PLANE REPRESENTATIONS OF GRAPHS AND VISIBILITY BETWEEN PARALLEL SEGMENTS

R. TAMASSIA
I.G. TOLLIS

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited

REPORT R-1040
UILU-ENG 85-2215
Several layout compaction strategies for VLSI are based on the concept of visibility between parallel segments, where we say that two parallel segments of a given set are visible if they can be joined by a segment orthogonal to them, which does not intersect any other segment. In this paper, we study visibility representations of graphs, which are constructed by mapping vertices to horizontal segments, and edges to vertical segments drawn between visible vertex-segments. Clearly, every graph that admits such a representation must be planar. We consider three types of visibility representations, and we give complete characterizations of the classes of graphs that admit them. Furthermore, we present linear time algorithms for testing the existence of and constructing visibility representations of planar graphs.
PLANE REPRESENTATIONS OF GRAPHS AND VISIBILITY BETWEEN PARALLEL SEGMENTS †

by

Roberto Tamassia * Ioannis G. Tollis

Coordinated Science Laboratory
and
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

Coordinated Science Laboratory
and
Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

† This research was partially supported by the Joint Services Electronic Program (U.S. Army, U.S. Navy and U.S. Air Force) under Contract N00014-84-C-0149.

* On leave from: Dipartimento di Informatica e Sistemistica - Universita' di Roma, "La Sapienza" - Via Buonarroti 12 - 00185 Roma, Italy.
ABSTRACT

Several layout compaction strategies for VLSI are based on the concept of visibility between parallel segments, where we say that two parallel segments of a given set are visible if they can be joined by a segment orthogonal to them, which does not intersect any other segment. In this paper, we study visibility representations of graphs, which are constructed by mapping vertices to horizontal segments, and edges to vertical segments drawn between visible vertex-segments. Clearly, every graph that admits such a representation must be planar. We consider three types of visibility representations, and we give complete characterizations of the classes of graphs that admit them. Furthermore, we present linear time algorithms for testing the existence of and constructing visibility representations of planar graphs.
1. INTRODUCTION

Several layout compaction strategies for VLSI are based on the concept of visibility between parallel segments, [9], where we say that two parallel segments of a given set are visible if they can be joined by a segment orthogonal to them, which does not intersect any other segment. In this paper, we study visibility representations of graphs, which are constructed by mapping vertices to horizontal segments, and edges to vertical segments drawn between visible vertex-segments. It is easy to see that a graph that admits such a representation must be planar.

Various visibility representations have been considered in the literature, where vertices are represented either by horizontal intervals or by horizontal segments, i.e., closed intervals. Otten and van Wijk, [8], gave a method for constructing a representation of a planar 2-connected graph such that vertices are represented by horizontal segments and edges by vertical segments having only points in common with the pair of horizontal segments corresponding to the vertices they connect, see fig. 1.b. In the following, this representation will be referred to as weak-visibility representation. Duchet et al., [1], proved that every planar graph admits such a representation.

Melnikov, [7], suggested the problem of characterizing the graphs whose vertices can be represented by horizontal intervals in the plane such that two vertices are adjacent if and only if their associated intervals are visible, see fig. 1.c. From the result of Duchet et al., it immediately follows that every maximal planar graph admits a representation of the latter type, which will be called e-visibility representation. Thomassen, [12], extended this by showing that all 3-connected planar graphs admit an e-visibility representation.

Another problem that naturally arises in this context is the following: Characterize the class of graphs whose vertices can be represented by horizontal segments such that two vertices are adjacent if and only if their corresponding segments are visible, see fig. 1.d. Such a representation will be called strong-visibility representation and it differs from the weak-visibility representation because it requires that visible vertex-segments correspond to adjacent vertices. Luccio et al., [6], gave a partial solution to the above problem by requiring that the endpoints of all the horizontal segments have
distinct x-coordinates. Namely, they defined a new family of graphs, called *ipo-triangular graphs* (graphs that can be transformed into planar multigraphs with all triangular internal faces, by successive duplications of existing edges), and proved that a graph admits a strong-visibility representation with the above restriction if and only if it is ipo-triangular. Notice that the restriction on the x-coordinates of vertex-segments is essential to their characterization. Consider for example any cycle of length greater than three, see fig. 1.

