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\ ABSTRACT

:é ™ A strain-to-failure method was employed with Naval

A Postgraduate School tensile testing equipment to determine
'§: the ductile to brittle transition temperature (DBTT) of five
T basic platinum-aluminide gas turbine blade coatings on a
nickel-base superalloy (IN738). The results of these tests
e were compared to similarly formed nickel-aluminide coatings
o without platinum and conclusions were drawn concerning the
» effect of the platinum and aluminum content and structure on

S coating ductility.

M

": 2 e 8
L_‘J“a"&.v‘ e

o
;

Yo alala)
i AT,

PRI

B ? <

i. ":

Sl

o, -‘

R SR R AR R T T T - .

o Ve T 4 ..._:l.ii" ;‘.i- * ~ P VL




ol
i
X
R
w TABLE OF CONTENTS
;f% : I. INTRODUCTION AND BACKGROUND . + v v o « o o o « o « 9
WA A. GAS TURBINE BLADE COATINGS . « « « o« o o o « o o 11
R B. THE INCORPORATION OF PLATINUM INTO
v THE DIFFUSION COATING . . o o « « « o « « « o . 14
a C. THE COATING SYSTEM DUCTILE TO BRITTLE
' TRANSITION TEMPERATURE (DBTT) .« « « « o o . . . 18
:ﬁ: II. EXPERIMENTAL PROCEDURES . + ¢ ¢ « o « o o « « « « o 24
?ﬁ A. SPECIMEN PREPARATION . . . . « &« « o o o o o . . 24
.'i B. TEST SYSTEM DESIGN + + & & o o « o o o o o o o o 26
}f C. SPECIMEN TESTING . . . & &« « « o« o « o « o + o o 30
;ég { D. ACCURACY & ¢ o « o o o o o o o o o« o o« « o« o o« 33
oy III. RESULTS AND DISCUSSION . . v v v ¢ o o =« « o « « « . 34
5; A, TEST OBSERVATIONS . . & o« o o« s s o« o o o o » o 34
Eﬁ B. CRACK MORPHOLOGY . & &« v & o « o o o o o o o o o 37
jlv C. THE EFFECT OF PLATINUM ON COATING DBTT . . . . . 38
*5& IV. CONCLUSIONS AND RECOMMENDATIONS . . . « o o+ « . . . 41
;23 APPENDIX A: TABLES I-IV 4 4 v ¢ o o o o o « o o o o « . 43
L ; APPENDIX B: FIGURES 1-=15 v v ¢ v & o « o o o o o o « « « 46
e LIST OF REFERENCES '+ &+ . & & 4 o o « + o o « o « « o o . 58
;S; INITIAL DISTRIBUTION LIST . . v & v o o o o o « o o o « . 62
e
-
%
5
§ Y




X LIST OF TABLES

484
v

3 \-' 2 s

'fﬁj I. IN738 Composition (Weight Percent) . « « &+ ¢« « « « o 43
o1 II. Platinum-Aluminide Coatings Formed on IN738 . . . . 43
] Substrates

t? III. Coating Strain to Failure Data . . . . . « . . . . . 44

A

ji IV. The Ductile to Brittle Transition Temperatures

v (DBTT ) . . L] . L] . . . . . . . . . L] . L] . . . . . . 4 5

: LI
ORI
F S T R R T ]

.
A e
AN o
Pl ot
P L o3
[+))

q

.34,

- "y

A

‘,_'.1“.-.:.(_. ARSI SR R S [ ."" . Nt e e R DR N R N.~\'.-_-.-_. . o ™
- . LIPS M e e T et e o DR IV T «a®ate’. Y oy S v e . LR R Y

.l*-‘s_:---_-“-\,-. % % P N R .o R L A . . AR B A - Tl
4 30 2P AO N IE I TN PP RPR VR _-MA . = FIFORRRERS DR SR R




P » 3
I‘ .LIL(

e

N
i.‘ "

]

- P

1.

3.

19.

11.

12.

13.

14,

15,

LIST OF FIGURES

Inward Nickel-Aluminide Coating (1080x) . .
Outward Nickel-Aluminide Coating (10@00x) . .

Typical Ductile to Brittle Transition

Temperature Graph for a Given Coating-Substrate

System L ] . L] L] L] L ] L] * * o L] . L L] L] . L] L ] *
Coated Tensile Specimen . . « ¢« ¢ ¢ o« ¢ o o &

Coating No. 1 - Low Pt Diffusion, Inward Al,
Etched (425X) . o * o o . . . . . . . . .

Coating No. 2 - Medium Pt Diffusion, Outward
Ni, Etched (425%) e o o s o o s o o o o e

Coating No. 3 - Medium Pt Diffusion, Inward
Al, EtChed (425)() . . . . . L] . [} . L . . .

Coating No. 4 - Medium Pt Diffusion, Outward
Ni, Etched (425X) . ¢ ¢ o o o o o o « o o

Coating No. S5 - High Pt Diffusion, Outward
Ni ' Etched (425x) L ] [ ] L ] L] L] L] L] L ] L] * L] * L]

Typical Oscilloscope Signatures During
Tensile Testing . ¢« o « o o ¢ o o o o o o o

Experimental Set-Up for Coating-Substrate
Ductility Testing . « o o o o o o o o o & &

Ductility Graph of Inward Aluminum, High
Activity Coatings (LTHA) . ¢ 4 o o ¢ o o o &

Ductility Graph of Outward Nickel, Low
Activity Coatings (HTLA) . ¢ o ¢ ¢ ¢ o o o &

Brittle Failure of Coating No. 1 . . . . . .

Ductile Failure of Coating No. 2 . . . . . .

46

46

47

.48

49

49

50

50

51

52

53

54

55
56

57




8 ACKNOWLEDGEMENT

I wish to express my sincere gratitude to my thesis
o advisor, Dr. D. H. Boone, whose expert advice and broad
w experience were instrumental in the completion of this
effort. I also extend special thanks to Dr. Prabir Deb and

f} to Tammy Ellis whose support in conducting the experimental
portion of this work was vital to its success.

