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SUMMARY

The long and intermediate length Josephson tunnel junction oscil-
lator with overlap geometry of linear and circular configuration, is
investigated by computational solution of the perturbed sine-Gordon
equation model and by experimental measurements. The model predicts the
experimental results very well. Line oscillators as well as ring oscil-
lators are treated. For long junctions soliton perturbation methods are
developed and turn out to be efficient prediction tools, also providing
physical understanding of the dynamics of the oscillator. For inter-
mediate length junctions expansions in terms of linear cavity modes
- reduce computational costs.

" The narrow linewidth of the electromagnetic radiation (typically ]
1 kHz of a line at 10 GHz) is demonstrated experimentally. Corresponding
computer simulations requiring a relative accuracy of less than 10-7 are

performed on supercomputer CRAY-1-S. The broadening of linewidth due to :,1

external microwave radiation and internal thermal noise is determined. 3

The effect of constant magnetic fields, applied to tune the radia- _
tion frequency, on the resonant soliton oscillations is investigated by ,ij
detailed computations of the power spectra. Hysteresis and chaotic inter-
mittency between soliton dynamic states are found. In narrow windows of oy
parameter space chaos effects cause noise rise,. :
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Poincaré and return maps, Painlevé and Melnikov methods are applied -]
to indicate and predict chaos in ordinary differential equations of
sine-Gordon type modelling SQUIDs.
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Cavity mode, Chaos, Fiske steps, Hysteresis, Intermittency,
Josephson fluxon oscillator, Josephson ring oscillator, Josephson
tunnel junction, Noise rise, Perturbation theory, Radiation line- Y
width, Sine-Gordon equation (perturbed), Soliton (fluxon), SQUID,
Subharmonics, Zero field steps.
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In the following sections we summarize the new main results ob-
tained under the contract. References to the published papers in the
above lists will be given. Also the background for the research and
the future perspectives will be discussed.

BACKGROUND

The study of soliton dynamics in connection with large Josephson
tunnel junctions has recently drawn considerable theoretical [22-27]
and experimental [28,29] attention®. Fulton and Dynes [1] conceived
the idea that the Josephson tunnel junction could support the resonant
propagation of a soliton (or fluxon) trapped in the junction, the so-
liton being a 27 jump in the phase difference (¢) across the insulat-
ing barrier which separates the two superconductors. The moving soli-
ton is accompanied by a voltage pulse (~¢) which can be detected at
either end of the junction. The dc manifestation of the motion is a
sequence of equidistantly spaced branches in the current-voltage cha-
racteristic of the junction. These near-constant voltage branches,
which were first reported by Chen, Finnegan, and Langenberg [30], are
known as zero-field steps (2FS) because they occur also in the absence
of an external magnetic field. In contrast, the so-called Fiske steps
(FS) are found only when a magnetic field is applied [311],

*
References 22-46 are given in the following section, Literature

cited.
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THE JOSEPHSON OSCILLATOR

An overlap-geometry Josephson tunnel junction consists of two
superconductive metal layers (for example Nb and Pb) separated by a
thin insulating oxide layer (Nb,O,) of uniform thickness (tg ) that is
small enough to permit quantum—meghanical tunnelling of eledtrons. The
geometry is shown in Fig. 1. The region where the two superconducting
layers overlap has the length L in the X-direction and the width W in
the Y-direction. Typical values are L ~ 6\3y and W ~ 0.8 )j where the
Josephson length AJ = 10~* m. Thus the overlap region is approximately
1-dimensional.

The tunnelling supercurrent is described by the two basic
Josephson equations

j(X,T) = jo sin¢ (1)
and
-g-%=ifv. (2)

Dc-Bias
Current

Superconductor

Insulator
'/
/ Hel

Figure 1. Josephson junction of overlap geometry [32].
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Here ¢ = ¢(X,T) is the difference between the phases of the order para-
meter of the two superconductors, T is laboratory time, and j(X,T)

is the Josephson current crossing the barrier per unit length in the
X-direction, Jo being the maximum current. The voltage drop across the
insulating barrier is V = V(X,T). Combination of (1) and (2) with Max-
well's equations yields the following partial differential equation

(Lp/Rp) dyyq + Pxx = Lp ¢pp = GLp ¢g

(27Lp3 /% ) (sing = 3./3 ) (3).

Here Lp and Rp are inductance and skin resistance per length unit of the o
oscillator. (Figure 2 shows the equivalent circuit diagram for the Lo
oscillator). The capitance and the effective normal resistance per
length unit are represented by C and G~!, respectively. The externally
applied bias current per length unit is jg, while

L}

¢, = h/2e = 2.064 x 107'° Wb is the magnetic flux quantum. Introduc- .
tion of normalized coordinates, x = X/AJ and t = Twgy, yYields the per-
turbed sine-Gordon equation:
o
o
::'-;ﬁ
. R
— |‘ TN
- ayd
e Lpdx e :_j__x_'_‘.{
i R
|2 '.'::\..':$
-.:_‘.:.\.
Rpdx _ Z;l;f
;E josindx N
Cdx Gdx \ jp dx
1 ' — e am-
—_———=T Ll
dx —

Figure 2. Element of lumped transmission line equivalent circuit
representing the Josephson oscillator [32].
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¢xx - ¢tt - sin¢ = 0Lq’t - Bq)xxt -y (4).

Here the Josephson length and the Josephson plasma frequency are given -
_ . 3 -~ ) L .

by AJ-(®O/2n30LP) and Wo (hﬂ]o/¢oC) , and the coefficients in (4)

are given by a = G/wOC, B = wOLP/RP and y = jB/]o. Typical values of

Ay and w, are A ; = 1.6 x 10"* mand w_ = 5.8 x 10'°s™! such that

o
the propagatlon veloc1ty of electromagnetic signals (i.e. solutions

of the linear wave equation, ¢xx - ¢tt

= 9,3 x 10° m/s in laboratory coordinates for a typical

0, corresponding to (4)) be-

comes ¢ = Aon

Josephson oscillator. In the normalized coordinates, x and t, this
velocity is of course equal to unity.

At the ends of the oscillator, X = 0 and X = L, we apply the
following boundary conditions:

(i) When no external magnetic field is applied we approximate the
physical situation by an open-end condition, i.e. zerc current on the oo
h junction at the ends. Since the current is proportional to ¢X we get -

1 ¢x(01t) = ¢x(2'1t) =0 (5a)

mation since coupling between the oscillator and the surrounding micro- ...
wave circuit is neglected. However, the condition leads to good agree- .
] ment between the computational results obtained for this condition and AN
the experimental measurements. RN

i in normalized units with £ = L/A3j. Condition (6) is only an approxi-

{ (ii) When an external magnetic tield H in the negative Y-direction }jfﬁ
‘ (see Fig. 1), is present the boundary cOndition becomes R
i ¢, (0,t) = ¢x(1,t) = n (5b)

where n is the normalized magnetic field n = (-W/jOAJ)Hex .
‘ The initial conditions used for the computational modelling of
i the oscillator are ©
L ¢(x,0) = F(x) 9, (x,0) = G(x) (6) S
! e
; where the functions F and G are chosen such that the stationary so- R
* liton dynamic states of the oscillator are obtained in the numerical

computations without too long transients. In the following section S
we shall discuss these soliton dynamic states. In principle the ini- RO
tial conditions can be varied within certain limits without any change *sb
in the resulting stationary soliton dynamic states. In practice we often:-

use the final values from a previous numerical solution of a boundary -\”c
value problem (4), (5) and (6) with a slightly changed set of para- ;
meters. The five parameters in the model are o, B, Y, 2 and n. EARAE




THE DYNAMICS OF THE JOSEPHSON OSCILLATOR

The classical sine-Gordon equation,

¢xx- ¢)t:t

plx,t) = 4 tan !lexp(t(x - ut - xo)//1 - u?] (7)

- sin¢ = 0, has 2n-kinks and anti-kinks

as soliton solutions [33]. Here u is the constant velocity of the sol-
iton and X, is the position of the soliton at t = 0. oo
The perturbed sine-Gordon equation (4) has similar soliton solu-
tions in the looser serse. Each soliton carries a magnetic flux quan- e
tum. The dynamics of these solitons is investigated by means of per- S
turbation theory in Ref. [34]. As a result a first-order differen- e
tial equation for the variable soliton velocity for a single soliton, R
u(t), is derived SO

du _ 1 - w2y 2 _ _ a2y _ 1 ;E}
T -3 my (1 u‘) / au (1 u) 3 Bu . (8) 1354
Eq. (8) expresses the balance between energy input in the system due 4
to the y-term and dissipation due to the loss terms, a¢t and —B¢th
The stationary velocity, u_, is determined from Egq. (8) by letting
du/dt = 0 and solving the resulting equation with respect to u. In .
typical computer experiments u(t) rapidly adjusts towards the station- w--—
ary velocity, u_. o

For a finite junction with open-end boundary conditions (5a) it ey
is easy to show that solitons are reflected into antisolitons and e
vice versa at the boundaries. The bias current, Yy, drives the soliton PR
in the negative x-direction until it is reflected into an antisoliton PR
at x = 0. The antisoliton is driven in the positive x-direction and
reflected into a soliton at x =% and a new cycle of this stationary
state is initiated. We shall designate such a stationary state a sol-
iton dynamic state. The periodic motion of the soliton on the os- R
cillator is responsible for the emission of electromagnetic radiation, R
typically in the GHz-range, from the oscillator. Figure 3 shows a e
computer picture of part of the oscillation cycle in the soliton dy-
namic state with one soliton. In the inset, ¢, (%,t) is shown as a func- . .-
tion of t for 50 time units. This guantity is proportional to the vol- RN
tage on the oscillator at the end at x = % according to (2). The DC-
component of the voltage ¢_(%,t) has been computed for different va-
lues of the applied bias current y in Eq. (4). The resulting curve
shows agreement with experimentally measured 1st ZFS branch of the
Iv-characteristic as seen in Fig. 4. Similarly when two or three
solitons are present on the oscillator the 2nd ZFS and the 3rd ZFS
branches of the IV-characteristic are obtained.

o g S e o e o
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X Figure 3. Computer solution of the perturbed sine-Gordon equation RO
(4) with o = 0.05, B = 0.02, vy = 0.35. Boundary conditions (5a) with
£ = 6. Initial conditions (6) with one soliton. The inset shows

¢t(l,t)[32]. e

Computational Fourier énalysis of ¢_(2,t) provides the power }ﬁi‘
spectrum for the radiation from the osciilator. The basic frequency ol
is given by s

£ = u/22 . (9) <

Also the computational power spectrum shows agreement with experimen-
tal measurements of the power spectrum [35-36].

The presence of the loss term-£¢ in Eg. (4) permits soliton j%i
dynamic states in which two or more séf%tons travel together in
bunches [34]. N

Figure 3 illustrates the 2-soliton case for different parameter ;S:
values. For small values of Y (Fig. 3a) the two solitons travel in S
a symmetric configuration - i.e. soliton and antisoliton in opposite

RO AP P LARAMALARALALAS . Dthoeare e grc, o oasncas
T
-

directions. For higher values of y (Fig. 3b) the two solitons travel £
in a bunched state - i.e. two solitons in the same direction followed e
by two antisolitons in the opposite direction. There is a gradual IR

LI AR

SR

transition from the symmetric state to the 2-bunch state as the bias <
current y is increased and vice versa as Y is decreased. In Ref. [37] o
it has been shown that the Hamiltonian for two (undeformed) solitons
(on an infinite junction) has a local minimum for a finite separation
between the solitons. This separation equals the length of the junc-
tion for the value of y at which the transision between the two sol-
iton dynamic states occurs. Ref. [32] reports on the following hyste-
resis phenomenon: For increasing (decreasing) bias current y the transi--
tion from symmetric to bunched mode (vice versa) occurs at smaller
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.
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(higher) values of Y. #end
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ZFS 3

Vae(1V)

o ZFS 2

ons® ZFS 1 -
i)
! e

T el
7.5 16.0 e
"--:-:—;
o

U
a

Figure 4. DC~-voltage versus applied bias current showing the first AN
three zero field steps. Circles indicate computational results and >
solid lines represent experimental results [32]. For the numerical re- .-
sults we have used o« = 0.05 and 8 = 0.02 in (4), 2 = 6 and n = 0 in AENEN
(5), and one, two and three solitons in the initial conditions (6) SR

on ZFS 1, ZFS 2, and 2FS 3, respectively. Furthermore y ~ I and RN
<6, (0,t)> ~ V., . : dc NS
t. dc PR
Y

Fig. 6 shows the soliton trajectories in the xt-plane correspond- o
ing to different soliton dynamic states. The diagram ZFS 1 corresponds NN

to Fig. 3. while the diagrams ZFS 2 (Symmetric) and ZFS 2 (2-Bunch) T
correspond to Fig. 5a and b. The diagrams marked ZFS 3 (3-Bunch) and ‘“'1
ZFS 3(2-Bunch, 1 Free) correspond to soliton dynamic states found R

experimentally and computationally in Ref. [ 36] where, respectively,

three solitons travel in one bunch, and two solitons travel together R
and one soliton travels alone with a slightly deviating velocity, u. Ry
The soliton dynamic states corresponding to the other diagrams in Tig. € )i
will be discussed in the following sections which treat the results L
| obtained under the present contract work. RS




_—evv—v

b A dh e b e o

Figure 5. Computer solutions of the perturbed sine-Gordon equa-
tion (3) with a = 0.05 and B = 0.2. Boundary conditions (5a) with

L
Y

XK

6. Initial conditions (6) with two solitons. (a): y = 0.125, (b):
0.3. The insets show ¢t(2,t) [32].
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SOLITON TRAJECTORIES

SOLITON ANTISOLITON — =~ PLASMA  coeeeenee
, OSCILLATION

KHE

ZFS 1 ZFS 2 ZFS 2
Symmetric 2-Bunch
J X

~,

. ZFS 3 ZFS 3
3-Bunch 2-Bunch

.,
.
3
.
*.
L
.

- — et
FS1 FS1} FS2 Fs2 FS3 -
——s  Symmetric 2-Bunch .

Figure 6. Soliton dynamic states. ZFS = zero field-step correspond-
ing to boundary conditions (5a). FS = Fiske step corresponding to
boundary conditions (5b).
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LINEWIDTH OF ELECTROMAGNETIC RADIATION FROM JOSEPHSON OSCILLATOR

In the frequency spectrum of the electromagnetic radiation from
the Josephson oscillator the width of the lines is very narrow. An
experimental measurement shows a physical linewidth as narrow as
1 kHz of a line at 10 GHz [38]. The very well-defined frequency of the
radiation is a technologically important feature of the Josephscn junc-
tion. The narrow linewidth is a consequence of the coherence of the soli-
tonic excitation of the junction.

In Ref. [1] of the present contract soliton perturbation theory is
used to calculate the soliton oscillator linewidth arising from soliton
interactions with background radiation. The paper treats the line oscil-
lator illustrated in Fig. 1 and modelled by Egs. (4-6) as well as the
ring oscillator illustrated in Fig. 2 of Ref.l1]). In the latter case the

boundary conditions (4) are replaced by the periodic boundary conditions _—
9, (0,t) = ¢ (&,¢) ST

t t (10) T
¢)X(O't) = ¢x(9'lt) _:
R

where £ now denotes the circumference of the ring oscillator. The pertur-
bation analysis is based on the ansatz that the soliton is given by

¢ = 4tan~lexp [(x - X(t))//1 - x?] (11)

(o]

where X = X(t) describes the soliton trajectory in the xt-plane and ﬁ:;’
) the derivative u = X(t) is the velocity. Following the analysis of o

Ref. [34] the perturbation theory is expanded to second order. Detailed e
! calculations in the case of an oscillator that is long compared with the .-
Josephson length and for which the radiation field is thermal establish e
lower bounds for the linewidth of a real oscillator. These lower bounds o
are not in disagreement with available instrument-limited measurements T
of X-band linewidths less than 5 kHz. Fig. 3 and 4 of Ref. [1] show the
experimentally measured linewidths as function of the average soliton S
velocity and the absolute temperature of the junction while Fig. 5 shows S
the computational linewidth at temperature T = 3 K and velocity u = 0.8. OUROR

A Hamiltonian perturbation theory was developed for the ring oscil-
lator in Ref. [6]. Here the ansatz for the travelling wave was given by

e
N
A d A 4

.
"

} ¢ = sin~! [tcn(£,k)] (12) i

AR S N

where £ = (x-ut)/k(1 - uz)i and cn(g,k) is a jacobian elliptic function
with modulus k. ¢ given by (12) is an exact solution to the unperturbed e
{ sine-Gordon equation ¢4y = ¢ty = sin¢ = 0 with periodic boundary condi-
tions (10). The perturbation theory was developed for the elliptic func-
tion in the same manner as in Ref. [34]. As a result an ordinary diffe- :
rential equation like (8) was obtained. However, the coefficients y, N
a and B were replaced by AR
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Y' = 2vk3/A
| a' = 2ak2E(k)/A (13)
B' = 28 [(2 - k*)E(k) - 2(1 - k*)K(k)]/A
with
A = 2k2E(k) + (1 - k?)22%4K(k) .

Here K(k) and E(k) denote. the complete elliptic integrals of first

and second kind. The stationary velocity was determined as function of
circumferential length for different values of loss parameters o and B
and as function of bias Y. Comparison to direct numerical solutions shows
that Hamiltonian perturbation theory can be used to predict the statio-
nary one-soliton velocity of the ring oscillator. The results are use-
ful for the interpretation of experimental measurements of the I-V cha-
racteristic for this device. Furthermore the stationary solutions are
useful as initial conditions for numerical simulations of the ring os-
cillator under different circumstances.

In Ref. [11] very detailed sirnwulation studies of the dynamics in
long ring oscillators under the influence of external microwave radiation
field and internal thermal noise are presented. The former situation is S
modelled by inclusion of a sinusoidal driving term in the perturbed sine- “-.-.
Gordon equation (4) where -y is replaced by vy + n(x,t) with n(x,t) = L
n(t) = nysin®t, Q being the frequency and ng the amplitude. The latter e
case is modelled by letting n{(x,t) be Gaussian white noise with zero 1‘.{
mean <n(x,t)> = 0 and autocorrelation function .

"
2.
e
PR
PRI
LR
S ez e Al

R (C,7) = <nix,t)n(x + g,t+71)> = O;G(C)G(T) (14) \
Here the variance of the noise 02 is connected with the loss a and the f%%%
absolute temperature T through

6; = 4"“§T/¢ojo AJ (15)
where kpis the Boltzmann constant. The simulation algorithm uses a P

pseudo spectral method making heavy use of fast Fourier transforms which
is well adapted to vector processors (CRAY-1-S) which gives a speed-up
factor in computing time of typically 22 in comparison to conventional
high-speed computers, and also provides results with a relative accuracy 1
of less than 10~® which is required to study the very narrow linewidth .531
of such oscillators. For the sinusoidal driving term the computational A
1

results are compared to results obtained by perturbation theory based -
on the ansatz R

o(x,t) = oF(x,t) + 67 (t) (16) T
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o]
where ¢k(x,t) denotes the kink part and ¢ (t) denotes the background
part. In the theory the background motion becomes an effective driving
term for the momentum of the kink part. As a result the kink momentum is
determinded as a function of time and thus the fluctuations in the kink TS
velocity and in the revolution frequency. Since the velocity u fluc- S
tuates Eq. (9) is replaced by '

.
o fatele
v 3
‘a2

1
'3

Vot
o s

tn_1 + Tn
f udt = ¢ (17)

tn—1

t
]

and

'
[
}

£, = 1/T,

where Tp is the n'th revolution period. We compare the standard devia-
tion of the revolution frequency

. . . ? M A . . -' H
- L] : A » - . .
L N v L.
I SO PRI PRI LI PR

oo
»
i

- 2 & < <
Of = [<(fn-<fn>) >] for 0.4 < Q £ 2.0,

ot
‘s man

The results are shown in Fig. 8 of Ref. [11]. The perturbative kink model
predicts a resonance just below the plasma frequency { = 1, whereas e
the numerical simulation yields this peak at a somewhat lower frequency. -’
The reason for the discrepancy is attributable to the fact that we have :
used a linearized kink model. Presumably, the use of a higher order ex-
pansion would yield a behavior analogous to that of a soft nonlinear jfﬁ
spring, thus reducing the discrepancy. It has also been shown later that T
the difference in scale of the standard deviation can be removed by a R
further refinement of the perturbative treatment [39]. N

-',' te -..
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] Wl
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.
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For the Gaussian white noise driving term the numerical simulation
results agree well with experimental results. The model based on Hamil- R
tonian perturbation theory was also able to predict the qualitative de- e
pendence of the standard deviation Og on the bias. jp{

In Ref. [7]) standard methods of stochastic processes are used to
study the coupling of the sine-Gordon system with a heat reservoir. Both
phonons and solitons are found to be thermalized in a way such that the
phonons will have an average energy at kpT per mode while solitons will
have an energy of i KkgT. These results are in agreement with those ob-
tained by using a statistical-mechanics approach for a "dilute" solu-
tion gas [40].
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EFFECTS OF EXTERNAL MAGNETIC FIELDS ON SOLITON DYNAMICS

In Ref. [4] the dynamical benavior of solitons propagating in the
presence of an applied magnetic field on a long overlap-geometry
Josephson tunnel junction is investigated. The application of external
magnetic fields is essential for tuning the frequency of the radiation.
The magnetic field is modelled by boundary conditions (5b). It is de-
monstrated that the soliton dynamic state corresponding to the branch
of the IV-characteristic for the oscillator denoted the 1st Fiske step
(FS 1) is the following: The scliton travels in the bias-aided direc-
tion which is the negative x-direction in the FS 1 diagram in Fig. 6
and reacts with the boundary condition (5b) at x = 0. As a result energy
is absorbed from the incident soliton such that the minimum energy for
the sine-Gordon soliton (= 8 in normalized units) is no longer available.
Therefore no antisoliton is reflected. Instead reflection of plasma os-
cillations is observed. They travel in the positive x-direction and
reach the boundary at x = & where a new soliton is created due to the
energy input caused by boundary condition (5b). This constitutes the
first cycle of the stationary soliton dynamic state. For the initial
conditions used in this paper the 2nd Fiske step which contains two
solitons is not found, while the 3rd Fiske step (FS 3 in Fig. 6) is
found to consist of two solitons travelling in the negative x-direc-
tion and one antisoliton and plasma oscillations travelling in the
positive x-direction. Analyses of the corresponding of the three first
harmonics of the computational power spectra confirm this picture of
the soliton dynamics for the junction biased on FS 1 and FS 3.