The main contributions of this paper are:

a) We unify and extend the results of Otten and van Wijk and of Duchet et al. on the weak-visibility representation by giving a linear time algorithm for constructing a weak-visibility representation of any planar graph.

b) We present a complete solution of Melnikov’s problem by showing that a graph admits an e-visibility representation if and only if it is planar and there is a planar embedding for it such that all cutpoints appear on the boundary of the same face. We also give two linear time algorithms, one for testing the above condition, and the other for constructing an e-visibility representation.

c) Finally, we give a complete characterization of the class of graphs that admit a strong-visibility representation.

Another application of our results in the field of VLSI layout is to the problem of minimal-node-cost planar embedding. This problem has been considered by Storer, [10] and consists of finding an embedding of a graph in the rectilinear grid where the total number of bends along edges is minimum. The techniques described in this paper can be used as the core of a linear time heuristic algorithm for this problem which yields better performance guarantees than the heuristics given by Storer, [11].

The rest of this paper is organized as follows. Section 2 contains complete definitions of the above visibility representations, and basic properties of them. Section 3 is concerned with the weak-visibility representation. In section 4, we present the results on the e-visibility representation. Section 5 deals
with the strong-visibility representation. Finally, in section 6 we present a summary of our results and discuss open problems for further research on the subject.

2. PRELIMINARIES AND DEFINITIONS

Let S be a set of horizontal nonoverlapping segments in the plane. Two segments s, s' of S are said to be visible if they can be joined by a vertical segment not intersecting any other segment of S. Furthermore, s and s' are called e-visible if they can be joined by a vertical band of nonzero width that does not intersect any other segment of S. This is equivalent to saying that s and s' can be joined by two distinct vertical segments not intersecting any other segment of S.

Definition 1 A weak-visibility representation (w-visibility representation) for a graph $G = (V, E)$ is a mapping of vertices of G into nonoverlapping horizontal segments (called vertex-segments) and of edges of G into vertical segments (called edge-segments) such that, for each edge $(u, v) \in E$, the associated edge segment has its endpoints on the vertex-segments corresponding to u and v, and it does not cross any other vertex-segment. □

In order to study the visibility representations in a unified way, we give a definition of e-visibility representations using segments instead of intervals. The reader can easily verify that our definition is equivalent to the one of Melnikov with respect to the class of graphs that admit an e-visibility representation.

Definition 2 An e-visibility representation for a graph G is a w-visibility representation with the additional property that two vertex-segments are e-visible if and only if the corresponding vertices of G are adjacent. □
Definition 3 A *strong-visibility representation* (s-visibility representation) for a graph G is a w-visibility representation with the additional property that two vertex-segments are visible if and only if the corresponding vertices of G are adjacent.

Let $C_w, C_v,$ and C_s be the classes of graphs which admit a w-visibility representation, e-visibility representation, and s-visibility representation, respectively. Clearly, if $G \in C_w,$ then G is a spanning subgraph of some graph $H \in C_v,$ and furthermore H is a spanning subgraph of another graph $N \in C_s.$ As we will see in the following, the three classes of graphs defined above are hierarchically related, i.e.: C_s is properly included in C_v and C_v is properly included in $C_w.$ It is easy to show that if a graph belongs to any of the three aforementioned classes, then it is planar.

In the remaining part of this section, we present some preliminary results that will be used later.

A *PERT-digraph* $D = (V, A)$ is an acyclic digraph with exactly one source, s and one sink, $t.$ We usually associate a positive length with each arc of $D.$ A well-known problem on PERT-digraphs is the following: For each vertex v of $D,$ find the length of the longest path from s to $v.$ This quantity will be denoted by $a(v).$ The *critical path method* solves this problem in $O(IAI)$ time, [3].

