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DYNAMICS OF THE LARGE SCALE RETURN CURRENTS
ON AURORAL FIELD LINES

I. INTRODUCTION
The behavior of plasma on the auroral magnetic field lines has been
: the subject of a number of studies in recent years. Theoretical models of
H the polar wind (current free cases) have been developed by Banks and Holzer
(1968, 1969], Holzer et al. [1971], Lemaire and Scherer [1973], and Schunk
. and Watkins [1981, 1982]. Using the 13-moment system of transport

equations of Shunk [1977], Schunk and Watkins [1981, 1982] have studied the

steady state flow of a fully ionized H* - 0" - electron plasma along

geomagnetic field lines.

Using the same 13-moment system of equations, Mitchell and Palmadesso
{1983] developed a dynamic numerical model of the plasma along an auroral
field line. The plasma consists of the electrons, hydrogen and oxygen
ions. The electrons and the hydrogen ions are the dynamic species in the
model., They have performed simulations for the case of a current-~free
pelar wind and the case in which an upward field aligned current was
applied along the field line.

However, there has been some recent interest concerning the return
currents which motivated us to undertake a numerical study using a computer
simulation to investigate the dynamics of the large scale return currents
on the auroral field lines. The field aligned return currents flow from
the magnetosphere to the ionosphere and are carried by cold electrons of
ionospheric origin. It is now well established that the field aligned
currents play an important role in the magnetosphere-ionosphere coupling
process. In terms of region 1/region 2 large scale field aligned current

systems [Iijima and Potemra, 1976] large scale return currents are

Manuscript approved August 12, 1985.
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identified as region 1 at the morning sector and region 2 at the evening
sector. The typical value of this current-system varies usually from
1.0 uA/m2 to 2.0 uA/mz. Within the region 1/reginon 2 current system,
S small-scale distributions of both upward and downward currents are observed
in association with auroral arcs.
We have performed simulations to study the dynamics of the large scale
return currents on aurcral field lines, using the dynamic numerical model

of Mitchell and Palmadesso [1983]. The model is a multi-moment

approximation of plasma consisting of the electrons, hydrogen ions and

oxygen ions along a segment of geomagnetic field line extending from an
altitude of 800 km to 10 RE. We compared our results to those of Mitchell
and Palmadesso [1983] to study the difference in dynamics of return
currents versus upward currents and the current free polar wind case.

We are also interested in the dynamics of auroral field lines
including the effects of anomalous transport processes such as anomalous
resistivity and associated anisotropic heating. The work is in progress

and will be the subject of a future report.

IT. THE MODEL

The field line model of Mitchell and Palmadesso [1983] was designed to
dynamically simulate the behavior of the plasma in a flux tube encompassing
an auroral field line. The electrons and'the hydrogen ions are the dynamic

species in the model. The oxygen ions are a static background population
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at a constant temperature. The model uses the 13-moment system of
transport equations of Schunk [1977]. The distribution function is assumed
to be gyrotropic about the field line direction, which reduces the 13-
moment approximation to five moments. The five moments are number density,
temperatures parallel and perpendicular to the field line, and species
velocity and heat flow along the line. The resulting transport equations

are as follows:
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where, ng is the number density of the species s,
Vg is the velocity, -
Tsl is the parallel temperature, %
TSL is the perpendicular temperature, i
qq is the heat flow, ~
mg is the mass, :i

eg is the charge of species s, ]
A is the cross-sectional area of the flux tube,
E {s the electric field parallel to the field line,

k is Boltzmann's constant,

. P

G is the gravitational constant and

R
N
M is the mass of the earth. ;%
1Y
The collision terms used in the present simulation are Burgers' [1979] ﬂ;
¢
collision terms for the case of Coulomb collisions with corrections for
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finite species' velocity differences, and are given in Appendix I.
The scale of this model is large compared to the electron Debye
length, so the transport equation (1) for electron number density may be

replaced by an expression for charge neutrality:

ne = np + no (6)

We have assumed that the total flux tube current I remains constant

I= eA(npvp - neve) (7)

o e a4

b which implies,

(8)

voa (nv ==)
ne pp el

Using equations (2), (7) and (8) the electric field E parallel to the

field line is calculated.
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III. SIMULATIONS AND RESULTS

In order to perform the field aligned current simulation we have to
perform the current free polar wind simulation first to be used as the
initial steady state of the flux tube. This was also done by Mitchell and

Palmadesso and will be described briefly here.

i. Polar Wind Simulation (Zero Current)

