finely
calibrated in his cognitive abilities as to be
able to distinguish between the four beta CDF's
(shown dotted) aund the gamma CDF (shown solid) in
figure 27 Corresponding densities are
superimposed.

It is hard to think of a practical situation
in which the to.al cost uncertainty distribution
would bo effected by variation in componentj distributions as negligible as those shown. Thus,
the four parameter beta distribution is, for most
practical purposes, a three parameter family - as
"long as one chooses the correct three parameters,
here percentiles, to assess. Similar results hold
for other choices of knots. By contrast, fixing
(l,mh) and varying s over unimodal beta distri-
butions produces shapes ranging from something
nearly flat (uniform) to a virtual spike at m in
the limit. The limiting case for the beta with
three fixed knots is a well behaved gamma.
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FIGURE 2: Knotted Beta and Gamma CDF'S:
Distributions with common quartiles

Figure 2 also sheds light on misconceptions
b) and c). The four nearly indistinguishable beta
distributions have asymmetry quotients AQ -
(h-m)/(m-l) ranging from 4 to 69. There in no
relation between tnis measure of "asymmetry" [15]
and any statistical definition or cognitive
concept of asymmetry. It appears that the
asymmetry quotient, like most of the beta-fitting
methodology, was invented for mathematical
convenience. Its cognitive value in helping cost
analysts quantify uncertainty is nil. Concerning
c), none of the distributions shown in figure 2
have any meaningful amciunt of probability to the
right of 12 (less than .00001). Four of the five
distributions (the betas) have finite upper bounds
ranging from about twelve to over sixty. The
fifth (gamma) has an infinite right tail. For all
practical purposes, they are identical. The upper
truncation point h of the beta density is just a
parameter which obviously has very little to do
with where the probability mass is located
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(another argument for not eliciting h). So why
should the cost analyst concern himself over
inconsequential issues as confusing as finite
versus infinite range?

Modifying the uncertainty encoding
techniques of PERT to fit the cost analysis
scenario was a reasonable first step in 1965 [19].
The current state-of-the-art in elemental
uncertainty quantification &s described in [15]
suggests that progress in the last 19 years has
been scant. With the advent of inexpensive and
powerful personal computers, computational
complexity is no longer a limitation in designing
interactive software for probability encoding.
Cognitive considerations rather than mathematical
expedience should dominate the search for new
methodology. The challenges are exciting. Some
new initiatives are discussed in [21].

2. PROCESSING OF COMPONENT UNCERTAINTIES

Developing an uncertainty distribution over
total cost or over some intermediate level of
disaggregation such as WBS cost elements is a
matter of applying the probability calculus to
elemental uncertainty assessments - a purely
mathematical task. As with subjective probability
elicitation methodology and software, there is a
large gap between what is available to the cost
analyst and what could be available. A parallel
thrust to simultaneously upgrade both elicitation
and processing capabilities is needed: state-of-
the-art processing tools won't improve
misspecified uncertainty distributions (garbage
in, garbage out) nor are finely honed subjective
assessments worth the trouble if they are
improperly processed. Two of the more important
processing tasks are a) uncertainty associated with
parametric costing, and b) uncertainty associated
with a convolution (the summing of uncertain
quantities such as WBS cost elements).

Parametric cost estimation is one of the most
widely used techniques for developing point
estimates of cost. General overviews of the topic
can be found in (10], (13], or (17]. Empirical

-~~i !~ ~ W



model building techniques (usually regression
analysis) are applied to historical cost data on
systems judged more or less analogous to the
object system resulting in a cost estimating
relation (CER). Point estimates and prediction
intervals for the cost of the object system can be
obtained using standard regression techniques.
But these quantities do riot characterize the
uncertainty distribution for the object system's
rost. For concreteness, consider the the first
unit cost CER for launch operations and orbital
support (LOOS) for apogee kick motor equipped
satellites, one of 37 CER's listed in [4).

fy79K$ - 27.44 + .2992x (wet wt Ibs)

Stats: n=12, r-squared-.80, F-38.81

std error (SE) - 146.33 485.9!lbs!3694.3

The CER estimate of LOOS cost for a 1000 pound
unit would be $326,640. Assuming the model is
appropriate, there are three sources of uncer-
tainty to recon with: 1) statistical uncertainty:
randomness associated with the estimates of the
model parameters, 2) predictive uncertainty:
random deviation of the cost of the object system
from its predicted value, and 3) input
uncertainty: uncertainty about the ultimate value
of wet weight which is likely to differ from its
expected or nominal value (1000 ibs). This last
source of uncertainty is sometimes called
"strategic uncertainty" (3]. Failure to include
any of the three may result in substantial
understatement of LOOS cost uncertainty. Only
input uncertainty is treated in (13], whereas only
input and predictive uncertainties are included in
[24). A schematic diagram for a formal cost
uncertainty analysis Js shown in figure 3.
All of these sources of uncertainty are recognized
in [4) but not dealt with explicitly. Ad hoc
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rules replace the type of formal analysie shown in
figure 3. The output is in the form of (l,mh)

MDDEL , COST - b.-(LBS) + C. E -N(O,o')

"COST AN,2YYST ý•PUTS MATH-EMATICAL AN4LYSIS
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FIGURE 3: CER Uncertainty Processing

estimates, not an urncertainty distribution. In
"zddition, since 1 and h are computed as m t SE
(i.e. not dependent on the value of the input
"variable), their meanlig is not clear. If one
wished to attempt a formal uncertainty analysis,
the form in which the data has been summarized
(see above stats) is inccmplete since th#-
sufficient statistics (sample means and
covariances) are not given.

