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SUMMARY

Due to the advances in the integrated circuit (IC) technology, more and
more components are being fabricated into a tiny IC chip. Since the number
of pins on each chip is limited by the phvsical size of the chip, the problem
of testing becomes more difficult than ever, especially in the VLSI (Very lLarge
Scale Integration) chips. This problem is aggravated by the fact that, in
nearlv all cases, integrated circuit manufacturers are not willing to release
the detailed circuit diagram of the IC chip to the users. Yet, as users of
the IC chips, to make sure that the implemented system is reliable, we need
to test the IC chips and the systems made of the interconnection of these
chips. The purpose of this project is to find efficient algorithms for
testing LSI/VLSI chips and LSI/VLSI-based svstems.

As a result of the rapidly increasing complexity of modern digital LSI/VLSI
systems, functional testing is attracting more attention than ever not only in the
computer manufacturing industry but also in the diversified potential applications.

Functional testing uses a representation of a digital svstem higher than
the gate-level testing. In functional testing, functional faults with respect
te the functional specification (e.g., addition operation in a processor) are
tested instead of a signal faults (e.g., a line stuck-at logical 0) in the
circuit representation. The purpose of functional testing is to validate correct
functional cperations of digital svstems according to their specifications. -
Using functicnal testing techniques, one cannot only reduce the test generation
complexity but also obtain a test set for testing the digital systems with the
same functions but different circuit design/implementation (e.g., parallel adder
vs., scrial adder).

U~inx RTi. tie behavior of a microprecessor is comprebensively described,

and functicnal faults derived from them can be studied. In 11]). two approaches

.
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for functional testing are given based on the RTL description. The first

approach constructs a data graph from the RTL description and uses the

existing algorithm such as the D-algorithm or path sensitizing method to generate
the tests for functional faults. 1In the second approach, the symbolic simu-
lations technique is used to generate tests for detecting faults in the cont:iol

signals. 1In [2], a formal definition of FRIL is defined as:

ki (t,¢) Ry« £(RLE ,uevey R )y 5 D F\?&Cf‘::‘)‘ -
VIS CRAG)
where, | DTIC TAu
) Unanqcir ce | r
k is the statement label Sl e
A2LETS py
t is the timing and ¢ is the condition to execute the statement By
Ry is the destination register Dist.ibation | o
Avzitabili !
Ry; is the ith source register ________)bq?y_ESFes
Dist Avdil and|or
f is an operation on R, Special
« represents data transfer L}‘

+ N represents a jump to statement n
For example, the following FIL statement No. 17: (Ts(é) hQ*R3+P5;+38 means
that when TS = Cs = 1, the sum of R3 and I% will be stored in R7 and then the
program jumps to statement No. 38.

Based on the above notation, eight catagories of fault can then be identified
as timing faults (t/t'), condition faults (c/c'), register decoding faults
(Ri/Ri)' instruction decodine (function selection) faults (f/f'), control
faults (n/n'), data storage faults ((Ri)/(R;))’ data transfer faults («/<«')
and data manipulation (function execution) faults ((f)/(f')). This set is

functional comprehensive because the behavior of a CPU car be described

by a sequence of RTL statement. Three procedures for testing those five

fault catagories (except timing, condition, and control faults) are derived. -
The testing requires the creation of executable sequences to form a "sensitizing"

path which leads from a faulty statement to a statement nroducing faulty output




LG A a2

O T Py e — "

.

vry—-j*

—p———

P S e R e T T T rrTTTT—m— ‘,m' M M e e s o s an B g a, o i b B A e el o o r—y

.information. The RTL technique seems to be a promising approach for functional
testing.

Recently, we presented three algorithms to test the instruction decoding
function of microprocessors [3]). The algorithms are based on the knowledge of
sceme timing and control information available to users through microprocessor
manuals and data sheets. The tests are functional in nature. We establish the
order of complexity of the algorithms presented in this paper. As an example, the
test complexity for a microprocessor is computed and the results are compared
with a known algorithm.

In [4] we present the state-of-the-art for the functional testing of LSI/
VLS] devices with special emphasis on microprocessor testing. Various types
of IC chips are briefly discussed. Different approaches for testing the
functional faults of LSI/VLSI are surveyed and the comparison of these methods
are given. Fault models for representing the faults and fault coverage of the
tests are discussed. Some of the important unsolved problems and current trends
in testing VLSI are pointed out.

A new approach for testing VLSI circuits is presented in [5]. Through
backward critical path tracing, a test and all faults detectable by the test
are generated simultaneouslyv. Therefore, the expensive fault simulation is
completely eliminated. We present a critical path test generation procedure for
dicital svstems described by hardware description language (HDL). A multiplication
circuit described by a HDL is uvtilized for demonstrating the test generation method.

In this report, two functicnal testing techniques are presented with in-
depth technical discussion. The first technique (Part 1) provides a functional
testing meithod for microprocessors. Major issues in testing microprocessors are
clarified and defined. The second technique (Part 11) is a new algorithm to
svetematically perform functional test generation for digital LSI/VLSI systems

using machine syvmbolic execution technique. Skills and concepts developed in the

area of artificial intelligence (AI) are applied.
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The first technique (Part 1) is for testing microprocessors [6]. Among the
variety of LSI/VLSI devices, microprocesscrs have the most widespread use and the
highest functional complexitv. Therefore, recently, testing microprocessors has
received a great deal of attention. Several deterministic testing methods have

been proposed. The more important approach to the functional testing of micro-

processors is the Thatte and Abraham's method which has been widely cited in
subsequent literature, but their fault model for the instruction execution
needs to be generalized. For example, in an instruction decoding fault Ij/1,+1k,
it is assumed that instcad cof execution I,, beth instructions Ij and Ik are
executed to completion. This is not general. 1In order to make the fault model
mere general and practical, partial execution of an instruction under fault should
be considered. 1In addition, a microprocessor is a type of complex sequential
machine. The current approach is to test microprocessors by instruction execution.
Generally, befcre executing an instruction-under-test, we have to write certain
data into some registers, and after extending the instruction, read the contents

cf the registers. Therefore, if the write or the read instruction is faulty,

we mayv not be able to test the instruction-under-test. To solve this problem,

Thatte and Abraham have to label instructions and define test order in detail

before testing. This makes the test procedure more complex.

In our work, we first establish a fault model for microprocessors,
erphasizing the control fault model defined at the register transfer language (RTL)
level, since it is convenient to represent the instruction decoding faults and
other control faults at such a level. Then we consider the basic instructions
for the write and read register functions as the kernel of microprocessor. This

kernel can be represented by a sequential machine. Based on the fault model, we
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can use checking experiment to verify the kernel. Thus, testing microprocessor
is divided into tow steps, i.e. guarantee the correctness of the kernel first,
then use the kermel for testing each instruction. Therefore, the complexity of

test generation will be reduced.

The second technique (Part II) is based on two major foundations [7].
First, after the standard syntax of a register transfer language is defined. a
registcer transfer level fault model is developed. All types of faults covered
by the fault model wcre analyzed and the numbor of faultes was reduced.

Secondly, based on the RT-level fault model derived, the technique of symbolic
execution was employed. Symbolic execution is a kind of program execution
technique which manipulates symbolic variables instead of variable values during
program execution. 1In A.I., this technique is intensively used for automatic
theorem proving., program verification, programming in logic and many other
interesting topics. Since test generation of LSI/VLSI systems is also one of

the important issucs in A.I. applications, the symbolic execution technique which
is pepular in A.I. application was adopted. This powerful technique seems to
provide a promising solution for future testing problems of digital LSI/VLSI

systems.
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PART 1 J

I. INTRODUCTION

The development of integrated circuit technology hes resulted in a wide
range of applications for microprocessors. Tecting of rmicroprocesscrs is a
difficult probler because of the complexities cf microprocessors. The problem

is more serious for users due to lack of information on internal implementation

Al e o el din b

of rwicroprocessors and other VLSI chips. Recently, severz]l deterministic testing
methods have been proposed to solve this problem. These testing techniques
are essentially based on functional level {1-11].

A microprocessor is a type of complex sequential machine. The current )
approach is to test microprocessors by instruction execution., Generally,
before executing an instruction-under-test we have to write certain data

intc sore registers, and after executing the instruction, read the contents

of the registers. Therefore, if the write or the read instruction is faulty,
we may not be able to test the Instruction-under-test. To solve this prchlen,
Thatte and Abraharc [3] have to label instructions and define test order in

detail before testing. However, they do not consider the partial executicn .

of an instruction. So for instruction decoding fault Ij/I +1I it is assumed

3 k’

ttat instead of executing Ij’ both instructions Ij anc Ik are executed to
completion. It is more general and practical to consider partial execution of
an instruction under fault. Our fault model allows this.

Atraham and Parker [5] proposed a sirplified fault model., First, one
tests all internal registers, then executes all instruction and data manipulaticn
furictions.

In this paper, we consider the basic instructions for the write and read

register functions as the kernel of a microprocessor., This kernel can be represented

by & sequential machine., Based on the fault model, we use checking experiment
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to verify the kernel. Then we use the kernel for testing each instruction.
The control fault model is established at the Register Transfer Language (RTL)
level, since it is convenient to represent the instruction decoding faults and
other control faults at such a level.

Section II presents a fault model for microprocessors, emphasizing the
control fault model defined at the RTL level instead of the instruction level.

In Section III, after examining most existing off-the-shelf microprocessors,

ve derive testing requirements based on different types of operationms., In
Section IV, we define the write and read sequences as the kernel of a micro-

Then Section V proposes a kind of test data which is quite powerful.

VII discusses the testing of control faults. Finally, conclusions are given

processor.
Section VI presents the verification of the write and read sequences. Section
in Section VIII.
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I1. FAULT MODEL

The functions of a microprocesscr are mainly performed by instruction
execution. The sequence of operations for an instructior can be descrited
by RTL. We consider that an instructior consists of a series of RTL
statements. The tvpical ststement is definec as

(conditicns): Def (Sl, 82, e Si’ ces)
vhere

D - destination

Si - Source

f(Sl, SZ’ esey S,y e..) - operation

i’
Destinations and sources may be Internal registers of a microprocessor

or external to the microprocesscr (i.e., data bus, address bus, etc.). We are

only concerned with those internal registers whick are of interest to users, sc
we do not consider implied registers such as buffers. Fer example, data transfer
from meriory to memory can be described as DBj*DPi, instead of Buffer‘-DBi £0llowed
by DBj+Buffer, where DB denotes the datz bus which represents data input or output
of memory, i,j denote different bus cycles, DBi (read from memory) is ahead of

[ DBj (write into remory).