For coating production and technical advice I extend my
f appreciation to Dr. G. W. Goward and Dr. S. Shankar of the
Turbine Components Corporation, to Mr. J. Smith and Mr. C.
Thomas of the Howmet Corporation, and to Mr. M. Barber of
Allison Detroit Diesel..

And, of course, my deepest gratitude goes out to my

wife, Theresa, without whose love and devotion I would never

N have been able to start this project, let alone finish it.
W

S

¥

el

o

-

-

o

X .
e

I 8

i '\'- X "“".‘_"._ B T P S N P P M S R S
-!.411'4\.".-4 - o A LA I AL B WAV W U WUEAT UL B WU S YOI AR LIPS A Wl W SR, W WAl i Wl W o VT O T SO S e A




%l WRNNRN T

»

\mu- ¢~x~ **~ v

I. INTRODUCTION AND BACKGROUND

The development of the gas turbine engine has only
excelled since the early 1940's, even thoug:.. the principles
for its operation have been known since the turn of the
century. This is due to the simple fact that materials
available before the 1944's could not withstand the high
temperatures and stresses developed in the power turbine.
Once the "superalloys" of iron, cobalt, and nickel-base with
their solid solution strengthening and precipitation harden-
ability were discovered, gas turbine aircraft were developed
for continuous high power operatioh in a relatively
corrosion free environment.

The present use of gas turbines in combatant ships
brings many advantages to the mariner such as quick starts,
maneuverability, the ability to burn several different
grades of fuel efficiently, and a greater horsepower to
weight ratio than conventional power plants. However, the
LM2508 engine developed for the U.S. Navy has encountered
disadvantages in the marine environment in that relatively
low power operation and high corrosive potential have led to
earlier engine failure at the outset of the program than
that experienced with gas turbine aircraft. While the

superalloys solved the problems of high temperature and high

N e o N N (L T W N.f-...._. G S R
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stress resistance which blocked the initial gas turbine

development for aircraft use, the use of turbine blade
coatings has alleviated to a significant extent the latter
day problems encountered in the marine environment, although
much work still remains to be done. The working out of
compatibility problems between blade allsys and coatings in
an effort to find the most corrosion resistant and econo-
mical combination will be a long process and may prompt one
to ask, "why not develop a superalloy which can resist the
environment on its own and forget about cocating the blades?"
This has been tried with some success but there is still no
affordable superalloy which can form the required impervious
oxide layer without excessive depletion of its constituent
elements in the required high temperature, stress, and
corrosion environment [Ref. 1, 2). A superalloy blade with
a coating designed to protect the blade from corrosion
without degrading the mechanical properties of the super-
alloy has been the best long-term solution to the problem to
date. At this stage the industry seeks to make blade-
coating systems which will last longer under potentially
worsening conditions.

Both nickel and cobalt base superalloys when used as
airfoil substrates can achieve excellent mechanical
properties including resistance to thermal and mechanical
fatigue, high temperature creep lives, and high tensile

strength. Even though the blades are coated in order to
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enhance their resistance to degradation, they still must be
resistant to oxidation and hot corrosion on their own in the
event of coating compromise. Aluminum and chromium both can
form protective oxides (A1203 and Cr,03, respectively) and
their presence in the superalloy in general enhances both
oxidation and hot corrosion resistance. The choice of a
superalloy for a particular component is usually dictated by
the temperature and stress conditions in the particular
section of the turbine under consideration. Cobalt-base
superalloys are usually more corrosion resistant than
nickel-base superalloys, due in part to their high chromium
content, and thus they are used for vanes. Nickel-base
superalloys on the other hand have lower melting points vyet
much greater strength than the cobalt-base superalloys and

are used for blades as well as some later stage vanes.

A. GAS TURBINE BLADE COATINGS
To select the proper coating for a given substrate in a
particular application, six basic requirements must be met.
The coating must:
1. be highly resistant to oxidation and hot corrosion;
2. have the ductility during start-up, power transients,
shut-down, and at temperature to accommodate substrate

dimensional changes without allowing crack initiation;

3. be compatible with the substrate superalloy in terms
of both thermal expansion and elemental constitution;

4. not interdiffuse to too great an extent with the

substrate superalloy such that mechanical properties
of the substrate will be degraded;

11
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5. be easily applied to the substrate superalloy; and

6. have a low cost in relation to life improvement.
‘[Ref. 3]

The industry's best solution to the problem to date has been
in the form of aluminide diffusion coatings and metallic
overlay coatings.

Metallic overlay coatings, the newest of the two types
and commonly referred to as "MCrAlY" alloy coatings (M=Fe,
Ni, and(or Co), are applied by either physical vapor
deposition processes (PVD), as typified by sputtering and
electron-beam evaporation, or most recently by low pressure
chamber spray techniques [Ref. 4]. Structurally, the
coatings consist of two phases--an aluminide phase which is
brittle dispersed in a chromium-rich solid solution matrix
which is ductile. The chromium and _aluminum are present to
form the protective oxide layers mentioned earlier and the
yttrium and/or other active elements ensure that the oxide
layers adhere to thé coating surface [Ref. S5]. Because
metallic overlay coatings depend very little upon substrate
element incorporation, they degrade the substrate mechanical

properties to much less a degree than do aluminide diffusion

coatings. However, as a result of high processing costs and

problems encountered in maintaining tight compositional

control with the PVD methods, aluﬁinide diffusion coatings

are dgenerally regarded as the most advantageous overall,

taking into account the six established requirements for .
coatings [Ref. 6].

12
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Aluminide diffusion coatings are formed on the substrate
by a relatively simple and inexpensive process called pack
cementation which is a gaseous chemical vapor deposition and
diffusion process conducted in an inert '*pack' mix. The
resulting coating consists of a zone which lies directly on
top of the substrate made up of an intermetallic compound
(usually B8 (NiAl) for nickel-base superalloy substrates) plus
one or two more outer zones also consisting of intermetallic
compounds [Ref. 7]. An environmental barrier is formed by
the oxidation of aluminum (A1203) and the surface is
continuously fed additional aluminum for oxidation in the
event scale damage occurs due to thermal fatiqgue (spalling)
or erosion. Once the aluminum content of the coating falls
below the critical level for the A1203 scale to form,
substrate element consumption takes place and the coating
must be replaced.

