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CHAPTER 1

INTRODUCTION

The primary objective of this effort has been the investigation of dominant and

higher-order model characteristics of microstrip lines and fin lines that find application in

millimeter-wave integrated circuits. The investigation of higher-order modes is important

for the analysis of discontinuity problems in planar transmission lines: these problems have

been the focus of attention in this project during the entire grant period. The study of the

discontinuity problems is of interest from the point of view of designing practical

components, e.g.. filters, impedance matching networks, and transitions between rectangular

waveguides and planar transmission lines. The higher-order modes have been analyzed

using the spectral domain technique introduced by Itoh and Mittra [1. 2]. The propagation

constant. characteristic impedance and field configuration are obtained for the dominant and

higher-order modes in planar lines. The model characteristics are then employed to analyze

some typical discontinuities in planar lines using the mode-matching procedure [3. 41.

which has been extensively employed in the past for the solution of similar problems in

other types of waveguides. Ilowever. the situation with regard to the application of the

mode-matching procedure is found to be quite different for the case of planar waveguides

when compared to that of rectangular guides because accurate generation of higher-order

model fields becomes a formidable problem in planar guides. whereas this task is quite

straightforward for rectangular guides. Thus. it becomes important to investigate

effectiveness of the mode-matching procedure when only a relatively small number of

" modes are available and the higher-order modes are known only approximately.

-- _ In an attempt to enhance the accuracy of the higher-order mode computation. the

singular integral equation technique is used. This technique was originally employed by

Mittra and Itoh [5] for the analysis of planar transmission lines. This technique is further

developed in this work and the results obtained via the application of the singular integral

% %%



2

equation technique are compared with those derived from the spectral domain approach.

Another interesting problem in planar transmission lines, viz.. the coupled multiconductor

lines is analyzed in this work using the spectral domain approach.

To the best of our knowledge a full-wave coupled line analysis of n planar

transmission lines has not appeared elsewhere in the literature.

....................

......................-

o... ~ .. . . .

. . . . . . . . . . . .,. - . . . - ...
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CHAPTER 2

UNIFORIM NMICROSTRIP ANALYSIS

2.1 Introduction

The analysis of various printed circuits has been of interest for a number of years.

We find it of interest here. because the first step of the mode matching procedure is to

generate the dominant and higher-order modes in a uniform microstrip. A cross section of a

shielded microstrip is shown in Figure 2.1. This and related structures have been analyzed

by a number of workers using a variety of techniques. These techniques include various

quasi-static methods [6-91. nonuniform discretization of integral equations [10]. a modified

Weiner-Hopf technique [11]. a singular integral equation 'technique [5]. and the spectral

Galerkin technique [1.2.12-171. The method that is simplest to implement while giving

excellent results is the spectral Galerkin technique. This is the method considered in this

chapter.

In order to allow mode matching work to a high degree of accuracy. it is necessary

to calculate as many evanescent modes as possible. The feasibility of generating a large

number of higher-order modes imposes the largest constraint upon the accuracy of the

mode matching solutions. To date. there is little information available on evanescent modes

in a shielded microstrip. although the propagating modes have been well studied.

In this chapter, we present data on the dominant and first few evanescent modes of

a microstrip. showing dispersion curves, characteristic impedance calculations, and field

distrbutions. Let us proceed now with the analysis of a uniform microstrip.

2.2 The Spectral Domain Immitance Approach

In order to find information about waveguide modes, the quantity of most

immediate interest is the propagation constant. 0. To find 0. a matrix equation must be

found of the form

o-



bb.

4

Ay

,, 2b .

Region I I'.

Region 2 Er t

ligure 2.1. Shielded microstrip.

ix
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Z h (2.1)i i,(11 .L 1i.(

where J and E are the Fourier transforms of the current and electric field in the plane z-O.

and the Z's form the components of a dyadic Green's function. In order to find this Green's

function, we use the spectral domain immitance approach. This approach is a method of

generating the dyadic Green's function in a straightforward manner, that will be useful for

many different kinds of printed circuits, including microstrip. fin line. and coplanar

waveguides. The work in this section follows Itoh [131.

We begin by setting up a scalar Helmholz equation in each of the regions 1 and 2. as

shown in Figure 1. Assuming an e ( - z dependence. we obtain

Oi (x .y)
(V 2 +Ek o2 ) = 0 (2.2a)

.'°.

where

'E e Region 1 (2.2b)
Region 2

As the equations now stand. the TE. and TMY fields are coupled. In order to decouple these

equations we must work in the Fourier transform domain. Thus. for example.

0(n.y)= f O(x.y)e 'dx (2.3a)

(x .y ) (n y (2.3b)

=(n -%)v (2.3c)
b

The above choice of ck, is suitable for modes that are even in J1, such as the dominant

mode. This choice enforces the boundary conditions at x = ±b. For modes that are odd in

....

* .. ** . . . . . . ...



J.we choose a,,= n rib. In the transform domain. the Helmholtz equations become

2 + 2 +e, k02) (n -' (2.4)

or

S(n)
. =0 (2.5)

ay 2 ki(n)

where

= o,2 + 02- -, ko2  (2.6)

Thus. in the transform domain we can reduce the problem to two tramsmission line

equations.

Let us now introduce the transformations

:= NZ -N v(2.7)

where

N - __ - sin (2.8a).. ar2 + 02

N, + Coso (2.8b)

This transformation is shown is Figure 2.2. With this transformation. we see that all scalar

potentials and fields are of the form

((n v e = f (x.y)e + 1 (2.9)

The transformed equations are dependent only upon v; hence - 0 = . This decouples



v7

AA

A
F

-. Figure 2.2. ('Nordinate tran~l, rnLiun in tue spe-ctraI domain.

.............................................
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Equation 2.5 into TEy components (Ji,. i.. and ii,) and TMy components (6y E4v. and

H'a ). We now show how this separation takes place. and that the TE, components are due

to Jl . and the TMy components are due to IF.

Let us derive the expressions for the field components. To begin, we express the

vector potentials as

Ti fi ) i (X -y) (2.10Oa)

Ai = 27 , (xy )(2.10b)

Adapting some results from Harrington [181 on the separation of TE and TM fields, and

using the fact that = ', and 0 O. we obtain the TE components

SE, -0 (2.11 a)

(2.11b)

'_ v, ' , (2.11c)
j, W1,8

H, =.( + k,2) (2.1 ld)

-. =0 (2.1 le)

and the TM components

-Y, ^0 
(2.12a)

Sy + k,2) (2.12b)

= 0 (2.12c)

Ip

* . . .-' " , " "'. . . °• ", "• - ".% •. .. •. . % -. . % ". '."• o •. •a . "."• .". , "°". % %.". . ". %°%" .' '. -." . .g " "• .4.-
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H~=H 0 (2.12d)

=- (2.12e)

From these equations, we can set up equivalent transmission lines for the TE and TMI cases.

The characteristic impedance of each line is

Z TE, = - = (2.13a)

ZrVI= (2.13b)

The propagation constant for each line is and the sources for the lines are J,. for the TE

line and i. for the TM line. These equivalent lines are shown is Figure 2.3. From the

input impedance of the shorted line sections. we obtain the input impedance at z =0 as

+ ______(2.14a)

ZrMWtanh y1I(h -tY ZTA 2 tanh y2t

1h + I(2.14b)
ZrE~tanh Y,(K-t ZrE2 tanh V21t

* Given this input impedance. we may now write

E(n y=0) =VJ(n y =0) (2.15a)

E(n y =0)Z J~(n y=0) (2.15b)

Furthermore, we can transform these equations back into x and z coordinates using

* . Equations 2.7 and 2.8 to obtain

- - .. (2.16)

P.."
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TE TM

ZTEI ZTMI

U V

Z TE 2  ZTM2

Y2 ~ y Y-t Y

Figure 2.3. Equivalent transmission lines for the TE and TMI components of microstrip
fields in the transform domain.

....... ~.. ... .... ... .... ...
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where

ziz N. 2ze + N,2iZ (2.17a)

Z,, =Z = N, N, -i' +i h ) (2.17b)

i = Nx2Zi + NZiZ (2.1 7c)

This is the equation that must be solved to find 0. Once is found. all other quantities of

interest, such as field configurations and characteristic impedance. may be found.

It is helpful at this point to briefly discuss the applicability of the spectral domain

immitance approach to structures related to the microstrip. Since the equations are

separable in the transform domain, we see that if we have multiple layers of dielectric, this

will be equivalent to having extra sections in the transmission line model. Furthermore.

multiple strips can be represented as extra current sources, and slots can be represented by

voltage sources. Therefore, we can use this method of generating the dyadic Green's

function for a large class of planar waveguide structures. These include fin line. coplanar

waveguide. and slot line. The generality in this procedure for generating the Green function

maintains the generality of the mode matching procedure,

2.3 The Spectral Galerkin Technique

Now that we have found Equation 2.16, we must solve it for with the spectral

Galerkin technique. The work in this section follows Schmidt and Itob [15].

We proceed by expanding the currents on the strip as a sum of basis functions

N

I.(x) = (x) (2.18a)
._ i=1

... ., (X ) d , 71 (x ) (2.18b)

These basis functions are now Fourier transformed according to Equation 2.3 and

-U
U.

