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SLYMNARY

Due to the advances in the integrated circuit (IC) technology, more and

more components are being fabricated into a tiny IC chip. Since the number

of pins on each chip is limited by the physical size of the chip, the problem

of testing becomes more difficult than ever, especially in the VLSI (Very Large

Scale Integration) chips. This problem is aggravated by the fact that, in

nearly all cases, integrated circuit manufacturers are not willing to release

the detailed circuit diagram of the IC chip to the users. Yet, as users of

the IC chips, to make sure that the implemented system is reliable, we need

to test the IC chips and the systems made of the interconnection of these

chips. The purpose of this project is to find efficient algorithms for

testing LSI/VLSI chips and LSI/%LSI-based systems.

As a result of the rapidly increasing complexity of modern digital LSI/ILSI

systems, functional testing is attracting more attention than ever not only in the

computer manufacturing industry but also in the diversified potential applications.

Functional testing uses a representation of a digital system higher than

the gate-level tesLing. In functional testing, functional faults with respect

to the functional specification (e.g., addition operation in a processor) are

tested instead of a signal faults (e.g., a line stuck-at logical 0) in the

circuit representation. The purpose of functional testing is to validate correct

functional cperationF of digital systems according to their specifications. -

Using functional testing techniques, one cannot only reduce the test generation

complexitv but also obtain a test set for testing the digital systems with the

same functions but different circuit design/implementation (e.g., parallel adder

vs. scrial adder).

Usin, RTI . tbe behavior of a microprocessor is compreensively described,

and functional faults derived fron, them can be studied. In [I], two approaches

,.,............................
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for functional testing are given based on the RTL description. The first

approach constructs a data graph from the RTL description and uses the

existing algorithm such as the D-algorithm or path sensitizing method to generate

the tests for functional faults. In the second approach, the symbolic simu-

lations technique is used to generate tests for detectinR faults in the contLol

sigiials. In [21, a formal definition of KL is defined as:

k: (t,c) Rd - f(R s,E2,. Rs.), F n

where, DflC IAc

k is the statement label

t is the timing and c is the condition to execute the statemen By
By".........................Rd is the destination register Dbt.iiion I

R . is the ith source register A\'!Jbiiity Coces

f is an operation on R . Dist Special

*- represents data transfer

-4 n represents a jump to statement n

For example, the following FrL statement No. 17: (T5C8) h2 R3 +P5, -38 means

that when T5 - C = 1, the sum of F3 and P will be stored in R7 and then the

program jumps to statement No. 38.

Based on the above notation, eight catagories of fault can then be identified

as timing faults (t/t'), condition faults (c/c'), register decoding faults

(R./R'), instruction decodinz (function selection) faults (f/f'), control

faults (n/n'), data storage faults ((R )/(R')), data transfer faults (--')

and data manipulation (function execution) faults ((f)/(f')). This set is

functional comprehensive because the behavior of a CPU can be described

by a sequence of RTL statement. Three procedures for testing those five

fault catagories (except timing, condition, and control faults) are derived.

The testing requires the creation of executable sequences to form a "sensitizing"

path which leads from a faulty staterment to a statement producing faulty output

.. ." "" '-' .= .' .. . . . . . ..'~ i " " - " " "" ' ' l:" - "" " ;" ': / "" ,. 7. -,
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information. The RTL technique seems to be a promising approach for functional

testing.

Recently, we presented three algorithms to test the instruction decoding

function of microprocessors 13]. The algorithms are based on the knowledge of

some timing and control information available to users through microprocessor

manuals and data sheets. The tests are functional in nature. We establish the

order of complexity of the algorithms presented in this paper. As an example, the

test complexity for a microprocessor is computed and the results are compared

with a known algorithm.

In 14] we present the state-of-the-art for the functional testing of LSI/

VLSI devices with special emphasis on microprocessor testing. Various types

of IC chips are briefly discussed. Different approaches for testing the

functional faults of LSI/VLSI are surveyed and the comparison of these methods

are given. Fault models for representing the faults and fault coverage of the

tests are discussed. Some of the important unsolved problems and current trends

in testing VLSI are pointed out.