Ref. [3] demonstrates that the 1st Fiske step possesses a branched
structure. The major portion of the step corresponds to a simply periodic
soliton oscillation whereas the branches are characterized by subhar-
monic generation. Such period doublings are important because they may
be the first step on the road to chaos. Indeed such chaotic behavior is
found by us for overlap Josephson junctions when the oscillator is sub-
jected to a constant external magnetic field [5]. The phenomenon will
be discussed in the following section.

In Ref. [2] the soliton dynamics for different geometries of the
Josephson tunnel junction are compared. So far we have only been con-
cerned with the overlap geometry illustrated in Fig. 1. In the in-line
geometry the bias current enters in the direction parallel to the long
dimension (instead of perpendicular to the long dimension) of the junc-
tion and is limited by self-screening effects to the two ends of the

junction. In the paper I-V characteristics and microwave emission spectra'ﬁﬁ*

are calculated for the two geometries and shown to be qualitatively si-
milar, although also quantitative differences are found.

Ref. [9] is a detailed study of I-V structure and the emitted X-band
radiation from the overlap-geometry Josephson tunnel junctions of inter-
mediate length (£ = 2) when external magnetic fields are applied. Di-
rect computational solutions of the perturbed sine-Gordon equation (4)
with inhomogeneocus boundary conditions (5b) are compared to experimental
measurements. Furthermore cavity mode analyses, both single mode and
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multimode, are shown to predict the simulation results quite accurately.
This result is important because the application of a superposition of
linear cavity modes is computationally cheaper than direct numerical so-
lution of the boundary value problem of the partial differential equa-
tion. The method works for intermediate length Josephson junctions. For
longer junctions the soliton nature of the excitation becomes more im-
portant and must be included in the expansion modes.

Fig. 1 in Ref. [9] gives some of the main results of the paper. For
small values of the magnetic field n the junction is biased on ZFS 1
while larger values of n leads to a soliton dynamic state corresponding
to the 2nd Fiske step. Both FS 2 symmetric and FS 2 2-Bunch (indicated
in Fig. 6) are found. In the former case solitons and plasma oscilla-
tions are travelling in opposite directions on the junction at the same
time. In the latter case two solitons are travelling in a bunch together
and reflected into plasma oscillations. Thus we have demonstrated the
existence of the bunching phenomenon [32] also in the magnetic case.

For n £ 1.8 Fig. 1 shows the bias value at the top of the 1st zero field
step and the bias value at the bottom of this step as function of the
magnetic field. The top decreases and the bottom increases as the mag-
netic field is increased. At n = 1.8 ZFS | no longer exists.

For 1.8 £ n £ 5.5 the junction operates onFS 2 in the symmetric mode or
in the bunched mode as illustrated in the insets of the figure. On FS 2
it is only possible to detect the top bias value of the step. As indi-
cated by the arrows in Fig. 1 the stationary values of the bias current
depend on the direction of the field variation. A similar hysteresis phe-
nomenon was found in the non-magnetic case [32). The figure also shows
the agreement between the results obtained by direct numerical solution
and the results obtained by the single mode theory due to Kulik [41], up
to n = 4.4, and the results obtained by the multimode theory due to
Enpuku et al. [42].

Ref. [9] contains numerous computations of time series for the vol-
tage at one end of the junction, power spectra, and dependence of fre-
quency components on bias and magnetic fields (illustrated in Figs. 2-9).

Experimental measurements, shown in Fig. 10-12, agree well with the
computational results. In particular, it was found experimentally that
the first frequency component was missing in the interval in the mag-
netic field strength where the junction operates on FS 2. Here the po-
wer in the first harmonic was found computationally to be very low.

SOLITON AND CHAQOS EFFECTS ON THE JOSEPHSON OSCILLATOR

As mentioned earlier the little distorted coherent solitonic exci-
tation of the Josephson oscillator is the reason for the narrow line-
width of the electromagnetic radiation from the device. Chaotic features
in the nonlinear dynamics of the oscillator may change this picture. In
particular, a combination of random thermal effects and chaotic effects
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may have serious effects on the frequency spectrum. Thus it is desirable
for the technological applications to avoid operation of the oscillator
in the regions of parameter space (&£, «, B, 3, n) where these phenomcna
occur. In Ref. [5] we have found a region where chaotic intermittency
between soliton dynamic states occurs. It is, however, only a relatively
narrow window. The junction considered has -~ = 5, a« = 0.252, b = 0, and
the magnetic field is n = 0.25. For y = 0.454 the junction is biased on
IS 1 while for vy = 0.5 the junction is biasedon FS 2. For intermediate
y-values (y = 0.456-0.490) the oscillator was observed computationally
to switch between FS 1 and FS 2 intermittently, giving rise to a spe-
cial branch in the IV-characteristic which we denoted FS 1} as indicated
in Fig. 6. Long computer simulations of the phenomenon made a detailed
study of the power spectrum possible and also demonstrated that the
switching can be treated probabilistically as a Poisson process. Expe-
rimental measurements [43] have in fact perhaps revealed FS 14%.

For the study of chaos it is necessary to possess analytical and
computational tools for the detection of the phenomenon. We have worked
with the Painlevé test [44] and developed software for computation of
return maps. In Ref. [12] we apply these tools to a periodically driven
rf superconducting quantum interference device (SQUID) consisting of a
ring with a single Josephson junction. The system is described by the
ordinary differential equation

¢" + €¢' + sini = a(ysine t - J) . (18)

Here prime denotes differentiation with respect to time, ¢ is a loss
parameter, wp is the driving frequency and .y the amplitude. The per-
turbing term, .;, has the effect of confining the chaos. As a result
an almost 1-dimensional return map is found. The very delicate struc-
ture of the dynamics as well as the existence of coexisting attractors
are demonstrated.

Besides detection of chaos prediction of the phenomenon is impor-
tant. Available here is the method of Melnikov integrals {45]. So far
the method has only been devel ped for ordinary differential equations
that possess a homoclinic orbit. In Ref. [14] we apply the methed to
the following equations with linear and quadratic damping terms, cva:'
and k(¢')?,

¢" + sin¢ = e(r + r1 sin th - a;'")

(19)
¢" + k(0')? + sing = o +

o1 sinJDt,
respectively. The differential operators on the left hand sides possess
homoclinic orbits in phase space. The right hand sides are the pertur-
bative terms giving rise to Smale horseshoe chaos when the Melnikov inte-
gral vanishes. In the case of quadratic damping the existence of an exact
solution to ¢" + k(¢')" + sing = 0 makes it possible to avoid the inclu-
sion of the damping term into the perturbation. The Melnikov prediction
of chaos becomes correspondingly more accurate as is demonstrated by
comparison to numerical solutions of (19).
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OTHER RESEARCH IN CONNECTION WITH THE PRESENT CONTRACT

o — W ————

In connection with the physical understanding of the soliton pheno-
mena in the sine-Gordon system the mechanical analogue consisting of
elastically coupled pendula subjected to gravity [46] plays an important
role. In Ref. [13] a mechanical analogue for the double-sine-Gordon
equation

A

-6 - A.sind - -2 sin & -
¢xx ¢tt A151n¢ > sin 5 = 0 (20)

is proposed and used to analyze solitary solutions for arbitrary para-
meter values. Eq. (20) applies to other condensed matter systems.

For the numerical solution of nonlinear evolution equations like
the sine-Gordon equation it is a fundamental question to perform the
discretization in an optimal manner. Ref. [8] investigates this question
in the case where the evolution equation is integrable. A geometrical
approach is used to obtain a discretization that preserves the inte-
grability. As an illustrative example the discrete Burger's hierarchy is
analyzed. The possibility of extending this procedure to soliton equa-
tions which are also integrable is briefly discussed.

PERSPECTIVES

The work done in the present contract is being continued under the
following main themes:

Instabilities of the steps in the I-V characteristics for the
Josephson junction. For optimal operation of the Josephson oscillator
it is important to understand the instabilities of the soliton dynamic
states. For example why does the spatially uniform excitation of the
junction become unstable for values of the bias current which are lar-
ger than a certain critical value? As a result a spatial structure is
formed (one soliton on ZFS 1, two solitons on ZFS 2, etc.). And why
does this structure become unstable again at larger values of the bias
current such that the step has a maximum height?

Chaos and noise rise due to thermal effects. The reiationship be-
tween these effects is of crucial importance for the narrow linewidth
properties of the Josephson oscillator.

Modal expansions for longer Josephson junctions. Computational

costs have been reduced considerably by using cavity mode expansions
for intermediate length Josephson junctions. Can a similar reduction of
simulation costs be achieved for long Josephson junctions by using
expansions in terms of nonlinear soliton modes from the unperturbed
system?
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Coupling problems. For the practical application of Josephson os-
cillators in thin film electronic networks the coupling between the
oscillator, other oscillators and surrounding microstrips is essential.
The dynamics of the junction equipped with boundary conditions modelling
such couplings is very important.
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Linewidth for fluxon oscillators
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Saliton perturbation thcory is used to calculate the fluxon oscillator linewidth arising
from fluxon interaction with background radiation. Detailed calculations in the case of an
oscillator that is long coinpared with the Josephson length and for which the radiatioa field
is thermal establish lower bounds for the linewidih of a real oscillator. These lower bounds
are not in disagreement with recent, instrument-litnited measurements of X-band linewidths

less than S kHz.

I. INTRODUCTION

In 1973 Fulton and Dynes pointed out that the
“zero-field steps” observed in the voltage-current
characteristics of long Josephson junctions could be
ascribed to oscillatory behavior of internal fluxons
(or magnetic solitons).! Subsequent observations of

" microwave radiation? led to the hope that such

structures could play a techuically useful role as os-
cillators into the millimeter wave range.’ Recently,
some long Josephson junctions of high quality were
fabricated and tested at the University of Salemo®
and scnt to the Physikalische Technische Bunde-
sanstalt in Berlin® and the Technical University of
Denmark®’ for detailed measurements in the mi-
crowave range. Comparison of these microwave
measurements with numerical and analog computa-
tions of fluxon dynamics (based on a structurally
perturbed version of the sine-Gordon equation)®
confirms that the original idea of Fulton and Dynes
is correct,

Among other results emerging from these experi-
mental studies has been the observation of a supris-
ingly narrow oscillator linewidth: less than S kHz
(the instrument limit) at a fundamental oscillator
frequency of 10 GHz.” Our aim in this paper is to
present a theory of fluxon oscillator dynamics
which allows us to predict the linewidth of a long
Josephson junction oscillator.

Our approach is based upon the description of a
Josephscn transmission line as the sine-Gordon
equation with structural perturbations that
represent dissipation and input of energy.>'? We
extend a recently developed soliton perturbation
theory'! 10 second order in a small parameter pro-
portional to the structural perturbations in order to
calculate the effect of background radiation on soli-
ton dynarmics.'? This calculation allows us to de-
fine an ‘“instantaneous frequency” which leads

26

directly to an explicit formula for oscillator
linewidth as a function of the background radiation
in the junction. Such background radiation may be
generated in several ways: (i) eleetrical noise con-
ducted to the oscillator through bias and output
leads, (ii) radiation generated by spatial inhomo-
geneities of the junction, (iii) radiation generated
during reflection of a {luxon from the end of the
junction, and (iv) thermal noise iu the cavity modes
of the junction. To obtain a lower bound on osciila-
tor linewidth, we assume the radiation ficld to be
entirely thermal noise. Uuder this assunption, and
with some simplifications, wec calculate suitably
normalized values for linewidth as a function of
temperature and average fluxon velecity. The worst
(i.e., largest) value of linewidth that we calculate
under these assuinptions is less than the
instrument-limited value of 5§ kHz.”

Although the work reported here is related to re-
cent studies of chaotic behavior in the sinusoidally
driven nonlinear pendulum and sine-Gordon equa-
tion,"* we emphasize that our results depend upon
the assumption that the trajectory of the fluxon os-
cillation is not trapped in a region of phase space
that contains a “strange attractor.”'* The above-
mentioned numerical studies® support this assump-
tion.

I1. DESCRIPTION OF OSCILLATORS

Our analysis of fluxon oscillators is based upon a
previously decveloped thceoretical model for the
Josephson transmission line™'® (JTL), which is
briefly recapitulated here for the convenience of the
reader. Figure 1 shows a transmission line
equivalent circuit'® for JTL in which L is serics in-
ductance per unit length (pul) related to supercon-
ducting surface currents, R is series resistance pul

2474 ©1982 The American Physical Society
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(v)

FIG. 1. (a) Physical model of the JITL (not to scale).
{b) Transmission line equivalent circuit of the JTL.

related to normal surface currents, C is shunt capa-
citance pul related to electric field in the junction, G
is shunt conductance pul related to normal electron
conduction across the junction, " is an externally
imposed bias current pul, and, finally,
Josin(2r®/ D) is the Josephson current pul crossing
" the junction. Kirchhoff's equations for this JTL
model lead to the following partial differential
equation for transverse voltage (V)

%@xxr‘f-‘bxx ~LC®rr—-GLOy

=JoLsin(2n®/Pg)+TL , (1)

where X and T are laboratory space and time,
®,y=h /2¢ is the flux quantum, and

o= [vdT. @)

Series inductance (L) and shunt capacitance (C) are
related to junction geometry by

M, +d
L=po ‘:y 3)
and
v
Cme—r, @)

where A is “London" penetration depth for surface
currents, W is junction width, d is thickness of the
barrier region, € is dielectric permittivity for the

barrier, and po (=47X10~7 H/m) is the magnetic
susceptibility of free space.

For analysis it is convenient to normalize these
variables as follows: '

=210/, , ()

x=X/A;, (6)

t=T/7;, v)]
where A, is the “Josephson™ penetration length and

1,=0VLC . . (8)

With these normalizations, velocity is measured in
units of

ug=2A;/1;
=1/VLC , : L))
and (1) becomes
bux —y—sind=ad, —Bé.+7 ., . (10)
where
a=GL /1, , (11a)
B=L/R7;, (11b)
y=2aLT/®A} . (11c)

With a, B, and y=0, (10) is recognized as the
sine-Gordon equation with the exact soliton solu-
tion's

¢=4tan~"! |exp ' (12)

X —ut
—_—
(1-u?)”

which represents the propagation of a magnetic flux
quantum or “fluxon” along the junction. To make.
a fluxon oscillator, one must design a physical path
over which the fluxon can execute periodic motion.
Two examples are shown in Fig. 2.- In the “line os-
cillator” [Fig. 2(a)}, a fluxon approaches one end, is
reflected as an anitfluxon {change of sign in (12)),
propagates to the other end, and is reflected as a
fluxon, etc. In the “ring oscillator” [Fig. 2(b)] the
fluxon proceeds at constant velocity around the
ring. In our calculations, an important parameter is
the total path, /, over which the fluxon travels to
complete a cycle of oscillation normalized to A,.
Thus for the line oscillator [Fig. 2(a)]

-2a

1= ‘5‘—; 13
while for the ring oscillator [Fig. 2(b))
2nR
1= ok (14)
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(»)

FIG. 2. (a) Line oscillator. {(b) Ring oscillator.

The effect of the term ¥ in (10) is to pump energy
into the fluxon motion while the a and 3 terms dis-
sipate energy. In the following section we use soli-
ton perturbation theory to calculate cffects of these
terms on the motion.

111. OUTLINE OF PERTURBATION APPROACH

The approach to sine-Gordon soliton perturba-
tion analysis in Ref. 11 begins with a nonlinear
equation

Né=¢f(§), 1)

where N§=0 is a completely integrable (i.c., “soli-
ton”) equation ¢ =col(¢,$,), where

1 P 4
co(x.)')s y »

and € is a small parameter. Expanding

$=bo+ehi+eidrt - (16)
one finds that
Ngo=0, (17)

30 @o is an exact multisoliton solution which de-
pends upon certain constant parameters p; (e.g., the

speeds and positions of the solitons). Thus
$o=dutx,0,[py]) . '8

If §, and &, are secular (i.e., grow linearly in tim¢)
the second and third terms on the right-hand side
(RHS) of (16) are useful only for times of order ¢!
and €~?, respectively. To overcome this objection
one can allow order € time variations in the ps’s of
é0 50 ¢, and &, satisfy

Lé\=F(§y), (19)
Lé,=Fy(0.d1), (20)

where F, and F, acquire extra terms because of the
modulations of the p;'s, and L is a linearization of
N around @,. Now secular growth of §, and &, can
be avoided by requiring that

Fiua Lh, Qn
Pl Lh, (22)

where A4 4(L ') is the discrete null space of the ad-
joint of L. From (21) and (22) one obtains ordinary
differential equauons (ODE) for the order € and or-
der € variations in the p;’s.

The strategy of our calculation is as follows Or-
der € corrections obtained from (21), are used to cal-
culate the effects of a, B, and y terms in (10) on the
steady motion of a JTL fluxon. The radiation ficld
@, is then determined from (19). This permits us to
evaluate the orthogonality condition (22) which
gives ODE’s that determine the effects of §, (radia-
tion field) on the fluxon motion. In our picture it is
this interaction of the fluxon motion with the radia-
tion field that leads to an instantaneous frequency
and therefore to a nonzero oscillator linewidth.

Our analysis proceeds as follows (see Ref. 11 for
details). The exact single fluxon solution (12) of the
unperturbed sine-Gordon equation is modified to

do=4tan""[exp({)] , 23)
where . o
Esrno[x-—-X(n). (24)

Thus X (¢) specifies the trajectory of the fluxon and
He) lts relativistic contraction. Two elements of
./V‘(L ) are
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The conditions F, 15, and F,1b; imply
-— o
(1-x2 -’
Thus, for typographical convenience, we define
X=u . (28)

The time dependence of X is divided into order €
contributions, calculated from (21), and order €
contributions, calculated from (22). Thus

X=X\4+X;, . (29)

Y 27

where

i,=-%u-u’)”’

X [ f@olgNsechids (30)

i,=—‘}u-u’)’”

x [_Lf(#)—34%singo)sechg dt .
- (an

1V. GENERAL CALCULATION
OF LINEWIDTH

From the results of the previous section we see
that, under steady-state oscillator conditions, the
fluxon speed is

X=u,+u,1), (32)

where u, is a constant (power balance) velocity.
The time-varying component u, arises from interac-
tion of the fluxon with the radiation field and, from
130) and (31) obeys the ODE

by=X;—(X1)w (33)

where ( ),, indicates a time average.
If u,=0, the fluxon executes a perfectly periodic
motion over a path / with frequency

© 26 LINEWIDTH FOR FLUXON OSCILLATORS 4N

In general we can define a (time-dependent) instan-
tancous frequency as

) =v.+u,/l . - < (39)
The rms derivation of V1) from its mean value v, is
Av={([MD=v.]).)' 2. (36)

We take Av as a convenient measure of oscillator
linewidth. Since the radiation field in (31) is not
periodic we take the average in (36) over a long time
as

1n

.1 T
Av= | lim - fo divio—v 11| . 37

Equation (37), together with (35) and (31), provides
a straightforward procedure for calculating the
linewidth of a fluxon oscillator. We do this for a
particular example in the following section.