,-

~~~~~~~~~.. .... ri ...............- i -i -- --
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substituted into Equation 2.16. By taking the inner product of the resulting equation with

S(x) and 71i (x ). we can eliminate the E-fields in this equation. This is true because f, (x)

and i,(x ) are non-zero only where E, and E, are constrained to be zero, since they are

tangential to the strip. Since this is true in the space domain. Parseval's theorem [18]

guarantees that it will also be true in the spectral domain. Hence, we obtain the equations

Al1 N
Kfc, + Kgxd, =0 p =1.. (2.19a)

,%z ,+ Kgj ,=0 q1=I...N (2.19b)

where

= z 4(n)Z, (n0) ,(n) (2.20a)

K,1z 74~i~(n)Zxz(n.03) ,(n) (2.20c)

Kq'7 = 71 (nl Z~ (nl 1 l, (nl (2.20d)

A solution to this equation exists if and only if the determinant of the coefficient matrix is

equal to zero. Thus.

Kz Kz_

where, for example. K is the matrix of coefficients given in Equation 2.20a. We may now

find the zeros of f(13) with a zero-finding algorithm such as Newton's method, thus

completing the solution for .
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2.4 Basis Functions

One of the most important aspects of the spectral Galerkin procedure involves the

choice of basis functions. A good set of basis functions can greatly increase the efficiency of

the solution. as well as its accuracy.

The basis functions should satisfy three conditions. First. -hey must be

analytically Fourier transformable, since they are used in the transform domain in

Equation 2.16. Second. they should have a shape that is similar to that for the current we

expect to find on the strip. Having this property will reduce the size of the matrix

equation. Finally. they should have the properties that J, (x) hat a 1/"x singularity at

the strip edges and that 1, (x) is zero at the strip edges. This is the result expected for the

current parallel and perpendicular to a knife edge. By not satisfying this last condition,

more basis functions will be required to represent the currents, resulting again in an

increased matrix size.

One appropriate choice of basis functions for modes that are even in J, (x) is

suggested in [15] as

c Cosf(i-l) '(x/s + 1) (2.22a)
1 - (xis )2

sin [ir (x Is + 1)] (2.22b)

-,/I - (x Is )2

These functions satisfy all the above criteria. In particular. note that , (x) has a /x

singularity at x =- s and that )i (x=±s) 0. which can be shown by I'Hopital's rule.

The first few functions are shown in Figures 2.4 and 2.5. The Fourier transforms of these

functions are

(-)'-sir [J(Ct s + (i-l)r) +J,(a,s -(i-1)7r)] (2.23a)
2

.. "i (n) -) [J, (0" s + V o) - J,, (0, S -W o)] (2.23b)
2)

'... ..........................................
9, '**.** * ** * **
•

* * * %* . *



14

3

2%

E"T

-2 i I

X/S
\ ,7

11.0

Figure 2.4. Basis functions for 1. (x

....................-...

X/'
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where j = v and 1o (x) is the zeroth order Bessel function. A formula that is useful in

deriving the above transforms comes from the Bateman Manuscripts [191. Hence.

T• (x1)e dx = (-1) i n rJ (y) (2.24)

where T, (x) is the nth order Chebychev polynomial in the interval I x I < I and zero

elsewhere, and T. (x) = 1.

2.5 Characteristic Impedance

The characteristic impedance of a microstrip is a useful parameter to calculate for

several reasons. It serves not only as a useful design tool. but also as a check on the

accuracy of the dominant mode propagation constant. In addition, the inner product we use

in the mode matching procedure uses an inner product that is very similar to characteristic

impedance. Hence, it will be useful to compare our calculated values of characteristic

impedance to previous calculations [11.12].

At this point, mention should be made of the ambiguity inherent in this

characteristic impedance calculation. The characteristic impedance of a transmission line is

usually thought to be a characteristic of TEM transmission lines. The dominant mode of

the microstrip is only quasi-TEM. however, so there are several definitions of characteristic

impedance in this case that make sense and yield similar, but unequal results. A number of

authors have discussed the relative merits of the various definitions [20-23]. These

definitions include

Z= " (2.25)

1-
S"7" (2.26)

and

.

c.'

. ,.t .. .a" 'm."b , d i .... ...... ~ i i . ....
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zo W. (2.27)
_2P

where

h b

P =A Re f f E x i dx dy (2.28)

I f 1(x) dx (2.29)
-$

0

V - f E, (x =0.y) dy (2.30)

These are the so-called power-current. voltage-current, and power-voltage definitions. It

turns out that the definition most widely accepted is the power-current definition, and that

is what we calculate here. For comparison, we also calculate the characteristic impedance

with the voltage-current definition. Thus. we need to calculate P. I. and V.

First, let us calculate I and V. Proceeding from Equations 2.29 and 2.30. it is

straightforward to show that

N
I = c, ,(n =0) (2.31)

i=1

fV - f (n.y )dy (2.32)

Next. we proceed to the power calculation. Beginning with Equation 2.28. and

subsequently using Parseval's theorem [24]. we obtain

P (n) (2.33)

b4
where

f (n) f (4, W -i, :) dy (2.34)

--

,.... ° .o.. .. ,..' . •° °°. o .......... °.....°° °b.. °%.. °°......°.. °. °...... °°""°.
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The task now becomes one of finding expressions for the field components in the transform

domain. In order to find these, we first need to solve the transmission line problem shown

previously in Figure 2.3. The solution is straightforward. and can be adapted from a

number of standard textbooks, for example. Mayes [251. This results in the following set

of equations

H1 (n y A (n) XC(y) (2.35a)

Em (n .y) = -ArE(n ) XoS(y) (2.35b)

H (n .y) = A1r' (n ) XS(y) (2.35c)

E,, (n .y ) - A ,rT(n ) XC(y) (2.35d)

where

cosh yl(Y - (h -t))

sinh V1j(h -t) =1Xc = (2. 36a)
= cosh ) 2(y +t) 2 =32

sinh y2t

sinh "yl(y - (h - £

sinh, 1 (h -t) = I
Xs= (2.36b)

sinh y2(y + t) =2

sinh 72t

and

A4"E -Z sinh y((h -t
2V Z - sinhy.-t 

(2.3 7 a)

A . -Z sinh -y1(h - )
- = Z ___.___s __nh _ _ (2.37b)

4 ~~ r%1Z~sinh yy

.. ....... -. - . ...- . -.- ... -.. -.-.... . - .. . . . -,.-. - .o °°-%'°,•... -. °% . = .
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AV = -h(n) 23c

coth - 1(h - t ) - - coth y -t

J1 , (n)= [ A r' (2.37d)

cothY 1(h -t)- AFT cothyt(

1 Af

The signs of the current terms in the above equations are determined by the boundary

condition [26]

X x(TI I- T 2) =7, (2.38)

where H I and H 2 are the H-fields just above and below the strip. In the spectral domain

this condition is

."-H /- , -1 , =., (2.39a)

H 1, H 2 , =-J, (2.39b)

This completes the derivation of the fields in the decoupled u.v coordinates.

In order to express the fields in x.y.z coordinates, we need to invoke the coordinate

transformation given previously in Equation 2.7 and then combine the TE and TM parts of

the fields. This results in the following set of equations:

E,(n: y N2 AfEZT + N, A!"' TM X (2.40a)

E,, (n .y) -=f Ar XF (2.40b)

E., (n .y ) = -N, AZTEZrT + N, A!"Z1TMj X8 (2.40c)

Jif n .y) = N. A,Tr -N. Af'!J' Xf (2 .40d)

fe° -' I- P
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- A z,rIT , X (2.40e)

H[,(n.y ) = N, AITE + N A,r Xf (2.40f)

The y dependence is contained in X c and X s . These fields can now be substituted into

Equation 2.7 to calculate f(n). In order to carry out the integration of f(n). we need only

integrate over the products of hyperbolic cosines and sines, which can be carried out

analytically. This concludes the power calculations and. hence, the characteristic

impedance calculation.

2.6 Fin Line Calculations

Although it is very easy to verify the dominant mode microstrip calculations. very

little data exist for the evanescent modes. We would, however, like to have a comparison

for our calculated evanescent modes. It turns out that fin line evanescent modes have been

calculated. In order to verify our evanescent modes, therefore, the best we can do is to

alter our program to calculate fin line evanescent modes, and compare these to those in the

literature [17]. A diagram of fin line is shown in Figure 2.6.

In order to adapt the spectral domain immitance approach to the fin line. we need to

,e a different matrix equation. This is of the form

Y 7 Y = E, j (2.41)

where E, and E. in the fin line are analogous to J, and J, in the microstrip. respectively.

In order to find the admittances. we must set up transmission lines analogous to those in

Figure 2.3. These are shown in Figure 2.7. From these transmission lines we obtain the

dyadic admittance matrix

SN,2 Y' + N.2 Y Y (2.42a)

%%

"l o . . . " o . q 1. . -. . . . . . . . . . . . . . . . .
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yzh-o-t

TE TM

TE TM

E (y =0) ' jyiO - ECY=O)
TE TMz 2  z2

y=-t Y

TEZ1M

y:--

F~igure 2-7. Equivalent transmission lines I'r the IT and 'B! components of fin-line fields
in the transform domain.
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Y2 X =., = N, N, 1 -17" +1 7J (2.42b)

i,, = N 2 j" + N 2 Y (2.42c)

where

-, 1
= Z Te' tanh y 1 (h -a -t)

1 + Z tanh yla tanh ,t
+ =Z Zj ' tanh -ya + Z rM tanh ( at

ZrE tanh -- )

S1 Zr +Z7 tanh2 1 ya tanh ,2t
+- Z rE tanh y , + Z rE tanh (2.43b)

The matrix equation is now solved in a manner very similar to the microstrip matrix

equation. We expand E, and E. in the same basis functions used previously for 1, and

J, .respectively. These basis functions were given in Equation 2.22.

Finally. we must reconsider the definition of the Fourier transform before we solve

the fin line problem. In the transform used previously in Equation 2.3. we used

", = (n - 1/) r/rb. This value of a,. however, is no longer valid for the even tin E,)

modes of the fin line we are calculating, which include the dominant mode. The correct

choice is now , = n 7r/b. This choice enforces the boundary conditions of the zero

tangential E -field and normal H -field at 1x1 = b. If we were interested in the odd modes of

the fin line, the first definition of a, . = (n - Vz)w/b would be correct.

S. In general. we pick i,, f n 7r/b when (x) is even and k(x) is odd. where x) and

-t(x) were defined previously in Equation 2.2. This occurs for even (in J,) microstrip

modes and in odd (in E,.) fin line modes. Furthermore, we pick a, = (n - V)r/b when

W(x) is odd in Vo(x) is even. This occurs in odd (in .4) microstrip modes and in even (in

E, ) fin line modes.

% %""-., . .. .. • :.... • v ..,.'..........."...'..':....°...,..........,.................,..... ..... y:..... ....................... :

• ,.. ._...F " "" "... ".......... "........ "..... "...."
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2.7 Field Configurations

It is of great interest to plot the fields due to the dominant and higher-order modes

over the cross section of the waveguide. This provides verification that the boundary

conditions have been satisfied and offers physical insight into the structure of the modes.

The field configurations may be obtained from the transformed fields obtained in the

characteristic impedance calculation, by performing the inverse Fourier transform of

Equations 2.35. Results are presented in the next section.

2.8 Results for Uniform Microstrip and Fin Line

In this section we present numerical results for the techniques discussed previously

in this chapter. The first item we consider is the convergence of the dominant mode

propagation constant with respect to the number of basis functions and number of spectral

terms used. In Table 2.1 we show these calculations and compare our results to those of

Mittra and Itoh [5]. From this table we can make a number of observations. First, our

values of 03 are in very good agreement with those of Mittra and Itoh. Second. our values

of 0 have converged sufficiently with two basis functions and 50 spectral terms. Note that

"2 basis functions indicates two functions for J, and two for J, . Note furthermore that