A new approach for testing VLSI circuits is presented in 15]. Through

backward critical path tracing, a test and all faults detectable by the test

are generated simultaneously. Therefore, the expensive fault simulation is

completely eliminated. We present a critical path test generation procedure for

dicital systems described by hardware description language (HDL). A multiplication

circuit described by a HT)L is utilized for demonstrating the test generation method.

In this report, two functional testing techniques are presented with in-

depth technical discussion. The first technique (Part I) provides a functional

testing method for microprocessors. Major issues in testing microprocessors are

clarified and defined. The second technique (Part I) is a new algorithm to

sy'stematically perform functional test generation for digital LSI/VLSI systems

using machine symbolic execution technique. Skills and concepts developed in the

area of artificial intelligence (AT) are applied.
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The first technique (Part I) is for testing microprocessors [6]. Among the

variety of LSI/VLSI devices, microprocessors have the most widespread use and the

highest functional complexity. Therefore, recently, testing microprocessors has

received a great deal of attention. Several deterministic testing methods have

been proposed. The more important approach to the functional testing of micro-

processors is the Thatte and Abraham's method which has been widely cited in

subsequent literature, but their fault model for the instruction execution

needs to be generalized. For example, in an instruction decoding fault I./l+k9

it is assumed that instead of execution I., both instructions I. and Ik are

executed to completion. This is not general. In order to make the fault model

more general and practical, partial execution of an instruction under fault should

be considered. In addition, a microprocessor is a type of complex sequential

machine. The current approach is to test microprocessors by instruction execution.

Generally, before executing an instruction-under-test, we have to write certain

data into some registers, and after extending the instruction, read the contents

of the registers. Therefore, if the write or the read instruction is faulty,

we may not be able to test the instruction-under-test. To solve this problem,

Thatte and Abraham have to label instructions and define test order in detail

before testing. This makes the test procedure more complex.

In our work, we first establish a fault model for microprocessors,

emphasizing the control fault model defined at the register transfer language (RTL)

level, since it is convenient to represent the instruction decoding faults and

other control faults at such a level. Then we consider the basic instructions

for the write and read register functions as the kernel of microprocessor. This

kernel can be represented by a sequential machine. Based on the fault model, we

. " - • • • .+ . - . - . • . - • .. . .. -. -. .. . . . . . . m . . .. .- . -
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can use checking experiment to verify the kernel. Thus, testing microprocessor

is divided into tow steps, i.e. guarantee the correctness of the kernel first,

then use the kernel for testing each instruction. Therefore, the complevity of

test generation will be reduced.

The second technique (Part I) is based on two major foundations [7].

First, after the standard syntax of a register transfer language is defined, a

registcr transfer level fault model is developed. All types of faults covered

by the fault model wore analyzed and the number of fault- wa: reduced.

Secendly, based on the RT-level fault model derived, the technique of symbolic

execution was eiployed. Symbolic execution is a kind of program execution

technique which manipulates symbolic variables instead of variable values during

program execution. In A.I., this technique is intensively used for automatic

theorem proving, program verification, programming in logic and many other

interesting topics. Since test generation of LSI/VLSI systems is also one of

the important issues in A.I. applications, the symbolic execution technique which

is popular in A.I. application was adopted. This powerful technique seems to

provide a promising solution for future testing problems of digital LSI/VLSI

, systems.
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I. IhNRODUCTION

The development of integrated circuit technology has resulted in a wide

range of applications for microprocessors. Testing of microprocessors is a

difficult problem because of the complexities cf microprocessors. The problem

is more serious for users due to lack of information on internal implementation

of microprocessors and other %LSI chips. Recently, several deterministic testing

methods have been proposed to solve this problem. These testing techniques

are essentially based on functional level [1-11].

