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SUMMARY

The long and intermediate length Josephson tunnel junction oscil-
* lator with overlap geometry of linear and circular configuration, is

investigated by computational solution of the perturbed sine-Gordon
* equation model and by experimental measurements. The model predicts the
" experimental results very well. Line oscillators as well as ring oscil-

lators are treated. For long junctions soliton perturbation methods are
developed and turn out to be efficient prediction tools, also providing
physical understanding of the dynamics of the oscillator. For inter-
mediate length junctions expansions in terms of linear cavity modes
reduce computational costs.

The narrow linewidth of the electromagnetic radiation (typically
1 kHz of a line at 10 GHz) is demonstrated experimentally. Corresponding
computer simulations requiring a relative accuracy of less than 10- 7 are
performed on supercomputer CRAY-i-S. The broadening of linewidth due to
external microwave radiation and internal thermal noise is determined.

The effect of constant magnetic fields, applied to tune the radia-
tion freauency, on the resonant soliton oscillations is investigated by
detailed computations of the power spectra. Hysteresis and chaotic inter-
mittency between soliton dynamic states are found. In narrow windows of
parameter space chaos effects cause noise rise.

Poincar6 and return maps, Painlevd and Melnikov methods are applied
- to indicate and predict chaos in ordinary differential equations of

sine-Gordon type modelling SQUIDs.

KEY WORDS

Cavity mode, Chaos, Fiske steps, Hysteresis, Intermittency,

Josephson fluxon oscillator, Josephson ring oscillator, Josephson

tunnel junction, Noise rise, Perturbation theory, Radiation line-

width, Sine-Gordon equation (perturbed), Soliton (fluxon), SQUID,

Subharmonics, Zero field steps.
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In the following sections we summarize the new main results ob-
tained under the contract. References to the published papers in the
above lists will be given. Also the background for the research and
the future perspectives will be discussed.

BACKGROUND

The study of soliton dynamics in connection with large Josephson
tunnel junctions has recently drawn considerable theoretical [22-27]
and experimental [28,29] attention*. Fulton and Dynes [1] conceived
the idea that the Josephson tunnel junction could support the resonant
propagation of a soliton (or fluxon) trapped in the junction, the so-
liton being a 2n jump in the phase difference (fl across the insulat-
ing barrier which separates the two superconductors. The moving soli-
ton is accompanied by a voltage pulse ('-t) which can be detected at
either end of the junction. The dc manifestation of the motion is a
sequence of equidistantly spaced branches in the current-voltage cha-
racteristic of the junction. These near-constant voltage branches,
which were first reported by Chen, Finnegan, and Langenberg [30],are
known as zero-field steps (ZFS) because they occur also in the absence
of an external maqnetic field. In contrast, the so-called Fiske steps
(FS) are found only when a magnetic field is applied [31].

References 22-46 are given in the following section, Literature
cited.

. " .. -
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THE JOSEPHSON OSCILLATOR

An overlap-geometry Josephson tunnel junction consists of two
superconductive metal layers (for example Nb and Pb) separated by a
thin insulating oxide layer (NbO ) of uniform thickness (to) that is
small enough to permit quantum-me~hanical tunnelling of elec rons. The
geometry is shown in Fig. 1. The region where the two superconducting
layers overlap has the length L in the X-direction and the width W in
the Y-direction. Typical values are L 6Xj and W - 0.8 Xj where the
Josephson length Xj 10- 4 m. Thus the overlap region is approximately
1-dimensional.

The tunnelling supercurrent is described by the two basic

Josephson equations

j(X,T) = J0 sin (1)

and

- 2e (2)

L h << WL<X<<./

zc-BiQs' -='

Hx Current Superconductor

L . o

to.... ... ... .. .... ....tor .. ,..".

Dc __- rrnio s"/ Superconductor
rent

Figure 1. Josephson junction of overlap geometry [32].
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Here O(XT) is the difference between the phases of the order para-
meter of the two superconductors, T is laboratory time, and j(X,T)
is the Josephson current crossing the barrier per unit length in the
X-direction, j_ being the maximum current. The voltage drop across the
insulating barrier is V = V(X,T). Combination of (1) and (2) with Max- . -
well's equations yields the following partial differential equation

(LP/RP)¢XXT + XX - Lp 4 TT - GLp OT

= (2TrLpj / (sin - jB/Jo1

Here Lp and Rp are inductance and skin resistance per length unit of the
oscillator. (Figure 2 shows the equivalent circuit diagram for the
oscillator). The capitance and the effective normal resistance per
length unit are represented by C and G- , respectively. The externally
applied bias current per length unit is JB, while
(o = h/2e = 2.064 x i0- 15 Wb is the magnetic flux quantum. Introduc-

tion of normalized coordinates, x =X/j and t = Two , yields the per-
turbed sine-Gordon equation:

12

-A/sVVVVdx

Rpdx
josin. -..

Cdx TGdx JBdx

• ,dx •

dx

Figure 2. Element of lumped transmission line equivalent circuit
representing the Josephson oscillator [321.

• •. -. .. •-.........- .. . .-.-..............-..-.-........... .-...... °..q... ,.. ............ .... .... . . . .... .... . .....
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XX- - sin = - xx- (4).

Here the Josephson length and the Josephson plasma frequency are given

by o=(O/2 JoLp) and 0 = (j 0 / 0 C) , and the coefficients in (4)

are given by a = G/woC, w = woLp/R and y = j . Typical values of -.-o 0P P B 0
and w areX = 1.6 m10 mand wO  5.8 x 101°s-' such thatJ 0

the propagation velocity of electromagnetic signals (i.e. solutions

of the linear wave equation, x - = 0, corresponding to (4)) be-

comes c = XjWO = 9.3 x 106 m/s in laboratory coordinates for a typical

Josephson oscillator. In the normalized coordinates, x and t, this
velocity is of course equal to unity.

At the ends of the oscillator, X = 0 and X L, we apply the
following boundary conditions:

(i) When no external magnetic field is applied we approximate the
physical situation by an open-end condition, i.e. zero current on the
junction at the ends. Since the current is proportional to X we get

x (0,t) = (Z,t) = 0 (5a)

in normalized units with X = L/Xj. Condition (6) is only an approxi-
mation since coupling between the oscilla-or" and the surrounding micro- 4
wave circuit is neglected. However, the condition leads to good agree-
ment between the computational results obtained for this condition and
the experimental measurements.

(ii) When an external magnetic tield H in the negative Y-direction. ex
(see Fig. 1), is present the boundary condition becomes

#x(0,t) = (Zt) = f (5b)

where n is the normalized magnetic field n = (-W/j oX j)Hex

The initial conditions used for the computational modelling of
the oscillator are

=(x,0) F(x) #t(x,O) : G(x) (6)

where the functions F and G are chosen such that the stationary so-
liton dynamic states of the oscillator are obtained in the numerical
computations without too long transients. In the following section
we shall discuss these soliton dynamic states. In principle the ini-
tial conditions can be varied within certain limits without any change
in the resulting stationary soliton dynamic states. In practice we often.
use the final values from a previous numerical solution of a boundary
value problem (4), (5) and (6) with a slightly changed set of para-
meters. The five parameters in the model are a, 3, 'y, 2 and n.

............................ 0 •.............. . ...... .......- °
. . . . . . . . . .

. . .. . . . . . . . . . . . . . . . . . . . . . . . . .. -7
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THE DYNAMICS OF THE JOSEPHSON OSCILLATOR

The classical sine-Gordon equation,

- sin = 0, has 27-kinks and anti-kinks

o(x,t) = 4 tan-'[exp(±(x - ut - xo)/v1 - u2 ] (7)

as soliton solutions [331. Here u is the constant velocity of the sol-
iton and xo is the position of the soliton at t = 0.

The perturbed sine-Gordon equation (4) has similar soliton solu-
tions in the looser sense. Each soliton carries a magnetic flux quan-
tum. The dynamics of these solitons is investigated by means of per-
turbation theory in Ref. [34]. As a result a first-order differen-
tial equation for the variable soliton velocity for a single soliton,
u(t) , is derived

du + IT ( -Y U 2  3/2 CUU2
dt 4 3 u(8)

Eq. (8) expresses the balance between energy input in the system due
to the y-term and dissipation due to the loss terms, a t and -Bxxt

The stationary velocity, u , is determined from Eq. (8) by letting
du/dt = 0 and solving the resulting equation with respect to u. In
typical computer experiments u(t) rapidly adjusts towards the station-
ary velocity, u. .

For a finite junction with open-end boundary conditions (5a) it
is easy to show that solitons are reflected into antisolitons and
vice versa at the boundaries. The bias current, y, drives the soliton
in the negative x-direction until it is reflected into an antisoliton
at x = 0. The antisoliton is driven in the positive x-direction and
reflected into a soliton at x = Z and a new cycle of this stationary
state is initiated. We shall designate such a stationary state a sol-
iton dynamic state. The periodic motion of the soliton on the os-
cillator is responsible for the emission of electromagnetic radiation,
typically in the GHz-range, from the oscillator. Figure 3 shows a
computer picture of part of the oscillation cycle in the soliton dy-
namic state with one soliton. In the inset, 4t(k,t) is shown as a func-
tion of t for 50 time units. This quantity is proportional to the vol-
tage on the oscillator at the end at x = £ according to (2). The DC-
component of the voltage 0t(£,t) has been computed for different va-
lues of the applied bias current y in Eq. (4). The resulting curve
shows agreement with experimentally measured 1st ZFS branch of the
IV-characteristic as seen in Fig. 4. Similarly when two or three
solitons are present on the oscillator the 2nd ZFS and the 3rd ZFS
branches of the IV-characteristic are obtained.

........... '
. . . . . . . . . . . . . . . . .. . .. . . .
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Figure 3. Computer solution of the perturbed sine-Gordon equation
(4) with a = 0.05, 1 = 0.02, y = 0.35. Boundary conditions (5a) with
k = 6. Initial conditions (6) with one soliton. The inset shows

4t(z,t)[32].

Computational Fourier analysis of 4 (k,t) provides the power
spectrum for the radiation from the oscilator. The basic frequency
is given by

f = u/2k . (9)

Also the computational power spectrum shows agreement with experimen-
* tal measurements of the power spectrum [35-36].

The presence of the loss term- 4) in Eq. (4) permits soliton
dynamic states in which two or more sMftons travel together in
bunches [341.

Figure 3 illustrates the 2-soliton case for different parameter
*. values. For small values of y (Fig. 3a) the two solitons travel in

a symmetric configuration - i.e. soliton and antisoliton in opposite
directions. For higher values of y (Fig. 3b) the two solitons travel
in a bunched state - i.e. two solitons in the same direction followed
by two antisolitons in the opposite direction. There is a gradual
transition from the symmetric state to the 2-bunch state as the bias
current y is increased and vice versa as y is decreased. In Ref. [371
it has been shown that the Hamiltonian for two (undeformed) solitons
(on an infinite junction) has a local minimum for a finite separation
between the solitons. This separation equals the length of the junc-
tion for the value of y at which the transision between the two sol-
iton dynamic states occurs. Ref. [32] reports on the following hyste-
resis phenomenon: For increasing (decreasing) bias current Y the transi-'.': :
tion from symmetric to bunched mode (vice versa) occurs at smaller
(higher) values of y. 71. '.

' .". . . . . . . . '. . . -. " .-. * . , . . . . . .. ... *. ... .. .*. . . . . . .. . -
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•- 75-

ZF~S 3 
,

50-

25-
ZFS 1

.-0.0 2.5 5.0 7.5 10.0,._z.

IdC(mnA) 
'-"-

Figure 4. DC-voltage versus applied bias current showing the first
three zero field steps. Circles indicate computational results and
solid lines represent experimental results [32). For the numerical re-
sults we have used a = 0.05 and 6 0.02 in (4), k = 6 and n = 0 in
(5), and one, two and three solitons in the initial conditions (6)
on ZFS 1, ZFS 2, and ZFS 3, respectively. Furthermore I andt Vd.

Fig. 6 shows the soliton trajectories in the xt-plane correspond-
ing to different soliton dynamic states. The diagram ZFS 1 corresponds
to Fig. 3. while the diagrams ZFS 2 (Symmetric) and ZFS 2 (2-Bunch)
correspond to Fig. 5a and b. The diagrams marked ZFS 3 (3-Bunch) and
ZFS 3(2-Bunch, 1 Free) correspond to soliton dynamic states found
experimentally and computationally in Ref. [36] where,respectively,
three solitons travel in one bunch, and two solitons travel together
and one soliton travels alone with a slightly deviating velocity, u.
The soliton dynamic states corresponding to the other diagrams in Fig. 6
will be discussed in the following sections which treat the results -'
obtained under the present contract work.

.7 .. -.--"
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0 U0

x

Figure 5. Computersltoso teprubdsieGroqa
tion (3) with a = ~~~0.0 n 302 onaycniin 5)wt

Fiur 6. Initialr conditio (6) wthe tworsoritons.n-oro (a:qua0.25-()

y=0.3. The insets show pt(k.,t) [32].
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SOLITON TRAJECTORIES

SOUTON - ANTISOLITON --- PLASMA .....K MOSCILLATION

UFSI ZFS 2 ZFS 2
Symmewtric 2-Bunch

ZFS 3 ZFS 3
3-Bunch 2-Bunch

1 Free

FS1 FS 1j FS 2 FS 2 FS 3
Syiwntric 2 -Buntch

Figure 6. Soliton dynamic states. UFS =zero field-step correspond-
ing to boundary conditions (5a). FS =Fiske step corresponding toA
boundary conditions (5b).

* *..* .*.~* .. . 2t...
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LINEWIDTH OF ELECTROMAGNETIC RADIATION FROM JOSEPHSON OSCILLATOR

In the frequency spectrum of the electromagnetic radiation from
the Josephson oscillator the width of the lines is very narrow. An
experimental measurement shows a physical linewidth as narrow as
1 kHz of a line at 10 GHz [381. The very well-defined frequency of the
radiation is a technologically important feature of the Josephscn junc-
tion. The narrow linewidth is a consequence of the coherence of the soli-
tonic excitation of the junction.

In Ref. [1] of the present contract soliton perturbation theory is
used to calculate the soliton oscillator linewidth arising from soliton
interactions with background radiation. The paper treats the line oscil-
lator illustrated in Fig. 1 and modelled by Eqs. (4-6) as well as the
ring oscillator illustrated in Fig. 2 of Ref.[1]' In the latter case the
boundary conditions (4) are replaced by the periodic boundary conditions

Yt(Ot) = t(gt) (10(10)
*x(O,t) = 'x(Zt)

where Z now denotes the circumference of the ring oscillator. The pertur-
bation analysis is based on the ansatz that the soliton is given by

O = 4tan-lexp [(x - Xlt)/ 1 - x 2 ] 11)

where X = X(t) describes the soliton trajectory in the xt-plane and
the derivative u = X(t) is the velocity. Following the analysis of
Ref. [341 the perturbation theory is expanded to second order. Detailed
calculations in the case of an oscillator that is long compared with the
Josephson length and for which the radiation field is thermal establish
lower bounds for the linewidth of a real oscillator. These lower bounds
are not in disagreement with available instrument-limited measurements
of X-band linewidths less than 5 kHz. Fig. 3 and 4 of Ref. [I] show the
experimentally measured linewidths as function of the average soliton
velocity and the absolute temperature of the junction while Fig. 5 shows
the computational linewidth at temperature T = 3 K and velocity u = 0.8.

A Hamiltonian perturbation theory was developed for the ring oscil-
lator in Ref. [6]. Here the ansatz for the travelling wave was given by

= sin" [±cn( ,k)] (12)

where = (x-ut)/k(1 - u2)i and cn(C,k) is a jacobian elliptic function
.ith modulus k. 0 given by (12) is an exact solution to the unperturbed
sine-Gordon equation Pxx - Ott - sin = 0 with periodic boundary condi-
tions (10). The perturbation theory was developed for the elliptic func-
tion in the same manner as in Ref. [341. As a result an ordinary diffe-
rential equation like (8) was obtained. However, the coefficients y,
a and B were replaced by

. . . --";.
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-= 2yk 3 /A

t' = 2ck 2E(k)/A (13)

'= 2U [(2 - k 2 )E(k) - 2(1 - k2 )K(k)]/A

with

A = 2k 2E(k) + (1- k 2)9 24K(k)

Here K(k) and E(k) denote. the complete elliptic integrals of first
and second kind. The stationary velocity was determined as function of
circumferential length for different values of loss parameters a and 1.
and as function of bias y. Comparison to direct numerical solutions shows
that Hamiltonian perturbation theory can be used to predict the statio-
nary one-soliton velocity of the ring oscillator. The results are use-
ful for the interpretation of experimental measurements of the I-V cha-
racteristic for this device. Furthermore the stationary solutions are
useful as initial conditions for numerical simulations of the ring os-
cillator under different circumstances.

In Ref. [11] very detailed simulation studies of the dynamics in
long ring oscillators under the influence of external microwave radiation
field and internal thermal noise are presented. The former situation is
modelled by inclusion of a sinusoidal driving term in the perturbed sine-
Goraon equation (4) where -y is replaced by y + n(x,t) with n(x,t) =
n(t) = nosin2t, Q being the frequency and no the amplitude. The latter
case is modelled by letting n(x,t) be Gaussian white noise with zero
mean <n(x,t)> = 0 and autocorrelation function

R (TT) = <r(x,t) (x + t,t+T)> = 026()6( ) (14)

Here the variance of the noise 02 is connected with the loss a and the
absolute temperature T through n

62 = 4raT/oj j (15)n 10o J

where kB is the Boltzmann constant. The simulation algorithm uses a
pseudo spectral method making heavy use of fast Fourier transforms which ..

is well adapted to vector processors (CRAY-1-S) which gives a speed-up
factor in computing time of typically 22 in comparison to conventional
high-speed computers, and also provides results with a relative accuracy
of less than 10-8 which is required to study the very narrow linewidth
of such oscillators. For the sinusoidal driving term the computational
results are compared to results obtained by perturbation theory based
on the ansatz

k 0
O(x,t) - Ck(x,t) + 4 (t) (16)

*.. . . . . .. . . . . . . . . . . . .. . . .
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k CO
where 'k(x,t) denotes the kink part and ¢(t) denotes the background
part. In the theory the background motion becomes an effective driving
term for the momentum of the kink part. As a result the kink momentum is
determinded as a function of time and thus the fluctuations in the kink
velocity and in the revolution frequency. Since the velocity u fluc-
tuates Eq. (9) is replaced by

t +nTn j-
f udt £ (17)

tntn-1 ii

and

fn= 1/Tn

where Tn is the n'th revolution period. We compare the standard devia-
tion of the revolution frequency

a = [<(fn- <f n>) 2>] for 0.4 Q 2.0.

The results are shown in Fig. 8 of Ref. [11]. The perturbative kink model
predicts a resonance just below the plasma frequency 2 = 1, whereas
the numerical simulation yields this peak at a somewhat lower frequency.
The reason for the discrepancy is attributable to the fact that we have
used a linearized kink model. Presumably, the use of a higher order ex-
pansion would yield a behavior analogous to that of a soft nonlinear
spring, thus reducing the discrepancy. It has also been shown later that
the difference in scale of the standard deviation can be removed by a
further refinement of the perturbative treatment [39].

For the Gaussian white noise driving term the numerical simulation
results agree well with experimental results. The model based on Hamil-
tonian perturbation theory was also able to predict the qualitative de-
pendence of the standard deviation a on the bias.

In Ref. [71 standard methods of stochastic processes are used to
study the coupling of the sine-Gordon system with a heat reservoir. Both
phonons and solitons are found to be thermalized in a way such that the
phonons will have an average energy atkBT per mode while solitons will
have an energy of J kBT. These results are in agreement with those ob-
tained by using a statistical-mechanics approach for a "dilute" solu-
tion gas [401.
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EFFECTS OF EXTERNAL MAGNETIC FIELDS ON SOLITON DYNAMICS

In Ref. [4] the dynamical beinavior of solitons propagating in the
presence of an applied magnetic field on a long overlap-geometry
Josephson tunnel junction is investigated. The application of external
magnetic fields is essential for tuning the frequency of the radiation.
The magnetic field is modelled by boundary conditions (5b). It is de-
monstrated that the soliton dynamic state corresponding to the branch
of the IV-characteristic for the oscillator denoted the 1st Fiske step
(FS 1) is the following: The soliton travels in the bias-aided direc-
tion which is the negative x-direction in the FS 1 diagram in Fig. 6
and reacts with the boundary condition (Sb) at x =0. As a result energy
is absorbed from the incident soliton such that the minimum energy for
the sine-Gordon soliton (= 8 in normalized units) is no longer available. -
Therefore no antisoliton is reflected. Instead reflection of plasma os-
cillations is observed. They travel in the positive x-direction and
reach the boundary at x = Z. where a new soliton is created due to the
energy input caused by boundary condition (5b). This constitutes the
first cycle of the stationary soliton dynamic state. For the initial
conditions used in this paper the 2nd Fiske step which contains two
solitons is not found, while the 3rd Fiske step (FS 3 in Fig. 6) is
found to consist of two solitons travelling in the negative x-direc-
tion and one antisoliton and plasma oscillations travelling in the
positive x-direction. Analyses of the corresponding of the three first
harmonics of the computational power spectra confirm this picture of
the soliton dynamics for the junction biased on FS 1 and FS 3.