50 spectral terms indicates that all series were summed from n - -49 to 50.

Next, we present a sample dispersion curve for a shielded microstrip. This is shown

in Figure 2.8. Note that the dominant mode is not cut off. while the first higher-order mode

is cut off below about 20 GHz.

Next, we present data on the characteristic impedance of a shielded microstrip. This

is shown in Figure 2.9. The impedance has been calculated using both the V-I and the V-I

definitions, as discussed in Section 2.5. and the results are compared to those of El-Sherbiny

[11]. Note that in EI-Sherbiny's paper. the impedance was calculated for a shielded

microstrip without side walls. In order to account for this. we chose in our calculations to

move the side walls far enough from the strip to eliminate their effect. Our results for the

.. " . . ... . .
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Table 2.1 Convergence of j with respect to the number of basis functions and number of
spectral terms. For these calculations. h - 2 mm. b - 1.75 mm. t - s - 0.5 mrm.
and e, - 9.0. These results are compared to those of Mittra and Itoh [5].

Number of O(rad/m) at

Basis Spectral
Functions Terms 10 GHz 20 GHz 30 GHz

1 25 530.64 1110.0 1717.7
1 50 530.50 1109.6 1717.1
2 50 530.27 1108.9 1715.6
2 100 530.17 1108.7 1715.1
3 250 530.11 1108.5 1714.9

Mittra & Itoh [5] 531 1115 1740

V-I definition of a microstrip agree very well with those of El-Sherbiny. Although he does

not in his paper specifically identify which definition of characteristic impedance he is

using. we may very well guess that it is the V-I definition.

Next, we would like to find modes in a fin line. This is done, as explained earlier, as

a check on the microstrip mode calculations. Results for the first three higher-order modes

are shown in Figure 2.10. and are compared to those of Helard et al. [17]. From this figure.

it is readily apparent that there is excellent agreement between the fin line modes. This

leads us to have a high degree of confidence in our microstrip evanescent modes.

Finally. we present field plots for the first five modes of a microstrip. Since a given

field component is either purely real or purely imaginary, we have plotted the part of the

field that is nonzero. In Figures 2.10-2.13, we have plotted the six components of the

dominant mode of a shielded microstrip. Note that these plots satisfy the boundary

conditions that E-fields tangential to a conductor and H-fields normal to a conductor are

zero. Note also the correct singularity behavior at the edges of the strip. In Figures 2.14-

2.17. we have plotted E, (x .y) and EY (x ,y) for the next four higher-order modes of the

same configuration. These are evanescent modes for the dimensions and frequency given.

Again. we note that the correct boundary conditions and singularities are observed.

° •.

.......
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Figure 2.11. Plots of E, (x .y)and E, (x .v for the dominant mode of a microstrip. For
this plot, h-=0.4445 mm. b-=0.381 mm. t -0.127 mm. s -0.0635 mm.

C,=9.6 mm. f req - 20 Glz. and ~3=1037.01 rad/ m.

- .
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2.9 Conclusion

In this section we have demonstrated the capability of calculating microstrip

propagating and evanescent modes. This extends the work of previous authors, as very few

results for evanescent modes were previously available. In addition, we have generated

data on characteristic impedance and fin-line modes, all of which confirm the accuracy of

our calculations. Finally. field configurations of microstrip modes have been generated. and

these have been shown to satisfy the necessary boundary conditions.

All of the above suggest a basic agreement of the mode calculations with the

expected results. The next step is to use these results in a mode matching procedure for

calculating discontinuities.

Let us now proceed to the discontinuity calculatiorn.

..
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CHAPTER 3

DISCONTINUITY CALCULATIONS

3.1 Introduction

The calculation of discontinuities associated with printed circuits has been of

interest for some time. In particular. abrupt discontinuities in the widths of the strips in

the microstrip and in the slots in the fin line seem to offer the best hope for solution, and

have been studied by a number of authors.

The earliest attempts at solving one of these types of discontinuties occurred in the

realm of microstrip discontinuities. The methods used involved a quasistatic calculation of

a step discontinuity of strip width (27-30]. Although these methods in general yielded

good results, it must be assumed that at sufficiently high frequencies the quasistatic

approximations will break down.

The next generation of solutions involved approximating the microstrip as a

rectangular waveguide with perfect electric conductors on the top and bottom walls and

perfect magnetic conductors on the side walls [31-34]. Although this method yielded a

frequency-dependent solution, it again is expected to break down at higher frequencies due

to the approximations of the model. Furthermore, there are many printed circuit

discontinuities. such as those in the fin line and strip line, for which no waveguide model is

available.

Another attempt at solving this type of problem was made by Lampe [35]. who

presented a three-region analysis of strip line discontinuities. Recall that the strip line and

- fin line are analogous to the microstrip because of the generality of the spectral domain

immitance approach. as discussed in Section 2.2. In his analysis. Lampe begins by breaking

up a discontinuity into three regions. taking the boundaries of the middle region far enough

away from the discontinuity on either side so that most of the evanescent modes have

decayed enough to become insignificant. Next. he finds the dominant and first few higher-

2.o- °
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order modes in the first and third regions. Finally, he formulates an integral equation that

relates the magnitude of the mode coefficients in the first and third regions to the unknown

current on the strip in the second region. The solution to this integral equation yields the

desired reflection and transmission coefficients. This method has limitations also, because it

is formulated for an isotropic medium. The strip is assumed to be printed on a thin

dielectric substrate; so thin that it is felt to have little effect. Thus. the entire problem is

formulated in a homogeneous region whose dielectric constant is the volume average'

dielectric constant. This turns out to be a small perturbation from the free-space dielectric

constant of one. This method is appropriate for low frequencies in the strip line, but it

seems likely to break down for higher frequencies. In addition, it is not appropriate for a

microstrip configuration. in which the dielectric material plays an important role. Finally.

this method can not easily be modified to account for the dielectric, since the Green's

function in the second region would then become too complicated.

The most recent attempts at solving this type of problem have occurred in the area

of fin line discontinuities. The methods used in these cases all involved finding a number of

modes for each guide by using a spectral Galerkin method. These modes were then used in

either a mode matching procedure [17.36,37] o- in an iteration procedure [38] to equate the

fields tangent to the plane of the discontinuity.

The results generated in these mode matching papers were not conclusive, but they

did suggest that further study would be in order, and that the method might be applicable

to a shielded microstrip as well as to the fin line. This will be the topic of study for this

chapter.

3.2 Mode Matching

The structure to be analyzed is shown in Figure 3.1a. It involves an abrupt

discontinuity in the strip width of the center conductor of shielded microstrip. whose cross

section is shown in Figure 2.1.

..............................................
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We begin the analysis by generating the propagation constants and field

configurations for the dominant and first few higher-order modes of each of the two

waveguides. This was discussed in Chapter 2. Next. we express the fields in waveguide A

as a sum of the waveguide modes

"0(x .y z) = . ,a (x.y ) e z (3.1a)
".1

Ra (x .y .z) = " a1A 0 (x .y ) e-"" (3.1b)I i=1

where the a, are mode coefficients. -y., are the complex propagation constants of the ith

mode, and 4',, and R,, are the vector mode functions of the ith mode, where

eo, (x .y) = e,,. (x .y )V + e,,, (x .y (3.2a)

F, (x y (x .y )i + h,,,, (x .y (3.2b)

Similar expressions are formulated for waveguide B by replacing "a" with *b" in the above

equations. If we assume the discontinuiLy occurs at z - 0. we may equate the field

components tangential to the interface at z - 0 as

(I1 +p)r, n(x .y ) + E a, 91, (x .y )=tb, t"b (x .y) (3.3a)

=2 11

(l-P). i( .y a R. , (X .Y= b, ,, (X .Y) (3.3b)
-' =2 4 =1

This is the equation that is to be solved for the mode coefficients a, and b, and for the

reflection coefficient p.

To solve this equation. we take the inner products of Equation 3.3a with F., (x .y).

and the inner product of Equation 3.3b with ',, (x .y). The inner product is defined as

:,, f f ,,(x.y)xfib,(x.y) dx dy (3.4)
S

It is calculated most simply in the spectral domain, in a manner analogous to the power

• o . o . .. .° . . .

,, -"L-- . .."- ..-L. ' 
,
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calculation described in Section 2.5. Thus. the integration over x becomes a sum over

spectral terms. and the integration over y is analytic in the spectral domain. After taking

these inner products. we find

L L
-P l 1., E a.. + E b, =a lam m .. L (3.5a)

i =2 iml

L L
P Ibma+ E a, 'b,.j + Z bi bmbi bma I m1.L (3.5b)

=:2 i :

This equation can also be written in the form

Ax = b (3.6)

where A is a 2L x 2L matrix of inner products. x is the 2L X I vector containing the

unknown mode coefficients. and b is a known 2L X I matrix of inner products. This can be

solved by a standard linear equation solution routine.

The solution to this matrix equation contains within it the reflection coefficient, p,

and the magnitude of the transmitted wave. b 1. From p. we may calculate an equivalent

circuit of the form shown in Figure 3.2. If we let

p= p, + j p, (3.7)

where p, and pi are both real. then

-( ZN = - (3.8a)Z 1 -21 -pi2

-- I 1 - 2p

P + 1 12 
(3.8b)

These parameters are useful because they can be checked with other, more approximate

methods. Therefore. we expect ZN Z,, /Za where Zob and Z, are the characteristic

impedances of the second and first waveguides. as calculated in Section 2.5. Furthermore.

we may compare our values of Y.v to those generated by quasistatic analysis [29]. We

%. "
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should expect only approximate agreement. since we are now using a frequency dependent

method to generate the solution.

A second check we can make on our final answer is to verify that all real power is

accounted for. This is checked by showing that

IS,,i 2 + IS 2 1 12 -- (3.9)

While this condition is not sufficient to guarantee a good solution, it is necessary. and

should be verified.

This concludes the setup of the mode matching procedure. Before we present

calculations, there are a number of related issues that need to be dealt with. These are

discussed in the following three sections.

3.3 Orthogonality of Inner Products

Upon examination of Equation 3.5 we observe a number of inner products of the

form 'aic) where i ; j. We expect the standard orthogonality relationship to hold for the

- normalized modes of uniform waveguides with perfectly conducting side walls [39]

Ia., = f(3.10)

Thus. we are left with the problem of deciding whether or not to retain in the matrix

equation the inner products that are theoretically equal to zero. It must be kept in mind