An *st-numbering* for a graph $G = (V, E),$ where s and t are two distinct vertices of $G,$ is a one-to-one mapping $\xi: V \rightarrow \{1, 2, \ldots, |V|\},$ such that $\xi(s) = 1,$ $\xi(t) = |V|,$ and each vertex $v \neq s,t$ has two adjacent vertices u, w for which $\xi(u) < \xi(v) < \xi(w).$ Given an st-numbering ξ for a graph $G = (V, E),$ we construct a digraph $D = (V, A)$ by orienting every edge from the lowest numbered vertex to the highest one. Namely, $(u, v) \in A$ if and only if $(u, v) \in E$ and $\xi(u) < \xi(v).$ The digraph $D,$ which is induced by $\xi,$ is clearly acyclic and has exactly one source, $s,$ and one sink, $t,$ i.e. it is a PERT-digraph. Conversely, any topological sorting of the vertices of a PERT-digraph is an st-numbering for the underlying undirected graph.

Lempel, Even, and Cederbaum [5] showed that for every 2-connected graph and every edge $(s,t),$ there exists an st-numbering. A linear time algorithm for finding it has been presented by Even and Tarjan [2].
Fact 1 Every directed path of D visits vertices in increasing order.

Proof Otherwise, there would be an arc $[w,v]$ with $f(v) < f(w)$, which contradicts the definition of D. □

Fact 2 For every vertex v of D there exists a simple directed path P from s to t containing v.

Proof Let P be any maximal path containing v. Let u and w be the first and last vertices of P, respectively. Then u is a source, and w is a sink. Hence, we have $u = s$ and $w = t$. □

Let D be a planar 2-connected digraph, induced by some st-numbering, and \hat{D} any planar embedding of D. For any vertex v of D we define $\deg^+(v)$ and $\deg^-(v)$ to be the number of arcs outgoing from v and incoming to v, respectively. Furthermore, we denote with $l(f)$ and $h(f)$ the lowest and highest numbered vertices on the boundary of a face f of \hat{D}.

Lemma 1 Each face f of \hat{D} consists of two directed paths from $l(f)$ to $h(f)$.

Proof Let f be a face of \hat{D} for which the lemma is not true. Then there exists an arc $[w,u]$ on the boundary of f directed from $h(f)$ to $l(f)$. From fact 2, there are directed paths P_1 from u to t and P_2 from s to w, see fig. 2. From facts 1 and 2, these two paths must intersect at a common vertex x. But then \hat{D} (D) has a cycle which consists of: the arc $[w,u]$, the subpath of P_1 from u to x, and the subpath of P_2 from x to w. This contradicts the acyclicity of D. □

Lemma 2 All outgoing (ingoing) arcs of any vertex v of \hat{D} appear consecutively around v.

Proof The lemma holds trivially for the vertices s and t. Let v be any other vertex, and suppose, for a contradiction, that there are arcs $[v,w_0]$, $[w_1,v]$, $[v,w_2]$, and $[w_3,v]$, appearing in clockwise order around v, see fig. 3. From fact 2, there are directed paths P_0 and P_2 from w_0 and w_2 to t, respectively. Similarly, there are directed paths P_1 and P_2 from s to w_1 and w_3, respectively. But then one of P_2 and P_0 must intersect either P_1 or P_3 at a common vertex x. This implies that \hat{D} (D) has a cycle, which contradicts the acyclicity of D. □
Lemma 3 Every vertex $v \in V - \{s, t\}$ is the lowest numbered vertex for $\deg^+(v) - 1$ faces and the highest numbered vertex for $\deg^-(v) - 1$ faces. s is the lowest numbered vertex for $\deg^+(s)$ faces, and t is the highest numbered vertex for $\deg^-(t)$ faces.