Ref. [3] demonstrates that the 1st Fiske step possesses a branched
structure. The major portion of the step corresponds to a simply periodic-".
soliton oscillation whereas the branches are characterized by subhar-
monic generation. Such period doublings are important because they may
be the first step on the road to chaos. Indeed such chaotic behavior is
found by us for overlap Josephson junctions when the oscillator is sub-
jected to a constant external magnetic field [5)1. The phenomenon will
be discussed in the following section.

In Ref. [2] the soliton dynamics for different geometries of the
Josephson tunnel junction are compared. So far we have only been con-
cerned with the overlap geometry illustrated in Fig. 1. In the in-line
geometry the bias current enters in the direction parallel to the long
dimension (instead of perpendicular to the long dimension) of the junc-
tion and is limited by self-screening effects to the two ends of the
junction. In the paper I-V characteristics and microwave emission spectra
are calculated for the two geometries and shown to be qualitatively si-
milar, although also quantitative differences are found.

Ref. [9] is a detailed study of I-V structure and the emitted x-band
radiation from the overlap-geometry Josephson tunnel junctions of inter-%>
mediate length (. = 2) when external magnetic fields are applied. Di-
rect computational solutions of the perturbed sine-Gordon equation (4)
with inhomogeneous boundary conditions (Sb) are compared to experimental

m u e. F
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multimode, are shown to predict the simulation results quite accurately.
This result is important because the application of a superposition of
linear cavity modes is computationally cheaper than direct numerical so-
lution of the boundary value problem of the partial differential equa-
tion. The method works for intermediate length Josephson junctions. For
longer junctions the soliton nature of the excitation becomes more im-
portant and must be included in the expansion modes.

Fig. 1 in Ref. [9] gives some of the main results of the paper. For
small values of the magnetic field n the junction is biased on ZFS 1
while larger values of n leads to a soliton dynamic state corresponding
to the 2nd Fiske step. Both FS 2 symmetric and FS 2 2-Bunch (indicated
in Fig. 6) are found. In the former case solitons and plasma oscilla-
tions are travelling in opposite directions on the junction at the same
time. In the latter case two solitons are travelling in a bunch together
and reflected into plasma oscillations. Thus we have demonstrated the
existence of the bunching phenomenon [32] also in the magnetic case.
For n 1.8 Fig. 1 shows the bias value at the top of the 1st zero field
step and the bias value at the bottom of this step as function of the
magnetic field. The top decreases and the bottom increases as the mag-
netic field is increased. At n 1.8 ZFS I no longer exists.
For 1.8 n 5.5 the junction operates on FS 2 in the symmetric mode or
in the bunched mode as illustrated in the insets of the figure. On FS 2
it is only possible to detect the top bias value of the step. As indi-
cated by the arrows in Fig. 1 the stationary values of the bias current
depend on the direction of the field variation. A similar hysteresis phe-
nomenon was found in the non-magnetic case [32]. The figure also shows
the agreement between the results obtained by direct numerical solution
and the results obtained by the single mode theory due to Kulik [41], up
to n ; 4.4, and the results obtained by the multimode theory due to
Enpuku et al. [42].

Ref. [9] contains numerous computations of time series for the vol-
tage at one end of the junction, power spectra, and dependence of fre-
quency components on bias and magnetic fields (illustrated in Figs. 2-9).

Experimental measurements, shown in Fig. 10-12, agree well with the
computational results. In particular, it was found experimentally that
the first frequency component was missing in the interval in the mag-
netic field strength where the junction operates on FS 2. Here the po-
wer in the first harmonic was found computationally to be very low.

SOLITON AND CHAOS EFFECTS ON THE JOSEPHSON OSCILLATOR

As mentioned earlier the little distorted coherent solitonic exci-
tation of the Josephson oscillator is the reason for the narrow line-
width of the electromagnetic radiation from the device. Chaotic features
in the nonlinear dynamics of the oscillator may change this picture. In
particular, a combination of random thermal effects and chaotic effects

*. . . . . . . . . - ",.
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may have serious effects on the frequency spectrum. Thus it is desirable
for the technological applications to avoid operation of the oscillator
in the regions of parameter space (Z, ai, 3, ,, i,) where these phenomena
occur. In Ref. [51 we have found a region where chaotic intermittency
between soliton dynamic states occurs. It is, however, only a relatively
narrow window. The junction considered has = 5, (x = 0.252, P = 0, and
the magnetic field is n = 0.25. For y = 0.454 the junction is biased on
FS 1 while for y = 0.5 the junction is biased on FS 2. For intermediate
y-values Cy = 0.456-0.490) the oscillator was observed computationally
to switch between FS 1 and FS 2 intermittently, giving rise to a spe-
cial branch in the IV-characLeristic which we denoted FS 11 as indicated
in Fig. 6. Long computer simulations of the phenomenon made a detailed
study of the power spectrum possible and also demonstrated that the
switching can be treated probabilistically as a Poisson process. Expe-
rimental measurements [43] have in fact perhaps revealed FS 11.

For the study of chaos it is necessary to possess analytical and
computational tools for the detection of the phenomenon. We have worked
with the Painlev6 test [44] and developed software for computation of
return maps. In Ref. [12] we apply these tools to a periodically driven
rf superconducting quantum interference device (SQUID) consisting of a
ring with a single Josephson junction. The system is described by the
ordinary differential equation

+ £¢' + sin, = x(,sin o t - ) (18)
0

Here prime denotes differentiation with respect to time, u is a loss
parameter, wD is the driving frequency and , the amplitude. The per-
turbing term, *, has the effect of confining the chaos. As a result
an almost 1-dimensional return map is found. The very delicate struc-
ture of the dynamics as well as the existence of coexisting attractors
are demonstrated.

Besides detection of chaos prediction of the phenomenon is impor-
tant. Available here is the method of Melnikov integrals (45]. So far
the method has only been devel ped for ordinary differential equations
that possess a homoclinic orbit. In Ref. [14] we apply the method to
the following equations with linear and quadratic damping terms, ca;'
and k(4') 2 ,

+ sinp = (r + r I sin UDt - a,') (
(19) ?.

4" + k((p') 2  + sin = p + 1  sin-)t,.

respectively. The differential operators on the left hand sides possess
homoclinic orbits in phase space. The right hand sides are the pertur-
bative terms giving rise to Smale horseshoe chaos when the Melnikov inte-
gral vanishes. In the case of quadratic damping the existence of an exact
solution to 4" + k( ')2 + sin = 0 makes it possible to avoid the inclu-
sion of the damping term into the perturbation. The Melnikov prediction
of chaos becomes correspondingly more accurate as is demonstrated by
comparison to numerical solutions of (19).

.....................................
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OTHER RESEARCH IN CONNECTION WITH THE PRESENT CONTRACT

In connection with the physical understanding of the soliton pheno-
mena in the sine-Gordon system the mechanical analogue consisting of
elastically coupled pendula subjected to gravity [46] plays an important
role. In Ref. [131 a mechanical analogue for the double-sine-Gordon
equation

2
- sin sin = 0 (20)xx Jtt 1 2

is proposed and used to analyze solitary solutions for arbitrary para-
meter values. Eq. (20) applies to other condensed matter systems.

For the numerical solution of nonlinear evolution equations like 4
the sine-Gordon equation it is a fundamental question to perform the
discretization in an optimal manner. Ref. [8] investigates this question
in the case where the evolution equation is integrable. A geometrical
approach is used to obtain a discretization that preserves the inte-
grability. As an illustrative example the discrete Burger's hierarchy is j
analyzed. The possibility of extending this procedure to soliton equa-
tions which are also integrable is briefly discussed.

PERSPECTIVES

The work done in the present contract is being continued under the
following main themes:

Instabilities of the steps in the I-V characteristics for the
Josephson junction. For optimal operation of the Josephson oscillator
it is important to understand the instabilities of the soliton dynamic
states. For example why does the spatially uniform excitation of the
junction become unstable for values of the bias current which are lar-
ger than a certain critical value? As a result a spatial structure is
formed (one soliton on ZFS 1, two solitons on ZFS 2, etc.). And why
does this structure become unstable again at larger values of the bias
current such that the step has a maximum height?

Chaos and noise rise due to thermal effects. The relationship be-
tween these effects is of crucial importance for the narrow linewidth
properties of the Josephson oscillator.

Modal expansions for longer Josephson junctions. Computational
costs have been reduced considerably by using cavity mode expansions
for intermediate length Josephson junctions. Can a similar reduction of
simulation costs be achieved for long Josephson junctions by using
expansions in terms of nonlinear soliton modes from the unperturbed
system?

. . - .
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Coupling problems. For the practical application of Josephson os-
cillators in thin film electronic networks the coupling between the
oscillator, other oscillators and surrounding microstrips is essential.
The dynamics of the junction equipped with boundary conditions modelling
such couplings is very important.

.-.
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Soliton perturbation theory is used to calculate the fluxon oscillator lincwidth arising
from fluxon interaction with background radiation. Detailed calculations in the case of an "
oscillator that is long compared with the Josephson length and for which the radiation field
is thermal establish lower bouinds for the linewidth of a real oscillator. These lower bounds
are not in disagreement with recent, instrument-litnited nmeasurenents of X-batid linewidths
less than 5 kliz.

I. INTRODUCTION directly to an explicit formula for oscillator
linewidth as a function of the background radiation

. In 1973 Fulton and Dynes pointed out that the in the junction. Such background radiation may be
-. "zero-field steps" observed in the voltage-current generated in several ways: (i) electrical noise con-

characteristics of long Josephson junctions could be ducted to the oscillator through bias and output
ascribed to oscillatory behavior of internal fluxons leads, (ii) radiation generated by spatial inhomo-
(or magnetic solitons).' Subsequent observations of geneities of the junction, (iii) radiation generated
microwave radiationz led to the hope that such during reflection of a iluxon from the end of the
structures could play a technically useful role as os- junction, and (iv) thermal noise in the cavity modes-""
cillators into the millimeter wave range3 Recently, of the junction. To obtain a lower bound on oscilla-
some long Josephson junctions of high quality were tor linewidti, we assume the radiation field to be
fabricated and tested at the University of Salerno 4  entirely thermal noise. Under this assumption, and

*-' and sent to the Physikalische Technische l3unde- with some simplifications, we calculate suitably
- sanstalt in Berlin3 and the Technical University of normalized values for linewvidtll as a funlction of

Denmark6'7 for detailed measurements in the mi- temperature and average fluxon velocity. The worst
" crowave range. Comparison of these microwave (i.e., largest) value of linewidth that we calculate

measurements with numerical and analog computa- under these assumptions is less than the
tions of fluxon dynamics (based on a structurally instnrment-limited value of 5 klHz.7

perturbed version of the sine-Gordon equation)' Although the work reported here is related to re-
confirms that the original idea of Fulton and Dynes cent studies of chaotic behavior in the sinusoidally

* is correct, driven nonlinear pendulum and siae-Gordon equa-
.. Among other results emerging from these experi- tion,13 we emtphasize that our results depend upon

mental studies has been the observation of a supris- the assumption that the trajectory of the fluxon os-
ingly narrow oscillator linewidth: less than 5 kHz cillation is not trapped in a region of phase space
(the instrument limit) at a fundamental oscillator that contains a "strange attractor."a 4 "'he above-
frequency of 10 GHz.7 Our aim in this paper is to mentioned numerical studies support this assump-
present a theory of fluxon oscillator dynamics tion.

* which allows us to predict the lincwidth of a long
Josephson junction oscillator.

Our approach is based upon the description of a II. DESCRIIION OF OSCILLATORS
Josephson transmission line as the sine-Gordon

* equation with structural perturbations that Our analysis of fluxon oscillators is based upon a
represent dissipation and input of energy."°0 We previously developed theoretical model for the
extend a recently developed soliton perturbation Josephson transmission line9' 0 (JTL), which is
theory" to second order in a small parameter pro- briefly recapitulated here for the convenience of the

- portional to the structural perturbations in order to reader. Figure I shows a transmission line
" calculate the effect of background radiation on soli- equivalcnt circuit'5 for JTL in which L is series in-

ton dynamics.'2 This calculation allows us to de- ductance per unit length (pul) related to supcrcon-
" fine an "instantaneous frequency" which leads ducting surface currents, R is series resistance pul
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x barrier, and Po (=4rX 10- 7 H/m) is the magnetic
susceptibility of free space.

r v For analysis it is convenient to normalize these
variables as follows:

, *2r /4 0 , (5) ...- :

x =X/A , (6)

t=T/r, 7_r 1 , (~. 7) -•-"

where A, is the "Josephson" penetration length and
tel a X.AVE_ (8)

d-d ----

L, _, With these normalizations, velocity is measured in
units of

c 6 r J ,(2-*/% I -!/ l/L-C, (9)

and (1) becomes

(bI *-,-sino a - a +y, (10) .

FIG. 1. (a) Physical model of the JTL (not to scale). where
(b Transmission line equivalent circuit of the JTL.

a--GL/r, , (lla) "

related to normal surface currents, C is shunt capa- IJ-L/R 'j, ( I b)
citance pul related to electric field in the junction, G y=2Lr/o.3 . (I lc)
is shunt conductance pul related to normal electron
conduction across the junction, f is an externally With a, A, and y=0, (10) is recognized as the
imposed bias current pul, and, finally, sine-Gordon equation with the exact soliton solu-
Josin(21r4/(b0) is the Josephson current put crossing tion 4

the junction. Kirchhoff's equations for this JTL *=4tan' exp + xU I ) ,t (12.
model lead to the following partial differential ,2(I-u
equation for transverse voltage (V): " .. .

which represents the propagation of a magnetic flux
LXXT +XX -LC1rr-- GL4br quantum or "fluxon" along the junction. To make.a fluxon oscillator, one must design a physical path

=JoLsin(2 r4)/4) + 'L , (I) over which the fluxon can execute periodic motion.
Two examples are shown in Fig. 2.- In the "line os-where X and T are laboratory space and time, cillator" [Fig. 2(a)], a fluxon approaches one end, is40o=A/2e is the flux quantum, and reflected as an anitfluxon (change of sign in (12)),

V-f VdT. (2) propagates to the other end, and is reflected as a
fluxon, etc. In the "ring oscillator" [Fig. 2(b)) the

Series inductance (L) and shunt capacitance (C) are fluxon proceeds at constant velocity around the
related to junction geometry by ring. In our calculations, an important parameter is

2AL +d the total path, I, over which the fluxon travels to
L =Po W (3) complete a cycle of oscillation normalized to A.,

and Thus for the line oscillator [Fig. 2(a)]
anda

_' 1= '  (13)C=e (4) A,d
where AL is "London" penetration depth for surface while for the ring oscillator [Fig. 2(b)]
currents, W is junction width, d is thickness of the - 2rR
barrier region, i is dielectric permittivity for the -, (14)

-.. .. ... . .,-, ,...,,,..-.---.--...,.. .-..... ,....-. . ..... , .-.. . . . .- .. . . .. . , . .:-:'
. . . . . .. ....-., " '"., . . .,". ,." ".".".".". , , . . .. '1 " ; .".. ' .. . "'''.. -".".",".. .'. . " . -.-... '' .
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speeds and positions of the solitons). Thus

FZ:7 if ii and J2 are secular (i.e., grow linearly in time)
the second and third terms on the right-hand side
(RHS) of (16) are useful only for times of order e I
and e-2, respectively. To overcome this objectio,

one can allow order e time variations in the pj's of

50 so 1 and i2 satisfy

L(19)

(20) j
where F1 and F2 acquire extra terms because of the
modulations of the p/s, and L is a linearization of
N around 00. Now secular growth of j, and il can
be avoided by requiring that

dF,1#(t (21)

F21.# 4 (L'), (22)

where .rdV(Lt ) is the discrete null space of the ad.

WhI joint of L. From (21) and (22) one obtains ordinary
differential equations (ODE) for the order c and or-

FIG. 2. (a) Line oscillator. (b) Ring oscillator. der e 2 variations in thepj's.
The strategy of our calculation is as follows. Or-

The effect of the ternm yin (10) is to pump energy der c corrections obtained from (21), are used to cal-

into the fluxon motion while the a and 1 terms dis- culate the effects of a, P, and y terms in (10) on the

sipate energy. In the following section we use soli- steady motion of a JTL fluxon. The radiation field
ton perturbation theory to calculate effects of these 01 is then determined from (19). This permits us to
terms on the motion, evaluate the orthogonality condition (22) which

gives ODE's that determine the effects of j, (radia-
tion field) on the fluxon motion. In our picture it is

111. OUTLINE OF PERTURBATION APPROACH this interaction of the fluxon motion with the radia-
tion field that leads to an instantaneous frequency

The approach to sine-Gordon soliton perturba- and therefore to a nonzero oscillator linewidth.

tion analysis in Ref. I 1 begins with a nonlinear Our analysis proceeds as follows (see Ref. I I for

equation details). The exact single fluxon solution (12) of the
unperturbed sine-Gordon equation is modified to

(15) o=4tan-'[exp(')] , (23)

where N=-O is a completely integrable (i.e., "soli-
ton") equation j=col(0,0,), where where.

r;] uy(t)[x-X(t). (24)

col(x~y)u , Thus X(t) specifies the trajectory of the fluxon and

$~t) its relativistic contraction. Two elements of
and e is a small parameter. Expanding ,dL t ) are

140+(16) "*1" (2

one finds that (25 )o.'

NA 0m0, (17) and

so 0 is an exact multisoliton solution which de- (26)
pends upon certain constant parameters pj (e.g., the -€ J 2

." o" . .
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The conditionsF, 16', and , I 2 imply In general we can define a (time-dependent) instan-

I taneous frequency asy- r 2t (27)
(1 v(t)=v, +u.I • (35)

Thus, for typographical convenience, we define The rms derivation of vt) from its mean value v, is

XU. (28) Av= I ([v(t)-v] 2)-,j/2. (36)

The time dependence of X is divided into order E We take AV as a convenient measure of oscillator
contributions, calculated from (21), and order e2  linewidth. Since the radiation field in (31) is not

contributions, calculated from (22). Thus periodic we take the average in (36) over a long time

XX1  +X2 , (29) as 1/2

where Av= lim fdt[v(t)-v,'- (37)
IT 0

4 -Equation (37), together with (35) and (31), provides

a straightforward procedure for calculating the
X f.f(#o( ))sech~d , (30) linewidth of a fluxon oscillator. We do this for a

particular example in the following section.

4
" I 2 •V. THERMAL LINEWIDTH

x f [f(o,)- 0t sin~o] sechCdC. OF A SINGLE FLUXON
OSCILLATOR

(31)
We now turn to a practical question of fluxon os-

cillator design: calculation of linewidth when the
IV. GENERAL CALCULATION radiation field is assumed to be in thermal equilibri-

OF LINEWIDTH
um with its environment. This calculation neglects

From the results of the previous section we see other sources of the radiation field (electrical noise,

that, under steady-state oscillator conditions, the radiation emitted from the fluxon, etc.) thus it
thatund sedstateoscillshould give a lower bound for realizable linewidths

and some idea about how the linewidth depends

* :uc+u.(t) , (32) upon oscillator parameters and temperature. The
analysis is restricted to a single fluxon oscillation to

'there u€ is a constant (power balance) velocity, avoid analytical difficulties associated with the phe-
The time-varying component u. arises from interac- nomena of "bunching.'1
tion of the fluxon with the radiation field and, from We employ (31) where, from (10),
(30) and (31) obeys the ODE

: ~6 mi, :,,- U,2 )&,, (33) f(o, ---a i., $..,+a - . . (38) .... :

a.a.J.
%here ( )., indicates a time average.

If u,=0, the fluxon executes a perfectly periodic thus a is our small parameter in the perturbation

motion over a path I with frequency analysis. Since we are assuming* that the radiation
field arises because the linear modes of the oscilla-

vC=uC/i. (34) tor are in thermal equilibrium, (31) takes the form

A'2 = -t(I -u 2) "( ),) 2 tanh scchf]sech d , (39)

where a is a small parameter that measures (he ing assumptions:
structural perturbation, and ' is a small parameter (40)
that measures the amplitude of the radiation field.