that our modes have been calculated only to a finite accuracy. dictated by the numerical

accuracy of our methods. If the accuracy in the mode functions is good. then retaining the

cross terms will not matter. If, on the other hand. there is a small error in the mode

functions, then it would seem preferable to retain the cross terms rather than discard what

may be useful numerical information. This is the approach adopted for these calculations.

Oo .
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3.4 Condition Number of the Matrix

In formulating the mode matching solution, we obtain a matrix equation of the

form Ax - b. A useful parameter associated with this equation is the condition number of

the matrix A. It turns out that if the matrix A has a large condition number, it is very

difficult to obtain accurate solutions for the unknown column vector x.

There are a number of methods that may be used to calculate the condition number

of a matrix, depending on the norm of the matrix chosen for the problem [40,41]. A

reasonable definition of condition number is
~.!

IX I (.1
C fa ti- IA Ir I .'Co, d (A4=.(~2

manq

where the A's are the maximum and minimum eigenvalues of the matrix AHA and AH is

the transposed complex conjugate of A. If this condition number is large, we have difficulty

in solving the matrix equation. because small errors in the matrix elements generate large

errors in the solution for the unknown vector x. This definition of condition number is .

used in the calculations that follow, in order to check the stability of the matrix equation

solution.

3.5 Matrix Theory for Cascaded Discontinuities

In the case where there are multiple discontinuities. we need a method of keeping

track of a number of modes between one discontinuity and the next. We consider two

cases. First, we study a symmetrical double step. as shown in Figure. 3.1b. This is a

special case of the second case we will study. that of N discontinuities each spaced an

arbitrary distance from the previous discontinuity. An example of this is shown in Figure

3.1c.

In the case of an asymmetrical double step. we may take advantage of symmetry

properties to greatly simplify the problem. Thus. instead of launching the dominant mode

-:.. -.. .

. . . . . . . . . . . . . .. . . . . . . . . .
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from the left with a magnitude of one, we add the results of launching modes of equal

magnitude and either equal or opposite phase. as shown in Figure 3.3. These cases are

equivalent to placing magnetic and electric conductors at the center of the waveguide B.

The solution for each of these cases may easily be adapted from the solution for the single

discontinuity, since the waveguide modes are reflected from the electric or magnetic

conductor without coupling to other modes. We adapt results from [36] that result in a

slight modification of Equation 3.3. Thus. at z = 0

. "-- (1/2 + p)ro I~x .y )+ .a, (', x .y ) bi 0 + Sbij )er#, (x .y )(3.12a)

i =2=

.oL.I (1/2 - )I(x.y)- , aE°(x'== y , b (I- Sbij ))7b, (x "y) (3.12b:)

where

e for electric conductor at z = I (313)
-" -e-2'a" for magnetic conductor at z = 1

and yeb, is the complex propagation constant of the ,th mode in waveguide B. and 21 is the

distance between the discontinuities. The above equation may be solved in a manner

analogous to Equation 3.3 by taking appropriate inner products. as described in Section 3.2.

If. on the other hand. we do not have the luxury of having favorable symmetry

properties. we have to solve the more general case of N discontinuities. each separated by a

length of transmission line. In this case we will have to cascade the generalized S-

parameters of each of the discontinuties. and the transmission lines that separate them, to

form an S matrix for the entire structure. The method that follows is adapted from a

method by Hall [421.

Let us begin with a definition of generalized S- and T-parameters. For the arbitrary

circuits shown in Figure 3.4. we define generalized T- and S-parameters as

... . .
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Figure 3.4. Input and output parameters of an arbitrary circuit, and a cascade of such
circuits.
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b2 T11 T12 a, (3.14a)a2 T21 T22 b

b2 S21 S22 a2 (3.14b)

In these equations. a, and b, represent L x 1 column vectors representing mode coefficients

for the L modes either incident or reflected from the circuit. In addition, terms such as S 11

represent an L x L generalized scattering matrix for L modes in each guide.

We generate generalized S-matrices for discontinuities in the manner of Section 3.2.

but keeping in mind that we now have to run cases for all L possible modes incident from

the left at each discontinuity. Care must be taken with the normalization of these S-

parameters, since the modes generated were not normalized. The correct normalization

gives, for example

S21( = (3.15)
a, f frX~ 'd.

Once the generalized scattering parameters are normalized, they must be converted to T-

parameters. The conversions are
a

S 21 ~S22S 1-1S 11 S 22S 12
T =-1 (3.16a)-S I S 11 12l /

s (3.16b)
-1 T"12 Tj-21T2 1 T12T 22'

Next we generate the T-matrices of individual transmission lines. These are

e i=j (3.17a)
T11(i.j) = 0 else

.. . . . .. . .. . - -.-

. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .
. .. . .. . . . . . . . . . . .. o

. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .
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i e jyA i~. (3.17b)~T22(i 'J)= 0 else

T 12 = T 21 =0 (3.17c)

Finally. we cascade a number of discontinuities and transmission lines by multiplying the

T-matrices together to obtain a composite T-matrix for the entire structure of N

components. as shown in Figure 3:4.

T = T N • TV -1 ..•. T2 • T, (3.18)

This is now converted to an S matrix using Equation (3.13b). and the problem of cascaded

discontinuities is now formulated. Numerical results for single and cascaded

discontinuities appear in the next two sections.

3.6 Results for the Single Discontinuity

We now present our results for a single discontinuity in strip width, shown in

Figure 3.2. The first step in the solution is to search for propagation constants of the

dominant and higher-order modes at a given frequency. This was done. and the results are

shown in Table 3.1.

Next. the results for the reflection coefficient. p. and for the equivalent circuit

Table 3.1. Propagation constants for a uniform microstrip. For these calculations. h -

0.4445 mm. b - 0.381 mm, t - 0.127 mm. er - 9.6. freq - 20 GHz.

s. =.0635 mm so = .1588 mm
Z , -48.915 Z, - 33.38

" 1(rad.!m) 1037.01 1065.91
02 -j4068.72 -j4056.39
033 -j10478.5 -j8050.07
04 -j14694.4 -j10648.9

-j14897.1 -j14505.2
086 -j16201.8 -j17358.1

.-.. . . . . .
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parameters. ZN and Y.V. are shown in Table 3.2 for calculations with up to six modes in

each waveguide. We note here that ZNv converges quickly to the values expected from

transmission line theory. The junction capacitance, however, never seems to converge with

the small number of modes we have used. We are limited somewhat in the number of

modes we can use because the cost of the calculation begins to become quite large with more

modes, and because the spectral Galerkin technique tends to break down for large

imaginary propagation constants.

Next. we perform a number of checks on these calculations. These include a power

check and a calculation of the condition number of the A matrix. These data are shown in

Table 3.3. From this table we verify that all the power is accounted for to a reasonable

numerical accuracy. This, as stated earlier, is a necessary. but not sufficient condition to

guarantee the accuracy of a solution. The condition number of the matrix may be more

indicative of Ahat is going on. The condition numbers, which are around 750. suggest that

the matrix is ill-conditioned. As a general guideline. we consider a condition number greater

than about 100 to indicate a problem in the condition number of the matrix. Thus. unless

the matrix elements are computed very accurately, we have to expect a problem in

generating highly accurate solutions to the matrix equation.

The issue of condition number turns out to be of a very central importance in these

Table 3.2. Values of the circuit elements in Figure 3.2 for the dimensions in Table 3.1.
These calculations were made with 5 basis functions and 200 spectral terms.

# of Modes p,. P, Yv Zv
3 -.269978 -.0014 .0060 .575
4 -.270028 -.0011 .0043 .575
5 -.270368 -.0038 .0146 .574
6 -.280095 -.0060 .0233 .562

Expected from
Quasi Static (Y.v) .0172 .684

and TEM (Zv)"
Approaches -

W , %~

.','.'..*-*.
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Table 3.3. Power check and condition number for the discontinuity whose dimensions
were given in Table 3.1.

Number Condition
of Modes 'S11I2 + IS 2 1 12  Number

3 1.0016 754
4 1.0016 759
5 1.0006 752

calculations. Since the imaginary part of the reflection coefficient is several orders of

magnitude less than the real part. the reflection coefficient as a whole must be calculated to

a high degree of precision in order to get a meaningful pi. and hence Y1N. When the

condition number is high, it is very diffieult to obtain accurate results without a very high

degree of numerical precision in the matrix elements.

Let us now consider the accuracy of the matrix elements. The simplest way of

checking this is to consider the degree to which the orthonormality conditions of the

waveguide modes, as expressed in Equation 3.10. were satisfied. If the orthogonality

conditions are satisfied well. then we may concede the possibility of an accurate solution to

the discontinuity problem despite the ill-condition of the matrix. These inner products

appear in Table 3.4 for the first five modes of waveguides A and B. From this table, we see

that the cross terms are well behaved for the lower-order terms, but the higher-order cross

terms tend to become increasingly large. Thus. it is difficult to claim, based on these inner

products. that the matrix elements are accurate enough to overcome the large condition

number of the A matrix.

Finally, we present data on the number of basis functions and spectral terms that

are required to give accurate propagation constants. This may be used to answer a possible

objection that an insufficient number of basis functions and spectral terms was used in the

discontinuity calculations. The data, shown in Table 3.5. indicate that the propagation

constant of the fifth mode in waveguide A is sufficiently converged with only two basis

• °>
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Table 3.4. Inner product calculations for the first five modes of waveguides A and B.
whose dimensions were given in Table 3.1. These were calculated with 5 basis
functions and 200 spectral terms.

' Ilj I 1.000 0.000 0.000 0.035 0.013
0.000 1.000 0.000 0.009 0.003
0.000 0.000 1.000 0.048 0.018
0.000 0.000 0.000 1.000 0.010

"__ 0.000 0.000 0.001 0.521 1.000

J Ibi 1 1.000 0.003 0.046 0.001 0.080
0.000 1.000 0.053 0.000 0.009
0.000 0.000 1.000 0.001 0.086
0.000 0.000 0.113 1.000 0.031

1 0.000 0.000 0.031 0.000 1.000

functions and 50 spectral terms. Thus. since we used five basis functions. and 200 spectral

terms in our discontinuity calculations, it seems likely that we have used a sufficient

number of each.

We conclude, therefore, that the mode matching technique is useful only in

obtaining good approximations to the circuit parameters. It seems unlikely that the

accuracy of this method can be forced to the point where an accurate junction capacitance

can be calculated, for a number of reasons. First. the imaginary part of the reflection

coefficient is very small compared to the real part. and it is difficult to calculate a small

rable 3.5. Variation of a propagation constant with the number of basis functions and
spectral terms. The mode calculated is the fifth mode of waveguide A. whose