In practice it is possible for only two types of
aluminide diffusion coatings to form. The product formed
will depend upon the activity of the aluminum and the
formation temperature. A high activity pack with a
relatively low formation temperature will produce what is
called an "inward” aluminum diffusion coating because
aluminum diffuses "in" followed by outward nickel diffusion
during subsequent diffusion treatment and a three zone

structure of 8(NiAl) and precipitated substrate elements

13
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forms. Alternatively, if a relatively high formation
temperature with a low aluminum activity is chosen, an
"outward"” nickel diffusion will occur in the B8 (NiAl) and a
two zone structure will résult showing a nickel-rich B (NiAl)
phase on the outside with a B(NiAl)/substrate phase mixture
next to the substrate. Inward and outward aluminide

coatings are shown in Figures 1 and 2.

B. THE INCORPORATION OF PLATINUM INTO THE DIFFUSION COATING
The two devastating enemies of the gas. turbine blade are
oxidatiton and hot corrosion. The diffusion aluminide
coatings described above were first developed and used with
excellent results in providing oxidation resistant
superalloy coatings for alloys such as Udimet 780 and B-1908
first stage gas turbine blades in aircraft [Ref. 8]. As the
diffusion aluminide coating became more widely used, it
established itself as an excellent life extender for most
superalloy blade materials. However, as lower and lower
grade fuels came into use and the coatings were used more
extensively over a wider temperature range in the marine
environment, hot corrosion attack became the major cause of
coating and blade failure. Hot corrosion is defined as the
combined attack of high temperature combustion exhaust gases
and sea salts in condensed phases on the surface of a
turbine component. Thus, hot corrosion is experienced

predominantly in the marine environment since it requires
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the presence of sodium and sulfur in the form of sodium

sulfate. The sulfur is provided by low grade high sulfur
fuel, and in a given temperature range, sodium sulfate
condenses on the turbine blades and components. The blade's
protective oxide can be dissolved by the fluxing action of
the molten salts. Once the protective oxide is gone and
unable to reform and the substrate is exposed, the hot
exhaust gases cause further accelerated oxidation of the
unprotected metal and eventual loss of mechanical strength
and component integrity [Ref. 9]. Further, it has been
determined that two distinctively different types of hot
corrosion can occur. Basic fluxing (TYPE I) hot corrosion
is associated with temperatures in the range 860C - 954C.
This was the first type of hot corrosion noted in high power
level aircraft operating in the marine environment and it is
characterized by the presence of sulfides embedded in the
broken-up and degraded metal surface. However, propulsion
units operating at lower power levels, and thus developing
lower airfoil surface operating temperatures, experienced a
different and potentially more devastating type of hot
corrosion in the range 675C - 775C. This acid fluxing (TYPE
II) hot corrosion results in a relatively smooth surface
appearance with many pitting-type corrosion fronts causing
the metal surface to rapidly recede [Ref. 10].
Experimentation in the industry led to the surprising

discovery that in some cases the incorporation of the noble
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f;? metals such as platinum into the conventional diffusion
( aluminide coating could greatly enhance the oxidation and .
fi: hot corrosion resistance of the conventional aluminide
3& coating-substrate systems already in use. The first
.
) commercial "platinum-aluminide™ coating was developed by
'%g Lehnert and Meinhardt in Germany in the early 19780's and was
N3 licensed by the Howmet Corporation as LDC-2 and by
o
_ Chromalloy as RT 22. It improved blade life in cyclic
E; oxidation at least fourfold and resistance to at least some
ig types of hot corrosion twofold over conventional aluminide
';é diffusion coatings [Ref. 11].
rgﬁ To construct the platinum-aluminide the conventional
ié& aluminide coating was modified by first electrodepositing
:h 18 um of platinum onto the bare nickel-base superalloy
“fz substrate before the normal aluminizing of the blade at high
f;ﬁ‘ temperatures [Ref. 12]. While many studies have confirmed
9, that the reason for the increased substrate protection is
tﬁi the enhanced aluminum oxide scale adherence caused by the
EE; platinum, the actual mechanism for this phenomenon is not
149 fully known [Ref. 13]. It was originally thought that
:;g platinum would be incorporated in the interdiffus.on zone
zé? where it would tie up the aluminum sufficiently during
{;; thermal cycling of the turbine blade to moderate aluminum
?;; diffusion to the surface, thus extending the life of the
';5: coating by allowing the aluminum that was present to be used
ii;
16
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%E over a longer period of time for oxide scale replacement.
(r‘ . This "diffusion barrier" theory was quickly dispelled,
EE: however, by microprobe analysis which revealed that on the
E& LDC-2 coatings as well as on othef platinum-aluminides the

) majority of platinum is at the very outside (surface) region
EF of the coating rather than in the interdiffusion zone or
\ diffused into the substrate [Refs. 14, 15].
h At the U.S. Naval Péstgraduate School in Monterey,
o California, Boone and Deb have studied the wide range of

%ﬁ variables possible for forming the platinum-aluminide

;‘ coatings and determined that platinum deposition method,
yé pre—-aluminizing heat treatment, and subsequent aluminizing
FS? treatment most affect the final structure and hot corrosion
” resistance of the platinum-aluminide coating formed while
é& the pre-aluminizing heat treatment appears to be the domi-
Eﬁ: nant factor in determining the coating structure [Ref. 16].
3 This is an important observation, because while commercially
é} available platinum-aluminide coatings have been in use for
ii years including the LDC-2, Johnson-Mathey's JML-1, and
E; Chromalloy's RT-22, the reasons for their success, other
EE than the fact that "they work," have been hard to establish
Eé due to the proprietary nature of manufacturing processes and
;ﬁ? test procedures.

