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ABSTRACT

A design of short Reed-Solomon hopping sequences which have excellent
correlation properties is proposed. Within the design, any two sequences
will have at most one partial hit or one full hit when used asynchronously.
The behavior of a near-optimum differential phase-shift keying (DPSK) receiver
with multiple-user interference over a nonfading channel is discussed. Bit
error rates for the receiver with single interference in one chip and the
receiver with single interference in J distinct chips are found. Finally,

generalization of the multiple-user interference model is considered.
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CHAPTER I

INTRODUCTION
In 1977, Cooper and Nettleton proposed a frequency-hopping multiple-access
(Egyé) system for cellular mobile radio communications [1], [2]. The details
and advantages of this system have been discussed extensively [3], [4] by
previous authors and shall not be repeated here. Basically, half of the
allotted mobile radio spectrum is used for base-to-mobile transmission and
the other half for mobile-to-base. The data stream is partitioned into groups
of n bits, and each group is encoded into 2n = N channel bits using an (N,n)
orthogonal code. The codewords are taken to be the rows of an N x N Hadamard
matrix [5] with elements * 1. Each of the N bits is transmitted using a
different carrier frequency, according to the user's unique frequency-hopping
pattern, or address. A differentially coherent phase=shift keying (DPSK)
technique is used to modulate each bit onto its particular carrier frequency.
The basic time-frequency encoded waveform can be written as [3]
N-1

s(t) = V2P ¢ Pr (t—kTC)cos(Zn(f0+akAf)t+6k) (1.1)
k=0 c

where P denotes signal power, Pr is the rectangular pulse function:
c

1 , 0<¢t< TC
Pr (£) = (1.2)
c 0 , otherwise

TC is the time-chip durationm, ek denotes the phase of the k-th radio-

frequency (RF) pulse and contains the binary DPSK informationm, fo is the

nominal carrier frequency, Af is the minimum frequency shift, and a is




. 2
W
I\
. the element of the address that specifies the k-th carrier frequency of the
!I hopping pattern. If we let the waveform duration be T, we have that T = NTc’
- where N is the number of chips per waveform. Each time-chip's phase is
compared to the corresponding time-chip's phase in the previous waveform to
"
. obtain the DPSK information.
- The model for the DPSK receiver used in [1] and [2] is shown in Fig. 1.1.
: Cooper and Nettleton studied the performance of this receiver via Monte
. Carlo computer simulation. Martersteck [3] has recently derived an optimum
receiver for the signaling format just discussed (Eq. (1.1)) and has also
{'.
;; studied a simplified version of the receiver which is nearly optimal for small
f; signal-to-noise ratio (SNR). He has shown that the bit error rate
v performance of the near-optimum receiver is better than that of the Cooper-
ii Nettleton receiver, in both nonfading and fading environments with no
interference. An outline of the aforementioned derivation is briefly given
below.
.! A receiver for the DPSK Cooper-Nettleton system (assuming a nonfading
e channel) must decide on the transmitted codeword based on the received
f{ waveform
- N-1
=/ - +
r(t) 2P Pr (t ch)cos(wkt ek)
" k=0 "¢
Vo
N-1
" -T- t + + .
+ /2P x Py (t=T-kT )h, cos(u, 8.) + n(t) (1.3)
(S k=0 [od
. where Wy 2 2n(f0+akAf), hik is the *1 element in the i-th row and k-th column
) of the Hadamard matrix, n(t) is the additive white Gaussian noise (AWGN) due
i to receiver thermal noise, ek is a random phase variable, and 84 (the i-th row
o
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of the Hadamard matrix) is the transmitted codeword. Let Hi denote the

hypothesis that the i-th row (gi) of the Hadamard matrix is being transmitted.

Defining

(k+1)T (k+1)T

Xk = f Cr(t)cos wkt dt, Yk = f Cr(t)sinwkt dt
kT kT

c c

T+(k+1)T T+(k+1)T

X! = ) Cr(t)coswkt dt, Yll = Cr(t)sinwkt dt  (1.4)
T+ch T+kTc

and using optimum receiver theory, the optimum (nonfading) receiver will base
its decision on the statistic

AH)) = N;l I (8PN 2L (X XD% + (x+h, 79711H1, 1=0,1 N-1
i’ 7 3 o ‘&t K 4 1393, 1=0,1,...,N-

J
k=0 kk
(1.5)
where IO(-) is the zero order modified Bessel function of the first kind. The

optimum receiver must then calculate A(Hi) for i = 0,1,...,N~1 and decide

éi was transmitted whenever A(Hi) > A(Hj) for all j = 0,1,...,N-1 and § # i.

In other words, the optimum receiver employs a maximum likelihood decision rule.

The optimum receiver structure can be simplified by approximating the

x2/4 for x << 1, and

14

function anO(x) in Eq. (1.5). 1In particular, inIO(x)

QnIO(x) ~ x for x >> 1. Thus, for small bit SNRs, Eq. (1.5) becomes

N-1
* 2 2
= + ! + + ' , 1i=0,1,...,N- .
A (Hi) k§=:0[(Xk hikxk) (Yk hikYk) ] i 1 1 (1.6)
which further reduces to

" N-1

| = ' ' i = ooy N= .7

A (Hi) o0 (Xka + YkYk)hik , 1 0,1, 1 (1.7

Nyt L A LR ey Bl y
".(\- *u"-.. .

N
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' Either of these two expressions determines the structure of the so-called

*
small-SNR receiver. The former expression for A (Hi) is easiest to work with

analytically, whereas the latter expression is easiest to implement since
» fast Hadamard transforms may be used [4]. Curiously enough, the small-SNR

receiver can also be shown to be optimum in a Rayleigh-fading environment

iﬁ provided that Xk and Yk’ k = 0,1,...,N-1 are uncorrelated. For the scheme
N
considered by Martersteck, the Xk and Yk are nearly uncorrelated. Thus, the

small-SNR receiver is nearly optimum over a fading channel. We shall adopt

the convention of [3] and refer to the small-SNR receiver as the near-optimum

receiver. A block diagram of this receiver is shown in Fig. 1.2.
g_ For large chip SNRs, Eq. (1.5) yields
i o N-1 "2 2.5 N
A (Hi) = I [(Xk+hikxk) + (Yk+h ! ) ] i=0,1,...,N-1 (1.8)

k=0

and we call the receiver induced by this expression the large-SNR receiver.

The upper bound (union bound) for the bit error rate performance was

obtained analytically by Martersteck for the near-optimum receiver over a

A, e

fading and nonfading channel with no interference. Recently, McClatchey [4]

has found that the bit error probability for the large-SNR receiver and the

~

near-optimum receiver (for a nonfading channel) are both upper bounded by the

same function. Since the union bound is known to be tight for large SNRs,

the two receivers thus have nearly the same performance at large SNRs.
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Furthermore, we would expect the near-optimum receiver performance to be better
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II than the large-SNR receiver performance (for a nonfading channel) at small
SNRs, since the former receiver is based on a small-SNR approximation whereas
the latter is based on a largee«SNR approximation. Finally, we know that the
near-optimum receiver is nearly optimum in a Ravleigh-fading channel. 1t
follows that no further consideration of the large-SNR receiver is necessary.

Figure 1.3 (from [4]) shows the simulation data (via Monte Carlo simula-
tions) for the optimum and near-optimum receiver for N = 32. Upper-bound
performance for the near-optimum receiver and simulation performance for the
Cooper-Nettleton receiver are also shown in Fig. 1.3. Note that the near-

- optimum receiver performance (simulated) is better than the Cooper-Nettleton
receiver performance for SNRs above 3 dB in a nonfading no-interference
environment. In a digital voice communication system, a bit error rate of

.l about 10_3 is adeqdﬁte for maintaining reliable communications. At N = 32,
this corresponds to a bit SNR of about 8 to 10 dB. Since the union bound is

- tight for large bit SNRs, the upper-bound performance of the near-optimum

I' receiver for normal usable ranges of bit SNR is thus expected to represent

the receiver's true performance. This fact may be verified by Fig. 1.3 for

N = 32 with a nonfading no-interference environment. In this thesis, it is

assumed that the upper-bound bit error rate is a true performance measure for

the near-optimum receiver when a sufficiently large bit SNR is used.