dimensions were given in Table 3.1.

Number of
Basis Spectral

Functions Terms o s(rad/m)
1 25 14901.0
2 50 14897.1
2 100 14894.5
3 50 14897.6
3 100 14894.7

1 5 250 14893.3

.-.
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quantity in the shadow of a larger effect. Second. the condition number of the matrix

indicates an instability in the matrix that can only be overcome if the matrix elements are

calculated to a high degree of accuracy. Finally, the inner product calculations suggest that

the matrix elements can only be calculated to a finite degree of accuracy and that the

spectral Galerkin technique can not be pushed beyond this point for modes of high order.

With these thoughts in mind. let us now turn to other discontinuities to calculate.

Although we have not achieved a high degree of accuracy in the calculations for the single

discontinuity, we have demonstrated that the method generates a good approximation for

the solution. Thus. there may well be reason to consider other types of discontinuities. and

results for these are presented in the section that follows.

3.7 Results for Other Discontinuities

The next configuration we would like to study is the symmetrical double step

discontinuity. This is shown in Figure 3.5. and the theory was presented earlier in Section

3.5. Results are presented for a typical case at two different frequencies in Tables 3.6 and

3.7. These calculations were made with up to four waveguide mode functions in each

waveguide. Upon examination of these results, we find the reflection coefficient has

converged nicely within four modes to a result that is similar to that expected from the

transmission line theory. We note. furthermore, that the results for one mode are similar

to that for four modes, so in the future we need to use only a single mode for our

calculations.

In the next two tables, Tables 3.8 and 3.9. we present data for several of these cases

over a range of frequencies and for various values of Sb. We compare them to experimental

data. which was generated by U. Feldman [43]. and to results generated by the transmission

line theory. Based on the data in these tables. we observe that the data calculated by the

mode matching technique provide a slightly better fit to the experimental data than the

results generated by the transmisison line theory.

t%
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Figure 3.5 D~imensions bor a symnmetrical double ;ter discontinuity mn strip width.
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Table 3.6. Propagation constants for the first through fourth modes of a symmetrical
double step discontinuity in strip width. and results for S 11. For these calcu-
lations. h-5.08 mm. b-6.096 mm. t-0.7874 mm. e,. -2.2. 1-1.0 cm. and
freq-8.010 GHz.

1 1(rad./mm) 230.056 234.723
t32  -j187.051 -jI86.281
f33 -j647.067 -j640.983
t34  -j727.228 -j749.948

Number
of Modes S 11 (dB L deg)

3 -6.47 L -178.8
4 -6.41 L -179.2

From Transmission
ILine Theory Expect -8.32 L -179.11

Table 3.7. Propagation constants for up to the fourth mode of a symmetrical double step
discontinuity in strip width, and results for S I. The configuration is that of
Table 3.6. except that the freq - 12.02 GHz.

s,- .7 mm sb 2 .4 1 rnln
___Z__ ,. -25256 fl Z,~ - 35.21 fl

0 1(rad./mm) 341.625 355.340
0255.8937 55.8765

033 -j701.537 -j610.145
t34 -j723.682 -j904.769

Number
of Modes S 11 (dB L deg)

1 -8.90 L -140.6

4 -8.45 L -140.3
From Transmission

ILine Theory Expect -10.8 L -139.4_
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Table 3.8. Dominant mode propagation constant and characteristic impedance as a func-
tion of frequency and center strip half width (s). For these calculations. h .
5.08 mm. b - 6.096 mm. t - 0.7874 mm. and E, - 2.2.

0 (rad/m) and
Zo (fn) for ,-.

FREQ (GHz) s - 2.41 s - 1.65 s - 1.17 s - .026 s = .353
.990 28.6661 28.43 28.1895 27.7751 27.4819

34.52 42.26 51.74 73.67 97.03
2.025 58.6799 58.1802 57.69 56.8345 56.2296

34.50 42.23 51.72 73.65 97.01
4.005 116.374 115.330 114.319 112.563 111.330

34.45 42.19 51.68 73.61 96.97
8.010 234.723 232.338 230.056 226.170 223.470

34.60 42.35 51.85 73.81 97.19
12.015 355.340 351.391 347.625 341.250 336.825

35.21 43.01 52.56 74.60 98.06

Table 3.9. SII for the symmetrical double step discontinuity shown in Figure 3.4. as a
function of sb and frequency. For these calculations. s, - 1.17 mm. I - 1.0
cm. and all other dimensons are as in Table 3.8. The first number for each case
is calculated by mode matching. the second by the transmission line theory.
and the third number is from experimental results of Feldman [43].

S11 (dB Ldeg) for _'"

FREQ (GHz) sh - 2.41 mm st - 1.65 mm sh - .626 mm sb - .353 mm
-10.8 L -126 -17.6/L -123 -13.9 L 56 -9.1 L 53

.990 -13.2 _ -125 -19.2 L -123 -14.6 L 57 -9.6 L 54
-11.2 -18.3 -13.7 -9.4
-6.8/- -160 -13.1 L -157 -9.5 L 23 -5.2L 21

2.025 -8.9 L -159 -14.7 L -157 -10.1 L 24 -5.7/- 22 "
-6.9 -13.3 -9.5 -5.4
-8.6 L 140 -14.9 L 138 -10.71 -37 -6.1 L -32

4.005 10.8 L 139 -16.5 L 138 -11.4 L -37 -6.6 L -33
-8.9 -15.3 -11.1 -6.6

-6.4 L -179 -12.5 L -176 -8.9 L 10 -4.9 L 11
8.010 -8.3/ -179 -14.0 L -176 -9.5 L 10 -5.3 L 12

1 -6.4 -12.6 -9.4 -5.2

-8.9 L -141 -15.9 L -133 -14.3 L. 57 -10.7 L 59
12.015 -IO. 8 L- 3 9  -17.4 L- 13 3  - 14 .8L57  -11.1 6 0

- -8.8 -16.4 -14.7 -10.3 -

Next, we consider a nonsymmetrical double discontinuity, shown in Figure 3.6.

This configuration may be used to simulate a linear taper. The results for this structure

were generated with the matrix theory given in Section 3.5. and are given in Table 3.10. In

this table are the propagation constants and characteristic impedances of the three lines, and

- ..A
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the S-parameters of the discontinuity referenced to planes Nos. 1 and 2 as shown in Figure

3.6. In addition. Table 3.10 has a comparison to transmission line theory and a power check

of the mode matching results. The results indicate an overall agreement with the

transmission line approach. although it is difficult to say which approach is more accurate.

Finally, we consider a single discontinuity in the dielectric constant, strip width.

and substrate thickness, a diagram of which is shown in Figure 3.7. This case is one that

might be expected to occur when a microstrip printed on gallium arsenide must mate with a

microstrip printed on duroid board. Because of the difference in dielectric constants. it will

be necessary to have different line widths to maintain a 50 ohm line in each section. Some

typical S-parameter data for this configuraton are shown in Table 3.11. along with data for

a power check and the condition number of the matrix. These data are difficult to interpret

since the condition numbers are very large. and since the power check is off by about 0.06.

Both transmission lines are 50 ohm lines, so we expect a reflection coefficient of zero from

simple transmission line analysis. while we calculate a reflection coefficient of about -10 dB.

This -10 dB reflection corresponds to a value of 0.1 in the power check. Since the power

check is off by 0.06. it is difficult to get a feel for the accuracy of these results. If we

* . ignore. however, the higher-order modes, and look only at the results when a single mode is

,' . used. we still have a reflection coefficient of about -10 dB. but now the power check and

condition number of the matrix are both satisfactory. It appears. therefore. that

experimental work will be required to verify these calcLlations.

3.8 Conclusion

In this chapter we have analyzed a number of discontinuities by using a

combination of the spectral Galerkin technique to generate modes and mode matching to

find the scattering parameters of the discontinuity. In general. our results have been close

to what was expected. but it proves difficult to use this technique to give highly accurate

results. The factors that limit the accuracy include the small number of waveguide modes

... ........... . . . . . . ... .. . . .

.?... .-...-..-."...'..........-..........°...-....,.... .. ..-.-........ . . .....'-.,-.-,....... ..- '...",..,".--.-.-...'... ...'
: -,[~~~~~~~~~~~~~~~~......,.......-.,,. ... ,.,.,........... .. ,...,....•........-,-.-.... ...-...-. ,. , ... . .. ,.,,,.
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Table 3.10. Results for the taper simulation shown in Figure 3.6. For these calculations.
h = 5.08 mm. b = 6.096 mm. t = 0.7874 mm. e, - 2.2, and I - 1.0 cm.

_ _ _ _ _ _ 10 GHz 12.5 GHz 15.0 GHz

s - 1.17 mm 0. (rad/m) 288.2 261.8 435.9
Zo' (fl) 52.14 52.j7 53.28

Sb = 1.65 mm Ob 291.2 365.7 440.8
Zb 42.63 43.11 43.67

s. = 2.41 mm Pc 294.36 269.9 445.9
Z 34.86 35.30 35.79

Transmission S12  -14.95 L - 154  -1 9 .7 6 L 122 -15.81 L -1 4 6

Line S21 -0.14 L 26 -0.05 L -59 -0.12 L -146
Theory S22 -14.95 L 26 -19.76 L -59 -15.81 L 34

dB L deg I

Mode S11 -12.78 L - 15 2  - 1 7 .6 1 L 114 - 1 2 .9 4 L -143

Matching S 2 1  -0.23 L 26 -0.76 L -58 -0.18 L -146
S22 -12.78 L 23 -17.61 L -51 -13.94 L 31
IS1112+ lS 21 1

2  1.00000 0.999998 0.999999

Table 3.11. Results for a step discontinuity in e, . t. and s. For these calculations h, =
0.889 mm. hb - 0.953 mm. b - 1.27 mm. t, = 0.127 mrxi. tb = 0.191 mm. s. =

0.042 Mm. Sb = 0.298 mm. 6,, = 12.3. e'b = 2.2. freq. = 20 GHz. These calcu-
lations were made with 2 basis functions and 50 spectral terms, and
Z, = Z = 50.0 (1.

Number Condition
of Modes S 11 (dB Ldeg) S, (dB Ldeg) IS,,12 + IS2112 Number

I -9 .9 2 / 180 -. 4 6 L 0.0 1.00000 26
2 -1 1.6 9 L -175  -.08 L -2.2  1.066 6240
3 -11. 6 7 L- 1 7 5  -. 0 1 L -2.0 1.066 6790
4 -11. 6 7 L- 172  -. 0 2 L -3 .2  1.063 6800 ,

.2.
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one can calculate with the spectral Galerkin technique. the ill-condition of the set of matrix

equations, and the necessity of calculating a small junction capacitance in the shadow of a

comparatively large reflection coefficient.

If this method is to be refined to yield more accurate results, we have to find a way

to generate a large number of very accurate waveguide modes. In the next chapter. we

consider an alternate method of generating these modes, in an effort to increase the accuracy

of the mode matching method. Let us now turn our attention to the singular integral

equation technique.

.... ,-

.-. ,
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CHAPTER 4

THE SINGULAR INTEGRAL EQUATION TECHNIQUE

4.1 Introduction

The singular integral equation technique is an alternate method of finding modes in

printed circuit waveguides. This method was first suggested by Mittra and Itoh [5]. and has

since been expanded upon by Omar and Schunemann [44.45]. Its chief advantage over the

spectral Galerkin method is its very high degree of numerical efficiency. requiring, by

comparison, very little computer time. Its disadvantage, however, is that it is a much more

difficult method to derive and implement. requiring a great deal of effort to derive the

matrix equation.

In this chapter, we outline the work of Mittra and Itoh and expand upon it by

calculdting a larger number of terms in certain series as well as a larger matrix size. In

addition, we compare these results to those obtained with the spectral Galerkin technique

presented earlier.

4.2 Overview of the Method

In this section we outline the singular integral equation technique as applied to the

microstrip. and as explained in (51. Since the method is somewhat involved, we omit a

number of details here that are included in [5]. In spite of this. we include sufficient detail

to demonstrate the reasons for the increased efficiency of the method.

Consider the shielded microstrip structure shown in Figure 4.1. We may write the

fields in the two regions, denoted by i. as a sum of TE and TM components. This leads to

k 2 3 o2 ,(e )e -J 6z (4. la)

" , e -J 3 (4.1b)

. . ., ..

,. . .,_, . . . ... , , .'..-..~~~~~~~~......... ...,. - .. ...' ........., . ..' _.. ,..,,.- '.'.... .. .. . . ,. .
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T