;I Depending upon the pre-aluminizing heat treatment used,
‘3ﬂ ' the platinum-aluminide coating structure can range from a
o

-l 17
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continuous PtAl, surface on top of a thinly interdiffused
platinum zone to a two phase PtAl, + NiAl (Pt in solution)
structure to a single phase NiAl (Pt) coating system. Keep
in mind, however, that thé platinum deposition process has
an effect on the formation of the coating and the
aluminizing treatment also affects these structures
apparently causing in an analogous manner the "inward" and
"outward" diffusion noted earlier in the conventional
aluminide coatings.

Boone and Deb [Ref. 17] reported improved but varying
resistance to TYPE I hot corrosion as a function of coating
morphology and other researchers have delineated the virtues
of platinum-aluminide coatings in resisting high temperature
degradation. However, a great many questions remain
regarding the mechanical properties of platinum-aluminides
[Refs. 18, 19, 20]. It is significant that Boone and Deb
reported their results based on coating morphology due to
processing treatments.

C. THE COATING SYSTEM DUCTILE TO BRITTLE TRANSITION

TEMPERATURE (DBTT)

Throughout the literature platinum-aluminides are
generally regarded as "brittle" in comparison to other pack
cementation and overlay coatings, but no detailed test
results are presented to identify which platinum-aluminide

coatings are more or less brittle than others of their

18
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genre. Indeed, mechanical properties tend to be considered
in the wake of advancements in the protective nature of the
coating itself. However, mechanical properties of the

coating systems are also important and can significantly

influence coating-substrate lives. High and low cycle
S fatigue, thermal fatigue, crack growth, creep, rupture, and
- tensile properties as well as coating ductility are vitally

important to the coating-substrate system and engine design.

ﬂif If any of these coating properties are insufficient or

?Eg incompatible with the substrate they protect, coating

\i; penetration results and the substrate is degraded by its
;Eﬁ environment at an accelerated rate.

:% Because coatings and substrates always display a phase

and compositional difference from one layer to the next due

j$f to the diffusional nature of the platinum-aluminide

iﬁ coatings and the tightly bonded intermetallics which form,
) complete compatibility of mechanical properties at all

[y .‘l

f24 temperatures is an impossibility. It has been noted that
%3_ since most coatings consist of an intermetallic phase(s)

f with a BCC structure, they behave in a brittle manner at low
EET temperatures which changes to a more ductile behavior at

.Ef, higher temperatures [Ref. 21]. The level of brittleness and
T the temperature of transition from brittle to ductile

:%j behavior are strong functions of intermetallic phase

T

&ﬁ composition and stoichiometry. This in turn is dependent
z'e:':‘\

‘%ﬂ

e 19

o

o




L St B Wi’ e B S B S P g B et . it IS B M (e SUIRL R - g i B et " g A/ G B i SRR ARGt > SRl S S g Ak i * gt niviyde deart it RN S i die Jive Out ek n Sad Sen eyl Sl gl "“"T

upon the coating-substrate composition and processing
procedure. Because of this, coating-substrate "systems" are
studied rather than separating the two for examination and
the ductile to brittle transition temperature (DBTT) is

* considered one vital indicator of system performance.

The coating-substrate system behavior is a strong
function of thermal expansion mismatches and resulting
residual stresses between the two as well as a function of
differing mechanical properties between coating and
substrate which can cause additional strain to occur in the
coating. The coating's ability to accommodate this strain
is its ductility. One can clearly see the vital nature of
temperature related ductility data--the procedures for
start-up and shut-down-of a gas turbine engine as well as
the blade design and cooling scheme must take into account
the coating-substrate ductility limits at all temperatures
from start-up through the entire operating range to ensure
that thermally and mechanically induced strains do not
exceed those which can be accommodated at any given
temperature. Turbine start-up and no-load warm-up times as
well as operating and shut-down procedures must accommodate
this data to ensure the coating is not compromised.

Lowrie [Ref. 22] was the first to realize the importance
of the DBTT, and in 1952 he established a relationship
between the melting temperature of a number of aluminide

phases and the DBTT:
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DBTT = 6.6 to 8.7 Tm(x)

Strang and Lang used this relationship to project that the

DBTT range of PtAl, (87¢°C - 10870°C) is slightly higher than
that of NiAl (868°C - 1060°C) and much higher than those of
two other intermetallic compounds which are found in the
conventional aluminide coatings on a nickel-base superalloy

substrate, Nijal (738°C - 980°C) and Ni,Al, (578°C - 718°C)

2
[Ref. 23]. This might indicate that the platinum-aluminide
is more brittle since it remains in the brittle mode through
a greater temperature range from room temperature through
start-up, and indeed a high DBTT is an undesirable
characteristic. A low DBTT would ideally place the coating-
substrate system into a ductile mode by the time turbine
warm-up is complete and before heavy stress is placed on the
engine.

An additional consideration is that even though most
coatings are brittle at temperatures below 7080°C, they must
be able to withstand thermally induced strains which are
characteristically largest at the airfoil surface. As
Strangman and Boone point out these strains are on the order
of 6.15 to 0.35 percent and a coating which cannot maintain
this much ductility at the low temperatures will nnt be
adequate [Ref. 24].

But again, this thought about platinum-aluminides is

merely a "projection"” of Lowrie's original findings and is
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- not a result of actual laboratory testing. Furthermore, it

4 A

( applies to the PtAl, phases specifically, and while PtAl, is
a continuous phase at the surface in some platinum-

- aluminides, it exists as a second phase with NiAl (Pt) in
others. Without actual testing, the DBTT of a specific
coating substrate system cannot be ascertained or discussed
with any reliability.