From all the facts that we have seen, the near-optimum receiver is by
far the best receiver known for a Cooper-Nettleton system: it is relatively
- simple to implement, easy to synthesize, is analytically tractable, and has
performance that is superior to the Cooper-Nettleton receiver for large bit

i- SNRs in a no-interference environment.
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This thesis investigates one important system aspect which has not yet
been considered: the multiple-user interference problem. 1In a FHMA system,
users usually share the same frequency band, but their hopping sequences are
not necessarily disjoint. Consequently, cross-user interference is bound
to arise if large numbers of mobiles are transmitted simultaneouély in the
same cell. This multiple-user interference can degrade FHMA system performance
rather seriously. Indeed, Yue [6] has estimated that the mobile-to-base
number of users per cell for a DPSK/FHMA system with Cooper-Nettleton receivers
can be as low as 26, assuming random addressing and bit error rates less than
10-3. The number 26 is so low maybe because users are hopping randomly on the
spectrum band. In this thesis, instead of random hopping, we assume that
each user has its own specific nonrandom frequency-hopping sequence.

If the mobiles can transmit in a fashion such that the probability of
having two or more mobiles transmitting the same frequency at the same time is
small, then we may be able to keep the multiple-user interference below a
tolerable level. In the analysis of [l], the multiple-user interference was
modeled as a random white Gaussian process. We do not make the same assump~
tion in this thesis. However, we assume that signals from all the mobile
transmitters received by the receiver do have the same power.

From the foregoing content of this chapter, we know that each mobile is
transmitting * 1 channel bits (elements of the rows of a N x N Hadamard
matrix) using frequencies according to its own unique frequency-hopping

pattern. For N = 4, the Hadamard matrix is simply

e e e e . - e
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H = . (1.9)
1 1 -1 -1

1 -1 -1 1J
Suppose there are only two mobiles, say A and B, transmitting in the system.

Without loss of generality, we may assume that A is transmitting , the

EN
~ %
0-th row of H (all ones), in the time slot [0,T]. If a receiver A at the base
%*
is decoding the message sent by A, A has to tune at A's transmitting
frequencies from time to time using A's unique hopping sequence. The receiver

* * *
A then computes A (Hi) and chooses the hypothesis for which A (Hi) is

* *
largest. However, in order to compare A (HO) and A (Hl)’ it need only compare

X! + YY) + (X X!+ Y,Y!) with -(X_X! "y - ' '
( X 1 1) (X3 3 3Y3) with (Xlxl + YlYl) (X3X3 + Y3Y3) because

- - X . ,
h00 = th and h02 = h12' Now consider the signal of B. Suppose that B's

signal is such that A and B are using the same frequency in the 2nd time-chip.
* *

However, note that in deciding whether A (HO) or A (Hl) is larger, the

é, YZYé are not even considered. Thus, the presence of the

interferer makes no difference in this decision. As a second case, consider

quantities X2X

v if the interference from B occurred in the lst (or 3rd) time-chip, then the

:3 comparison between A*(Hl) and A*(HO) will inevitably be affected; but B mav

- be transmitting a +1 or a -1 bit. If B is sending a +1 bit, the interference

;; will be constructive. In other words, interference from B is actually helping
A* to decide correctly that A is transmitting a +1 bit, so the error probabil-
ity decreases. On the other hand, if B is sending a -1 bit, the interference

EE will be destructive, and the error probability increases. As a summary, in

e computing the probability P(Af(Hl) > Af(HO)), an interference at the 0-th

{ﬂ or 2nd time chips will have no effect on the probability, while an

3

e
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interference at the lst or 3rd time-chips will be equally likely to be
constructive or destructive. It is interesting to note that the system has
a sort of 'built-in' anti-interference capability. This capability is a
direct consequence of the system's orthogonal channel coding scheme, and is
expected to increase with the codeword length N.

Likewise, we can compute P(A*(Hj) > A*(Hi)) for all i and j. It turns
out that this probability does not depend on j or i. This is intuitively
satisfactory because every codeword is equally likely to be transmitted, and
the interference signal is randomly distributed among the time-chips. The
word error probability can then be upper bounded by the union bound, which
is simply 3-P(A*(Hj) > A*(Hi)) in this case.

For multiple interference at multiple time-chip periods, the analysis is
more involved, but it still féllows a similar line of reasoning. In most
cases, part of the interference signals will be rejected. Among the rest of
the interferences which are considered by the receiver, some of them will be
constructive, while the others will be destructive. We have shown that the
word error probability is bounded by the union bound: (N—l)P(A*(Hi) > A*(Hi)).
We will also show that the bit error probability is bounded by
% P(A*(Hj) > A*(Hi)). The detailed development of this function is largely
algebraic and manipulative in nature, and is therefore relegated to the
Appendix.

The remainder of this thesis is organized as follows. In Chapter II we
discuss a design of good frequency hopping sequences in which any two sequences
will have very little interference over all time shifts asynchronously. In

Chapter III we study the performance of the near-optimum receiver with only
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l' one interfering signal at a particular timeechip period. In Chapter IV we
- present an upper bound of the bit error rate for the near-optimum receiver
‘fﬁ with multiple-user interference assuming that each time-chip has at most one
interferer. We also discuss possible generalizations of this special multiple-
N user interference model. Finally, in Appendix A, we present a derivation of a
W special probability function Pe(u,x) which plays an essential role in this
e
(S ,
thesis.
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CHAPTER 1I

HOPPING PATTERNS FOR THE FREQUENCY-HOPPED
MULTIPLE ACCESS COMMUNICATION SYSTEM

In a frequency-hopped (FH) communication system, the spreading of the
spectrum is achieved by hopping the frequency of the carrier signal at
regular intervals. The hopping pattern is generated by applying a random
or pseudorandom sequence of inputs to a frequency synthesizer. Typically,
the available RF bandwidth is partitioned into q nonoverlapping frequency
intervals called slots, and the q different frequencies generated by the
frequency hopper are the center frequencies for these slots.

For the mobile communication system described in {1], some spectral
division is made so that the mobile-to~base (upstream) band does not overlap
the base-to-mobile (downstream) band. We may assume that the base is able to
transmit signals to the mobiles synchronously. This will add a time delay to
some of the speech communications, although the delay is usually negligible.
We also assume that the separation between two center frequencies, Af, is
greater than l/TC, Tc being the chip-time, so that there will be no
interference between two adjacent frequency slots, and the FH-DPSK system
will perform 1like a frequency division multiplexing system with the added
advantage of being a spread-spectrum system.

For our purposes, a full-hit occurs whenever two transmitters are
transmitting in the same frequency slot over a whole chip-time period, and a
partial-hit occurs whenever two transmitters are transmitting in the same
frequency slot over part of a chip-time period. Our objective in this chapter
is to produce large numbers of frequency-hopping patterns for the upstream
and downstream communications such that the number of hits between two

hopping patterns is also small.
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2.1 4 Hopping Pattern Design for the Asynchronous Upstream Communications

In this case, the mobiles are free to transmit signals to the base
asynchronously so the number of hits between two patterns (with periods N)
over all possible time shifts must be considered. We may assum. for the

moment that the system is pseudoasynchronous (asynchronous but with chip-

synchronization) so that we can consider the number of full-hits between two
patterns. If x = (xo,xl,...,xN_l) is a vector of length N, we define the

left-shift operator T as follows:

sXoseeesX, ), 0 <i <N-1 (2.1)

Ti(g) = (%% 0 i-

i+1°% 420 ¥y

If y is also a vector of length N, then the Hamming distance dH(E’Z) between

X and y is defined as
dg(x,y) = Toxlxgy) (2.2)

where x(j,k) =1 if j # k or 0 if j = k is an indicator function. It is
clear that if dH(E’Ti(Z)) is equal to N for all i, then there will be no
full-hits between x and y over all time shifts. There are no partial hits
either. On the other hand, if dy(x,T (y)) = N and dy(x, 7" () = -1 (or
vice versa) then there is a full hit for one time delay, no hits for another
time delay, and a partial hit for any intermediate time delay. If

4y T () = 4, T (y)) = N-1 for a fixed 1, then it is possible to have
two partial-hits between x and y when the chip-synchronization condition is
lost. We shall present a construction method of designing a large class of
hopping patterns in which any two patterns will have at most one partial

(or full)-hit when used asynchronously; that is, if dH(E’Ti(X)) = N-1, then

dH(i,Ti-l(z)) = dH(ﬁ,Ti+1(z)) = N. First, however, consider the following.
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Suppose GF(q) is a finite field ([7]) with o as a primitive element.

