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by

Alex Waiho Lam

Department of Electrical Engineering and
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ABSTRACT

A design of short Reed-Solomon hopping sequences which have excellent

correlation properties is proposed. Within the design, any two sequences

will have at most one partial hit or one full hit when used asynchronously.

The behavior of a near-optimum differential phase-shift keying (DPSK) receiver

with multiple-user interference over a nonfading channel is discussed. Bit

error rates for the receiver with single interference in one chip and the

receiver with single interference in J distinct chips are found. Finally,

generalization of the multiple-user interference model is considered.
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CHAPTER I

INTRODUCT ION

In 1977, Cooper and Nettleton proposed a frequency-hopping multiple-access

(FHMA) system for cellular mobile radio communications [1], [2]. The details

and advantages of this system have been discussed extensively [3], [4] by

previous authors and shall not be repeated here. Basically, half of the

allotted mobile radio spectrum is used for base-to-mobile transmission and

the other half for mobile-to-base. The data stream is partitioned into groups

of n bits, and each group is encoded into 2n = N channel bits using an (N,n)

orthogonal code. The codewords are taken to be the rows of an N x N Hadamard

matrix [5] with elements t 1. Each of the N bits is transmitted using a

different carrier frequency, according to the user's unique frequency-hopping

pattern, or address. A differentially coherent phase-shift keying (DPSK)

technique is used to modulate each bit onto its particular carrier frequency.

The basic time-frequency encoded waveform can be written as [31

N-1
s(t) = Z PT (t-kT)cos(2r(f0+akAf)t+Ok) (1.1)

k=O c

where P denotes signal power, pT is the rectangular pulse function:
c

i 0 <t < T

'.P c( ) -_-c (1.2)

T 0 , otherwise

T is the time-chip duration, ek denotes the phase of the k-th radio-

frequency (RF) pulse and contains the binary DPSK information, f0 is the

nominal carrier frequency, Af is the minimum frequency shift, and ak is

k• ...
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the element of the address that specifies the k-th carrier frequency of the

hopping pattern. If we let the waveform duration be T, we have that T = NT,"

where N is the number of chips per waveform. Each time-chip's phase is

compared to the corresponding time-chip's phase in the previous waveform to

obtain the DPSK information.

The model for the DPSK receiver used in [1] and [2] is shown in Fig. 1.1.

Cooper and Nettleton studied the performance of this receiver via Monte

Carlo computer simulation. Martersteck [3] has recently derived an optimum

receiver for the signaling format just discussed (Eq. (1.1)) and has also

studied a simplified version of the receiver which is nearly optimal for small ,

signal-to-noise ratio (SNR). He has shown that the bit error rate

performance of the near-optimum receiver is better than that of the Cooper-

Nettleton receiver, in both nonfading and fading environments with no

interference. An outline of the aforementioned derivation is briefly given

below.

A receiver for the DPSK Cooper-Nettleton system (assuming a nonfading

channel) must decide on the transmitted codeword based on the received

waveform
N-1

r(t) = 2 E pT (t-kTc )cos(w kt + e )
kO c kc

N-1
+ / Z pT (t-T-kT )h cos(W t + ek) + n(t) (1.3)

T c ikco k k
k=O c

where wk _2Tr(fO+akAf), hik is the ±i element in the i-th row and k-th column

of the Hadamard matrix, nl(t) is the additive white Gaussian noise (AWGN) due

to receiver thermal noise, 8k is a random phase variable, and s. (the i-th row

Ii \
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Bandpass . . .Filters N

Phase
Comparators T T T

Linear Combiner

4 ...

Maximum Likelihood Decision Circuit

Figure 1.1. Cooper-Nettleton receiver analytical model [i].
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of the Hadamard matrix) is the transmitted codeword. Let H. denote the

hypothesis that the i-th row (s.) of the Hadamard matrix is being transmitted.

Defining
(k+l)T (k+l)T

r(t)cos wkt dt, Yk r(t)sinkt dt
• f kT k k kT k

C C

T+(k+l)T T+(k+l)T
XCr(tcoswkt dt, Y' = Cr(t)sinw t dt (1.4)

T+kT k T+kT k

C c

and using optimum receiver theory, the optimum (nonfading) receiver will base

its decision on the statistic

N-2 2 .N-1

A(Hi ) = E £n{I ({8PN 0 [(X+hik) + (Yk+hikYk2 ]}2)}, i=0,1,.....
1 k=0 1 1

(1.5)

where I0(.) is the zero order modified Bessel function of the firsc kind. The

optimum receiver must then calculate A(H.) for i = 0,1,... ,N-1 ard decide

s. was transmitted whenever A(Hi) > A(H.) for all j = 0,1,..., N-1 and j # i.

In other words, the optimum receiver employs a maximum likelihood decision rule.

The optimum receiver structure can be simplified by approximating the

2
function knI 0 (x) in Eq. (1.5). In particular, inIo(X) x /4 for x << 1, and

.nI(x) x for x >> 1. Thusfor small bit SNRs, Eq. (1.5) becomes
0

:" N-1
(Hi ) = Nl [(+hikY')2 + (Yk+hikY) i = 0,1,...,N-1 (1.6)

k=0 ik

which further reduces to

*- N-I

A (Hi) = 1h( + YkY,'h , , i = 0,I,...,N-1 (1.7)Sk=O (k kki
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Either of these two expressions determines the structure of the so-called

small-SNR receiver. The former expression for A (H.) is easiest to work with1.".

analytically, whereas the latter expression is easiest to implement since

fast Hadamard transforms may be used [41. Curiously enough, the small-SNR

receiver can also be shown to be optimum in a Rayleigh-fading environment

provided that X and Yk' k = 0,1,... ,N-1 are uncorrelated. For the scheme

considered by Martersteck, the X and Y are nearly uncorrelated. Thus, the
k k

small-SNR receiver is nearly optimum over a fading channel. We shall adopt

the convention of [3] and refer to the small-SNR receiver as the near-optimum

receiver. A block diagram of this receiver is shown in Fig. 1.2.

For large chip SNRs, Eq. (1.5) yields

** N- 2

A (H i ) k k [(Xk+hik )- + (Y +h i , i 0,1....N-1 (1.8)
3- k=O .-)k

and we call the receiver induced by this expression the large-SNR receiver.

The upper bound (union bound) for the bit error rate performance was

obtained analytically by Martersteck for the near-optimum receiver over a

,.. fading and nonfading channel with no interference. Recently, McClatchey [4]

has found that the bit error probability for the large-SNR receiver and the

near-optimum receiver (for a nonfading channel) are both upper bounded by the

same function. Since the union bound is known to be tight for large SNRs,

the two receivers thus have nearly the same performance at large SNRs.

Furthermore, we would expect the near-optimum receiver performance to be better

...- . . .°. . ...% . -. .. .. . . .. .. . -.. -.1.. . " i- .- .- ill ..i; ii - .ii . -2 , --i i ,.-
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g than the large-SNR receiver performance (for a nonfading channel) at small

SNRs, since the former receiver is based on a small-SNR approximation whereas

the latter is based on a large-SNR approximation. Finally, we know that the

near-optimum receiver is nearly optimum in a Rayleigh-fading channel. It

* follows that no further consideration of the large-SNR receiver is necessary.

Figure 1.3 (from [41) shows the simulation data (via Monte Carlo simula-

tions) for the optimum and near-optimum receiver for N = 32. Upper-bound

performance for the near-optimum receiver and simulation performance for the 7:

Cooper-Nettleton receiver are also shown in Fig. 1.3. Note that the near-

optimum receiver performance (simulated) is better than the Cooper-Nettleton

receiver performance for SNRs above 3 dB in a nonfading no-interference

environment. In a digital voice communication system, a bit error rate of

-33 about 10 is adequate for maintaining reliable communications. At N = 32,

this corresponds to a bit SNR of about 8 to 10 dB. Since the union bound is

- tight for large bit SNRs, the upper-bound performance of the near-optimum

U receiver for normal usable ranges of bit SNR is thus expected to represent

the receiver's true performance. This fact may be verified by Fig. 1.3 for

N = 32 with a nonfading no-interference environment. In this thesis, it is

assumed that the upper-bound bit error rate is a true performance measure for

the near-optimum receiver when a sufficiently large bit SNR is used.