J After exarmining most existing cff-the-shelf microrrocessers, e.g. Intel 8080
and 8086, Zilog 80 and 800C, Motorola €800 and 68000, the RTL-1like operations

car be divided into twe classes, transfer operations (class T, D«&), and
arithmetic and legical operations (class A). Clases A carn be subdivided into

si. subclasses based on the combirnation of destind8tions and sources as showr in

Table 1, whkere the content of flag bits constitute a status register.
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Class

Type of Expression

Cperation

Al

D«f (D)

BIT SET

BIT RESFT

BIT COMPLEMENT
INCREMERT
DECREMENT
DECIMAL ADJUST
SEIFT

ROTATE
COMPLEMENT
KEGATE

CLEAR

A2

D«£(D,S)

ADDITION

ADDITION WITE CARRY
SUBTRACTION

SUBTRACTION WITH BORRCY
AND

OR

XOR

D£(8)

EXTEND SIGN

A3

De£(S1,5,)

ADDITION, D*Sl+52

D+f(D,Sl,SZ)

ADDITION, D«D+S5.+S,

172

Ab

D*f(Sl,SZ,SB)

ADDITION, D<S +S,+5

] 3

AM

Dl,Dg*f(Dl,S)

MULTIPLY
DIVIDE

AF

Flags+«f (S)

BIT TEST

Flags+f(Sl,Ez)

COMPARE

Flags+f(sl,52,...)

Modifving flags for all

arithmetic and logical instructiors .

Table 1. RTL-like Operations
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Note that the control operations in RTL control statecents such as
coenditional branch are not listed because we can use RTL assignrent statements
with conditicns and expand the RTL description for imstructions with leops.

A microprocessor usually can be divided into two sections: the data
processing part and the control part [2,11)}. One can define faults for each

part. In this paper, we emphasize the control faults.

£ Data processing faults

(1) Data storage fault (R)/(R)'

This means that the content of register is changed from (R) to (R)' due
to faults such as stuck-at, bridging and pattern sensitive faults.

(?) Data transfer fault <«/<°

The fault occurs in the transfer path between the sources and the

destination. This type of fault includes stuck-at, bridging and pattern sensitive

faults,

(3) Data manipulation fault (£)/(f)'

This is the operation execution fault, Under this fault, the operation
f 1s executed, but the result of operation is wrong.

E. Control faults

This kind of fault involves register decoding faults, instructior decoding

faults and other control faults. A register decoding fatlt means missing or
changing the selected register, or selection of an extre register, denoted by
R/¢, R/R', and R/R+R' respectivelv. For instruction decoding faults, we

consider that an instruction can be executed partially, It means missing or

changing the selected operation, or selection of an extrs operation in RTL.
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In this case. the instruction decoding fault may be Ij/¢, Ij/AI,, lj/Alk’
]

1./1,, I./AL.+AY , 1./1.441,, 1./1.41,, and so forth where Al means part of
A SO R RS S R i3

k k

instruction I. The other control faults include instruction execution

sequence faults, condition faults and so on.

From the above observation, we assert that it is appropriate to represent
the control faults at the RTL level. Therefore, we will define the above
control faults at such a level. Let f denote D*f(Sl,Sz,...), which is an operation
on the instruction-under-test, and fe{f}, where {f} is the set of RTL operations
ot a microprocessor. Let f' denote D'«f'(S!,S!,...), which is an unexpected
(faulty) operation, and f'e{f}.

We now define three classes (i.e. nine subclasses Fl, F2, ..., FO) of
control faults as follows:

(1) /¢~ No operation is executed.

Fl. £/¢

(2) £/f' - Instead of performing operation f, another operation f' is
executed, It contains twc subclasses of faults,

F2. ¢f/f': Here ¢ means that the destination registers D and D' are
differert and the fault is f/f',
F3. of/f': ¢ denotes that registers D and I'' are the sane.

(3) f/f+f' - In addition to operatior f, another operation f' is also
executed, It can be subdivided as followvs.

(32) Registers D and D' are different.

F4, 8£/f+f': The source register list of f and f' does not include

D' and D respectively., We are not concerned with the evecution order




of f and f°'.
F5. &f/f'f: The source register list of f includes D', f£' is executed
before performing operation f; i.e. the execution order is
1. D'«f! (Si, Slyeed)
2. D<«f (51,555...,D"%)
where register without * denotes its content before executing the operation,
register with * denotes its content after executing the operation.
Fé., Of/ff': The source register list of f' includes D and the execution
order is
1. D«f (Sl'SZ"")

2, D'«f' (S',Sé,....D*)

(3b) Registers D and D' are the same. When the source register
list of f and f' does not include D' and D respectively, 1f the execution order
is f'f, the fault does not affect the execution of f, If the execution order is
f f', it is the same as the case with the fault of/f'.
F7. cf/f'f: The source register list of f includes D, and the execution
order is
1. D«f' (Si,Sé,...)
2. Def (Sl,Sz,...,D*)
F8. c¢f/ff': The source register list of f' includes D and the execution
order is
1, D«f (51,52,...)
2, mf'(shs&..unﬂ
F9. ¢f/fLf': Both f and f' are executed at the same time.
greee)

D"f' (S',S',...)

Def (S,,S

where I denotes logical AND or OR function depending on the circuit implementation.

In this case, the final content of the destination D is the result of the

Y L Y . .
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composite value {(ive. the result of the AND or OR function) of f and f'.

Note that the above contrel faults can occur at any place in an instruction
execution sequence., This control fault model can cover register decoding faults,
instruction decoding faults (including partially instruction execution),
instruction execution sequence faults, etc., since anv control fault carn always
be defined as missing, changing, or extra RTL opeations and will cause registers

to have wrong contents,
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I11; REQUIREMENTS FOR TESTING CONTROL FAULTS

Our purpose is to test the execution of microprocessor instructions.
Therefore, the objective of test pattern generation is tc find the irnitial
data in registers (test data) needed for testing functions of an instruction.
This test data must satisfy certain requirements. From the control fault model
given in Section II, we can obtain various requirements for testing control
faults.

Let us establish the following notatiocn. For a fault-free operation f,
we have

V, = the value of register i.

i

VS:.L = the value of the operand 1in source register Si.
VD = the value of the operand in destination register D,

VD* = the value of the operation result stered in D.

For a faulty operation f', we obtain VS', VD' and VD'* instead.
Theorer 1. Control faults T/¢, T/T' and T/T+I' can be detected if the data
values of registers satisfy the following requirements:
QITl. V, # Vis d ¢33
QTT2. V¥, LV, FV, 143
Proof. We shall prove this theorem by conmsidering the nine fault classes
defined in Section II.
(1) For fault F1 (T/¢) and F2 (8T/T'), in order to verifv transfer
operation T, one needs VS ¢ VD,
(11) For fault F3 (0T/T'), the results ¢f T and T' should be different,
i1.e. VD* ¢ VD'*, To cbtain this result, we must have VS ¢ V&',
(111) For fault F& (ST/T+T') and F5 (8T/T'T), we need only to detect the

extra operation T', Therefore, VS' ¢ VD',
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(iv) Fault F6 (ST/TT') means that transfer operation D+S is performed
first, then D'«D*, In order to detect the extra operation T', one needs
VS ¢ VD',

(v) Fault F7 (oT/T'T) yields D<S' followed by D«D*, Therefore, we obtain
the requirement VS' ¥ VD.

(vi) Por fault F8 (oT/TT'), we have DS, then D+D*, This fault does not
affect operation T. In order to verify T, we need VS # VD,

The above six requirements beleng to QTT1.

(vii) For fault F9 (CT/TLT'), the composite value of both results of T ané
T' should be different from the correct result of T. i.e. VSLVS' # VS which
belongs to QTT2.
Q.E.D,

Theorem 2. Control faults T/A' and T/T+A' can be detected if the data values
of registers satisfy the following requirements:

QTAl. V, # V. o, 1 LN

QTA2, fA $ VS

QTA3. £, ¢ VD'

QTA4, VSLfA $ VS
where fA is the result of operation cf class A, 1.e. fA = fA (VSi, vs!,...).

Proof. The proof is similar to the proof for Theorer 1. Since A' instead
of T' is performed, we can change VS' to fA in the requirements (11), 11i1),
(v) and (vii) ir the proof for Theorer 1 to obtain the corresponding
requirements for Theorem 2.

(i) For F2 (8T/A'), VS ¢ VD, (QTAl).

(i1) For F3 (0T/A'), VS # fA’ (QTA2).
(1i1) For F4& (8T/T+A') and F5 ({T/A'T), fA ¥ VD', (QTA3).

(iv) For F6 (8T/TA'), it means that D«S first, ther D'*fA (Si,Sé,...,D*).
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We need fA (VSi,VS' sesesVE) ¥ VD', Since VS can be selected as any initial
data value, 1t can be considered as one of several source operands. Therefore, i

we can rewrite fA (vs!, vsé seessVS) ¥ VD' as f; ¢ VD', (QTA3).

(v) For F7 (cT/A'T), f; # VD', (QTA3).
(vi) For F8 (cT/TA'), it implies D+S followed by D*f; (S',Sé sesesD¥), I
This requires VS ¥ f; (VSi,VSé,...,VS). Here VS can be considered as a
destination operand 'VD'. So we rewrite the inequality as VD' ¥ f', (QTA3). 4

(vii) For Fa (oT/TLA'), vstA # VS, (QTA4). Q.F.D. ’

Theorer 3. Control faults A/¢, A/T' and A/A+T' can be detected if the data

values of registers satisfy the following inequalities.

QrTl. £, Y

T Q!
QAT2. £, # VS
QAT3. V, ¢ \j » 1 #]
QAT4. £, # VD'

A
)

QaT5. f, (Vs') # £, (VD)

]
QAT6. fA L vs' ¢ fA

where fA = fA (VSI’VSZ"")’ fA(VD) = fA(Vsl.Vsz,...,VD), fA(VS') =
£, (V50, US,,...,78").

Proof. Since arithmatical and logical operations instead of transfer
operations are considered here, we can change VS to fA in the cases (1), (ii),
(iv), (vi) and (vii) of Theorem 1.

(1) For Fl and F2, fA ¢ VD, (QAT1).

(11) For F3, f, # VS', (QAT2).
(111) For F4 and FS, VS' ¢ VD', (QAT3).

(iv) ¥or F6, fA ¥ VD', (QAT4).