Solomon ([3},[9]) had found a set of q Reed-Solomon (RS) sequences that can

be considered as hopping patterns. These sequences are of the form

N-

X = ax(l,l,...,l) + (l,a,az,...,a 1) with N < g-1, ax € GF(q), o a primitive

element of GF(q). Thus,the 2-th coordinate (entry), 0 < & < N-1, of x is

4 . . :
x, = ax + a . The coordinates of x are not repeating simply because if

£ #m (0 < 2,m < N-1 < q-2) then a + az # a_ + o thus X, # x Note also
that if x belongs to the set of sequences, then T%ﬁ is not a member of the

, . . 2
set. Consider now two distinct sequences x and y with X, =a +a,

'3 . .
= -+ . 3
y2 av o, aX # a Obviously KQ # yg for all ¢, thus we have no hits

P

in the synchronous case. This is equivalent to saying that dH(E'X) = N. But

in the pseudoasvnchronous (asynchronous system with chip-synchronization)

case, x and Tl(z) (i # 0) can have at most one full-hit because the equation

a + a2 =a + ai+2 or (l—al)al =a - ay has exactly one solution in GF(q),

X y
and the solution corresponds to a hit only if g € {0,1,...,N-1}. Thus when

N < gq-1, dH(ngi(Z)) = N-1 for some i, 0 < i < N-1; and when N = g-1,
dH(§,Ti(X)) = N-1 for all i, O < i < N-1. Therefore, when N = gq-1, any

two sequences from the set will almost alwavs have two partial-hits when used
asynchronously (with no chip-synchronization). This is, of course, highly
undesirable.

Example. Consider GF(ll) so that q = 11, N = 10. Take a= 2

2% 21 (mod 1)), & = 0, a = 1. Hence x = (1,2,4,8,5,10,9,7,3,6),
y = (2,3,5,9,6,0,10,8,4,7). It is easy to see that dH(E}Z)) = N and

dH(E,Ti(z)) =N-1Y i, 1<i<9.
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Although in the example we chose the length N to be equal to gq-1, in
general the sequences with length N < q-1 are more attractive because *y
suitable search among the set of the q sequences we may be able to find a
few with no hits for some shifts. However, this method of generating RS
sequences suffers a major disadvantage: only q patterns can be generated.

In order to generate a large class of hopping patterns with the desired
property (maximum one hit between any two patterns asynchronously), we may
consider sequences of length N < gq-1. In particular, we assume N is a
divisor of q-1. To this end, suppose a sequence x of length N is to be
generated:

x=a (1,1,1,...,1) +b(L,a",a™, .. ,a O (2.3)

where W = (q-1)/N, a_ € GF(q) and bGEGF(q). For 0 < j < W-1, define a collection
cof sequences G(aJ) as

G(aj) = {E : axe GF(q), b = O.J} (2.4)

then the set D of sequences,
. Ww-1 .
D={x:x€ Ga), 0<j<wW-1} = L G(a) (2.5)
j=0
is a collection of nonconstant sequences since b # 0. From our previous
discussion, it is obvious that each group, sav G(aj), contains q sequences
of nonrepeating coordinates. Moreover, two sequences in the same group
will have no full-hit when used synchronously, have at most ocne full-hit
when used pseudoasynchronously, and are not cyclic shifts of each other.
Furthermore, all the sequences in D are distinct and are not cyclic shifts

of each other. To see this, let x G1S(aJ) and X.E G(ak), 0 <3, k < W-1. Suppose

X = Ti(z) for some i, it means that for fixed ax and j, we can find fixed
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. K (i ; sr_s
'- ay,k, and i such that a + aJa.zw = ay + a a(1+£)w or ax-ay =a2wa3[ak+1w J--l]

L B

holds for all ¢ (ax # ay, k# jsoa But this is impossible.

Actually since we take b (Eq. (2.3)) to be nonzero and b = (xJ for 0 < j < W-1

we automatically exclude all constant and cyclic sequences from D because

n
. G(OLJ lw) = Tl{G(aJ)} for 0 < j <W-1, 0 <i <N-1, and W = (q-1)/N. Note that
there can be at most one solution of £ to the equation ax—a = aQWaJ[ak-'-lw-J-—l]
k for fixed a.x,ay (aX # ay), k,j (k # j), and i, so we can conclude that the
maximum number of full-hits between any two sequences in D is 1 (if k = j,
X and y are in the same group so we are done; if a = ay, since ock+lw_J-1#O
- so % does not exist). Hence dH(z,Tl(y_)) > N-1 for x,y € D, 0 < i < N-1.
Suppose x,y € D. Suppose also that x € G(aJ), y € G(ak) and
dH(E’Tl(X)) = N-1 for some fixed i, 0 < i < N-1. This means that exactly one
‘ coordinate, say the 2-th coordinate of X and Tl(z) is the same. Hence if we
. let
X = ax(l,l,l,...,l) + aJ (l,aw,azw,...,a(N-l)w)
u. k W 2W N-1)W
- y=a (L1,1,...,1) + a (10,0 ennya VLW (2.6)
ff—j then we must have
_ a + aJaQw =a + aka(lﬂz')w (2.7)
. X y
- Now if r € G(a‘]), r = ar(l,l,...,l) + a‘](l,aw,...), then we claim that there

is s € G(ak) such that dH(E’Tli) is also equal to N-l1l. In particular,
s can be chosen with a_ = a + (ay-ax) such that r and Tli will collide at

exactly the same 2-th coordinate. To see this, let

o
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s = as(l,l,...,l) + ak(l,aw,azw,...)

Then we must have

. (4
a_ + aJ W as + aka(l W (2.8)

Combining Eqs. (2.7) and (2.8), we can solve for a- Thus, we have proved
t' the following proposition. T

Proposition 2.1. If x € G(aJ), y € G(ak) and dH(_’i’Tl(X)) = N-1 for some i,

l(i 0 < i < N-1, then for every r € G(aJ), there is s in G(ak)

such that dH(E’Tl(E)) is also N-1.

In a second case, suppose X,y are defined as in £q. (2.6) with 0 < j,

h k < W-2. Then if r € G(aJH’), we claim that there is s in G(ak+1) such that

e Bebedbdoan

dH(_r_,Tl(_s_)) is equal to N-1. Similarly, s can also be chosen with

e

B N DRSS W SSuo

as =a_ + a(ay-ax) so that r and Tl(g) will also collide at exactly the same

i-th coordinate. This is obvious once we note that

j+ L+l (i+
+ O.'] 1aiw =a + O.k\ 1(1(1 YW

r s (2.9)

and solve for a together with Eq. (2.7). Observe that G(;,.w) =Tl{G(aO)}. Hence if
k = W-1, everything that we have just stated applies except s will be in G(ao)

i+l . . . -1 i
and 4, (r,T" 's) is ¥-1. If j = W-1, r will be in (o) and d (T Lott(s)) = -1,

v
i
",‘. o

Corollary 2.1. If x ¢ G(aj), v € G(ak) and dH(zc_,Ti(i)) = N-1 for some i, ]
0 < i < N-1, then for every r € G(aj+l) there is s in ‘

T

G(ak+1) such that dH(E_,Ti(s)) = N-1. Note that 0 < j, \:

k < W-1, and G(a") = 1lic0)}. -
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Suppose now we want to know when dH(i,Ti(z)) and dH(E}Ti+l(X)) will
both equal N-1. Intuitively, for a given field GF(q), this condition should
depend on the pattern length N and hence on W. As usual, we assume that x
and Ti(z) collide exactly once at the 2-th coordinate. For dH(EﬁTi+1(X)) to
equal N-1, x and Ti+1(z) must then collide exactly once at some other
coordinate, say the m-th coordinate, where m is necessarily different from 2.