The polar wind simulation was carried out for a current-free case,
The lower boundary is fixed at 800 km. The simulation was carried up to an
altitude of 10 RE on an unequally spaced grid. The cell size is small at
the lower end of the field line in order to study the transport effects in
the presence of the large density gradients due to the small scale height
of oxygen and satisfy stability conditions. The flux tube plasma
consisting of the hydrogen ions, oxygen ions and the electrons was

initialized at a constant temperature of 2000°K. The initial conditions

used are those of Mitchell and Palmadesso (1983]. 9
In the polar wind, the hydrogen ions are accelerated upwards in the

flux tube to supersonic velocities due to the flux tube divergence and the »

small partial pressure of H* at the upper end of the field line. 1In steady

state polar wind models the hydrogen ion velocity can be either subsonic or

L
e ey

supersonic. To date only the supersonic polar wind has been observed. The
oxygen ions are the dominant species up to an altitude of around 3500 km. .
The ambipolar electric field value produces the sharp increase in the 4
»
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hydrogen ion velocity at the lower end of the flux tube. In the steady
state the electrons and the hydrogen ions reach the same maximum velocity,
as it is clear from equation (8). This is shown in figure (1b). The total
flux along the flux tube is conserved, i.e., nVA = constant. Therefore, as
the velocity and the area increase with altitude the density should
decrease. The hydrogen ion density decreases as it flows through the
diverging flux tube, shown in figure (1a). The electron density also
decreases, due to charge neutrality equation (6) .

The hydrogen ion temperature (shown in figure 16) exhibits three
interesting characteristics:

(1) The temperature increases at the lower end of the tube.

(2) Adiabatic cooling - supersonic ion gas cools down as it expands

in a diverging magnetic field.

(3) Temperature anisotropy.
The temperature increase is caused by Joule heating of the hydrogen from
collisions with the oxygen ions. This effect Dbecomes weaker with
increasing altitude due to small scale height of the oxygen. As a result,
the hydrogen 1ion temperature profiles show an increase in temperature
before it exhibits adiabatic cooling. The temperature anisotropy develops
around 2500 km and is caused by the mirror effect where the perpendicular
energy is transferred to the parallel energy.

The electron temperature profiles (shown in figure 1d) exhibit :

(1) Adiabatic cooling,

(2) Temperature anisotropy.
However, the 1latter effect 1is more prominent in the hydrogen ion
temperature profiles, The electron thermal velocity 1is much higher than

the electron bulk flow velocity, hence thermal conductivity 1is more




effective at reducing flow related temperature anisotropies and gradients
for electrons.

It is also noted that when the drift velocity of the hydrogen ions is
equal to that of electrons the hydrogen ions c¢ool much more than the
electrons. The hydrogen ion temperature profiles maintain significant
gradients at high altitudes and exhibit large temperature anisotropies at
the upper end of the flux tube.

Mitchell and Palmadesso [1983] compared the results of their polar
wind simulation with the previous studies of the polar wind by Schunk and
Watkins [1982] and Banks and Holzer [1971] and the results were found to be

in good agreement.

{i. Return Current Simulation

In this section we discuss our results of the field aligned return
current simulation and compare those with the polar wind (zero current)
case as described in Section I and with the upward current case studied by
Mitchell and Palmadesso [1983].

Using the polar wind simulation as the initial steady state of the
flux tube, simulations were performed with return currents with a minimum
value of = 1.0 uA/m2 and a peak value of - 2.0 uA/m2 .

We will first discuss the case where a current of = 1.0 uA/m2 was
applied. With the onset of the current the electron velocity increases
with altitude (figure 2). The electron temperature profile still exhibits
adiabatic cooling and temperature anisotropy, but since the electron

velocity is much higher in this case as compared to the polar wind value,
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the electrons cool much more rapidly with increasing altitude. The
electron temperature gradient decreases. Notice that here we have only
considered cold electrons of ionospheric origin, 1like Mitchell and
Palmadesso [1983]. The electron temperature profiles are shown at time
intervals of ten, thirty, fifty and seventy minutes on figures 3(a), 3(b)
3(e) and 3(d), where the response of electron temperature profiles with
time are clearly observed. We compared our results with the upward current
case of Mitchell and Palmadesso [1983] and notice that unlike the effects
of return currents the application of upward current reduces the electron

velocity and increases the total electron temperature. In the latter case

the electrons are heated in the lower end of the flux tube and the
temperature gradient results in a large upward electron heat flow and
electron thermal wave propagating up the field line.

The electric field maintains the same profile as before but decreases
in magnitude from the polar wind value thereby decreasing the hydrogen ion
velocity. This 1is wunlike the upward current case of Mitchell and
Palmadesso [1983], where the ambipolar electric field increases by an order
of magnitude accelerating the hydrogen ions upwards. The decrease in u*
velocity causes a velocity ripple which in turn produces an u* density
depletion and these propagate upwards through the flux tube as the
simulation was carried on at later times. Due to the current conservation
requirement, the electron velocity increases at the density depletion, and
hence the upward propagating velocity ripple is also noticed in the
electrons. This effect is clearly seen for times ten, thirty, fifty and
seventy minutes after the onset of the current as shown in figures 2(a),
2(b), 2(c¢) and 2(d). After the velocity ripples pass through the flux