(v) F7 (cA/T'A) means that DeS' followed by D‘fA(Sl'S ssessD*) which vields

2
fA(Vsl, VSZ,...,VS'). When there is no fault, fA(Vsl, VSz,...,VD) is obtained.

...................................
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Thus the condition for detecting this fault is fA(vsl’ Vs ve')

2.0... s

¥ fA(vsl,vsz,...,VD), (QTAS).

(vi) For F8, fA ¥ VD, (QTAl).

{(vii) For F9, fA L vs' ¢ fA' (QTASG). Q.E.D,

Theorer 4. Control faults A/A' and A/A+A' can be detected 1f the data values of
registers satisfy the following inequalities.
QAAl. fA ¥ VD
]
‘ QAA2. f, ¥ £

QAA3. f} ¥ VD'

Qams. f£)(f,) #.vD'
QARS. £, (£3) ¥ £, (VD)
Qar6. f, (£,) 4 f,

f X J
QaA7., £, L £, ¢ £,

where fA(fA) = fA(VS', VS',...,fA), fA(fA) = fA(vsl’VSZ""’f' ).

A

Proof. For the same reason, we may change VS to f,, and VS' to fA for

A
cases (i) te (iii) and (vii) in Theorem 1 to obtain QAAl to QAA3 and QAAY
respectively. In addition, since the results of A and A' may affect each other,

we can obtain QAA4 to QAAG. Q.E.D.

Note that for requirement QAA7, if operation f, and fA of class A are

A
executed in the same unit (e.g. ALU), ther beth results of fA and fA can no
longer be considered as obtained separatelv., Inctead, QAA7 mav be considered

as a data ranipulation fault (fA)/(fA)'.

.......
............
----------
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IV. WRITE AND READ SEQUENCES

As a nicroprocessor is one type of sequential machine and all internal
registers are wemory elerwents of the sequentiel machine, the content of registers
represents the state of the sequential machine. Therefore, the following gcneral
procedure is uvtilized for testing rmicroprocessors,

1, Ipitizlization of state of registers,

2. Execution of the instruction-under-test.

3. Reacd the state of registers.

In fact, Steps 1 and 3 consist cof write and read register sequences respectively.
Obviously, if we can guarantee the correctness of Steps 1 and 3 first, then
the testing procblem will te simplified.

The testing approach used here is a kind of open loop testing [5). 1t
implies the use of a test equiprent which provides the stimuli to the micro-
processor and cbserves the responses from the microprocessor,

Now let us discuss write and read sequences which are used for writing
and reading the register states of a microprocessor, They consist of several
basic instructions, called the kernel of microprocessor. These instructions
of the kernel can be carried out by a sequential machine, therefore, we car
use & checking experiment to verify the kermel.

A, The kernel of microprocessor

Definitiorn 1. Kernel instruction set - A small subset of instructiors of &

micropreocesser which can be used for constituting the write and read register
sequences.,

Definition 2. Register set - All internal registers of a microprocessor from the

view of the architecture or programning.

Definition 3. Kernel state - The register state, i.e. certain set of data values

of the registers.
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Definition 4. Kernel input - The write sequence for writing a set of data into

the registers, or the read sequence for reading out the contents of the registers.

Definition 5. Kernel output - The set of data values of the registers which are

read cut by the read sequence.

B. Kermnel instruction set

There exists many choices for the kernel instruction set. In order to

ey e an o

Py

keep the kernel srzll, the following requirements should be satisfied.

1. The purber of imstructions in the kernel instruction set should be
small,

2. Functions of each kernel instruction should be as simple as possible.
Fer instance, a kernel instruction contains mainly transfer tvpe of operationms,
or small number of RTIL operations.

32, In erder to simplify addressing, the priority order of checosing the
addressing mode of an instruction is as follows.

. For write register instructions: Immediate, Direct, Indirect.

. For read register instructions: Direct, Indirect.

For the existing off-the-shelf microprocessors, most registers can be
vwritten into or read frorm directly. These registers are called direct access
registers. Others are indirect access registers which can be accessed through
the direct access registers in certain order by using transfer instruction
arong registers,

c. Kernel state

In order to simplify the testing, during the checking experiment, we only

use a few states for the good kernel, i,e. we define several sets of data values

for the registers. Therefore, we should choose the data values (test data)

such that they can cover as many faults as possible.

P—




s Wy —

V. TEST DATA

We use the checking experiment tc verify the lkernel ¢f e microprocessor.
The main task is to decide how manv states of the kermel and what test dzta we
use.

Abrahar and Parker [5] use the L-out-ocf-r codes for their "register read
test" procedure, where r is the width of a code word (i.e. the length of register),
h and k is the nurber of 1's in the code word., As we will see, this type of code
is powerful since it can be used as test data to cover mest contrel faults by

. using fewer data. We will use the k-out-of-r codes for verifyving the write

and read sequences as well as for testing control faults. The k-out-of-m codes
can alsc detect stuckeat type fsults, but do not guarantee to cover all data
processing faults.

To simplifyv the testing, we w11l only use transfer operations of the kernel
instructions in write and read sequences, Therefore, we only need to consider

the requirements of Theorems 1 and 2,

A, QTT1, QTAl and QTT2

The k-~out-of-r codes used as test data can satisfv requirements QTT1,

QTAl and QTT2 (\’i # V, and Vi I Vj ¢ Vi). This is because in the k-out-of-m

h
codes, all code words are distinct and the AND(OR) operation cf any twc cole
words will decrease (increase) the number of 1's in the code word, thereby the
new code generated is different from both original code words.
8. TAZ

The requirement QTA2, fA # VS, is for detecting fault -1/A". Here D and
D' are the same register. During the checking experiment for the kernel, there
¢xists an input leaving the Kernel state unchanged, i.c., the transfer operation
1 (in write sccuence) keeps VD (=VD') unchanged. Th&rufﬁr‘,fi # US becomes

f', # VS = \D = VD' which belongs to QTA3.
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The requirement QTA3, fA(VSi,VSi,...) ¥ VD', is for detecting an extra

operation. We list the restrictions of operands (test data) for detecting

operation of class A in Table 2.

Extra Operations

Restrictions of Operands

BIT SET

BIT RESET

BIT COMPLEMENT
INCREMENT

DECREMENT

DECIMA1 ADJUST

SHIFT

ROTATE

COMPLERYENT

NEGATE

CLEAR

ADDITION

ADDITION WITH CARRY
SUBTRACTION

SUBTRACTION WITE BORROW
AND

OR

XOR

EXTENI SIGK

ADDITION, D<—S1 + 82
ADDITION, DeD + Sl + S2
ADDITION, D*-S1 + S2 + S3
MULTIPLY

DIVIDE

BIT TEST

COMPARL

Modifying flags

@
@

No
XNo
No

(all 8s), 1 (all 1s)

“ C)
jo Jo

s =
o] (o]
—

b U S S S
1o 1o 1o o lo
[}

[V

-
'
=

k-out-of-r codes

k-out~of-r codes

k-out~of-r codes

$0, 1

the least significant bit LSE =1
¥ 0; VS] + Vs) # G

$0, 1
4 0, 1

Tatle 2, Restrictions of operands for detecting faultvy
arithmetic or logical operations

R At
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GD If we use two tests in which the socurce operands are cormplemente of
each other, ther one of the tests can detect the faulty operation.

C) These operations only set or reset the flags. We use two tests with
the identical source operands and twe sets of flags which are complements to each
other., The faulty will change one of the flags.

(3 The execution of DECIMAL ADJUST (to add certain values) depends on the
value of source operand and the flags. We can use either method in case 1
or either wmethod in case 2 to detect the operation.

() Cperation D*S1 + 82 + 53 is only used for memory address addition,
Here D means external address bus, In this case, the unexpected operation
does not affect the write and read registers. Hence it needs not to be
considered for verifying the kernel.

C) During the checking experiment for the kernel, if we have considered
the main orerations in arithmetic and logical instructions as the unexpected
oreration, then we need not consider modifying flegs which are auxiliary
operations.,

For other operations, the restrictions are obvious. For example,
ADDITION WITH CARRY, D'«D' + S' + CARRY , if CARRY = O with the restriction
VS' # 0 or CARRY' = 1 with the restriction is VS' # -1, then VD'* ¢ VD',

Since we use k-out-of-r codes as operands, these restrictions can be satisfied.
For operation D'+D' + S! + 5! , since the negative value of any k-out-of-n

1 2
code word will not be any k-out-of-r code, i.e€. Vsi + VS! # 0; so VD' + vsi + Vvs}
‘< -
# VD', For operation D'*Si + Sé, we can divide the k-out-cf-r codes into two
groups with different LSB (lLeast Significant Bit)., These two groups corplement

each other., The group with the restriction LSB = 1 will be used for testing,

.....
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For operation ROTATE, the restrictior is for the case of the odd number of
shifted bits., Otherwise, we need otherrestriction (e.g. using subset of
k-out-of-r codes as operands).
D. QTAL
The checking experiment does nct guarantee requirement QTA4, VS I FA ¥ VS,
For exarnple, for the normal trensfer operation T, D+S, with Vs = 111000, VD = 011100
(using 3-out-of-6 codes), 1f there exists a fault OT/TLA' ard the extrs
operation A' is SHIFT LEFT, D<SHL D, then fA = 111000. If L is an AND function, L
then VS L fA = VS, Thus QTA4 cannot be satisfied. Therefore, we need another

test procedure to reredy this. The remedy is to change the value of S in the operaticn

4 D~S to 1 or C depending upon L being AXD or OR respectively. TFrom the above example,
{ we see that if [ 1s an AND function, let VS = 1 then QTA4 becomes fA # 1 which
can be satisfied. €Similarly, if L is an OR function, let VS = 0 and QTA4 changes
to fA ¢ 0.

Nov let us check this remedy method for all operations of class A. Note
that we only change the value of S in operation D+«S, and D' in operation A' can
! be substitutec by D,
2 (i) TFor class Al, D*fA(D). If ve use k-out-of-m codes, the nev
recuirenent QTAL', f; # 1 (0), depending on [, can be satisfied except the
operation CLFAF. withk I being OR. But in thic case, the result of fA is alwavs
0 which does nct affect the operation D<E.

(11) For class Ay D*fA(D,S'). Nc matter S' is the same register as S

or not, QTA4' is true except the following case: when S' and S are the same

Y

register, ther for QTAL', fA $1 (fA is operation CR and L is AND) and fA ¥0

i aanr ua

(fA is operatiorn AND and L is OR) cannot be met. But in this case, if S' and
S are the sace, VSLfA is alwavs the same as VS, the fault doos not affect IS,

i.e. VSL(VDWS) = VS and VSV(VDAVS) = VS for anv operands D and §

“e

1
1
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(i1i1) For the EXTEND SIGN operation, D+fA(S'). the result of fA is 0 or 1.
Similarly with case (1), either QTA4 can be met or the fault does not affect
operation T.