Thus we have the simultaneous equations:

joaw

i+2)W
a +aa =a + aka(l )
X y

+ ajamw aka(l+l+m)w (2.10)

1}

a a +
y

which reduce to

amWaJ(a(1+1)W+k—J_1) - 0LJ?,WOLJ(OL1w+k-_]_l) (2.11)

k . . k . .
Let o 1 = alw+k-J-1, a 2 = a(l+l)w+k J—1, and let a°° denote 0. Then we
may solve for m:
k,-k
mo= g+ L2 (2.12)
W
Since aq-l = 1 and m must be an integer, Eq. (2.12) makes sense only when

(kl-kz) mod(q-1) is a multiple of W. Equivalently, wl(kl-kZ) mod(q-1).
k k
”

Note that in Eq. (2.11) a 1. 0 only when k = j and 1 = 03 a = = 0 only

when k = j and 1 = N-1. But then x,y will be in the same group and so

i+
dH(E’X) = N and hence there is no need to consider dH(E,Tl 1(Z)) for i =0

and i = N-1. Thus we assume that we do not consider the case kl = o, or
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Proposition 2.2. Suppose x € G(aJ), y € G(ak). For each i, 0 < i < N-1,

let kl,k2 be such that

1 _ alw+k_3-1 4 o _;g

a =
»m k . . .
+k - =)
a 2 _ a(1+1)h k iy 4 a
o . L+
i: If W](kl-kz)mod(q-l) for some i, then dH(E,Tl(X)) = dH(g_,Tl l(X_)) = N-1

for these i. Otherwise, dH(i,Tl(z)) = dH(§)Tl+l(z)) = N-1 can never happen

7 1.
[ Our problem now reduces to the extraction from D of a subset Dg of
- :
sequences which satisfy our constraints. For a fixed q, there are altogether
W+q = (q-1)q/N sequences in D. To pick Dg from D, we do not have to generate
all the sequences and compare them. Indeed, Proposition 2.2 provides a
,' reasonably fast and easy algorithm to find all the good sequences. Meanwhile,
- let us introduce a few more definitions. We say a group G(as) is a good group
.,’ .
if the maximum number of partial-hits between any two sequences within G(as)
!; is less than or equal to one, otherwise, G(as) is a bad group. Likewise, a
r
.. group G(a ) is a relatively good group with respect to G(us) if the
maximum number of partial-hits between any two sequences from the two groups
7? is less than or equal to one. A set Dg of mutually good groups is such that
all the groups inside Dg are relatively good groups with respect to one
:; another.
- Suppose now we have a given field GF(q), a primitive element a of the ]
5 )
e GF(q), and a fixed sequence length N, N divides q-1. Thus W = (q-1)/N is o
o determined. Af'j
.
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We first set j=0, k=0 in Proposition 2.2. If Wl(kl—kz)mod(q-—l) for some
i, then there exists x,y€ G(ao) such that dH(ﬁ,Ti(X)) =Dh(_}£,Ti+1(l)) =N-1 for
these i. Hence there will be two partial-hits between X and y when they are
used asynchronously. Thus G(ao) is a bad group. Then Corollary 2.1 implies
that G(al),G(az),...,G(aW-l) are all bad groups, hence the whole set D is
bad. Therefore, we have to start over with a larger q or a smaller N.
Suppose Wl(kl-kz)mod(q-l) for no i, then G(ao) is a good group. Hence Dg
consists of at least a single group G(ao) (or G(aj), 0 < j < W-1, but we shall
always pick G(ao)). Note that checking the conditions in Proposition 2.2 is
equivalent to comparing all the sequences (since x,y are arbitrary) and their
time shifts from groups G(aj) and G(ak), but in a much simpler manner.

Next we set j=0,k=1 in Proposition 2.2 and check the stated conditions.

Similarly, if W[(kl-kz)mod(q—l) for some i, then G(al) is a relatively bad

group with respect to G(ao). Otherwise, G(al) is a relatively good group with

0
respect to G(o ). Proceeding with j=0, k=2,3,...,W-1, we can then find

all the relatively bad groups with respect to G(ao), i.e.,the set of all
bl b, b
),6(a ),...,6(a ™M)} for

relatively bad groups to G(ao) is RBG(aO) = {G(a

0 ) .
some bn’ 1 f-bn < W-1. For convenience we shall write RBG(u ) =ib1,b7,...,bn;.

Then Corollary 2.1 implies that the set of relatively bad groups with respect

to G(al) is RBG(al) = {b1+1,b2+1,...,bn+l}. Inductively, all the RBG(aJ)'s
can be found without difficulties. Observe that Corollary 2.1 also implies

+
that if G(ar) is relatively good with respect to G(as), then G(ar 1) must

be relatively good with respect to G(as+1). With all this information, it

is now extremely easy to construct Dg’ the set of mutuallv good groups, by a

simple deletion process.
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Example. Consider GF(281) and let o = 3 be a primitive element of GF(281).
- The largest possible N is 8, so W = 35. D consists of 35 x 281 = 9835

. codewords. Each codeword x is of the form X = ax(l,l,...,l) +
b(1,60,228,192,280,221,53,89), where ax =0,1,2,...,280,

L]

L: b =1,3,9,27,81,...,194,20, i.e.,b = ao,al, ...a34. Proposition 2.2 and

Corollary 2.1 imply

Y

;A RBG(aO) = {7,10,13,22,25,28}
2 RBG(al) = {8,11,14,23,26,29}
o RBG(a”) = {9,12,15,24,27,30}
- RBG(aB) = {10,13,16,25,28,31}

RBG(a34) = {6,9,12,21,24,27}

To find Dg, we first find the sets

D0 =D - RBG(aO)
= {0,1,2,3,4,5,6,8,9,11,12,14,16,17,18,19,20,21,23,24,26,
27,29,30,21,32,33,34}
D, =Dy - RBG(al)
= {0,1,2,3,4,5,6,9,12,15,16,17,18,19,20,21,24,27,30,31,32,33,34}
D, =D, - RBG(aZ)

Then Dg is just the last set Dn at the end of this process. 1In this case,

the process ends at the 8~-th step, hence n = :Dg| = 9 (we always start with

the O-th step). Thus D_ - 162),6(a1),66?),6(a2),6 (™) ,5(a”),6(a?) .6 (oY)

21
G(a"")}. Notice that the choice of Dg is not unique, but the number of

sequences in DO is fixed (9 x 281 = 2529).
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Some good designs of Dg's with various q and N are exhibited in Table 2.1.
Notice that for most cases Nmax/q < 0.1, It is conjectured that there exists
a stronger version of Proposition 2.2 which can provide a deeper understanding
of the structural properties on D, hence on Dg' For N/q < 0.03, the codewords
in the Dg's of Table 2.1 appear to be excellent, i.e.,dH(E,TT(X)) = N-1 for a
very few number of i's when compared with N. 1In fact, the complete Hamming
distance distributions of each Dg may be evaluated through the help of
Propos. fen 2.1 and Corollary 2.1.

We have then succeeded in constructing a design Dg of good hopping
patterns in which any two patterns will have at most one hit (partial or full)
when used asynchronously.

2.2 A Hopping Pattern Design for the Synchronous Downstream Communication

In this case we assume that the base is able to transmit signals to the
mobiles synchronously. This will add a time delay to some of the speech
communications, although the delay is usually negligible.

Suppose we have t-+q available frequencies in the downstream band (t an
integer, q a prime or prime power). Partition the frequencies into t
disjoint groups. For each group, map the q elements of the finite field
GF(q) isomorphically to the q distinct frequencies. Then we apply Reed-
Solomon (RS) sequences (with N = gq-1) discussed in Section 2.1 to each group.
Hence, for each group, we get q sequences of length N = g-1, and there will
be no hits between any two sequences when used synchronously. Note that the
method we mention here is just a special case of what we have discussed in

Section 2.1.
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TABLE 2.1
'l b b
b Some good designs Dé of GF(q). G(a ™) = {x =x = ax(l,l,...,l) + ta,
. aw,azw,...,a(N_l)w)}, where W = (q-1)/N.
E q—]_ a {bn D = {G(Q n)}}
% N=8 N=16 J N=32
&
256=28 510,2,4,6,8,10,12,14,16,18,20 X X
{ 22,24,26,28,30 (not possible)
. 280=22.5.7 | 3 10,1,2,3,4,5,6,20,21 X X
336=24-3‘7 io {0,1,2,3,16,17,18,19 0,1,2,3 X
32,33,34,35
352=2.11 | 3 |0,1,2,3,4,5,6 0,1,7,8,15 0
448=26 7 3 - 0,1,4,8,21,25 0,2
(possible, but not
calculated)
6 .2
576=2".3 5 - 0,1,2,3,8,9,10 0,1
!672=25°3'7 5 - 0,1,6,7,10, 0,2
11,14,20
8
768=2"+3 11 - - 0,7
1152=2".32 | 3 - - 0,16,20
IR e RN T T T T
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In practice, the pattern length N is usually a power of 2. We know that
17 is a prime, so patterns of length N = 16 are obtainable. However, 33 is
not a prime, hence patterns of length 32 may be constructed by annexing two
patterns of length 16 together. This simple annexing procedure can certainly
be carried out for larger N's. One other possibility is to use extended
Reed-Solomon sequences. For example, when q = 33, we can first generate 32
sequences of length 31, and then to the end of each of these sequences we add
a parity check element. These 32 extended sequences (of length 32) have no

hits when used synchronously.