V. THERMAL LINEWIDTH
OF A SINGLE FLUXON
OSCILLATOR

We now turn to a practical question of fluxon os-
cillator design: calculation of linewidth when the
radiation field is assumed to be in thermal equilibri-
um with its environment. This calculation neglects
other sources of the radiation field (electrical noise,
radiation emitted from the fluxon, etc.) thus it
should give a lower bound for realizable linewidths
and some idea about how the linewidth depends
upon oscillator parameters and temperature. The
analysis is restricted to a single fluxon oscillation to
avoid analytical difficulties associated with the phe-
nomena of “bunching.”®

We employ (31) where, from (10),

efid))=a , (38)

¢l.l - g¢l.ul + '5

thus a is our small parameter in the perturbation
analysis. Since we are assuming that the radiation
field arises because the linear modes of the oscilla-

ve=u./l . (34) tor are in thermal equilibrium, (31) takes the form
)
Xy=+(1-upn f _"_[a/(n¢.)+( 1—u?)(ng,; tanh¢ secht)sech dt , (39)

where a is & small parameter that measures the

structural perturbation, and 7 is a small parameter

that measures the amplitude of the radiation field.
In the following analysis we make two simplify-

T Tt et Tt T T T e T T et
B R A R T T AL AL A

|
ing assumptions:

B=0 (40)

and
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I>»1. 41)

The first of these is not a serious restriction if one
assumes a somewhat larger value of a to account
for dissipation in the 2 term of (38).

We calculate the thermal radiation field 14, as a
sum of individual photon inodes of s cavity which
contains a single fluxon moving with constant velo-
city u.'” Thus

_J
A, Vi-u? —Uw, x —ut
kyx —w,t)—si —w ttanh | —F— ||, 42
2 Vir . —uk, \/l_-_—? cos(k,x —w,t)—sin(k,x —w,t)tan [\/_l——u, 42
r
Wwhere Xup=SaCocos[(kyu—w ) 46,], 45
k=l -1 (43a) .
and where
k=22 (43b) c - uwa—ulp? keAs
i U V2r kyu—w,)
Since the second term in the integral (39) is an X
odd function of £ while the first term is even, the wsech | =2 (1 —u?) 2
contribution of the second term is small except 2

when n=/. Then the ratio of the first to second
term is of order [ and, under assumption (41), we
can neglect the second term. Thus (39) takes the
form

~Za—uprf” ln¢..,+f }sechcdc :

(44)

The term y/a in (44) merely contributes a constant
to X, which is absorbed in the power balance condi-
tion ! at determines u,. Thus it does not enter into
our calculation of Av. _
The component of X, that depends on the radia-
tion field is
1

8mhugk,w, /nd}

Xexp[-wk.(l-u’)m]] . (46)

To calculate the mode amplitudes {4, ], we assume
a mode at frequency w, to have the energy

ﬁ'n.

Strictly speaking, the relation between E, and 4,
should be calculated for a cavity containing a flux-
on; however, from inequality (41) this relation is the
same as that for an empty cavity. Thus in normal-
ized units

E,= 47

2
(48)

ki 2 2. 2eJoM}
|

From (48), (45), and (37) we obtain

Av  ul1—u?P? o
a  2vV2ey Hato

ok} lsecb [ Zky(1—-u?)? ]exp[

emam— |
.

. 2
kyat(1—u?)')

(49)

X |2

R

k
l—i— +Cusw,z. +

2eJ;),? ’
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Equation (49) is the main result of this paper. To
sppreciate the dependence of linewidth Av upon os-
cillator parameters and temperature that it implies,
we tum to two examples of JTL that have been
thoroughly studied.'® Important parameters are
recorded in Table 1. From these paramcters we
have plotted in Figs. 3 and 4 /Av/a as a function of
u for several values of temperature and /. Since
thesc calculations are rather insensitive to I (see Fig.-
S) we can assume Aval~!. We see that Av{u) rises
to s maximum value at

u~0.8 (50}

and, as we expect, falls to zero in limits 4 —0 and
1. The main difference between N25L and NS3C is
in the value for A,, but this has a relatively small
effect upon Av. We find, of course, that Av falls
with decreasing temperature, but it is interesting to
observe that the curves Av{u) show little change in
shape.

Ducholm et al.” have reported an instrument-

limited mcasurement that
A<S, (51)

where A is the linewidth (in units of kHz) for a line
oscillator with,

a=0.01,
1=12,

T

From our calculation the thermal linewidth in Jabo-
ratory units is given by Av/7,. Assuming I =12
[i.e., a/A;=6 in Fig. 2(a)] we find for N25SL that
the maximum linewidth is equal to 260 1z and for
NS3C, the maximum linewidth is equal to 550 Hz.
I These results are not inconsistent with (51).

V1. CONCLUDING DISCUSSION

[ The main result of this paper is (49) which gives
. Av/a as a function of the oscillator parameters
: where [ is the total fluxon path length for a cycle of
i oscillation, measured in units of A, u is the average
.
b

TABLE 1. Josephson transmission lines.

Parameter N25SL NS3IC Unit
; a 0.0052 0.00555
| uo 2.3%10’ 1.76x 10" m/s
R L 2.1x10-* 2.5x10"* H/m
. (o4 0.9x10-¢ 1.3x10°¢ F/m
: A, 1.27x10°? 2.63x10-* m
. Jo 9.7x%10-? 1.9 A/m
) T, 0.55% 10~ 1.5x 10-" [
t
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FIG. 3. Normalized thermal linewidth as a function
of average fluxon velocity and absolute temperature for
JTL No. N2SL.

fluxon speed normalized to ug (=A,/1)), and T is
the absolute tempcrature, in addition to the JTL
parameters Ay, 75, C, L, and J defined in Sec. 11.

From (49) the rms deviation of the oscillator
linewidth is equal to Av/7r, Hz, where @ measures
the shunt oscillator losses (including loading). In
deriving (49) the following assumptions have been
made:

(1) only a single fluxon is present in the cavity,

QI>1,

(3) the background radiation field is entirely ther-
mal, and

(4) surface losses [Bd,,; in {10)] are neglected.

Thus our calculations give a lower bound for the
linewidth to be found in a real oscillator. Addition-
al contributions to oscillator linewidth may arise

lavre

e

FIG. 4. Same as Fig. 3 for JTL no. N53C.
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from excess electrical noise and radiation from the
fluxon itself.

Equation (44) shows an exact mechanism for in-
fluence of electrical noise on the fluxon motion
through stochastic behavior of the bias current y.
A line oscillator may have larger lincwidth than a
corresponding ring oscillator because the kink-
antikink reflection that take place in a line oscilla-
tor gtnerate an additional component of radiation'?
that is not present in a ring oscillator. Since we see

no special difficulties in making ring oscillators, we
suggest that they be considered expesimentally.

Finally, Figs. 3 and 4 show Av rising t0 a max.
imum value around u =0.8 Although this result is
obtained for thermal linewidth, we feel that this
behavior should be found when a more general radi-
ation field is present. An experimental check of
this suggestion should be possible with instrumental
resolution of linewidth only an order of magnitude
better than that reported in Ref. 7.
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Subharmonic generation in Josephson junction fluxon oscillators biased on

Fiske steps

M. P. Soerensen, P. L. Christiansen, R. D. Parmentier,* and O. Skovgaard
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Denmark
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Numerical integration of the perturbed sine-Gordon equation describing a long overlap-geometry
Josephson junction in a magnetic field indicates a branched structure of the first Fiske step. The
major portion of the step corresponds to a simply periodic fluxon oscillation whereas the branches

are characterized by subharmonic generation.

PACS numbers: 74.50. + r, 85.25. + k, 84.20.Pc, 84.30.Ng

The dynamics of fluxons on long Josephson tunnel
junctions has recently attracted considerable interest.
Fluxon propagation has clearly been demonstrated to be re-
sponsible for the appearance of zero-field steps (ZFS)'~> and
indicated as being associated also with the appearance of
Fiskesteps (FS)*in the current-voltage (I-V ) characteristics
of such long junctions. Moreover, associated with this prop-
agation there is an emission of microwave radiation of very
narrow linewidth from the ends of the junction,” suggesting
the possibility of interesting electronic applications.

In this letter we report on detailed numerical investiga-
tions of a perturbed sine-Gordon model of a long Josephson
Jjunction in a magnetic field. The results that have emerged
give further confirmation to the fluxon propagation mecha-
nism as being responsible also for the FS and, more impor-
tantly, show a branching of the first FS in the /- plane with
the presence of subharmonic generation on the branches.

The mathematical model studied is®

bu — b, —sing=aé, —v, (1a)

8.(00)=¢,(Lt)=1. (1b)
Here, ¢ is magnetic flux normalized to £i/2e, x the longitudi-
nal distance normalized to the Josephson penetration depth
A,,and ¢ the time normalized to the inverse of the Josephson
plasma frequency w,. The ¥ term represents a uniformly dis-
tributed bias current normalized to the maximum zero-vol-
tage (Josephson) current /,, appropriate to an overlap geome-
try." The term in a represents quasiparticle loss. The
constant 7 is a normalized measure of the external magnetic
field which determines the boundary conditions [Eq. (1b)] at
the two ends of the junction of normalized length L. For this
study L =5, a = 0.252, 7 = 0.75, and O < ¥ < 1. These val-
ues were chosen to be similar to those used in Ref. 5. Equa-
tions (1a) and (1b) were integrated using the implicit finite
difference method described in detail in Ref. 3, with the
space and time intervals both set 10 0.05. Numerical accura-
cy and stability were verified by halving and doubling the
space and time intervals in the computations and by carrying
out the integration for long periods of time (¢~ 1500) and
observing that all measurable characteristics of the solutions
remained stationary.

Two types of initial conditions were used: (i) a “smooth"

* Permanent address: Istituto di Fisica, Universitd di Salerno, 1-84100 Sa-
lerno, ltaly.
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initial condition, defined as
¢ (x,0) = F(x,0) + G (x),
$.(x,0) = F,(x,0),

where
Fix,t) =4 1an™"fexp[(x — 2.5 + ut)/{1 — u})"'})},(2¢)

in which the velocity ¥ (0 < u < 1} is chosen by a power ba-
lance calculation according to the value of 7, and G {x) is a
static solution of Eqs. (la) and (lb} in which
7 = 0.75 ~ F_(0,0); (i1) a “‘tickled” initial condition, similar
to (i) but with the further superposition of a packet of plasma
oscillations, defined as

H(x,t) = A coslkx — wt Jexpl — {x — xo/W?3),  (3)

in which k=1, w?=1+k? 0.1<4<0.2, 1 <x,<4, and
0.1<W0.2.

The results presented refer to the situation with the
junction biased on the first FS. Our most significant result is
indicated in Fig. 1, which shows the /-¥ form, on an expand-
ed scale, of this FS. Here, and in the following, voltage is
defined as 4,, which represents the physical voltage normal-
ized to fiw,/2e. In particular, in addition to the major por-
tion of the step, similar to that observed by Erné ef al.,® we
observe two lateral branches. These branches are character-
ized by the generation of subharmonics in the radiation emit-

(2a)
(2b)

0.555
FIG. 4b
0.550 - oo o
FIG. 48 T~ —=-C
N
' 0.545 °
E o
W a
& 500 ¢4 o
8 e "
* FI16. 2 s, o FIG.)
< a o
& 0535 ~~a
o
1+]
0.530 A o
ERROR LIMIT:
e
0525 r . . T
0.53 0.54 0.55 0.56 0.57 058

AVERAGE VOLTAGE - <¢;>

FIG. 1. Detail of current-voltage form of first Fiske step for g = 0.75. Rec-
tangles: major portion, without subharmonic gencration; triangles: lateral
branches, with subharmonic generation.
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FIG. 2. Dynamics of lower subharmonic branch of first Fiske step for
y = 0.54, n = 0.75. Time evolution of phase ¢, voltage ¢, (upper inset), and
power spectrum {lower inset). (a} Left junction end, (b} right junction end.

ted from the junction, whereas the major portion has no such
subharmonic generation. Figures 2—4 indicate the detailed
dynamics associated with the labeled points on the /- ¥ char-
acteristic of Fig. 1. In Figs. 2{a} and 2(b} we show the time
evolution of the phase ¢ and the voltage ¢, at the two ends of
the junction and the related power spectra corresponding to
a point on the lower branch. The power spectra were calcu-
lated as follows: Printouts of the time evolution of ¢, were
examined and a tentative maximum superperiod (highest-
order subharmonic) established by eye. Time intervals of
41~ 500 of these waveforms, containing exactly an integral
number of such superperiods, were then fast Fourier trans-
formed using a simple rectangular window. For display pur-
poses, all of the spectra have been normalized to an arbitrary
valueof 2 = 10~ " Solutions similar to those in Fig. 2 were
invariably arrived at from *'tickled™ initial conditions. In
this connection it is worth mentioning that the existence of
the branches seems to depend only upon the fact of tickling
and not upon the precise mode in which tickling is effected.
This fact was established by varying the amplitude, width,
and initial position of the tickling wave packet in the type (ii)
initial condition and observing that the state into which the
solution evolved did not change with these variations. As is
apparent from Figs. 2(a} and 2(b), the fundamental period of
oscillation is approximately 12 normalized time units. The
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FIG. 3. Dynamics of major portion of first Fiske step for y = 034,
n = 0.75. Time evolution of voltage é, and power spectrum at left junction
end.

presence of the asymmetric fluxon propagation mechanism
proposed in Ref. 4 is confirmed by the phase jump of 27 per
fundamental period,® and by the asymmetry between the
time evolution at the left and right ends {note that the polar-
ity of the magnetic field used here is opposite that used in
Ref. 5, for which right and left are interchanged here with
respect to that work). Particularly apparent from the insets
of Fig. 2 is the strong subharmonic contei.t of this oscilla-
tion. This is shown in detail in the power spectra of Figs. 2(a)
and 2(b}, which indicate the presence of third and sixth sub-
harmonics as well as multiples of these. In contrast with the
results of Fig. 2, when the “*smooth” initial condition is em-
ployed with the same value of the bias, the simply periodic
time evolution indicated in Fig. 3 is obtained. Although
some subharmonic content is still present, it is very much
reduced compared with that shown in Fig. 2.

In a similar way, higher up on the FS is a second branch
of the I-V curve, the power spectra of the dynamics of which
are indicated in Figs. 4(a) and 4(b). In Fig. 4(a), once again,
subharmonic generation is observed, this time, however,
with only a dominant second subharmonic. As before, the
subharmonic branch of Fig. 4(a) evolves from the type (ii)
initial condition, whereas the simply periodic solution of
Fig 4(b) evolves from the type (i) initial condition.

In physical terms, the major portion of the FS corre-
sponds to a situation in which a fluxon propagates in the
field-aided direction (here, from right to left), is reflected at
the end as a localized plasmon moving in the opposite direc-
tion, which in turn is reflected at the other end as a fluxon
which resumes propagating exactly as before.** Propagation
on the subharmonic branches is almost the same, except that
perfect periodicity of the overall process is resumed only
after a certain number of complete back-and-forth cycles.
The reason for the existence of such multiple solutions for
given parameter values is not understood, but the fact is con-
sistent with the frequently noted experimental observation
of fine structure on FS.° In the experiments, wave packets
may be created by thermal fluctuations or imperfections in
the junction thus giving rise to creation of subharmonics.

Of considerable interest is the manner in which the so-
lutions evolve as the bias parameter y is varied in small incre-
ments during the computation. As we move along the
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FIG. 4. Dynamics of first Fiske step. Power spectrum of ¢, at left junction
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first FS.

branches, the relative ratios of the subharmonic components
vary, however, until we reach the juncture point of the
branch with the major portion of the FS, motion along the
branches is repeatable and reversible. Once the juncture

741 Appl. Phys. Lett., Vol. 42, No. 8, 15 April 1983

point is reached, however, a simply periodic solution corre-
sponding to the major portion of the FS is maintained, which
is also repeatable and reversible. The only way to proceed
from the major portion of the FS to the branches is through
tickling the solution, which causes a jump to the branch.
This may be related to the fact, as is evident from Fig. 1, that
the branches have negative differential resistance. When the
bias is progressively increased on the lower branch, the junc-
tion switches abruptly from the branch to the major portion
of the Fs for y > 0.5407. The same procedure on the upper
branch leads to a jump to the third FS for ¥ > 0.5505. On the
major portion of the step, the junction switches to the third
FS for ¥>0.550 and to a static zero-voltage state for
¥ <0.528. Finally, our results suggest the possible existence
of further fine structure of the branches. This is presently
being investigated.
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Natural Science Research Council under grant No. 11-3064
and of the European Research Office of the United States
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Fluxon propagation and Fiske steps in long Josephson tunnel junctions
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The dynamical behavior of fluxons propagating in the presence of an applied magnetic
field on an overlap-geometry Josephson tunnel junction of length 5A; having a McCumber
B.=5m is studied by numerical integration of the circuit equations of a 50-section lumped
RSJ-type (resistive shunted junction) model. Resonant propagating configurations corre-
sponding to the first and third Fiske steps are found. The fundamental frequencies and
power levels of the radiation emitted from one end when the junction is biased on the first
and third Fiske steps and on the first zero-field step are comparable, but a magnetic field
renders the power spectra at the two ends of the junction different.

INTRODUCTION

The zero-field steps, or dc current singularities,
that appear (also) in the absence of applied magnetic
fields in the dc current-voltage characteristics of
Josephson tunnel junctions which are long in one di-
mension with respect to the Josephson penetration
length A, have by now been convincingly shown to
be associated with the resonant propagation of flux-
ons in the junction,'~? according to the mechanism
first proposed by Fulton and Dynes.* In this picture
the first zero-field step (ZFS), which has a voltage
asymptote of ®/I, where @ is the magnetic flux
quantum, Z is the electromagnetic wave velocity
within the junction, and ! is the length of the junc-
tion, is due to the propagation back and forth along
the junction of a single fluxon; the second ZFS,
whose voltage asymptote is twice that of the first, is
due to two fluxons, etc.

In addition to the ZFS, when a dc magnetic field
is applied in the plane of a Josephson tunnel junc-
tion (either long or short), a second set of current
steps, called Fiske steps (FS), is observed in the
current-voltage characteristic. Successive FS occur
with a voltage-asymptote spacing just half that of
the ZFS. For short junctions, the theory of FS
developed by Kulik® quite satisfactorily accounts for
experimental observations; however, this is no lon-
ger the case for long junctions.* Extensions of
Kulik’s theory to long junctions, framed in terms of
cavity-mode interactions, have been formulated by
various authors.”~!° These analyses are intended to

27

be applicable to both FS and ZFS, and they have
found varying degrees of success in explaining ex-
perimental observations.

The idea of applying the fluxon propagation
model to the explanation of FS in long junctions was
first suggested, but rejected as not Physically feasi-
ble, by Fulton and Dunkleberger.!" It was repro-
posed, with an argument for its feasibility, by
Samuelsen.'’ The essential ingredients of this pic-
ture are the observation that an applied magnetic
field renders the junction dynamical equation asym-
metric through the boundary conditions,'* thus
rendering wave propagation along the junction
asymmetric, and the observation that the average
junction voltage in a fluxon propagation mode de-
pends only upon the time-averaged number of flux-
ons present, so that, for example, the first FS is con-
sistent with a situation in which a single fluxon is
present for half the time. Later, a numerical simula-
tion result which supported Samuelsen’s hypothesis
was reported by Dueholm et al. '

The purpose of this paper is to contribute to a
clarification of the situation through a numerical
simulation of a long Josephson junction in a mag-
netic field. The results that emerge give further sup-
port to the Samuelsen mechanism. Specific predic-
tions of the frequencies and power levels of the mi-

crowave radiation emitted by a junction current-
biased on a FS, as compared with the same quanti-

ties with the junction biased on a ZFS, are consistent
with experimental measurements. Moreover, the re-
sults suggest further experimental measurements to
check the proposed mechanism.

5440 ©1983 The American Physical Society
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JUNCTION MODEL AND COMPUTATION
TECHNIQUES

The junction model and computational procedures
employed in this study are essentially those used in a
previous study of ZFS.! An electrical representation
of the model is shown in Fig. 1. The spatial depen-
dence of the problem is taken into account by con-
sidering a 50-section lumped-circuit approximation
to the junction. A junction length of 5, is assumed
throughout this study. Dissipation is assumed to be
due only to the linear resistor R of Fig. 1. Accord-
ingly, we assume simply that the powers radiated
from the left and right ends of the junction at a
given frequency are equal to the sum of the squares
of the Fourier components V2,+ V2, at that fre-
quency of the end-point voltages V; and Vp, respec-
tively.

An overlap-geometry junction is assumed, imply-
ing that the bias current, Ig per section, may be con-
sidered to be uniformly distributed along the junc-
tion.'”” The effect of an externally applied dc mag-
netic field B, in the plane of the junction and per-
pendicular to its long dimension is modeled by ap-
plying the dc current I as shown in Fig. 1. The re-
lation between the two quantities is B, =polr/w,
where p, is the permeability of free space and w is
the width of the junction in the field direction.