Figure 4. 1. Dimensionsof a shielded microstrip for this chapter.
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- 7, 2 V r()e -j z (4. 1c)

for the TMI fields and

=z j k?2- p2 0 1 h )e-j Az (4.2a)

T~(h .± 2 xV, 4,(" )e 02 (4.2b)

Ar'() , j,(h) e i1 (4.2c)

for the TE fields. In these equations (3 is the propagation constant in the 2direction.

and *jit) are scalar potentials for the E and H fields, respectively. and the subscript t

indicates the transverse direction. The scalar potentials each satisfy a two-dimensional

Helmholtz equation as in Equation 2.2 of the spectral Galerkin approach. where

k, EI~~ is the propagation constant of the medium in regions I and 2. By satisfying

the boundary conditions on the side and top walls, we expand the scalar potentials as

= A,() sinh ci()y cos i, (4.3a)

n =1

= (f ) csih a,(1)y sin k- x o (4.3b)
nj

1: B,( coha2 -h y sink~ (4.3d)

where

.(n 12)1- (4.4)

of1) 2 k (4.5a)
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an -r . (3 - k0
2  (4.5b)

and k0 =

We may now apply the boundary conditions at y - d. which is the interface of the

two regions. to obtain

:T,")Cos inx 0. 0 <x < t(4.6a)

;in(,)k in A,(() Coskft x

ft T" Csi x 0 <L (.b

- ,I in si0n . 0 x < L (4.6c)

~ A~',S sin k x

X," AWk sin x =0. 0 < x < L (4.6d)

where

P,,(3)4, -- cotb, I'd + E t2 .a,( 2 ) a( 2 ) -d

1-13 k,,

+,.. coth a (2 (h -d) (4.7a)

f - 0-1

T" ~ ~ , inat Id+ ctha()h d(.b

a7p. n-T

.. *. . . . .. . . . . . . ..-- ~ ...... -... ..
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Qn (j3) = t 1 - coth a(2) (h - d ) (4.7c)

W" (9) = c 4 coth a(I1 d + i coth a2) (h -d) (4.7d)

and 3 -- /ko. This set of equations could be solved in their current form, but there would

be no savings in computation time, since no effort has yet been made to reduce the number

of terms needed for the summation. Let us now consider the method for doing so.

If we differentiate Equation 4.6a with respect to x and substitute the result into

Equation 4.6c. we obtain

A,,Y" sin kfx 0. 0 < x < t (4.8a)

n =1

Next if we differentiate (4.6d) and rearrange. we find

SAftt cos i" x f (x) t < x < L' (4.8c)

E ;T(A ) kf cos kfx g (x). t < x < L (4.Sd)

where

') (am E)+bm:A))cos mx. (4.9a)

(x (cm:T )+ Mnh)cjm (49b.°." (x)= (,,, M'° ) + d,,, g, 1Cos/ x (49b)
.o=1 m--

and

ain lc P,,(O)W(t)- T(3)Qm()a, = £ 1-P(0)W( )- T(O3)Q(F) (4.1Oa)

- - P' ." -• P--' , ." r '.." "-" ".. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..-. . . . . . . .m m l
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b,,, km T,,, (O)W(0) - T(j)W, (0) (4.lOb)

Cm,, = P(P)Qm (0) Pm (6)Q (0)
""m (4.100)PC () W (0J) - r(UT2 07

P(0)Wm (,) - Tm (3)Q (1) (4.10d)
dm --km,, I -- P )f3)W(0) - T ()Q(07)

The functions P(03). T(0j).Q( ). and W(P) are the asymptotic limits of Pm(P). Tm (0).

Qm (3). and Wm ( 3). respectively, as m - o. These are

P(P) = 2 E, (4.11a)

T(/3) = 272 (4.11 b)

S(j3) = 2 (4.11c)

I -6

w(p) = 2 + 1 (4.11d)
1-i32

It turns out that a,. bm, cm. and d,, can be written in terms of expressions such as P-Pm

and T-Tn . and that these expressions decay rapdily for large m. Thus. for example

P - P, 2Er e -(2m - I)Ird/IL + e - (m - : )wth-d)IL (4.12)

for large m. Since these terms decay very rapidly, the am. b , c,m. and dm coefficients in

Equation 4.9 also decay rapidly. Therefore. only a small number of terms are necessary for

the summations in Equation 4.8. This is the reason that the method is numerically very

efficient.

There is a standard method of solving an equation of the form of Equation 4.8.

which appears in a number of texts [46-49]. as well as in [5]. We therefore forego the

detailed explanation of the solution, and instead quote the result from [5]. The solution to

Equation 4.8 is the following matrix equation.

.*....

. A
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4(, 8pm a'mD,,. - Mm K)A.

E b.D,,,+ N. Kp)A-(") 0, p =1.2....

S(-"c. D,,. "X.mKq)AA (4.13)

+ (kq8n dn Dqn Yn Kq ) n(A) =0 q 1.2...

where Snm is the Kronecker delta. As before, in the spectral Galerkin technique. the

solution for 13 is found when the determinant of the coefficient matrix vanishes.

Let us identify the missing terms in Equation (4.13). It turns out that

in-1

am q 0 m ' (4.14a)

Mm-

bm E Pmqf (4 4b

where Pis identified by

-ok~ 1 Pm, cos q8 (4.15)
cos k x 9 0

and

dO

I f (4.16)

T j cos 9d

f V-d - q =0
0 1 -0 1 - 2 Cos 8

= Inqsnd 12 r- (4.17)

1 a, - 01) Cos0

NM
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We note. furthermore. from Equation (4.13) that

Xm= Sm - M QIg - (Qa - Wc )E (4. 1&a)

;-= S - wit (4.18b)

where

" s-sink t
S - (W- W, )K, (4.19a)

sin k,(

S 0 sin kt ID ,..(Q Q,)b,,, -(IV W.)d,.+ K(Q -Q.W. (4.19c)

and

g -21 f In - al --C2 € 0S 9 ' +  4 l C 2  dO (4.20)

'(r27f
2  q =

""-2" Jo =o n "1- t-a s + !- t - a~ 2  cos ' d- (4.22a

• 1- l a 2 CsOS - r 01 11 a2 1 C - a OS

E, E Pmqv q +P" 1 . (4.21)

where

=. -fIn v + i 1 a odO(4.22a)

VI-i-co s9--fTa+ _1r_,_2,9

= 0n 1 a2 cos + r, -- 01, sin qO' sin G' d9'-' .- J, f In "(4.22b)

-a, - a2 cos 9 - - i - - a2  I t, - a 2 cos 9'

Finally. the last two terms in Equation 4.13 that need to be defined are Kn and Dm. These

I' . - , l i"I . ...... . . . . . ..- . ...
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are

K 2. cos 1x sink x dx (4.23)

Dnm = COSIX P, sin qO - Pm0 Cos 0 sin x dx (4.24)
2.,-- 1ok fl1P si1-P. cosO

T- fw q= sink- dx (24

where the variable 0 is defined by the coordinate transformation

cos . I C2 cosO (4.25)

and

IiI12 o t J(4.26a)
This completes the description of the final solution, which was stated in Equation 4.13.

The integrals shown in Equations 4.16 and 4.17 are well behaved, and can be easily

calculated with a numerical quadrature subroutine. The integrals in Equations 4.20 and

4.22. however, have an integrable logarithmic singularity at = 0. We therefore .,ust use

a small angle approximation for cos 9 inside the logarithm in the region 0 < 8' < op.

where Op << 1. and use an integration routine in the region 6, < 9 < 7r.

We now have only to calculate P,,. K,. and D,,,. as shown in Equations 4.15.

4.23. and 4.24. In [5] these terms were calculated only to the second or third order. We

now would like to extend the work of [5] by calculating these terms out to the fifth order.

These are calculated in the next section.

4.3 Calculation of Pmq, K. and D0.,

In reference [5]. Mittra and Itoh calculated P,,. K, and Dn, to the second or third

- .. -~-- - - - -* ..-. - . . .

. . . .. . . . . . . . . . . . . . . . . . . . . . . .



7171

.. 71

order. We would like to extend this work by calculating these terms to the fifth order. For

convenience, we repeat the equations from the last section in which these quantities were

defined. Hence.

Cos X m-I
- = q P,,, cos q (4.15)Cos k i

x  
=0

2 f cos Ix sin x x

Dnm- 2 sin 0 od (4.24)
D.. TL cosij qx sin qG - P 0  sin x dx (4.24)

The calculations of P', and K. are straightforward. although somewhat tedious. The

results are

PIo- I

P20 
= 2a, - I

P2 1 =2C

P 30 = 4c, - 2a, - 1 + 2a2

P 31 = 8C102 - 2Ck2

P32 = 2c 2

P41 -242a2 -- Sal%2 - 4a2 + 6%

P4 2 = 12a"la 2 - 2az

P43 -2a

P = 16a - 8a - 12a? + 4at + 1 + 480?1a - 12a 1  - 6a? + 6a4

P5, = 64a3a2 - 24a 1 02 - 241a* + 4a¢2 + 48oo -6 3

P 53 = l6aa - 2a2

i . . .. . . . ... ..... .............. ...-................ . ¢ , . .- - -..-. -. ..-..-

:- " " "-" '' --"".""- ' .""," '. "..'..'.,'-.".-' ,'".'".".'"- .-" -"."'.'""" -'""", ', '* "."-''. .'- '-' -'. '.''.'',. " "',
..: ., . -"... ..... -.........,.. .... ...-.-. _...... ..... . . %,.,,,-. .... ... .. . ,: ...: ',
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P5 = 2a" (4.27)

for P,,. and

K I =a2

K 2 = a 2(1 + 2a 1)

K 3 = a(4a? + 2a, - I + 2ot'

K 4 = a2(-1 - 4a, - 4a2 + 2a2 + 8a 3 + 12aota 2 )

K3 = a21 - 4a. - 12a 2 - 6a2 + 8a3 + 12.fla 2 + 16a 4 + 48at2 + 6a') (4.28)

for K,. where a, and a2 were defined in Equation 4.26.

The calculation of Dm requires a rearrangement of terms, because the algebra

becomes somewhat involved above n-2. Proceeding from Equation 4.24. it can be shown

that

2c 2  -l -- n =1.2....

D.m = p- q0 .'P ~ 9 P m =1.2.....n (4.29)
Trp=0 q=O P.'.,Q

where C,, is defined by

sin x cos IX n-1
_ = C,, cosP 0 n =1.2.... (4.30)sin w-Ir p =

and Iqp is given by

f sin q9 cosP +10 dO q =0
01 (4.31)

f sin q sin 0 co9v O dO q .2.... p 0..2....

0

The elements Cp and ,, are considerably easier to calculate than D,,. We obtain for Cnp

CIO = 1/2

C 20 = £k1 + -/Z

C 21 =k

..

, .. ....-. ,•..........,.,...,... ....-. ..---. .. ,-.. -,*.-:-,,., -- ,D,,,.' . ,,,'',
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C 30 = 1- /z + 2a2

C 31 = 0 2 + 4o10(2

C 32 = 2al

C40 = -- 2 - 2a, + 2a,2 + 4ar1'

C 41 = -2*2 + 4ao1f2 + 12aIa2

C42 = 2a2 + 12a1 ay

C 43 = 4a3

C50 = 1/ - 2a,1 6a,2 + 4a3? + 8a4
C 51 = -2 2 - 12ala2 + 12a 2 + 32a3a

Cs 2 = "-6o2 + 12ailaz + 48a2 2

C53 = 4o9 + 32ala3

C 54 = 8 (4.32)

and the values of Iqp are listed in Table 4.1. By using this method of generating D,,,,. we

reduce slightly the efficiency of the program, by introducing a double summation over p

and q. We save. however, a great deal of algebra that would otherwise have to be carried

out by hand. so it seems like a small price to pay.

Now that the singular integral equation technique has been formulated and

extended to the fifth order; we consider some results in the next section.

Table 4.1. Values of Ifp as defined in Equation 4.29.

p
1. 0 1 2 3 4
q 0 0 -1r/2 0 -3w/8 0

1 7r/2 0 r/8 0 7r/16
2 0 7r/4 0 #r/8 0
3 0 0 7r/8 0 3r/32
4 0 0 0 7r/16 0

.. -

. . . . . .**.. * *.

• .. . , , . .. ... . . . . . .. . .. ... , .-.-.. .. ... . -. ..-...... .-.... ,... . ..-.. : . ,, ., .- ...,-.- .'.,, ,- . .-... -,
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4.4 Results

The propagation constant of the dominant mode of a shielded microstrip. as shown

in Figure 4.1. was calculated with the singular integral equation technique. A comparison

is made to results generated from the spectral Galerkin technique, and to the results from

Mittra and Itoh (5]. These data are shown in Table 4.2 for three different frequencies. We

can make several observations about these data.

It is clear that there is very good agreement between the calculations using the

singular integral equation technique and the spectral Galerkin technique. We note.

furthermore, that the results are in agreement to within about four significant figures. This

extends somewhat the accuracy achieved by Mittra and Itoh. whose results are shown in

Table 4.2. This increase in accuracy is due to the larger matrix size that was used in our

calculations.

The excellent correlation between the results generated by the singular integral

equation and spectral Galerkin techniques is noteworthy because the two methods are of

Table 4.2. Calculation of the dominant mode propagation constant or shielded microstrip
as shown in Figure 4.1. These calaculations were made with the singular in-
tegral equation (SIE) technique and the spectral Galerkin (SG) technique. The
notation 2X2 indicates the matrix size in the SIE technique. while the notation
2/50 indicates that two basis functions and 50 spectral terms were used in the
SG technique. For these calculations. h - 2.0 mm. L - 1.75 mm. t d - 0.5
mm, and e, 9.0.

- (rad/m) at
10 GHz 20 GHz 30GHz

SIE. 2x2 525.574 1094.59 1685.50
this 4X4 530.007 1108.09 1713.74

paper 6x6 530.042 1108.25 1714.26
10xl0 530.065 1108.38 1714.61

SIE. Mittra 2x2 530. 1100. 1710.
and toh [5I 4X4 531. 1115. 1740.

SG. this 2/50 530.272 1108.94 1715.56
paper 5/100 530.166 1108.66 1715.10

.5..
. .%. ~

** * * J . ' . ? . ,

. . .

.. ... ,,,,,,., ..-... k L,- -.-- w~i m m k-. V
'

. -°
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very different natures. It was not clear, based on previous work, that the spectral Galerkin

technique could be used to generate the dominant mode propagation constant to such a high

degree of accuracy.

An attempt was made to calculate higher-order evanescent modes with the singular

integral equation technique. This. in theory, is easy to do by changing the propagation