In the following analysis we make two simplify- and

,.-.o. .. °-.°°.• ... . .............................................................. ""."..-..... ."" % ." . % " °* " ' . "
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1 >I 1 (41) We calculate the thermal radiation field q/l as a
sum of individual photon modes of a cavity which ..

The first of these is not a serious rcstriction if one contains a single fluxon moving with constant velo-
assumes a somewhat larger value of a to account city u.17 Thus
for dissipation in the (3 term of (38). cit,-. 1 .Thu

-A.-..- -.
' I'i'V1  t,-uk, / cos1 2 -,(kax -w.-sin(k~x --w. tanh v-u , (42)

where iX,.= aC.cos[(k.u-.)t+ O.(,45

k,(-,,z - 143a) "

and where

n(43b) u2(u 2)3/ 2  k,A.4V (ku4-3b)

Since the second term in the integral (39) is an
odd function of C while the first term is even, the Xsech k---(- 2

contribution of the second term is small except 2

when n c-. Then the ratio of the first to second .

term is of order I and, under assumption (41), we Xexp2-1rk(-u') t/ 2 1 46)
can neglect the second term. Thus (39) takes the " (6 1J4

form To calculate the mode amplitudes IA. 1, we assume

a- Id a mode at frequency w. to have the energy

EM(u) ( a, (47)

(44) exp A -I

The term v/a in (44) merely contributes a constant 
.. •T

to X which is absorbod in the power balance condi- Strictly speaking, the relation between E. and As
tion ." st determines uc. Thus it does not enter into should be calculated for a cavity containing a flux-
our calculation of Av. on; however, from inequality (4 1) this relation is the

The component of X2 that depends on the radia- same as that for an empty cavity. Thus in normal-
tion field is ized units

A, = (49) -.-.-

A4W I 81tUk-o +1 C'U 2W(43)

exp kp., L 0- -+Cu +-

From (48), (45), and (37) we obtain

Ay U l-U) "-"

'o k. sech 2k.(l-u')'n Jexp[-k.(l-u) 2 1 1-
X . 12 (49)i_, +_2~X_,.2 °. .(. U 2

lexp I &a. 1_11.I

, .-. , ,,,,_.,....,... ,..,-.,,- ,... ..... ... .. -. -. . - .. . ..... ..... •. .-...... ,

0- .- .--.. .. . .•.......... . .". - . . ,.. .,•......•........ .I... .-. ..
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Equation (49) is the main result of this paper. To . .

appreciate the dependence of linewidth Av upon os- N M.

cillator parameters and temperature that it implies, T.,2

we turn to two examples of JTL that have been
thoroughly studied.'0 Important parameters are
recorded in Table I. From these paramcters we
have plotted in Figs. 3 and 4 lAv/a as a function of
u for several values of temperature and i. Since 0.

these calculations are rather insensitive to I (see Fig. 4

5) we can assume AV - . We see that Av(u) rises
to a maximum value at 0 -.

u_- -O. S (OV.50/

and, as we expect, falls to zero in limits u-0 and 02 Q 06 Of .,0
1. The main difference between N25L and N53C is u

in the value for Aj, but this has a relatively small FIG. 3. Normalized thermal linewidth as a function
effect upon Av. We find, of course, that Av falls of avcrage fluxon velocity and absolute temperature for
with decreasing temperature, but it is interesting to JTL No. N25L.
observe that the curves Av(u) show little change in
shape.

Dueho1m et a. 7 have reported an instrument- fluxon speed normalized to u o (=Xj/r), and T is

limited measurement that the absolute tempcrature, in addition to the JTL
parameters Xj, 1-j, C, L, and J0 defined in Sec. 11.

A<5, (51) From (49) the rms deviation of the oscillator
where,& is the linewidth (in units of kHz) for a line linewidth is equal to Avlr, Hz, where a measures

the shunt oscillator losses (including loading). In
scillatorowith deriving (49) the following assumptions have been

a=0.01 made:

I= 12. (1) only a single fluxon is present in the cavity,
(2) 1 >> 1,

From our calculation the thermal linewidth in labo- (3) the background radiation field is entirely ther-
ratory units is given by Avl/rj. Assuming I = 12 mal, and
[i.e., a /.. =6 in Fig. 2(a)] we find for N25L that (4) surface losses 00,, in (10)] are neglected.
the maximum linewidth is equal to 260 liz and for Thus our calculations give a lower bound for the
N53C, the maximum linewidth is equal to 550 lz. linewidth to be found in a real oscillator. Addition-
These results are not inconsistent with (5 i). al contributions to oscillator linewidth may arise

VI. CONCLUDING DISCUSSION ...
ad*. ' , * , , "

The main result of this paper is (49) which gives N5,.
Av/a as a function of the oscillator parameters
where I is the total fluxon path length for a cycle of
oscillation, measured in units of X, u is the average

TABLE 1. Josephson transmission lines. .
•

Parameter N25L N53C Unit

a 0.0052 0.00555
Vo 2.3x I0 1.76x 10 m/s
L 2.1X 10- 2.5 D 10- ' H/m 0"

C 0.9X10- 6  1.3x 10- 6  F/m
. 1.27X 10- 3 2.63x 10- 4 m m 11.

Jo 9.7x10 - 1 1.9 A/m 0 0.2 04 46 0, ,.0
O.SSX 1o.10 1.5X tO- i s

FIG. 4. Same as Fig. 3 for JTL no. N53C. ..

%'"
' - : . . . . . . . . . ..".- ,. . : .. ,',?."."-."---..-.-."...' '..' ',.'',.,,' '.'.'.¢,..\..','.- '. - .'." '
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* , , , , ,no special difficulties in making ring oscillators, weI suggest that they be considered experimentally.
Finally, Figs. 3 and 4 show As' rising to a max. -

id '- imuin value around It =0.8 Although this result is___________________________]obtained for thermal Iinewidth, we feel that this
mo~~.~ o ~ ~.behavior should be found when a more general radi-

20 4 to o Q 12 1 16IS 2 22ation field is present. An experimental check of
this suggestion should be possible with instrumental

FIG. 5. lAv/a vs I for T=3 K, and u =0.8. resolution of linewidth only an order of magnitude
better than that reported in Ref. 7.

from excess electrical noise and radiation from the
fluxon itself.
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Subharmonic generation in Josephson junction fluxon oscillators biased on

Fiske steps

M. P. Soerenhen, P. L. Christiansen, R. D. Parmentier,* and 0. SkovgaardI
Laboratory of Applied Mathematical Physicsx The Technical University of Denmark, DK-2800 Lyngby,
Denmark
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Numerical integration of the perturbed sine-Gordon equation describing a long overlap-geometry
Josephson junction in a magnetic field indicates a branched structure of the first Fiske step. The
major portion of the step corresponds to a simply periodic fluxon oscillation whereas the branches
are characterized by subharmonic generation.

PACS numbers: 74.50. + r, 85.25. + k, 84.20.Pc, 84.30.Ng

The dynamics of fluxons on long Josephson tunnel initial condition, defined as
junctions has recently attracted considerable interest. q(x,O) = F(x,O) + G (x), (2a)
Fluxon propagation has clearly been demonstrated to be re-
sponsible for the appearance of zero-field steps (ZFS)'- 3 and ,(x,O) = F, (x,O), (2b)

indicated as being associated also with the appearance of where
Fiskesteps(FS)'"in thecurrent-voltage(I-V)characteristics F(x*,) = 4 tan-'exp[x - 2.5 + ut)/(I - u2)"'2] j,2c)
of such long junctions. Moreover, associated with this prop- its bagation there is an emission of microwave radiation of very in which the velocity u (0 < u < !1} is chosen by a power ba---."

lance calculation according to the value of y, and G (x) is a
narrow linewidth from the ends of the junction,7 suggesting static solution of Eqs. (a) and (b) in which
the possibility of interesting electronic applications. s7 =t of - Fle d in wimilar

In this letter we report on detailed numerical investiga- o 0.75 - F (0,0); (ii) a f tickled" initial condition, similar
tions of a perturbed sine-Gordon model of a long Josephson to (i) but with the further superposition of a packet of plasma
junction in a magnetic field. The results that have emerged oscillations, defined as

give further confirmation to the fluxon propagation mecha- HI(x,t) = A cos(kx - cit )exp[ - (x - xo)2/W 2 J, (3)
nism as being responsible also for the FS and, more impor- in which k= I, w2 = I + k2 0.1<A<0.2. I <xo<4, and
tantly, show a branching of the first FS in the I- V plane with 0. 1 < W<0.2.
the presence of subharmonic generation on the branches. The results presented refer to the situation with the

The mathematical model studied is3  junction biased on the first FS. Our most significant result is
0. - 0,, - sin 0 = aO, - r. (Ia) indicated in Fig. 1, which shows the - V form, on an expand-

( ,) (L,t) I. (I b) ed scale, of this FS. Here, and in the following, voltage is
defined as 0,, which represents the physical voltage normal-

Here, 0 is magnetic flux normalized to 4/2e, x the longitudi- ized to fwo,/2e. In particular, in addition to the major por-
nal distance normalized to the Josephson penetration depth tion of the step, similar to that observed by Erni et al.,' we
,, and t the ti me normalized to the inverse of the Josephson observe two lateral branches. These branches are character-

plasma frequency w. The r term represents a uniformly dis- ized by the generation ofsubharmonics in the radiation emit-
tributed bias current normalized to the maximum zero-vol-
tage (Josephson) current Io appropriate to an overlap geome- 0.555-
try.' The term in a represents quasiparticle loss. The
constant 27 is a normalized measure of the external magnetic F0.5 4b .

field which determines the boundary conditions [Eq. (I b)] at e.IG 4 ..
the two ends of the junction of normalized length L. For this
studyL= 5, a =0.252,, i=0.75, and0<y<l. Theseval- 0.s4s

ues were chosen to be similar to those used in Ref. 5. Equa- •
tions (ia) and (lb) were integrated using the implicit finite A 0.540-
difference method described in detail in Ref. 3, with the V) FIG. 2o FI

- .

space and time intervals both set to 0.05. Numerical accura- 3 0535 -
cy and stability were verified by halving and doubling the ."
space and time intervals in the computations and by carrying 0 530 aERR-R"-.-
out the integration for long periods of time (t -1500) and
observing that all measurable characteristics of the solutions 0 525
remained stationary. 0.53 0.54 05S 0 0.57 0 5S

Two types of initial conditions were used: (i) a "smooth" AVERAGE VOLTAGE - ,,t,

FIG. I. Detail ofcurrent-voltage form or first Fiske step for V 0.75. Rec-
Permanent addres: ltituto di Fic, Universiti dl Salerno, 1.I4100 Se- tangles: major portion, without subharmonic generation; triangles: lateral
lemo, Italy. branches, with subharmonic generation.
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6proposed in Ref. 4 is confirmed by the phase jump of 2rr per

fundamental period,- and by the asymmetry between the
? , time evolution at the left and right ends (note that the polar-

IO na-t ity of the magnetic field used here is opposite that used in
X

,o00 Ref. 5, for which right and left are interchanged here with
'- " respect to that work). Particularly apparent from the insets

of Fig. 2 is the strong subharmonic contei;lt of this oscilla-
.,0 0 tion. This is shown in detail in the power spectra of Figs. 2(a)70 0, 02 0 and 2(b), which indicate the presence of third and sixth sub-FR0 OUNCY - II"" 

'

.5 ,harmonics as well as multiples of these. In contrast with the
, , ,results of Fig. 2, when the "smooth" initial condition is em-bi V-ployed with the same value of the bias, the simply periodic

FIG. 2. Dynamics of lower subharmonic branch of first Fiske step for time evolution indicated in Fig. 3 is obtained. Although
y = 0.54, 1? = 0.75. Time evolution of phase i. voltage O, (upper inset), and
power spectrum (lower inset). (a) Left junction end, (b right junction end. some subharmonic content is still present, it is very much~reduced compared with that shown in Fig. 2.

In a similar way, higher up on the FS is a second branch
ted from the junction, whereas the major portion has no such of the I- Vcurve, the power spectra of the dynamics of which
subharmonic generation. Figures 2-4 indicate the detailed are indicated in Figs. 4(a) and 4(b). In Fig. 4(a), once again,
dynamics associated with the labeled points ori the !- Vchar- subharmonic generation is observed, this time, however,
acteristic of Fig. 1. In Figs. 2(a) and 2(b) we show the time with only a dominant second subharmonic. As before, the
evolution of the phaseo4 and the voltageo4, at the two ends of subharmonic branch of Fig. 4(a) evolves from the type (ii)
the junction and the related power spectra corresponding to initial condition, whereas the simply periodic solution of
a point on the lower branch. The power spectra were calcu- Fig 4(b) evolves from the type (i) initial condition.
lated as follows: Printouts of the time evolution of 0, were In physical terms, the major portion of the FS corre-
examined and a tentative maximum superperiod (highest- sponds to a situation in which a fluxon propagates in the
order subharmonic) established by eye. Time intervals of field-aided direction (here, from right to left), is reflected at
At- 500 of these waveforms, containing exactly an integral the end as a localized plasmon moving in the opposite direc-
number of such superperiods, were then fast Fourier trans- tion, which in turn is reflected at the other end as a fluxon
formed using a simple rectangular window. For display pur- which resumes propagating exactly as before.'" Propagation ."'

poses, all of the spectra have been normalized to an arbitrary on the subharmonic branches is almost the same, except that --

valueofC,2 = 10- ". Solutions similar to those in Fig. 2wete perfect periodicity of the overall process is resumed only
invariably arrived at from "tickled" initial conditions. in after a certain number of complete back-and-forth cycles.
this connection it is worth mentioning that the existence of The reason for the existence of such multiple solutions for
the branches seems to depend only upon the fact of tickling given parameter values is not understood, but the fact is con-
and not upon the precise mode in which tickling is effected. sistent with the frequently noted experimental observation
This fact was established by varying the amplitude, width, of fine structure on FS. ' In the experiments, wave packets '

and initial position ofthe tickling wave packet in the type (ii) miy be created by thermal fluctuations or imperfections in

initial condition and observing that the state into which the the junction thus giving rise to creation of subharmonics.
solution evolved did not change with these variations. As is Of considerable interest is the manner in which the so.

apparent from Figs. 2(a) and 2(b), the fundamental period of lutions evolve as the bias parameter y is varied in small incre-
oscillation is approximately 12 normalized time units. The ments during the computation. As we move along the
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. . . .:'."."-.... .".. . .". ." , ..



* - ~.~ ~ W W 7 V;

paint is reached, however, a simply periodic solution corre-

sponding to the major portion of the FS is maintained, which
is also repeatable and reversible. The only way to proceed
from the major portion of the FS to the branches is through
tickling the solution, which causes a jump to the branch.

I This may be related to the fact, as is evident from Fig. 1, that
I the branches have negative differential resistance. When the1 bias is progressively increased on the lower branch, the junc-

tion switches abruptly from the branch to the major po~rtion

20 ~of the Fs for y >0 .5 4 0 7 . The same procedure on the upper
branch leads to ajump to the third FS for y> 0.5505. On the:1.____major portion of the step, the junction switches to the third

0.0.0% 0.0 Gay 0..0 0.1 10 0T Zs as FS for y'>0 .55 0 and to a static zero-voltage state for

(a) FROUECY -111 y < 0.528. Finally, our results suggest the possible existence
of further fine structure of the branches. This is presently

F. being investigated.
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Fluxon propagation and Fiske steps in long Josephson tunnel junctions
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The dynamical behavior of fluxons propagating in the presence of an applied magnetic
field on an overlap-geometry Josephson tunnel junction of length 5X having a McCumber
fi =5r is studied by numerical integration of the circuit equations of a 50-section lumped
RSJ-type (resistive shunted junction) model. Resonant propagating configurations corre-
sponding to the first and third Fiske steps are found. The fundamental frequencies and
power levels of the radiation emitted from one end when the junction is biased on the first
and third Fiske steps and on the first zero-field step are comparable, but a magnetic field
renders the power spectra at the two ends of the junction different.

INTRODUCTION be applicable to both FS and ZFS, and they have
found varying degrees of success in explaining ex-
perimental observations.

The zero-field steps, or dc current singularities, The idea of applying the fluxon propagation
that appear (also) in the absence of applied magnetic model to the explanation of FS in long junctions was
fields in the dc current-voltage characteristics of first suggested, but rejected as not physically feasi-
Josephson tunnel junctions which are long in one di- ble, by Fulton and Dunkleberger.' It was repro-
mension with respect to the Josephson penetration posed, with an argument for its feasibility, by
length kj have by.now been convincingly shown to Samuelsen. 2 The essential ingredients of this pic-
be associated with the resonant propagation of flux- ture are the observation that an applied magnetic
ons in the junction,1- 3 according to the mechanism field renders the junction dynamical equation asym-
first proposed by Fulton and Dynes.4 In this picture metric through the boundary conditions, 3 thus
the first zero-field step (ZFS), which has a voltage rendering wave propagation along the junction
asymptote of 0oF/l, where q0 is the magnetic flux asymmetric, and the observation that the average
quantum, F is the electromagnetic wave velocity junction voltage in a fluxon propagation mode de-
within the junction, and I is the length of the junc- pends only upon the time-averaged number of flux-
tion, is due to the propagation back and forth along ons present, so that, for example, the first FS is con-
the junction of a single fluxon; the second ZFS, sistent with a situation in which a single fluxon is
whose voltage asymptote is twice that of the first, is present for half the time. Later, a numerical simula-
due to two fluxons, etc. tion result which supported Samuelsen's hypothesis

In addition to the ZFS, when a dc magnetic field was reported by Dueholm et al. 14

is applied in the plane of a Josephson tunnel junc- The purpose of this paper is to contribute to a
tion (either long or short), a second set of current clarification of the situation through a numerical
steps, called Fiske steps (FS), is observed in the simulation of a long Josephson junction in a mag-
current-voltage characteristic. Successive FS occur netic field. The results that emerge give further sup-
with a voltage-asymptote spacing just half that of port to the Samuelsen mechanism. Specific predic-
the ZFS. For short junctions, the theory of FS tions of the frequencies and power levels of the mi-
developed by Kulik s quite satisfactorily accounts for crowave radiation emitted by a junction current-
experimental observations; however, this is no Ion- biased on a FS, as compared with the same quanti-
ger the case for long junctions.6  Extensions of ties with the junction biased on a ZFS, are consistent
Kulik's theory to long junctions, framed in terms of with experimental measurements. Moreover, the re-
cavity-mode interactions, have been formulated by suits suggest further experimental measurements to
various authors. 7- n0 These analyses are intended to check the proposed mechanism.
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27 FLUXON PROPAGATION AND FISKE STEPS IN LONG... 5441

JUNCTION MODEL AND COMPUTATION r" dV
TECHNIQUES "d = Y+ (oj I - 20j +Oj + 1)

The junction model and computational procedures
employed in this study are essentially those used in a -sin -- Vi, (2b) "
previous study of ZFS.' An electrical representation
of the model is shown in Fig. 1. The spatial depen- for section 50,
dence of the problem is taken into account by con- r dV5 0 M + 2 04

sidering a 50-section lumped-circuit approximation sno - • ,
to the junction. A junction length of 5Xj is assumed TA d"

throughout this study. Dissipation is assumed to be (2c)
due only to the linear resistor R of Fig. I. Accord-
ingly, we assume simply that the powers radiated and for all sections (1 <j 50),
from the left and right ends of the junction at a d r
given frequency are equal to the sum of the squares
of the Fourier components VCos+ Vsln at that fre- -- - 2
quency 'of the end-point voltages VL and VR, respec- Here V is voltage v normalized to loR, r is time nor-
tively. malized to rA--= 4 / 41 oR (the inverse of the gap-sum

An overlap-geometry junction is assumed, imply- fre!quency), T_=RC, y=18 /1 0 , M--IF/Io, and
ing that the bias current, I per section, may be con- X --q~o/2frLl o. The value of the parameter c/TA,

sidered to be uniformly distributed along the junc- which is a measure of the dissipation, is assumed to
tion. ' The effect of an externally applied dc mag- be 10 throughout this study; the value of the param-
netic field Be in the plane of the junction and per- eter M, which is a measure of the applied magnetic
pendicular to its long dimension is modeled by ap- field, is fixed at 8.
plying the dc current IF as shown in Fig. I. The re- Equations (2a)-(2d) correspond to a discretized
lation between the two quantities is Bj =.uoIF/w, version of the perturbed sine-Gordon equation, with
where j0 is the permeability of free space and w is boundary conditions given by 0,(O,t)=O,(I,t)oxBe,
the width of the junction in the field direction. as employed by many other authors (see, e.g., Ref.