The Josephson element J in Fig. 1 is characterized
by the adiabatic Josephson equations

I=I,sing , (la)
d¢ _2m
dt ¢‘o (1b)

Combining Egs. (1a) and (1b) with the circuit equa-
tions of Fig. 1 results in, for section 1,
Te dV]
< —— =y 4+ M +A}($y—¢))—sing, — ¥V, ,
Ta dr
(2a)
for section j (1 <j < 50),

1. dV,

T_Ad_—Y+AJ(¢j—I—2¢}+¢j+I)

—sing;—V; (2b)

for section 50,

1. dVs
——— =y—M+Aj($s9—bso) —singso— Vs ,
Ta dr

(2¢)

and for all sections (1 <j <50),

d¢; =«
—=_V,. 2
L=2Y 2d)

Here V is voltage v normalized to IR, 7 is time nor-
malized to 74, =®y/41yR (the inverse of the gap-sum
fr’quency) 1.=RC, y=lg/ly, M=Ig/ly, and
Al=®y2nLI,. The value of the parameter 7./74,
which is a measure of the dissipation, is assumed to
be 10 throughout this study; the value of the param-
eter M, which is a measure of the applied magnetic
field, is fixed at 8.

Equations (2a)—(2d) correspond to a discretized
version of the perturbed sine-Gordon equation, with
boundary conditions given by ¢,(0,t)=¢,(/,t) < B,,,
as employed by many other authors (see, ¢.g., Ref.
13). The time normalization employed in Egs.
(2a)—(2d) is the same as in Ref. 1, but it differs from
that used by other authors, who measure time in
units of the inverse plasma frequency
1/w; =(C®y/271y)' /2. 1t is trivial to show that the
relation between the two time scales is given by
w;Ta=27./m13) "2 It is likewise trivial to show
that the dissipative parameter 7. /7, =28, /m, where
B. is the usual McCumber parameter.

Equations (2a)—(2d) were integrated by means of
a fourth-order Runge-Kutta routine using a fixed
time increment of 0.0i7r,. The problem was in-

tegrated as an initial-value problem, and two types
of initial conditions were employed:

FIG. 1. Lumped circuit junction model.
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tinuities are due to printer discretization.

(1) When searching for a first point on a given FS,
the simple phase and voltage distributions shown in
Fig. 2(a) of Ref. 1 were used. These distributions
represent only a rough approximation to a single
propagating fluxon, and their use constitutes a
weakness in the calculations, as will be discussed
below. (2) When searching for the upper (lower) ex-
tremity (in bias current) of a given FS, y was in-
creased (decreased) by a small increment and the ini-
tial phase and voltage distributions were taken as the
final distributions corresponding to the previous bias
value. The integration was continued until the oscil-
lation settled into a steady state, defined operational-
ly as in Ref. 1. Normally, this required integrating
to about 3007, (about 9—10 complete oscillation
periods).

After stopping the integration, the final two oscil-
lation periods of the voltages at the two ends of the
junction, ¥ and Vg, were recorded on a grid of ap-
proximately 500 equally spaced points. The average
values of these voltages, (V) and (Vp), were
determined using the fact that the average voltage
over a period is proportional to the phase difference

over that period, through the Josephson frequency
relation, Eq. (2d). Physically, { ¥) must be constant
along the entire junction; in practice, (V.) and
{ ¥z ) were always equal to within better than 0.5%.

The Fourier sine and cosine coefficients of ¥,
and Vg were then obtained by trapezoidal rule in-
tegration of the basic definitions of these coeffi-
cients over the grid. Since the integration was per-
formed over two oscillation periods, the first even-
order harmonic was, in fact, the fundamental, and
the absence of odd-order harmonics served as a fur-
ther check that the oscillation had indeed reached a
steady state.

FLUXON OSCILLATIONS AND FISKE STEPS

Figures 2 and 3 show a series of snapshots of the
phase and voltage distributions along the junction
over a single period of oscillation for two different
modes of propagation. In Fig. 2(a), a fluxon is lo-
cated near the center of the junction at 7=2667,
and is propagating toward the right (this is an anti-
fluxon by the definition used in Ref. 1, but the dis-
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FIG. 3. Time evolution of FS-3 fluxon propagation for y=0.60 and M =8. Circles: phase ¢; crosses: normalized volt-
age V. (a) r=272r, and 2767,; (b) r=280r, and 284r,; (c) r=2887, and 292r,; (d) 7=2967, and 300r,. Apparent

discontinuities are due to printer discretization.

tinction is arbitrary). Note that there is a net phase
difference of 27 along the junction and that the volt-
age is a well-defined pulse which is everywhere posi-
tive. At 7=270r,, the fluxon is approaching a re-
flection at the right end of the junction. In Fig. 2(b),
this reflection has just taken place at =274r,, after
which a clearly defined voltage pulse begins propa-
gating to the left. Note, however, that the voltage
waveform now goes both positive and negative, and
that the net end-to-end phase difference is essential-
ly zero. These facts suggest that the entity in ques-
tion is a localized plasmon, or perhaps a plasmon-
breather oscillation.'® In Fig. 2(c) this entity contin-
ues propagating to the left, and at 7=2867, it is ap-
proaching a reflection at the left end. In Fig. 2(d)
this reflection has just occurred at 1=290r7,,
whereupon propagation resumes toward the right.
During the reflection, however, the net end-to-end
phase difference has increased again toward 2w, so
that at 7=294r, the oscillation has completed al-
most one full cycle. As is evident from Fig. 2, the
phase at any point along the junction advances by a
total of 2 during one oscillation period, as com-
pared with the value of 47 for the oscillation associ-

ated with the first ZFS (cf. Fig. 2 of Ref. 1).

In Fig. 3 the situation is somewhat less “binary”
inasmuch as the various propagating entities overlap
one another, but the overall picture is still sufficient-
ly clear. In Fig. 3(a), at T=272r, there is a net
phase difference of 27 along the junction and a volt-
age peak near section 21, corresponding to a fluxon
moving to the right, but a second fluxon is rapidly
entering from the left end. At 7=2767, two voltage
pulses are clearly visible, and the net end-to-end
phase difference is about 3.5m, corresponding to
something less than two fluxons in the junction. In
Fig. 3(b) this packet has moved to the right at
7=2807,, with the first pulse approaching a reflec-
tion at the right end of the junction and the second
one near section 21. During this portion of the os-
cillation the situation suggests, approximately, the
propagation of two fluxons in a “bunched” configu-
ration.'™'® At 7=2847, the leading voltage pulse
has just emerged from the reflection and is located
near section 40, moving to the left; whereas the trail-
ing pulse is located near section 33 and moving to
the right. In Fig. 3(c) the two voltage pulses have
exchanged positions at 7=2887,, with the leading
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FIG. 4. Normalized current-voltage characteristic of
the junction. Solid curve: magnetic field equal to zero,
showing first two zero-field steps; circles: first and third
Fiske steps for M =8. ycy is the field-reduced critical
current value.

pulse now located near section 27, moving to the
left, and the trailing pulse just undergoing a reflec-
tion from the right end. Note that the net phase
difference along the junction is at this point essen-
tially zero. At r=292r, the two voltage pulses con-
tinue propagating to the left, and the net end-to-end
phase difference has become approximately 7. In-
terpretation of this situation is not completely
unambiguous, but the propagation of a fluxon-
plasmon, fluxon-breather, or fluxon-plasmon-
breather combination is suggested. In Fig. 3(d) the
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FIG. 5. End-point voltage waveforms of FS-1 fluxon
oscillation for y=0.53 and M =8,
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FIG. 6. End-point voltage waveforms of FS-3 fluxon
oscillation for y=0.60 and M =8.

1 1
240 250

leading voltage pulse is just undergoing a reflection
from the left end of the junction at r=296r,, and
the trailing pulse is located near section 19 and still
moving to the left. At r=300r, the leading pulse,
barely distinguishable, is located near section 17,
moving again toward the right, whereas the trailing
pulse is approaching a reflection at the left end. The
net end-to-end phase difference is now approximate-
ly 1.5m, and the oscillation has completed almost
one full cycle. Figure 3 shows clearly that during
one full period of this oscillation the phase at any
point along the junction advances by a total of 6.

Figures 2 and 3 show each of the two modes of
propagation for a single value of the bias current.
Each of these two modes, however, exists over a cer-
tain range of y. This fact is displayed in Fig. 4,
which shows the two loci of points, indicated as cir-
cles, labeled, respectively, as FS-1 and FS-3 in the
y—(V) plane. The solid curve, for reference, is the
current-voltage characteristic of the junction in the
absence of magnetic field, taken from Ref. 1. The
positions of the two groups of circles relative to the
first two zero-field steps, ZFS-1 and ZFS-2, confirm
that FS-1 and FS-3 are, respectively, the first and
third Fiske steps. The point ycm at (V) =0, in-
cidentally, is the value to which the critical current
has been reduced by the magnetic field M =8.

At this point we note that there should also exist
a second FS corresponding approximately in voltage
position to ZFS-1, but we have not been able to find
this FS numerically. We believe that the reason for
this is that the initial condition employed is not real-
ly appropriate to finding FS-2. We have observed in
calculating FS-1 and FS-3 that the outcome of the
simulation depends, at least sometimes, quite strong-
ly on the initial condition employed: If the initial
condition is “too far” (by some measure) from the
final propagating configuration, the junction tends
to switch to some other mode of propagation.
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POWER SPECTRA

Figures 2 and 3 clearly show that the two modes
of propagation associated with FS-1 and FS-3 are
asymmetric. This fact is underlined in Figs. S and
6, which show the temporal evolution of the two
end-point voltages ¥; and Vg in the two cases cor-
responding to Figs. 2 and 3, respectively.

Since we assume that the power radiated from an
end of the junction is proportional to the square of
the voltage at that end, it is clear that Figs. 5 and 6
imply that the spectra of the radiation emitted from
the two ends are quite different. That this is indeed
the case is indicated in Figs. 7 and 8, which show
the power spectra, calculated as described above, for
the first three Fourier components of the voltages
V. and ¥y, corresponding, respectively, to FS-1 and
FS-3 as a function of the bias current. The frequen-
cy shown in the lower part of the figures is that of
the fundamental (labeled 1) Fourier component in
each case. The power levels have been normalized
to an arbitrary value of ¥,V =0.04 /7.

The main conclusions to be drawn from Figs. 7
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FIG. 8. Power spectra (first three harmonics) of the ra-
diation emitted from the junction ends, normalized to
Vi,Va=0.04/7. The frequency indicated is that of the
fundamental component. The junction is biased on the
third Fiske step.

-

and 8 are the following: (1) The fundamental fre-
quencies associated with FS-1 and FS-3 are the
same; moreover, they are the same as that associated
with ZFS-1 [cf. Fig. 5(a) of Ref. 1]. This fact has
already been confirmed by experimental observa-
tions." (2) The power levels of the radiation emitted
by a junction biased on a FS are comparable, at least
in the field-aided direction, with those obtained with
the junction biased on a ZFS (cf. Fig. 5 of Ref. 1).
This fact is also consistent with experimental obser-
vations.'* (3) The asymmetries in the power spectra
of the radiation emitted from the two ends of the
junction may well be large enough to be measurable.
One way of doing this would be to couple to a single
end of the junction and measure the radiation with
both polarities of the magnetic field.

COMMENTS

The present work is intended as a contribution to
the understanding of the dynamics of long Joseph-
son tunnel junctions, We believe that fluxon propa-




gation is the basic physical mechanism underlying
all of the various phenomena observed in connection
with such long junctions, and that cavity-mode in-
teraction analyses are essentially mathematical ap-
proximations that, as they become more refined,
tend toward the same picture, being particularly
suitable in the limit of short junctions. We propose
that a detailed comparison of the results of experi-
mental measurements on real junctions with those
from careful numerical simulations, similar to those
recently reported by Lomdahl et al.? in connection
with ZFS, should be an important objective for fu-
ture studies.
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Intermittent Switching between Soliton Dynamic States in a Perturbed Sine-Gordon Model

M. P. Soerensen, N, Arley, P. L. Christiansen, R. D. Parmentier,“) and O. Skovgaard
Laboratory of Applied Mathematical Physics, The Technical University of Denmark, DK <2800 ] yngby, Denmark
{Received 6 June 1983)

Chaotic Intermittency between soliton dynamic states has been found in a perturbed
sine-Gordon system in the absence of an external ac driving term. The system is a mod-
el of a long Josephson oscillator with constant loss and bias current in an external mag-
netic field. The results predict the existence of a current step between the first two
Fiske steps in the current-voltage characteristic. A simple probability model demon-
strates an asymmetry in the statistical nature of the switching in the two directions.

PACS numbers: 74.50.+r, 05.40.+J, 84.30.Ng, 85.25.+k

Chaos phenomena have been found for the rf-
and dc-current driven small Josephson junction
described by the resistively shunted junction
(RSJ) model.! Recently Ben-Jacob ¢t al, and Yeh
and Kao reported on intermittent chaos in the
numerical solution of this model.? For a long
Josephson junction, the perturbed sine-Gordon
equation (SGE) with spatially uniform or nonuni-
form oscillating driving forces and linear damp-
ing also gives rise to chaos in time and space-
time.? . Detailed numerical investigations have
revealed subharmonic generation caused by soli-
ton motion in a long Josephson junction in a con-
stant external magnetic field modeled by the
perturbed SGE without an external ac driving
term in the current bias.' In the present Letter
we demonstrate a new chaotic intermittency
phenomenon between two dynamic states of this
model. The two states correspond physically to
the first two Fiske steps (FS1 and FS2, respec-
tively) in the current-voltage characteristic of
the junction.

The mathematical model studied is®

‘pn-w" -Sin¢=a¢¢"7p (la)
wx(onl)‘-' ‘P.(L.‘)=ﬂ- (1b)

Here ¢ is the usual Josephson phase variable,

x is distance normalized to the Josephson pene-
tration depth A,, and ¢ is time normalized to the
inverse of the Josephson plasma frequency w,.
The y term represents a uniformly distributed
constant bias current normalized to the maximum
zero-voltage (Josephson) current. The term in

a represents quasiparticle loss. The constant 7
is a normalized measure of the external magnet-
ic Iield which determines the boundary conditions
(1b) at the ends of the junction of normalized
length L. Inthis study L =5, a =0.252, n=1.25,
and y is varied in the range y = 0.45 - 0.55. Equa-
tions (1) were integrated from appropriate initial
conditions |similar to Egs. (2) of Ref. 4 or con-
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tinuations from runs done at nearby points in
parameter space | for long periods of time (typi-
cally ¢ ~10000) by means of the implicit finite-
difference method described in detail in Ref. 5,
with space and time intervals set equal to 0.05
and 0.025, respectively. Numerical accuracy
and stability were verified by halving the space
and time intervals,

In a narrow range of relatively low y values (»
=0,450 - 0,454) the solution develops stably into
the FS1 solution illustrated in Fig. 1(a). In physi-
cal terms FS1 corresponds to a situation in which
a soliton propagates in the field-aided direction,
and is reflected at x =0 as a localized plasma
wave because of the energy loss at this boundary.
This plasma wave then moves in the opposite di-
rection and is reflected as a soliton at x=L as a
result of the energy injection here by the magnet-
ic field. | An unambiguous interpretation of Fig.
1(a) in the schematic terms shown in Fig. 1(c)
may be established by examining together ¢{x, (),
¢ (x, 1), and ¢ (x,t).| The soliton then resumes
propagation as before the reflections.*®7 On the
average this cycle lasts the time f s, =12 (at
=0.454)., For y <0,450 the junction switches into
a static zero-voltage state where ¢,=0.

For relatively high y values (y = 0.500 - 0.540)
the solution develops stably into the FS2 solution
corresponding to a situation in which a soliton
and a localized plasma wave travel in opposite
directions at the same time [ shown numerically
in Fig. 1(b) and schematically in Fig. 1(c)]. The
average length of this cycle was estimated to be
Tps, =6 (at ¥y = 0.500). For ¥ >0.540 the junction
switches to FS3.

For intermediate y values (y = 0,456 - 0,490)
the junction exhibits chaotic intermittency be-
tween FS1 and FS2. The intermittency is shown
in Fig. 2 for v = 0.480, where it is evidenced by
changes in the average slope of ¢ versus ¢ (on
the FS1 portions (¢,)= 0.6 and on the FS2 por-
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FIG. 1. ¢ (x,t) on (a) FS1 and (b) FS2 portions of
solution in intermittency reglon (y =0.480). (c) Sche-
matic representations of (a) and (b) showing soliton
(solid lines) and plasma-wave (dashed lines) trajec-
tories. A switch from FS1 to FS2 is seen at ¢ > 1625.

tions (¥,)=1.0). The switch from FS2 to FS1 oc-
curs when the plasma oscillation fails to generate
a soliton at x = L. Conversely, a switch from
FS1 to FS2 may occur when an extra soliton is
generated at x = L during the FS1 cycle. The
power spectrum (inset in Fig. 2) of ¢,(0, t), nor-
malized to ¢, = 4x10"7, was obtained by a fast
Fourier transform over the time interval 1600~
3238 by use of a Hamming window.® Since loading
effects are not included in the model, the power
levels in this spectrum represent ideal, available
values. Translation into physically measurable
quantities requires a knowledge of the junction-
to-microwave circuit coupling (to set the physi-
cal power scale) and the junction plasma fre-
quency (to set the physical frequency scale). The
spectrum shows numerous {requency components
among which the two dominant lines at ¢*! = 0,10
and 0.17 may be ascribed to the soliton motion
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FIG, 2. Phase vs time at the left end (x =0) showing SRR

intermittency between FS1 and FS2 at y =0.480, Inset: R
Power spectrum of ¢, (0, ¢), normalized to ¢,%-4 S
x 1071, for ¢ =1600-3238, with frequency measured
in units of the Josephson plasma frequency.

on FS1 and FS2, respectively. The average times
the junction remains on FS1 and FS2 were found

to be -7_'; s) =46 and T_F s2 =52 (at ¥=0.480). We
have found that T¢g, and T, remain stationary in
time at these values. The corresponding lines

are barely visible in the low end of the power
spectrum,

For a particularly long time interval shown in
Fig. 3 (¢ = 1902-2079) the junction remained on
FS2. Around? =1960 the development of aperio-
dicity is observed. The insets (a) and (b) show
the power spectrum for the time intervals 1902-
1951 and 1984-2079, respectively, again ob-

~
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& {
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Frequency - Wt
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1900 1950 2000 2050 2100
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FIG. 3. Phase vs time at the left end (x =0) for a
particularly long operation on FS2 at y -0.480, Insets:
Power spectra of ¢, (0, ¢), normalized to ¢, -4 x 1077,
for (a) ¢ =1902-1951 and (b) ¢ = 1984 —~ 2070. The fun-
damental frequency is f;-0.17.




v

-~ oy

PHYSICAL REVIEW LETTERS

14 NOVEMBER 1983

1201 FS! FS2
<

0 T T L T 1
0 5 0 15 20 25
n

FIG. 4. Abscissa: Length of time interval on FS1
and FS2 measured in terms of number of cycles, n, of
lengths Fpg; and Ipgy, respectively. Ordinate: Dots
show number of intervals, N,(n), with {=1,2, shorter
than or equal to n. Full curves result from theoretical
estimates with p () = (1.0 x 1073 ¢, py,(£) = (1.2 x 10™4)¢

for n <6, pa,(£) =(0.95%10"%)¢ for n > 6. Bias y =0.480.

tained by use of a Hamming window. In inset (a)
we observe the dominant frequency at ¢™!=0.17
and a relatively low content of subharmonics. In
inset (b) subharmonics have developed at approx-
imately 3 and 3 of this frequency. A similar
building up of subharmonics is not seen while the
junction operates on FS1,

Figure 4 (dots) shows the accumulated distribu-
tions, N,(n) and N,(n), of the lengths of the time
intervals the junction operates on FS1 and FS2
for 217 switches between the two steps during a
run of over 10000 time units. Here n is t/1;,
and t/F;s,, respectively. To analyze this situa~
tion, let the probability that the junction switches
from FS1 to FS2 in the time interval (¢,¢ +dt],
where ¢ is the time after the last switch, be
p2(t)dt. Furthermore, if all the switches are in-
dependent, then the switching is a Poisson proc-
ess. Consequently, the probability P,(t) that the
oscillator switches from FS1 to FS2 within the
time ¢ becomes P,(f) =1~ exp|~ [,'p,,(1)d7). As-
suming p,,(t) =pt, withp =1.0x10"?, we get for
FS1 the fit N, =P (nT g5, )N s Where N, .. is the
total number of intervals on FS1, shown in Fig.

4 (full curve). The agreement between the nu-
merical data and this simple, but arbitrary,
probability model is quite good.

For FS2 a jump of 63 in N,(n) at n=6 is ob-
served in our 10000-time-unit run. Only by use
of a transition probability, p,,¢), containing 0.96
times a unit impulse at n=6, besides a linear
term, do we obtain the fit shown in Fig. 4. The
difference between the two results clearly dem-
onstrates an asymmetry in the statistical nature
of the switching in the two directions. The rea-
son for this fact is not known. A possible cause

“ 054 - a

052 a

(=)
n
o
»

0 48 A [
»
a

Normalhzed bas current -
»

0461 _a —-

01'1‘ T T T T T T R
05 06 07 08 09 10 11 12
Average voltage - ()

FIG. 5. Detall of current-voltage characteristic for
L=5, «=0.252, n=1.25, FS1 (circles), FS1} (squares),
and FS2 (triangles). Error limits for (¢,) are indicated
by horizontal bars when larger than 0.01,

may be an interference between the subharmon-
ics ¥ and % which build up on FS2, as seen in Fig.
3, but the question certainly requires further
study.