constant from purely- real to purely imaginary. In practice. it turns out that the

determinant function that must go through zero is ill-behaved, and does not have any clear

zeros. Thus, the method doesn't seem to work for evanescent modes. One explanatin for

this result could be that we have only calculated enough matrix elements to fill a lOXlO

matrix. We could, of course. have calculated more elements, but the amount of algebra

required to do so tends to become very large, very fast. This places a practical limit on the

matrix size.

4.5 Conclusion

Although the original goal of the singular integral equation technique. that of

finding higher-order evanescent modes, was not met. we did achieve excellent success in

verifying the propagation constant of the propagating modes. In doing so. we have

demonstrated agreement between two very different methods, the singular integral equation

method and the spectral Galerkin technique. to four significant figures in the final answer.

This degree of accuracy is very high, given the complexity of the calculation and the very

different natures of the two methods used for the comparison.

". . . . . . . . . . . .

',- . . . . . . . . .

Jb '""*"Pw r| . %a l, .lh | 4 % "" . " . """ . .. ."°" % " ' * ' " " " " '" "lm~ lm I~ m l' l ..... '% % " ""'" % " ' * ° ' °- .. m . - •



76

CHAPTER 5

COPULED-MODE ANALYSIS OF MUnLTICONDUCTOR MICROSTRIP LINES

5.1 Introduction

Recent advances in microelectronic packaging have generated a number of difficulties

associated with interconnections between VLSI logic devices. These interconnections are

typically made with large numbers of microstrip lines that run parallel to each other. It is

possible. under certain conditions, that a signal propagating on one line can couple to other

lines. This cross-talk can trigger false signals on nearby lines. Therefore. it is important to

fully analyze multiple microstrip lines, in order to determine the performance of the

overall system. These cross-talk problems become more serious as switching speeds and

packing densities are increased.

Coupled microstrip lines have been analyzed with several different methods

[6.7.50.51]. More recently, multiconductor transmission lines with more than two lines

have received some attention [52,53]. These analyses, however, are all based on a quasi-

static approximation which is valid only for digital devices with switching speeds in the

order of one nanosecond. When the rise time of the switching pulse is reduced to hundreds

of picoseconds. the spectral content of the pulse contains higher-frequency components.

Since quasi-static approximations break down at high frequencies. a full-wave analysis of

multiconductor microstrip transmission lines becomes necessary.

The configuration under study is shown in Figure 5.1. It is composed of five

microstrip lines, each of the same width and strip separation. In this chapter we would like

to demonstrate. using a frequency-dependent analysis, the mechanism whereby current that

is excited on one line is transferred to other lines. We begin with an analysis of the modes

of propagation on the line.

2..

. .. . . . . . . . . . . . . . . .

. . . . . . .
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Conducting Strip

co .lo -2S 2S
- x

er Eo/Jo t
": ' I / I , /, I I " / t

Ground Plane

Figure 5.1. Configuration of microstrip with five lines. For these calculations, t -2s - I
mm. 2s1 = 0.2 mm. and e, = 10.

%-.................................................
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5.2 Calculation of Modes

In a multiple microstrip configuration with N strips, there are N modes of

propagation down these lines. In order to analyze the crosstalk and propagation delay of

these lines, the propagation constant for each of the N propagating modes is needed. The

method we use for this calculation is the spectral Galerkin technique. described in Chapter

2. By making a number of alterations. the same theory can handle multiple lines as well as

a single one.

We begin the analysis with the matrix equation generated by the spectral Galerkin

technique for a single shielded line. This equation was given previously in Equation 2.16.

for the configuration shown in Figure 2.1. In order to remove the top wall, we make a

modification in the spectral Green's function. This is done by replacing the short circuits in

the equivalent transmission lines, at y = h - d. shown in Figure 2.3. with matched loads.

The side walls, on the other hand, are removed by moving them far enough away from the

strips that they have no effect. Care must be taken, however, not to move them too far

away. since the number of spectral terms required for this calculation can become large

with wide side walls.

All that remains now is to generate a reasonable set of basis functions for the

current on the lines. We choose to build our basis functions up from a set of functions that

would be suitable for finding the odd and even modes in a microstrip containing only a

single strip. These building block functions are

(X cos ((i - 1)r(x Is + 1)) (x sin ((i - 1'2)wr(x Is + I))
X1 - (x/s 7x "/ - (x/s )2

(X cos(( - z1rr(x /s + 1)) (x sin (i r(x /s + 1))

Vi - x is )2  T -(x s )2

We note that ,, and 71., are the same basis functions used for the even modes in a single

line in Chapter 2. These were given in Equation 2.22 and shown in Figures 2.6 and 2.7.

We now take advantage of the symmetry inherent in the structure to find basis

. . .i

. ... . . . .... .. ., . .. _. ......_, , ..
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functions that are either even in J, and odd in J . or odd in J, and even in J.. Although

the method that follows is general for N lines, we show as an example the basis functions

used for five lines as

'-'.N: S

(X C' =li (X

J, (x) = d Qj (x) (5.2)
~j =Ii =1

where, for even J2 and odd J.

Pli (x) = , (x) Q ii (X).i (X

P2 (x) = , (x + q) + ,, (x - q) Q2i (x) = i, (X + q) + 7o.(x - q)
i" s,3,(X) =& ,(X +q)-fo,(X -q) O.3,(x)=T),,(x +q)-n,,(x -q)

P.Jx)= ,i(x +2q)+&(x -2q) Q 4o(x)='ro,(X +2q)+7o,(x-2q)

"-* P5j(x)=6,(x +2q)-f.,(x -2q) Q 5,(x)-r (x + 2q)-n,,(x-2q) (5.3a)

and for odd J, and even J.,.

P1, (x ) = 6o, (X ) Q1, (x ) " ,(x)

P2,(X)= ,,(X +q)-,,(x -q) Q, (x)i= 0 o,(x +q)-o 1 (x -q)

.P3,(x)=&o,(x +q)+fo,(x -q) Q3i (X)r(X + q)+ l(x - q

".-P4,(x)=f,,(x + 2q)-fi,,(x -2q) Q., (x ).O, (x + 2q)-T ,(Ux- 2q)

P5,(x)=6o,(x +2q)+fo(x-2q) Q,(x)n,(x + 2q)+ 7,(x-2q) (5.3b)

where

q =2(s +s 1 ) (5.4)

With these basis functions, we now search for the three even-mode and two odd-mode

propagation constants that satisfy Equation 2.16. Results showing dispersion curves and

comparisons to the quasi-static theory are presented in Section 5.4.

lo.. . . . . . . . . . ... . . ..

• ~~~~~~~~~~~~~~~~~~~~~~~~. . ....-..........---..-....-...-.-...---..-<.-. .... -,>-?-;--/-' ...................-.-
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Let us now turn to the coupled mode theory used to explain the transfer of current

between lines.

5.3 Coupled-mode Theory

When a single line of an N-line system is excited, one may consider this to be an

excitation of a linear combination of the five modes, whose weighting coefficients must be

determined. We may consider the integral of J over an individual strip to be the quantity

that is coupled between the lines. Therefore, we carry out a procedure similar to that

described by Bhartia and Bahl [54] for image guide couplers. For each mode. we find the

longitudinal current on strip i due to mode j as

I, = f J (x)dx i.j 1.....5 (5.5)
strip t

We consider an excitation of the first line alone to be one where the first line has a

magnitude of one and the others have a magnitude of zero at z - 0. Therefore, we set up a

fifth-order linear equation to find the combination of modes that satisfies the condition

aj, 0 0 i=2 (5.6)
ji =

where the a, 's are the unknown mode coefficients.

Once the mode coefficients are determined, we may assume they propagate down the

five-line system, with their respective propagation constants and mode coefficients that were

calculated in the previous section. Thus.

5l

I(z a, I,, e (5.7)
'11

where 0, is the propagation constant of the j' mode, and l,'(z ) is the current on the i'6

strip due to all j modes, at a distance z from the original excitation. This can be calculated

iii " . .. . .. . ,..- . .....-.... .. ,..,--..........-., . .,....-..-....,.,...... '... . , ... ,
". ..- , d - . a ~ * ~ ~ - " % .' ~ .... . • " " .% ' .* * . " °o "
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for each strip as a function of z. and results are shown in the next section.

5.4 Results

Let us now examine the results obtained with the method described above. The first

step of the procedure involved calculating the propagation constants of the various

propagating modes associated with the configuration in Figure 5.1. We have calculated the

modes at I GHz for a three-line configuration using the spectral Galerkin technique, and

then we compare them to those of Chan's quasi-static approach [53]. This comparison is

shown in Table 5.1. At this comparatively low frequency. the two methods are in excellent

agreement. At higher frequencies. however, the quasi-static method is expected to break

down.

This point is demonstrated in Figure 5.2. where the five propagation constants of a

five-strip system are plotted as a function of frequency. At low frequencies. the curves are

level, as would be expected by quasi-static theory. At higher frequencies. however, the

relative propagation constants squared are no longer constant. indicating that a frequency-

dependent theory is now necessary.

Next. we checked the convergence of the calculated propagation constants with

respect to the number of modes. These results. shown in Table 5.2. demonstrate a very

rapid convergence with respect to the number of modes and suggest that probably one basis

function of each type (N, = N, = 1) will be sufficient for most calculations.

Table 5.1. Comparison of propagation constants calculated by two different methods.
Shown here are the two even and one odd modes of a three-microstrip system
at 1 GHz. where t - 2s - 1 mm. and 2s = 0.2 mm.

SSpectral Galerkin Quasi-static

,, 1(rad/m) 50.53 50.61
0,2 58.12 58.60

52.80 52.88

.. . . . ............ ,. .. . . . . ....... . . . .
. . . .. . . . . . . . . . . . . . . . . ..o~N
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Table 5.2. Variation of the five propagation constants in a five line system with the
number of basis functions. For this configuration. t - 2s = I mm. 2s I = 0.2
mm. and f-I GHz.

,'." N.. = N, J3.1o /3 o _

1 49.86 50.83 60.50 49.97 53.58
2 49.45 50.77 60.40 49.75 53.57
3 49.42 50.77 60.40 49.73 53.57

In order to get a physical feel for the shape of the five modes, we have plotted J, as

a function of x over a cross section of the strip for each of the five modes. These are shown

in Figures 5.3-5.7 for N, =-N, = 1 and for N. =N, = 3. We note that for most of the

modes, we may obtain a very reasonable representation of the currents with just one basis

function of each type.

Finally. we demonstrate the coupling of current from one strip to the next. In

Figure 5.8. we present results for the configuration of Figure 5.1 at 1 GHz. and of Figure

5.9 at 10 GHz. We start with a unit excitation on the first strip and note that the current

on the first strip very rapidly decreases, while the current on the other strips rapidly

increases. Thus. when microstrips are closely spaced. the coupling between strips is

predicted to be quite severe.

5.5 Conclusion

In this chapter, a frequency-dependent method of calculating the coupling between

a large number of parallel microstrips has been demonstrated. Using this method, it has

been shown that coupling between closely spaced lines can be quite severe. This has

significance in the area of VLSI interconnectivity. where parallel microstrip lines are packed

as densely as possible.

. . .. . . . . .