From all the facts that we have seen, the near-optimum receiver is by

far the best receiver known for a Cooper-Nettleton system: it is relatively

* simple to implement, easy to synthesize, is analytically tractable, and has

performance that is superior to the Cooper-Nettleton receiver for large bit

SNRs in a no-interference environment.

A _ 1'
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This thesis investigates one important system aspect which has not yet

been considered: the multiple-user interference problem. In a FHMA system,

users usually share the same frequency band, but their hopping sequences are

not necessarily disjoint. Consequently, cross-user interference is bound

to arise if large numbers of mobiles are transmitted simultaneously in the

. same cell. This multiple-user interference can degrade FHMA system performance

rather seriously. Indeed, Yue [6] has estimated that the mobile-to-base

. number of users per cell for a DPSK/FHMA system with Cooper-Nettleton receivers

*Z can be as low as 26, assuming random addressing and bit error rates less than

* -3
10 . The number 26 is so low maybe because users are hopping randomly on the

* spectrum band. In this thesis, instead of random hopping, we assume that

each user has its own specific nonrandom frequency-hopping sequence.

If the mobiles can transmit in a fashion such that the probability of

having two or more mobiles transmitting the same frequency at the same time is

small, then we may be able to keep the multiple-user interference below a

tolerable level. In the analysis of [i], the multiple-user interference was

modeled as a random white Gaussian process. We do not make the same assump-

' tion in this thesis. However, we assume that signals from all the mobile

transmitters received by the receiver do have the same power.

From the foregoing content of this chapter, we know that each mobile is

transmitting t 1 channel bits (elements of the rows of a N x N Hadamard

matrix) using frequencies according to its own unique frequency-hopping

pattern. For N = 4, the Hadamard matrix is simply

V , . " " - -... ..,. .i '_,_ " + " " . - * , + .: - . ... .. . .
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1 -1 1 -1

(1.9)
1 1 -i -1

1 -1 -1 1

Suppose there are only two mobiles, say A and B, transmitting in the system.

Without loss of generality, we may assume that A is transmitting O, the

- 0-th row of H (all ones), in the time slot [0,T]. If a receiver A at the base

is decoding the message sent by A, A has to tune at A's transmitting

frequencies from time to time using A's unique hopping sequence. The receiver

A then computes A (H.) and chooses the hypothesis for which A (H.) is

largest. However, in order to compare A (H0) and A (H1), it need only compare

* (XlX, + YIYI) + (XX' + YY') with -(XlX' + YIY') - (XBX' + Y Y;) because
1 1 1 1 33; y33 1 1 - (33 33

h00 = hl0 and h02 = h 12. Now consider the signal of B. Suppose that B's

- signal is such that A and B are using the same frequency in the 2nd time-chip.

However, note that in deciding whether A (H0) or A (H1 ) is larger, the

quantities X2X2, Y2Y2 are not even considered. Thus, the presence of the

interferer makes no difference in this decision. As a second case, consider

if the interference from B occurred in the 1st (or 3rd) time-chip, then the

comparison between A (H) and A (H0 ) will inevitably be affected; but B may

be transmitting a +1 or a -1 bit. If B is sending a +1 bit, the interference

will be constructive. In other words, interference from B is actually helping
*

A to decide correctly that A is transmitting a +1 bit, so the error probabil-

ity decreases. On the other hand, if B is sending a -1 bit, the interference

will be destructive, and the error probability increases. As a summary, in

computing the probability P(A (H1 ) > A (H0)), an interference at the 0-th

.s * or 2nd time chips will have no effect on the probability, while an

i-
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9 interference at the 1st or 3rd time-chips will be equally likely to be

constructive or destructive. It is interesting to note that the system has

*- a sort of 'built-in' anti-interference capability. This capability is a

direct consequence of the system's orthogonal channel coding scheme, and is

expected to increase with the codeword length N.

Likewise, we can compute P(A (H.) > A (H.)) for all i and j. It turns

out that this probability does not depend on j or i. This is intuitively

satisfactory because every codeword is equally likely to be transmitted, and

* the interference signal is randomly distributed among the time-chips. The

word error probability can then be upper bounded by the union bound, which

is simply 3-P(A (H.) > A (Hi)) in this case.

For multiple interference at multiple time-chip periods, the analysis is

more involved, but it still follows a similar line of reasoning. In most

cases, part of the interference signals will be rejected. Among the rest of

the interferences which are considered by the receiver, some of them will be

U constructive, while the others will be destructive. We have shown that the

word error probability is bounded by the union bound: (N-l)P(A (H.) > , (Hi)).

We will also show that the bit error probability is bounded by
N * *"
-2 P(A (H) > A (Hi)). The detailed development of this function is largely

algebraic and manipulative in nature, and is therefore relegated to the

Appendix.

The remainder of this thesis is organized as follows. In Chapter II we

discuss a design of good frequency hopping sequences in which any two sequences

will have very little interference over all time shifts asynchronously. In
*4

Chapter III we study the performance of the near-optimum receiver with only

• L
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one interfering signal at a particular time-chip period. In Chapter IV we

present an upper bound of the bit error rate for the near-optimum receiver

:' with multiple-user interference assuming that each time-chip has at most one

interferer. We also discuss possible generalizations of this special multiple-

user interference model. Finally, in Appendix A, we present a derivation of a

special probability function P (u,x) which plays an essential role in this
e

thesis.

7_41
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CHAPTER II

HOPPING PATTERNS FOR THE FREQUENCY-HOPPED
MULTIPLE ACCESS COMMUNICATION SYSTEM

In a frequency-hopped (FH) communication system, the spreading of the

spectrum is achieved by hopping the frequency of the carrier signal at

regular intervals. The hopping pattern is generated by applying a random

i- or pseudorandom sequence of inputs to a frequency synthesizer. Typically,

the available RF bandwidth is partitioned into q nonoverlapping frequency

intervals called slots, and the q different frequencies generated by the

frequency hopper are the center frequencies for these slots.

For the mobile communication system described in [i], some spectral

division is made so that the mobile-to-base (upstream) band does not overlap

the base-to-mobile (downstreqm) band. We may assume that the base is able to

transmit signals to the mobiles synchronously. This will add a time delay to

some of the speech communications, although the delay is usually negligible.

We also assume that the separation between two center frequencies, Af, isP
greater than l/T , T being the chip-time, so that there will be no

c c

interference between two adjacent frequency slots, and the FH-DPSK system

will perform like a frequency division multiplexing system with the added

advantage of being a spread-spectrum system.

For our purposes, a full-hit occurs whenever two transmitters are

transmitting in the same frequency slot over a whole chip-time period, and a

partial-hit occurs whenever two transmitters are transmitting in the same

frequency slot over part of a chip-time period. Our objective in this chapter

Lis to produce large numbers of frequency-hopping patterns for the upstream

and downstream communications such that the number of hits between two

hopping patterns is also small.

.
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2.1 ix Hopping Pattern Design for theAsynchronous Upstream Communications

In this case, the mobiles are free to transmit signals to the base

asynchronously so the number of hits between two patterns (with periods N)

over all possible time shifts must be considered. We may assum, for the

moment that the system is pseudoasynchronous (asynchronous but with chip-

synchronization) so that we can consider the number of full-hits between two

patterns. If x = (x,9xi. 1'*'- )~ is a vector of length N, we define the

left-shift operator T' as follows:

i
T Wx (x x i~'i2**'xN-lN lX09. .. . 0 < i < N-i (2.1)

If y is also a vector of length N, then the Hamming distance d yx~) between

x and y is defined as

d (X,y) 7 -iX (2.2)
i=O 11

where x(j,k) =1 if j $k or 0 if j =k is an indicator function. It is

clear that if d H (x,Tl(y)) is equal to N for all i, then there will be no

full-hits between x and v over all time shifts. There are no partial hits

i+l*either. On the other hand, if d (x, (y)) N and dx, (y)) =N-1 (or

vice versa) then there is a full hit for one time delay, no hits for another

time delay, and a partial hit for any intermediate time delay. If

d~xT~)) =d (xi+l
H -x, Hy) =d ,T (y)) = N-1 for a fixed i, then it is possible to have

two partial-hits between x and y when the chip-synchronization condition is

*lost. We shall present a construction method of designing a large class of

* hopping patterns in which any two patterns will have at most one partial

(or full)-hit when used asynchronously; that is, if d (x,T (v)) = N-1, then

i-l i+l
dH(x,T (y)) d d(x,T (y)) =N. First, however, consider the following.