While the temperature range in which the system is in
transition from brittle to ductile behavior is often used as
{ above, the industry standard definition of DBTT was set
forth by Lowrie and Boone in 1977 as that temperature which
jf corresponds to a fracture strain of #.6% [Ref. 25]. At
j; temperatures above the DBTT, strains greater than 8.6% can
be accommodated and at temperatures below the DBTT strains
up to 9.6% can be accommodated. The most important point to
observe in the definition is that testing is done to coating

L fracture so that the strains recorded in any experiment are

J

JQ actually beyond the maxima that can be tolerated at their
;; given temperatures. In a typical DBTT tension test this

Ei involves coating fracture only at temperatures below the

S; DBTT while at temperatures above the DBTT substrate failure
§§ may occur with or without coating fracture [Ref. 26]. 1In
;ﬁ the brittle region cracks are straight and close together

while in the ductile region cracks are more separated and

bifurcated. See Figure 3.
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Brandis and others [Ref. 27] have shown that the LDC-2
platinum-aluminide coatings on IN738 substrates show a
slightly higher DBTT than conventional aluminide coatings,
and others have drawn attention to the fact that platinum
exists in solid solution in the NiAl phase of platinum-
aluminide coatings and wouid likely effect the DBTT of
platinum-aluminide coating-substrate systems [Refs. 28, 29].

In continuing the gas turbine blade coating research
effort at the Naval Postgraduate School, it is the purpose
of this thesis to develop and demonstrate a procedure using
NPS equipment to determine coating system ductility and to
specifically determine the ductile to brittle transition
temperatures (DBTT) of representative platinum-aluminide
coating-substrate morphologies for NPS standard platinum
diffusion heat treatments and aluminizing heat treatments
which are recognized throughout the industry. These results
should establish data involving a critical coating
mechanical property and supply needed design information for
both the Navy and industrial manufacturers of turbine
blades. Specifically, while the PtA12 compound is regarded
as brittle, its contribution to or degradation of the
ductility of representative platinum diffusion heat
treatments and aluminizing activities and temperatures will

be ascertained.
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II. EXPERIMENTAL PROCEDURES

A, SPECIMEN PREPARATION

The substrate on which all the coatings were applied and
tested was IN738,'a commercial nickel-base superalloy with
composition delineated in Table I. The IN738 tensile
specimens were machined from the cast state to the
dimensions shown in Figure 4, although careful measurement

of the final gage length after the platinum-aluminide

coating was applied was made for each specimen due to the
critical dependence of strain on this dimension.

The final diameter was not necessarily consistent from
one specimen to another due to the fact that some specimens
had to be ground more to eliminate casting porosity for
consistent coating adherence. Slightly differing gage
diameter was not a factor, however, in this experiment since
only strain was of importance and not the load picked up by
the specimen to impart the strain.

All specimens were ground to a 12 micro-inch RMS surface
finish for consistent coating surface structure. The
specimens were processed at commercial facilities to develop
the Pt-Al coating stucture desired for testing. Processing
involved the electro-deposition of a 18 um thick layer of

platinum followed by a heat treatment to diffuse the
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platinum into the substrate. Once this was accomplished,

(» (. the specimens were subjected to an aluminizing treatment.

There are two aluminizing processes adopted as the NPS

standards. One (LTHA) is a high aluminum activity process

performed at low temperature (7ﬂ0°C), and the other (HTLA)

L:f' is a low aluminum process performed at high (HTLA)

temperature (1025°C). Without the incorporation of platinum

these processes respectively yield the inward and outward
coatings described earlier, Details of the platinum-
aluminide coating process and resulting structures are

o discussed in greater detail elsewhere [Ref. 30].

e Table II describes the coatings selected for testing
and Figures 5, 6, 7, 8, and 9 display the coating
morphologies.

Four tensile specimens and one test pin per coating were
processed so that at least four data points on the DBTT
curve could be obtained for each coating. The test pin for

véj : each coating was used for metallographic purposes to ensure

g that each of the coatings was formed properly. Each of the

= photographs in Figures 5-9 were taken of portions of the

test pins which had been mounted, polished, and etched with

AG-21 (a diluted HNO4 etchant applied by swabbing and used

;bf to develop contrast).
Because initial testing performed on the coated

specimens revealed that the substrates were too brittle to
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yield conclusive results, two additional heat treatments of
» solution and aging were performed on all of the remaining
specimens. These treatments of 11298°C for two hours in an

inert atmosphere and 845°C for twenty-four hours were used

f_'l _’l"‘lﬁ’ -

by Lehnert and Schmidt on IN738 substrates in previous DBTT

experiments and proved effective in restoring substrate

= T
et

L

ductility so that testing would yield tangible results
" (Ref. 31].
The final coating structures (Figures 5-9) display the

characteristic phases that are common to the platinum-

AL D I

aluminides. Coating Nos. 1, 3, and 5 (Figures 5, 7, and 9

respectively) display the two phase structures discussed in

)

Chapter I composed of the PtAl2 and NiAl (Pt in solution)
k- phases, while coatings ‘Nos. 2 and 4 display the single phase

NiAl (Pt).

B. TEST SYSTEM DESIGN

The testing method devised to establish the DBTT of the

i platinum-aluminide coatings was a strain-to-fracture method
specifically designed to use existing Naval Postgraduate

School equipment, which includes the Model TT-D Instron

I

AhNS

Tensile Testing machine and the Model 2232 Marshall

clamshell oven. In most DBTT testing the coating system is

4

N strained at the elevated temperature of interest, and the
coating is either observed to fail visually if a windowed

oven is used [Ref. 32], or an audio method is employed.