Proof Since D is 2-connected, every vertex v is in the boundary of $\deg(v)$ distinct faces. By lemma 2, all incoming and outgoing arcs incident to v appear consecutively around v. Therefore, if $v \neq s, t$, there are $\deg^+(v) - 1$ faces around v that contain two directed paths originating from v, see fig. 4. Hence, from lemma 1, v is the lowest numbered vertex for $\deg^+(v) - 1$ faces. A similar argument apply to the outgoing arcs. The different result for s and t is due to the fact that all their incident arcs have the same orientation. □

The following four formulas are immediate consequences of lemma 3:

1. $|F| + |V| = \sum_{v \in V} \deg^-(v) + 2$
2. $|F| + |V| = \sum_{v \in V} \deg^+(v) + 2$
3. $\sum_{v \in V} \deg^-(v) = \sum_{v \in V} \deg^+(v)$
4. $|F| + |V| = |E| + 2$ (Euler's formula).

3. WEAK-VISIBILITY REPRESENTATION

First, we describe a linear time algorithm for constructing a w-visibility representation of a planar 2-connected graph $G = (V, E)$. We use some of the ideas introduced in the construction of Otten and van Wijk, [8]. Next, we extend this algorithm in order to construct a w-visibility representation of any planar graph, thus giving an alternative proof of the result of Duchet et al., [1].

For the sake of simplicity, we will use the same notation for the vertex-segments of the visibility representations and their corresponding vertices in the graph. The same will be done for the edge-
Algorithm W-VISIBILITY

Input: A planar 2-connected graph $G = (V, E)$.

Output: A w-visibility representation for G such that each vertex- and edge-segment has endpoints with integer coordinates.

1. Select an edge $(s, t) \in E$.

2. Compute an st-numbering for G. Let D be the directed graph induced by the st-numbering.

3. Find a planar representation \hat{D} of D such that the arc $[s, t]$ is on the external face and the rest of D lies on the right side of $[s, t]$. Use \hat{D} to construct a new digraph D' as follows:

 3.1 Vertices of D' are the faces of \hat{D}.

 3.2 There is an arc $[f, g]$ in D' if face f shares an arc $a = [v, w]$, distinct from $[s, t]$, with face g and a is positively oriented with respect to f, i.e., face f is on the left side of a, when a is traversed from the tail to the head.

Note that D' is a 2-connected planar PERT-digraph, with source, s', (the internal face containing arc $[s, t]$) and sink, t', (the external face).

4. Apply the critical path method to D' with all arc-lengths equal to 2. This gives the function $\alpha(f)$ for each vertex f of D'.

5. Construct the w-visibility representation as follows:

 5.1 Use the st-numbering computed in step 2 to assign y-coordinates to horizontal vertex-segments.

 5.2 Set the x-coordinate of arc $[s, t]$ equal to -1.

 5.3 For any other arc a of \hat{D}, set the x-coordinate of the corresponding vertical edge-segment equal to an integer j, with $\alpha(f) < j < \alpha(g)$, where f and g are the faces of \hat{D} sharing a in their contour.
5.4 Set the y-coordinates of the endpoints of each edge-segment equal to the ones of the connected vertex-segments.

5.5 Set the x-coordinates of the left and right endpoint of each vertex-segment equal to the minimum and maximum x-coordinates of their incident arcs, respectively. If a vertex-segment v is incident to exactly two edge-segments with the same x-coordinate, x_i, then set the x-coordinates of the endpoints of v to $x_i - 1$ and x_i, respectively. □

An example of the construction performed by the algorithm W-VISIBILITY is given in fig 5. Figure 5.a shows a planar embedding \hat{D} along with the corresponding D'. Vertices of \hat{D} and D' are represented by white and black circles, respectively. The white vertices are numbered according to the st-numbering. For each black vertex f, the value of $\alpha(f)$ is shown in parentheses. Figure 5.b illustrates the w-visibility representation produced by the algorithm. We will use the following lemma to prove the correctness of the algorithm.

Lemma 4 For any two vertices f and g of D', either there is a directed path of D' between them, or there is a directed path of D from $\min \{h(f), h(g)\}$ to $\max \{l(f), l(g)\}$.