'-7V, • o..
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Suppose GF(q) is a finite field ([71) with a as a primitive element.

Solomon ([3],[9]) had found a set of q Reed-Solomon (RS) sequences that can

be considered as hopping patterns. These sequences are of the form
2 N-i

x = a (1,I,...,I) + (l, L,a a ) with N < q-l, a E GF(q), a a primitive
x x

element of GF(q). Thus,the L-th coordinate (entry), 0 < k < N-l, of x is

x= a + a. The coordinates of x are not repeating simply because ifX

Z# m (0 < ,m < N-1 < q-2) then a + a Z #a + am thus x x. Note also
x x m

i
that if x belongs to the set of sequences, then T x is not a member of the

9set. Consider now two distinct sequences x and y with x= a + a,
£X

v = a + a, a # a . Obviously x, # yX for all k, thus we have no hits"Z y x y;[

in the synchronous case. This is equivalent to saying that d (xv) = N. But

in the pseudoasvnchronous (asynchronous system with chip-synchronization)

case, x and Ti(y) (i # 0) can have at most one full-hit because the equation

Z i+9 _ i t
a + a = a + a or (1-a )a = a - a has exactly one solution in GF(q),

x y x y

and the solution corresponds to a hit only if 2 E {O,l,...,N-l}. Thus when

i
N < q-l, ) = N-1 for some i, 0 < i < N-l; and when N = q-l,

dH(x,T'(y) N-I for all i, 0 < i < N-i. Therefore, when N = q-l, any

two sequences from the set will almost always have two partial-hits when used

asynchronously (with no chip-synchronization). This is, of course, highly

undesirable.

Example. Consider GF(ll) so that q - 11, N = 10. Take a = 2

10
(2 1 (mod 11)), a = 0, a = 1. Hence x = (1,2,4,8,5,10,9,7,3,6),

x y

y= (2,3,5,9,6,0,10,8,4,7). It is easy to see that dH(x,y)) = N and

d H (x,T () - N-1 V i, 1 < i < 9.

2,
. . . -.. 1

-. ~ . " .
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Although in the example we chose the length N to be equal to q-l, in

general the sequences with length N < q-1 are more attractive because 1y

suitable search among the set of the q sequences we may be able to find a

few with no hits for some shifts. However, this method of generating RS

sequences suffers a major disadvantage: only q patterns can be generated.

In order to generate a large class of hopping patterns with the desired

property (maximum one hit between any two patterns asynchronously), we may

consider sequences of length N < q-l. In particular, we assume N is a

divisor of q-l. To this end, suppose a sequence x of length N is to be

generated:

i-W 2W . -.',x -a (iii,...,l) + b(l,a ,a ,... (2.3)
- x

where W = (q-l)/N, a E GF(q) and bEGF(q). For 0 < j < W-l, define a collection
x

of sequences G(aj ) as

G(caj ) - {x : a r GF(q), b = a i }  (2.4)
- x

then the set D of sequences,

W-1
= x : x E G( , 0 < j < W-l} G (a (2.5)

j=0

Fis a collection of nonconstant sequences since b 0 0. From our previous

discussion, it is obvious that each group, say G( , contains q sequences

of nonrepeating coordinates. Moreover, two sequences in the same group i

will have no full-hit when used synchronously, have at most one full-hit

when used pseudoasynchronously, and are not cyclic shifts of each other.

. Furthermore, all the sequences in D are distinct and are not cyclic shifts

of each other. To see this, let x EG(a j ) and v E G(ak), 0 < J, k < W-l. Suppose

i
x T (y) for some i, it means that for fixed a and j, we can find fixed

.

IC . . . . . . . . . . . . . . . .
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a ,k, and i such that a + a VZW a + k (i+Z)W or a -a =a£W j~ak+iW-j-l]

SYx y+W- x y .

holds for all Z (a # a , k # j so a k+iWj# 1). But this is impossible.x y •"

Actually since we take b (Eq. (2.3)) to be nonzero and b = a for 0 < j < W-1

we automatically exclude all constant and cyclic sequences from D because
~j + i W )  r{'

SG(a T{G(a])} for 0 < j < W-1, 0 < i < N-l, and W = (q-l)/N. Note that

Wji k+iW-jj
there can be at most one solution of k to the equation a -a =a a [a -i]

x V

for fixed a ,a (a # a ), k,j (k # j), and i, so we can conclude that thex y x y

maximum number of full-hits between any two sequences in D is I (if k =J

x and y are in the same group so we are done; if a = a , since ak 1-- O
x y

i
so Z does not exist). Hence dH(xT (y)) > N-1 for x,y E D, 0 < i < N-1.

Suppose x,y E D. Suppose also that x E G(yJ), YE G(ak ) and

d (xT(W) = N-1 for some fixed i, 0 < i < N-1. This means that exactly one

coordinate, say the Z-th coordinate of x and T (y) is the same. Hence if we

let

a(l l, W 2W (N-1)W
ax -, ,...,a

k W 2W (N-I)W
y - ay(1,, ,l ) + a (a ... ,a (2.6)

y

then we must have

-? a + a a = a +aka (2.7)
x y

_Now if r r = ... , + a (lcA...), then we claim that there

kr
is s E G(a ) such that d (r,Tis) is also equal to N-1. In particular,

H-

s can be chosen with a = a + (a -a ) such that r and T s will collide at-- s r y x---

exactly the same Z-th coordinate. To see this, let

I .- . . .. -.. -* . . . - .. . . .. . ... , -L . . . * .*. .
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S ak W, 2W,

Then we must have

jzw k (i+Z)W
a + aa =a + aa (2.8)
r

Combining Eqs. (2.7) and (.2.8), we can solve for a . Thus, we have proved

the following proposition.

Proposition 2.1. If x E G(ca) y E G(ctk) and d H(xT' (y)) = N-i for some i,

0 < i < N-I, then for every r E G(cz ), there is s in G(ct k

such that d H(rT (s)) is also N-i.

In a second case, suppose x,yj are defined as in Eq. (2.6) with 0 < j

_~ camta thr issiGak+1
k<W-2. Then if r E Ga we cli)htter ssi ~ such that

d H(r,Tl(s)) is equal to N-i. Similarly, s can also be chosen with

a =a + cl(a -a )so that r and T (s) will also collide at exactly the same
s r y x_

Z-th coordinate. This is obvious once we note that

j~l zk t-l (i+Q)W
a r+ L CL =a s+i a a (2.9)

w 1 0
and solve for a stogether with Eq. (2.7). Observe that G(-4 =T -G(a~) Hence if

k = W-1, everything that we have just stated applies except s will be in 0~t

and d (r, s) is N-1. If j = W-1, r will be in 0~c ) an TrT() Nl

and____ d H~i) y, E~ Gand d an dT ( Ts) =N1

Corollary__ 2.1 IfxEa ~ n H )), = N-1 for some i,

0 < i < N-1, then for every r E G(ctal there is s in

k+1
G(ci such that d (r,TI(s)) =N-1. Note that 0 < j,

H

k < W-1, and G(ci ) T 1{G(o.0 )1.
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Suppose now we want to know when dH (x,T (y)) and dH(x,T (y)) will

both equal N-1. Intuitively, for a given field GF(q), this condition should

depend on the pattern length N and hence on W. As usual, we assume that x

i i+1and T (y) collide exactly once at the Z-th coordinate. For d (x,T (y)) to
H- l y

equal N-l, x and T (y) must then collide exactly once at some other

coordinate, say the m-th coordinate, where m is necessarily different from Z.