LR ) A
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Another standard practice in industry is to heat a coated

]
[

tensile test specimen to the test temperature and strain it
'jn a predetermined amount. Then the specimen is unloaded and
}‘ cooled to rbom temperature., Plastic surface replicas are
then taken to determine if any coating cracks have occurred.
If they have not, the specimen is again heated to the test
temperature and strained a greater amount. This more time
consuming process continues until coating cracks are
;ﬁ detected and thus a data point at that test temperature is
achieved [Ref. 33].
e In this instance, the audio approach was employed in
which a sound transducer, the Dunegan model S-1408B, was used
;f . in conjunction with the Tektronix Type 551 Dual Beam
Oscilloscope to give a visual signature of the coating
failure. This method was considered feasible due to
b evidence that coating cracking on the surface of a coated
) alloy yielded a distinct acoustic signature in toughness
f: tests reported by Lehnert and Schmidt on platinum-aluminide
- coatings [Ref. 34]. Surrounding noise which includes gear
noise in the Instron machine and even thermal expansion of
the tensile specimen appears sinusoidally, and is easily
AN distinguished from coating crack generated noise. See

x; Figure 18. The sensing element was attached directly to the

lower pullrod in order to pick up the transmission of the

cracking sound as directly as possible. See Figure 11, |
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The extensometer, pullrods, and grips were designed

kS

-
.
e

first and foremost to accommodate temperatures in excess of
1008°c without deformation, therefore MAR-M246 pullrods and
grfps were employed as well as an extensometer made entirely
of IN601. Secondly, the dimensions were calculated such
that the test specimens could be held in the center of the
oven, which has a 5 inch hot zone maintained by the three
evenly spaced heating elements through the temperature range
500°c-85¢0°C, and ample room for at least two insulation pads
at the top and bottom of the oven would be provided. All of
these dimensions were computed with the crossheads a full
seven inches above its bottom position even though
elongations of a maximum #.02 inch were expected. See
Figure 11.

The gage length of each coatedlspecimen was measured to
9.001 inch, the standard being 1.400 inch. The measured
portion was only the portion of consistent diametrical
dimension (Figure 4) as specified by ASTM standards and the
maximum runout on any one specimen was 0.0065 inch through
the entire gage length. 1In all testing cases cracking was
observed around the entire sample indicating good specimen
alignment and sufficient specimen trueness (no bends on gage
length).

The extensometer was attached to the specimen 1/16 inch

above and 1/16 inch below the square shoulders of the gage
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portion and not -on the gage length itself to prevent
extensometer induced cracking. It was assumed that the
elongation in areas of increasing thickness above and below
the gage length but inside the extensometer grips would be
insignificant compared to elongation on the gage length
itself. The grooves on the specimens were cut at a 60
degree angle so that the 120 degree circular wedge grips on
the extensometer would have a t&o surface grip as
illustrated in Figure 4.

As each specimen was clamped onto the extensometer a
Type "K" alumel-chromel wire thermocouple was affixed to
read the temperature at the center of the specimen so that
the actual specimen temperature could be checked on a
digitial readout of il°C to corroborate the temperatures
registered by the three calibrated furnace coils. One
thermocouple was used throughout the testing and it was
checked with ice bath and boiling water periodically to
ensure accuracy.

A dial gage accurate to +0.0001 inch registered specimen
elongation on the platform section of the extensometer
external to the furnace (see Figure 11). The dial gage was
maintained as the true indicator of specimen elongation
since the Instron chart movement registers only crosshead
movement, not necessarily equal to elongation, especially

once the specimen commences to deform plastically.
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The- strain referred to in all results was computed as

engineering strain to the nearest @¢.01% using the equation:

e(%) = r— X 190

where "AL" is the elongation read from the dial gage to the
nearest 0.0001 inch for the first occurrence of the coating
crack signature in each test, and "L" is the tensile
specimen gage lengh measured to 9.6061 inch prior to testing
and adjusted for any thermal expansion undergone prior to
straining the specimen. For example, the test on coating
No. 2 specimen No. 3 took place a 750°C. Cracks were noted
on the oscilloscope first at an elongation of 9.0885 inch on
the dial gage. The specimen's original gage length prior to
testing was measured at 1.403 inch and it expanded 0.001
inch (noted on the strain gage) while heating to the test
temperature. The strain at coating failure was thus

computed to be:

_ P.8P85 inch _ .

See Table III.

C. SPECIMEN TESTING
Using the definition of the transition temperature to be

that temperature at which @.6% strain can be imparted before
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coating failure, a transition temperature range was
"guessed" for each coating based upon data available for
similarly formed nickel-aluminide coatings without platinum.
Since platinum-aluminide coatings are regarded as more
brittle structures, and thus would have higher transition
temperatures in general, 56°C was added to the "guess," the
oven was clamped around the coated test specimen, and the
épecimen was heated to this adjusted temperature.

It was imperative during this heating and cooling stage
to ensure that the lower pin attaching the crosshead to the
lower pullrod was removed and that the crosshead was lowered
to allow for expansion of the specimen and pullrods during
heating so that a compressive load would not be imparted to
the specimen or to the extensometer. Once the high guess
temperature was reached, the lower pin was inserted and the
no-load setting on the Instron chart was set. All specimens
exhibited some thermal expansion due to this process which
ranged from 0.001 to #.004 inch, but the dial gage was
zeroed prior to loading so that all testing was done
isothermally--registering only that strain at temperature
imparted by the Instron machine crosshead motion. The
initial gage length was adjusted for thermal expansion as
noted earlier.

After the desired temperature was stable for 10-15

minutes with no load imparted, the crosshead was engaged and
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a load was applied to the specimen. A chart speed of 5

2P o'.l{n

LSl

& inches per minute and a crosshead speed of P.01 inches per
xﬂ{ minute were used giving a magnification factor of 568. The
sfrain rate was 0.007 per minute and this was maintained
throughout the testing in order to achieve consistent
;f results due to the dependence of the DBTT upon strain rate
%g [Ref. 35]. Once 0.8% strain was imparted, if no cracking
. was observed on the oscilloscope, it would be assumed that
the upswing of the DBTT curve had been located. The load
would then be removed from the specimen and the lower pin
removed. Then the furnace would be reduced in temperature
by 56°C and the test would be resumed as described. If
cracking resulted in this specimen and if it were in the
ductile region (above B.6% strain) the cracks would likely
be few and far apart. This same specimen could be used
L later at room temperature to establish the low end of the
brittle region, since cracking in this area is short and
et dense and easily distinguished from the cracking initated in
the ductile region. See Figure 3.