Proof Assume without loss of generality that $h(f) < l(g)$. A path from vertex v of \hat{D} that takes always the leftmost outgoing arc (i.e., the first outgoing arc in the clockwise order around the vertex) will be called a leftmost path from v. A rightmost path is defined similarly. Let P_1 and P_2 be the leftmost and rightmost paths of \hat{D} from $h(f)$ to t. Similarly, let P_3 and P_4 be the corresponding paths for $l(g)$. If there is a directed path of \hat{D} from $h(f)$ to $l(g)$, we are done. Otherwise, either P_2 crosses P_3 (at a common vertex), or P_1 crosses P_4. For simplicity, we will consider only the first case.

Let x be the first vertex at which P_2 and P_3 intersect, see fig. 6. Clearly, from lemma 2, every arc incident to any vertex in path P_2 from the right side of P_2 is incoming. The same happens for the arcs incident to P_3 from the left. Because of the construction of D', there is a directed path in D' from f to g. □
Theorem 1 The algorithm W-VISIBILITY correctly computes a w-visibility representation of G.

Proof Since each horizontal segment has a distinct y-coordinate, no two horizontal segments intersect. Because of lemma 1 and the assignment of y-coordinates to the horizontal segments, each face f of the w-visibility representation is a horizontally convex rectilinear polygon, i.e. the intersection of every horizontal line with f is either empty or consists of only one segment, see fig. 5.b. Furthermore, from steps 4 and 5, the vertical line with abscissa $a(f)$ separates the two paths on the sides of f. Hence, it is impossible for two distinct edges of a face f to overlap in the w-visibility representation. Finally, considering lemma 4, we can conclude that no two faces of \hat{D} intersect in the representation constructed by the algorithm, except for the common edges. Therefore, the algorithm computes a correct w-visibility representation of the graph G. □

We now discuss the time complexity of the algorithm W-VISIBILITY. Step 1 takes constant time. Using Even and Tarjan's algorithm, [2], step 2 can be performed in time $O(|V| + |E|)$. By suitably modifying Hopcroft and Tarjan's planarity testing algorithm, [4], step 3 takes $O(|V|)$ time. The critical path method of step 4 has complexity $O(|E|)$. Step 5 takes time $O(|V| + |E|)$. Because of the planarity of G, $|E| = O(|V|)$. We have thus:

Theorem 2 The overall time complexity of algorithm W-VISIBILITY is $O(|V|)$. □

The above algorithm can be extended to work for a 1-connected graph without increasing the time complexity.

Algorithm W-VISIBILITY2

Input: A planar graph G.

Output: A w-visibility representation for G.

1. Find the blocks B_1, \ldots, B_m of the graph G. Let $T := \{B_1, \ldots, B_m\}$ and $S := \emptyset$.

2. Construct a \(w \)-visibility representation for \(B_1 \);

\[T := T - \{ B_1 \}; \]

\[S := S \cup \{ B_1 \}; \]

3. \(\text{while } T \neq \emptyset \) do

 let \(B_{c_1}, \ldots, B_{c_k} \) be all the blocks of \(T \) which have a cutpoint \(c \) in common with some block in \(S \), i.e., \(\bigcap_{i=1}^{k} B_{c_i} \cap S = \{ c \} \);

 find a \(w \)-visibility representation for each \(B_{c_i} \) using algorithm \(W-VISIBILITY \), where in step 1 \(c \) is chosen to be the source vertex \(s \);

 scale down the above representations in such a way that they all fit on the top of the vertex-segment corresponding to \(c \) in the \(w \)-visibility representation already constructed for \(S \);

\[T := T - \bigcup_{i=1}^{k} \{ B_{c_i} \}; \]

\[S := S \cup \left(\bigcup_{i=1}^{k} \{ B_{c_i} \} \right); \]

endwhile \(\Box \)

We can summarize the results of this section in the following theorem.