Thus we have the simultaneous equations:

zw k (i+Z)W
a+ aa +aa

x y

a + a amW ka +ctka(i+l+m)W (2.10)
Y + --

. which reduce to

amW j (i+l)W+k-j_ 1) a a (a iW+k-j_l) (2.11)

k1  k
1 Wk-_ 2 (i+l) W+k-j_ co,

' Let a = a - 2 = a a , and let a denote 0. Then we

may solve for m:
k -k

m z + 1 (2.12)

Since a = 1 and m must be an integer, Eq. (2.12) makes sense only when

(k l-k 2) mod(q-1) is a multiple of W. Equivalently, WI(k 1 -k2) mod(q-1).
k1 k

Note that in Eq. (2.11) a = 0 only when k = j and i = 0; a - = 0 only

when k = j and i - N-I. But then x,y will be in the same group and so
d(dHXi+l ... -

d (x,y) = N and hence there is no need to consider d _(xT (y)) for i = 0
H H

and i = N-1. Thus we assume that we do not consider the case k= , or

fi

..... .................
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Proposition 2.2. Suppose x E G(aJ), y E G( k). For each i, 0 < i < N-I,

let k1 ,k2 be such that

k
1 iW+k-j1#"

I2 (i+l)W+k-j
a a cc

If W!(k -k 2)mod(q-1) for some i, then dH(x,Ti(y)) = dH (x,T i+l(y)) = N-1

i Ti+lfor these i. Otherwise, dH (x,T (y)) = H(x, (y)) N-1 can never happen

( Our problem now reduces to the extraction from D of a subset D of
g

sequences which satisfy our constraints. For a fixed q, there are altogether

W'q = (q-l)q/N sequences in D. To pick D from D, we do not have to generate
g

all the sequences and compare them. Indeed, Proposition 2.2 provides a

reasonably fast and easy algorithm to find all the good sequences. Meanwhile,

5let us introduce a few more definitions. We say a group G( s) is a good group

if the maximum number of partial-hits between any two sequences within G(as)

is less than or equal to one, otherwise, G(as ) is a bad group. Likewise, a .

r Sgroup G(ar) is a relatively good group with respect to G(as ) if the

maximum number of partial-hits between any two sequences from the two groups

-is less than or equal to one. A set D of mutually good groups is such that
.

all the groups inside D are relatively good groups with respect to oneg .

another.

Suppose now we have a given field GF(q), a primitive element a of the

GF(q), and a fixed sequence length N, N divides q-l. Thus W = (q-l)/N is

determined.

Ui'

3.
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We first set j =0, k=0 in Proposition 2.2. If WI(k 1-k2)mod(q-i) for some

i i+li, then there exists x,yEG(a0 ) such that d,(X,T (y))=Dh(x,  (y)) =N-1 for

these i. Hence there will be two partial-hits between x and y when they are

0used asynchronously. Thus G( ) is a bad group. Then Corollary 2.1 implies

1 2 W4-1that G(a ),G(a ),...,G(a are all bad groups, hence the whole set D is
V..

bad. Therefore, we have to start over with a larger q or a smaller N.

Suppose WI(k -k )mod(q-l) for no i, then G(a ) is a good group. Hence Dg

1 2

consists of at least a single group G(20 ) (or G(aJ), 0 < j < W-1, but we shall

0
always pick G(a")). Note that checking the conditions in Proposition 2.2 is

equivalent to comparing all the sequences (since x,y are arbitrary) and their

time shifts from groups G( j) and G(k ), but in a much simpler manner.

Next we set j = 0,k=l in Proposition 2.2 and check the stated conditions.

1
Similarly, if W (k1-k2 )mod(q-l) for some i, then G(aI ) is a relatively bad

group with respect to G(c 0). Otherwise, G( 1 ) is a relatively good group with

0
respect to G( . Proceeding with j =0, k=2,3,...,W-l, we can then find

all the relatively bad groups with respect to G(c ), i.e.,the set of all
0G0b 1 b2) b n),

relatively bad groups to G(a0 ) is RBG(a0 ) = { ,G .G(a n)} for

some bn , 1 < b < W-1. For convenience we shall write RBG(c: )= tblb 9 ... , b r.n - n- n

Then Corollary 2.1 implies that the set of relatively bad groups with respect

to G( ) is RBG(a = {b +1,b +1,...,b +1}. Inductively, all the RBG(a ) s

can be found without difficulties. Observe that Corollary 2.1 also implies
r "" (r+l)-""

that if G(a) is relatively good with respect to G( s ), then G(ci ) must

s+ 1
be relatively good with respect to G(ct With all this information, it

is now extremely easy to construct D , the set of mutually good groups, by a

simple deletion process.

* .,J*
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Example. Consider GF(281) and let a = 3 be a primitive element of GF(281).

The largest possible N is 8, so W = 35. D consists of 35 x 281 = 9835

codewords. Each codeword x is of the form x = a (+,1.... 1) +
- x

b(1,60,228,192,280,221,53,89), where a = 0,1,2,...,280,
x
0 1 34b = 1,3,9,27,81,..., 194,20, i.e.,b = a , ... a . Proposition 2.2 and

Corollary 2.1 imply

RBG(a 0) = {7,10,13,22,25,28}

r 1
RBG(a I) = {8,11,14,23,26,29}

2

RBG(a ) = {9,12,15,24,27,30}

RBG(L ) = {10,13,16,25,28,31}-

RBG( 34 ) = {6,9,12,21,24,27}

To find D we first find the sets

0
Do  D - RBG(ca '

= {0,1,2,3,4,5,6,8,9,11,12,14,16,17,18,19,20,21,23,24,26,

27,29,30,21,32,33,34}

D1 = D0 - RBG(a)

= {0,1,2,3,4,5,6,9,12,15,16,17,18,19,20,21,24,27,30,31,32,33,34}
2)

D - DI -RBG(a

Then D is just the last set D at the end of this process. In this case,g n

the process ends at the 8-th step, hence n = :D 9 (we always start with
g

0 1 2 3 4 5 6 20the 0-th step). Thus D = {G(a ),G(a ),G(a ),G(a ),G(a ),G(a ),G(a ),G(a 0 )• g i

21G(a )}. Notice that the choice of D is not unique, but the number of

sequences in D is fixed (9 < 281 = 2329).

.-- ,. '. . o- .- . % . . - - . . . . • . . '
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Some good designs of Dg 's with various q and N are exhibited in Table 2.1.

Notice that for most cases N /q < 0.1. It is conjectured that there exists
max

*" a stronger version of Proposition 2.2 which can provide a deeper understanding

of the structural properties on D, hence on D . For N/q < 0.03, the codewords
-,

in the D 's of Table 2.1 appear to be excellent, i.e.,d (x T (y)) - N-1 for a

L*- very few number of i's when compared with N. In fact, the complete Hamming

distance distributions of each D may be evaluated through the help of

"Prop,),- 'ca 2.1 aud Corollary 2.1.

We have then succeeded in constructing a design D of good hopping
g

patterns in which any two patterns will have at most one hit (partial or full)

when used asynchronously.

2.2 A Hopping Pattern Design for the Synchronous Downstream Communication

j In this case we assume that the base is able to transmit signals to the

mobiles synchronously. This will add a time delay to some of the speech

communications, although the delay is usually negligible.

Suppose we have t-q available frequencies in the downstream band (t an

integer, q a prime or prime power). Partition the frequencies into t

disjoint groups. For each group, map the q elements of the finite field

GF(q) isomorphically to the q distinct frequencies. Then we apply Reed-

Solomon (RS) sequences (with N-- q-l) discussed in Section 2.1 to each group.

" Hence, for each group, we get q sequences of length N = q-l, and there will

be no hits between any two sequences when used synchronously. Note that the

"" method we mention here is just a special case of what we have discussed in

Section 2.1.

•

- -" ' . - . .. . . "" ' " " . ,.* .
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TABLE 2.1
b b

Some good designs D of GF(q). G(a ) = {x = x = a (i,1,... i) +c n(1,
W 2W (N-1)W ",a a .. where W = (q-1)/N.

q-1 a {b D {G(c n)}}
n g _-_._

N=8 N=16 N=32

256=28 5 0,2,4,6,8,10,12,14,16,18,20 x x
22,24,26,28,30 (not possible)

3280=2 35"7 3 0,1,2,3,4,5,6,20,21 x x

4336=2 437 10 0,1,2,3,16,17,18,19 0,1,2,3 x

32,33,34,35

5
352=2 511 3 0,1,2,3,4,5,6 0,1,7,8,15 0

6
448=2 7 3 0,1,4,8,21,25 0,2

(possible, but not
calculated) --

6 2
576=2 .3 5 0,1,2,3,8,9,10 0,1

167-2 5.3-7 5 0,1,6,7,10, 0,2

11,14,20

8
768=2 3 11 0,7

7: 2

1152=27 3 3 - 0,16,20

.1'.