The Josephson element J in Fig. 1 is characterized 13). The time normalization employed in Eqs.
by the adiabatic Josephson equations (2a)-(2d) is the same as in Ref. 1, but it differs from

J=10sin$, (la) that used by other authors, who measure time in
units of the inverse plasma frequency

dOb 2r /),(Cqdo/2 rIo)f'. It is trivial to show that the
- 4b' relation between the two time scales is given by

(oJTrA=(2T€/1r'ra) - . It is likewise trivial to show
Combining Eqs. (ia) and (b) with the circuit equa- that the dissipative parameter r, /rA= 2 c/r, where
tions of Fig. 1 results in, for section 1, fi is the usual McCumber parameter.

r', dVg Equations (2a)-(2d) were integrated by means of
-y+M+;J(0-)-sin0-Vt a fourth-order Runge-Kutta routine using a fixed

time increment of 0.01r&. The problem was in-
(2a) tegrated as an initial-value problem, and two types

for section J (I <J < 50), of initial conditions were employed:

L12 L L 1.12

--c------ fyy%IF IF

E1  C A J

FIG. i. Lumped circuit junction model.

7-_-

- . " .'.. . , :.'. .. :....'-



5442 S. N. ERNE, A. FERRIGNO, AND R. D. PARMENTIER 27

22w -l150 24 W .... . I so

** .... " .... 0 >°"2 t ::**$$ .... ' " .... 0 . .

ee-2 70e i - > t. 274t >.

-o 0 7 5 r 231. t -07S-

a 0

0 *'*'6t*,---****.- .'"l-I-"

.......... ....... .""......................
I0, R -1 o 2O, -' ""t ..........

,______________,_____ _____,____,______ t1241 ,-150
. _ _ I _ _ -! 1,

I 10 20 30 40 50 1 0 20 30 40 so
SECTION NUMBER SECTION NUMBER

2 . SO 24n -IS O
(c) (d) I.""

23w -07S* 23t .. 075-

... .. .........Z~xt- .... ".. "" .... 0 $: ; *....."...... ............... ... 0°°° ' .........
"**'*..... .... 0 L 9 " '

21 i I-22tA -075 ~ 21w R -07S
....... "20..... " . -:.294 Z

20,L ,- 286% "--: " ..... . - SO 2O. I a-r I II I -. 1  l

1 10 20 30 40 0 1 10 20 30 40 so

SECTION NUMBER SECTION NUMBER

FIG. 2. Time evolution of FS-I fluxon propagation for y=0. 53 and M=8. Circles: phase 0; crosses: normalized volt-
age V. (a) r=266r& and 27Gr&; (b) 7= 2 74 A and 2 78rA; (c) r= 2 82,& and 286rA (d) r= 29Ork and 294 -r,. Apparent discon-
tinuities are due to printer discretization.

(1) When searching for a first point on a given FS, over that period, through the Josephson frequency
the simple phase and voltage distributions shown in relation, Eq. (2d). Physically, (V) must be constant
Fig. 2(a) of Ref. I were used. These distributions along the entire junction; in practice, (VL) and
represent only a rough approximation to a single (VR ) were always equal to within better than 0.5%.
propagating fluxon, and their use constitutes a The Fourier sine and cosine coefficients of VL
weakness in the calculations, as will be discussed and VR were then obtained by trapezoidal rule in-
below. (2) When searching for the upper (lower) ex- tegration of the basic definitions of these coeffi-
tremity (in bias current) of a given FS, y was in- cients over the grid. Since the integration was per-
creased (decreased) by a small increment and the ini- formed over two oscillation periods, the first even-
tial phase and voltage distributions were taken as the order harmonic was, in fact, the fundamental, and
final distributions corresponding to the previous bias the absence of odd-order harmonics served as a fur-
value. The integration was continued until the oscil- ther check that the oscillation had indeed reached a
lation settled into a steady state, defined operational- steady state.
ly as in Ref. 1. Normally, this required integrating
to about 30 0 r& (about 9-10 complete oscillation FLUXON OSCILLATIONS AND FISKE STEPS
periods).

After stopping the integration, the final two oscil- Figures 2 and 3 show a series of snapshots of the
lation periods of the voltages at the two ends of the phase and voltage distributions along the junction .

junction, VL and VRt, were recorded on a grid of ap- over a single period of oscillation for two different
proximately 500 equally spaced points. The average modes of propagation. In Fig. 2(a), a fluxon is lo-
values of these voltages, (VL) and (VA), were cated near the center of the junction at r= 2 66 rA
determined using the fact that the average voltage and is propagating toward the right (this is an anti-
over a period is proportional to the phase difference fluxon by the definition used in Ref. I, but the dis-
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FIG. 3. Time evolution of FS-3 fluxon propagation for y=0.60 and M =8. Circles: phaseo; crosses: normalized volt-
age V. (a) r=272rA and 2 7 6

TrA; (b) Ir=28OT6, and 284 r,; (c) 1-288,rA and 2 9 2 ,rA; Wd T= 29 6 rA and 3O~r&. Apparent
discontinuities are due to printer discretization.

tinction is arbitrary). Note that there is a net phase ated with the first ZFS (cf. Fig. 2 of Ref. 1).
difference of 2ff along the junction and that the volt- In Fig. 3 the situation is somewhat less "binary"
age is a well-defined pulse which is everywhere posi- inasmuch as the various propagating entities overlap
tive. At -= 27 G0 ,&, the fluxon is approaching a re- one another, but the overall picture is still sufficient-
flection at the right end of the junction. In Fig. 2(b), ly clear. In Fig. 3(a), at r=02721r& there is a net

this reflection has just taken place at r = 2 7 4 r,&, after phase difference of 2ff along the junction and a volt-
which a clearly defined voltage pulse begins propa- age peak near section 21, corresponding to a fluxon
gating to the left. Note, however, that the voltage moving to the right, but a second fluxon is rapidly

waveform now goes both positive and negative, and entering from the left end. AtrT= 276,r* two voltage
that the net end-to-end phase difference is essential- pulses are clearly visible, and the net end-to-end
ly zero. These facts suggest that the entity in ques- phase difference is about 3.5ff, corresponding to
tion is a localized plasmon, or perhaps a plasmon- something less than two fluxons in the junction. In
breather oscillation.'16 In Fig. 2(c) this entity contin- Fig. 3(b) this packet has moved to the right at
ues propagating to the left, and at r=o286 r, it is ap- 6= 280ra, with the first pulse approaching a reflec-
proaching a reflection at the left end. In Fig. 2(d) tion at the right end of the junction and the second
this reflection has just occurred at r=29OrA, one near section 21. During this portion of the os-
whereupon propagation resumes toward the right. cillation the situation suggests, approximately, the
During the reflection, however, the net end-to-end propagation of two fluxons in a "bunched" configu-I
phase difference has increased again toward 21r, so ration."-"' At r=284rA, the leading voltage pulse
that at r-=294rs the oscillation has completed al- has just emerged from the reflection and is locatedJ
most one full cycle. As is evident from Fig. 2, the near section 40, moving to the left; whereas the trail-
phase at any point along the junction advances by a ing pulse is located near section 33 and moving to
total of 21r during one oscillation period, as com- the right. In Fig. 3(c) the two voltage pulses have
pared with the value of 41r for the oscillation associ- exchanged positions at r-2S88rq, with the leading

.. . . . . . . .. .... . .. . . . .
...................---. - 0 -...
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1.0 " '"co ZFS-11 RIHT EN.

ZFSz- FTo

.0.6 FS-I/ 0 I WI

0. / >  
240 20 260 270 280 290 100

/ [TIME (ta|" FIG. 6. End-point voltage waveforms of FS-3 fluxon

0./ oscillation for 7= 0 .60 and M = 8./
E/

Z //
0 2 OHMIC LINE leading voltage pulse is just undergoing a reflection

/ from the left end of the junction at r=296-r&, and
/ -the trailing pulse is located near section 19 and still

/ moving to the left. At ir=3O0r& the leading pulse,
0 barely distinguishable, is located near section 17,

0 02 0.4 0.6 moving again toward the right, whereas the trailing
NORMALIZEO AVERAGE VOLTAGE (V) pulse is approaching a reflection at the left end. The

FIG. 4. Normalized current-voltage characteristic of net end-to-end phase difference is now approximate-

the junction. Solid curve: magnetic field equal to zero, ly 1.51r, and the oscillation has completed almost

showing first two zero-field steps; circles: first and third one full cycle. Figure 3 shows clearly that during
Fiske steps for M=8. ?'cm is the field-reduced critical one full period of this oscillation the phase at any
current value, point along the junction advances by a total of 6r. he

Figures 2 and 3 show each of the two modes of
propagation for a single value of the bias current.

pulse now located near section 27, moving to the Each of these two modes, however, exists over a cer-
left, and the trailing pulse just undergoing a reflec- tain range of y. This fact is displayed in Fig. 4,
tion from the right end. Note that the net phase which shows the two loci of points, indicated as cir-
difference along the junction is at this point essen- cles, labeled, respectively, as FS- 1 and FS-3 in the
tially zero. At r=292-r& the two voltage pulses con- y- ( V) plane. The solid curve, for reference, is the
tinue propagating to the left, and the net end-to-end current-voltage characteristic of the junction in the -
phase difference has become approximately ir. In- absence of magnetic field, taken from Ref. 1. The
terpretation of this situation is not completely positions of the two groups of circles relative to the
unambiguous, but the propagation of a fluxon- first two zero-field steps, ZFS-I and ZFS-2, confirm
plasmon, fluxon-breather, or fluxon-plasmon- that FS-I and FS-3 are, respectively, the first and
breather combination is suggested. In Fig. 3(d) the third Fiske steps. The point ycM at (V) =0, in-

cidentally, is the value to which the critical current
_has been reduced by the magnetic field M = B.

At this point we note that there should also exist
BIHT END a second FS corresponding approximately in voltage

i0s~ II position to ZFS-l, but we have not been able to find
I this FS numerically. We believe that the reason for

240 2s0 260 270 200 290 300 this is that the initial condition employed is not real-
,,,,,,,,,, - ly appropriate to finding FS-2. We have observed in ..'

LET [O -calculating FS-I and FS-3 that the outcome of the
, simulation depends, at least sometimes, quite strong-

2..0 2 24 270 200 2 300- ,ly on the initial condition employed: If the initial

TIME It,) condition is "too far" (by some measure) from the
FIG. 5. End-point voltage waveforms of FS-l fluxon final propagating configuration, the junction tends

oscillation for y-O. 3 and M -B. to switch to some other mode of propagation.
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FIG. 7. Power spectra (first three harmonics) of the ra- FIG. 8. Power spectra (first three harmonics) of the ra-
diation emitted from the junction ends, normalized to diation emitted from the junction ends, normalized to
VL,VR =0.04/ir. The frequency indicated is that of the VL, V- =0.04/ir. The frequency indicated is that of the
fundamental component. The junction is biased on 'he fundamental component. The junction is biased on the
first Fiske step. third Fiske step.

POWER SPECTRA and 8 are the following: (I) The fundamental fre-
quencies associated with FS-I and FS-3 are the

Figures 2 and 3 clearly show that the two modes same; moreover, they are the same as that associatedof p ° ropagaion associated with FS-I and FS-3 are with ZFS-! [cf. Fig. 5(a) of Ref. ]. This fact has ".,
asymmetric. This fact is underlined in Figs. 5 and Alread. _ been confirmed by expeimental -,-.. -•6, which show the temporal evolution of the two tions 4 (2) The power levels of the radiation emitted :1
end-point voltages VL and VR in the two cases cor- by a junction biased on a FS are comparable, at least
responding to Figs. 2 and 3, respectively, in the field-aided direction, with those obtained with

Since we assume that the power radiated from an the junction biased on a ZFS (cf. Fig. 5 of Ref. 1).
endofthe "junction is -proportional to the square of This fact is also consistent with experimental obser-
the voltage at that end, it is clear that Figs. 5 and 6 vations.14 (3) The asymmetries in the power spectra
imply that the spectra of the radiation emitted from of the radiation emitted from the two ends of the
the two ends are quite different. That this is indeed junction may well be large enough to be measurable.
the case is indicated in Figs. 7 and 8, which show One way of doing this would be to couple to a single
the power spectra, calculated as described above, for end of the junction and measure the radiation with
the first three Fourier components of the voltages both polarities of the magnetic field.

, VL and V5 , corresponding, respectively, to FS-I and
FS-3 as a function of the bias current. The frequen-
cy shown in the lower part of the figures is that of COMMENTS
the fundamental (labeled 1) Fourier component in
each case. The power levels have been normalized The present work is intended as a contribution to
to an arbitrary value of VL,V =0.04/r. the understanding of the dynamics of long Joseph-

The main conclusions to be drawn from Figs. 7 son tunnel junctions. We believe that fluxon props-
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Intermittent Switching between Soliton Dynamic States in a Perturbed Sine-Gordon Model

M. P. Soerensen, N. Arley, P. L. Christiansen, R. D. Parmentier, ( and 0. Skovgaard
Laboralory of Applied Matihematical Physics, The Technical University of Denmark. DK-2800 Lyngby, Denmark

(Received 4; June 1983)

Chaotic Intermittency between soliton dynamic states has been found in a perturbed
sine-Gordon system in the absence of an external ac driving term. The system is a mod-
el of a long Josephson oscillator with constant loss and bias current in an external mag-
netic field. The results predict the existence of a current step between the first two
Fiske steps in the current-voltage characteristic. A simple probability model demon-
strates an asymmetry in the statistical nature of the switching in the two directions.

PACS numbers: 74.50.+r, 05.40.+J. 84.30.Ng, 85.25.+k

Chaos phenomena have been found for the rf- tinuations from runs done at nearby points in
and dc-current driven small Josephson junction parameter spaceJ for long periods of time (typi-
described by the resistively shunted junction cally t - 10000) by means of the implicit finite-
(RSJ) model.' Recently Ben-Jacob et al. and Yeh difference method described in detail in Ref. 5,
and Kao reported on intermittent chaos in the with space and time intervals set equal to 0.05
numerical solution of this model.' For a long and 0.025, respectively. Numerical accuracy
Josephson junction, the perturbed sine-Gordon and stability were verified by halving the space
equation (SGE) with spatially uniform or nonuni- and time intervals.
form oscillating driving forces and linear damp- In a narrow range of relatively low y values (..
ing also gives rise to chaos in time and space- 0.450 - 0.454) the solution develops stably into
time.. Detailed numerical investigations have the FSl solution illustrated in Fig. 1(a). In physi-
revealed subharmonic generation caused by soli- cal terms FS1 corresponds to a situation in which
ton motion in a long Josephson junction in a con- a soliton propagates in the field-aided direction,
stant external magnetic field modeled by the and is reflected at x = 0 as a localized plasma
perturbed SGE without an external ac driving wave because of the energy loss at this boundary.
term in the current bias. 4 In the present Letter This plasma wave then moves in the opposite di-
we demonstrate a new chaotic intermittency rection and is reflected as a soliton at x = L as a
phenomenon between two dynamic states of this result of the energy injection here by the magnet-
model. The two states correspond physically to ic field. J An unambiguous interpretation of Fig.
the first two Fiske steps (FSl and FS2, respec- 1(a) in the schematic terms shown in Fig. 1(c)
tively) in the current-voltage characteristic of may be established by examining together , x, 1),
the junction. s 1(x,t), and e.(x, t). 1 The soliton then resumes

The mathematical model studied iss  propagation as before the reflections. 4. 6
.7 On the

,-Pst - sinV = ctG9-y, (la) average this cycle lasts the time F Si -12 (at..
=0.454). For y <0.450 the junction switches into

(P,(0, t) = (O(L, t) = q. (1b) a static zero-voltage state where Sp = 0.

Here v is the usual Josephson phase variable, For relatively high y values (y =.0.500 - 0.540)
x is distance normalized to the Josephson pene- the solution develops stably into the FS2 solution
tration depth A,, and t is time normalized to the corresponding to a situation in which a soliton
inverse of the Josephson plasma frequency %o. and a localized plasma wave travel in opposite
The y term represents a uniformly distributed directions at the same time [ shown numerically

constant bias current normalized to the maximum in Fig. l(b) and schematically in Fig. 1(c)]. The . - -j

zero-voltage (Josephson) current. The term in average length of this cycle was estimated to be
a represents quasiparticle loss. The constant q- Ts2 ( 6 (at y = 0.500). For y > 0.540 the junction
is a normalized measure of the external magnet- switches to FS3.
ic field which determines the boundary conditions For intermediate y values (y = 0.456 - 0.490)
(lb) at the ends of the junction of normalized the junction exhibits chaotic intermittency be-
length L. In this study L = 5, a = 0.252, ri = 1.25, tween FSI and FS2. The intermittency is shown
and y is varied in the range y = 0.45 - 0.55. Equa- in Fig. 2 for y, = 0.480, where it is evidenced by
tions (1) were integrated from appropriate initial changes in the average slope of 0P versus I (on
conditions [similar to Eqs. (2) of Ref. 4 or con- the FS1 portions ()- 0.6 and on the FS2 por-
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FIG. 4. Abscissa: Length of time Interval on FSI 044 .........................

and FS2 measured In terms of number of cycles, n, of 05 0A6 7 8 0'9 '0 1') 1'2

lengths rFs, and irFs, respectively. Ordinate: Dots

show number of intervals, N4(n), with i = 1,2, shorter FIG. 5. Detail of current-voltagu characteristic for
than or equal to n. Full curves result from theoretical L=5, r=0. 252, T1=1.25. FS1 (circles), FSIj (squares),
estimates with Pl2() = (1.0 x 10")t, p,,(I) = (1.2 x 104)1 and FS2 (triangles). Error limits for (V,) are indicated
for n < 6, P2l(t) = (0.95 x 10"5)t for n > 6. Bias -y =0.480. by horizontal bars when larger than 0.01.

tained by use of a Hamming window. In inset (a) may be an interference between the subharmon-
we observe the dominant frequency at " 0.17 ics 3 and 2 which build up on FS2, as seen in Fig.
and a relatively low content of subharmonics. In 3, but the question certainly requires further
inset (b) subharmonics have developed at approx- study.
imately - and I of this frequency. A similar Finally, Fig. 5 shows the resulting current-
building up of subharmonics is not seen while the voltage characteristic for the y interval covering
junction operates on FS1. FS1, the intermittency region, and FS2. At the

Figure 4 (dots) shows the accumulated distribu- average voltage ( (p,) =O.83 a jump in the current
tions, N,(n) and N(n), of the lengths of the time (from y = 0.462 to y = 0.480) occurs. We pro-
intervals the junction operates on FS1 and FS2 pose the name "FSI" for this portion of the char-

for 217 switches between the two steps during a acteristic. We have checked that the values of
run of over 10000 time units. Here n is t/tFs, ((P,) are stationary in time. Thus it should be
and 1/rFS2, respectively. To analyze this situa- possible to detect FSIA experimentally. Recent
tion, let the probability that the junction switches measurements by Cirillo, Costabile, and Par-
from FS1 to FS2 in the time interval tt,t +dt], mentier' have in fact perhaps revealed such struc-
where t is the time after the last switch, be tures.
p(t)dt. Furthermore, if all the switches are in- We thank A. C. Scott and N. F. Pedersen for
dependent, then the switching is a Poisson proc- stimulating discussions. The financial support
ess. Consequently, the probability P,(t) that the of the Danish Natural Science Research Council,
oscillator switches from FS1 to FS2 within the the Thomas B. Thriges Fond, and the European
time t becomes P,() = 1 - exp[- op1 2 (T)d]. As- Research Office of the U. S. Army through Con-
suming p 12 (t)=pt with p = 1.Ox 10"', we get for tract No. DAJA 37-82-C-0057 is acknowledged.
FS1 the fit NI=P,(n7FS)Nmx,, where Nrr, is the
total number of intervals on FS1, shown in Fig. _ __"

4 (full curve). The agreement between the nu-
merical data and this simple, but arbitrary,
probability model is quite good. (O'Permanent address: Istituto di Fisica, Universiti

For FS2 a jump of 63 in N 2(n) at n=6 is ob- di Salerno, 1-84100 Salerno, Italy.
served in our 10000-time-unit run. Only by use 'B. A. Huberman, J. P. Crutchfield, and N. H. Pack-
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onstrates an asymmetry in the statistical nature 201 (1983).
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A hamiltonian perturbation theory is developed for the perturbed sine-Gordon equation with periodic boundary con-
ditions modelling the Josephson ring oscillator. Stationary fluxon velocities are determined as function of length, loss and -
bias parameters.