(iv) Fcr classes A3 and AF, QTA4 can be satisfied. For the sare
reason as QTA3, we need to consider neither mwodifying flags operation nor
])4-8l + S2 + 53.

(v) For MULTIPLY and DIVIDE, since the execution period of these operations
generally is longer than that of transfer operations, fault Of/fLf' cannot exist
an¢ we do not consider QTAZ,

In summary, during the checking experiment we only need three sets of
test data for internal registers. Let n be the number of the internal registers.
t be the length of registers. Suppose that r is even., Let V dencte a complete
set of k-out-cf-r code words, Usually, k = %. vl = (m?Z) will be the maxinum
number of distinct codes. We divide them intc twe groups, !0 and Yl with different
LSB. These two groups are cormplementary to each other. Note that for most
ricroprocessors, o is even, and {!J > 2n.

Let {a} = {a1’°2""’°p}’ {a} = {51,52,...,-&n}, {a) and {a} belongs to

XO arc V, respectively. We now comstruct four sets of data as follows,
S

{ Flag register Other registers
{ o , Ops Ogy eee s O ;
|
5 CH L T,
o, I N
Ei Cps O30 see s O

|

In order to satisfy requirement (QTAJ}, we can choose anv three sets of date ss
the initiel velues of registers (test data). In fact, one needs a few more

dats as externzl bus inputs during testing. Therefore, the final number of code

-
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words in {a} and {0} is larger than n.

It should be pointed out that the program counter (PC) is easy to test. We
can put a direct addressing branch instruction at the end of a write sequence.
This instruction stores a particular value into PC, then the content of PC is

checked at the beginning of the read sequence by observing the address bus.
VI. VERIFYING WRITE AND READ SEQUENCES

Now we will derive the checking sequence for the kernel. As we mentioned
before, we only use three sets of test data for the kernel, namely a, b and c.
First of all, just like a sequential machine we have to obtain a flow table of
the kernel. We consider two cases.

Case 1. For a microprocessor without indirect access registers, we obtain

the following flow table.

N 5 v
Ma kb kc R

—

A A GD B C) C (:) A,a ‘!’
B INO) B ) c ® B,b (1D
C A0 B ® c ® c,e (02

Case 2. For a microprocessor with indirect access registers, we obtain

the following table.

W W W R

A A @ B @ c D |ax,a
s @ B c @ |sxb Q0

C A @ B ® c @ lex,e @D

A% A @ B C ax,ax (22

B A ® B (1D c @D |B*.px @

Cx A ® P} c cx,ex (24)
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wvhere wa, Rb, Wc- wvrite sequences for writing &, bt and ¢ respectively.

R - read sequence.

A, B, C, A%, B%, (C* - Kernel states. A, B and C are the states after
aprlving the corresponding write sequences wa, Vb, wc. A*, B* and C* are the
states after applying read sequence R.

a, b, c, a*, b*, c* -~ Kernel output sequences produced by read sequence R
for states A, B, C, A%, B*, C* respectively,

(@ denote the state transition i,

Since we only use three sets of test data, the number of states of the kernel is

constant, It means that the above flow tables are independent of microprocessors.
Therefore, we can easily obtain the checking sequences with the same form,

There are three requirements to derive a checking sequence {12]

1. Initialization of the machine (kernel) state using sychronizing
sequence or horing sequence.

2. Idertify all machine states using distinguishing sequence.

3. Verify each transition using distinguishing sequence.

For our kernel, there exists sychronizing sequences Wa or W

b

distinguishing sequence R. Therefore, we cen easily derive checking sequences

or W and
¢

as follovs,

Checking Sequence 1 (for case 1)

Initialization

// Identify all states
! i AN
wnnwbxnwnP.waRwRWkawan
& Vs w S w & wa w P b o8
@\(?@ ®@e e o © @ 6o ® 6 0
Y TR

Verifv all state transitions (i.e. next states).




e T T PP P Ty

Checking sequence 2 (for case 2)

Initialization

Identifyv all st tes

// ] '
R R R WERRR W R R R “ R “ R " R ﬂ R W R W R W R

//

c b
N v v\ o ¥ \» V o \»r o/ > v ~/
é? @@34 ae ©® © € © ¢ & ¢
tose
Verify all state transitions (i.e. next states)
WaKaRWVbR\bbR WbY.'CR WCWCR WCWaR Vach WCWbRWbWaR

v [ o N~ A% v L4 A 4

> @ @© 6 &6 06 © 6 o

Finally, we can obtain two test procedures for verifying the write anc read

sequences as follows.

Procedure 1: Checking experiment

1. If 2 microprocessor does not have indirect access registers, ve use
checking sequence 1,

2. 1f a micreoprocessor has ind.rect access registers, we use checking
sequence 2.

Procedure 2: Remedy testing

For each of the three sets of register values a, b and ¢, do the following

for each register.
1. Initielization of all registers.

2., ¥rite 1 or 0 into the given register depending on the circuit

izplementation,
3. Read the given register.

Therefore, fror the previous discussion in this section, we obtain the fcllovwing

theorern.

Theorer 5. Procedures 1 anc 2 can verify write and read sequences, ard after L

that the registers of a microprocessor can be initislired teo any vsluec,
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VII1. TESTING CONTROL FAULTS

During the verification of the correctness of write and read sequences,
we are only concerned with certain transfer operations (not all RTL operations)
in the kernel instructions. Therefore, when we test instruction decoding and
other control faults, we need to test all instructions included in the kernel.
Note that obviously, register decoding faults can be detected by verifving write

q and read sequences using the k-out-of m codes.

Procedure 3. Testing instruction decoding and other control faults

For each instruction, do the following test,

1. Initialize register state using any particular initial values.

1 (test data)

2. Execute the instruction-under-test.

3. Read register state.

Note that we should first trv to use three sets of data values a, b and ¢
at Step 1.

Generally we need several tests for each instruction to detect the
instruction decoding and other control faults. Obviously, the lower bound
of the number of tests using Procedure 3 for each instruction is two. This
is because any kind of microprocessors has several pairs of conditional branch
instructions bzsed on two different values for the same condition sourse.
Therefore, when anv instruction is under test, in order to detect an unexpected
branch instruction due to a fault, we need at least twc test patterns.

The upper bound on the test for each instruction is dependent upon the
microprocessor-under-test. We can roughlv estimat the order of tests for
detecting instruction decoding faults. We consider n, instructions to be
tested, assume that each instruction ccrresponds to an operation, class T or
Class A, used for distinguishing instructions from each other. Let n and

IT

. deniote the number of instructions which have operations class 1 and
2y
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class A respectively, 1i.e. nI = n +n

A, Testing imstruction class T

1. The case of Theorem 1

Since for some condition branch instructions, their operations belong to
class T, and they are condition transfer operaticns. In order to detect this

unexpected operation T', two tests, in which test dataz are complement to each

other, are sufficient,

2. The case of Theorer 2

First of all, we use three sets of initial values a, b and ¢ for satisfying
the requirements QTAl and QTA3. 1In crder to satisfy QTA2 and QTA4, we can
modify a, b and ¢ separately as new test data, As we have discussed in
Section V, 1f the instruction-under-test has a transfer operation D+S, we can
change VS in original data a, b and ¢ to VD, then QTA2 becomes QTA3 which can
be satisfied. Similarly, we can change VS to 1 (or 0) to satisfy QTA4. Here
we need nine tests altogether. Thus, the order of the nurber of tests for
testing instruction class T ic O(nIT).

B. Testing instruction class A

1. The case of Theoren 3

Test data a, b and c can ccver QAT1 and QAT3. Similarlv, in order to
satisfy QAT2, QAT4, QAT5 and QATé, we can modify &, b and ¢ in turn, TFirst,
we change VS' and VD' to VD for covering QAT2 and QAT4 respectivelv, These
changes are dore for each register, sc it needs 3n tests, where n is the nurber
of registers. Then we change VS' to a particular value for covering QATS and
QAT6 separately., It needs 6n tests. So the total number of tests for each
instruction in this class will be 9mt3.

2. The case of Theorer 4

Ve need three tests using &, b and ¢ for covering QAAl and QAA2.

o
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Then we attermpt to find five particular tests to satisfy QAA3 through QAA7 for
each unerpected operation A'. So the number of tests for each imstruction in
; 2 4+ g - = -2,

this class will be 3 S (nIA 1) ) L

Therefore, the order of the nurber of tests for testing instruction class A

)
. + r° )., The order of the number of tests for testing instruction

is 0 (n LA LIA) g
decoding and other control faults is O (nIT + n.n,. + niA). Note that using

Thatte and Abrahar's approach [3] the order of the number of tests for testing

s
instruction decoding faults is 0 (ni).
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VIII. CONCLUSION

r Any deterrinistic functional testing approach for microprocessors always
involves the initialization and the reading of internal registers in each test,
i.e. write and read sequences. If we devide the testing into two steps and

guarantee the write and read sequences' correctness first, then the complexity

AR

of test generation will be reduced.

Since contrel faults possibly lead to the partial execution of an instruction
or changing the execution sequence, we assert that it is reasonable to define
a control fault model at the RTL level instead of the instruction level,

For test generation, usually one derives a test for a given fault. But if
we find a test to cover as many faults as possible, then test generation will

be more efficient. 1t seems that the k~out-of-m codes for test data are quite

powerful.

The function of write and read sequences can be modeled as a small sequential

P

machine which is almost independent of microprocessors. Therefore, we can easily
use the checking experiment to verifv the sequential machine.

Further work includes the enumeration of the control faults at the RTL level
for the generation of tests to cover all possible faults.

In addition, for the data processing part of a microprocessor, it is easy to
handle storage faults and transfer faults. For data manipulation faults, it
scems that the best way is to find a set of test patterns to exercise each

operation based on the analysis of logic function of the operation, or simply

use random datz (locallv).
Combining the simplified functional testing method with the signature

analvsis technique mav be a good approach for implementing the Built-In Self

e
[
5

Test (BIST) of microprocessors.
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AESTRACT

This paper presents a new algorithz for func-
ticnal test generation of digital LSI/VLSI systems.
First, a register~transfer (RT)-level fault model
is developed based on a well-defined register-
transfer-language (RTL}. The analysis and
collapsing of faults in RT-level fault model were
perforred. Then, the RT-level symbolic execution
technigue is emploved. The major problems en-
countered are defined, analvzed and sclved. Final-
1v, an explicit alecrithmic test generation algo-
rithm is developed. This practical algorithm
applies software skills in hardware testing. It
is easy tc be automated and hence provides a
prorising sclutior for future testing problems of
digital LSI/VLSI svstems.