' . . . f . . . . l. " , " , . .i '. f - ' ' - , , . ' - ' , ' . ° - - ' " ' " " " 1 !
i ,
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In practice, the pattern length N is usually a power of 2. We know that

17 is a prime, so patterns of length N = 16 are obtainable. However, 33 is

* not a prime, hence patterns of length 32 may be constructed by annexing two

patterns of length 16 together. This simple annexing procedure can certainly

be carried out for larger N's. One other possibility is to use extended

Reed-Solomon sequences. For example, when q = 33, we can first generate 32

sequences of length 31, and then to the end of each of these sequences we add

a parity check element. These 32 extended sequences (of length 32) have no

hits when used synchronously.

- o.

p

- .

. . . . . . . . . . . . . ..
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CHAPTER III

PROBABILITY OF ERROR ANALYSIS OF A NEAR-OPTIMUM FH-DPSK RECEIVER
WITH ONE INTERFERENCE AND A NONFADING CHANNEL

In a multiple-access communication system, cross-user interference

I must be considered in order to gain a true measure of the system performance.

Since a bit error rate performance analysis for a single-user and a non-

'- fading channel has already been given in [31, we now describe a similar

- analysis of the near-optimum FH-DPSK receiver with at most one interference

at the n-th time-chip over a nonfading channel.

Suppose that the system is chip-synchronous. If the i-th codeword is

being transmitted, the DPSK receiver must consider two frames of data in

order to make a decision. Moreover, if the n-th time-chip is interfered

(a full-hit) by another user transmitting the Z-th codeword with the same

power, then the receiver input over the 2T-second interval may be

represented as

5 N-1r_ . r(t) =V¢2P Z pT (t-kT)[cos(,,kt+6 k + knCos (Wk t + m ] ..

T= C c K k kn k m

N-1

+ 2- ZpT t-T c )hik cos(u k t+6 ) + 6 knh kmcos(wtk t )]k=O c

+ n(t) (3.1)

where h is the ±1 element of the i-th row and k-th column of the Hadamard
ik

matrix, n(t) is white Gaussian noise (WGN) with two-sided spectral density

A-

p%
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N0 that is thermally generated in the receiver, and k is the Kronecker

delta function. The is and 4 are modelled as independent identically"km

distributed (i.i.d.) random variables, with uniform densities over (0, 2 T]

since we are employing noncoherent phase signaling.

Recall (Eq. (1.6)) that the near-optimum receiver computes
N-1

A(HN) = 1 [(Xk+hjkX') 2 +Yh 1J ' J = 0,1,... ,N-1 (3.2)
k=O

and decides the hypothesis H. whenever A(H.) >A(H.) for j = 0,1,...,N-I2. 1 j

and j # i. Then given the i-th codeword was transmitted so that H. is
.

true, the conditional word probability that the rcz.ivcr makes an incorrect
Sq

decision is

.' N-1

P[EIHl = P U [A(H.) > A(H]i)] IH (3.3)j=O

. Equation (3.3) is bounded from above by the union bound, thus

N-i
P[EIH i  < 7 P[A(H.) > A(H,)IHi] (3.4)

- j=0

jsi

Conditioning on H, 0, and ¢ , and by using Eq. (3.2) we obtain£ -- m

<P[A(H. > A(H.)IHiH ,S, m]

P E {(x -h X')2+(Y _hikY

kE k ikk k ik74
2 2

> z {(X +h X')+(Y +h Y')2 HiH, (3.5)
k £E j
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where J. = {kh = -hj } Here the terms for which h = hjk are disregarded* :ik j k j

since they do not affect the comparison. Also, ,. will contain exactly N/2

elements by the orthogonal property between the rows of the Hadamard matrix.

From [3], we know that all the random variables appeared in Eq. (3.5)

are mutually independent Gaussian r.v.'s. By definitions (Eq. (1.4)), we

calculate

E[Xk H,H,,m] = 2 Tc[cosOk + 6kncoSm ]

E[Y' HH2,_ m = -VP/2T [sine + 6 sinm
k ' c k kn m

E[X HiHZ,,Dm] /v') T [h cO kS + 6 h cos I
k m c ik k knkm m

E[Y k H,HiO" m] -VP/2 T [h iksinek + 6 knh msin m (3.6)

and obtain that each r.v. has common conditional variance N T /4.
C

We then further define four normalized independent Gaussian r.v. 's as

X - h.' Y - hY

A Xk ik B A k ikk
. .N oT /2 /N r /2

0Oc 0Oc

Xk + hikXI Y +h Y'

C k ik k , D k ik (3.7)
kk2 NoT /2

0Oc 0Oc

so that their respective distributions are

n(Oi) k#n
AkK" "Ak (/PT -[ l-hinh m]cOSOm I) k--n

c 0 in Zm in

fn(0,l) k#n
Bk rL(-VT 7[l-hh I ] sin m l) k--n

Tr(2vf7Ncose ,) k~n
cO0 k (1+h h )

t -F. ((2 /T[cosi + i2 cosm] ,l) k=n

c 0 . " .
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Tn(-2-T IN_ sine ,l) k#n

Dkc 0 k (l+h.nh
k(-2 c/No[sinen + 2 sin m],l) k--n (3.8)

where n(p,l) denotes the standard Gaussian r.v. with mean L, and unit variance.

Consequently, our problem in solving Eq. (3.5) is thus reduced to determining

P[A > BIHiH ,Om] = f fB (Odad ) f f o fA(a)dd 8  (3.9)
B=O a=8 0

2 2 2 2
- where A K + B ] and B Z . [C + D ] are independent. A

k E J. k E . k k

general solution to this complex probability function can be found in

* Appendix A in which the results are stated in terms of the parameters

2 2 -
S E {(E[Ak] + (E[B 1) (3.10)

kE 0k

and

"' = Z {(E[Ck]) 2 + (E[Dk])2 } (3.11)

Since the single interfnece occurs at the n-th time-chip (n arbitrary),

and the h 'S are equally likely to be +1 or -1, we have to consider the
ik

following three cases separately.

Case (i). n . = {k:h =-h e.
jik jk

Obviously this case happens with probability since I. = N/2.

It also implies that the interference signal will not appear in the

comparison of Eq. (3.5). Hence s 0, and s' 2PT/N The
0*

analysis is thus reduced to the simpler no-interference case discussed

in [3]. In [3] (or see Appendix A) it was shown that

gB.
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P[A(H) > A(H ) IHiHG,,]= P[A(H) > A(Hi)IHi,] A

-PT/2N N/2-12_k k (PT/2No /k

(3.12)

Since the result does not depend on _ (or j or i, as might be intuitively

expected because the rows of the Hadamard matrix are all orthogonal and

have equal probabilities of being transmitted), the upper bound on the

conditional (on Case (i)) word error probability are obtained directly:

PH l(i)] < (N-1)p (3.13)

The relationship between the conditional (on Case (i)) bit error probability

P b(i)) and the conditional word error probability is given in [5] as

ib

2n-l

(i) 2n-  P N2 P[E (i)] (3.14)b 2 n-iN-

Substituting Eq. (3.13) into Eq. (3.14) we obtain

N

P (i - Pe(OPT/2N (3.15)
b - e 0

where P (u,x) is defined in Eq. (A.15).
e

Case (ii). n E ., and h h = -1.
j in Zm

Note that P[hinh - + 1] = . This case thus occurs with
in £m

probability 1. From Eq. (3.10) and Eq. (3.11) we get

4PT c 2 2 4PT 2PT
[co cands (3.16)N m m  N NO

0 0 0

- ..,-. *. -
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It then follows easily from Appendix A that the conditional

(on Case (ii)) bit error probability is given by

PTc PT

O (ii) < P (3.17)b e 

-S 

N

(Case (iii). n E ., and h. h ; +1.
, in ZM

Similarly this case also occurs with probability . Although

s is found to be zero, the analysis here is still more involved since

= 2PT + 4PTc [2csO cos + cos 2  + 2 sinG sinm + sin 2  ]

N 0 N 0n m m n m m
i

4 PT

= 2PT - --' C[1 + 2cosm] (3.18)

where n e n - Om' modulo 27, is not a constant. Observe that
n m n m -

0 n and m are i.i.d. r. v.'s with uniform distribution over (0,27],n m"

we can therefore show that T is also uniform in (0,27r]. With
nm

this information in mind, and by Fact A.2 in Appendix A, we thus

obtain the conditional (on Case (iii)) bit error probability by

removing the conditioning on T'
nm

P T PTc 2PT o'
Pb (iii) =E 2N + N + IN COST nm..