The circular Josephson oscillator was originally 0x(0,t) = x, t, dt(0, t) r(', t), (1)
proposed by Scott and McLaughlin [1 who pointed
out that this oscillation structure may be of technical where the a term represents quasi-particle loss across
importance at electromagnetic wavelengths of 100 the barrier and the ( term the surface impedance of
pim or less. This oscillator structure has in fact been the superconductor. The y term is the bias current.
included in the current programmes of several ex- The circumference of the circular transmission line
perimental groups [21 . The mathematical model for normalized to the Josephson length is denoted I in
the circular Josephson oscillator with losses and bias the periodic boundary conditions. According to
current is a perturbed sine-Gordon equation 13J with hamiltonian perturbation theory I I J the hamiltonian
periodic boundary conditions and fixed winding num- for the unperturbed sine-Gordon equation,
ber. These boundary conditions close the circular os-
cillator in a perfect matching and thus permit undis- f! 2 f I Cos )dx,
turbed fluxon motion on the oscillator. Furthermore 2 ( + 2 I cs d'
the boundary conditions are ideal for spectral method
numerical studies of the radiation from the oscilla- satisfies the differential equation
tor. However, perturbation methods for fluxon dy-
namics so far have only been used for infinitely long d/1
Josephson junctions [I. In the present note , the dt f ( + t + 'yt)dx (2)

perturbation method is extended to the finite case
with periodic boundary conditions, for small values of, of, and'y.

The normalized perturbed sine-Gordon equation The travelling wave solution to the unperturbed
131 with periodic boundary conditions can be written sine-Gordon equation is given by 141

px -¢tt - sin 0 -- oo t - 00,,,t + y, 0 = 2sin-I [-+cn(Q,k)] , (3) •.,

with = (x - ut)Ik(l - u 2) 1/ 2. 1ere cn(,k) is a

Supported by the Danish Council for Scientific and In- jacobian elliptic function [51 with modulus k. Plus

dustrial Research and by United States Army through its and minus sign refer, respectively, to fluxons and
Furopean Research Office. antifluxons. The velocity of the wave is denoted u.

, Based on a master's thesis by one of the authors (F.I.). If the modulus satisfies the condition
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u 2kK(k), (4) - 2(1 - k2 )K(k)]/A,' - 2"yk 3/A, and A = 2k2E(k)

+ (I - k 2)12 /4K(k). Here eq. (6) has the same form

the periodic function 0 gets the period 1, and 0 rep- as the perturbation equation for the infinitely long

resents a single fluxon (or antifluxon). As in ref. [51 Josephson transmission line. Thus for I - - it can be.

the normal complete elliptic integrals of first and sec- shown that a' -' a, 0' -- ,3, and 7' --y. In the opposite

ond kind are denoted K(k) and E(k), respectively. limit, I -* 0, we find a' -- 2a, 13'-, ,and y' -" 0.

Using eq. (3) we get the new expression for the The stationary velocity u = u is obtained from

harniltonian (6) by letting du/dt = 0. The periodicity condition
H = 8(1 - u) E(k)/k (4) is approximately valid for the perturbed sine-

Gordon equation in the stationary state. Using (4)

with u =u_* in (6) we obtain u as function of1.
4k-(l - k2 ) (I - u2 )l 2 K(k). (5) This function is shown in fig. I a and b for different

Inserting eq. (5) with u = u(t) on the lhs of eq. (2) values of the parameters a and 13. We note that a max-
and 0 given by (3) on the ris of eq. (2) we obtain imurn velocity occurs for relatively small values of

2)3 /2  the ratio a/3. In the limit a = 0 it can be shown thatduldt=+_irTf'(l - u2)1- C'ul -u2 U /u (6)
4 1 - 3 (6) - I for l- 0. For a * O,u - 0 for I -O due to the

with a' = 2ak 2E(k)/A, 0' = 23 [(2 - k2)E(k) fact that effective bias, y', vanishes in this limit while
the effective loss, a', tends towards a finite value.

>' o Fig. 2 shows the velocity as function of the bias
Z afor different values of the length. The curver inter-
Z0.80 sect because the same velocity, u, occurs for two dif- -

0.01 ferent values of Ifor certain values of a,13, and - is
06 0.05 seen in fig. I. The similarity between the curves and

0.10 the first zero field step [41 in the I-V characteris-
04 tic is due to the fact that the normalized voltage V

= 2nu_/I for I I . The current I cc y.
02 In order to check the validity of the perturbation

theory we have solved eq. (1) numerically with the
00 t I static one-fluxon solution0 1I

a length 2 sin- [cn((x - 112)/k, k)I - sin 1y
t.. 1, 0 -

0,00 -

00

0 0.02 2) 3. 4o 
. 0

04 0.08 ,

O04 020 03"'-.

0 2 o t,.

0 1 2 3 4 5 6 7 a "

b length 0.0

Fig. 1. Stationary one-fluxon velocity, u. versus length of Vl0o t4 .0" 0
Josephson oscillator, 1, estimated by means of hamiltonian Vetocity

perturbation theory. (a) p = 0.10, -1 = 0.10, o = 0.00. 0.01, Fig. 2. The bias current, 7, versus the stationary one-fluxon
0.05, and 0.10, (b) a 0.02, -y 0.05,3 = 0.00, 0.02,0.08, velocity, u_, estimated by means of hamiltonian perturba.
and 0.20. tion theory. a = 0.01, 0= 0.2,1 =0.4, 1.6, and-.
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Phonons and solitons in the "thermal" sine-Gordon system
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Standard methods of stochastic processes are used to study the coupling of the sine-Gordon sys-
tern with a heat reservoir. As a result we find thermal phonons with an average energy of kT per
mode. The translational mode (zero mode) is found to carry an average energy of k, 7. This last L
value is just the energy in the Brownian motion of a thermal soliton. These results are in agreement
with those obtained by the use of a statistical-mechanical description of a dilute soliton gas. Con-
nection of the above results with Josephson junctions and the extension of the analysis to more gen-
eral equations is also discussed.

1. INTRODUCTION and Hamiltonian density

The sine-Gordon equation has recently been used to H =- I-cosO]. 1.4)
model several physical systems in contact with a heat 8
reservoir at a given temperature. - 9 The effect of the cou- Small oscillations around a ground state of the system
pling of the sine-Gordon system to the heat reservoir pro- are obtained by linearizing the sine-Gordon equation with
vides a twofold mechanism:

b= bo+ b, (1.5) •-.
(i) a dissipation of energy in the system due to an ener-

gy flow from the system to the heat reservoir, this providing a linear equation for 0:
(ii) a disordered input of energy into the system due to a - - xo 0 =0 (1.6)

flow back of energy from the reservoir.
with an associated energy density given by

A loss term in the sine-Gordon equation is then intrinsi-^E
cally connected to a thermal noise term, suggesting a Hph= +,P1+ 01coso0) (1.7)
modeling of the interaction between the system and the 16 "-(
reservoir with a driving stochastic force (temperature When the ground state of the system is given by (1.3), a
dependent) in the pure sine-Gordon equation:' -5 7  "zero mode" (translational mode) is found from Eq. (0.6).

In addition to this mode, there exists a continuum set of
. (11 states (phonon modes) which satisly the linear dispersion

The first term on the right-hand side (rhs) of Eq. (1.1) is relation:"
the loss term representing the energy flow to the reservoir, w2= 1+k 2  (1.8)
while the second term is the noise associated with a, giv- For practical applications to Josephson junctions, it is of
ing the disordered thermal-energy input to the system. interest to include also in the rhs of Eq. (1.1) a constant
The noise term is assumed to be "white" both in space bias term , representing an ordered energy input into theand time with the autocorrelation function:bistr ,reeenngaodrdeegyiptnoth

system (work on the system). In this case (in the absence
(n(x,t)n (x',t')) = 16a(kT/E0 )6(x -x')8(t -t') . (1.2) of solitons), phonons (also called "plasmons") are seen

as small oscillations around the ground state 0o
Here ( - ) means ensemble average, while the constant = -sin-, .1 12
l6a(kT/E0 ) is determined by applying the fluctuation In this paper we study the effect of the heat reservoir
dissipation theorem for a soliton with small velocity"1'' 0  both on solitons and phonons by using standard methods
(Eo is the rest energy of a soliton and is used to fix the of stochastic processes. This will be done in the following
scale of energy in the system, kv is the Boltzmann con- cases.

stant, and T is the temperature). In Sec. II we study thermal phonons in the presence of
When a=O, n(xt)=0, Eq. (1.1) reduces to the pure a static "exact" sine-Gordon soliton. In Sec. Ill we in-

sine-Gordon equation with the exact soliton solution clude a 71 bias term in the rhs of (1.1) and study the
X 1 thermally excited plasmons around 0o= -sin- 'i (no soli-

d0=4tan - i exp- I-II (1.3) tons present in the system).
In both cases we find that as long as k#T<<Eo, the

30 2635 © 1984 The American Physical Society
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phonon modes have an average energy of k1 T per mode. (2.8)
In the case when a soliton is in the system, however, we 0,-o(Xit. U

find that the corresponding extra mode (zero mode), has
an average energy of LkaT. All these results are in agree- (here we assume the system to be in a box of length L,

ment with a statistical-mechanical description of the and then let L -- oo). Substituting (2.8) in (2.7) and using

sine-Gordon system. In Sec. IV we concentrate on the ef- Eq. (2.3), we obtain

fect of both the bias term (71) and the heat reservoir [a
and n(x,t)] on the soliton motion. As result of the [A&,fkx)+aAtfkx+Ak~fk(x)"
"thermalization" the soliton will execute a Brownian
motion with average energy of "ka T (the zero-mode ener- -0

gy). In Sec. V we relate the above results to a practical +(Ab.n+aAb.)fb()=-n(x,1). (2.9)
Josephson junction and, finally, in Sec. VI we give a short
summary of the main results of the paper including a
brief discussion of the possibility of extending the analysis Equation (2.9) is easily studied once projected, respective-

to other equations of the nonlinear Klein-Gordon class. ly, along the fk(x)'s and the fb(x) eigenfunctions, this
giving [using (2.6)]

II. THERMAL PHONONS IN THE PRESENCE gvg.ig26
2OF A SOLITON Ak,n +aAt,, +Akok -Ek(t) (2.10)

We consider as an "unthermalized" system the pure and

sine-Gordon equation A,, +aA1 ,f=E.(t) (2.11)

,.-- -sino = 0 (2.1) wt
(.) with

and assume that only a static soliton is present (dilute-gas eb(t)= - f-+fb(x)n (x,tx-
limit). Phonon modes 'Pk are obtained as solutions of Eq. -

(1.6) with 0o given by (1.3) with v =0. Assuming O as

0&~,t)=fk(x)e ,(2.2) (xW n , t ..-

we obtain from Eq. (1.6) that By using (1.2) and (2.6) we find, for the autocorrelation)f()Wf()function Rlt-t') and for the power spectrum S,(W) of ,..
--a,,+ 1 -2 sech2x f k)-c~f~) (2.3) the normal processes ek(t) and e6(t), that

As is well known, (2.3) admits a continuum set of eigen- Rk( t -t)=R~1 (t -t )

functions: "....

!__ e )a16a(kaT/Eo)6(t-t') , (2.12)
Sfk---%() W6~a/o (2.13) I" ) 1( itn 24

(2(2.13)
together with a zero mode:SW=S,,W=lak;TE).(13

Equations (2.10) and (2.11) are then integrated by the
fb(x)= =sechx (2.5) standard theory of stochastic processes,' giving the fol-

lowing expressions for the power spectrum of Ak(t) and

which restores the translational symmetry broken by the Ak.f(t):
introduction of the soliton into the system (Goldstone
mode)." Equations (2.4) and (2.5) together form a com- SA,(o)- 16a(kT/Eo). 2-)2 a 2 ' (2.14)

plete set of orthonormal eigenfunctions: ( _

f + +a SA, W(o)o 2S(o) (2.15)+.fb(X~dx=l, f_.fA(X)f,{x)dx=o :. :

-SAr{W a nd SA(.c) are obtained from (2.14) and (2.15)

with the substitution wt =0.] If we assume ergodicity, the
f kf(x)f.(x)dx =6(k -k'), (2.6) time averages of the processes I At(t) and I A#,(t) 12

are evaluated as

fb(X)fb(X')+ ff(x)f(x')dk =8(x -x) ( lt(t)I'> =AA(o)

where * in the superscript means complex conjugate. f + sA (w)=8(k / Eo) (2.16) a2V kk

By coupling the sine-Gordon system with the heat -- 2m ' -'

reservoir, we change Eq. (2.1) into Eq. (I.1). Thermal (I k. () 12)=RA,.(0)
phonons are then found to satisfy = a d

= (2.7) -f(wo)=8(kaT/Eo) (2.17)0. - 0, - 0coSo= aO+ n(x, 1) (2.7) -- 2wzr ",

for which the general solution can be expa, Jed in terms where contour integration has been used in evaluating the
of the complete set (2.6) as integrals in (2.16) and (2.17). In the same way we obtain
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for I Ab.,(t)1 2) with
( A ,,(,~ z fi ~ T) 1 2 8 0 9.ISE) k . - 1 r (3.8) ... ." '

From (1.7) and (2.8) we have that the average energies of
the kth phonon mode Ah(t)fa(x) and of the translational and (2/L) / 2 being just a normalization factor (for n -0

mode Ab(t)fb(x) are given, respectively, by it should be read as L /2). Substituting (3.7) in (3.5) and
applying to both sides of the equaLion the pro-
jection operator fcos(k.x)dx, we obtain

(Hk)ffiL--[ Iak.,(0Jla)+wk'( I Aj(t) 11)) (2.19)

A,,.,+aA,,.t+[(1-71)'/2+k ]A,=4,(t), (3.9)

and where

(H 5 )f=-( Ia., 1) .(2.20) e,(t)-(2/L)'"f n(x,t)cos(kx)dx . (3.10)
160

Using (1.2), we find for the autocorrelation function

Using (2.16)-(2.18), we finally have R (t -t') and the power spectrum S( ) the same ex-
pression as in (2.12) and (2.13). By identifying

(Hk) =kpT (2.21) [(1 -77 2)1/2+k2] with w.2, we see that Eq. (3.9) in the lim-

and it L --* oo coincides with Eq. (2.0), and therefore, follow-
ing the same analysis of the preceding section, we obtain

(Hb) = +ksT (2.22) that the average energy per phonon mode is

in complete agreement with the classical statistical- (H,)=kST. (3.11)
mechanics analysis of a dilute soliton gas derived in Ref.
8. No zeromode energy is present in this case, due to the ab-

sence of the soliton in the system. Finally, we remark
Il1. THERMAL PHONONS IN THE ABSENCE that the above results do not depend on the particular

OF SOLITONS WITH BIAS boundary condition (3.3) used (we could have used generic
periodic boundary conditions) as well as on smallness re-

In this section we consider the unthermalized system to quirements of a and 7. The only approximation that has
be the pure sine-Gordon system of finite length L, with a been made in obtaining (2.21), (2.22), and (3.11) is the
constant driving force 77 < 1: linearization procedure, which is justified if

(3.1) kBT<<Eo, (3.12)

Phonon modes 0. are seen as small oscillations around as appears evident from Eqs. (2.16) and (2.17).
the classical ground state

0= -sin- 1 77, (3.2) IV. BROWNIAN MOTION AND DIFFUSION
CONSTANT OF A THERMAL SOLITON

satisfying the boundary conditions
,(O0t)=a.z(Lt)O (3.3) We now concentrate on the effect of the a, 1, and

n (x,t) terms in Eq. (3.4) on the soliton motion (here a sol-
(no solitons are present in the system). The thermalized iton is a 2it-kink jump from -sin-l7 to 2vr-sin-i).
system is obtained from Eq. (3.1) by adding to the rhs the We assume 7/a and kT/Eo to be small. By introducing
term a4',+n(x,t) with n(x,t) given as in (1.2): the momentum

0u -,-sin#1 1+a0, +n(x,t). (3.4) p=- - f 01 ,,dx (4.1)

Thermal phonons are then solutions of the following sto- and differentiating with respect to time, we obtain
chastic equation: dP

.. =0,--(l-')"70=a0,+n(x,t) (3.5) dt (4.2)

When a=O, n(x,t)=O, these phonons are just classical where we have used Eq. (3.4) to eliminate the 0, term and
Klein-Gordon modes with energy given by have defined e() as

EO f Ld 2 ++e(l e7
2)1/2 (6(t)'=- +f+4,Z(xt)n(xt)dx (4.3)

Hp J (3.6)
Neglecting the noise term, Eq. (4.2) describes the "power

The general solution of Eq. (3.5) satisfying the boundary balance" motion of a 2ff-kink with velocity' 3

conditions (3.3) is of the form u0 -/1(4.4)

+2J,c14a 121-1/20 (2/ 0l/1 ,A .ltcoslk~x) (3.7) u0 =: +(+4.4) . .

% -...............................................................................
. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
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and momentum The Josephson plasma frequency is
p=  Uo (4,5 =(2eJt°/eo fli)111 (5.4) "

(-u / where e, and E0 are, respectively, the relative dielectric

The noise term n (x,t) in Eq. (4.2) introduces fluctuations constant of the oxide layer and the dielectric constant of
in the momentum and, from (4.5), in the velocity of the the vacuum, while to is the thickness of the oxide layer.
kink. Such fluctuations are readily evaluated by standard For a plasmon described in Sec. III we have that the split-
techniques (for details see Ref. 7), giving the following for ting of the energy level is

. the power spectrum of the process Au (t)=u ()-uo: E41 =Aoipw, (5.5)

2)5/2 with w. given by [(l-7 2 )t/+(nTr/L)2 ]1/1. We haveS,(())=2a(kT/Eo) (-)/2 (4.6) then that the ratio kBT/E'p1 is of the order of magnitude
W2+) -

2  1-10, i.e., the quantum energy levels are separated by a

By assuming u0 << 1, Eq. (4.6) reduces to quantity comparable with kp T. To have a rough estimate
of the energy-level separation for a fluxon, we can use the

S 3(w)=2a(kBT/Eo) -
22 (4.7) analogy of a particle in a box. This gives

2M2+a2E o, = 1 L_ 10-44P(5.6)

from which we obtain 
WM L 2

2 do i .e., for a fluxon the separation in the energy levels is
(u2)=f -2S(w)=(kgT/E0 ) . (4.8) smaller than kBT by a factor of the order 10-3_10 - 4.

This numerical manipulation indicates that for a typical
The time average of the kinetic energy in the Brownian Josephson junction fluxon quantitation is not necessary,
motion of the soliton is then given by while it is necessary for plasmons (E 1 being of the same

(E.o) 1Eo(u 2 ) = kT (4.9) order of magnitude as ks T). In Ref. 6 the effects of
quantum plasmons on the fluxon motion have been calcu-

" as expected from soliton statistical-mechanics theory!8  lated. It turns out that they are several orders of magni-
Finally, from Eq. (4.6) a diffusion constant D for the tude smaller than the direct influence of the thermal

2r-kink motion is derived: reservoir on the soliton evaluated in this paper, and there-
fore, in our context, completely negligible.

D --- (k T/a), (4.10) Finally, in closing this section it is worth noting that ifE0  kBT/E o is very small, a statistical-mechanical description

which is just the usual Einstein diffusion constant for the of fluxons in Josephson junctions is meaningless. Howev-
Brownian motion of a particle in a viscous medium (this er, the method used in the preceding section is still useful
is a further confirmation of the particlelike nature of the to study the interactions between plasmons and fluxons.
soliton). (See also Ref. 3.) (See Ref. 7 for the case of Josephson oscillators.)

V. THERMAL SOLITONS AND PHONONS
IN JOSEPHSON JUNCTIONS VI. CONCLUSION

We will now relate the foregoing sections to a real de-
vice as the Josephson junction. We will find the orders of It has been shown that the effect of a thermal reservoir
magnitude of the quantities of interest and see if the as- on the sine-Gordon system can be studied by using stan-
sumption made in the above analysis holds for Josephson dard methods of stochastic processes. Both phonons and
junctions. solitons are found to be thermalized in a way that the

The fluxon-rest energy (in laboratory units) for a phonons will have an average energ of kT per mode,
Josephson junction is while solitons will have an energy of jkyT. These results

are in agreement with those obtained by using a
Eo=&o =8AXjJL/(2e), (5.1) statistical-mechanics approach for a "dilute" solution

where J is the maximum Josephson current density, L is gas.8 The main assumption used in our derivation has
thee of the junction, and e is the electron charge. Li been kBT<<E o (to justify the linearization procedure).in leigth osphson ande pth en by Second-order effects [in the small quantity (kBT/E o ),
in (5.1) is the Josephson penetration depth given by such as interaction between phonon modes and solitons, ' .