At this point the second of four specimens per coating
would be tested at a temperature 100°C lower, and the
remaining two specimens would be used between and above the
temperatures already located to fill in the high curvature
portion of the graph. Thus a maximum of five data points on
gﬁ the DBTT curve could be achieved with the four tensile

specimens bearing each coating.
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D. ACCURACY

Test results are a function of two measurements,
temperature and elongation, and both were recorded with
calibrated instruments. These instruments were assumed to
yield true readings within their indicated accuracies.
Because concurrent devices were not used to record strain or
temperature due to space considerations, a comparison of
readings or an error analysis were not possible.
Inaccuracies certainly exist, and also the data which
appears in Figures 12 and 13 would certainly have some
scatter if multiple specimens were used at each single
temperature with multiple sensors. However, comparisons of
successive data points revealed a'high level of data
consistency.

Results are a weak function of temperature as shown by
the temperature dependence and little or no difference in
ductility is expected with small variations of temperature.
The error in engineering strain, however, can be calculated
because a difference of +0.61 inch of elongation in a
typical case would yield an error in e of +@.01%. Error
bars were not included on the graphical presentation of the
results (Figufes 12 and 13), however, because this kind of

accuracy should not be indicated with so few specimens

tested to construct the plots.



two

III. RESULTS AND DISCUSSION

TEST OBSERVATIONS

As discussed in Chapter II, the initial testing done on

specimens with coating No.

1, one specimen with coating

No. 2, and two specimens with coating No. 5 resulted in

brittle substrate failures, and while a very distinct
signature was observed on the oscilloscope (see Figure 1l9a)

prior to specimen fracture, no coating cracks were evident

on the specimens. Post coating heat treatments discussed

in Chapter II were employed to restore the mechanical

properties (ductility) of the substrates on the remaining

coated tensile specimens, and valid data points were

achieved in all subsequent tests.

All test results are presented graphically in Fiqures 12

and 13, and the data points used to construct these graphs

are displayed in Table III. The platinum-aluminide coatings

formed with the LTHA process are shown in Figure 12 compared
to data presented by Goward for the nickel-aluminide coating

formed by the LTHA process. The platinum-aluminide coatings

formed with the HTLA process are shown in Figure 13 compared

to data presented by Goward for the nickel-aluminide coating

formed by the HTLA process. [Ref. 36]

Once several specimens were tested, it became very clear

what the signature of a coating crack looked like on the
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;Q; ’ oscilloscope (see Figure 1l0b). Whenever this sharply
defined characteristic was exhibited on the oscilloscope,
o there were cracks which could be observed on the specimen
gage length at 425x under an optical microscrope, and
- whenever this signature did not appear there were no cracks,
regardless of how much strain the specimen had undergone and
no matter what other patterns appeared on the oscilloscope.
This is considered reasonable proof that the oscilloscope
A signature shown in Figure 18b was coating cracking observed
during tensile straining of the specimens. Further
confirmation of the cracking signature was provided by
{E testing done above 808°C. The specimens deformed very
S quietly at these temperatures, they registered minimal noise
on the oscilloscope, and so the cracking signature was even
fﬁﬂ more distinguishable than at lower test temperatures where
other noise was present on the scope. For instance, the
test of coating No. 2 specimen No. 1 conducted at 860°C
showed practically a clear scope, even though it was
strained to 1.71%. Optical microscopy revealed no cracking
o of the specimen. Coating No. 3 specimen No. 1 on the other
g hand, which was also tested above 808°C, displayed the
:ﬁa distinctive signature shown in Figure 10b beginning at @.25%
"-3 strain and continuing until approximately 0.65% strain with
a clear scope showing beyond that point until the specimens

fﬁf fractured at 2.20% strain. Examination of this specimen
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N after the test revealed that the coating cracks on the gage
( length were clearly visible and characteristic of a brittle
ii coating failure (see Table III and Figure 3).
; Another lesson learned during this testing that was not
initially evident was that some plastic deformation had to
be imparted to each specimen after the coating cracked in
order to open the cracks enough so that they could be
visually verified at some magnification after testing. 1If a
specimen were strained and the coating cracked while the
3 specimen was still in the elastic region, and if the 1load
was removed from the specimen at that time, the crack would
- close again and not be visually confirmed. This implies a
state of compressive residual stress in the coating. It has
been speculated that this condition existed in some of the
- platinum-aluminide coatings where coating spallation of the
. outer surface layer has been reported (Ref. 37]. 1Indica-
- tions are that higher compressive stresses are related to
higher surface aluminum and platinum contents and possibly
. the presence of PtAl,.

For instance, coating No. 3 specimen No. 2, which was

ff tested at room temperature, displayed cracks on the scope at
\

o @.28% strain, and it was pulled to 0.30% strain before it

d was unloaded and examined, but no cracks could be seen at

425x magnification. It was strained again to 0.58% with

similar results, but cracks could still not be seen after
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the specimen was unloaded and examined. During a third test
‘-‘ ) conducted on this same specimen it was strained to 0.77%,
and clearly the specimen had permanently elongated by
approximately 4.484 inch (read on the dial gage after
unloading). This time the coating cracks were visible at

425x magnification under the optical microscope.

- B. CRACK MORPHOLOGY

The visual results of the coating cracks were exactly as
= expected and showed beyond a doubt that the cracks had
originated in the coatings. All of the photographs in
Figure 14 are of coating No. 1 specimen No. 2 which was
tested at 810°C (see Table III), and they clearly identify
this high activity minimally platinum diffused coating as
e brittle. The cracks are straight, sharp, and closely
spaced, whether viewed from the top or in cross section.
Even though the test temperature was high and the substrate
was ductile (strained to 3.80% without fracture), the
coating cracked early in the test (@.36% strain) in a very
brittle manner. The cracks are open and very clear in the
- photographs because of the plastic deformation imparted to
the specimen. ©Notice also that some of the cracks have
reinitiated and propagated into the substrate while others
T are still in the coating only--a clear indication that the
cracking was initiated in the coating and not in the

-] substrate.
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Figure 15 displays the ductile nature of the cracks

generated in coating No. 5 specimen No. 1. Notice the clear

difference between this, the ductile coating, and the
brittle coating in Figure 14. At a test temperature of

678°C (see Table III) the cracking is bifurcated and less
closely spaced than in the brittle case. This ductile
coating required a much higher strain (#.66%) to generate

cracks, and even from the side view, the cracks can be
seen to bifurcate--characteristic of a ductile type failure

mode.