1. INTRODUCTION

Due to the rapidly increasing complexity of
moderr LSI/VLSI devices, functional testing has
received more attention than ever [1-3], The high
complexity of VLSI makes conventional gate~level
testing very difficult and expensive to perform.
Techniques for design-for-testability (DFT) or
puilt-in-self-test (BIST) consider the testing pro-
bier during the design stage of digital devices
with the objective of reducing the test complexitv.
Bcwever, these approaches are not appiicable to the
existing off-the-shelf components (e.g., 2-80, 8080).
Function-level testing is another promising solution
to soive these problems. Functional testing can be
used tc assure proper operaticns of a system with
of f~the-shelf components and tc "test' (and hence
improve) a digital system even in its design phase.

Functional-testing uses a representation of a
digital svstex higher than the gate-level testing.

In functional testing, functional faults with re-
spect tc the functional specification (e.g., addi-
tion operatior in a processor) are tested instead

of signal faults (e.g., stuck-at-0) at the inputs
and the output of a logic gate or interconnections
among gates in gate-level testing. The purpose of
functional testing is to validate correct functional
operaticns of digital systems according to their
specifications. LUsing functional testing techniques,
one cannot only reduce the test generation complexity
but alsc obtain a test set for testing *he digital
devices witk the same functions but different cir-

* This work is supperted by the Cnited States Army
Communication Electronics Command under Research
DAAB 07-81~K-JJ36.

Contract No.

cuit design/implexentation (e.g., parallel adder
vs. serial adder). Especially for the users of
LSI/VLST chips, they have little other alternative
but functional testing since the chips' design/
implementation details are usually considered pre-
prietary.

Several functional testing techniques have
been proposed today. Su and Lin [3] recently over-
viewed most cof the major techniques in literature.
Shen and Su {4 discussed the major issues involved
in functional testing of microprocessors. Brahme
and Abraham [5] proposed a new fault model for the
control and instruction decoding faults to increase
the practicality of their previous approach (15,
Based on the observations obtained in {3], most, if
not all, of the existing techniques need further
development. There are still a lot of open prob-
lems which need to be sclved.

In this paper, a new algorithm to systematically
perforz functional test generation for digital LSI/
VLSI systems using machine symboli: execution
technique is presented. The digital system under
test is described by the popular register transfer
language (RTL). This technique is based on two major
foundations. First, after a standard syntax of a
register transfer statement is defined, a compre-
hensive RT~level fault model i{s set up. All tvpes
of faults covered by the fault model are analvze?
and the number of fault cases is reduced. Mcre
practical faults thar other techniques are included
in this fault model. Secondly, tased on the RT-
level fault model derived, the technicue cf svmbelic
execution which is intensivelv developed in high-
level programming languages is emploved in RT-level
test generation. Symbolic execution is a kind of
prograr execution technigue which manipulates sve-
bolic variatles instead of variatle values during
program execution. Since the syntax structure and
operational complexity of RT-statements are much
simpler than those of higher level languages, the
problems of svmbelic exezution encountered in RT-
level are less complex. Basically, the svmbolic
execution is perforred on both fault-free anc fault-
injected machines. Bv comparing the svmbolic results
and path constraints cbtained from fault-free and
fault-injected machines, the input tes: patterns to
distinguish "bad" machines from 'good'" ones can hence
be derived.

The formal svntax definition of the standard
register transfer statement (R7-statexment) is given
ir Section 1. Section 3 presents the analvsis anc
collapsine of the RT-level faults. The basic pre-
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biems of machine-level svmbolic execution and their
scluticns are described in Section 4. Section 5
cutlines the steps in the overall test generation
algerithr and explains the key ideas within each
scey. Finally, a brief discussion aleng with con~
cluding remarks is given in Section 6.

2. THE RECISTER TRANSFEP DESCRIPTION

The register transfer (RT) description is a
sowerful, and hence, popular tool for describing
digital svstems. The RT-language introduced here
uses the commonly adopted svntax notations. Its
design is mainly intended for the use of functional
representation and functional level test gemeration
of the digiral syster under test. With a little
modificaziorn, it can be extended for wuse in other
relatec applications such as formal machine specifi-
carions in cormputer-aided-design (CAD).

The register-transfer level description of a
tal svster is complete with two distinct de-
stive parzs: the non-executable part and the
utable part. The non~executable part consists
a set cf declaration statements. There are

=ree kinds of basic declaration statements in this
zart: INPUT, OUIPUT, and INTERNAL. INPUT declares
the input registers of the svster. The OUTPUT and
INTERNAL declare the output registers and the
internal registers respectively. Following the
nen-executable part is the executable part. This
sart is composed of register transfer staterents
with swvntax tc be discussed in the next few para-
graphs. At the end of the executatle part, we use
an "END" ¢c indicate the termination of the overall
RTL deszripticn of the system. To enable easv
reacinz ané understanding of the RI-statements,
comrmentary statements enclosing at both ends with
4" svimbol mav be inserted anywhere in the descrip-
tion.

A nuzher of operands are defined here repre-
senting arithretic cperations, logical operations,
snifts, field extractions, and bit string con~
catenation. The domain and range of these operands
ave bit-strings. The default value for bit string
is 2's-cozrlerment for arithmetic operations and
cnsigned for lcgical operations. Both decimal and
tinarv integer constants mav be used in the state-
ments. Each operator has weli-defined rules for the
resyltan: bit-leagtt as a function of the sizes of
input operands. 1In addition, some operations in-
clude impiicit sign- crzero-extension of shorter
cperands to match a longer one. Figure 1 lists
those operators defined here in group of their
natures, where, : is the concatenation operator
and .. is the field extraction operator.

mn N,

ag
~v

i
ri
<

"

xX€

1 rr O

Unarv-cperators:: = unary- NOT . INC  DEC
adding-operatirs:: = <+ -
logic-operators:: = AND OF XOR , NOT
relational-operators:: = = <>
rerresentational
operators:: =

N

Figure 1  Operators defined in R7-statements

A tvpical RT-statement syntax is giver below:

k: ) - £ oo . €{1,2:

k: (t,c Rd (R51 Rsi) -n 1€43,2

where k, t, C, Rd. £, Rsi.an. and « are called RT-
components. The meanine of each 1s briefiv described

below:

k: is a positive intecer representing the label of
an RT-statement.

t: is a one-b»it wvalue tirming flag.

c: is the condition expression with relational
operator specifvin: the condition for performing
the register transfer operation.

Rd: denotes the destination register of the RT-
statement.

si: is the i-th source register.

stands for an ALl operator operating on the

content(s) of source register(s).

- represents the transfer of the result of RT-
oreration to the destination register.
+n: 1is the label of RI-statement to be jumped to

after current RT-statement is finished and t

and ¢ are true if present.

The operands in RT-expressions mav be regular
repisters with explicit bit~length, constant regis-
ters with or without exylicit bit-length, or macre
registers with explicit bit length. A macro regis-
ter is a group of registers obtained by concate-
nating two or more registers. Note that memcry
reference can also be directly expressed in an RT-
statement. All memory references are represented
by & memorv register. The above typical RTL state-
ment includes the folleowing types of RT-statements
as special cases:

. Pure transfer statement: k: Rdﬁﬁs““

. Data operation statement: k: Rd*f(Fsi),*n
. Conditional branch statement: k: (c},=n
. Constant transfer statement: k: Rd*ﬂc.*n

Figure 2 shows the RT-description for a hypothetical
machine called SIMPLE-CALCULATOR. After the first
three lines of declaration, the Ri-description of
the SIMPLE-CALCULATOFR starts the instruction fetch
cvcle followed by the instruction decoding cvcle
and then the instruction execution cvcle. More
discussion of the defined RT-language can be found
in J6:I.

ZSIMPLE CALCULATORY

ZDECLARATION PART®

INPUT: START(1), DBS(1l), DB(EY, OF(3)

OUTPUT: AS(1)., A(8), O(8), F(1)

INTERNAL: BS(1), B(8), E(3), SC(3), 0s(1l%, S(I)

“PROGRAM PART

§ - START, = 1

(5=0), = 0

E~OP, -3
ZINSTRUCTION DECIZING CHAIN®
(E=0018), =~ 11 XaDD°
(E=010B), = 12 RSUBTKACT®
(E=Q011B), 13 IMULTIPLYS
(E=100B), 21 TLCAD A%
(E=101B). = 23 TLOAD B’
(E=1108B;, 3 %LOAD 20
(E=111B), T XL0AD SC

S « 0, - 0 XOTHERWISEL
F@A+ A+B, ~1C
F&A~A-B, +10

AS - BS XOR QS, =+ I4

A=~ 0, - 15

F«0, - 16

(O(71=1) F 2 A« A+ 8, =17

O

W ke O 0@~ B
LR 2R 2 N
[FW N

— s bt b e
[

—
[ RV, I )

1}

FEAZQ+SHEF *A2C, =18




18: SC « §8C-1, - 19
16: (S <> 0), - 16
200 S« 0, -0

21: A~ DB, - 22
22: AS -~ DBS, - 10
23: B ~ DB, = 24

2i: BS ~ DBE, - 10

25: Q = DB, = 26

26: 0% + DBS, - 10

27: 8C + DB(1..3), ~ 1C

"

Figure 2  An example of RT-description
3. THE RT-LEVEL FAULT MODEL AND FAULT COLLAPSING

Based on the typical RIL statezent given in the
last section, nine tvpes of RT-level faults car
be derived. The functional effect of these faults
can be analyzed. The results are described in
several lemmas. Based on these lemras, analvsis
for RT-level fault ccllapsing is conducted and
several important theorems are derived. For brevity
only the major lemmas and theorems will be pre-
sented in this section. Detailed discussions of

the ov rall development can be found in [6_.

Definition 1. After a digital syster is described
E;’E_;;: of RT-statements, the overall behavior of
the svstexm is determine: by the resuitant functioms
of the associated RT-starements. Each basic coo-
ponent inan RT-staterent is called a register-

transfer (RT)-component.