A. =( /2epodj)"/ 2  (5.2) have been neglected therefore. Finally, in closing this pa-
per we wish to point out that in spite of the particularity

where d is the magnetic thickness of the oxide layer of the model used, the results obtained are sufficiently
( 2 A.L + 1o ), and po is the vacuum permeability. From (5.1) general to be extended to other equations of the nonlinear
we have that for a typical Josephson junction Klein-Gordon class, such as 04, double sine-Gordon, etc.

(kVT/Eo) 10-4-10- 1 (5.3) As a matter of fact, the only difference in the analysis will
be the presence of additional bound states in the linear

which justifies the assumption (3.12) made in the analysis. phonon eigenvalue problem. By following arguments

. -.. ..
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Experimental measurements of current-voltage structure and emitted X-band radiation in applied
magnetic field from overlap-geometry Josephson tunnel junctions of normalized length about 2 are
compared with numerical simulations obtained with the use of a perturbed sine-Gordon model. The
simulations furnish the current and field dependence of the oscillation configuration, from which
can be calculated average voltages, frequencies, and power spectra. Simulation and experimental re-
suits are in good agreement with regard to the lobe structure of the height of the first zero-field step
and/or second Fiske step in magnetic field and the field dependence of the radiation frequency
within the various lobes, including details such as hysteresis between lobes. The simulations predict . .
an alternation of the dominant frequency component with increasing field that accounts well for the
experimental observations. The usefulness and limitations of cavity-mode analyses, both single-
mode and multimode, are evidenced by comparison with the simulation results.

I. INTRODUCTION in more detail just this case, viz., thc dynamics underlying
the behavior of intermediate-length Josephson junctions.

Fluxon (soliton) propagation' has been by now estab- To this end we compare the results of new experimental
lished as the essential physical mechanism underlying measurements of I- V structure and microwave emission
many of the observed experimental properties of long in magnetic field with the results of detailed numerical
Josephson tunnel junctions. In particular, the appearance simulations. The agreement that emerges is quite con-
of both zero-field steps (ZFS's) and Fiske steps (FS's) in vincing. For simplicity, attention is focused primarily on . -

the current-voltage (I- V) characteristics of such junctions the first zero-field step (ZFS ) and on the second Fiske
and the emission of microwave radiation from junctions step (FS2) in junctions of normalized length of about 2.
when biased on these steps seem to be explainable in terms Since the voltage positions of ZFSI and FS2 approximate-
of fluxon dynamics. - A number of different ap- ly coincide, we refer in the following to the step
proaches have been employed in the literature to account ZFS I/FS2. The numerical simulations are compared also
for the available experimental observations. These include with approximate analytic results, and the usefulness and
perturbative expansions of the basic soliton equation in- limitations of the latter are clarified.
volved (sine-Gordon equation),' analytic extensions of The paper is structured as follows: Section II contains
small-junction theory (cavity-mode-interaction analy- a description of the mathematical model used and the
sea),7 and mechanical analog$ and digital computer 9 simu- techniques employed in its analysis. The results of this
lations (the references cited are intended to be representa- analysis are presented in Sec. Ill. The experimental mea-
tive, not exhaustive). Moreover, direct dynamic measure- surements performed are described and discussed in Sec.
ments at the single-fluxon level are beginning to appear in IV. Finally, Sec. V contains our concluding comments.
the literature. '0 1

The perturbative approach is most suited for studying It. MATHEMATICAL MODEL
the behavior of low-order steps on - -ry long junctions, AND COMPUTATION TECHNIQUES
inasmuch as the usual point of departure here consists of
the exact analytic solutions of the sine-Gordon equation The mathematical model studied is the perturbed sine-
on the infinite spatial interval. Multimode extensions of Gordon equation, 9

small-junction theory, on the other hand, should presum- -a)

ably be most appropriate for relatively short junctions. -
For junctions which are neither very long nor very short, O (Ib) - -

one would expect a priori that neither of these two ap- (I. b

proaches could be counted on to give reliable results. In appropriate to an overlap-geometry junction." Here, 0 is
such cases, direct simulation would seem to be indispens- the usual Josephson-phase variable, x is distance along the
able. junction normalized to the Josephson penetration depth - -

The present paper Is an attempt to elucidate further and A,, t is time normalized to the inverse of the Josephson

30 2640 @1984 The American Physical Society
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plasma (angular) frequency o0, and subscripts denote par. 07- I

tial derivatives (see Ref. 9 for details of the normaliza-
tions). The model contains five parameters: a, ,y,L, ,6 -..0

and 71. The term in a represents shunt (quasiparticle) loss. 0.-
The P term models dissipation due to the surface resis- 05 2

tance of the superconducting films. The constant y mea- 0. ".

sures a uniformly distributed bias current normalized to 03 I ".
the maximum zero-voltage Josephson current. The con- "
stant 1 is a normalized measure of the external magnetic U 02 R--i, - "

field which determines the boundary conditions [Eq. (Ib)] o.I -

at the two ends of the junction of normalized length L.
In this numerical study the dissipative and length parame- 0 I I
ters were fixed at a=0.05, (3=0.02, and L=2. These 0 10 20 30 40 s0
were chosen to be representative of typical physical values MAGNETIC FIELD -

without, however, modeling any one specific junction. FIG. 1. Magnetic field diffraction pattern of ZFSI/FS2.
The bias current and magnetic field parameters were Circles: step top calculated numerically at constant 'i. Squares:

varied in the ranges 0<y< 1, 0< 7<6. step bottom calculated numerically at constant -9. Diamonds:
Equations (1) were integrated from initial conditions ei- step top calculated numerically at constant y. Arrows near dia-therqsimla os ( 2) tRed frmo e lontinusig monds indicate direction of field variation. Solid curve (marked

ther similar to Eqs. (2) of Ref. 13 or (more often) using I and 2): Enpuku et aL. multimode theory. Dashed curve: Ku-
the final 40 and 0, distributions from runs at nearby points lik single-mode theory. Enpuku and Kulik curves coincide at
in parameter space. The integration was carried out using the bottom of the first lobe. Insets show approximate dynamic
the implicit finite-difference method described in detail in trajectories in the various il regions: solid lines are fluxons or
Ref. 9, with space and time intervals set to 0.02 and 0.01, antifluxons; dashed lines are plasma waves.
respectively. Numerical accuracy and stability were veri-
fled by halving and doubling these intervals. During each
run the time-averaged value of the voltage at the two ends
of the junction and the power spectrum of the voltage at indicate the direction in which q7 was varied near the max-
the left (x=O) end were calculated. Here, voltage is de- imum point. Beyond the maximum points, the junction
fined as 4',, which represents the physical voltage normal- switched to a different dynamic state, most often to the
ized to Ao 0 /2e, where A is Planck's constant divided by McCumber-Stewart hysteresis curve at the corresponding
2r, and e is the magnitude of the electronic charge. value of y. This fact was evidenced by abrupt changes in
These quantities were calculated over an integral number the value of (4, ), the voltage waveform, and the corre-
of oscillation periods during the last approximately 50 sponding power spectrum. In zero magnetic field, the
normalized time units of each run. The power spectra form of the McCumber-Stewart hysteresis curve can be
were calculated by means of a fast Fourier transform us- approximated by'"
ing a simple rectangular window.14 The values of (4') a
were calculated both from the elementary definition of y=4aE(k)/vk , (2a)
average and the zero-frequency components of the powerspectra. ( ) =r/kK Wk) (2b) •. .

Two checks were employed to assure that the average where K(k) and E(k) are, respectively, the complete el-
voltages and the power spectra were calculated over liptic integrals of the first and second kinds of modulus k.
steady-state, not transient, dynamic configurations: (i) From Eqs. (2) it follows that for k-,0, y---a(O,), i.e.,
The values of (4',) at the two junction ends were corn- the McCumber-Stewart curve approaches asymptotically
pared. Physically and mathematically, the time-averaged the Ohmic line, whereas for k--,I, (4)--0, and
voltage must be constant along the length of the junction. y--4a/ir. Equations (2) continue to hold as a rough ap-

(ii) The quantity ()/2rf, where is the fundamental roximation even in the presence of magnetic field, at
oscillation frequency, was calculated. From the Joseph- least for q:S.
son frequency relation, this quantity, in steady state, must The squares in Fig. I are the numerically computed
be an integer whose value (I or 2 in the present case) de- bottom of the step, calculated by decreasing y at constant
pends upon the type of oscillation present.' If either of 71. As will become clear from Figs. 2-6, it is possible to
these conditions was not satisfied to within specified lim- determine numerically the precise bottom of the step in

its the time duration of the run was increased. the first lobe of the diffraction pattern, but this is no

longer the case in the second lobe. Beyond the minimum
ii. NUMERICAL RESULTS points, the solution followed the McCumber-Stewart

curve down for a certain distance, after which it switched
Figure I shows the magnetic field diffraction pattern of abruptly to a static, zero-voltage state. The lowest y value

ZFSI/FS2. In this figure, circles and diamonds are the for which such switching was observed was 0.06
numerically computed top of the step. Circles were calcu- - y < 0.07, which is consistent with the value
lated by increasing y at constant 17; diamonds were deter- 4a/ir-O.064 estimated from Eq. (2a).
mined by varying 17 at constant y (as will be seen later, the The dashed curve in Fig. I has been calculated from the
difference is significant). Small arrows near the diamonds Kulik theory" for FS2. The input parameter for this

.. . . .. .... . .......... - ... o- - • . . . . . .. .. . . . . .. .. . . . , . . . . , . . . . -
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theory is the quantity Z-=L 2 ./n2 r2, where n is the ", I i

step number (2, in our case) and Q0 is the quality factor 110
of the nth mode. Following Enpuku et al. (Ref. 7) Q. is ! 0o P2

defined by Ao iI

I La + iNT (3)
n r L 80

Insertion of parameter values thus yields Z0=.2867. .1 0+2 030. 0.5 0.6 07

The Kulik theory gives the maximum height of the step (0)
above the Ohmic current. Accordingly, to compare with
numerical (or experimental) results it is necessary to add -0 0.26

this component to the Kulik value. Since, from our nu- (c)
merical results, the top of FS2 is at (4.,) 3.1, a constant 0.21-d).

(independent of il) value ofa(, )=0.155 has been added ()

to the Kulik component in drawing the dashed curve in ' 0o
Fig.I I I IFi. . - o! 0 03 04 05 06 07

The Kulik theory is seen to predict the maximum C 0

points of the second lobe up to il/z4. However, for the (b)
maximum points of the first lobe and for the second lobe
for 71>4, the theory fails. To predict these results more l2_A

modes must be included in the computations. Following -

Enpuku et al.7 we have used five modes with the quality a 80-

factor Q. given by Eq. (3) with n= 1,2, .... 5. We have 4,- 0
solved Eqs. (10)-(12) in Ref. 7 by means of a standard ,
routine. 17 The results are shown as the solid curve in Fig. a 0.

I. The Enpuku theory is seen to predict the maximum -0.2 .0 .2 .- .6 .8 10
points of the first lobe very well. The maximum values Time t (C) Frequency f

on the second lobe up to 7p=5.5 are also in agreement.
However, between i=3.1 and 5.5 the Enpuku theory ,_-o- 20--'

predicts two curves for the maximum values. The curves a AAA-
are marked I and 2 in accordance with a major contribu- C.;- 't - -

tion to the solution from the first and second cavity
modes respectively. Curve 2 lies close to the Kulik curve, toJ1"-I"

in agreement with the fact that this latter curve was com- 2 'i,,,,
puted by means of mode 2 exclusively. The numerically 0 o 041

> 390 395 1.00 -02 .0 2 . .1 .A 10
computed maximum values (circles) agree with the upper Time (d) Frequency
curves (i.e., curve 2 in the interval 1= 3.1-4.4 and curve T.m t M

I in the interval i7=4.4-5.5). Just above the lower curves &5- '.5-
(i.e., curve I for i=3.1-4.4 and curve 2 for 1=4.4-5.5) &

-

the computer results exhibit changes in the contents of ss 5 B" """

cavity modes from mode I to mode 2 above curve I and 0\I\- '
vice versa above curve 2. The accompanying hysteresis 30 1"\--"
phenomena are discussed below. .5 "IrI

Figures 2-6 depict five vertical (constant-71) slices dZo 0- -
through the diffraction pattern. Figure 2(a) shows the > .90 1.95 500 -0.2 .0 .2 .4 .6 .8 .0

current dependence of the power levels of the first two Time (e) Frequency f

Fourier harmonics of the voltage at the left end of the -.3.2 20 _1'

junction in zero magnetic field. Power levels are given by f2

10 InI A 2+100, A being the voltage Fourier comn- so '6
ponent. The ac components are thus arbitrarily normal- 0 .
ized to #,2= 10-10. Since no loading effects are included 2A. o.
in the model, all power levels calculated should be con- d,1
sidered ideal, available values. Figure 2(b) shows the 2.0 0

current dependence of the first harmonic frequency f1 of " 690 r)5 700 -02 .0 .2 .4 6 .6 1.0
the oscillation. Since average voltage and frequency are Time t (|) Frequency I

proportional (in steady state) through the relations FIG. 2. Section through diffraction pattern at 1=0. (a)
(0,) =41rf 1 -2rf 2, Fig. 2(b) is effectively the current- Power levels of first two Fourier voltage components at x=0,-
voltage characteristic of the step. We have chosen to plot normalized to 3-= 1,0.X0-1. MW Filrt.harmonic frequency. ...

this characteristic in freluncy rthet than in voltale be- Voltage waveform at x-O and corrmpondinS power spectrum
cause in the laboratory, frequency can be measured much are shown for (c) y=0.60, (d) y=0.30, (e) y=0.15, and If)

more precisely (although perhaps less easily) than voltage. y=0.13.

. . . . . . . . . ..... ........... .......... ........ .............................. ..........
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A Figures 2(c)-(f) show the voltage waveform and part of
I06P the corresponding power spectrum at the four points indi-

P2 I cated by arrows in Fig. 2(b). A comparison of Figs.
1 2(a)-2(e) with results from the literature [see, in particu-

85 lar, Fig. 17 of Ref. 9and Fig. 5(a) of Ref. 2] leaves no
020 .25 0.30~ 1doubt that the oscillation depicted in Fig. 2 is the fluxon

7A5- ' oscillation corresponding to ZFS I. Finally, a comparison
!15 10 .25 J300.3504oof Figs. 2(e) and 2(f) makes clear why it is possible toCURRENT y determine precisely the bottom of the step in the first lobe

of the diffraction pattern: At a certain value of the bias
current (A.14 y< 0. 15 in the present case) the f, comn-
ponent of the oscillation abruptly disappears, and a new
oscillation evolves for which the dominant component is

021. -at f 2.
Figure 3 shows a similar vertical slice through the dif-

00' 23fraction pattern at a point near the right-hand extremity

- 0.15 0.20 0. o.0 035 0.4 A
CURRENT y 10

-to ~120- 5

'0.15 020 0.25 0.30 035

i2
,a0

S11.0 115 10 -0.2 .0 .2 .4. .6 .81.0 904
Time t Frequency f 1.0 d

lc)

0.O15 020 O 2S 0.30 0.35
CURRENTy

1W

9. f2 I

3 0.

S31.0 31.5 350 -0.2 .0 .2 . 6 .o
Time t Frequency f so 10 15 10 -0.02...6610

diTime t Frequency

(ci

go- s20- !

.i1. 0- 0

1.1.0 445 1.50 - 0.2 .0.2.1A .6 .81.0 > 1 3W M 4M 0 .0 A.61t
Time t Freciaency f Time t Frequency

(.1 1d)

FIG. 3. Section atrough diffraction pattern at 71=1.5. (a) FIG. 4. Section through diffraction pattern at i7=2.5. (a) ---

Power levels of first two Fourier voltage components at x=0, Power levels of second Fourier voltage component at x = 0, nor-
*normalized to *?=m. lx101'0. (b First-harmonic frequency. malized to #21 lOx 10.io (PI is absent). (b) Second-harmonic

Voltage waveform at x=0 and corresponding power spectrum frequency. Voltage waveform at x=0 and corresponding power
*are shown for (c) y=0.34, (d) y-=0.25, and (e)y =0.19. spectrum are shown for (c) y' -0. 30 and (d) y -0. 16.
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of the first lobe (-= 1.5). Here, the behavior of the oscil- noise (the noise here is of numerical, not physical, origin),
lation near the top of the step is qualitatively quite similar and P 2 is the dominant component. The fact that the
to that shown in Fig. 2. As y is decreased, however, a next-highest component, at f =2.f2, lies 20 dB or more
marked difference is seen: The ratio of the f, power P, below P 2, explains why the Kulik theory, which assumes
to the f2 power P2 steadily decreases until, near the bot-
tom of the step, P2 in fact dominates. Since f2 is the
dominant frequency of FS2, the nature of the step at -. , I -'
ij= 1.5 may be described as ZFSI-like near the top and 110 "
FS2-like near the bottom. It should be noted, however, M
that the transition between the two oscillation configura- P2
tions is here relatively gradual, rather than abrupt. "0

Figure 4 shows a vertical slice at q/=2.5, in the left-
hand side of the second lobe of the diffraction pattern. 80 _ _''-
Here the oscillation is purely FS2-like over the entire ex- 0.00 030 040

tent of the step. The power P, is lost in the background CURRENT y

I -T

• 01 0.25 0,35 0.45 0010 0.20 0.30 040
CURRENT .y CURRENT y

( a ) ( b I - . .

I , , 0o: :
" 0.So -" 6-

0.8

IA. __I___ __ __I- ""~V

ajS 0.25 0.35 0.45 "-.0.C00ENT >lO 195 200 0.2 .0 2 .* .6 .8 10

(b Time t Frequency t

tO.
21

w-O 2 . °0.-- so
a40 45 50 -0202.,..81.0 0

Time t9 Frqunc f I. -- 0o t .6 .
W Time t Frequency 

. 0 5 00 .120 " 8

:0_ "; 2 "2.8- o -o.

12.1- 4;0- ""
' "31i 0- -- lu

> 390 395 1.00 -02 .0 .2 .4 .6 .81 .0 a 0 . .
ime t Frequency f : 590 595 600 -02 .0 .2 .4 .6 .8 1.0""-

(ci Time t Frequency .

FIG. 5. Section through diffraction pattern at i7=3.4. (a) ):"
Power levels of second Fourier voltage comnponent at x -0, nor- FIG. 6. Section through diffraction pattern at 71,=4.6. (a) . 'ralzed to 0,1--,0xIO- i (P, is absent or very small). b Power leve ls of fin, two Fourier voltage components at xO

Second-harmonic frequency. Voltage waveformn at x=O and normalized to #IOX 10- 111. WbSecond-harmonic frequency. ...
corresponding power spectrum ore shown for (c) y,=0.42 and (d) Voltage waveform at x=0 and corresponding power spec~trum -"y . ,.

a..
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a single mode at f =ff, gives a reasonable description of "
the oscillation in this region, as seen in Fig. I. The diffi- 1 (0-

culty in determining precisely the bottom of the step in 105 Cc) -
the second lobe is now also apparent: f2 is the dominant 103 b C (b
component of both FS2 and the McCumber-Stewart 10- D

curve. As y is decreased, the step here merges gradually o ..
with the McCumber-Stewart curve without any abrupt t' -d)
changes, in contrast with what happens in the first lobe, d

The behavior of the oscillation along a vertical slice at 97"

the peak of the second lobe (71=3.4) is shown in Fig. 5. 95- (d)
Here, the situation is very similar to that depicted in Fig. It
4 except at the very top of the step, where, with increasing " 3 Li u
y, the fI component just begins to emerge from the back- 0 1.0 Zo 30 40 50
ground, as seen in Fig. 5(c). MAGNETIC FIELD i.