Finally, Fig. 5 shows the resulting current-
voltage characteristic for the y interval covering
FS1, the intermittency region, and FS2. At the
average voltage ( ¢,) =0.83 a jump in the current
(from y = 0.462 to y = 0.480) occurs. We pro-
pose the name “FS13” for this portion of the char-
acteristic. We have checked that the values of
(®,) are stationary in time. Thus it should be
possible to detect FS13 experimentally. Recent
measurements by Cirillo, Costabile, and Par-
mentier® have in fact perhaps revealed such struc-
tures.
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A hamiltonian perturbation theory is developed for the perturbed sine-Gordon equation with periodic boundary con-
ditions modelling the Josephson ring oscillator. Stationary fluxon velocities are determined as funciion of length, loss and

bias parameters.

The circular Josephson oscillator was originally
proposed by Scott and McLaughlin [1] who pointed
out that this oscillation structure may be of technical
importance at electromagnetic wavelengths of 100
um or less. This oscillator structure has in fact been
included in the current programmes of several ex-
perimental groups [2]. The mathematical model for
the circular Josephson oscillator with losses and bias
current js a perturbed sine-Gordon equation [3) with
periodic boundary conditions and fixed winding num-
ber. These boundary conditions close the circular os-
cillator in a perfect matching and thus permit undis-
turbed fluxon motion on the oscillator. Furthermore
the boundary conditions are ideal for spectral method
numerical studies of the radiation from the oscilla-
tor. However, perturbation methods for fluxon dy-
namics so far have only been used for infinitely long
Josephson junctions {1]. In the present note *! the
perturbation method is extended to the finite case
with periodic boundary conditions.

The normalized perturbed sine-Gordon equation
[3] with periodic boundary conditions can be written

¢xx - ¢t! —sing = a¢t - p¢xxt +

* Supported by the Danish Council for Scientific and In-
dustrial Research and by United States Army through its
Furopean Research Office.

Based on a master’s thesis by one of the authors (l A,
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6,0,0)=0.(L1), (0,0)=8(L0), (1)
where the a term represents quasi-particle loss across
the barrier and the § term the surface impedance of
the superconductor. The ¥ term is the bias current.
The circumference of the circular transmission line
normalized to the Josephson length is denoted ! in
the periodic boundary conditions. According to
hamiltonian perturbation theory [1) the hamiltonian
for the unperturbed sine-Gordon equation,

1
H=f(!2¢§+'5¢12+ 1 — cos ¢p)dx,
0

satisfies the differential equation

ﬂ——j(a«» + 602, + 79,)dx @

for small values of «, 8, and 7. )
The travelling wave solution to the unperturbed
sine-Gordon equation is given by [4]

¢ =2sin"! [ten(E k)], (3)

with & = (x — ut)/k(1 —u2)Y/2 Here cn(t, k) is a
jacobian elliptic function (5] with modulus k. Plus
and minus sign refer, respectively, to fluxons and
antifluxons. The velocity of the wave is denoted u.
If the modulus satisfies the condition

0.375.9601/84/% 03.00 © Elsevier Science Publishers B.V.
(North-Holland Physics Publishing Division)
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11 = u®)V2 = 2K (k), 4)

the periodic function ¢ gets the period /, and ¢ rep-
resents a single fluxon (or antifluxon). As in ref. [5]
the normal complete elliptic integrals of first and sec-
ond kind are denoted K(k) and £(k), respectively.

Using eq. (3) we get the new expression for the
hamiltonian

H=8(1 —u) V2 E®)/k

—ak71(1 = kY (1 —ud)V2K (k).

Inserting eq. (5) with u = u(f) on the lhs of eq. (2)
and ¢ given by (3) on the rhs of eq. (2) we obtain

dujdr =4ny'(1 ~u?)>? —du(1 - u?) —Lgu, (6)
with o’ = 2ak2E(K)/A, ' = 26[(2 - k2)E(K)

()

1.0 A
-
8 .\ [ 4
208 0.00
= .
1 0.01
06 0.05
0.10
0.4 -
4
02
0.0 T T T T T T 1 1
[} 1 2 3 4 S L] 7 8
a length

Velocity
o =] o -
N - o o
ﬁ#
© o o
N [=} (=]
o @ N

00 T T T T T T T 1
0 1 2 3 4 5 8 4 8
b length

Fig. 1. Stationary one-fluxon velocity, u,,, versus length of
Josephson oscillator, [, estimated by means of hamiltonian
perturbation theory. (a) 8 = 0.10, ¥ = 0.10,a = 0.00, 0.01,
0.05, and 0.10, (b) a = 0.02, y = 0.05, 8 = 0.00, 0.02, 0.08,
and 0.20.
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—2(1 — k))K(K))/A, 7' =2yk3/A, and A = 2k2E(k)
+ (1 — k2)I2/4K(k). Here eq. (6) has the same form
as the perturbation equation for the infinitely long
Josephson transmission line. Thus for { - e it can b2
shown that o' = a, 8’ = g, and 7' = 7. In the oppusite
limit,/ ~ 0, we finda' =+ 3a,8' = 0,andy' = 0.

The stationary velocity t« = u_ is obtained from
(6) by letting du/de = 0. The periodicity condition
(4) is approximately valid for the perturbed sine-
Gordon equation in the stationary state. Using (4)
with u = u_ in (6) we obtain «_ as function of /.
This function is shown in fig. 1a and b for different
values of the parameters a and §. We note that a max-
imum velocity occurs for relatively small values of
the ratio aff. In the limit a = 0 it can be shown that
u-1forl—=0.Fora#0,u~0for!—0dueto the
fact that effective bias, v', vanishes in this limit while
the effective loss, a', tends towards a finite value.

Fig. 2 shows the velocity as function of the bias
for different values of the length. The curver inter-
sect because the same velocity, u, occurs for two dif-
ferent values of / for certain values of a, 8, and 7y is
seen in fig. 1. The similarity between the curves and
the first zero field step [4] in the /-V characteris-
tic is due to the fact that the normalized voltage V
=2nu_ [l for 1> 1. The current [ 7.

In order to check the validity of the perturbation
theory we have solved eq. (1) numerically with the
static one-fluxon solution

¢ =2sin"! [en((x — I/2)/k,K)] — sin~ly

2 o 16 04

Bias

"

10
Velocity

Fig. 2. The bias current, v, versus the stationary one-fluxon

velocity, u,,, estimated by means of hamiltonian perturba-
tion theory. a = 0.01,8=0.2,1=04, 1.6, and =,
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Fig. 3. Numerical solution of eq. (1), shown in terms of ¢, witha =0.05,3=0.10,v = 0.10, and [ = 1.0. Inset shows the fluxon K
velocity, u, versus time ¢ computed by means of the numerical solution, R "1
in the initial conditions. The method used is a spec- We are pleased to thank R.D. Parmentier, N.F. '-_.}".ﬂ"'
tral (Fourier transform) treatment of the space de- Pedersen, A.C. Scott and O. Skovgaard for helpful R
pendence together with a leap-frog scheme in time. discussions. R
The resulting acceleration of the fluxon is seen in i 41
fig. 3. The fluxon velocity shown in the inset con- References i 1
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Phonons and solitons in the “thermal” sine-Gordon system

Mario Salerno®
Laboratory of Applied Mathematical Physics, The Technical University of Denmark, DK-2800 Lyngby, Denmark

E. Joergensen and M. R. Samuelsen
Physics Laboratory I, The Technical University of Denmark, DK-2800 Lyngby, Denmark
(Received 23 September 1983)

Standard methods of stochastic processes are used to study the coupling of the sine-Gordon sys-
tem with a heat reservoir. As a result we find thermal phonons with an average energy of kT per
mode. The translational mode (zero mode) is found to carry an average energy of %k sT. This last

value is just the energy in the Brownian motion of a thermal soliton. These results are in agreement
with those obtained by the use of a statistical-mechanical description of a dilute soliton gas. Con-
nection of the above results with Josephson junctions and the extension of the analysis to more gen-

eral equations is also discussed.

L. INTRODUCTION

The sine-Gordon equation has recently been used to
model several physical systems in contact with a heat
reservoir at a given temperature.! ~? The effect of the cou-
pling of the sine-Gordon system to the heat reservoir pro-
vides a twofold mechanism:

(i) a dissipation of energy in the system due to an ener-
gy flow from the system to the heat reservoir,

(ii) a disordered input of energy into the system due to a
flow back of energy from the reservoir.

A loss term in the sine-Gordon equation is then intrinsi-
cally connected to a thermal noise term, suggesting a
modeling of the interaction between the system and the
reservoir with a driving stochastic force (temperature
dependent) in the pure sine-Gordon equation;3~37

$xx —Pu —sing=ad,+n(x,1) . (L.1)
The first term on the right-hand side (rhs) of Eq. (1.1) is
the loss term representing the energy flow to the reservoir,
while the second term is the noise associated with a, giv-
ing the disordered thermal-energy input to the system.
The noise term is assumed to be “white” both in space
and time with the autocorrelation function:

(n(x,n(x’,t')) =16alksT/E)8(x —x")8(t —t') . (1.2)

Here ( -+ - ) means ensemble average, while the constant
16alksT/E,) is determined by applying the fluctuation
dissipation theorem for a soliton with small velocity' 1
(Eq is the rest energy of a soliton and is used to fix the
scale of energy in the system, kg is the Boltzmann con-
stant, and T is the temperature).

When a=0, n(x,1)=0, Eq. (1.1) reduces to the pure
sine-Gordon equation with the exact soliton solution

_ -1 x —ut
$=41n’ lexps [ —E=1n (1.3)

and Hamiltonian density

_Eo il
H=—"13(4:+60)+1~-cosd] . (1.4)

Small oscillations around a ground state ¢, of the system
are obtained by linearizing the sine-Gordon equation with

¢=do+v¢, (1.5)

this providing a linear equation for y:

Yxx — ¥y —Pcosy=0,

with an associated energy density given by

(1.6)

Ey 2, 42
th=T6‘(l/Jx+¢|+¢ COS¢0) . (1.7
When the ground state of the system is given by (1.3), a
“zero mode” (translational mode) is found from Eq. (1.6).
In addition to this mode, there exists a continuum set of
states (phonon modes) which satisiy the linear dispersion
relation:'!

w*=1+4+k?. (1.8)

For practical applications to Josephson junctions, it is of
interest to include also in the rhs of Eq. (1.1) a constant
bias term 1), representing an ordered energy input into the
system (work on the system). In this case (in the absence
of solitons), phonons (also called *“plasmons™) are seen
as small oscillations around the ground state ¢,
= —~sin~ 9.1

In this paper we study the effect of the heat reservoir
both on solitons and phonons by using standard methods
of stochastic processes. This will be done in the following
cases.

In Sec. I1 we study thermal phonons in the presence of
a static “exact” sine-Gordon soliton. In Sec. III we in-
clude a 7 bias term in the rhs of (1.1) and study the
thermally excited plasmons around ¢o= —sin~ ' (no soli-
tons present in the system).

In both cases we find that as long as kg7 << Ey, the

2635 ©1984 The American Physical Society
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find that the corresponding extra mode (zero mode), has
an average encrgy of ks T. All these results are in agree-
ment with a statistical-mechanical description of the
sine-Gordon system. In Sec. IV we concentrate on the ef-
fect of both the bias term (%) and the heat reservoir [a
and n(x,t)] on the soliton motion. As result of the
“thermalization” the soliton will execute a Brownian
motion with average energy of %k g T (the zero-mode ener-
gy). In Sec. V we relate the above results to a practical
Josephson junction and, finally, in Sec. VI we give a short
summary of the main results of the paper including a
brief discussion of the possibility of extending the analysis
to other equations of the nonlinear Klein-Gordon class.

11. THERMAL PHONONS IN THE PRESENCE
OF A SOLITON

We consider as an “unthermalized” system the pure
sine-Gordon equation

&xx —Pu —sing=0 @.1

- and assume that only a static soliton is present (dilute-gas

limit). Phonon modes y, are obtained as solutions of Eq.
(1.6) with ¢g given by (1.3) with v =0. Assuming y; as

Ve 0=filx)e ™, 2.2)
we obtain from Egq. (1.6) that
(=8 + 1 —2sechXx)fy(x)=w} fi(x) . (2.3)

As is well known, (2.3) admits a continuum set of eigen-
functions:

folx)=—1

2m)' 72

together with a zero mode:

e™(1 4+ k)~ "2k 4+itanhx)  (2.4)

f,(x)=—‘/l§-sechx (2.5)

which restores the translational symmetry broken by the
introduction of the soliton into the system (Goldstone
mode).!! Equations (2.4) and (2.5) together form a com-
plete set of orthonormal eigenfunctions:

f_+:ff(x)dx =1, f_+:f,(x)fk(x)dx =0
[2 T rfutxdx =6tk ~ k), 2.6

£ofox+ [ ff ek =51x —x)

where # in the superscript means complex conjugate.

By coupling the sine-Gordon system with the heat
reservoir, we change Eq. (2.1) into Eq. (1.1). Thermal
phonons are then found to satisfy

Yax — Vi — Y cOS$o=ay, +n(x,1) 2.7

for which the general solution can be expa. Jed in terms
of the complete set (2.6) as
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phonon modes have an average energy of kgT per mode. - ¥
In the case when a soliton is in the system, however, we ¥u(x,0) ngoAk(')fk(X)+A.(t)f,(x) 2.8

(here we assume the system to be in a box of length L,
and then let L — o). Substituting (2.8) in (2.7) and using
Eq. (2.3), we obtain

3 [ Arafi(X)+ady, fulx)+ Ayw} fi(x))

n=0

+(Apn+adyM(x)=—nix,1). 2.9

Equation (2.9) is easily studied once projected, respective-
ly, along the fi(x)’s and the f;(x) eigenfunctions, this
giving [using (2.6)]

Apy+aAy, + Aot =€(1) (2.10)
and

Ab,ﬂ +aA°.‘=€°(f) (2.11)

with
est=— [ fytontx,ndx

€(t)=— f_+:ff(x)n {x,t)dx .

By using (1.2) and (2.6) we find, for the autocorrelation
function R.(t —¢’) and for the power spectrum S,(w) of
the normal processes €,(¢) and €,(¢), that

R, (1—t')=R, (1t —1')

=16alkgT/Ey)8(t —1') , 2.12)

Se, (@)=, (0)=16alkpT/Eq) . (2.13)
Equations (2.10) and (2.11) are then integrated by the
standard theory of stochastic processes,'® giving the fol-
lowing expressions for the power spectrum of A4,(t) and
Ay (0):

g
. (214

Sy (w)=16alkgT/Ey)———5——75
4 BEIRO N 0l — 0k P aiw

SA‘_,(a))=wISA‘(w) . (2.15)

[SA.(w) and S,, (w) are obtained from (2.14) and (2.15)

with the substitution wy =0.] If we assume ergodicity, the
time averages of the processes | A,(1)|? and | A, (0)}?
are evaluated as

(| 4(0)| ) =R, (0)
=f+-_d£s‘ (w)=8kyT/w}Ey), (2.16)
-—w 2y k '

(1 4 (0]%) =Ry, (0)

+o 4
= [ 52Su\0)=8(k,T/Ey),

(2.17

where contour integration has been used in evaluating the
integrals in (2.16) and (2.17). In the same way we obtain
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for { | A,,(1)|2) with

2y nw
(] 4y,400)|2)=8(kyT/E,) . (2.18) k“=—L_ (3.8)

From (1.7) and (2.8) we have that the average energies of
the kth phonon mode A4,(1)f3(x) and of the translational
mode A,(t)f,(x) are given, respectively, by

<Hk)——[( | A0 ]2 +0i (| A |?)]  (2.19)

and
E

(H, =l—z(|.4.,.|‘). (2.20)
Using (2.16)—(2.18), we finally have

(Hy)=ksT 2.21)
and

(Hy)=+1kyT 2.22)

in complete agreement with the classical statistical-
mechanics analysis of a dilute soliton gas derived in Ref.
8.

III. THERMAL PHONONS IN THE ABSENCE
OF SOLITONS WITH BIAS

In this section we consider the unthermalized system to
be the pure sine-Gordon system of finite length L, with a
constant driving force 7 < 1:

Pux — b —sind=7 . 3.1

Phonon modes ¢, are seen as small oscillations around
the classical ground state

$o=—sin"'g, 3.2)
satisfying the boundary conditions
Yux(0,8)=9, L (L,1)=0 (3.3)

{(no solitons are present in the system). The thermalized
system is obtained from Eq. (3.1) by adding to the rhs the
term ad, + n (x,t) with n(x,t) given as in (1.2):

bx — Py —sing=n+ad, +n(x,t) . (3.4)

Thermal phonons are then solutions of the following sto-
chastic equation:

Vo =Vu — (1 =92 Yp=ay, +n(x,1) . (3.5

When a=0, n(x,t)=0, these phonons are just classical
Klein-Gordon modes with energy given by

Hp= ,6f ax[9+ g1 — ]

The general solution of Eq. (3.5) satisfying the boundary
conditions (3.3) is of the form

¥=(2/L)'2 S A, (1)coslk,x)

(3.6)

3.7

and (2/L)"”? being just a normalization factor (for n=0
it should be read as L ~'/?). Substituting (3.7) in (3.5) and
applying to both sides of the equauon the pro-
jection operator ol‘cos( k,x)dx, we obtain

Apu+ad,  +[1 =021 kk]A4, =€, (1), (3.9)
where
L
eu(=(2/L)'? [ "n(x,t)costkyx)dx . (3.10)

Using (1.2), we find for the autocorrelation function
R, (1—1’) and the power spectrum S, (w) the same ex-
praslon as in (2. 12) and (2.13). By identifying
[(1—5*)'2 4 k2] with w?, we see that Eq. (3.9) in the lim-
it L— o coincides with Eq. (2.0), and therefore, follow-
ing the same analysis of the preceding section, we obtain
that the average energy per phonon mode is

(H,)=kgT 3.1n

No zero-mode energy is present in this case, due to the ab-
sence of the soliton in the system. Finally, we remark
that the above results do not depend on the particular
boundary condition (3.3) used (we could have used generic
periodic boundary conditions) as well as on smallness re-
quirements of @ and 7. The only approximation that has
been made in obtaining (2.21), (2.22), and (3.11) is the
linearization procedure, which is justified if

kB T << EO »
as appears evident from Egs. (2.16) and (2.17).

(3.12)

IV. BROWNIAN MOTION AND DIFFUSION
CONSTANT OF A THERMAL SOLITON

We now concentrate on the effect of the a, 7, and
n(x,1) terms in Eq. (3.4) on the soliton motion (here a sol-
iton is a 27-kink jump from —sin~'y to 27 —sin~'y).
We assume 1/a and kg T /E, to be small. By introducing
the momentum

+ o
P=—1 [ "$:9.dx,
and differentiating with respect to time, we obtain

4ar _ 1
d‘ = aP+ ‘m+€(’).

where we have used Eq. (3.4) to eliminate the ¢,, term and
have defined e(¢) as

+ T butx om0 4.3)

Neglecting the noise term, Eq. (4.2) describes the “power
balance” motion of a 27-kink with velocity'?

da ’]""

4.1

4.2)

€(t)=

ug=1 {1+

4.4)

.
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and momentum
Ho
(1—ud)2?

The noise term n(x,?) in Eq. (4.2) introduces fluctuations
in the momentum and, from {4.5), in the velocity of the
kink. Such fluctuations are readily evaluated by standard
techniques (for details see Ref. 7), giving the following for
the power spectrum of the process Au ()=u (1) —ug:

Po= 4.5)

(1—ud)”?

Saul@)=2alksT/Eo)——" 4.6)
By assuming ug << 1, Eq. (4.6) reduces to

S.(w)=2alkyT/Eq)—— @1

W' +a
from which we obtain
+o d
(uhy= [ " SES. (@)= (ks T/Ey) . 4.8)

The time average of the kinetic energy in the Brownian
motion of the soliton is then given by

(Ew)=75Eo(u?)=+ksT (4.9)

as expected from soliton statistical-mechanics theory.?
Finally, from Eq. (4.6) a diffusion constant D for the
2m-kink motion is derived:

1
=%, (kg T /a), {4.10)

which is just the usual Einstein diffusion constant for the
Brownian motion of a particle in a viscous medium (this
is a further confirmation of the particlelike nature of the
soliton). (See also Ref. 3.)

V. THERMAL SOLITONS AND PHONONS
IN JOSEPHSON JUNCTIONS

We will now relate the foregoing sections to a real de-
vice as the Josephson junction. We will find the orders of
magnitude of the quantities of interest and see if the as-
sumption made in the above analysis holds for Josephson
Jjunctions.

The fluxon-rest energy (in laboratory units) for a
Josephson junction is

Eo=fwy=8fA,JL /(2e) (5.1)

where J is the maximum Josephson current density, L is
the lehgth of the junction, and e is the electron charge. A,
in (5.1) is the Josephson penetration depth given by

Ay =(fi/2epod))”? (5.2)

where d is the magnetic thickness of the oxide layer
(2X, +15), and pg is the vacuum permeability. From (5.1)
we have that for a typical Josephson junction

(kg T/Eq)=1074~10-%, (5.3)

which justifies the assumption (3.12) made in the analysis.