Definitien 2. A digital syster is said to be fault-
free if it operates correctly with respect to its
functional specificatic.s. Otherwise, it 1is said

to be faulty due to sore register-transfer level
fault occurring in the basic function component

of the svstem. Faults which are considered in the
svster may be classified according to their fault
effect or certain RT-component as fault tvre. The
different fault values under each occurrence of
fault type is called fault case.

Definition 3. When an RT-component T becomes faul::
with fault type F', we denote it by F/F’',

Based on the tvpical RTL statecent, RI-level
faults can be classified into the following nine
tvpes.

k/k' : ladel fault

(X : timiag fault
.ol : conditien fault
. (RY/(R}' : data storage fault
. <!/« ' : data transZer fault

R/R' : register decoding fault
.ofre : operator decoding fault
. (f)/(£)' : operator execution fault
. =n/=n' : juzp fault

The following lemmas are established:

Lemra 1. Fault k/k' means that the label of an
RT-statement changes from k to k'. If stuck-at-
fault {s assumed, ther possible faulty situations
are:

(£*  k'z 4, label k disappears.

(11) k'Zk,, ky is another faulty label with one
bit different froz k within the systen's
RT-address space.

(411) k'Tkz, kz is a non-existent label with omne
tit different from k within the svster's
RT-address space.

where, single~bit stuck-at fault is assuzed in (1ii)
and (141).

Proof:

(1) If k/k' occurs, ore of the possible faulty cases
is that the addressing mechanisz for k is totally
masked. In this case, no k, therefore, will be

found by the svstez's execution mechanisz.

(1i) (1ii) Suppose As is the maximur valid address

in the RT-address space of current digital svstero
anc B is the bit leng:th of label k. Wher k/k'¥:
occurs, there are B faulty possibilities k., 1 £ i

< B, with only one-bit different from the Zorrect

bit value of k. For those ki with value ki s As,

they belong tc the fault tvpe k'Ek). For those ki
with the value ki > A, thev belong teo the fault

type k' = k..

To saveé space, following lemmas are stated
without proof. The detailed proofs can be fouri
in [6C.

P

Lemra 2. The jucp section of an RT-statement may
become faultv. We use the notation *n/-~t' to rep-
resent that such tyvpe of fault occurs. If bridging
fault and stuck-at-fault are assumed in the jump
section, then the possible faulty situations are:
(1) n'Z:z, label n disappears.

(ii) n'Zn_, n, is another faulty label with cne
bit difierent from n within ttr: systex's
RT-address space.

(iii) ©'3n;. ng is a non-existent label with one
bi¥ different from n within the svsten's
R7-address space.

(iv) n'Zn + n_, both n and n, are simultaneously
activated. ©_ is another label defined
in (i{).

where, single~bit stuck-at-fault is assumed in (ii)

and (41ii1).

Lemma 3. The timing signal of an RT-statement may

be faulty and is represented by t/t', When t/t'
occurs, the corresponding RT-statecent will not be
executed.

Lemma 4. The condition ceontrol mechanist of an RT-

staterent may be faulty and is represented by c/c'.
When ¢/c¢' occurs, the reverse condition instead of
the normal condition is true. Under this case, the
corresponding RT-statement will not be executed.

Lemra 5. The corntent of a register mav be faulty

ané is represented by (K;/(R)'. We assume that
stuck-at and bridging faults are considered in this
case and B= R is the bit length of register R.

(1) If R is a regular register which car be read

or written, then every bi:t in R mav either be stuck-
at-0 or stuck-at-1, an every bit-pair coctination
in R may also be bdridged together. he total num-
ber of multiple stuck-at-faults is 3°~1 and the
total number of bridging faults is B x (B-1)/2.
(i1) 1f R is a constant register, then the total
number of fault cases is B by considering only
single~bir stuck-at faults.

lemma 6. The content in a register transfer path

may be faulty and is represented bv «/«', If stuck-
at faul: and bridginc fault are considerei, then
every bit in the path mav be stuck-at-0 or stuck-
at-1 and every bit-pair combination in the path mav
also be bridged together. The total number of

-
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multiple stuck-ar fauits is 3B-1 and the total
number of bridging fault is B x (B-1)/2, where B
iz the bit-width of the transfer path.

Lemma_7 7. The decoding of a register may become
fauity and is represented by R/R'. Assume at most
one register will be selected at a time, then the
possible fault cases are:
(i) '2:, nc register is chosen.
1i) R'ZR,, R, is another register with siecilar
re~istér characteristics in the svstes.

Lerma 8. The selecticn of an operator in the

irithmetic Logic Unit (ALU) may be erroneously per-

¢armed and is dencted by f/€'. Assume at most one

cperator will be selected at a time. The possible

favlty situations are:

(i) {'2:, no operator is chosen.

(1) f'3f,, f, is ancther valid ALU operator differ-
ent from f.

The execution of an operator in ALU may

be fauity and is dencted by (f)/(f''. Due to the
nature of the faulty effect of (£)/(£)’, this type

cf fault is difficult for modeling in register trans-
fer level and mav chliv be attacked at the circuit/
gate-level cr implementation-dependent level.

Based on the abcve Lermas, RT-level fault
cellapsing analvsis similar to that of gate-level
stuck-at-faults can be performed. The result is
describes in the following theorems.

’
ition &.

Jefd

Twe RT-level faults Fl and F, in a

digital systez are sail to be functionallv equi-
vzlent if and onlv if their faulty results observed
in the RT-level description of the svstex are
identical.

Theprez 1. InanRT-cescription, the k/k’ type of

fault 1s coverec bv (a subset of) the =n/-n’ type

of fault by lemma 1 andé Lemma 2. That is:

(1) Both k/k'I: and k’k'Zk, are functionally
ezuivalent to ~n "= =k/~n;

(ii) ki'k is functionallvw e"uix=7e“» to the

= *u'*n: anc

cozbinatior of ’*t
- e’

L il e S
the R‘ fe icn, there are
ectisr ~k, and
tatezent

n n

(2.a". wmen larel fault k's'Z: ¢ £ are nct
o~eé 3. When-
.

ever anv $, 1~ 'S is eyerut RT-state~-

sstel 1e § in faslt-~free case. Now,

sinie K'w crrurs, theve is ng Fl-ctateTent witn
iatel ko oanmUrE Sl Le ovITiuaL, nor-existernt.
reretcre,any & in f - will artusllv activate a
trap tCc a nor-evistent address. 1T cther words,
the result of the apresrar.e of kWil oin Si turns
cut ot one the fallt cf wken_ in eac? RT-staterent
of €, | where r_ it a non-existent PT lahe. in the

‘
R7~ac:re<< spae.
\

when k v' k. cccure, ‘S, are not affected.

Wrereas tne latel of SK
existent in valic address space a2f the RT-descrip-
tion. Wienever anv § in 1Y - is executeld, the

. :

nex: RT-statement t- “e evecute: s Sy in fault-free

o n

AL AL AL AL A At e

case. Now, z

since k/k'zk, occurs, the criginal Sk
can no longer be addressed within the vali¢ address
space. That is, every §, in {Si} will activate a

trap tc a non-existent address k. In other words,

the result of the appearance of k/k‘Eke in Sk turns
out to be functionallv equivalent to the fault of
*x/—n: in each S of PR

(i) Suppose in the RT~description there are other
RT-statements -SJ' with jumy section +i, and there

exists an RT-statezent S; with label X. When

k/k‘Ek}Ei occurs, both {Si}and {Si} are not affected.

Whenever any

~

Whereas the label of S,K becomes k_zX.

Sj in {Sj? is executed, the next RT-statemesnt to

be executed are Sk anc Si instead of S£ alone in the

fault-free case. And any £ in {Si? now will acti-
vate a trap tc a nen-existent address k. Irn other
words, the result cof the appearance of k/"Ek)Ei

in Sk turns out to be functicnally equivalent to

the combined faults cf *k/+n; in each S, of {5 .} and
- 1
SL/RT meif= (kKD i each S, of {sj The notation

" +k" indicates that the RT-stat
and the RI-st

ement with label £
atement with label k are both executed.

Thecrez 2. Assume the internal paths among rezisters
of a digital syster are all parallel links. In the
T~description of such a digital system, the (RY/(R)'
tvpe of fault defined in Lemma 5 is covereZ by the
«/~' type of fault defined in Lemma 6. After all
~/+' tvpe of faults are tested, the (R)/(R;' type
of faults are automatically tested.
Proof: 1f a register is redundant in the svstem,
then either its behavior is transparent tc the
svstemr specification cr it is meaningless tc the
correct svstem operation (e.g., design errer). Fer

every non~redundant register Ri in an RT-description,
there alwavs exis:s at least a path in the svstem to
transfer the content of Ri out tc a destination

register, sav, R_.

whenever the content of 'y 18
moved out, its value is copied onte the traasfer
path. Therefore., whatever (R,)' faults will be
rmapped cnto its asscciated transfer path iz the RT-
statement. If all «/«' faylt cases on those trans-
fer paths conne:tin:s all register {Ri: iz the RT-

descripticn aTe ther all fault cases of

tested,
(Ri}/(i,\' are autoraticallv tested.
Thecrer 3. Ir an FT-Zescriptior, fault t'¢' is

overe: b the co_..na:ion of »n/+n' ani ¢’c’ types
of faLlte by Lemma I, 3 and «. That is:
(1) When t ‘s present in an RT-statemen:t while ¢ is
absent, t/t' is funcriosnally equivalent te =nf-rn's
n+l, where r is the lavel of this RT-statezent.
(ii+ When both t anc ¢ are present in an Fl-statement
t/t' is functicnally eguivalent to c¢/c¢’
Proof: (1) Bv the defiritior of t’t’, vhen t' occurs,
the associated RT-statezent will not be evecuted.
The next RT statezent to be executed is nhence the
RT-statement next tc current statement in the RT-
descrinticn. This is exactlv what haprexs when
»r = "In+] occurs.

. . -
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({1) In general digital
signal is first applied to acrivate the associated
RI-statement. If t’ occurs, the corresponding RI-
statement will not be activated. When t 1s active
ané fault-free, then ¢ is checked i{ present. 1If
¢ is true, then the assocciated RT-statement will

svstems, the timing control

be executed otherwise {t will not. However, if
¢’ occurs, the associated RT-statement will not
xecuted even 1f t is valid. Hence, t/t' and
' both procduce the same faulty behavior, anc we
conzlude that after c/c' is tested, the t/t'
e of fault of the asscciated Ri-statement is
omatically testecd.
ing the above three thecrems as basis, we
the following twc theorems for test

n o0
a
-

<. In an RT-description, oot every RT-lev

pe defined in lLew=ms 1 through lemma & neel

be considered for a corolete test set under the

defined Fl-level favlt eodel. In cther words, the
cf fault tvpes car be reduced. First, the

"h: nmodeled KT-level fault tvpes can be collapsed

five by Theorer 1 cugh Theorer 3. Second,

v one of those RT-components which functionalily

resoend to the sace part of hardware need be

neifered for fault cases.