This tendency continues more markedly in Fig. 6, FIG. 8. Power section through diffraction pattern at constant
which shows a vertical slice at 77=4.6. Here, recalling the r. Powers measured at x=O and normalized to : -

situation depicted in Fig. 3, the step is ZFSI-like near the lOX 10-' . (a) First harmonic P, at y=0. 35. (b) First har-.

top and FS2-like near the bottom. As in Fig. 3, the tran- monic P, at y= 0 .26 . (c) Second harmonic P2 at y=0.35. (d)

sition heriebetween the two oscillation configurations is Second harmonic P2 at y=0.26. Arrows indicate hysteresis.

relatively smooth.
The information contained in Figs. 2-6 is summarized

in a highly schematic and approximate fashion in the in- (ii) In the first lobe of the diffraction pattern the behavior
sets of Fig. 1. These show trajectories in the x-t plane, is quite regular; the frequency increases monotonically
with fluxons and antifluxons indicated by solid lines and with field, and PI is the dominant component. We note '

localized plasma waves indicated by dashed lines. The lo- parenthetically here that this frequency behavior may be
cations in -9 of the three insets in Fig. I indicate roughly different for longer junctions. s ' 9 (iii) In the left half of ---
the regions where the corresponding dynamic configura- the second lobe the behavior is also regular; the frequency
tions are observed (we emphasize once again, however,
that the transitions between the various configurations are
gradual). '

A rather different perspective on the nature of the oscil- " i I , I
lations is obtained by taking horizontal (constant-,) slices IC1 A
through the diffraction pattern. Two such slices, at P2
y =0.35 and 0.26, are shown in Figs. 7 and 8. Figure 7 99"

shows the magnetic field dependence of the frequency f2
(proportional to the voltage) in the two slices, while Fig. 8 -P
shows the corresponding behavior of the power levels, PI "
and P2, at fA and f2. The salient facts that emerge from 95"

these two figures may be summarized as follows: (i) The
essential, overall dependence of the oscillation frequency 93 .

on magnetic field is the inverse (qualitatively) of that of
the diffraction pattern; where the height of the step de- 91 I I I "
creases with field, the frequency increases, and vice versa. 1.4 1.6 1.8

MAGNETIC FIELD -q
(a)

I I A

,- o - ""- .9
.() Li 0.4 5 " -

(a) .0.480

Cb) (b)
.1.4 1.6 1.8

t MAGNETIC FIELD I1 1" -

0 10 10 3.0 4.0 50 (b)
MAGNETIC FIELD I FIG. 9. Partial section through diffraction pattern at

FIG. 7. Second-harmonic frequency section through diffrac- V=0.21. Ca) Power levels of first two Fourier voltage com-
tion pattern at (a) y=0.35 and (b) y-0.26. Arrows indicate ponents at x-0, normalized to #1-l.OXlO-1 °. (b) Second-
hysteresis, harmonic frequency. Arrows indicate hysteresis.

, " .-.' ,'. ." -"- '. " '" -. -.- "- i'-i : ,. i -'. 'i- '- "i "i "" : '.' :i '. . . ..

" " ."". '.'.- -.. . .-.. . .-. . . . .•" . .. •.. .".. . . . . . .".".. . . . .,".. .-. ".. . ... . . . . .- . . . .,-. . ...,, ; ,, .- , -, . -- ,. .t.- -
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here decreases monotonically with field, reaching a
minimum in correspondence with the peak of the second .. "
lobe, and P2 is strongly dominant (the f 1 component lies
within the background noise). (iv) In the right half of the 1.0.

second lobe P, once again becomes dominant. The cross-
over point, where P, =P2 , occurs at larger values of '1 for
decreasing y. These observations suggest that it might in
fact be more appropriate to refer here to a third lobe, E C -"
rather than to a half of the second lobe. (v) A strongly
hysteretic behavior of both frequency and power is ob- .

served in the right half of the second lobe (i.e., third lobe).
This fact may explain why experimental measurements -1.0
[see, e.g., Patern6 and Nordman 2° as well as Fig. 12(a) .
below] often display notable irregularities in this region. I

Figure 9 shows a small section of a horizontal slice at -100 0 100
y=0.21 in the region just under the juncture point of the vtyv"
first and second lobes. Since y= 0 .26 and 0.35 both lie FIG. 10. I-V curve of junction no. SIO-5-1, showing three
above this juncture point, the curves in Figs. 7 and 8 are zero-field steps. The dashed curves indicate switching,
discontinuous in this region. The major conclusions to be
drawn from Fig. 9 are similar to those drawn above: i)
The qualitative shape of the field dependence of the oscil- ZFS's are seen. The high-voltage part omitted in Fig. 10
lation frequency is the inverse of that of the diffraction only shows the usual increase in current at the energy gap
pattern. (ii) Hysteresis is observed in 1q regions where the voltage. The dashed lines show switching at the top of
dominant mode is changing. the supercurrent and the three ZFS's. The I- V curve of

the ZFS's is obtained by decreasing the current to obtain a
IV. EXPERIMENTAL RESULTS bias point just below the foot of the ZFS's and then in-

creasing the current again. This I- V curve is typical of
The numerical calculations discussed above were com- the samples investigated. Although not shown with suffi-

pared with measurements on overlap geometry Nb-Nb- cient voltage resolution, the shape of ZFS 1 may be corn-
oxide-Pb junctions having parameters comparable with pared with Fig. 2(b).
those used in the calculations. Although the discussion
below is appropriate for the many junctions investigated, 2

two junctions were measured in detail. Junction no. SI0-
5-1 has dimensions 479 X 179 pm 2, maximum zero-voltage
current 1o= 1.40 mA, and an estimated normalized
length, L, of 2. Junction no. 65H7 has dimensions
467X67 pm 2, 1J0=0.53 mA, and L slightly less than 2. 0
From independent measurements on similar junctions an 1.0,
estimate of a and j9 can be madc. 22 The estimate is
reasonably consistent with the values a=0.05 and
/=0.02 used in the calculations, although the experimen- 0.5
tal values are probably somewhat smaller. The parameter E
values of both junctions are such that the fundamental
soliton frequency fI may be detected with an X-band re- 0
ceiver (8-12 GHz). Any radiation at f2, however, is out- W
side the frequency band of the detector used. The mi-
crowave receiver had an overall noise figure of about 8
dB. By using a spectrum analyzer both the power and the (d)

frequency of microwave signals from the junction could E Q5
be measured. Generally, the received power was 25 dB or E
less above the physical noise level of the receiver. All data - .
discussed here were taken at 4.2 K. 0 0 | 2

To investigate the fluxon dynamics the following mea- H(orb. units)
surements were performed: Ci) I- V curves of the steps. FIG. II. Junction no. SIO-5-1. (a) Magnetic field dependence
ii) The magnetic field dependence of the maximum of the maximum zero-voltage current. (b Magnetic field depen-

height of the steps. (iii) The magnetic field dependence of dence of the height of ZFSI/FS2. (c) Voltage tuning of
the voltage of the steps with the bias current as a parame- ZFSI/FS2 corresponding to bias level A in b). (d) Magnetic
ter. iv) The power and frequency of the f1 radiation field dependence of the height of ZFS2/FS4. The dashed lines
emitted from the junction. in (b) and (d) show examples of parameter regions where f -f

Figure 10 shows the low-voltage part of the I- V curve radiation was observed. The dotted lines show parameter re-
in zero magnetic field of junction no. S10-5-1. Three gions wheref =f radiation was not observed.

---------,. . . .. . . . . . . ..-- : '
........
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Figures 1I(a) and 1I(b) show the magnetic field depen- I .
dence of the maximum zero-voltage current and of 200 (a)
ZFSI/FS2, respectively. Note that the lobe pattern of
ZFSI/FS2 is in good qualitative agreement with the cal- - B_
culated one in Fig. I. In fact, the agreement here is at lo--
least seniquantitative: The ratio of the zero-field current - C ,'..
in Fig. I I(b) to that in Fig. I I(a) is 0.63; the correspond- 0 | "" " -
ing value from Fig. I is 0.64 < y < 0.65. The extrapolated .oo0- A
zero of the first lobe in Fig. 11(b) occurs at a field value
approximately equal to that seen for the extrapolated zero N - (hi -
of the first lobe in Fig. 11 (a) (this is a generally observed $ 99-
experimental fact). In terms of the normalized field 71,
the extrapolated zero of the first lobe of the zero-voltage
current occurs at q7 = 2 for very long junctions (the exact 98 '
value for shorter junctions, which is the same for the -1 0 1 2
overlap and the in-line geometries, may be calculated H (orb. units)
from the theory of Owen and Scalapino23 ). Extrapolating one l
to y= 0 , the first lobe in Fig. I also yields 71=2. The FIG. 12. Junction no. 65H7. (a) Magnetic field dependence
dashed lines show examples of parameter regions where of the height of ZFSI/FS2. The dashed lines show examples of
f =fn radiation (at approximately 9 GHz) was observed. parameters where f =fl radiation was observed. The dotted

In general, the f =fI radiation was observed in the first lines show parameter regions where f =f1 variation was not ob-

and third lobes but not in the second lobe. This is in served. (b) Frequency of the f =fi radiation corresponding to

agreement with the results of the numerical calculations,

in particular Fig. 8. By comparison with the calculations
the reason for the absence of radiation in the second lobe
(FS2) is that here the f =f2 radiation is at presumably

18 GHz, outside the range of the receiver. Figure 1 I(c) lobe appears somewhat anomalous. For this measurement
shows, for a bias current corresponding to A in Fig. I I(b), the hysteresis phenomena between lobes were observed but
the magnetic field tuning of the voltage of ZFSI/FS2 (the not carefully mapped. As indicated by the lines A,B,C
absolute value of the voltage is approximately 35 MV). for different constant bias currents, f =f1 radiation was
Figure 1 (c) is in good qualitative agreement with the cal- observed in the first and third lobes, but not in the second.
culation of Fig. 7, showing both the increase in frequency Figure 12(b) shows a measurement of the frequency of the
(voltage) as the border regions of the lobes are ap- emitted f =fn radiation corresponding to bias currents
proached, and the hysteresis there. From the voltage A,B,C in Fig. 12(a). The positive frequency tuning in the
curve, however, it cannot be decided whether it is the first lobe is in good agreement with Fig. 7. The absence
f =fn1 or the f =f2 radiation that is dominant. Thus, of the f =f radiation in the second lobe and the reap-
determination of the fluxon-mode configuration requires a pearance of such radiation at the transition between the
measurement of the frequency of the emitted microwave second and third lobes are also in qualitative agreement
radiation. Such a measurement is described below (Fig. with the numerical calculation of Fig. 8. As noted in con-
12). Figure 11(d) shows the lobe pattern of the second nection with Figs. 7 and 9 the frequency tuning resembles
step although no corresponding numerical calculations the inverse of the diffraction pattern. Qualitatively, curve
have been performed for this step. The dashed lines show C in Fig. 12(b) is also in agreement with the voltage tun-
examples of parameters where f =f1 radiation was ob- ing in the first and third lobes of Fig. 1 (c).
served. In general, no such radiation was observed in the
first and third lobes; however, f =fn radiation was ob-
served everywhere in the second lobe. Most likely, the V. CONCLUSIONS
soliton configuration in the first lobe is that of a sym-
metric fluxon-antifluxon mode (with f=f2). This is in The intermediate regime L> 1, where the standard
apparent contradiction with measurements on other sam- analytical methods (cavity-mode theory for L < I and sol-
pies 4 where the f =fn radiation was also measured on iton perturbation theory for L >> I) a priori do not apply,
ZFS2 in zero magnetic field, but the difference may sim- was investigated numerically and experimentally. A com-
ply be a manifestation of the two soliton configurations, parison between the experiments and the numerical calcu-
symmetric (f =f2) and bunched (f =fl), that have been lations showed a very good qualitative agreement. Based
demonstrated numerically for ZFS2.9 On junction no. on this comparison it was possible to identify the various
65H7, in fact, the bunched mode was observed on ZFS2. soliton modes in the magnetic field lobes of ZFSI/FS2.
In the second lobe (FS4) a three-fluxon-one-antifluxon The extension of single-cavity-mode theory to mul-
mode would give the right frequency (fn) and voltage; timodes due to Enpuku et al.7 gave satisfactory predic-
however, other configurations are also possible, tiona of the diffraction pattern for ZFSI and FS2. Thus,

Figure 12(a) shows the diffraction pattern for with caution elements from both types of theories are us-
ZFSI/FS2 of junction no. 65H7. Qualitatively, it is quite able, however, numerical simulation is necessary for a
similar to Fig. 11 (b); however, the right half of the second wider understanding of experimental observations.

......... .. ...... ....................
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Simulation studies of radiation linewidth in circular Josephson-junction fluxon oscillators
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Detailed simulation studies of the dynamics of fluxons in long circular Josephson tunnel junctions
under the influence of external microwave radiation and internal thermal noise are presented. The
simulation algorithm uses a pseudospectral method well adapted to vector processors (CRAY-I-S),
which gives a speed-up factor in computing time of typically 22 in comparison to conventional
high-speed computers, and also provides results with a relative accuracy of less thail 10-' thereby
making possible the study of the very narrow radiation linewidth of such oscillators. Comparison of
calculated linewidths with experimental results shows good agreement.

MS code no. BY2341 1985 PACS numbers: 74.50. + r, 84.30.Ng, 05.40. + j
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1. INTRODUCTION px = ptt -si np =a p + y + i?(x,t i . (2.1I) - -'
I'llI, -- "

Josephson-junction fluxon oscillators continue to attract Here q) is the quantum phase difference between the two
research interest both theoretically, in studies of nonlinear superconducting layers in the junction. Space and time
wave dynamics, and experimentally, where the very nar- are normalized to the Josephson penetration length

- row linewidth of the emitted microwave radiation prom- Xj=(1Vo/21rjoLP)t/ 2 , and the inverse of the plasma fre-
ises potentially interesting applications.' This very nar- quency w p=(27rj0 1/%C)"12 , respectively, where 'lU is the
row linewidth makes the numerical study of the detailed magnetic flux quantum given by 'I 0 =h/2e=2.064

- dynamics of such oscillators very CPU time consuming. X 10-" Wb. L. and C are the inductance and the capa-
In order to overcome these difficulties we have developed citance per unit length of the junction. The first of the
a pseudospectral algorithm for solving the perturbed perturbation terms on the right-hand side of Eq. (2.1)
sine-Gordon equation which describes the oscillator. This represents the loss due to tunneling of normal electrons, in
algorithm employs a Fourier transformation of the spatial normalized units a=GlwC, where G-1 is an effective
variable together with a finite-difference approximation to normal resistance per unit length. The second term is tile
the time variable. The extensive use of fast Fourier normalized bias current y measured in units of Jo the
transforms in the algorithm has made the implementation maxtnum Josephson current per unit length. In this pa-
natural on a CRAY-I-S vector processor. The Fourier per we include a third term y(x,t) representing either an.
treatment of the space variable requires spatial periodicity externally applied sinusoidal driving lerm connected to
in the model. In physical terms this means that we are the bias, or an internal thermal noise term connected to

Iistudying a circular junction oscillator of the type first the loss. In this second case we assume a distributed
proposed by McLaughlin and Scott.2 This device, as well Gaussian white noise with zero mncaut value.
as providing a convenient mathematical model because of The normalized length of the Josephson junctiou -. .
periodic boundary conditions, has in recent years begun to I=LIkj is assumed to be large compared with unity and
attract research interest in its own right3 '4  the normalized width tv = W/. small compared with un-

- The paper is structured as follows. In Sec. I1 we ity, allowing us to use a 1+ 1 dimensional model.6 lie-
describe the mathematical model of the circular junction. cause the aim of this investigation is to isolate tle influ-
Details of the numerical techniques employed are present- ence of the term 7l(x,t) on the solution to Eq. (2.1) we
ed in Sec. III. In Sec. VI we study the behavior of the os- avoid phenomena connected with collision with junction
cillator under the influence of a sinusoidal driving term in boundaries by considering a long annular junction. There-
the bias current, which models external microwave irradi- fore, we demand spatial periodicity with period I in the
ation. Section V contains calculations of the linewidth two physical quantities, the voltage drop across the june-
under the influence of Gaussian white noise, which tion:
models internal thermal noise in the junction. In Sec. VI . •
we compare our results with existing experimental obser- V ,10 , (2.2)
vations. In all of the sections we are focusing on a config- 2-r
uration with a single propagating fluxon, which corre- and the current along the junction,
sponds to the first zero-field step in the current-voltage
characteristic of the oscillator. I= -Jo0jq.j (2.3)

11. MATHEMATICAL MODEL i.e., boundary conditions

As a model for the Josephson tunnel junction of overlap qp,(O,t)=q,(l,t)., (2.4a, ..

geOmetry we use the perturbed sine.Gordon equation, s  q (Ot}=q~l,f) (2.4b)
I- I I _ _ _ _ _ _ _ _.-'.-'
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- / The fluxon traveling wave solution to the unperturbed . .Calculate initial -' "
version of Eq. (2.1) is given by7  :condii

- q=2sin-'[cn(,k)] , (2.5)
2I 1 Make solution

with =(x -ut)/[k(l -u)"/J. Here u is the velocity of I periodic
the wave and k is the modulus in the Jacobian elliptic C Calculate Transform solution
function.8 Spatial periodicity requires 1(I-u 2 ) 2 nonlinear term to k-space via FFT
=2nkK(k), where n is the winding number, i.e., the num- Mk solu tion Add sinusoidal
ber of fluxons minus the number of antifluxons, and K(k) periodicor noise drive
is the complete elliptic integral of the first kind. In Ref. 9 T
it is shown by Hamiltonian perturbation theory2 that the x sp r tit o x s e v a d vaT n e s o l u t i o n

steady-state fluxon velocity dependence on the loss and
-bias parameters is

FIG. I. Schematic diagram of numerical simulation pro-
* =1/(0 +(4/Ty) 2 )"2 , (2.6) cedure.

- with a'=aE(k1/k, where E(k) is the complete elliptic - -, ' _, "__
integral of the second kind. For 1>8 (assuming n = I) ing sinqp and then transforming again to k space as indi-
Eq. (2.5) reduces to the kink for the infinite line cated schematically in Fig. i.
q-=4tan-l(eC with Ut( -u)/(l I-_U 2 )1 2 2  and the Figure 2 shows the computed q,, as a function of time
velocity given by u = 1/[ 1 +(4a/fy)2 ]"2 . In the numeri- at an arbitrary point on the junction. This signal consists
cal simulations we have used I= 8, 12.8, 20, and n = 1. :: of an almost-periodic sequence of pulses. In fact, it is the
lr .- ._ deviation from perfect periodicity that gives a nonzero -T' '. linewidth of the radiation. Since the deviation is small it

III.NUMRICL TEHNIUESis necessary to devise a very accurate method for deter-
The very narrow linewidth of the radiation emitted mining the revolution periods T. for the circulating flux-

from a Josephson-junction oscillator (less than I kllz at on. We do this by calculating T. as the time for the
10 GlIz)'0 suggests that a relative numerical accuracy of mean value of the phase over x to change by 21r. The

at least 1O- 7 is essential. We solve Eq. (2.1) numerically fundamental frequency of the signal then becomes

by using a pseudospectral method."' This method, a fo=l/(T.), where brackets denote an average value.

Fourier transform treatment in space together with a leap- We take the power spectrum of the signal near f 0 to be

frog scheme in time, has the advantage of simplicity and the distribution of the computer values of I/T.

high-order accuracy in the approximations to tile space Figure 3 shows the calculated T.'s in a computer ex-

derivatives. Expansion of the fluxon wave into truncated periment with the driving term q=0 in Eq. (2.1). As can

series of sines and cosines demands periodicity not only in be seen from Fig. 3, the relative accuracy

q,, and q', but also in q, itself. Observing that the fluxon AT/( T.) < 10-g. In fact, examination of the numerical

is a localized kink connecting two ground states separated output shows that it is approximately 7X 10
- 9. The long

___by 2n- we introduce a new periodic function. q-21rx/I transient arises from the fact that the initial conditions

whose Fourier representation we denote 1(lt) with the su- given by

perscript p =0, ± ... , ±PmA." qp(x,O)=f(x,O)-sin-1(y) , (3.3a)
Transforming Eq. (2.1) into the following set of ordi-

nary nonlinear coupled differential equations: (x, -At) =f(x, -At)- sin- 1(y) , (3.3b)

-k;(t)- 4,(t)- FP sinp I where f(x,t) is the fluxon traveling wave solution to the
inperturbed sine-Gordon equation as given by Eq. (2.5)= Ct V (t ) W 1y 8 , ,o + N t (t ) , (3 .1 a ) j

k =21rp/l, p=O,±l ... ,±pna (3.1b) I 4

in which FP and N P are the Fourier components of sin . 3

and ?1, respectively, and 6p,0 denotes the Kronecker sym- I "
bol, and using second-order central differences to approxi .>

2 2
mate the time derivatives we get an explicit scheme for
the time evolution of the Fourier components I "

- =21b) - ( I- a,&tI/2)'J "

-At(S J+ly+N)J/(l+aAt/2), (3.2a)

- J -- 480 500 520 540
i i •-At0(SJ+Nf)]/(l+cAt/2), lI 

>0, (3.2b) , 
t :':'

where" +3 FIG. 2. Time dependence of the space derivative of the flux- -.
where S equals Flisinqp at time jAt, calculated each 1: on waveform, showing the nth period of revolution T" for

- time step by transforming 1+I back to x space, calculat- a=O.0l, =0.02, 17=0, and 1= 12.8.
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-t,""Revolution period T. from Hamiltonian perturbation theory, Eq. (2.6). The re-
I9.482515 -suit is seen in Fig. 4. The deviation for large bias values is

expected because the perturbation theory is only valid for
\T small yvalues.