Theorem 3 A graph admits a \(w \)-visibility representation if and only if it is planar. Furthermore, a \(w \)-visibility representation for a planar graph can be constructed in linear time. \(\Box \)

4. \(\epsilon \)-VISIBILITY REPRESENTATION

In this section, we present a complete characterization of the class of graphs that admit an \(\epsilon \)-visibility representation. Moreover, we give linear time algorithms for testing the existence of and for constructing an \(\epsilon \)-visibility representation of a planar graph. The following lemma provides a
necessary condition for the existence of an e-visibility representation.

Lemma 5 If the graph G admits an e-visibility representation, then there exists a planar embedding \hat{G} of G such that all cutpoints appear on the boundary of the external face.

Proof Let Γ be an e-visibility representation for G. Construct \hat{G} by shrinking every vertex-segment of Γ into a point, and bending the edge-segments in order to maintain the adjacencies, see fig. 7. Suppose, for a contradiction, that there is a cutpoint c that does not appear on the boundary of the external face. Then there are blocks B_0, B_1, \ldots, B_m in G such that the embedding of B_1, \ldots, B_m in \hat{G} lies entirely inside an internal face f of the embedding of B_0, and every path from a vertex of any B_i, $i = 1, \ldots, m$, to the rest of the graph $G = G - \bigcup_{i=1}^{m} B_i$ passes through c, see fig 8. Let σ be a segment of some B_j, $j \neq 0$, such that σ is distinct from c and is either the topmost or the bottommost segment of all B_i, $i = 1, \ldots, m$. Since face f is internal, segment σ is visible by some segment τ of G distinct from c. Hence, there is an edge (σ, τ) connecting G and B_j, which contradicts the fact that c is a cutpoint. □

The algorithm W-VISIBILITY described in the previous section can be extended in order to construct an e-visibility representation for any 2-connected planar graph G, see fig. 9.

Algorithm e-VISIBILITY

Input: A 2-connected planar graph G.

Output: An e-visibility representation for G such that each vertex- and edge-segment has endpoints with integer coordinates.

1. Compute a w-visibility representation Γ for G using algorithm W-VISIBILITY.
2. for each internal face f of Γ do begin
 2.1 let Λ and Ψ be the sets of vertex segments on the left and right side of f, excluding $l(f)$ and $h(f)$, respectively;
2.2 for each $\lambda \in \Lambda$ do

extend λ moving its right endpoint to the abscissa $\alpha(f)$;

2.3 for each $\psi \in \Psi$ do

extend ψ moving its left endpoint to the abscissa $\alpha(f)$;

end

The correctness of the algorithm stems from the following considerations:

(1) each vertex-segment has a distinct y-coordinate;

(2) for each internal face f, segments of Λ and Ψ lie on the left an right side of the vertical line with abscissa $\alpha(f)$;

(3) for each internal face f, vertices $l(f)$ and $h(f)$ are no longer e-visible.

From theorem 2, step 1 takes $O(|V|)$ time. In step 2, each vertex-segment v is considered at most $\deg(v)$ times, once for every internal face in which it appears. Hence, step 2 has complexity $O(\sum_{v \in V} \deg(v)) = O(|E|) = O(|V|)$. From the above discussion we have:

Theorem 4 Algorithm e-VISIBILITY correctly computes an e-visibility representation of a planar 2-connected graph $G = (V, E)$ in time $O(|V|)$. □

Since every planar 2-connected graph admits an e-visibility representation, one might question whether the necessary condition given in lemma 5 for the existence of this representation is also sufficient. The answer is affirmative.