Tt N o
. Nt e e e
LT

The Josephson plasma frequency is
wp=(2eJty/e0e,H)' ", (5.4)

where €, and ¢, are, respectively, the relative dielectric
constant of the oxide layer and the dielectric constant of
the vacuum, while 1, is the thickness of the oxide layer.
For a plasmon described in Sec. III we have that the split-
ting of the energy level is

EYy=fw,0, (5.5)

with w, given by [(1—-9%)!24(na/L)*I'2. We have
then that the ratio k7 /E], is of the order of magnitude
1-1G, i.e,, the quantum energy levels are separated by a
quantity comparable with kgT. To have a rough estimate
of the energy-level separation for a fluxon, we can use the
analogy of a particle in a box. This gives

o _ TR nl o

Eq= A LZ..IO Awp » (5.6)
.., for a fluxon the separation in the energy levels is
smaller than kzT by a factor of the order 1073—-10"4.
This numerical manipulation indicates that for a typical
Josephson junction fluxon quantitation is not necessary,
while it is necessary for plasmons (EY, being of the same
order of magnitude as kgT). In Ref. 6 the effects of
gquantum plasmons on the fluxon motion have been calcu-
lated. It turns out that they are several orders of magni-
tude smaller than the direct influence of the thermal
reservoir on the soliton evaluated in this paper, and there-
fore, in our context, completely negligible.

Finally, in closing this section it is worth noting that if
kg T/Eg is very small, a statistical-mechanical description
of fluxons in Josephson junctions is meaningless. Howev-
er, the method used in the preceding section is still useful
to study the interactions between plasmons and fluxons.
(See Ref. 7 for the case of Josephson oscillators.)

VI. CONCLUSION

It has been shown that the effect of a thermal reservoir
on the sine-Gordon system can be studied by using stan-
dard methods of stochastic processes. Both phonons and
solitons are found to be thermalized in a way that the
phonons will have an average energy of k3T per mode,
while solitons will have an energy of 3kz7. These results
are in agreement with those obtained by using a
statistical-mechanics approach for a *dilute™ solution
gas.® The main assumption used in our derivation has
been kyT <<E; (to justify the linearization procedure).
Second-order effects [in the small quantity (kzT/E,)],
such as interaction between phonon modes and solitons,*?
have been neglected therefore. Finally, in closing this pa-
per we wish to point out that in spite of the particularity
of the model used, the results obtained are sufficiently
general to be extended to other equations of the nonlinear
Klein-Gordon class, such as ¢*, double sine-Gordon, etc.
As a matter of fact, the only difference in the analysis will
be the presence of additional bound states in the linear
phonon eigenvalue problem. By following arguments
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similar to those used in the present paper, however, it is
easily shown that each of these additional bound states
carries a thermal-average energy of kg T. This energy will
not increase the energy of the center of mass of a soliton-
like solition of these more general models, but it will in-
crease the energy of the internal degrees of freedom
(motion around the center of mass) of these excitations.'

Lo e o o SRS S5k SV At ok stk st aies sow AU AL VS e AL SR SO AR SAL SR R At A S Sl R T R At Rl

2639

ACKNOWLEDGMENTS
One of us (M. S.) would like to thank the Laboratory of
Applied Mathematical Physics (LAMF) (where part of
this paper was done), for the kind hospitality received, the
Danish Ministry of Education, and the European
Research Office of the United States Army (Contract No.
DAJA-37-82-C-0057) for providing financial support.

*Permanent address: Istituto di Fisica, Universita degli Studi di
Salerno, 1-84100 Salerno, Italy.

1S. E. Trullinger, M. D. Miller, R. A. Guyer, A. R. Bishop, F.
Palmer, and J. A. Krumhansl, Phys. Rev. Lett. 40, 206
(1978).

2H. J. Mikeska, J. Phys. C 11, 129 (1978); K. Maki, J. Low
Temp. Phys. 41, 327 (1980); D. J. Bergman, E. Ben Jacob, Y.
Imry, and K. Maki, Phys. Rev. A 27, 3345 (1983).

3M. Reimossenet, Solid State Commun. 27, 681 (1978); L. Gun-
ther and Y. Imry, Phys. Rev. Lett. 44, 1225 (1980).

4M. Buttiker and R. Landauer, Phys. Rev. A 23, 1397 (1981).

5D. J. Kaup, Phys. Rev. B 27, 6787 (1983).

6M. Salerno and A. C. Scott, Phys. Rev. B 26, 2474 (1982).

TE. Joergensen, V. P. Koshelets, R. Monaco, J. Mygind, M. R.
Samuelsen, and M. Salerno, Phys. Rev. Lett. 49, 1093 (1982).

8A. R. Bishop, J. A. Krumhansl, and S. E. Trullinger, Physica
(Utrecht) 1D, 1 (1980).

9Y. Wada and H. Ishiuchi, J. Phys. Soc. Jpn. 51, 1372 (1982).

10See, for example, A. Papoulis, Probability, Random Variables,
and Stochastic Processes (McGraw-Hill, New York, 1965).

1], Rubinstein, J. Math. Phys. 11, 258 (1970).

120. H. Olsen and M. R. Samuelsen, Phys. Rev. B 28, 210
(1983).

ID. W. McLaughlin and A. C. Scott, Phys. Rev. A 18, 1652
(1978).

14M. Salerno and M. R. Samuelsen (unpublished).

L AT I R SR L e
CRPE. DI S %

W A VA . TP T




S S e D 4 i A AR Al BalC Rl A St Rt A ARt A A St i et i et e S ME S S S S g Sedun e At e i

P~

PHYSICAL REVIEW B VOLUME 30, NUMBER 5§ 1 SEPTEMBER 1984

Magnetic field dependence of microwave radiation
in intermediate-length Josephson junctions
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(Received 21 December 1983)

Experimental measurements of current-voltage structure and emitted X-band radiation in applied
magnetic field from overlap-geometry Josephson tunnel junctions of normalized length about 2 are
compared with numerical simulations obtained with the use of a perturbed sine-Gordon model. The
simulations furnish the current and field dependence of the oscillation configuration, from which
can be calculated average voltages, frequencies, and power spectra. Simulation and experimental re-
sults are in good agreement with regard to the lobe structure of the height of the first zero-field step
and/or second Fiske step in magnetic field and the field dependence of the radiation frequency
within the various lobes, including details such as hysteresis between lobes. The simulations predict
an alternation of the dominant frequency component with increasing field that accounts well for the
experimental observations. The usefulness and limitations of cavity-mode analyses, both single-
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mode and multimode, are evidenced by comparison with the simulation results.

1. INTRODUCTION

Fluxon (soliton) propagation' has been by now estab-
lished as the essential physical mechanism underlying
many of the observed experimental properties of long
Josephson tunnel junctions. In particular, the appearance
of both zero-field steps (ZFS’s) and Fiske steps (FS's) in
the current-voltage ( I- ¥) characteristics of such junctions
and the emission of microwave radiation from junctions
when biased on these steps seem to be explainable in terms
of fluxon dynamics.2~> A number of different ap-
proaches have been employed in the literature to account
for the available experimental observations. These include
perturbative expansions of the basic soliton equation in-
volved (sine-Gordon equation),® analytic extensions of
small-junction theory (cavity-mode—interaction analy-
ses),’ and mechanical analog® and digital computer® simu-
lations (the references cited are intended to be representa-
tive, not exhaustive). Moreover, direct dynamic measure-
ments at the single-fluxon level are beginning to appear in
the literature.'® 1!

The perturbative approach is most suited for studying
the behavior of low-order steps on - 2ry long junctions,
inasmuch as the usual point of departure here consists of
the exact analytic solutions of the sine-Gordon equation
on the infinite spatial interval. Multimode extensions of
small-junction theory, on the other hand, should presum-
ably be most appropriate for relatively short junctions.
For junctions which are neither very long nor very short,
one would expect a priori that neither of these two ap-
proaches could be counted on to give reliable results. In
such cases, direct simulation would seem to be indispens-
able.

The present paper is an attempt to elucidate further and
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in more detail just this case, viz., the dynamics underlying
the behavior of intermediate-length Josephson junctions.
To this end we compare the results of new experimental
measurements of I-V structure and microwave emission
in magnetic field with the results of detailed numerical
simulations. The agreement that emerges is quite con-
vincing. For simplicity, attention is focused primarily on
the first zero-field step (ZFS1) and on the second Fiske
step (FS2) in junctions of normalized length of about 2.
Since the voltage positions of ZFS1 and FS2 approximate-
ly coincide, we refer in the following to the step
ZFS1/FS2. The numerical simulations are compared also
with approximate analytic results, and the usefulness and
limitations of the latter are clarified.

The paper is structured as follows: Section II contains
a description of the mathematical model used and the
techniques employed in its analysis. The results of this
analysis are presented in Sec. I11I. The experimental mea-
surements performed are described and discussed in Sec.
IV. Finally, Sec. V contains our concluding comments.

1. MATHEMATICAL MODEL
AND COMPUTATION TECHNIQUES

The mathematical model studied is the perturbed sine-
Gordon equation,’

bxx —Pn—sing=ad, — B, —7 ,
$:(00)=¢,(L,)=n,

appropriate to an overlap-geometry junction.'? Here, ¢ is
the usual Josephson-phase variable, x is distance along the
junction normalized to the Josephson penetration depth
A;, t is time normalized to the inverse of the Josephson

(la)

(1b)
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plasma (angular) frequency wg, and subscripts denote par-
tial derivatives (see Ref. 9 for details of the normaliza-
tions). The model contains five parameters: «a, 8, v, L,
and 7. The term in a represents shunt (quasiparticle) loss.
The B term models dissipation due to the surface resis-
tance of the superconducting films. The constant ¥ mea-
sures & uniformly distributed bias current normalized to
the maximum zero-voltage Josephson current. The con-
stant 7 is a normalized measure of the external magnetic
field which determines the boundary conditions {Eq. (1b)]
at the two ends of the junction of normalized length L.
In this numerical study the dissipative and length parame-
ters were fixed at a=0.05, #=0.02, and L=2. These
were chosen to be representative of typical physical values
without, however, modeling any one specific junction.
The bias current and magnetic field parameters were
varied in the ranges 0<y <1,0<7 <6.

Equations (1) were integrated from initial conditions ei-
ther similar to Eqs. (2) of Ref. 13 or (more often) using
the final ¢ and ¢, distributions from runs at nearby points
in parameter space. The integration was carried out using
the implicit finite-difference method described in detail in
Ref. 9, with space and time intervals set to 0.02 and 0.01,
respectively. Numerical accuracy and stability were veri-
fied by halving and doubling these intervals. During each
run the time-averaged value of the voltage at the two ends
of the junction and the power spectrum of the voltage at
the left (x=0) end were calculated. Here, voltage is de-
fined as ¢,, which represents the physical voltage normal-
ized to #wy/2e, where # is Planck’s constant divided by
2w, and e is the magnitude of the electronic charge.
These quantities were calculated over an integral number
of oscillation periods during the last approximately 50
normalized time units of each run. The power spectra
were calculated by means of a fast Fourier transform us-
ing a simple rectangular window.'* The values of (4,)
were calculated both from the elementary definition of
average and the zero-frequency components of the power
spectra.

Two checks were employed to assure that the average
voltages and the power spectra were calculated over
steady-state, not transient, dynamic configurations: (i)
The values of (@,) at the two junction ends were com-
pared. Physically and mathematically, the time-averaged
voltage must be constant along the length of the junction.
(ii) The quantity {@,)/2nf, where f is the fundamental
oscillation frequency, was calculated. From the Joseph-
son frequency relation, this quantity, in steady state, must
be an integer whose value (1 or 2 in the present case) de-
pends upon the type of oscillation present.® If either of
these conditions was not satisfied to within specified lim-
its the time duration of the run was increased.

I1I. NUMERICAL RESULTS

Figure 1 shows the magnetic field diffraction pattern of
ZFS1/FS2. In this figure, circles and diamonds are the
numerically computed top of the step. Circles were calcu-
lated by increasing y at constant n; diamonds were deter-
mined by varying 7 at constant ¥ (as will be seen later, the
difference is significant). Small arrows near the diamonds

1 A
0 10 20 30 &0 50
MAGNETIC FIELD v

FIG. 1. Magnetic field diffraction pattern of ZFS1/FS2.
Circles: step top calculated numerically at constant v). Squares:
step bottom calculated numerically at constant 1. Diamonds:
step top calculated numerically at constant y. Arrows near dia-
monds indicate direction of field variation. Solid curve (marked
1 and 2): Enpuku et al. multimode theory. Dashed curve: Ku-
lik single-mode theory. Enpuku and Kulik curves coincide at
the bottom of the first lobe. Insets show approximate dynamic
trajectories in the various 7 regions: solid lines are fluxons or
antifluxons; dashed lines are plasma waves.

indicate the direction in which  was varied near the max-
imum point. Beyond the maximum points, the junction
switched to a different dynamic state, most often to the
McCumber-Stewart hysteresis curve at the corresponding
value of y. This fact was evidenced by abrupt changes in
the value of (¢,), the voltage waveform, and the corre-
sponding power spectrum. In zero magnetic field, the
form of the McCumber-Stewart hysteresis curve can be
approximated by'*?

y=4aE(k)/nk , (2a)
($,)=m/kK (k) , (2b)

where K (k) and E (k) are, respectively, the complete el-
liptic integrals of the first and second kinds of modulus k.
From Egs. (2) it follows that for k—0, y—a{¢,), iec.,
the McCumber-Stewart curve approaches asymptotically
the Ohmic line, whereas for k—1, (¢,)—0, and
y—4a/m. Equations (2) continue to hold as a rough ap-
proximation even in the presence of magnetic field, at
least for n < 1.

The squares in Fig. 1 are the numerically computed
bottom of the step, calculated by decreasing y at constant
7. As will become clear from Figs. 2—6, it is possible to
determine numerically the precise bottom of the step in
the first lobe of the diffraction pattern, but this is no
longer the case in the second lobe. Beyond the minimum
points, the solution followed the McCumber-Stewart
curve down for a certain distance, after which it switched
abruptly to a static, zero-voltage state. The lowest y value
for which such switching was observed was 0.06
<y <007, which is consistent with the value
4a/m=0,064 estimated from Eq. (2a).

The dashed curve in Fig. 1 has been calculated from the
Kulik theory'® for FS2. The input parameter for this
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theory is the quantity Z,=L2Q,/n?n?, where n is the
step number (2, in our case) and Q, is the quality factor
of the nth mode. Following Enpuku et al. (Ref. 7) @, is
defined by

1 _La_nip
Q.—nv+ 7 " 3)

Insertion of parameter values thus yields Z,=1.2867.
The Kulik theory gives the maximum height of the step
above the Ohmic current. Accordingly, to compare with
numerical (or experimental) results it is necessary to add
this component to the Kulik value. Since, from our nu-
merical results, the top of FS2 is at (4, ) =3.1, a constant
(independent of 7) value of a(¢, ) =0.155 has been added
to the Kulik component in drawing the dashed curve in
Fig. 1.

The Kulik theory is seen to predict the maximum
points of the second lobe up to n=~4. However, for the
maximum points of the first lobe and for the second lobe
for n > 4, the theory fails. To predict these results more
modes must be included in the computations. Following
Enpuku et al.” we have used five modes with the quality
factor Q, given by Eq. (3) with n=1,2,...,5. We have
solved Eqs. (10)—(12) in Ref. 7 by means of a standard
routine.!” The results are shown as the solid curve in Fig.
1. The Enpuku theory is seen to predict the maximum
points of the first lobe very well. The maximum values
on the second lobe up to 7=35.5 are also in agreement.
However, between 7n=3.1 and 5.5 the Enpuku theory
predicts two curves for the maximum values. The curves
are marked | and 2 in accordance with a major contribu-
tion to the solution from the first and second cavity
modes respectively. Curve 2 lies close to the Kulik curve,
in agreement with the fact that this latter curve was com-
puted by means of mode 2 exclusively. The numerically
computed maximum values (circles) agree with the upper
curves (i.e., curve 2 in the interval n=23.1—4.4 and curve
1 in the interval n=4.4—35.5). Just above the lower curves
(i.e,, curve 1 for n=3.1—-4.4 and curve 2 for n=4.4-5.5)
the computer results exhibit changes in the contents of
cavity modes from mode 1 to mode 2 above curve | and
vice versa above curve 2. The accompanying hysteresis
phenomena are discussed below.

Figures 2—6 depict five vertical (constant-n) slices
through the diffraction pattern. Figure 2(a) shows the
current dependence of the power levels of the first two
Fourier harmonics of the voltage at the left end of the
junction in zero magnetic field. Power levels are given by
10 In| 4|2+ 100, A being the voltage Fourier com-
ponent. The ac components are thus arbitrarily normal-
ized to ¢?=10"19, Since no loading effects are included
in the model, all power levels calculated should be con-
sidered ideal, available values. Figure 2(b) shows the
current dependence of the first harmonic frequency f of
the oscillation. Since average voltage and frequency are
proportional (in steady state) through the relations
(¢,)=4uf,=2nf,, Fig. 2(b} is effectively the current-
voltage charscteristic of the step. We have chosen to plot
this characteristic in frequency rather than in voltage be-
cause in the laborstory, frequency can be measured much
more precisely (although perhaps less easily) than voltage.
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are shown for (c) y =0.34, (d) y =0.25, and (e} y =0.19.
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Figures 2(c)—(f) show the voltage waveform and part of
the corresponding power spectrum at the four points indi-
cated by arrows in Fig. 2(bl. A comparison of Figs.
2(a)—2(e) with results from the literature [see, in particu-
lar, Fig. 17 of Ref. 9 and Fig. 5(a) of Ref. 2] leaves no
doubt that the oscillation depicted in Fig. 2 is the fluxon
oscillation corresponding to ZFS!1. Finally, a comparison
of Figs. 2(e) and 2(f) makes clear why it is possible to
determine precisely the bottom of the step in the first lobe
of the diffraction pattern: At a certain value of the bias
current (0.14 <y <0.15 in the present case) the f, com-
ponent of the oscillation abruptly disappears, and a new
oscillation evolves for which the dominant component is
at f 2.

Figure 3 shows a similar vertical slice through the dif-
fraction pattern at a point near the right-hand extremity
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FIG. 4. Section through diffraction pattern at 5=2.5. (a)
Power levels of second Fourier voltage component at x =0, nor-
malized to ¢;=1.0x 10-'° (P, is absent). (b) Second-harmonic
frequency. Voltage waveform at x=0 and corresponding power
spectrum are shown for (c) ¥ =0.30 and (d) y =0.16.
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of the first lobe (n=1.5). Here, the behavior of the oscil-
lation near the top of the step is qualitatively quite similar
to that shown in Fig. 2. As y is decreased, however, a
marked difference is seen: The ratio of the f; power P,
to the f, power P, steadily decreases until, near the bot-
tom of the step, P; in fact dominates. Since f, is the
dominant frequency of FS2, the nature of the step at
7=1.5 may be described as ZFS1-like near the top and
FS2.like near the bottom. It should be noted, however,
that the transition between the two oscillation configura-
tions is here relatively gradual, rather than abrupt.

Figure 4 shows a vertical slice at =2.5, in the left-
hand side of the second lobe of the diffraction pattern.
Here the oscillation is purely FS2-like over the entire ex-
tent of the step. The power P, is lost in the background
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FIG. 5. Section through diffraction pattern at n=3.4. (a)
Power levels of second Fourier voltage component at x=0, nor-
malized to ¢=1,0X10"' (P, is absent or very small). (b)
Second-harmonic frequency. Voltage waveform at x=0 and
corresponding power spectrum are shown for (c) ¥ =0.42 and (d)
y=0.16.

noise (the noise here is of numerical, not physical, origin),
and P, is the dominant component. The fact that the
next-highest component, at f =2f,, lies 20 dB or more
below P,, explains why the Kulik theory, which assumes
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FIG. 6. Section through diffraction pattern at 7=4.6. (a)
Power levels of first two Fourier voltage components at x=0,
normalized to ¢ = 1,0 10-° (b) Second-harmonic frequency.
Voltage waveform at x=0 and corresponding power spectrum
are shown for {c) ¥y =0.32, (d) y =0.28, and (¢) ¥y =0.14.
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a single mode at f =f,, gives a reasonable description of
the oscillation in this region, as seen in Fig. 1. The diffi-
culty in determining precisely the bottom of the step in
the second lobe is now also apparent: f; is the dominant
component of both FS2 and the McCumber-Stewart
curve. As y is decreased, the step here merges gradually
with the McCumber-Stewart curve without any abrupt
changes, in contrast with what happens in the first lobe.

The behavior of the oscillation along a vertical slice at
the peak of the second lobe (1=3.4) is shown in Fig. 5.
Here, the situation is very similar to that depicted in Fig.
4 except at the very top of the step, where, with increasing
¥, the f| component just begins to emerge from the back-
ground, as seen in Fig. 5(c).