C. THE EFFECT OF PLATINUM ON COATING DBTT

Using the curves generated in Figures 12 and 13 the
ductile to brittle transition temperatures for the five
coatings tested are presented in Table IV, The data is
self consistent and it allows some tentative observations to
be made concerning the influence of platinum on diffusion
aluminide coatings applied to nickel-base superalloy
substrates in regard to the DBTT. Both the inward and
outward type diffusion aluminide coatings were embrittled to
varying degrees with the addition of platinum, so the claim
that platinum—-aluminides are relatively brittle is well
founded.

However, all the outward

(HTLA) nickel coatings
with platinum were more ductile than the inward (LTHA)
aluminum coating even without platinum which is somewhat

surprising, since the platinum containing coatings all
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exhibit a significant amount of the PtAl, phase which is )
regarded as brittle. This indicates that aluminum content
may be more critical than previously believed. The data

2lso attests to the importance of the processes used to

form the coatings in determining their mechanical

properties, but since both aluminum and piatinum levels
change with heat treatment and processing, it is difficult
at this point to sort out the specific effects of one or the
other. More detailed analysis of the coating compositions

is required.

Note that all the outward nickel coatings with platinum
had DBTT's well below the estimated range for Ptal,
projected with Lowrie's formula (878°C - 1878°C), while the
inward aluminum coatings with platinum may very well have
DBTT's in the projected range, as this testing only
ascertained that they were greater than 818°C. The point is
stressed that Lowrie's formula should be used only as a
guideline when discussing coating ductility. Actual
coating-substrate systems must be tested to ascertain their
specific mechanical properties because of the metastable
nature of the systems and the strong influence of heat
treatments and aluminizing processes on the structure and
properties of the platinum-aluminides. 1Indications are
clear that an increased aluminum content as a part of PtAl,

(coating Nos. 1 and 3) can cause a brittle structure while
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the PtAl, as a part of a second phase in a presumably more
ductile matrix does not tend to reduce coating ductility
(coating No. 5). The presence of platinum in solution in
the 8 (NiAl) coating matrix appears to reduce ductility
somewhat in all cases (coating Nos. 1-5).

While additional testing is wérranted to confirm these
results, it is felt that a viable and economical method for
determining the ductile to brittle transition temperature of
turbine blade coatings is presented here. Even though

temperatures could not be reached to ascertain the DBTT's of

the high activity inward aluminum coatings with platinum, it
was confirmed that they were above that of the conventional

inward aluminum coating without platinum.
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IV. CONCLUSIONS AND RECOMMENDATIONS

Based on the results of tensile tests conducted on the
five platinum-aluminide coating types on IN738, the
following conclusions can be drawn:

1) A valid method for determining the DBTT of coating-
substrate systems has been established using U.S.
Naval Postgraduate School equipment.

2). Because the pre-aluminizing heat treatment and the
aluminizing treatment greatly effect the structure
and composition of platinum-aluminide coatings, each
of the structures display characteristically
individual ductility properties.

3) Although further tests should be conducted, the low
activity high platinum diffusion coating on IN738 is
the most ductile platinum-aluminide coating tested in
this study.

4) A significant level of residual compressive stress
was observed in all platinum-aluminide coatings
studied.

Recommendations for further study are:

1) A furnace which will allow tensile testing up to
1100°C should be obtained so that the DBTT's of the
high activity inward coatings with platinum on IN738
may be ascertained as well as the high end of the
other DBTT curves.

2) More tests should be conducted using the substrate
and coatings employed in this thesis so that some
data scatter can be obtained and used to further
define the conclusions of this study.

3) This testing method should be used to test more

substrate-coating combinations to further define the
properties of the platinum-aluminides.
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Microprobe analysis of the coating structures should
be used in further testing to determine the exact
content and effect of platinum and aluminum in each
phase of the coatings.

The implication of coating residual stress in all the
platinum-aluminides tested warrants further study in
the context of its effect on coating processing,
handling, and thermal fatigue testing.
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TABLE I
S
X%y IN738 Composition (Weight Percent)
- N1 Cr Co Mo W Ti Al Nb Ta c
- 60.42 16.0 8.5 1.75 2.6 3.4 3.4 0.9 1.75 0.17
B zr Fe Mn si
O .91 @.14 0.5 max 0.2 max 0.3 max
o TABLE II
i: Platinum-Aluminide Coatings Formed on IN“38 Substrates
f Aluminizing and
Coating Platinum Diffusion Post Heat Treatment
T No. 1 870°C / 1/2 hour LTHA*
) No. 2 98¢°C / 2 hours HTLA + 1880°C/4 hrs
ol No. 3 1852°c / 1 hr LTHA*
No. 4 1852°C / 1 hr HTLA + 1089°C/4 hrs
No. 5 1088°C / 4 hrs HTLA + 1088°C/4 hrs
i

* LTHA conducted in most industrial applications includes
a post heat treatment of 1888°C/4 nrs..
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Figure 1.

Figure 2. Outward Nickel-Aluminide Coating (1g8@@x)
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Figure 5., Coating No. 1 - Low Pt Diffusion, Inward al,
Etched (425x%)

Figure 6. Coating No. 2 ~ Medium Pt Diffusion, Outward Ni,
Etched (425x)
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Figure 7. Coating No. 3 - Medium Pt Diffusion,
Etched (425x)

Figure 8. Coating No. 4 - Medium Pt Diffusion,
Etched (425%)
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Figure 9. Coacting No. 5 - High Pt Diffusion, Outward Ni,
Etched (425%) |
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a)

STRAINING EMBRITTLED SUBSTRATE

b)

EXHIBITS COATING CRACKING

c)

THERMAL EXPANSION AND INSTRON MACHINE NOISE

Figure 10. Typical Oscilloscope Signatures During Tensile
Testing
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Figure 14. Brittle Failure of Coating No. 1
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Figure 15. Ductile Failure of Coating No. 5
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