(P 0 0 0 0 n

3PT PT
< P PT + 2

+ Pe T T (3.19)
e( 2 0 N 0 , 2N 0  N0

Combining all the results from these three cases, we thus successfully 71
provide an upper bound of the bit-error probability for the chip-synchronous

system with single interference as

p 
,. 1
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Pb <  b + P b(ii) + P b(iii) (3.20)

where P (i), P (ii), and P (iii) are given by Eqs. (3.15), (3.17), and
b b b

(3.19), respectively.

Although it took some effort to have arrived at Eq. (3.20), the upper

bound is still not general. In fact, in a realistic system, chip-synchronization

between the transmitters is almost unrealizable. As a consequence, the

receiver will experience a single partial-hit (we avoid the possibility that

%two or more partial-hits may actually happen by time shifting, also see Chap-

ter II) rather than a single full-hit at the n-th time-chip. This problem

may be remedied by annexing an independent r.v.,Z, with uniform distribution

over (0,1) to the interference signal. Thus Eq. (3.8) becomes

n(O,l) k#nv:Ak { c~N [-h

Sq(a/PT IN- [1 -h h ] cos m l) k--n
C n Zm m

i (O'l) k~n

B k~
T (-av/PTc IN0 [1-h inh m sin4mi) k=n

Ii(2,T I0 cosekl) k#n
c k (l+h inh )

{ 2/PTc IN0 [cosO+- i cOS+ a,l) k--n

c 0 nq 2_ pmcN

(-2V'PF7/F sin9k,l) k#nD0k  k 0 9' (l+h inh m)

(-2yPT/Ni [sinn + a sin ],l) k--n (3.21)
C0 n -m

where a E (0,1).

LI

-" - .C -- - - - - - - - - - -.. . .. ".. ".".........."........"..... . " ."'."....".'..""
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3 Conditioning on Z, the conditional bit-error probabilities for a

* partial-hit are easily found to be

P Ulz a) < P (0,PT/2N )(3.22)b e 0

a)(ij < P (PT a N 3PT/2N )(3.23)

PT P

a)ij < eP(0'2N 0+ N ( +9a)7 + P0 '(2N 0+ IN 0 -2) (3.24)

which are similar to Eqs. (3.15), (3.17), and (3.19). Note that

P e(PT ca 2/N ,PT/2N)0 < P e(PT ca/N 0PT/2N ) which is convex in a,

2
Pe (0PT/2N0 + PT c/N0 (a +20)) is convex and monotone decreasing in a, and

2
P e(0 ,PT/2N 0+ PT cIN 0(a -2a)) is monotone increasing in a (see Appendix A,

Fact A.3) 'I a~ (0, 1) , we thus obtain

(i) < e (0,PT/2N0  (3.25)

P i)< 0, TI2 - P (PT IN PT/I2N )(3.26)Ub - e 0 e c 0' 0

p(iii) < 1- P (0,PT/2N )+ P (0,PT/9?N +3PT /N ) P(0,PT/2N- -PT /N)
b - e 0 e ~ 0 c 0 e 0 cO0

L (3.27)

*by removing the conditioning on E. Finally, the average bit-error probability

f.or the chip-asynchronous system with single partial interference is bounded

by Eq. (3.20)

* <b P (i) + Pb (ii) + 1,b (iii)

11 /9PT\ T0 (T1 PT 3PT) +1 ( 0PT PTc
e~ ( + 1 PeC(' 9 + P ~e ( 0  + c P~ N 0 )

'0

(3.28)



34

For the chip-synchronous system with single full interference, the upper

'" bound (Eq. (3.20)) is

Pb < b (i) + 1 Pb(ii) + Pb (iii)

< P (O'PT/2N0) + < Pe(PT /No'PT/2N0) + 1/8 P (O,PT/2No + 3PT INo)

+ 1/8 P (0,PT/2N 0 - PT /NO ) (3.29)
e 0 C 0

On the other hand, if the receiver encounters no interference, the upper bound

[2] is just

Pb < e (O 'PT/2N0 ) (13.30)

These bounds were evaluated in terms of the bit SNR, Eb IN for several

values of N, and are shown graphically in Figures 3.1-3.7. Note that

PT/N0 = N PT c/N0 = n Eb/NO.

As one might expect, the upper bound is largest in case of a full-hit

* for all N's, since the receiver encounters the most interference energy.

*Figures 3.3 and 3.4 show that the anti-interference capability of the receiver

increases drastically for larger N's. This is also intuitively expected

since more signal energy is present relative to the interference signal

energy, for larger N's. However, there is a trade-off between the code lengths

"? and the receiver performance because receiver complexity also increases

significantly with N.

-3At a bit error rate of 10 - , Figures 3.5, 3.6, and 3.7 indicate that a

code length of N = 32 is optimum for the receiver with no-hit, single partial-

hit, and single full-hit,respectively. Moreover, for N = 32, bit SNR's of
" -3

L about 8.2 dB, 8.3 dB, and 8.4 dB are adequate for a bit-error rate of 10

for the three casesrespectively.

L ~ . -. - . -i
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CHAPTER IVI
PROBABILITY OF ERROR ANALYSIS OF A NEAR-OPTIMUM FH-DPSK RECEIVER

WITH MULTIPLE-USER INTERFERENCE &ND A NONFADING CHANNEL

We are now in a position to evaluate the performance of the FH-DPSK

receiver in the presence of multiple-user interference over a nonfading

channel. In Chapter III we have shown that the effect of a single full-hit

on the error probability is always more severe than that of a single partial-hit.

Therefore, for the sake of simplicity, we assume that the system is chip-

synchronous. Under this assumption, the upper bound on the error probability

will be looser than the one for a realistic asynchronous system. However,

the simpler upper bound, which is a union bound on the worst-case error

probability, will also be applicable to the more realistic system.

Suppose the i-th codeword is being transmitted. Suppose also that the

n1 ,n2,... ,nj-th (0 < J < N) time-chips have interference, each from a single

distinct interferer, and the J distinct interferers are transmitting the

* ZIZ.... ,£j-th (the .'s may not be distinct) codewords respectively with the

same power. Then the receiver input over the 2T-second interval is (Eq. (3.1))

N-1 J
r(t) = Z p T (t-kT)[cos( kt+ek) + Z 6 cos(w kt+ m L

k=O c tl T

N-

.. N-I J

+ V2 E p (t-T-kT)[hikcos(wkt+6k) + Z 6 h cos(w t+m )]
T0 c k kn Z m k mk=0 c T= T T T

+ r) (4.1)

where h is the t element of the Z -th row and the m th column of the

TT

Hadamard matrix, k U(0,27] for all k, 0 U(0,27] for all m .
m 

- . . .

.: ; '.-:i. );:i :i :i , .-] .. . . -.-.:- -- .'.. . ,. . .' " -i . . . . " ; ' -. ...
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Thus, given H., 0,{n T} H z, -DT the conditional expectations (Eq. (4.1))

are

S2 T cose , k nl,n 2,.. .,n-

P 2 T [Cosa +cos ] k n
'" m~[X jH,0,{n1}J  H£, m] =c -T T =i M'

/" T [cos +cos] , k =n

SJ :J

Y P/2T[cosO+ E cosm
C k kn m

T=l T T

E[YkIH,_,{n}Jl, H,] = -P/2 T [sine k+ E 6 sinhCm

J

k1-2-M c ik knm ]

Ui
E[XI~,On J 1,_,mW/ JehkO~+=1kTT .

E[Y'IHi,e,{n }J ,H,D = -P/P/2 Tc[h sin k+ E 6kn h k sinm ] (4.2)
,2 -==l T T T T

2
and the conditional variances are all equal to a N T /4. After normaliza-

tion, it follows from definitions (Eq. (3.7)) that

X t-h V T
k k n E kn 1-(lhikh Zm )co

-0 T1 t

Y -h YT J
k = ki Nc E T (1-h h )sinm-'
k rK I l kn ikZm

Xkh XT

Ck cosO+ 6kn (l+hikh )cos m  , " ",
k /2l knN cz ks~

- +h ' PTc  J

k ik k TDk_ Y 2hYk siwe+ Sk (l+h h )in m 1 ,i (4.3)
NO-r=1 T Z
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The set -0O. is defined to be {kh =-h IUsing Eqs. (3.9), (3.12), and
J ik jk

(3.15) we see that the conditional bit error probability is bounded by

P(A>Bj.,0in1 ' P~CZ (A1 )(B, )> (C )+(D,2jPAB~. { 1 ,H TE~ M 2 k k~ k k'
kE.;.