Lemma 6 Let \hat{G} be a planar embedding of a separable graph $G = (V, E)$ such that every cutpoint of G appears on the external face of \hat{G}. Then G admits an e-visibility representation that can be constructed in time $O(|V|)$.
Proof Let $B_i, i = 1, \ldots, k,$ be the blocks of G that have only one cutpoint $c_i, i = 1, \ldots, k$ in common with the rest of G, i.e., the B_i's are the leaves of the block-cutpoint tree of G. Let v_i be a vertex of B_i distinct from c_i, appearing on the external face of G, $i = 1, \ldots, k$. We construct the graph G' from G by adding a new vertex x and connecting it to all the vertices $v_i, i = 1, \ldots, k$. G' is 2-connected and planar. Hence, from theorem 4, it admits an e-visibility representation. In particular, consider the one, Γ, produced by algorithm ϵ-VISIBILITY when choosing vertex x as the topmost vertex-segment. By removing x from Γ, we obtain an e-visibility representation for G. The above transformation can clearly be performed in linear time. □

Note For every boundary circuit C of G, there exists another planar embedding \tilde{G}, of the same graph G, which has the same boundary circuits, but in \tilde{G} C is external. Therefore, lemma 6 still holds if the cutpoints of G lie all in some internal face of \tilde{G}.

An example of a graph that does not admit an e-visibility representation is shown in fig. 10. From lemma 5 and lemma 6, we obtain a complete characterization of the class of graphs that admit an e-visibility representation.

Theorem 5 A graph G admits an e-visibility representation if and only if there is a planar embedding \tilde{G} for G such that all cutpoints of G appear on the boundary of the same face. □

The following equivalent characterization may be conveniently used in order to test in linear time whether a graph G admits an e-visibility representation.

Corollary 1 Let G' be the graph obtained from G by adding a new vertex x and connecting it to all cutpoints of G. Then G admits an e-visibility representation if and only if G' is planar. □
5. STRONG-VISIBILITY REPRESENTATION

In this section, we present a complete characterization of the class of graphs that admit an s-visibility representation. From the results of section 3, one can immediately derive that:

Theorem 6 Every maximal planar graph $G = (V, E)$ admits an s-visibility representation that can be computed in time $O(|V|)$. □

Furthermore, one could use an argument similar to the proof of lemma 5 to prove the following result.

Lemma 7 If the graph G admits an s-visibility representation, then there exists a planar embedding \tilde{G} of G such that all cutpoints appear on the boundary of the external face. □

However, the above necessary condition is not always sufficient to guarantee the existence of an s-visibility representation. In fact, there are 2-connected graphs that do not admit an s-visibility representation. Consider for example the graph $K_{2,4}$ shown in fig. 11. The reason for this is given in the next theorem.

Theorem 7 Let G be a 2-connected planar graph that has a separation pair of non-adjacent vertices v and w. If the removal of v and w separates G in at least four components, then G does not admit an s-visibility representation.

Proof Let C_1, \cdots, C_k, $k \geq 4$, be the connected components of G with respect to the separation pair v,w. Suppose, for a contradiction, that G admits an s-visibility representation Γ. We consider two cases for the vertex-segments v and w:

Case 1: There is a vertical band β such that v and w lie on opposite sides of β.

Any component C_i must have some vertex-segment inside the band β, see fig. 12a. Hence, there must be at least $k-1$ edge-segments between the C_i's, which is a contradiction.
Case 2: Otherwise.

Let now β be the vertical band of the plane consisting of the vertical lines crossing both v and w. Then only one component can occupy the part of β that lies between v and w, because v and w must not be s-visible. Furthermore, any other component must have a vertex-segment intersecting either one of the half-spaces at the left and right of β, see fig. 12.b. This fact implies that there is at least one edge between two vertex-segments of distinct components, which is again a contradiction.

Recall that in e-visibility representations each face consists of two chains of vertex-segments and edge-segments between its topmost and bottommost vertex-segments. The s-visibility representation imposes further restrictions on the shape of the internal faces, i.e., for each internal face of an s-visibility representation, there is an edge-segment connecting the topmost and bottommost vertex-segments, see fig. 1.d.

Before giving a complete characterization of the class of graphs that admit an s-visibility representation, we need further definitions. Let D be the digraph induced by some st-numbering x on the planar 2-connected graph G. We say that x is a strong st-numbering if there is a planar embedding \hat{D} of D such that s and t appear on the boundary of the external face, and for every internal face f of \hat{D}, the vertices $l(f)$ and $h(f)$ are joined by the arc $[l(f), h(f)]$.