T (The pr*o‘ is lengthy and omitted here.)

. cozplete test set for the fault mode!
Lecmma 1 throuch lemmez 8 can be derives if

lewing five fau ?

idered with each

ing considered o
R', §/f', =i+', =n/=n', and c’/c

The proof is cobvisus by Theorex 4. Suppose

-staterent in the RT-descripticn is scanned
according tc & predefined order derived
RT-descriprion. 1If anv of the above five

Fi occurs in an RU-staterent and the

are nct vet derived, then Iits test set

erated anc aicel to the tests obtained sc

is alrealy tested somewhere before

tatecent, then it is skipped. The com-

et car heaxze be computec using this
neatedly until every RI-statement is
this wa:

PINE SYMEOLIC ENECUTION TECHNIQUE

The sveholic execuzion is a very useful soft-
€ engineering technique developed originally for
graz analvsis incliuiing test data generaticn
8° ané prograz vaiidaction [9,10 Due to the
ilarities hetweer software and hardware imple-
ntaticn, wost kev prinziples in this powerful
chnique for software analvsis mav alsc be used for
rivare testing and verification "11,1Z.. Su and
ier 7137 first pointed out the general idea cf
generating tests for digital svstems by symholically
evxecuting the fault-free and fault~injected machines.

Svxbolic execution is a process of prograr
execution similar tc ncormal execution except that
s mbolic values of variatles and their operation
rules are included in additicn tc nmormal ones. 1t
invelves assigning expression instead of values to
variaties while follcwing a prograr path. An ex-
pression represents the computation that would have
evolved te compute eact variable's value. A
swmbolic value is an expression of constants and
variaties wnose contents are fixed but unkncwn during

the eymbolic execution. During the process of sym-
belic execution, every intermal variable carn alwavs
be described as an expression of constants and svm-
bolic values of external input variables. when the
svmbelic execution proceeds, a binary tree, called
svmbeolic execution tree (SET) which shows taths

of all possible svmbolic execution flows of a pro-
graz will be developed. If a particular svmholic
executiorn path is fellowed up to its terminaziorn,
a set cf path ccastraints and that path's svmbolic
results will be obtained. Since a svmbelic exe-
cuticn takes the swvmbolic values of all its ex-
ternal input variables as input data, a sutstantial
number of actual input dats comtinations are in-
cludel under the path constraints within a single
svmbclic execution of the program. By a straight-
forward computaticn the desired input tes: patterns

which distinguish fault-free from faulty operations
mav be systematically computed. It 1Is thic im-
portant feature of symbclic execution tha*t makes

1t a powerful teol in the test generaticn algorithz
under developrment in this research.

Although symbelic execution has existed for a

long tipme as a means of deterwining the sezantics
of programs, it, however, has been invariatly used
mostly for programs written only ir a high-level
languare. ttle work has been done in the dormain
of syzbelic execution of formal machine description.
Oaklev "1 , however, dic a good job in laving the
ba theoretical founcdation in the investigation
of this topic. Indeed, there are two major dif-
ferences betweer machine-lev svmbolic erezutien
(MSE; and high-leve A~la“gu6 e svmbolic exezution
(HST:. First, the major gcal of HSE is tc confirm
that the programmer has put together his scftware
progran statements in a correct manner, whereas
MSE is mainly concerned with the correct functioning
of the hardware primitives themselves. Ths second
major difference is that due to human factors and
the high complexitv of software design, ESE is still
very Zifficult and restricted to use in many appli-
cations. The MSE, or the cther hand, is
amendatle te a svstematic methol because
relative simplicity of the definition of
ware description lancuace (e.g., the RI-
definec ir Seztien 2V, the sizpler way of havdware
descriprion and so on. While the above statements
are true, MSE still has its own preblems. The basic
issues in } are: eguivalence of machine svmbolic
execution anc actual machine execution, variation of
bit-widtn among internz: register paths, the repre-
sentation of sywbolic cc 1'en\ and path constraints,

the probler of lcops and termination dutizg svzbolic
execution, ané the siﬂ.l..zcatlon of svmbrlic ex-
pressions. A detailed discussion of all ¢ these
and their solutions car bde found ir [6,1i0 and s

oritted here.

The syvirhbolic executicn svstem develope? in
this research is ccmposed of four major modules
and has the svstexr organizational structure as
shown in Figure 3.

L§ymbolic Executicn Moniter (SEM)

- _
Symboaic {1 Svobolic Svz>relic 4‘]
Execution Expression Ineguality
Interpreter (SEI)] !Simplifier (SES)| |Sciver (SIS)
L —

Fizure 3  Organization of the symbcl:

execution svstem
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In Figure 2, SEM {s for the overall control of
wobelic executicn process. SEI interprets the
emantics of an R7-statement. SES performs sym-
olic expression simclificaticn. SIS 1{s called

I+ when the sywpelic resulrs of the fault-free
and fault-in‘ectes paths are obtainec.

The wﬁcle symhol execution system consti-
the overall test generaticn
hw te be discurssed in the next section. It
s in a cocrdinazes wav with other control

ni generacion algorithm. Froo

m o

2

e
on [old

svster is
executicn 1oop between
ntil the last RT-state-
2 peth 1s executed. At
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Figure < }
test patterns
The svmbeolic result is represented internally
as a directed tree. One of the features
cf tree structure is the easv handling of its
growth. As an examp.e, censider the following
tnree RT-statements.

S: Ry = RyoRg, -6
6: R, + shr R,, = 7
- PS

B R, = P_-1, =0

(C fills in the

S

VOSRL i SR, left-wrost tiz)
where, Sa. an SF3 dencte the primary swmrnlic value
cf input register R, anZ R, respectivel “R. rep~

resents the current syvz>olic value cof Fa.

-
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S. THE TEST GENERATION ALGORITHM

In this secticn, the design of an explicitly
defined svstematic test generation algorithr is
presented. The overall test generatior algcriths
is developed basec on [He RT-level fault wmodel
discussed in Section 2 and the RT-level svmbclic
execution technique described in Section &. Ther
are mainly three design considerations behind thi
fancticnal level test generation algorithm:
and conquer“ to partition a big provlen

mn o m

8l

Modularity aﬂd Flexibility for steps in the

i .

gorithr vs. heuristics for better efficiency.
Before we go into details of the test generatior
algerithz, several basi: assumptions and definitions
cf commoen terrinclopies are in order.
Definition 5. A functional fault is redundant i
its appeé?;;ce in the digital system does n £
the cerrect functional operations specified
digital svstexn.

4]
Yoot

Otherwise, it is ncen-reduniant.

Definitior €. A functional fault is itself testable
if 1t is non-redundant and its faulty effect can
alwavs be observed at the output port of the svstex.
Otherwise, it is untestable.

Definition 7. A functional fault is detectatie by a
certzin test set if it is observable and bv using
proper exercising inputs, its faulty effect can be
observed at the ou tput port of the svstez. (ther-

wise, it is undeteztakle tc that test set.

Definition B. A functional fault is enuzeratle if

it is non-redundant and can be enumeratec within a
certain upper licpit based on reasonatle assuzptions.
Otherwise, it is non-enumerable.

Assumption Ir the test generatiorn algorithz we

mar the phvsical transfer mechanist such as a bus

describe? in the RT~desczription into a logical trans-

fer path. This is because test engineers werxing

in a user environmment mav not know the dezailed im

rlementation cf the mechanisms for transferrinz data

between functicnal units, or how thev are shared cr
tirlexed arong different RT-statements. Using

the logic transfer paths, the fault model for the

data transfer function is independent of the actual

implementation details of the transfer mechanisms.

Assumption 2. In the test generation algorithm,
single functicnal fault within the grour sensi=
tized RT-statements is assumed. But, we w the
rresence of anv number of faults as lorg nev
don't mask the one currently under corsidera

The cverall test generation algeriths
ceptually divided intc three parts: pre-process,
main-process (the S~-algorithm), and post-process.
The simplified interacticn belween these three parts
is depicted ir Tigfure 5.
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5.7 Preprocess

The pre-process is mainly te perform
checking of the RI-descriptior of the svst
test, partition the whole RT-description into a set
cf ordered function submodules, and set up the basi:
datz bases needed at later two stages. The order

syntax
er-unier~

of test generation amone the RT-statements ir over-
all RT-descrirtion is a crucial issue. It is de-
riveZ using the function submodules in the Ri-

description as the basic units to be ordered. A
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Simylified test generation flow

functicn submodule is a loop of path starting from
the first RT-statement in the RT-description and has
no brancking path at the last node of the path right
before the loop is fcrzed. The logical meaning of
function submodule in a general digital system is
just like the "instruction” in a processor.
The order of test generation of testable function
submodules is set as Icllows:
first: pure-transfer vs. non-pure transfer
second: the nuczter of distinct RI-statements
third: the nurber of distinct registers.
A function submodule with neither arithmatic oper~
ation nor logical operations is called a pure-trans-
fer submodule. The start-small principle is applied
in the derivation of the test order so that assump-
tior 2 can be reasonatly jfustified.
The steps performed it preprocess stage are shown
below:
Step 1: Perform svntax checking of RT-description
representing the svstem-under-test (SUT) and set up
asscciated data tases.
Ster 2: Derive all function submodules within the
SUT.
Ster 3: Prepare the order of test generation among
all furnction submodules using the start-small prin-
ciple.
Figure 6 shows the derived order of test generation
among the eight function submodules in STMPLE-
CALCULATOR.

5.2 The S-algorithz

Tne "S" stands fcr "svmbolic". In this stage,
the RTI-level svmbclic execution technique is in-
tensively erploved fcr test generation of each fault
modeled in the RT-level fault modei. 1In the S-algo-
rithr, the faulz-free description of current function
submodule (Fsi) is svzholically executed to set up

a svmbolic executiorn subtree (SETi) which near-
winizmally covers all distinct RT-statements in rsi.