(4.4)

If n 0 TO the interference signal at the n T- th time-chip will not affect

the overall comparison. Suppose now that E Of the J n 's lie inside ~
TJ

Since CJ=N/2, and because we have restricted the number of interferers

at each time-chip period to be at most one, it is clear that

(J-\N/2) u(J-N/2) < e < min(J,N/2) where u(n) = 1 if n > 0, 0 if n < 0 is the

unit step function. Thusthe probability that e of the J n 's lie inside J.

is

P(E s) = ,:) (4.5)

En this case, Eq. (4.4) suggests that2

A 2(N/2 E ) random variables (r.v.'s) r~(0,1)

+cr.v. 's Ty c. (1-h. Th, )cos m~

+ r.v. 's 1 PT (1-h. hz m sin~m~) for some c of T'sj

2/ TcT

B (N/2 - )r.v. C\ 20 cose k')*

+ (N/2 - E) r.v.'s V T..2 -C 2 sine k'l)

+ Er.v. 's N~2 c~(2 cosen in~h h csm,n ~0 T Tr T T
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+ e r.v. 's - 2 (2 sine +(+h h )sin.) )n inT ZTm '

for some (N/2- ) of k's and some C of T's (4.6)

;? 2
where n (i,1) denotes the square of a Gaussian r.v. which has mean p and

variance 1. Rearranging the indexes on h. hZ , and ¢m we have from
in Zm

T T T T
Eqs. (3.10) and (3.11) the parameters

PT e
_c E (1-h. h£ 47s=2NO"= in Zm

0 Trl I C

PT PT E PT E:
c N +2 c (lt-h. h£ ) + 4 c ~ h

s' 4 N C + N 0 = 1  h in hm N c E ( i+h in hZ m )'c°S(en m
0 0[= T 0 [= 1  T T T

Note that (1-h. h ) can either be 0 or 2. Thus, assuming of the c
in m

(1-h. hZ  ) terms in Eq. (4.7) are equal to zero, we obtain• in ~m
T T T

PT
S =4 N ( - )

PT PT '
s' 2PT + 4 c + 8 Z cos- (4.8)

N N N T
0 0 0 T

where 0 - 0 (mod 2ir) is a r.v. - U(0,27]. The solution to Eq. (4.4)
' n m

T T
is then given by Eq. (A.15) in Appendix A to be P (u,x) with u = s/4 and

e

x= s'/4.

Fortunately, all the random variables in Eq. (4.4) are mutually independent.

This fact enables us to remove the conditionings one by one via taking

independent expectations with respect to each individual random variable.

Using Fact A.2 in Appendix A successively e times, we can remove the
.
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conditionings on T 's and obtain an upper bound of the bit-error probability

94 to be

PT PT
z (-) ( )P (c(E- PT + c (3.- 4) (4.9)
=02 CA. IN,'~' 2N NC
=00 0 0

But P(Z =) is binomially distributed, hence, removing the conditioning on Z,

*the upper bound is

E1 PT> T PT PT
X 2 (- -) - (3C -4 (4.10)=0 2 2 =0 2 a e ( N'02N 0 INO 0

Finally, removing the conditioning on E (the number of n 's that lie insideT

..) yieldsJ

(Cl ~ l ~ /PT PT PT
b- ( ;_ 2 2---0 - 4ae (4.11)

where P(E-=) is given by Eq. (4.5). Thusgiven that J interferers are present

i and each of the interferers is interfering a distinct time-chip period, the

bit-error probability is bounded by Eq. (4.11). It is not difficult to see

that Eq. (4.11) agrees with Eq. (3.30) and Eq. (3.29) for the J = 0 and J = I

cases, respectively

The expression in Eq. (4.11) can be determined using a digital computer

as a function of the bit SNR, Eb/NO for various values of N and J. Note that
PT

N c PT nb/NO N O  and N = 2 . Several upper bounds are displayed graphically
n '0

in Figures 4.1 to 4.4. For N = 8 and N = 16, the receiver apparently fails

to operate within practical limits of bit SNRs if each of the time-chips is

interfered by a different interferer. For larger N's, the receiver's anti-

interference capability is seen to be quite satisfactory. In fact, at
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-3
Pb 10 and assuming that 1/8 of the N time-chips are each interfered by a

distinct interferer, the degradation in bit SNR is just 1.25 dB for N = 32

and 0.8 dB for N = 64. By using the frequency-hopping patterns that we

developed in Chapter II, it is believed that the number J of interferers

. (to the receiver) will be small if the number M of simultaneous users in the

system is not too large. Although multiple interference at the same time-

chip period are possible in a realistic system, it will happen with a small

.* probability since any two sequences have at most one hit asynchronously and

each sequence is hopping on a small portion of the available frequency

spectrum (for example N/q 0.03 in Chapter II).

For a fixed number M of simultaneous users, we may assume that each group

in a good design Dg (Table 3.1) accommodates approximately an equal number of

U users. With the help of Corollary 2.1, it should not be difficult to compute

the entire hitting characteristic of the system with M users. Then we can

deduce the number of interferers (to the receiver) and their distributions

so that the bit-error probability rates can be calculated. Typically, N is

-3
32 and P is 10 Thus within practical limits of the bit SNRs (10 20 dB)

the maximum number of simultaneous users in the system can be found.

As a preliminary investigation, we may assume that about 1/10 of the

total ID I potential users are actually transmitting signals. Note that q
g

distinct frequencies are available (see Chapter II) and the sequence length

is N. Hence, any frequency f will appear in some ID I.N/10q distinct
k .

sequences and the maximum number of interferers can be as large as

(ID I-N/IOq-l)N. But among the ID 1/10 users' sequences, some of them may

9' .

C

•.- , ...
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never have hits with the receiver's sequence because two sequences'

frequency slots can be disjoint. On the other hand, some of the sequences

may have more than one frequency in common with the receiver's sequence, so

that the number of interferers can be much smaller. Furthermore, there are N

possible time shifts of a sequence so it is very unlikely that all the

potential interferers will actually interfere with the received signals. It

is then reasonable to assume that the number of interferers J is about

D *N/lOq-l. For example, from Table 2.1, we may take rhe design D of

GF(577) with N = 32. ID is given to be 2 x 577 = 1154. Assuming that

M a 113 simultaneous users are present in the system, then J is about 5.

We shall allow multiple interferences at some time-chip periods. Consequently,

the ways that J interferers will distribute in N time-chips will have a

UBose-Einstein distribution. The bit-error rates can then be estimated easily

by using the function P (u,x). Although this kind of interference analysis
e

will inevitably expend a substantial amount of computer CPU time, it is

certainly a necessary follow-up to this thesis.

$]

e~g . .;. .... .. -f :.;.- ¢ . ¢;. 9.;...... ..2 : 1 -'.'.-''-..-....'- ... -.... -... ... -.........-.-.. I',
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CHAPTER V

CONCLUSION

In this thesis we have discussed a design of short Reed-Solomon sequences

in which any two sequences will have at most one full-hit or one partial-hit

°* when used asynchronously. The result showed that these RS sequences have

excellent correlation properties and therefore are very suitable for

frequency-hopping application, since they can extend the number of multiple-

access users. We also discussed the behavior of the FH-DPFK near-optimum

receiver with multiple-user interference in a nonfading channel, assuming

* that each time-chip has at most one interferer of the same power. The

receiver performance was found to degrade gradually with an increase in the

number of interfering signals. Furthermore, a longer codeword length was

9shown to be more preferable. Finally, generalization of the multiple-user

interference model was considered.

U

a.oI

° ."

• ."

L

° Q 7 -,K 2 ~ * *- .