9.482510. IVIGTR-:IV. SINUSOIDAL DRIVING TERM

In this section we investigate the behavior of the fluxon
9.482505 velocity when the driving term is given by

7 71(x,t)=1(t)=nOsin(flt) , (4.1)
9.482500 I:.. -"."'

120 140 160 180 200 220 as a function of the driving frequency fi. This might be
I Revolution number n - considered as a model of microwave irradiation of the

F . Revolution pu o n junction. Using the definition of the normalized momen-FIG. 3. Revolution period T". as a function of revolution Itumr'n

number n for a=0.01, V=0.02, 17=0, and 1=8 showing high t
level of computational accuracy achieved. P(t)= - Joq .qpdx '(4.2)I~~ . ... _.

I . . .:-:; and separating the phase into a kink part and a back-
and sin'(y) is the ground state, are not exactly equal to ground part" 5p(x,t)=qPk(x,t)+q(P(t), and assuming that
the final propagating configuration. the length of the junction is large, allowing expressions for

We note at this point that the accuracy of the results the infinite junction to be used, we get the following equa-
was checked by doubling Pma in Eq. (3.1b), in order to tion for the momentum pk of the kink,
ensure that no spurious Fourier modes due to the discreti-
zation in x space are produced, and halving At in Eqs..:-"
(3.2). The values used for Pna ranged from 64 to 256 and , Revolution frequency f
those for At from 0.075 to 0.0025, depending on the pa- (o)
rameters land y.

The computer program was implemented on an IBM i:: 1 0.115
3033 in double precision (approximately 16 significant
digits) and on a CRAY-I vector processor in single pre- I I 0.110
cision (approxximately 15 significant digits) using optim- i I i
izing FORTRAN compilers. In the former case we have -. _ 0.105
used the IMSL-routine FFT2C for fast Fourier I .
transform.12 In the latter case, by making full use of vec- 0.100
torization of the computer code and the CRAY routines """
for Fourier transform and vector copying CFFT2 (Ref. 0.095
13) and CCOPY (Ref. 14) we gained a speed-up factor in
computing time of 22. Each long simulation requires typ- 0.090"
ically 5 X 10 time steps on a 512-point spatial lattice and . 0 25 50 75
uses approximately 10 min of CPU time on the CRAY- I I Revolution number n
I-S as opposed to approximately 4 h on a scalar machine. "

Finally, we have compared the steady-state fluxon ve- Revolution frequency fn
locity, given by u=Ii(T.), with the predicted value II ______ _ ;' (b)

I.-.i ,.-- . .

I 0.10545

, o-, '~:-:",_

0.10540

0.0 0.1 0.2 0.3 0 25 50 . 5.". ""7
Bias current v Revolution number n

FIG. 4. Difference between average propagation velocity as FIG. 5. Revolution frequency f. as a function of revolution
computed numerically us1 and calculated from perturbation number n for sinusoidal drive, il(i)-gsin(fl), with a-0,01,
theory up.. from Eq. (2.6) as a function of the bias for a 0.01, y=O.0 2, fl=0.86. i/o=0.01, and 1-8. (a) Numerical simula-
17=0, and I=8. tion. (b) Kink model.
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-~~d +dk & d2qi- 0j=tan-V(f/a)
dt 4 1 ytldtstnfl(ana d (4.5b)

(4.3) 0 2  tan afl[ I - r2) 2-f 1J

Thus, the background motion becomes an effective The instantaneous kink velocity is then calculated from
- driving term for the kink part. From Eq. (2.1) we derive pk=u(Iu) 1 .noretocmaehiapoxae

tfie linearized equation for 4 '=q)' +sin'1(r), assuming thcoretical description with the numerical result we calcu-
that 4 - < , late the nth period T. according to the formula

dt di .-

- Combining Eqs. (4.3) and (4.4) we obtain for the kink it (4.6)

momentum u=pk[+(pk)2]ta2

Airf _____710 Figures 5-7 show a comparison of the results from this
17 1 + at)l) sin(flt -01) linearized model and from numerical simulations of Eq.

I. (2.1) wIt f1=0.86, 0.89, and 1.10, respectively. In all

-~of -__ __ _ cases it is seen that the kink model is able to reproduce2
- 21/2 cos(f1: -Oz2) the fluctuations in the revolution frequency f. =I IT. in*

([(I r) t~j2 +~fl J great detail.
I(4.5a) \As a measure of the amplitude of the frequency fluc-

frequencyn [fnY Revolution frequency fn

I (a)a)

* I 0.1220
0.1.120

0..121

0.105 0.1210

0.100 Rvlto eouinnme

Reouinnumber n \XRevoutonuumbro

*/Revolution frequency fn Revolution frequency fn

I (b) KtI(b)

I 0.12114

0.105 01054LL~ 0.12113
0.105

I j 0.12112

0 25 50 75 0 25 0i

Reouinnumber n.... Revolution number n

FIG. 6. Revolution frequency f., as a function of revolution FIG. 7. Revolution frequency f. as a function of revolution
number n for sinusoidal drive, i(i)=1cin(Ml), with a=0.01, number n for sinusoidal drive, 71(t)-ilsin(Ml). with a=0.01,
Vy-0.02, flanio.s9, ilO'0, and I=&. (a) Numerical simula. y=0.02, nl- I.10o, 'lO=0.l, and I S. (a) Numerical simula- -
tion. (b) Kink model. tion. (b) Kink model.
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'---' Standard deviation / -: ,/Hamiltonian perturbation theory for the fluctuations Au .
I i,:: in the fluxon velocity leads to the power spectrum forkLO -  i: Au,' ° " -

SA.(10) - -a2(1-U2)512  2 (5.4)

with the average velocity uo given by Eq. (2.6). By a
S0- 1 % 'Fourier transform of Eq. (5.4) we obtain the autocorrela-

%, *,, tion function for Au as an exponentialO-S.. .. .,, 02. ".'-, --],. -
______,._____"______,_ RA(r)= -'. (5.5) . _

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Thus Au(t) is a normal process with zero mean and

-, Driving frequency Q1 ... standard deviation. -
FIG. 8. Standard deviation of revolution frequency of as a -I -u2) 5/ 4 -

function of driving frequency A). Solid curve, numerical simula- o 4CFi/2 (5.6)
tion; dashed curve, kink model; parameters, a=0.0l, y=0.02,
-qo=0.0l, andh =8. Defining the period of a fluxon revolution according to -"
I I ( I, Eq. (4.6) we calculate the average frequency fluctuation as
tuation, which is essentially the linewidth of the oscillator, -the average of the instantaneous frequency fluctuation
we have calculated the standard deviation of the revolu- 1Au /I over one average period of revolution
tion frequency c,.[((f.--(f.))1))I. 2 for values of the
cyclic driving frequency f1 between 0.4 and 2.0. Af - f, AuIdt. (5.7)(T) .

The full curve in Fig. 8 shows the results from the nu- .: ,-
merical simulation and the dashed curve those from the From Eq. (5.7) it follows that Af has a normal distribu-
kink model. The kink model predicts a resonance just tion with zero mean and the standard deviation,"

-below the plasma frequency fl = 1, whereas the numerical I u -x(-lu) 1/22u I ip-a/o
simulation yields this peak at a somewhat lower frequen- ' I- exp(5.8)
cy. Moreover, the numerical results exhibit a hysteresis I i (5.8)
not seen in those of the kink model and a difference in iscae. hedisrepnc inresnace reqeny ad hs A numerical simulation with a ?=8.gX 10- 4 is seen in ""
scale. The discrepancy in resonance frequency and hys- Fig. 9 showing a typical frequency distribution of Af
teresis behavior is attributable to the fact that we have
used a linearized kink model. Presumably, the use of a about the fundamental frequency fo=uo/I. The connec-

tion between the standard deviation and the half-power
-. higher-order expansion in Eq. (4.4) would yield a behavior i.wdhsanalogous to that of a soft nonlinear springi6 thus reduc-

ing these discrepancies. It is not clear, however, to what Af,/Z=v'g-lnrA, (5.9)
extent the difference in scale would be resolved by such a1 0

refinement. when Af is normal distributed.
*L Figures 10 and It show a comparison of the standard

I V. GAUSSIAN WHITE NOISE :\deviation predicted by this model Eq. (5.8) and the results

The term i(x,t) in Eq. (2.1) is here considered to be
Gaussian white noise with zero mean ((xst))=0 and Drt d y
autocorrelation function 3.0x 105

R,,(.,r)= (?(x,,)71(+4,+)) =r4( )B(,). (5.1)i: (i!: ..I.
The variance of the noise 0.2 is connected with the'loss a 2.0x105
and the absolute temperature Tthrough" : '

-5.r =4rrakT/OAXI, (5.2)1.-
where k is the Boltzmann constant. 1.0x10'

In the vectorized algorithm we find it convenient to in-
- troduce the noise term in p-t space, N'(t), as

NP(t)fF-'t(aexp(i(O,+O9)) (5.3) 0
J0.048782 0.046784 0.046786

where Fi denotes the Fourier transform from a to t Revolution frequencies f "
space, and q9, and 0. are stochastic variables uniformly ! I

-.--- distributed between 0 and 2v, with an upper limit in p PIC, 9, Distribution of revolution frequency ',. Numerical
(and (a of P " /2Ax and OamalT/At, Ax and At being !simulation with Gaussian noise drive: amO.01, ymO .034, -

. the resolution in space and time, respectively. Standard uq-8.8X1O-', and 1-20.I 1 I ' I 'I I I , I ; ,"
S II , ! i t _
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Standard deviation a Y',lfrom the numerical simulations for the lengths 1=8 and
1=20, respectively. As can be seen, the model is able to

( - 4  (a) predict the right qualitative dependence on the length, the
-I ' "'" noise amplitude, and the bias, but the model predicts an

overall standarddeviation that is about a factor of 10 too
10- s  cn" 0.20 Ilarge The reason for this discrepancy is at present not

10=0.0 . o l sknown. --ta-'co-
10-6 an=0.05 - In closing, we note that for y values near 0.3 it was

found necessary to augment the time resolution (by reduc-
0.002on=0.01 / ing At) to avoid spurious peaks in Fig. 10(a). The ex-

' i *'::. I istence of such spurious peaks might be an indicator of
0.00.3 0.4 \ the onset of chaotic behavior at nearby points in parame-

-I Bias current : ter space. In fact, parameter values y=0.3 with a=0.01Standarddeito f\! suyrprebyElc. ° "-'
,deviation f lead to chaotic creation of fluxon-antifluxon pairs in the

io- 2 study reported by Eilbeck.20

VI. COMPARISON WITH EXPERIMENTS
10-1 The rapidly decreasing linewidth with increasing bias

10 -  :.shown in Figs. 10 and I I is in qualitative agreement with
0the experimental observations of Fig. 1 in Ref. 10.

5r=O.20 To compare quantitatively the calculated results with
On=0.10 these experiments we use in Eq. (5.2) data reported by

10-s a n=001 Scott el al.' For the junction No. N25L, assuming a tern-
0.0 0.1 0.2 0.3 0.4 perature of 4 K, Eq. (5.2) gives a =0.0052. Noting from

Bias current v Fig. 9(a) that al scales linearly with a., we calculate from

FIG. 10. Standard deviation of revolution frequency o for Eq. (5.9) a normalized half-power linewidth
white Gaussian noise drive as a function of bias current y, for Af 1/ 2=5.5X 10-7 at y= 0 .2 . Taking as the normalized
a=0.01, 1=8, and u,,=0.01, 0.05, 0.10, and 0.20. (a) Numeri- resonance frequency fo=uo/l.-O. 125 we calculate a rela-
cal simulation. (b) lamiltonian perturbation theory. tive linewidth Af 1. 2 /fo=4.4X 10-'. The physical reso-

nance frequency for junction No. N25L was 2.3 Gilz.-
S:. This yields a physical linewidth of 10 kHz. ComparingStandard deviation 4..:-:. with the experimental results shown in Fig. I of Ref. 10

and noting that y=0.2 corresponds to a bias point near
1t01 (0) he bottom of the zero-field step, we find excellent agree-

ment. The same calculations for junction No. N53C,'
10-4 again for T=4 K and y=0.2, yield Af,12/fo

- 1 Un=0.20 ::20 - 2.3X 10 - . The physical resonance frequency for junc-
- n=0.10 - tion No. N53C was 8.3 GHz, whicti leads to a physical
10-=. ' 1 linewidth of 18 kHz, once again in excellent agreement10O cn=0. 0 1 . .

- ' vith experimental results.i -- 1 0-1 " T" '''\ wi" , I VII. OCUIN

0.00 \0.04 0.08 0.12 /. CONCLUSIONS
- . ______--_ _ Bias. current .7 . Computational studies of the linewidth of the radiation

Standard deviation al emitted by Josephson junctions require extremely high
": resolution. For this reason we developed a pseudospectral

-z !b.) ! method for solving the nonlinear dynamical equation
describing a circular Josephson junction oscillator. Be-

1 I cause the algorithm makes heavy use of fast Fourier
transforms it was implemented on a CRAY-I vector pro-

10". on=0.20 i.: cessor. Driving terms corresponding to physically realis-
[ =O. 10 tic situations, i.e., sinusoidal microwave irradiation and

10 |- an0.05  internal thermal noise, were considered. In the second
onO• O 1::' case the computational results were compared with exper-\ 1 -6 ... ...-

\ 10 ,,imental results reported in the literature, and excellent
1 0.00 0.04 0.08 0.12 qualitative and quantitative agreement was found. In ad-

Bias current "y - dition, in both cases we have compared the computational
FIG. II. Standard deviation of the revolution frequency o. results with approximate analytic results based on pertur.

for white Gaussian noise drive as a function of bias current y, baton theory. Here the agreement was qualitatively good,
for a=0.01, 1=20, and a,,=0.01, 0.05, 0.10, and 0.20. (a) Nu- but quantitative discrepancies were found, indicating a

[ merical simulation. (b) flamiltonian perturbation theory. need for further development of perturbation theory.
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Superconducting quantum interference devices (SQUIDs) respond chaotically to external oscillating fluxes. The small
deviations from one-dimensional return maps are investigated. Within a narrow region of parameter space a sequence of period
doublinp, windows with odd periods and chaotic behaviour, intermittency and bifurcation between coexisting attractors of low
dimension are found.

A periodically driven rf superconducting quantum the inductance of the ring. Due to the presence of
interference device (SQUID) consisting of a ring with this term, which corresponds to a confining quadratic
a single Josephson junction has been investigated re- potential, less chaos might be expected in this system L- - ;-4

cen dy both by means of analogue circuits [I I and than in the single Josephson junction without the 0o L
computationally 12,31. Like many other physical sys- term 121. We have shown that eq. (1) does not possess
tems the device exhibits deterministic chaos (intrinsic the Painlev6 property 141 in accordance with the fact
noise). In this letter we investigate in detail a particu- that chaos in the system does occur for certain initial
lar portion of parameter space which exhibits ex- conditions. The proof is obtained by converting eq.
tremely rich details of the dynamics. Furthermore, (1) into four non-linear coupled autonomous first- - -

we demonstrate that the choice of attractor (in cases order differential equations through differentiations
with more than one attractor) may depend on the ini- and trigonometric substitutions [5 1. The resulting
tial conditions, i.e. there can be coexisting attractors. system can be shown to possess other movable singu-

The order parameter for the Josephson junction, 0, larities than poles. Therefore the system, and thus eq.
satisfies the differential equation 121 (1), is not of Painlevd type. -

Eq. (1) was integrated numerically by means of
IMSL routine [61 DVERK- I. Our results are shown as

where primes signify differentiation with respect to the return maps in figs. I and 2. As in ref. [21 we plot 7
the dimensionless time t given by t = T(C0O/2IJc)l/2. X(n + 1) versus X(n) = 0'(tn + A) with tn given as the
Here Tis laboratory time, 0O = h/21e is the flux nth zero crossing of0' and the constant A arbitrarily
quantum, C and J. are the capacitance and the maxi- chosen as A = 0. 134. The numerical simulations
mal critical current, respectively. The loss parameter, showed that the transients had died out before n =
e, is given by e2 = 0O/2frCJcR 2 where R is the resis- 300. Iterations from n = 300 to n = 600 are included.
tance of the weak link. The external flux is assumed In view of the fixed rf driving our general return map
to be sinusoidal with frequency coD and amplitude -. construction could be substituted by, e.g., a simple
In the additional term, 00, a = 0O/21rJcL, where L is strobing at the driving period. Differing constructions

0.375-9601/85/$ 03.30 Q Elsevier Science Publishers B.V. 347
(North-Holland Physics Publishing Division)
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Fig. 1. Continued on next page.
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Fig. 1. Return maps obtained as ordered pairs X(n), X(n + 1) for n = 300-600. Parameters in eq. (1) are e = 0.5, - 10, WD 0.5,
and a - 0.16435-0.173. Initial conditions for a = 0.16435 0(0) 0'(0) = 0. In subsequent maps the values ofo and o' of the pre-
ceding run are used as initial conditions.
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Fig. 2. Return maps obtained as ordered pairs X~n), X(n + 1) for n a300-600. Parameters in eq. (1) are. e 0.5, -f 10,w WD 0.5,
and a -O.1695-0.1715. Initial conditions 0(0) 0 '(0) a0 throughout.
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should not affect the topological information carried (as shown in fig. 2). Thus a special type of bifurcation ."-

by the map. The computational procedure proposed occurs between a = 0. 1705 and 0. 1706. By means of
by Ilnon 171 was used. Of the four parameters in eq. computer experiments we have checked that the
(I) e, j and W'D were kept constant throughout at the choice depends on whether the initial conditions for
values chosen in fig. 3 of ref. [21: e = 0.5, ' = 10, and the run already lie on the lowcr attractor or the upper
(jD = 0.5. attractor, respectively. Also, we have found that ini-

In fig. I the parameter a was varied from a = tial conditions 0(0) = 0'(0) = 0 lead always to the up-
0.16435 to a = 0.173. In the first run, a= 0.16435, per attractor as shown in fig. 2. The following runs
initial conditions 0(0) = 0'(0) = 0 were used and a demonstrate that the system stays on the preferred
period-2 solution was found (as indicated in fig. 2 of attractor as a is increased. For a = 0. 17125 the lower
ref. 121 ). In the following run, a = 0. 1644, the final attractor (fig. 1) and the upper attractor (fig. 2) have
values of 4) and 0' from the previous run were used as depopulated into period-2 windows. For a = 0. 17129
initial conditions. This procedure was used through- period-16 solutions (on the attractors) occur in both
out in a series of computer experiments with increas- cases. For a = 0. 17 13, 0.1714, and 0. 1715 a sequence
ing values of the parameter a. Ilowever, for each value of period-8, period-4, and per iod-2 solutions is ob-
ofa, eq. (1) was also solved for initial conditions 0)(0) served similarly. For a = 0. 173 the period-I solution
='(0) = 0. indicated in fig. 2 of ref. 121 is found.

When the resulting return maps (for n = 300-600) The chaotic behaviour indicated by "c" at e = 0.5
differed the map is included in fig. 2. For at = 0.1644 and a = 0.16-0.17 in fig. 2 of ref. 121 has an extreme-
a return map indicating low-dimensional chaotic be- ly detailed structure within a small portion of parai-_
haviour was found (for both sets of initial conditicns). eter space. it particular, note that the "single hump"
As the parameter a was raised to a = 0.165 only small return map reported in ref. [21 is in fact extremely
changes in the return map occurred. Ilowever, at a = structured. Since the phase space is two-dimensional a - :-
0.167 we observed a shift from chaotic behaviour into purely one-dimensional return map is not expected,
a period-7 solution. At a = 0.169 the return map again the closeness depending sensitively on the parameter
exhibits chaotic behaviour, this time as a period-3 e. Similar small deviations from a one-dimensional
window. At a = 0.1695 the periodic behaviour is re- circle map have been found in ref. [81 in a dc + ac
established as a period-3 solution which, however, driven single pendulum.
vanishes again at ot = 0.17 where we find the same dou-

., ble humped chaotic return map as in fig. 3c of ref. It is our pleasure to thank Klaus Fesser and Robert
121. Note, however, that if initial conditions (0) D. Parmentier for helpful discussions. The financial

(0) 0 are used chaos already occurs fora 0-O.1695 support of the European Research Office of the
as shown in fig. 2. Already for a = 0. 17007 the dou- United States Army (through contract No. DAJA-37-

ble humped return map depopulates into a chaotic 82-C-0057), the Consiglio Nazionale delle Ricerche

period-5 window, which has already vanished again (Italy) to the author (M.B.) and U.S.D.O.E. to the

for a = 0. 1705 (fig. 1). The double humped envelope author (A.R.B.) is gratefully acknowledged.
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