W
B




.

P

Fx

-, .
e
[ S

26

CHAPTER III
PROBABILITY OF ERROR ANALYSIS OF A NEAR-OPTIMUM FH-DPSK RECEIVER
WITH ONE INTERFERENCE AND A NONFADING CHANNEL

In a multiple-access communication system, cross-user interference
must be considered in order to gain a true measure of the svstem performance.
Since a bit error rate performance analysis for a single~user and a non-
fading channel has already been given in [3], we now describe a similar
analvsis of the near-optimum FH-DPSK receiver with at most one interference
at the n-th time-chip over a nonfading channel.

Suppose that the system is chip-synchronous. If the i-th codeword is
being transmitted, the DPSK receiver must consider two frames of data in
order to make a decision. Moreover, if the n-th time-chip is interfered
(a full-hit) by another user transmitting the f-th codeword with the same
power, then the receiver input over the 2T-second interval may be
represented as

N-1

r(t) =v2Pp g

- / + [ +
. OpTC(t kTC)[cos(Jkt+ek) dkncos(ﬂkt ¢m)]

_N-1

-T- + +
+ v2P ¢ Pr (t-T &TC)[hikcos(wkt Gk) 8

h cos(w t+4¢ )]
k=0 "¢ Am k m

kn

+ n(t) (3.1)

where hik is the *1 element of the i-th row and k-th column of the Hadamard

matrix, n(t) is white Gaussian noise (WGN) with two-sided spectral density
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1N

0 that is thermally generated in the receiver, and akn is the Kronecker
delta function. The ek's and Qm are modelled as independent identically
distributed (i.i.d.) random variables, with uniform densities over (0,27]

since we are employing noncoherent phase signaling.

Recall (Eq. (1.6)) that the near-optimum receiQer computes
N-1
z

A(H,) =
J k=0

2
[t X0+ (Yk+hjkYi)2] , 3 =0,1,...,N-1 (3.2)

and decides the hypothesis Hi whenever A(Hi) >A(Hj) for j = 0,1,...,N-1
and j # i. Then given the i-th codeword was transmitted so that Hi is
true, the conditional word probability that the roccciver makes an incorrect
decision is

N-1

P[E/H,] =P U
[€]H,] U A > MDD [H (3.3)

3=0

j#i
Equation (3.3) is bounded from above by the union bound, thus

N-1
PI€{H,] < = PIAMH,) > A ) H ] (3.4)

Conditioning on Hi’ 2, and ¢m, and by using Eq. (3.2) we obtain

P[A(Hj) > A(Hi)IHi,HR,g,¢m1

_ 2 _ 2
P( é J{(Xk.hikxk) +(Yk hikYk) }
y 2 2
4 ! Y' ) ’ sV .
{(Kk+hikxk) +(Yk+hik k) }|Hi H2 9 1m] (3.5)
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so that their respective distributions are
Lol
" n(0,1) k#n
CE Ak'v n(vPT /N _[1-h, h__Jcos¢ ,1) k=n
o ¢ 0 in fm m?
n(0,1) k#n
B ~
k ,
. n(-VﬁTc/NO[l—hinhzm]51n¢m,l) k=n
Y
n(2/PT /N _coss, ,1) k#n
-~ ¢ 0 k
. Cy (1+h, h, )
J =
. n(2/15Tc/{\0[cosen + 5 cos¢m],l) k=n
;‘ » .~ e '.r"( ':"'.' e -':Fl';-t'-‘-:jn':'\i AP, ,:‘:_::;..{ L A::‘;\‘ .- .."A.!: PR Y a__.s.“!:‘ * _; o

where JS = {k:hi = -h., }. Here the terms for which hi

k ik

elements by the orthogonal property between the rows of the Hadamard matrix.

=h

k jk

since they do not affect the comparison. Also, Jg will contain exactly N/2

are disregarded

From [ 3], we know that all the random variables appeared in Eq.

are mutually independent Gaussian r.v.'s. By definitions (Eq.

calculate

) y +
E[Klei,Hz,g,Qm] VP/2 T [cost 8,,C080, ]

k

I ~ f; = - /p/z . + TR
E[Yk'Hi’HQ’i’ m] VP, TC[Slnek eananm]
8 = VP/2 +
E[Xk{Hi,Hz,;,Qm] VP, Tc[hikcosek 8PS
= =y y 1
E[YkIH H 50,2 ] P/2 T [h, sinG + 6 h

osd ]
m

sin¢m]

(1.4)), we

and obtain that each r.v. has common conditional variance NOTC/Q.

We then further define four normalized independent Gaussian r.v.'s as

(3.5)
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(3.6)




' n(-2vPT /N0 sinek,l) k#n
" D, ~ ¢ (1+h. h_ )

. in 4m .
n(-Zv@Tc/No[smen + —_— 31nd>m] ,1) k=n (3.8

g Consequently, our problem in solving Eq. (3.5) is thus reduced to determining
-~ @ x o] @«
- P[A > B|Hi,H2,g,om] =[ f,p(@,B)dadp = / £,(3) ]AfA(a)dadB (3.9)
=0 a=8 0 2
- . 2 2 2 2 .
where A = T [Ak + B] and B = z [Ck + D] are independent. A
k €, k k €<, k
.. 3 3
- general solution to this complex probability function can be found in
e Appendix A in which the results are stated in terms of the parameters
o
fo
2 - 2
i s = r {(E[A 1" + (E[B D7} (3.10)
[
|' k €
: and J
1 2 2
s' = r {(Elc, D™ + (E[p, D™} (3.11)
k €
3
n Since the single interfnece occurs at the n-th time-chip (n arbitrary),
and the hik's are equally likely to be +1 or -1, we have to consider the

following three cases separately.

o5 Case (i). n ¢Jj = {k:hik = —hjk}.
. Obviously this case happens with probability ! since [Jj! = N/2.
’ It also implies that the interference signal will not appear in the
comparison of Eq. (3.5). Hence s = 0, and s' = 2PT/NO. The
analysis is thus reduced to the simpler no-interference case discussed
...‘ in [3]. In [3] (or see Appendix A) it was shown that
%
o

where n(u,l) denotes the standard Gaussian r.v. with mean u and unit variance.
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- A

P[A(Hj) >A(Hi)1Hi,H2,9,¢m]-P[A(Hj) >A(Hi)|Hi,QJ =p
2
- N/2~
-N/2 PT/2Ny N/2-1 _ k (PT/2N,) N/24k-1
=2 e £ 27—
=0 Y k-2

(3.12)

Since the result does not depend on O (or j or i, as might be intuitively
expected because the rows of the Hadamard matrix are all orthogonal and
have equal probabilities of being transmitted), the upper bound on the

conditional (on Case (i)) word error probability are obtained directly:
PLe (D] < (N-1)p (3.13)

The relationship between the conditional (on Case (i)) bit error probability

(g Pb(i)) and the conditional word error probability is given in [5] as
n-1
. 2 . N/2 ,
P (1) = P (D] = Y2 ple |(1)] (3.14)
b STy N-1

Substituting Eq. (3.13) into Eq. (3.14) we obtain

. N .,
Pb(l) 5P = Pe(O,PT/ZNO) (3.15)

where Pe(u,x) is defined in Eq. (A.15).

Case (ii). n € .«j, and hinhQ,m = -1.