tube, the electron velocity settles down at a lower value than before (but

e AT e e TR e e e T e e e T e T T e T e e et e T T e et TR A e e et e e SO
O P R A .. S T T T VP A LIPS UL A S L . - . P R R Y I S




f' much higher than the polar wind value) in order to maintain the current I
constant. Also, the velocity of the hydrogen ions decreases at the upper
end of the flux tube. As before the anisotropy of cooling is evident in

the hydrogen ions but the hydrogen parallel and perpendicular temperatures

increase as the H' ion velocity decreases. The ripple in velocity produces
a ripple in the temperature which, like the velocity ripple, also flows up
the flux tube with time. The hydrogen ion temperature profiles are shown
on figures 4(a), Uu4(b), U(e) and 4(d) at ten, thirty, fifty and seventy
minutes after the onset of the current.

Simulations were then performed with higher currents up to a peak
current of =~ 2.0 uA/mz. The electron velocity increases with the increase
of current (shown in figure 5a), and the electron temperature still
exhibits adiabatic cooling and temperature anisotropy (figure 5b). The
ambipolar electric fleld decreases, further decreasing the H velocity
(figure 5a). Velocity ripples are observed as before and these propagate
through the flux tube as seen in later runs (that is, ten, thirty, fifty
and seventy minutes after the onset of this current). To conserve the
current flowing in the system, the electron velocity decreases (after the
ripple flows out through the tube) with the decrease in hydrogen ion
velocity. However, compared to the previous case, the electron velocity
still remains at a higher value, while the H* ion velocity decreases. The

hydrogen ion temperature profile for this current is shown in figure 5(c).

10
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Iv. DISCUSSIONS AND SUMMARY

We have used a dynamic ngmerical model to investigate the plasma
dynamics in the presence of large scale field aligned return currents. We
have also compared our results with those of the current-free polar wind
and upward current simulations.

The flux tube plasma has a rapid initial response to the onset of the
current. The electron velocity and temperature have rapid response to
sudden change in conditions with a time constant of about few minutes.
Also, the behavior of the energy transport in the collisionless region
determines the time scales on which the flux tube plasma reaches
equilibrium.

In this paper we have only considered cold electrons of ionospheric
origin. Similar studies of return currents using hot magnetospheric
electrons at the upper boundary are in progress and will be the subject of
a future report. Kindel and Kennel [1971) examined several current driven
instabilities and showed that electrostatic ion cyclotron instability has
the 1lowest threshold. Qur simulations show that the electron drift
velocity corresponding to a current of ~=1.,0 ud/ m2 is above the threshold
for electrostatic ion cyclotron waves. The effects of anomalous

resistivity and anisotropic ion heating arising due to EIC instability will

be discussed in a future article.
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igure 2, (a). Velocities after 10 minutes after the onset of a current

of =1.0 uA/m2 at 1500 km: e (solid curve), H (dashed

curve).
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Figure 2. (b) Velocites after 30 minutes after the onset of a current i
2

of ~1.0 yA/m“ at 1500 km: e~ (solid curve), H' (dahsed "9

curve).
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Figure 2. (e¢) Velocites after 50 minutes after the onset of a current

of - 1,0 uA/m2 at 1500 km: e~ (solid curve), gt (dashed

curve).
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Figure 2. (d) Velocities after 70 minutes after onset of a current
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curve). ::.:
-]

IR
S bl b

19




- CaSaa L Anc Ao 1 Catecaas 4 Cadn 2 e e —y T —_pTa T Ba S AN Bas Ban g m sran A At a0 4 8 Ari dh 2k AL S VA g

t=10 min

l"l'll'l']llf[lll']lllIIIII""TTIIIFT"IIIT]IIIIlllll

1800

1400

1000

ELECTRON TEMPERATURE (K)

600

L S~a
o
- T -

- -

200 NI SRR E NN e RSN SN NN NN NN NI AN N

0 1.0 2.0 3.0 4.0 5.0
ALTITUDE (RE)

Figure 3. (a) Electron temperatures 10 minutes after the onset of a

current of =1.0 pyA/m? at 1500 km: total temperature

(solid curve), 'I‘l (dashed curve), Tl (dotted curve).
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Figure 3. (b) Electron temperatures 30 minutes after onset of a current
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Each sum includes all charged particles species in the simulation. the

velocity = corrected Coulomb collision frequency Yba is given by

y 2 2 2
n(327)° e e (m +m ) 1InA exp (=x )
a b a b a ba .
v o= (vi)
ba 2 3
3m m a
b a ba

(1n A is the Coulomb logarithm), and

1 2
T =~-T + =T
b 3 by b L
2kT 2kT
2 b a
a = +
ba m m
b a
2
(v =v)
2 a
x =
ba 2
a
ba
2 2 y y 8 6
¢ = - X + —y + e X
ba 5 ba 35 ba 315 ba
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