~~~~~. .. . . . ...................... ,.. ".,', .: . i'-'-,
"

=:' ,......... .. .



78

48

2-

0/

-2

-2 I In

-3 -2 -i0 I2 3

x (MM)

Figure 5.3. J, (x) for the first even mode.
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Figure 5.4. J, (x) for the second even mode.
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-4L,

x (mm)

Figure 5.7. 1. Wx for t~he second odd mode.
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Figure 5.8. Variation of f with z at I GIlz for each of the five strips.
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Figure 5.9. Variation ol / with z at 10 G11z for each of the five strips.
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CHAPTER 6

SUMMARIES OF OTHER ACTIVITIES AND IMPORTANT RESULTS

Other activities in this effort that have been reported previously in various technical

reports have included the study of coplanar transmission lines [55. 561 and fin lines [57. 581

and the investigation of dielectric antennas for millimeter-wave imaging applications [591.

In addition, a study of planar waveguides and components for millimeter-wave integrated

circuits has been carried out [601. In Ref. 60, the problem of discontinuities in planar

guides has been treated using the generalized variational method and the conjugate gradient

technique.

Summarizing the important results, we have shown that the spectral Galerkin

method is useful for calculating the evanescent as well as propagating modes in a shielded

microstrip. We have demonstrated that the accuracy of these modes is quite reasonable: the

field distributions corresponding to these modes have been plotted to provide a physical

insight of their structures.

Next, these modes have been used in a mode-matching analysis to calculate the

scattering from discontinuities in various microstrip configurations. Again, reasonable

results have been obtained for single and cascaded discontinuities; however, the problem of

accurately calculating the junction capacitance has presented some difficulties that have yet

to be overcome.

We conjecture that this is due primarily to our inability to calculate a sufficient

number of modes with enough accuracy, as evidenced by our check on the orthogonality of

these modes. In addition, the matrix generated by these modes was also found to be ill-

conditioned.

Next, we investigated an alternate method, viz., the Singular Integral Equation
8,

technique, for calculating the modes in a shielded microstrip line. The calculated values of

the propagation constant of the dominant mode were in agreement to four significant

.1,

.... -......-.... .....................-... :...-. -......... , .............. ,..- .:-::,,.
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figures. with results generated with the spectral Galerkin technique. This degree of

accuracy is exceptional. because the two methods that are being compared are quite

different. An attempt was made to calculate evanescent modes using the singular integral

equation technique. but these modes were not found. One possible explanation was that the

size of the matrix we could use was too small. Using a larger matrix was not practical

because the complexity of the matrix elements increases rapidly with matrix size.

The generalized variational method and the conjugate gradient method, both of

which are iterative techniques, have been employed to derive the solution to the

discontinuity problems in planar guides, but they have also yielded only limited success in

terms of the realized accuracy of the results. Thus, our conclusion is that further effort in

this direction is critically needed.

Finally. the dielectric antenna we have developed has been demonstrated to be

useful as an array element of an imaging system at 80 Gliz and 220 Gllz. Again, a

monolithic imaging system would be better suited for this purpose and it would be

worthwhile, in the future, to investigate such a monolithic system.
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