Note that P[h, th =+ 1] L. This case thus occurs with
in

probability %. From Eq. (3.10) and Eq. (3.11) we get

4PT 4PT

c 2 L2, e v o 2PT 3.16
[cos ¢ *tsin ¢m] = and s S ( )

0 0 0

B
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It then follows easily from Appendix A that the conditional
(on _Case (ii)) bit error probability is given by
PT
. PT

P (ii) < P <—° , —-> (3.17)

b e NO ZNO
(Case (iii). n € J,, and h., h = +1.
—_— R in m

Similarly this case also occurs with probability %. Although

s is found to be zero, the analysis here is still more involved since

4PT
s' = 2PT + € [2cosb cosd  + cosz¢ + 2 sin6 sin¢ + sin2¢ ]
N N n m m n m m
0 0
4PT
2
= 5+ 51 + 2cosy_] (3.18)
nm
0 0
where U =8 - ¢ , modulo 27, is not a constant. Observe that
nm n m

Gn and ém are i.i.d. r. v.'s with uniform distribution over (0,27],
we can therefore show that an is also uniform in (0,27]. With

this information in mind, and by Fact A.2 in Appendix A, we thus

obtain the conditional (on Case (iii)) bit error probability by

removing the conditioning on an:

PT 2PT

cean _PT c c
Pb(ll.l) =E Pe O,X—2N + 3 + g cos‘Ynm
0 0 0
3PT PT
PT c PT C
<¥§P<),—+ )+1/2P(0,—-—--———> (3.19)
— e ZNO NO e ZNO NO

Combining all the results from these three cases, we thus successfully
provide an upper bound of the bit-error probability for the chip-synchronous

system with single interference as
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1 . 1 ) +l/ 2 0
Pb <% Pb(l) + X Pb(ll) A Pb(111) (3.20)
where Pb(i), Pb(ii), and Pb(iii) are given by Eqs. (3.15), (3.17), and
(3.19), respectively.

Although it took some effort to have arrived at Eq. (3.20), the upper
bound is still not general. In fact, in a realistic system, chip-synchronization

between the transmitters is almost unrealizable. As a consequence, the

receiver will experience a single partial-hit (we avoid the possibility that
two or more partial-hits may actually happen by time shifting, also see Chap-
ter II) rather than a single full-hit at the n-th time-chip. This problem
may be remedied by annexing an independent r.v.,I, with uniform distribution

over (0,1) to the interference signal. Thus Eq. (3.8) becomes

n(0,1) k#n
n(cVPTc/NO [1—hinh2m]cos¢m,l) k=n
n(0,1) k#n
Bk‘” .
n(—c/PTC/NO [l—hinh2m181n¢m’l) k=n
n(2vPT /N. cosb ,1) k#n
~ ¢ 0 k
Ck ——r (1+hinhlm)
2 .o m =
n( _/PTC/NO [cosen+ o} 5 cos¢m],l) k=n
n(-2vPT /N. sin9, ,1) k#n
D ~ c 0 k (1+h, b, )
n(-2/PT_/N; [sing_+ 0 ——5"" sin¢_1,1) k=n (3.21)

where ¢ € (0,1).
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Conditioning on I, the conditional bit-error probabilities for a
partial-hit are easily found to be
Py(1iZ = 0) < P_(0,PT/2N;) (3.22)
I _ 2
P, (11| = o) < P_(PT o /Ng»PT/2N) (3.23)
PT PT
~ 2 2
B, (11i]Z = 0) <% P (0,55 +—C(c%420)) +4 P (0,55 -+ S (6%-20)) (3.24)
b — e 2N N e 2N N
0 0 0 "0
which are similar to Egs. (3.13), (3.17), and (3.19). ©Note that
2
Pe(PTCU /NO,PT/ZNO) < Pe(PTCo/NO,PT/ZNO) which is convex in o,
Pe(O,PT/ZNO + PTC/N0(02+20)) is convex and monotone decreasing in g, and
Pe(O,PT/ZN0 + PTC/NO(UZ—ZO)) is monotone increasing in ¢ (see Appendix A,
Fact A.3) ¥ ¢% (0,1), we thus obtain
P (i) < P_(0,PT/2N;) (3.25)
~ - 1 \ 1 " PO
Pb(ll) <k Pe(O,PT/2V0)+-2 Pe(PTC/NO,PT/ZNO) (3.26)
P, (iii) < 4 2x 4 2N 4 N )+ ,PT/2N_~
Pb(lll) <% Pe(O,PT/ 0)4-b Pe(O,PT/ \O-*BPTC/VO) 3 Pe(O PT AVO PTC/NO)
(3.27)

by removing the conditioning on I. Finally, the average bitmerror probability

for the chip-asvnchronous system with single partial interference is bounded

by Eq. (3.20)

~ ]y~ . 1/~ .. l/~ ..
P <k Pb<1)+ A Pb(“)+ Z Pb(lll)

b
11 PT PT PT
<ilp (o, BT ¢ PTY, 1 PT 3T ), 1 pr Tl

- 16 e< 2N0>+ 8 Pe< Y, >+ 16 Pe<0’2N + C>+8 PeG’ZN N >

0 0 NO 0 0
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For the chip-synchronous system with single full interference, the upper

bound (Eq. (3.20)) is

!/ . } . - +1/ ¢« o @
P <l Pb(l) + i Pb(ll) A Pb(111)

<.
e

b
- 1 :
: <’ Pe(O,PT/ZNO) + % Pe(PTC/NO,PT/ZNO) +1/8 Pe(O,PT/ZNO + 3PTC/N0)
+1/8 Pe(O,PT/ZNO - PTC/NO) (3.29)
On the other hand, if the receiver encounters no interference, the upper bound %{
[2] is just j
;% Pb f_Pe(O,PT/ZNO) (3.30) ]
These bounds were evaluated in terms of the bit SNR, Eb/NO, for several i?
values of N, and are shown graphically in Figures 3.1-3.7. Note that ;?
. PT/N, = N PT_/N, = n E /N, 3
As one might expect, the upper bound is largest in case of a full-hit 'G
for all N's, since the receiver encounters the most interference energy. 'Y
u Figures 3.3 and 3.4 show that the anti-interference capability of the receiver "i
increases drastically for larger N's. This is also intuitively expected :?
-
since more signal energy is present relative to the interference signal j?
-

energy, for larger N's. However, there is a trade-off between the code lengths
and the receiver performance because receiver complexity also increases

significantly with N.

At a bit error rate of 10-3, Figures 3.5, 3.6, and 3.7 indicate that a -
:; code length of N = 32 is optimum for the receiver with no-hit, single partial- :}
| hit, and single full-hit, respectivelv. Moreover, for N = 32, bit SNR's of ;}
i' about 8.2 dB, 8.3 dB, and 8.4 dB are adequate for a biteerror rate of 10-3 _i

for the three cases, respectively.
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CHAPTER 1V

PROBABILITY OF ERROR ANALYSIS OF A NEAR-OPTIMUM FH-DPSh RECEIVER
WITH MULTIPLE-USER INTERFERENCE AND A NONFADING CHANNEL
We are now in a position to evaluate the performance of the FH-DPSK

receiver in the presence of multiple-user interference over a nonfading

channel. In Chapter III we have shown that the effect of a single full-hit

on the error probability is always more severe than that of a single partial-hit.

Therefore, for the sake of simplicitv, we assume that the system is chip-
synchronous. Under this assumption, the upper bound on the error probability
wili be looser than the one for a realistic asynchronous system. However,
the simpler upper bound, which is a union bound on the worst-case error
probability, will also be applicable to the more realistic system.

Suppose-the i-th codeword is being transmitted. Suppose also that the
nl,nz,...,nJ-th 0 <J < N) time-chips have interference, each from a single
distinct interferer, and the J distinct interferers are transmitting the
21,22,...,2J-th (the zi's may not be distinct) codewords respectively with the
same power. Then the receiver input over the 2T-second interval is (Eq. (3.1))

N-1

V2P iopTc(t-ch)[COS(wkt+ek) + .

r(t)

n o

6kn cos(wkt+¢m )]
1 T T

N-1 J
/2 -T= +
+ V2P ¢ Pr (t-T ch)[hikcos(mkt+ek) + I Gkn hl n cos(wkt ¢m )]
k=0 "¢ =1 T T 1 T

+ n(t) (4.1)

where h2 m is the * element of the zr—th row and the mT-th column of the
T 1T

Hadamard matrix, @k ~ U(0,27] for all k, ¢m ~ U(0,2w] for all mT.
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and the conditional variances are all equal to o

tion, it follows from definitions (Eq.