This tendency continues more markedly in Fig. 6,
which shows a vertical slice at 7=4.6. Here, recalling the
situation depicted in Fig. 3, the step is ZFS1-like near the
top and FS2-like near the bottom. As in Fig. 3, the tran-
sition here between the two oscillation configurations is
relatively smooth.

The information contained in Figs. 2—6 is summarized
in a highly schematic and approximate fashion in the in-
sets of Fig. 1. These show trajectories in the x-¢ plane,
with fluxons and antifluxons indicated by solid lines and
localized plasma waves indicated by dashed lines. The lo-
cations in 9 of the three insets in Fig. 1 indicate roughly
the regions where the corresponding dynamic configura-
tions are observed (we emphasize once again, however,
that the transitions between the various configurations are
gradual).

A rather different perspective on the nature of the oscil-
lations is obtained by taking horizontal (constant-y) slices
through the diffraction pattern. Two such slices, at
y=0.35 and 0.26, are shown in Figs. 7 and 8. Figure 7
shows the magnetic field dependence of the frequency f,
(proportional to the voltage) in the two slices, while Fig. 8
shows the corresponding behavior of the power levels, P,
and Py, at f, and f,. The salient facts that emerge from
these two figures may be summarized as follows: (i) The
essential, overall dependence of the oscillation frequency
on magnetic field is the inverse (qualitatively) of that of
the diffraction pattern; where the height of the step de-
creases with field, the frequency increases, and vice versa.
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FIG. 7. Second-harmonic frequency section through diffrac-
tion pattern at (a) y=0.35 and (b) y=0.26. Arrows indicate
hysteresis.
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monic Py at ¥ =0.26. (c) Second harmonic P; at y =0.35. (d)
Second harmonic P; at ¥y =0.26. Arrows indicate hysteresis.

(i) In the first lobe of the diffraction pattern the behavior
is quite regular; the frequency increases monotonically
with field, and P, is the dominant component. We note
parenthetically here that this frequency behavior may be
different for longer junctions.'®' (iii) In the left half of
the second lobe the behavior is also regular; the frequency
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FIG. 9. Partial section through diffraction pattern at
y=0.21. (a} Power levels of first two Fourier voltage com-
ponents at x=0, normalized to ¢=1.0%10-'"°. (b) Second-
harmonic frequency. Arrows indicate hysteresis.
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here decreases monotonically with field, reaching a
minimum in correspondence with the peak of the second
lobe, and P, is strongly dominant (the /|, component lies
within the background noise). (iv) In the right half of the
second lobe P, once again becomes dominant. The cross-
over point, where P, = P,, occurs at larger values of 7 for
decreasing y. These observations suggest that it might in
fact be more appropriate to refer here to a third lobe,
rather than to a half of the second lobe. (v) A strongly
hysteretic behavior of both frequency and power is ob-
served in the right half of the second lobe (i.e., third lobe).
This fact may explain why experimental measurements
[see, e.g., Paterno and Nordman® as well as Fig. 12(a)
below] often display notable irregularities in this region.

Figure 9 shows a small section of a horizontal slice at
y=0.21 in the region just under the juncture point of the
first and second lobes. Since y=0.26 and 0.35 both lie
above this juncture point, the curves in Figs. 7 and 8 are
discontinuous in this region. The major conclusions to be
drawn from Fig. 9 are similar to those drawn above: (i)
The qualitative shape of the field dependence of the oscil-
lation frequency is the inverse of that of the diffraction
pattern. (ii) Hysteresis is observed in 7 regions where the
dominant mode is changing.

IV. EXPERIMENTAL RESULTS

The numerical calculations discussed above were com-
pared with measurements on overlap geometry Nb—Nb-
oxide—Pb junctions having parameters comparable with
those used in the calculations. Although the discussion
below is appropriate for the many junctions investigated,’’
two junctions were measured in detail. Junction no. $10-
5-1 has dimensions 479 X 179 um?, maximum zero-voltage
current I.0=140 mA, and an estimated normalized
length, L, of 2. Junction no. 65H7 has dimensions
46767 um?, I.,=0.53 mA, and L slightly less than 2.
From independent measurements on similar junctions an
estimate of @ and B can be madc.?? The estimate is
reasonably consistent with the values a=0.05 and
P=0.02 used in the calculations, although the experimen-
tal values are probably somewhat smaller. The parameter
values of both junctions are such that the fundamental
soliton frequency f| may be detected with an X-band re-
ceiver (8—12 GHz). Any radiation at f,, however, is out-
side the frequency band of the detector used. The mi-
crowave receiver had an overall noise figure of about 8
dB. By using a spectrum analyzer both the power and the
frequency of microwave signals from the junction could
be measured. Generally, the received power was 25 dB or
less above the physical noise level of the receiver. All data
discussed here were taken at 4.2 K.

To investigate the fluxon dynamics the following mea-
surements were performed: (i) I-V curves of the steps.
(ii) The magnetic field dependence of the maximum
height of the steps. (iii) The magnetic field dependence of
the voltage of the steps with the bias current as a parame-
ter. (iv) The power and frequency of the f, radiation
emitted from the junction.

Figure 10 shows the low-voltage part of the I-¥ curve
in zero magnetic field of junction no. S10-5-1. Three
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FIG. 10. I-V curve of junction no. S10-5-1, showing three
zero-field steps. The dashed curves indicate switching.

ZFS's are seen. The high-voltage part omitted in Fig. 10
only shows the usual increase in current at the energy gap
voltage. The dashed lines show switching at the top of
the supercurrent and the three ZFS’s. The I-V curve of
the ZFS’s is obtained by decreasing the current to obtain a
bias point just below the foot of the ZFS's and then in-
creasing the current again. This /-V curve is typical of
the samples investigated. Although not shown with suffi-
cient voltage resolution, the shape of ZFS1 may be com-
pared with Fig. 2(b).
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FIG. 11. Junction no. S10-5-1. (a) Magnetic field dependence
of the maximum zero-voltage current. (b) Magnetic field depen-
dence of the height of ZFS1/FS2. (c) Voliage tuning of
ZFS1/FS2 corresponding (o bias level A4 in (b). (d) Magnetic
field dependence of the height of ZFS2/FS4. The dashed lines
in (b) and (d) show examples of parameter regions where f =/,
radiation was observed. The dotted lines show parameter re-
gions where /' =f, radiation was not observed.
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Figures 11(a) and 11(b) show the magnetic field depen-
dence of the maximum zero-voltage current and of
ZFS1/FS2, respectively. Note that the lobe pattern of
ZFS1/FS2 is in good qualitative agreement with the cal-
culated one in Fig. 1. In fact, the agreement here is at
least semiquantitative: The ratio of the zero-field current
in Fig. 11(b) to that in Fig. 11(a) is 0.63; the correspond-
ing value from Fig. 1 is 0.64 <y <0.65. The extrapolated
zero of the first lobe in Fig. 11(b) occurs at a field value
approximately equal to that seen for the extrapolated zero
of the first lobe in Fig. 11(a) (this is a generally observed
experimental fact). In terms of the normalized field 7,
the extrapolated zero of the first lobe of the zero-voltage
current occurs at =2 for very long junctions (the exact
value for shorter junctions, which is the same for the
overlap and the in-line geometries, may be calculated
from the theory of Owen and Scalapino?). Extrapolating
to y=0, the first lobe in Fig. 1 also yields n=2. The
dashed lines show examples of parameter regions where
S =/, radiation (at approximately 9 GHz) was observed.
In general, the f =/, radiation was observed in the first
and third lobes but not in the second lobe. This is in
agreement with the results of the numerical calculations,
in particular Fig. 8. By comparison with the calculations
the reason for the absence of radiation in the second lobe
(FS2) is that here the f =/, radiation is at presumably
~ 18 GHz, outside the range of the receiver. Figure 11(c)
shows, for a bias current corresponding to A4 in Fig. 11(b),
the magnetic field tuning of the voltage of ZFS1/FS2 (the
absolute value of the voltage is approximately 35 uV).
Figure 11(c) is in good qualitative agreement with the cal-
culation of Fig. 7, showing both the increase in frequency
(voltage) as the border regions of the lobes are ap-
proached, and the hysteresis there. From the voltage
curve, however, it cannot be decided whether it is the
S =/f or the f =/, radiation that is dominant. Thus,
determination of the fluxon-mode configuration requires a
measurement of the frequency of the emitted microwave
radiation. Such a measurement is described below (Fig.
12). Figure 11(d) shows the lobe pattern of the second
step although no corresponding numerical calculations
have been performed for this step. The dashed lines show
examples of parameters where f =/, radiation was ob-
served. In general, no such radiation was observed in the
first and third lobes; however, f =f, radiation was ob-
served everywhere in the second lobe. Most likely, the
soliton configuration in the first lobe is that of a sym-
metric fluxon-antifluxon mode (with f=f,). This is in
apparent contradiction with measurements on other sam-
ples* where the f =/, radiation was also measured on
ZFS2 in zero magnetic field, but the difference may sim-
ply be a manifestation of the two soliton configurations,
symmetric (f =f,) and bunched (f =f,), that have been
demonstrated numerically for ZFS2.> On junction no.
65H7, in fact, the bunched mode was observed on ZFS2.
In the second lobe (FS4) a three-fluxon—one-antifluxon
mode would give the right frequency (f,) and voltage;
however, other configurations are also possible,

Figure 12(a) shows the diffraction pattern for
ZFS1/FS2 of junction no, 65H7. Qualitatively, it is quite
similar to Fig. 11(b); however, the right half of the second
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FIG. 12. Junction no. 65H7. (a) Magnetic field dependence
of the height of ZFS1/FS2. The dashed lines show examples of
parameters where f =/, radiation was observed. The dotied
lines show parameter regions where f = f, variation was not ob-
served. (b) Frequency of the f =/, radiation corresponding to
bias levels A4,B,C in (a).

lobe appears somewhat anomalous. For this measurement
the hysteresis phenomena between lobes were observed but
not carefully mapped. As indicated by the lines 4,8,C
for different constant bias currents, f =f, radiation was
observed in the first and third lobes, but not in the second.
Figure 12(b) shows a measurement of the frequency of the
emitted f =/, radiation corresponding to bias currents
A4,B,C in Fig. 12(a). The positive frequency tuning in the
first lobe is in good agreement with Fig. 7. The absence
of the f =/, radiation in the second lobe and the reap-
pearance of such radiation at the transition between the
second and third lobes are also in qualitative agreement
with the numerical calculation of Fig. 8. As noted in con-
nection with Figs. 7 and 9 the frequency tuning resembles
the inverse of the diffraction pattern. Qualitatively, curve
C in Fig. 12(b) is also in agreement with the voltage tun-
ing in the first and third lobes of Fig. 11(c).

V. CONCLUSIONS

The intermediate regime L >1, where the standard
analytical methods (cavity-mode theory for L <1 and sol-
iton perturbation theory for L >> 1) a priori do not apply,
was investigated numerically and experimentally. A com-
parison between the experiments and the numerical calcu-
lations showed a very good qualitative agreement. Based
on this comparison it was possible to identify the various
soliton modes in the magnetic field lobes of ZFS1/FS2.
The extension of single—cavity-mode theory to mul-
timodes due to Enpuku et al.” gave satisfactory predic-
tions of the diffraction pattern for ZFS! and FS2. Thus,
with caution elements from both types of theories are us-
able, however, numerical simulation is necessary for a
wider understanding of experimental observations.
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Simulation studies of radiation linewidth in circular Josephson-junction fluxon oscillators
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(Received 8 November 1984)

Detailed simulation studies of the dynamics of fluxons in long circular Josephson tunnel junctions
under the influence of external microwave radiation and internal thermal noise are presented. The
simulation algorithm uses a pseudospectral method well adapted to vector processors (CRAY-1-8),
which gives a speed-up factor in computing time of typically 22 in comparison to conventional
high-speed computers, and also provides results with a relative accuracy of less than 10~ thercby
making possible the study of the very narrow radiation linewidth of such oscillators. Comparison of
calculated linewidths with experimental results shows good agreement.

MS code no. BY2341 1985 PACS numbers: 74.50. + r, 84.30.Ng, 05.40. + j

I. INTRODUCTION

Josephson-junction fluxon oscillators continue to attract
research interest both theoretically, in studies of nonlinear
wave dynamics, and experimentally, where the very nar-
row linewidth of the emitted microwave radiation prom-
ises potentially interesting applications.! This very nar-
row linewidth makes the numerical study of the detailed
dynamics of such oscillators very CPU time consuming,.
In order to overcome these difficulties we have developed
a pseudospectral algorithm for solving the perturbed
sine-Gordon equation which describes the oscillator. This
algorithm employs a Fourier transformation of the spatial
variable together with a finite-difference approximation to
the time variable. The extensive use of fast Fourier
transforms in the algorithm has made the implementation
natural on a CRAY-1-S vector processor. The Fourier
treatment of the space variable requires spatial periodicity
in the model. In physical terms this means that we are
studying a circular junction oscillator of the type first
proposed by McLaughlin and Scott.? This device, as well
as providing a convenient mathematical model because of
periodic boundary conditions, has in recent years begun to
attract research interest in its own right.>*

The paper is structured as follows. In Sec. II we

- describe the mathematical model of the circular junction.

Details of the numerical techniques employed are present-
ed in Sec. 11I. In Sec. VI we study the behavior of the os-
cillator under the influence of a sinusoidal driving term in
the bias current, which models external microwave irradi-
ation. Section V contains calculations of the linewidth
under the influence of Gaussian white noise, which
models internal thermal noise in the junction. In Sec. VI
we compare our results with existing experimental obser-
vations. In all of the sections we are focusing on a config-
uration with a single propagating fluxon, which corre-
sponds to the first zero-field step in the current-voltage
characeristic of the oscillator.

1. MATHEMATICAL MODEL

As a model for the Josephson tunnel junction of overlap
geometry we use the perturbed sine-Gordon equation,’

- | !

a

Pux =@u—sinp=agp,+v+n(x,t). Q2.n

1 ' !
Here @ is the quantum phase difference between the two
superconducting layers in the junction. Space and time
are normalized to the Josephson penetration length
Ay =(Py/2mjoL, )2, and the inverse of the plasma fre-
quency w, —(21r_/0/4>0C)'/2, respectively, where @, is the
magnetlc flux quantum given by ®y=h/2e¢=2.064
X107 wb, L, and C are the inductance and the cupa-
citance per unit length of the junction. The first of the
perturbation terms on the right-hand side of Eq. (2.1)
represents the loss due to tunneling of normal electrons, in
normalized units a=G/w,,C, where G~! is an effective
normal resistance per unit length. The second term is the
normalized bias current y measured in units of j, the
maximum Josephson current per unit length. In this pa-
per we include a third term 1(x,t) representing either an
externally applied sinusoidal driving term connected to
the bias, or an internal thermal noise term connected to
the loss. In this second case we assume a distributed
Gaussian white noise with zero mean value.

The normalized length of the Josephson junction
I=L /A, is assumed to be large compared with unity and
the normalized width w =W /A, small compared with un-
ity, allowing us to use a 1+ dimensional model.® Be-
cause the aim of this investigation is to isolate the influ-
ence of the term %(x,t) on the solution to Eq. (2.1} we
avoid phenomena connected with collision with junction
boundaries by considering a long annular junction. There-
fore, we demand spatial periodicity with period / in the
two physical quantities, the voltage drop across the junc-
tion:

1] | "
' Il

b
V= M”¢“ 2.2)
and the current along the junction,
= —]olﬂ’x ’ 2.3)
( i.e., boundary conditions
q),(O t)=g,l,1), (2.4a)
¢,(0 N=e,llt). (2.4b)
H ]
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—/ The fluxon traveling wave solutlon to the unperturbed N7 Calculate initial
version of Eq. (2.1) is given by’ ;,:’fg ’ conditions
—  @=2sin""[enl&,k)], @5 il 1
i‘ 4l W
with &=(x —ut)/[k(1—u?)'"2]. Here u is the velocity of ! i ] periodic
the wave and k is the modulus in the Jacobian elliptic \ A Colcutote Transform solution
" function.! Spatial periodicity requires /(1—u?)'/? \ i~ [nonlinear term to k-space vio FFT
=2nkK(k), where n is the winding number, i.e, thenum- | "  [Moke solution [ @ Add _sinusoidal
ber of fluxons minus the number of antifluxons, and K(k) | o aperiodic or noise drive
s the complete elliptic integral of the first kind. 2In Ref. 9 B Transform solution |Advance solution -~ .
it is shown by Hamlltonlfan perturbation theory® that the o to x~space via FFT| one timestep .
steady-state fluxon velocity dependence on the loss and |*! | e T
—— bias parameters is 2t .
FIG. 1. Schematic diagram of numerical simulation pro- .
u=1/(1+(4a'/my)))'1?, (2.6) | cedure. )
— with a’=aE(k)/k, where E(k) is the complete elliptic |—} ' 4 E
integral of the second kind. For [>8 (assuming n=1) |ing sing and then transforming again to k space as md. .
Eq. (2.5) reduces to the kink for the infinite line |cated schematically in Fig. 1. '
— @=4tan"Ye%) with &=(x—ut)/(1—u?"?? and the |- Figure 2 shows the computed ¢, as a function of time
velocity given by u =1/[1+(4a/7y)?]'/2. In the numeri- | at an arbitrary point on the junction. This signal consists
cal simulations we have used /=8, 12.8, 20, and n=1. - of an almost-periodic sequence of pulses. In fact, it is the
- i ; _.1Z deviation from perfect periodicity that gives a nonzero
\I ! "' linewidth of the radiation. Since the deviation is small it

g
. k’=21rp/1, p=0,%1, ..., +poux (3.1b) ‘| S-, 4~ — T— .;
in which F? and N” are the Fourier components of sinp [ | 3 }
and 1, rcspcc(wely, and 8, denotes the Kronecker sym- E3 1
bol, and using second-order central differences to approxi- F;E | 2 .
mate the time derivatives we get an explicit scheme for [\7" ©
the time evolution of the Fourier components 1005
: O
o0, 1=[20)—(1—alt/2)9)_, : : 2 o .
—AUS)+1y + N/ +adi/2), (G220 k4 1y 8 S
: n - v v ' N
@2 =[ (2= AW —(1—aAt/2)85_, 4 \ 5 A o oo R
—ASPANDI /(1 +adt/2), [p]>0, (2b) t '

_ frog scheme in time, has the advantage of simplicity and | h€ distribution of the computer value‘s of 1/T,. SR
high-order accuracy in the approximations to the space Figure 3 shows the 'ca)culated T,’s in a compulter ex- Ry
derivatives. Expansion of the fluxon wave into truncated | Periment with the driving term =0 in Eq. (2.1). Ascan |
series of sines and cosincs demands periodicity not only in | P¢_ scen fro_r_n Fig. 3, the relative accuracy .- =g
¢« and ¢, but also in @ itself. Observing that the fluxon AT/{T,)<107" In fact, examination of ‘l‘f numerical 4

output shows that it is approximately 7X 10 The long S

HI. NUMERICAL TECHNIQUES " is necessary to devise a very accurate method for deter-

. mining the revolution periods T, for the circulating flux-
on. We do this by calculating T, as the time for the
- mean value of the phase over x to change by 27. The
fundamental frequency of the signal then becomes
- fo=1/(T,), where brackets denote an average value.

- We take the power spectrum of the signal near f; to be

The very narrow linewidth of the radiation emitted
from a Josephson-junction oscillator (less than 1 kHz at
10 GHz)'° suggests that a relative numerical accuracy of
at least 10~ is essential. We solve Eq. (2.)) numerically
by using a pseudospectral method.!" This method, a
Fourier transform treatment in space together with a leap-

is a localized kink connecting two ground states separated

by 27 we introduce a new periodic function. @—2mx /I transient arises from the fact that the initial conditions .=~ -

whose Fourier representation we denote &(1) with the su- | 8iven by RN

perscript p=0,%1, ..., £pmay. | @(x,0)=f(x,0)—sin"(y), (3.3a)
Transforming Eq. (2.1) into the following set of ordi- | oy ;

nary nonlinear coupled differential equations: - el —AnN=Slx,~AN—sin"y), (3.3b)

— kJ®P(1)— D5 (1) — FP(sing) - where f(x,t) is the fluxon traveling wave solution to the

unperturbed sine-Gordon equation as given by Eq. (2.5)
=a®f(1)+1y8,0+NP(t), (3.1a) | 4 '

4 FIG. 2. Time dependence of the space derivative of the ﬁux-
where Sf equals FP{sing] at time jAt, calculated each | on waveform, showing the ath period of revolution T, for
;:me‘step by transforming @}, back to x space, calculat- '\a=0.01, y=0.02, n=0, and / =12.8.

I




FIG. 3. Revolution period T, as a function of revolution

level of computational accuracy achieved.

'_ and sin~'(y) is the ground state, are not exactly equal to
the final propagating configuration.

We note at this point that the accuracy of the results

was checked by doubling p,... in Eq. (3.1b), in order to

f— ensure that no spurious Fourier modes due to the discreti-

(3.2). The values used for py,,, ranged from 64 to 256 and
those for At from 0.075 to 0.0025, depending on the pa- |:
[ rameters /and y.