5 APPENDIX AI

THE ERROR PROBABILITY P (u,x)
e

Our point of departure is the probability expression

P[iA > B] f f fA, (a,O)dada f f f (add (A.1)

*where A is independent of B. Now suppose that A and B are both being a sum

of N independent, squared Gaussian random variables with nonzero means and unit

variances. Then A and B will have the noneentral chi-squared density

with N degrees of freedom given in [10] as

N-2 - (ct+s)

f AWa = ) e N 2 ras > 0 (A.2)

andN-2 -(B+s')

a ( ) ( 4 2
fB 2 e I N-2 ('a')~ > 0UA3

where s and s' are sums of the squares of the means of the Gaussian r.v.'s in

A and B, respectively. The inner integral in Eq. (A.1) is then found [10] to be

f f (ctdc Q YrN/2 (v'i) (A.4) sa

where -(+)N-2

-~v' rN2(',) =Q v's Y') + e 2 ~ Y~)r~(A.5)

is a generalization of the Marcum Q-function. Observing that Q(Vs,/ra) is

given by [10] as

Q= 1 -$ e 2 ~ (J r V)(A. 6)
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where I r(v's is the r-th order modified Bessel function of the first kind

given by

(/." r+2k

.r s) = k *(A.7)
: k=0

we obtain

-(s+) k r+k2 sk B~QN/2 = I - e62 e E 2r+2kk !  (A.8)

r=N/2 k=O 2 k!(r+k)!

Upon substitution for Eq. (A.8) and Eq. (A.3) into Eq. (A.1) and by using

the fact that fB( ) is a probability density function we get
B

00 M 7_ _S+$) 00 o k r+k

f f fB( N/2 (/,-)da=1-f e 2 E 2r+2ks 6-'"i3 0 0 r=N/2 k=O 2 kk!(r+k)!

N-2 -(8+s')
1 a 4 2' .' " - (="i-) e ( vr' s ) d8 a-2IsN-2 ,

3 _"

N s v N-2 (y+v)00 0 k " r+k
1-2r+3k (r+k) 2(-) e IN-2 -

r=N/2 k=O r k! 0 ' N

(A.9)

where v = s'/2, and y = 2a. The integral in the right-hand side of this

expression may be solved with the least amount of difficulty through indirect

.,, computation. We first notice that the characteristic function of a positive ~

random variable Y may be put into the following form by using the power series

L expansion of the exponential function:
00 00 k--

D y(Jw) = E{e j ° 
} - E (jW)k[f k. fy(y)dy] (A.10)

-k= 0 k! Y
k.. . 0. .

P-..-....-......- - .................-.... -... .-.......... .:; _ : -- .. :
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The integral in brackets is observed to be the integral of interest, where

fy(y) is the noncentral chi-square density encountered earlier in Eq. (A.2).

"- Thus, the value of the integral is simply the value of the coefficient of

(jW)k+r in the series expansion of the characteristic function corresponding

to the noncentral chi-square density with N degrees of freedom. That

characteristic function is given in [101 as cy(i) (l-2j) exp[vjw/(l-2jw)].

This function may be expanded by first using the power series expansion for the

exponential function, indexed by Z.. Then bv using the binomial expansion

for each (l-2jw) term, indexed by m, we obtain

. Qy(jW) E E 2+ .+m- (2j,) m  (A.11)
" 0m=0

3 where ) denotes the usual binomial coefficient Finally, by
b b!(a-b)!

k+r
collecting all the contributions to the coefficient of (jW)k , the value of

* - the integral is found to be

2~k+r 0~z(/2) N/2+k+r-l1

k+ z Z! k+r- . (A.12)

Thus,
N s
1 2 2 2 s k+r (v/2) N/2+k+r-l

=[ > BI 1-2 e e z z 22r+3k -2 E k+r-
r=N/2 k=0k! =0 "

_N2 u 00 00 N2-ruk k+r Z.
2 2ue x N/2+k+r-11-2 e e k k' = 2.11 k+r- (A.13)

r=N12 k=0 2.=0

.wL

K - .*. .~ .. * .* .- - - . . * * - . .
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where u = s/4 aad x v/2 = s'/4. Hence Eq. (A.1) is solved. Notice that if

s = 0, then Eq. (A.13) simplifies to

" '... - ~ ~~N/2-1 r k -- 7.) A 4)"

• -N/2e-X -r _ (N/2- (A14

r=0 Z=0 r

which is exactly the special case error probability expression p given in [3].

We then define

- (ux) P[A > B (A.15)
e 2

where P[A>B] is given in (A.13). It is obvious that Pe (u,x) is continuous

and differentiable in u and x. Furthermore, it can be shown that P (u,x) is
e

convex [11] in both u and x, monotone increasing in u, and monotone decreasing
2 a2  ,

in x by observing that > 0 -P (u,x) > 0, '- Pe(u,x) > 0,
aPe(u'x) > 0' ax2eeau ax -

and P (u,x) < 0 V u, x > 0, respectively. Figure A.1 and Figure A.2 show
dx e

graphs of P (u,x) for interesting values of u and x. In particular,
e<u PT0 n Nb T n N0  ' "

P ,x = - -- and P. = are exhibited in the figure
I e ( 2 2 N and (u N NI

with N = 2n =32.

Finally, we present some useful facts which follow readily from the

convexity of P (u,x).
e

Fact A.1 Given a > 0, b > 0, and Z-. U(0,1),

E{P (u,X = a + b.)} < -(P (u,a+b) + P (u,a)} (A.16)

e!

Fact A.2 Given o > 0, a-b > 0, and (p- U(0,2T ,

E{P (u,X = a + b cos0)} < -(P (u,a+b) + P (u,a-b)} (A.17)
e -2 e e
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u = 5/2.12d
u = 5/32 - 10 dB

.8u = 5/32 - 8 dB
u = 5/32- 6 dB
u = 5/32- 4 dB
u = 5/32 . 2 dB

L 0.4-

0.2-

4.0 14l

Bit SNR, Eb/NO, dB

E nb
Figure A.1. Graphs of P (u, -)with n =5, N =32. Six fixed values of

F e 2N 0

N -b) are used.

N 11

U0
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P 53Pe 6j.o 4i.11,,'
e / ,

8.2

2 4 13 -3 .

Bit SNR, Eb/No , dB

U Figure A.2. Weighted graphs of c P (an_-,x) with n 5, N 32. Six fixed
Ee N NE 0

values of x(-- are used.
0

Graph 1 x = 5/2 2 dB, c = 101

2 x = 5/2 4 dB, c =10 1

3 x - 5/2 6 dB, c = 1

4 x - 5/2 8 dB, c - 10

5 x - 5/2 10 dB, c = 10
J8

6 x = 5/2 12 dB, c - 108

' 

eo 

-- .,.--:4
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PT PT ."-.

Fact A.3 Given a E (0,I), Pe (0, P2- + (a + 2a)) is convex and monotone

PT
decreasing in a, and Pc(0, PT +Nc (a2 2a)) is monotone

L0 0
increasing in G.

Fact A.2 is trivial once we observe that g() = P (ua+b cosp) is convex and
e

increasing in (0,r], and convex and decreasing in (1T,27r]. Since ¢ is uniform,

'*' E{g(¢D)} will simply be equal to 1/27r times the area under g(p). The result

then follows from convexity after approximating g() by two straight lines.

Fact A.3 may be verified by Figure A.3 and Figure A.4.

This concludes our discussion on P (u,x).

. . . . .-..
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I P

e 

3

3.38. .3.13

PTPT 2
* Figure A.3. Weighted graphs of c P (0-+ -(c +2 c)) withe '2N N0 0

PT N/NF 5, N =32. 1
Graph 1 EbD/NO 2 dB, c 1

2 E /NO= 4 dB, c I

3 E.b/No 6 dB, c -10 1

24 Eb/N 0 - 8 dB, c -l1

5 E./No - 10dB, c 10'

*6 Eb/No -12-dB c - 1 0
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1. -- _ _ _ _ _ _ _ _ _ _

Se

0.8 ..

Figure A.4. Weighted graphs of c P(0, + PT c (a2 -2a)) with
'e2N 0 N 0

Eb PTC E
PT/N n ' N n b0T/ 0NNn 5, N =32.

Graphi 1 Fb/NO= 2 dB, C 10

2 Eb/NO =4 dB, c= 1

3 Eb/N0  6 dB, c 1

4 E.b/N 0  8 dB, c = 10 2

5 EbNO -10dB,c =10 
4

6 E.D/No - 12 dB, c = 109

lot 
.. .
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