Ak =

B

C

P =

L;_- M\ a -_\XA--‘.u" o

Em’ the conditional expectations (Eq.

¢ VP/2 chose

T [cos8 +cosd
c n m

2 T [cosB_ +cos¢
c n m

Tc[cose + z skn

2 Tc[sine +ré

vP/2 +
P/2 T (h, cosek T216kn 2

-vYP/2 Tc[hik

sing + £ §
n
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The set JG is defined to be {k:hik = —hjk}. Using Egs. (3.9), (3.12), and

(3.15) we see that the conditional bit error probability is bounded by

N opasBlE, 0,0 P .00 =N/ 1 a)+B > (¢ )@ ) |n 2

2 P20 = - 2 <?EJ_ k k Keg, & k i7" m
J J

4.4)

If n ¢ Jg, the interference signal at the n__ -th time~chip will not affect

t0
the overall comparison. Suppose now that € of the J nT's lie inside ;%.

[

Since |aji = N/2, and because we have restricted the number of interferers

at each time-chip period to be at most one, it is clear that

e P
I SRS

yite

L

[N

(J-N/2) u(J-N/2) < ¢ < min(J,N/2) where u(n) =1 if n > 0, 0 if n < O is the

unit step function. Thus, the probability that € of the J n 's lie inside Jj 1
1s J pes—y
) =

P(E = ¢) = 5 (4.5) T

g (g ]

In this case, Eq. (4.4) suggests that ':j
2 oz

A = 2(N/2 - ¢) random variables (r.v.'s) ~n (0,1) w
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P
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el
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2 c Py
1 2 ~ —— - ~‘“<
+er.v.'s n N (1 hin h}2 o )cosq‘>m s1 7
0 T T T T —
) T =
1 ~ - - - . [} .‘-_‘
+ ¢r.v.'s n 5 (1 hin hl o )51n¢m s1], for some ¢ of 1's =
0 T T T T s
2
T - ]
2 =
B = (N/2 - ¢) r.v.'s ~q —£ 2 cossg, ,1 ,fj
N, k ]
PT
+ (N/2 - ¢) t.v.'s ~ -1 /== 2 sing, ,1 -1
N k )
0 e
2 PT_ o
] ~ .
+¢er.v.'s n —ﬁ—(Z cosen +(1+hin h2 o )cos¢m ),1
0 T T T T

. PR . - . v e e e e - .« . e
- . .. LTe e . EERCE Y P
N . R ST AN b et .t -




W W N G v wgrwgrwgcw, e e AR e Bt e die B a4

45
T
-4
2 PTc ==
+ . .' ~ Y » +q~ - -
€ r.v.'s n N (2 smen ( +hin hz o )51n¢m ),1 —7
0 T tT T ]
j
for some (N/2-:2) of k's and some € of 1's (4,6) o
-3
2
where n (u,1) denotes the square of a Gaussian r.v. which has mean u and
variance 1. Rearranging the indexes on hin ’ h2 o’ and ¢m » we have from
T TT T ;_i
Eqs. (3.10) and (3.11) the parameters o
PT €
s =2—2 3% (1-h, h_ ) (4.7)
N in 2 m
0 t=1 T 1Tt
PTC N PTC € PTc €
' = —_ . = — + - + . 5 =
s 4 N 3 + 2 N z (l+hin hz o ) 4 T T (1 hin h2 o ) cos(Un ¢m )
0 0 t=1 T T T 0 =1 T T T T T
Note that (l—hin h)2 . ) can either be 0 or 2. Thus, assuming 7 of the ¢
T TT
(l—hin hl o ) terms in Eq. (4.7) are equal to zero, we obtain
T TT
PT
s =4 —-N—c (e = )
0
p PTC PT g
s'=2EL 44 =S +8 = I cosy (4.8)
Y0 0 0 t=1 T
where WT g @n - ¢m (mod 21) is a r.v. ~ U(0,27]. The solution to Egq. (4.4)
T T

is then given by Eq. (A.15) in Appendix A to be Pe(u,x) with u = s/4 and
x =s'/4.

Fortunately, all the random variables in Eq. (4.4) are mutually independent.
This fact enables us to remove the conditionings one by one via taking
independent expectations with respect to each individual random variable.

Using Fact A.2 in Appendix A successively € times, we can remove the
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conditionings on WT'S and obtain an upper bound of the bit-error probability

to be
-
4 PT PT )
1 P ]
RN < —Se - D), 3+ =50 - aa)> (4.9) §
a=0 0 0 0 3

L]
'
P

But P(Z = ) is binomially distributed, hence, removing the conditioning on Z,

.

the upper bound is

(4.10)

| -1 M

., 1.z7,1,e-¢
SICHCY
c= a

N 2 m

PT PT
Lz, c PT c
_2') (G)Pe< \Y—(S - C),T + T(BC - 4@)

(
0 0 0 0

S BOSDDEN Ny

Finally, removing the conditioning on E (the number of nT's that lie inside

-%) yields

PR U {

€

Z PT PT
o<z r@E=e) 2 (O I DO, (e - 0.+ S0 - 4a)>(4.11)
€ £=0 & 2 4=0 e e\ g

W PN

0 0 0

A

A

where P(Z=¢) is given by Eq. (4.5). Thus,given that J interferers are present

noe 1,

t PR AR R .
L‘-'-‘J e L"_Jnu‘-

and each of the interferers is interfering a distinct time-chip period, the
bit-crror probability is bounded by Eq. (4.11). It is not difficult to see

that Eq. (4.11) agrees with Eq. (3.30) and Eq. (3.29) for the J =0 and J =1

cases, respectively .
The expression in Eq. (4.11) can be determined using a digital computer

as a function of the bit SNR, Eb/N0 for various values of N and J. Note that
PT
Eb/N =N _c_ EI—, and N = 2n. Several upper bounds are displayed graphically
0 n NO nNO

in Figures 4.1 to 4.4, For N = 8 and N = 16, the receiver apparently fails
to operate within practical limits of bit SNRs if each of the time-chips is
interfered by a different interferer. For larger N's, the receiver's anti-

interference capability is seen to be quite satisfactory. In fact, at

N
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Pb = 10-.3 and assuming that 1/8 of the N time-chips are each interfered by a
distinct interferer, the degradation in bit SNR is just 1.25 dB for N = 32
and 0.8 dB for N = 64. By using the frequency-hopping patterns that we
developed in Chapter II, it is believed that the number J of interferers

(to the receiver) will be small if the number M of simultaneous users in the
system is not too large. Although multiple interference at the same time-
chip period are possible in a realistic system, it will happen with a small
probability since any two sequences have at most one hit asynchronously and
each sequence is hopping on a small portion of the available frequency
spectrum (for example N/q=~ 0.03 in Chapter 11).

For a fixed number M of simultaneous users, we may assume that each group
in a good design Dg (Table 3.1) accommodates approximately an equal number of
users. With the help of Corollary 2.1, it should not be difficult to compute
the entire hitting characteristic of the system with M users. Then we can
deduce the number of interferers (to the receiver) and their distributioms
so that the bit-error probability rates can be calculated. Typically, N is
32 and Pb is 10-3. Thus, within practical limits of the bit SNRs (10 ~ 20 dB),
the maximum number of simultaneous users in the system can be found.

As a preliminary investigation, we may assume that about 1/10 of the
total IDgI potential users are actually transmitting signals. Note that q
distinct frequencies are available (see Chapter II) and the sequence length

is N. Hence, any frequency f, will appear in some |Dg|-N/10q distinct

k

sequences and the maximum number of interferers can be as large as

(|

*N/10g9-1)N. But among the !Dgl/lO users' sequences, some of them mav
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never have hits with the receiver's sequence because two sequences'

frequency slots can be disjoint. On the other hand, some of the sequences
may have more than one frequency in common with the receiver's sequence, so
that the number of interferers can be much smaller. Furthermore, there are X
possible time shifts of a sequence so it is very unlikely that all the
potential interferers will actually interfere with the received signals. It

is then reasonable to assume that the number of interferers J is about

'D

*N/10q-1. For example, from Table 2.1, we mav take rhe design Dg of
GF(577) with N = 32. |Dg| is given to be 2 x 577 = 1154. Assuming that

Mea 115 simultaneous users are present in the system, then J is about 5.