The computer program was implemented on an IBM |
(— 3033 in double precision (approximately 16 significant

izing FORTRAN compilers. In the former case we have

used the IMSL-routine FFT2C for fast Fourier -'3;}
transform.'? In the latter case, by making full use of vec- o

torization of the computer code and the CRAY routines
for Fourier transform and vector copying CFFT2 (Ref.
13) and CCOPY (Ref. 14) we gained a speed-up factor in
computing time of 22. Each long simulation requires typ-
ically 5x 10° time steps on a 512-point spatial lattice and
uses approximately 10 min of CPU time on the CRAY-
1-S as opposed to approximately 4 h on a scalar machine.
Finally, we have compared the steady-state fluxon ve-

[ —

number n for @=0.01, y=0.02, =0, and /=8 showing high I

(I | I i teo
' R

zation in x space are produced, and halving At in Egs. |-

digits) and on a CRAY-1 vector processor in single pre- ;:;;;:
cision (approxximately 15 significant digits) using optim- ¥

locity, given by u=I1/(T,), with the predicted value
| e

il i
from Hamiltonian perturbation theory, Eq. (2.6). The re-
sult is seen in Fig. 4. The deviation for large bias values is
expected because the perturbation theory is only valid for
small y values. i

1V. SINUSOIDAL DRIVING TERM

In this section we investigate the behavior of the fluxon

" velocity when the driving term is given by

Nix,t)=n(t)=nesin(Qt) , 4.1

" as a function of the driving frequency Q. This might be
(. considered as a model of microwave irradiation of the

z | !
o . b . * ——
> ./Revoluhon period T, ‘\

| 9.482515 \
9.482510 - /
9.482505 -

; 9.482500 ' 4+————F——F—7——1— |
! 120 140 160 180 200 220

[ Revolution number n I

\junction. Using the definition of the normalized momen-
tum

)
pi)=—1 [ erpdx, (4.2)

and separating the phase into a kink part and a back-
| ground part'® @lx,0)=@*(x,t) +@=(1), and assuming that

| the length of the junction is large, allowing expressions for

the infinite junction to be used, we get the following equa-
tion for the momentum p* of the kink,

: ’ Revolution frequency  f,,
. .

(@)
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computed numerically wey, and calculated from perturbation
theory ¥pen from Eq. {2.6) as a function of the bias for a=0.01,
"ip=0,and /=8.
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FIG. 4. Difference between average propagation velocity as i
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Revolution number n

/ FIG. 5. Revolution frequency f, as a function of revolution
' number n for sinusoidal drive, (¢ )= nsin{{d¢), with a=0.01,
. ¥=0.02, N=0.86, 7o=0.01, and /=8. (a) Numerical simula-
: tion. {(b) Kink model.
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,d k kT © ‘l 0.=tan"'(ﬂ/a)
=— i !
\\Ld: +ap 2 Y + osin( 2 )+a_L+_Ld: and 4.5b)
- ‘ 43 1 O=tan="{a/[(1—y}"-0?]} .

Thus, the background motion becomes an effective
— driving term for the kink part. From Eq. (2.1) we derive
the linearized equation for § *=@* +sin~!(y), assuming

that  ® «<1,

The instantancous kink velocity is then calculated from
p¥=u/(1—u®""% In order to compare this approximate
theoretical description with the numerical result we calcu-
late the nth period T, according to the formula

— 'n—l+rn
i —dﬂ,—+a—£—+(1 PP = _sin(Q) . (4.4) J.o, Tua=t,
: with 4.6 )
© = Combining Eqgs. (4.3} and (4.4) we obtain for the kink N K212 .
i momentum u=p*/[1+("7 " . IR
. rly 7o Figures 5—7 show a comparison of the results from this S
. (t)=—4— +(—2—W2—sin(ﬂl—0|) linearized model and from numerical simulations of Eq. . -
, a’+ (2.1) with 2=0.86, 0.89, and 1.10, respectively. In all = -
! 700 | cases it is seen that the kink model is able to reproduce . -
= - — cos(ft —0,) the fluctuations in the revolution frequency f, =1/T, in- *
' 2 M2, 202112 2 : equency /, " 1
| U =y)-0) 4o’ . "\great detail. .
E . I(4.5a) \ As a measure of the amphtudc of the frequency fluc- R
! T ' T [—'* - :
| . ",
| | | Revolution frequency fn ( Revolution frequency  fn
I l 1 (0) -j (0) ..‘
i i ] ] .
1 | ) 0.1220 |
a | 0.10 - “ \ f ]
: ] 0.1215 S
' : 4 \ W ? '_]
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FIG. 6. Revolution frequency f, as a function of revolution FIG. 7. Revolution {requency f, as a function of revolution " 1
—— number n for sinusoidal drive, n(1)="gsin(2r), with a=0.01, | number n for sinusoidal drive, n{t)=nesin(l¢), with a=0.01, 7’3

y=0.02, N1=0.89, 1,=0.01, and /=8, (a) Numerical simula-
== tion. (b) Kink model.

y=0.02, 1=1,10, 7y=0.01, and /=8. (a) Numerical simula-
tion. (b) Kink modecl.
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19=0.01, and /=8.

(I 1 i
tuation, which is essentially the linewidth of the oscillator,
we have calculated the standard deviation of the revolu-
tion frequency o, =[{(f, —{f,))?)1'/? for values of the
cyclic driving frequency 2 between 0.4 and 2.0.

The full curve in Fig. 8 shows the results from the nu-

kink model. The kink model predicts a resonance just
below the plasma frequency 2 =1, whereas the numerical

cy. Moreover, the numerical results exhibit a hysteresis

—— scale. The discrepancy in resonance frequency and hys-
' teresis behavior is attributable to the fact that we have
used a linearized kink model. Presumably, the use of a

D ]

analogous to that of a soft nonlinear spring'® thus reduc-

extent the difference in scale would be resolveu by such a

i
'
! T refinement.

Y. GAUSSIAN WHITE NOISE

I Gaussian white noise with zero mean {7(x,f))=0 and
: — autocorrelation function

. R (&, 7)=(nlx,)n(x +§,t +7)) —0.,6(;')8(1') (5.1
. —_ 2

The variance of the noise oy
and the absolute temperature T through'’

J o} =4makT /®gjoh, ,

where k is the Boltzmann constant.

(5.2)

troduce the noise term in p-f space, N*(1), as
‘, NP(t)=F~'{o,expli(6,+6,))} , (5.3)

where F~! denotes the Fourier transform from o to ¢
i space, and 6, and 6, are stochastic variables uniformly ;.
P \dislributed between O and 2w, with an upper limit in p

-

and @ of Py, =1/24x and w,,,,=m/At, Ax and At being
the resolution in space and time, respectively. Standard

LI R . P S
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merical simulation and the dashed curve those from the

simulation yields this peak at a somewhat lower frequen- |’

' not seen in those of the kink model and a difference in!"

higher-order expansion in Eq. (4.4) would yield a behavior|

ing these discrepancies. It is not clear, however, to what 3|

The term 75(x,t) in Eq. (2.1) is here considered to be| .

is connected with the loss a ! -

In the vectorized algorithm we find it convenient to in- |~

'I
"N

Eq. (4.6) we calculate the average frequency fluctuation as
ithe average of the instantaneous frequency fluctuation
u /1 over one average period of revolution
A Y 2

1
M=y [, Ausde.

From Eq. (5.7) it follows that Af has a normal distribu-
"+ tion with zero mean and the standard deviation,"’

—al/ug) i
. (5.8)

al
A numerical simulation with 0,=8.8X10"* is seen in
Fig. 9 showing a typical frequency distribution of Af
. about the fundamental frequency fo=ugy/l. The connec-
» tion between the standard deviation and the half-power

(5.7

2"0
al

1 —expl

1
: UA/=TUA.. —Uyp

. linewidth is
Af]/z =V 81"204/

, when Af is normal distributed.
Figures 10 and 11 show a comparison of the standard
\dcv:a(ion predicted by this model Eq. (5.8) and the results

(5.9)

Distribution density
3.0x10°%

2.0x10%

W

1.0x10% {

fn

I P P W
|

1} [N 1§
0.046782 0.046784 0.046786
1-‘-5 | I

Revolution frequencies
FlO. 9. Distribution of revoluuon frequency f,. Numerical
’slmulnlion with Gaussian noise drive: a=0.01, y=0.034,
a,-s 81074, and 1 =20.
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i i Standard deviotion ¢, — T/ / Hamiltonian perturbation theory for the fluctuations Au w5
; 1 s = in thc fluxon velocity leads to the power spectrum for S
| " -5 Au. .
f -/ 107 1 - i .
’ Saulw)=1oi1—uj)”? (5.4)
' 10-31 . Au 1Yy 0 wz+az ’
H __" “ B . with the average velocity ug given by Eq. (2.6). By a LN
| 107 " Fourier transform of Eq. (5.4) we obtain the autocorrela- -~
! s . tion function for Au as an exponential -;::'.:::.'
] —— 1 0- - ’ s .h:
i L Ram= ey 55 g
. - I} TI= e . . ¥
! 1 0 s L " Ll ' Ll r v ' L ' v l \l ] Au ‘6“ !.w\t
: 0.4 06 08 1.0 1.2 1.4 1.6 1.8 2.0 :.*  Thus Ault) is a normal process with zero mean and .. .
" Driving freguency Q A " standard deviation'® DR
! ) FIG. 8. Standard deviation of revolution frequency oy as a | a,,(l—uo)’/ ¢ RN
i function of driving frequency 2. Solid curve, numerical simula- Opu= 4a'”? 56 -
tion; dashed curve, kink model; parameters, a=0.01, y=0.02, . St
' Defining the period of a fluxon revolution according to ~ =——4
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I Standard deviation g, I fron; the numerical simulations for the lengths /=8 and

SN
. A ‘
] 0 1=20, respectively. As can be seen, the model is able to

(o) . predict the right qualitative dependence on the length, the
7 noise amplitude, and the bias, but the model predicts an
7 overall standard deviation that is about a factor of 10 too
0,=0.20 2! large. The reason for this discrepancy is at present not
0.=0.10 |~ known.
1078 on=0.05 *In closing, we note that for y values near 0.3 it was
! n =i found necessary to augment the time resolution (by reduc-
-— 9.=0.01 [ -} ing A1 to avoid spurious peaks in Fig. 10(a). The ex-

— 1Q"1

107% |

f

)
10‘ T T T T 1T v ¢t istence of such spurious peaks might be an indicator of

) 0-0 0.1 62 03 0.4 \ . the onset of chaotic behavior at nearby points in parame-

—_— = ?'05 current  y ' ter space. In fact, parameter values ¥y =0.3 with a=0.01

lead to chaotic creation of fluxon-antifluxon pairs in the

' Stondard devials
td deviotion o, i study reported by Eilbeck.?

— 40 (b)
VI. COMPARISON WITH EXPERIMENTS

-3
10 _ The rapidly decreasing linewidth with increasing bias
1074 -~ * shown in Figs. 10 and 11 is in qualitative agreement with

the experimental observations of Fig. | in Ref. 10.

1073 ~ 0,=0.20 To compare quantitatively the calculated results with

- gﬂzg'(‘)g - these experiments we use in Eq. (5.2) data reported by
10— ——————p———0.=001 | ;- | Scott et al.® For the junction No. N25L, assuming a tem-

Io.o 0.1 0.2 0.3 0.4 \ perature of 4 K, Eq. (5.2) gives o, =0.0052. Noting from

—_ \ Bias current > Ak Fig. 9(a) that oy scales linearly with o,, we calculate from

FIG. 10. Standard deviation of revolution frequency o, for Eq. (5.9) a_7 normalized h?lf-power lmew!dth

white Gaussian noise drive as a function of bias current v, for Af12,=5.5X10"" at y=0.2. Taking as the normalized

- |a=0.01, 1=8, and 6,=0.01, 0.05, 0.10, and 0.20. (a) Numeri- | Fesonance frequency fo=ug/1=0.125 we calculate a rela-
cal simulation. (b) Hamiltonian perturbation theory. tive linewidth Af,,,/fo=4.4X10"% The physical reso-

I nance frequency for junction No. N25L was 2.3 GHz.}
This yields a physical linewidth of 10 kHz. Comparing

b
_ Standard deviation o

] with the experimental results shown in Fig. 1 of Ref. 10

and noting that y=0.2 corresponds to a bias point near

107 | (o) the bottom of the zero-field step, we find excellent agree-

“ \ ment. The same calculations for junction No. NS3C,}

107" 4 again for T=4 K and y=0.2, yield Af,,/fo

=2.3% 107 The physical resonance frequency for junc-

-$
10 tion No. N5S3C was 8.3 GHz, which leads to a physical

[

1078 linewidth of 18 kHz, once again in excellent agreement
. Wwith experimental results.
107 ———————— SN N
0.00 \0.04 0.08 0.12 \ / : VII. CONCLUSIONS

—_— = Bios current  y__ «i%  Computational studies of the linewidth of the radiation
Standord deviation g, (" | emitted by Josephson junctions require extremely high
I;}' resolution. For this reason we developed a pseudospectral
| 107 1 ®) ,, mcthgq for sqlving the nonline.ar dynamic_al equation
1 © describing a circular Josephson junction oscillator. Be-
107 \ ! cause the algorithm makes heavy use of fast Fourier
i transforms it was implemented on a CRAY-1 vector pro-
10°¢ 0,=0.20 |{: cessor. Driving terms corresponding to physically realis-
1 0,=0.10 |&% tic situations, i.e., sinusoidal microwave irradiation and
| 1078 \Oﬁo-% i internal thermal noise, were considered. In the second
. 9,=0.01 r case the computational results were compared with exper-
\10 r T T T T T imental results reported in the literature, and excellent
\ 0.00 0.04 0.08 0.12 qualitative and quantitative agreement was found. In ad-
- | Bios current Y : dition, in both cases we have compared the computational
, FIG. 11. Standard deviation of the revolution frequency o, results with approximate analytic results based on pertur-
-—_ for white Gaussian noise drive as a function of bias current y,  bation theory. Here the agreement was qualitatively good,

| for @=0.01, 1=20, and ¢,=0.01, 0.05, 0.10, and 0.20. (a) Nu-  but quantitative discrepancies were found, indicating a
. merical simulation. (b) Hamiltonian perturbation theory. . need for further development of perturbation theory.
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Superconducting quantum interference devices (SQUIDs) respond chaoticaily to external oscillating fluxes. The small
deviations from one-dimensional return maps are investigated. Within a narrow region of parameter space a sequence of period
doublings, windows with odd periods and chaotic behaviour, intermittency and bifurcation between coexisting attractors of low

dimension are found.

A periodically driven 1f superconducting quantum
interference device (SQUID) consisting of a ring with
a single Josephson junction has been investigated re-
cently both by means of analogue circuits [1] and
computationally {2,3]. Like many other physical sys-
tems the device exhibits deterministic chaos (intrinsic
noise). In this letter we investigate in detail a particu-
lar portion of parameter space which exhibits ex-
tremely rich details of the dynamics. Furthermore,
we demonstrate that the choice of attractor (in cases
with more than one attractor) may depend on the ini-
tial conditions, i.e. there can be coexisting attractors.

The order parameter for the Josephson junction, ¢,
satisfies the differential equation [2]

9" +ed +singp=a(ysinwpt—¢), 1)

where primes signify differentiation with respect to
the dimensionless time ¢ given by ¢ = T(Cpq/2nJ,)1/2.
Here T is laboratory time, ¢ = h/2|el is the flux
quantum, C and J are the capacitance and the maxi-
mal critical current, respectively, The loss parameter,
€, is given by €2 = ¢o/2nCJ _R? where R is the resis-
tance of the weak link. The external flux is assumed
to be sinusoidal with frequency wp and amplitude 7.
In the additional term, a¢, a = ¢o/27J L, where L is

0.375-9601/85/$ 03.30 © Elsevier Science Publishers B.V.

(North-Holland Physics Publishing Division)
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the inductance of the ring. Due to the presence of
this term, which corresponds to a confining quadratic
potential, less chaos might be expected in this system
than in the single Josephson junction without the ag
term [2]. We have shown that eq. (1) does not possess
the Painlevé property [4) in accordance with the fact
that chaos in the system does occur for certain initial
conditions. The proof is obtained by converting eq.
(1) into four non-linear coupled autonomous first-
order differential equations through differentiations
and trigonometric substitutions [5]. The resulting
system can be shown to possess other movable singu-
larities than poles. Therefore the system, and thus eq.
(1), is not of Painlevé type. ..

Eq. (1) was integrated numerically by means of
IMSL routine [6] DVERK-1. Our results are shown as
the return maps in figs. 1 and 2. As in ref. {2] we plot
X(n + 1) versus X(n) = ¢'(t,, + A) with ¢, given as the
nth zero crossing of ¢' and the constant A arbitrarily
chosen as A = 0.134. The numerical simulations
showed that the transients had died out before n =
300. Iterations from n = 300 to n = 600 are included.
In view of the fixed rf driving our general return map
construction could be substituted by, e.g., a simple
strobing at the driving period. Differing constructions
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Fig. 1. Return maps obtained as ordered pairs X (), X(n + 1) for n = 300—600, Parameters in eq. (1) ase € = 0.5,y = 10, wp = 0.5,
and a = 0.16435-0.173. Initial conditions for a = 0.16435 ¢(0) = ¢'(0) = 0. In subsequent maps the values of ¢ and ¢’ of the pre-
ceding run are used as initial conditions,
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should not affect the topological information carried
by the map. The computational procedure proposed
by Hénon [7] was used. Of the four parameters in cq.
(1) €, v and wp, were kept constant throughout at the
values chosen in fig. 3 of ref. [2]: €= 0.5, v= 10, and
wp = 0.5,

In fig. 1 the parameter a was varied from a =
0.16435 to a = 0.173. In the first run, a = 0.16435,
initial conditions ¢(0) = ¢'(0) = 0 were used and a
period-2 solution was found (as indicated in fig. 2 of
ref. {2]). In the following run, & = 0.1644, the final
values of ¢ and ¢’ from the previous run were uscd as
initial conditions. This procedure was used through-
out in a series of computer experiments with increas-
ing values of the parameter a. However, for each value
of a, eq. (1) was also solved for initial conditions ¢(0)
=¢'(0)=0.

When the resulting return maps (for n = 300-600)
differed the map is included in fig. 2, For = 0.1644
a return map indicating low-dimensional chaotic be-
haviour was found (for both sets of initial conditicns).
As the parameter a was raised to a = 0,165 only small
changes in the return map occurred. However, at a =
0.167 we observed a shift from chaotic behaviour into
a period-7 solution. At a =0.169 the return map again
exhibits chaotic behaviour, this time as a period-3
window. At a = 0.1695 the periodic behaviour is re-
established as a period-3 solution which, however,
vanishes again at a = 0.17 where we find the same dou-
ble humped chaotic return map as in fig. 3c of ref.
[2]. Note, however, that if initial conditions ¢(0) =
¢'(0) = 0 are used chaos already occurs for & = 0.1695
as shown in fig. 2. Already for a = 0.17007 the dou-
ble humped return map depopulates into a chaotic
period-5 window, which has already vanished again
for a = 0.1705 (fig. 1). The double humped envelope
curve for this value is very similar to the curve ob-
tained for a = 0.17. A closer analysis of the return
map shows that the system stays for a number of
iterations on the lower hump (which has a double-
curve structure). Then it moves to the upper hump
(single-curve structure) for a number of iterations be-
fore it goes back to the lower hump. This intermitten-
¢y cycle continues as far as we have followed it.

When the parameter a is raised to the value a =
0.1706 two things may happen: The system may
choose the attractor which corresponds to the lower
hump of the curve (as shown in fig. 1) or the attractor
which curresponds to the upper hump of the curve

TR
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(as shown in fig. 2). Thus a special type of bifurcation
occurs between a= 0.1705 and 0.1706. By means of
computer experiments we have checked that the
choice depends on whether the initial conditions for
the run already lie on the lower attractor or the upper
attractor, respectively. Also, we have found that ini-
tial conditions ¢(0) = ¢'(0) = 0 lead always to the up-
per attractor as shown in fig. 2. The following runs
demonstrate that the system stays on the preferred
attractor as a is increased. For a = 0.17125 the lower
attractor (fig. 1) and the upper attractor (fig. 2) have
depopulated into period-2 windows. For a= 0.17129
period-16 solutions (on the attractors) occur in both
cascs. Fora=0.1713,0.1714, and 0.1715 a sequence
of period-8, period-4, and period-2 solutions is ob-
served similarly. For a = 0.173 the period-1 solution
indicated in fig. 2 of ref. {2] is found.

The chaotic behaviour indicated by “¢” at € = 0.5

and a=0.16-0.17 in fig. 2 of ref. [2] has an extreme-

ly detailed structure within a small portion of param-
eter space. In particular, note that the “single hump”
return map reported in ref. [2] is in fact extremely
structured. Since the phase space is two-dimensional a
purely one-dimensional return map is not expected,
the closeness depending sensitively on the parameter
€. Similar small deviations from a one-dimensional
circle map have been found in ref. [8] ina dc + ac
driven single pendulum.
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