Direct assessment of a prior Joint
probability distribution over the model parameters
is cognitively quite difficult, There are new
indirect methods [7] supported by interactive
computer codes which may prove useful if adapted
to the cost analysis scenario. This approach iS
discussed in [21].

The final step in generating an uncertainty
distribution over total cost consists of
convolving the uncertainty distributions of the
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cost elements into which total cost was
disaggregated (probably the WBS, although It may
be advantageous to use some other disaggregation
scheme). It is tempting to take the bookkeeper
approach and simply sum the individual estimates
to generate a "best" estimate of total cost. This
approach, while much criticized and devoid of
mathematical justification [12), is nevertheless
widely practiced. The CER compendium (4) is a
case in point. In fact, most likely subsystem
costs are irrelevant to the convolution process.
What counts is their uncertainty distributions.
Furthermore, summing most likely costs will result
in systematically underestimating total cost if,
as argued by some (14), only right-skewed
distributions make sense in quantifying cost
uncertainty. While there are undoubtedly many
reasons why cost estimatas tend to be low, this
one is easy to avoid by simply using correct
methodology.

The two most widely used methods of
convolving component uncertainty distributions are
Monte Carlo simulation (used in [2], [8], (9), and
(16) ) and a cumulant summation technique called
the method of moments(used in [14], (19), [23),
(24], and [25) ). It Is assummed that the reader
is familiar with the ideas behind these two
techniques. The output of the Monte Carlo method
is sample of observations from the total cost
uncertainty distribution. The comforting feature
of this approach is that the empirical
distribution function of the sample data converges
to the "true" total cost uncertainty distribution
as the number of roplications becomes large. By
"true" we mean the distribution that iA the exact
convolution of the component uncertainty
distributions. With today's inexpensive and
powerful microcomputers, the expense of large
samples is no longer a limitation of this
approach.

The output of the cutmulant summation method
is the first four moments of the "true" total cost
uncertainty distribution from which that
distribution xub- be estimated. Estimating a
distribution from four moments requires an
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assumption about the family to which the "true"
distribution belongs - another potential source of
error. But unless one chooses such a family,
about all that can be said about the total cost
uncertainty distribution is to provide probability
bounds (26] based on these moments. These bounds
are usually fairly broad and hence of limited
practical value. The degree to which four, (in
this case [5), even five!) moments fall to nail down a
distribution is shown in figure 4.

.7

.2

.1

-3 -2 -1 0 2 3

FIGURE 4: Tukey Lambda Denslti*es. Moments up to
and including order five are identical.

While cumulant summation methods can be expected
to yield reasonable results in most nominal cost
analyses, it is difficult to tell how well they
will work in any spoclfic application. In
addition, moment methods are often nonrobust, i.e.
sensitive to small changes in the data. Other
"comparisons are given in [12]. For these reasons,
as methodologies, the Monte Carlo method is better
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suited to cost uncertainty analysis.
No matter how good or bad a methodology is,

poor implementation (algorithms, computer codes,

ease of use, etc) will reduce its utility. Two of
the better known techniques used in DOD, one
employing a Monte Carlo approach [6) and one using
the cumulant suimation method (14] are discussed in
[12] and [20]. Experience with actual data is
reported. Neither approach was wholly
uatisfactory. For example, variance calculations
in [(] resulted in negative numbers. Using the
formulas given in (14), it is possible to fit a
Weibull distribution to its own moments and come
out with a different Weibull distribution as shown
in figure 5.

0.24 1 1

0 0LO, M. ' Z4

020 
2

0.16 - P,-r, rl

o. 1o: t• • K" 0 ,'/

0.10 K:(-K

008 --

0,06 -0t.

0,04 -

0. 00

FIGURE 5: Weibull Densities. The output density
resulted from applying the formulas of
[14] to the moments of the input density.
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CONCLUSIONS

A cost uncertainty analysis should logically
precede the choice of a "best" estimate of total
cost. Historical evolution of the cost estimation
process has resulted in a reversal of these two
tasks. Likewise, the PERT approach of the sixties
seems to have had an inhibiting influence on
creativity in developing cost uncertainty
assessment methodology. Recent advances in
psychometric research offer hope of providing the
cost analyst with applicable tool3 which take his
capabilities into consideration. Development of
user-friendly software for today's inexpensive but
powerful microcomputers will facilitate the probability
encoding tasks. There are exciting opportunites
for research and development in the important area
of cost uncertainty analysis.
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