We shall allow multiple interferences at some time-chip periods. Consequently,
the ways that J interferers will distribute in N time-chips will have a
Bose-Einstein distribution. The bite-error rates can then be estimated easily
by using the function Pe(u,x). Although this kind of interference analysis
will inevitably expend a substantial amount of computer CPU time, it is

certainly a necessary follow-up to this thesis.
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CHAPTER V
CONCLUSION
In this thesis we have discussed a design of short Reed-Solomon sequences
in which any two sequcences will have at most one full-hit or one partial-hit
when used asynchronously. The result showed that these RS sequences have

excellent correlation properties and therefore are very suitable for

frequency~hopping application, since they can extend the number of multiple-
access users. We also discussed the behavior of the FH-DPSK near-optimum
receiver with multiple-user interference in a nonfading channel, assuming
that each time-chip has at most one interferer of the same power. The
receiver performance was found to degrade gradually with an increase in the
number of interfering signals. Furthermore, a longer codeword length was
shown to be more preferable. Finally, generalization of the multiple-user

interference model was considered.
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APPENDIX A

THE ERROR PROBABILITY Pe(u,x)

OQur point of departure is the probability expression

@ -]

Pla>B] =] | (a,8)dadB = f £ (e)f £, (a)dads (A.1)
A B
B=0 a=B
where A is independent of B. Now suppose that A and B are both being a sum
of N independent, squared Gaussian random variables with nonzero means and unit
variances. Then A and B will have the noncentral chi-squared density

with N degrees of freedom given in [10] as

N=-2 =~ (a+s)

fA(u) = %—(%) 4 e 2 N (/r_3, o >0 (A.2)
and _??_
V 2 ~(B+s')
1 2 7
fB(B) = E-( ) e Iy 2(»’Bs R B >0 (A.3)

where s and s' are sums of the squares of the means of the Gaussian r.v.'s in

A and B,respectively. The inner integral in Eq. (A.1) is then found [10] to be

fefA(or.)da = N/Z(/— /8) (A.4)
where ~(s+8) §%g .
- 2 8
Qo (/55VB) = Q(Ys,7B) + e r;(\/:) I_(/s8) (a.5)

is a generalization of the Marcum Q-function. Observing that Q(/El/@) is

given by [10] as

-(s+g) .
Q(Vs,/8) =1 -e 2 2(\/§> Ir(/s—B) (A.6)

A




where Ir(VsB) is the r-th order modified Bessel function of the first kind

given by

+2k
- (&)

LUse) = I SiGmor &7
k=0
we obtain
'(S—ZB) o o kT
QN/Z(/E,/E) =1-e £ I~ (A.8)

r=N/2 k=0 2 k! (r+k)!
Upon substitution for Eq. (A.8) and Eq. (A.3) into Eq. (A.l) and by using

the fact that fB(B) is a probability density function we get

foo /_ /— fan -(Sz;s) o 9 SkBr+k
£_(B)Q,, ,,(Vs,VB)dB=1-] e I )
0B N2 0 r=N/2 k=0 252Ky (r4i) !
N-2 -(B+s')
1 ,8.4 2 ;
7 (;T) e IE:E(VBS )dB
2
N_s v w c w0 N-2 _ (ytv)
=1-2 2 e 2 e 2 - z Sk f yr+k l(ZJ * e 2 b (VQCD d
- roN/2 Kke0 223Ky Yo (HOT [T N2V

2
(A.9)
where v = s'/2, and v = 28. The integral in the right-hand side of this
expression may be solved with the least amount of difficulty through indirect
computation. We first notice that the characteristic function of a positive
random variable Y may be put into the following form by using the power series
expansion of the exponential function:

» &
¥
Ju L £, ()dy] (4.10)

} o= ot Go*iJ

¢,(jw) = Efe
¥ k=0 0

.........
............
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The integral in brackets is observed to be the integral of interest, where
fY(y) is the noncentral chi-square density encountered earlier in Eq. (A.2).
Thus, the value of the integral is simply the value of the coefficient of
(jw)k+r in the series expansion of the characteristic function corresponding
to the noncentral chi-square density with N degrees of freedom. That

/zexp[vjw/(l-zjw)]-

characteristic function is given in [10] as @Y(jw) =(1-2jm)_N
This function may be expanded by first using the power series expansion for the

exponential function, indexed bv 2. Then bv using the binomial expansion

for each (l—2jw)-(N/2+£) term, indexed by m, we obtain
© ('w\))z o« o
o, (Jw) = ¢ ‘JF’ T [ N/2424m-1) (2jw) (A.11)
L= " k= m
a . . . al .
where (b) denotes the usual binomial coefficient bT(ab)! Finally, by

collecting all the contributions to the coefficient of (jw)k+r, the value of

the integral is found to be

. ktr ST (o720 Y/ N/24k4r-1

2 g el (A.12)

2! k+r-1
2=0
. Thus,
N_s v, o k k+r .
B 22 2 ) k+r (v/2) N/2+k+r-1
P[A>B]=1-2 e e z z WZ ZT Ktr=2
r=N/2 k=0 2 k! g=0 '
"
- N r k k¢r 2
: T2 2w x o 2 a2 q -
: Sl feTHeR g 2wy X “/ZZ‘frzl (A.13)
. r=N/2 k=0 g=0 -
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ll where u = /4 aad x = v/2 = s'/4., Hence Eq. (A.l) is solved. Notice that if
* s = 0, then Eq. (A.13) simplifies to
N/2-1 r 2
- - - +r—-
2 N2mx Ty Ty g ’f—,—(N/i_r_ 1> (A.14)
r=0 g=0 ~° *

- which is exactly the special case error probability expression p given in [3].

P We then define
- N
3 Pe(u,x) = E—P[A:>B] (A.15)

where P[A>B] is given in (A.13). It is obvious that Pe(u,x) is continuous
and differentiable in u and x. Furthermore, it can be shown that Pe(u,x) is

[; convex [1l1l] in both u and x, monotone increasing in u, and monotone decreasing
2 2

. 9 ) 3
in x by observing that — Pe(u,x) >0, =5 Pe(u,x) >0, ™ Pe(u,x) >0,

i' du Ix

and E% Pe(u,x) <0V u, x > 0, reépectively. Figure A.l1 and Figure A.2 show i;l

o '\‘
e graphs of P (u,x) for interesting values of u and x. In particular, ﬁf;
v e PT Rt
PT n Eb ¢ _n Eb R,

P fu,x = 57— = = and P {u = — = —- — , x| are exhibited in the figure v

e 2N 2 N e N N N s o

] ~o 0 0 0 ]
L with N = 2 = 32, ~
\

v Finally, we present some useful facts which follow readily from the ?
P ]

convexitv of Pe(u,x).

RTINS T
R A I P
St

2

- Fact A.1 Given a > 0, b > 0, and I ~ U(0,1),

E(P (u,X = a + bZ)} < P (u,a+b) + P_(u,a)} (A.16)

o e -2 e e =

- Fact A.2 Giver o > 0, a-b > 0, and ¢ ~ U(0,27], ;TS

v._' ~."'-1

7
“ o~

.. E(P_(u,X = a + b cosd)} < 2P, (u,a4h) + P (u,a-b)} (A.17) ]
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Figure A.2. Weighted graphs of c °
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pr T 2
Fact A.3 Given o € (0,1), P (0,7~ + ——E-(o + 20)) is convex and monotone
e 2N0 NO
PT
. . PT c 2 .
decreasing in o, and P_(0, 5= + —— (0~ - 2¢)) is monotone
e ZNO N0

increasing in o.
Fact A.2 is trivial once we observe that g(y) = Pe(u,a+b cosy) is convex and
increasing in (0,7], and convex and decreasing in (rv,2n]. Since ¢ is uniform,
E{g(¢)} will simply be equal to 1/27 times the area under g(y). The result
then follows from convexity after approximating g(y) bv two straight lines.
Fact A.3 may be verified by Figure A.3 and Figure A.4.

This concludes our discussion on Pe(u,x).
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