Theorem 8 A 2-connected graph G admits an s-visibility representation if and only if there is a strong st-numbering for G.

Proof

Only If: Let Γ be an s-visibility representation for G. We can assume without loss of generality that each vertex-segment of Γ has a distinct y-coordinate. From the previous discussion on the shape of faces in a s-visibility representation, it is easy to see that a strong st-numbering can be obtained by assigning numbers from 1 to $|V|$ to vertices, according to the vertical ordering of the corresponding vertex-segments.
Let ξ be a strong st-numbering for G. If s and t are not adjacent, we add a new edge (s,t). For the resulting graph, ξ is still a strong st-numbering. We then apply the algorithm ε-VISIBILITY, where we replace step 2.2 with step 2.2' shown below, using the st-numbering ξ and the associated planar embedding \hat{D}.

2.2' for each $\lambda \in \Lambda$ do if f contains the arc $[(f_1, h(f_1))]$
then extend λ moving its right endpoint to the abscissa $\alpha(f)$
else extend λ moving its right endpoint to the abscissa $\alpha(f) - \frac{1}{2\varepsilon}$

Finally, if the edge (s,t) is not in G, we remove the corresponding edge-segment, and cut the vertex-segments s and t at the abscissa $\alpha(s^*)=0$. The result of this construction is an s-visibility representation for G. □

Combining lemma 7, theorem 8, and the construction in the proof of lemma 6, we have a complete characterization of the class of graphs that admit an s-visibility representation.

Corollary 2 A graph G admits an s-visibility representation if and only if it is planar and, for each block B of G, there exists a strong st-numbering such that the associated planar embedding \hat{B} contains all the cutpoints of G in B on the boundary of the external face. □

6. CONCLUSIONS AND OPEN PROBLEMS

We have derived new results on visibility representations of graphs, where vertices are represented by horizontal segments, and edges by vertical segments joining adjacent vertices. Specifically we have presented:

(1) A linear time algorithm for constructing a w-visibility representation of a planar graph.

(2) A complete characterization of the class of graphs that admit an ε-visibility representation, and linear time algorithm for deciding whether a given graph admits one.
(3) A linear time algorithm for constructing s-visibility representations.

(4) A complete characterization of the class of graphs that admit an s-visibility representation.

Although now all the three classes of graphs have been completely characterized, there are still open problems on the s-visibility representation:

(1) Is the necessary condition of theorem 7 also sufficient for the existence of an s-visibility representation?

(2) Is there an efficient algorithm for deciding whether a given graph admits an s-visibility representation?

(3) Is there an efficient algorithm for constructing s-visibility representations?

ACKNOWLEDGMENTS

We wish to thank Doug West for useful discussions and Franco Preparata for his encouragement and support.
REFERENCES

FIGURES
Figure 1 The three visibility representations.
(a) a cycle of length 4; (b) w-visibility representation; (c) e-visibility representation; (d) s-visibility representation.

Figure 2 Directed paths in the proof of lemma 1.
Figure 3 Directed paths in the proof of lemma 2.

Figure 4 Faces around vertex v.
Figure 5 Running example for algorithm W-VISIBILITY.
(a) Directed graphs D and D^* derived from a graph G; (b) w-visibility representation for G.
Figure 6 Directed paths in the proof of lemma 4.

Figure 7 (a) An e-visibility representation; (b) a planar embedding constructed from the representation in (a).
Figure 8 Arrangement of blocks in the proof of lemma 5.

Figure 9 The e-visibility representation constructed from the w-visibility representation of fig. 5.b.
Figure 10 Example of a planar graph that does not admit an e-visibility representation.

Figure 11 Example of a planar biconnected graph that does not an s-visibility representation.

Figure 12 Connected components with respect to the separation pair v,w in the proof of theorem 7.