First, test inputs for data transfer faults («/+'),
except constant transiers (e.g., Rl*l). are computed

using the transfer-test~-finding heuristics and the
symbolic results obtained at each terminated path.
Faults in other fault types are enumerable and are

~t

Is it ¢ of ¢ of Order
RTI-statements pure- dist. dist. of test
FS%4 in the loop trans. R7-St., Reg. gen.
T BI-7+3~11-10+0 X 2 A 3
2 Oel=2-+3+4+12+10+0 X 2 4 7
3 0142434451314~ N 9 9 8
15+16+17+18+19+20~+0
4 O=1-2=3+ir5eb21". Y 3 5 3
22+10~0
S O=l=2e3l>TebrT7423+ ¥ 3 5 4
24~+10~0
6 O+1+2+3+4+5+6-748+ ¥ 3 5 5
25+26+10~+0
7 Owla2+3+lr 56 T8> Y 2 3 2 !
9274100 l
8§ 0142434564748+ ¥ 1 1 1 j
9+10-+0 J
Figure 6 Function submodules in the

SIMPLE-CALCULATOR

injected one at a time into the fault-free RT-
description. For each fault case 2, the svmbolic
execution subtree of the fault-injected machine

(SETQ) is set up for a terminated path. Tre inter-
medidte symbolic values along the fault-Iree path
are saved and used to speed up the generation of
such a path. An input test pattern for detecting
this fault is then derived by comparing the svmbolic
results and path constraints of the fault-free and
fault-injected machines. Four major issues must be
considered in the S-algorithm: how to find the near-
minimal covering of distinct RI-statements in the
functior submodules, the design of transfer-test-
finding heuristics for data transfer faults, enumer-
ation and identification of enumerable faults, and
the solving of symbolic inequalities.

Using the assertions stateé in Theorec 4 in
Section 3, only all distinct RT-statements in each
function sub-module FS, need be considered. There-
fore, not every 5ymbolic execution path in FS, need
be traversedif a subset of syrbolic execution paths
vhich near-minimally covers all distinc? RI-state-
ments in FS; can be found. The term “near-minimal”
is used in the sense that the RT-statemen: covering
is formecd using heuristics rather than strict complex
algorithm. The data transfer faults (+/+') is re-
garded as non-enumerable faults. The heuristics
for transfer-test-finding are specially designed
for the efficient generation of tests for such kinds
of faults.

Except transfer faults, other faults need tc be
enumerated. After an enumerated fault is selected
for test generation, it is injected into the cor-
responding RT-statement. The enureration process
exhaustively processes each enumerable fault under
consideration. Solving svmbolic inequalities is
performed after the symbolic results and path con-
straints of the fault-free and the fault-iniected
machines under a fault o are obtained.

The steps executed by the S-algorithm are listed
below:

Step 4: For a chosen function submodule FSi of SUT,

perform machine svmbolic execution of Fsi's RT~de~

scription to set up a svmbolic execution subtree
SETI which near-minimally covers all distinct RI-

statements in FSy by the path ser {Py4:.
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Step 5:
tc find test patterns for data transfer faults in FSy.
Step 6: Choose the nex:t path P, in {P  ’.

_— i i3

Perforn heuristics of transfer-test~finding

Step 7: Based on the RI-leve’® f;ult model used,
enumerate and inject a fault 2 which has not been
tested along Pi*’

-

Step 8: Set up symbclic
Tault-iniected machine.
P?.’

Ster 9: Derive test tatterns for faulit 3 by comr-
paring the svmbolic results and path constraints of
Pij and P?j.

Tc show the process of test patterns generaticr,
let us consider several tyvpical illustrative examples
of fault cases.

During the process of test generaticr of the
simple-calculator, the RT-statement 11:FlA~A+E, =10
in "addition" submodule (submodule #1) will be tested
along the path: 0—~1-+3=3=11-+10~C.

Based on the conclusion of the RT-level fault
collapsing analvsis (Thecorer 4.4 and 4.5), only
the following fault types need be considered fcor
this statement:

(1 +/+'

(2) R/R' with Rz7F, A, B}

(3) +~12/~12°

(4) +/+'
where,(2), (3), (4 are enumeratle fau'“s.

Now, we consider cne fault case oul of each
fault tvpe for illustrazion.

(1) =/+' = 1n perforziz: the Transfer-Test-Finding
operation of this funzzior submodule, the transfer
paths of statement 1. =ust be considered are:

- transfer paths of registers A and B to ALU in-
put ports.

- ALU output port to registers F and A.
Signal stuck-at-faults and bridging faults are con-
siderec in +/+' fault tvpe.
@ - since before stazeszent 1l is executed, the svo-
bolic value of 4 is $: and B {s SE, to test path of
A to ALU input port, we must appiv:

execution subtree fcr the
Choose one terminated path

for faulty symboli: results anc¢ path constraints.

SA $B
11111112 00333000
11110007 322007
110011CC o lslsisis]
1010101C 00000007
00000007 00220202

Te test path of B tc AT input port, we must avyily

SA $B
00000007 11313150
02000000 11210020
00000000 110211462
00000027 121010370

09200007 00200000

(D - Sirce after ALU performed the addition, the re-

sult of ALU wiil be S2+3B, tc tes:t path of ALU out-

put port to rezister ¥ and A, we must applv:
A=10000007 B=10000000

i~ addition to those input test patlterns in o
(2, R/P’" with Re<F, A, B'- The fault cases under
thie fault tvpe are:

F'cfAS, BS, 05, € 2'¢’B, 0~ B'c{a, Q°
Note that the fault :zases of A' and B' are already
considered in functic: submodules #4 and #5 and need
not be tested again teve.

Suppose we consider F'=AS, then the sywbolis results
of the fault~free machine are:
S=0 Fmcarry(SA,$B) AS=SAS A=SA+SB, where § is a svm-
bolic value marker and the symbolic results of the
fault-injected machine are:
S;-O F,=SF ASy=carry (SA,SE) Ay= SA+SB, where 2 is
F/F' = F/AS both under the path constraints: S=1
E=001.
We then solve the set of algebraic inequality
equations:
S¢S
FéE,
AS ¥ AS,
A*Aﬁ .
Therefore, S=1 E=001 A=10000000 B=10000700 is a
feasible test pattern for this fault case.
(3) =12/+12' - The fault cases under this fault type
are:

4
carry (SA, SB) ¢ SF =« 0
0=SAS ¢ carry (SA, $B)

+ bt

12'¢ {13=001101 8=001007 28+01110C
14=001110 4=00010%7  44=101100°:

Suppose we consider *12' ==13, then the symbolic
results of the fault-free machine are: S=( F=carry
($A,S$B) A=SA+SB and the svmbolic results of the
fault-injected machine are: 5,%0 F,=borrow
(SA+SB-SB)=borrow(SA)mSFel A =IA+SR-SB=SA, both
under the path constraints: S=1 F=30]. We then
solve the set of algebratic inejuality equations:

S#Sy + ¢
F¥F, - 0¥ carry (SA, SB)

A ¥ A, + SA+SB ¥ SA which turns out to be
SB ¥ C.
Therefore, S=1 E=001 A=10000000 B=1002000C is a

feasible tes:t pattern for this fault case.
(4, +/+' - The fault cases under this fault type
are: +'t{-, xor, shr}
Suppose we consider +' to be ~, then the svmbolic
results of the fault-free machine are: S=0 F=carry
(SA,SB) A=SA+SB and the svmbolic results of the
fault-injected machine are: 54=0 Fq=borrow($a,$B)
Ay®SA~$B, where a is +/+' = 4/~ both under the
constraints: S=]1 E=0Q0].

we then solve the set of algebraic ineguality
equations:

S¢Sy - ¢
{ F#Fy = carrv(Sa,$8) ¢ borrow (SA,SB)
A ¥ Ay, =+ SA+SB 4 $A-SB which turns out
to be SB ¥ 0.
Therefore, S=1 E=DGL A=10000000 B=10000000
is a feasible test pattern for this fault case.

5.3 Postprocess

The postprocess stage performs the following
tasks:
1) Perforn fault screening (eliminaticn of covered
faults from the fault list) using the tes: pattern
just derived for a specific fault in stage two.
<) Repeat the S-algorithz 1f any unprocessed fault
case rermains.
3) Perform clean-up for hard-to-test faults.
4) Prepare the test generation report.

The process of fault screening is actually a H
kind of simulation which sizulates the test pattern
just derived in the S-algorithm on current fault-free
path. Similar fault identification and numbering [

technique used in the S-algorithz will be needed here
again.

When the steps in the S-algorithm are terminated,
a set of global test patterns which has broad fault
coverage for the entire svstem-under-test has been
Tvpically, a reasonable number of faults

generated.
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would still be undetected. The difficult task now
is to generate tests to ''clean~up"” those undetectecd
faults. Since each individual fault case to be at-
tacked by the clean-up operation is really "hard-to-
test” (possibly due to the very complex hardware
behavior or limitation of the test generation policy
currently adoptecd), the combination of automatic
test generation and human aids are both included in
our current approach. The steps performed in the
postprocess stage are:

Step 10: If no test pattern is obtained in Step 9,
then return to Step 8 and try another PI . ; other-

ij
wise substitute this test pattern as an input data
into P, . and simulate all untested faults remaining

on Pij' Perforz possible fault cases elimination

5

Step 11: If there is more fault cases left in Pij’

along Pi

then return to Step 7.

5. - { 1
Step 12: If there is more Pij left in Fsi('Pij')'

then return tc Step 6.

Step 13: If there is more FSi left ir the SUT, then
go to Step 4 and repeat.

Step 14: Perform possible clean-up operation for
'hard-to-test” fault cases left which are indicated
in the housekeeping tables.

Ster 15: Prepare test generation repert including
test patterns obtained, their input sequence an
other useful statistics.

6. DISCUSSION ANT: CONCLUSION

The complexity of the overall test generation
algerithe in the last section is dozinated mainly
by the S-algorithm. A preliminary thecretic
analysis of the S-algorithm shows that the complexity
of the S-algorithm is dependent or the total number
of RT-statements and the complexitv of the symbolic
execution system.

The S-algerithm developed has several
analogies to the conventional gate-level D-algo-
rithm. It has the following features:

1) Fer each testable RI-level fault. guarantee

to find an input test pattern for detecting that
fault.

2) Systematicaily find ar input test pattern as
early as possible.

3) Identify untestable RT-level faults.

The experimenta. prototype cf the overall test
generation algorithr is being implemenzed on the
IBY 370/168-cozpatibie main frame cozputer at SINY-
Binghamton. The preliminary experimental results
are encouraging. More theoretical studies of
cozplexity analvsis of the S-aigorithe and mcre
solid experiments on several typical samples are
being performed. By using valuable experience
earned in software testing for hardware testing,
this technique shows a promising wav feor future
testing problems of digital LSI/VLSI svstems.
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