A microprocessor is a type of comple). sequential machine. The current

approach is to test microprocessors by instruction execution. Generally,

before executing an instruction-under-test we have to write certain data

into some registers, and after executing the instruction, read the contents

of the registers. Therefore, if the write or the read instruction is faulty,

we may not be able to test the instruction-under-test. To solve this prrolem,

Thatte and Abraham [3] have to label instructions and define test order in

detail before testing. however, they do not consider the partial execution

of an instruction. So for instruction decoding fault j/I j + it is assumed

that instead of executing lI, both instructions I. and Ik are executed to

completion. It is more general and practical to consider partial execution of

an instruction under fault. Our fault model allows this.

Alraham and Parker [5] proposed a simplified fault model. First, one

tests all internal registers, then executes all instruction and data manipulation

functions.

In this paper, we consider the basic instructions for the write and read

register functions as the kernel of a microprocessor. This kernel can be represented

by a sequential machine. Based on the fault model, we use cheching experiment

....................................................*dJ - .. - -' I* *. ..- *. *



2

to verify the kernel. Then we use the kernel for testing each instruction.

The control fault model is established at the Register Transfer Language (RTL)

level, since it is convenient to represent the instruction decoding faults and

other control faults at such a level.

Section II presents a fault model for microprocessors, emphasizing the

control fault model defined at the RTL level instead of the instruction level.

In Section III, after examining most existing off-the-shelf microprocessors,

we derive testing requirements based on different types of operations. In

Section IV, we define the write and read sequences as the kernel of a micro-

processor. Then Section V proposes a kind of test data which is quite powerful.

Section VI presents the verification of the write and read sequences. Section

V'II discusses the testing of control faults. Finally, conclusions are given

in Section V111.
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II. FAtLI MODEL

The functions of a microprocessor are mainly performed by instruction

execution. The sequence of operations for an instruction can be described

by RTL. We consider that an instruction consists of a series of RTL

statements. The typical statement is defined as

(conditions): D+-f (S , S2 , ... , S .

where

D - destination

S - Source

f(s S, .. ., S, ... ) - operation

Destinations and sources nay be internal registers of a microprocessor

or external to the microprocessor (i.e.. data bus, address bus, etc.). We are

only concerned with those internal registers which are of interest to users, so

we do not consider implied registers such as buffers. For example, data transfer

from menory to memory can be described as DB jDPi , instead of Buffer-DB f llowed

by DDB. -Buffer, where DB denotes the data bus which represents lata input or outputJ

of memory, i,j denote different bus cycles, DBi (read from memory) is ahead of

DB. (write into memory).J

After examining most existing cff-the-shelf microprocessors, e.g. Intel 8080

and 8086, Zilog 80 and 8000, Motorola 6800 and 68000, the RTIL-like operations

can be divided into two classes, transfer operations (class T, D-S), and

arithmetic and logical operations (class A). Class A can be subdivided into

si, subclasses based on the combination of destinations and sources as shown in

Table 1, where the content of flag bits constitute a status register.

-. a. a . . . . .. i .i i~ ll -. _.i . .i / i . i .i . . . ,i i .- -' ..i .. l 'i l i i"il-
I
" -. --"i " 'i i L i i ' i -



Class Type of Expression Operation

Al D4-f(D) BIT SET

BIT PEET

BIT COIPLF2IZNT

INCREMENT

DECREMENT

DECIMAL ADJUST

SHIFT

ROTATE

COMPLEMEN-

NEGATE

CLEAR

A2 D--f(D,S) ADDITION

ADDITION WITH CARRY

SUBTRACTION

SUBTRACTION WITH BORRCC

AND

OR

XOR

D.-f (S) EXTEND SIGN

A3 DI-f(S 1 ,$ 2 ) ADDITION, r-sI+s2

D-f(D,SI S2) ADDITION, D-D+SI+S'

A4 Df(SIS2,S3) ADDITION, D.-SI+S 2+S 3

AM D1 , D2 -f (D1 , S) MFLTIPLY

DIVIDE

AF Flags-f (S) BIT TEST

Flags-f (S, S 2) COMPARE

Flags-f(Si,S 2,... Modifying flags for all

arithmetic and logical instructions

Table 1. RTL-Like Operations
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Not- that the control operations in RTL control statements such as

conditional branch are not listed because we can use RTI_ assignrent statements

with conditions and expand the RTIL description for instructions with loops.

A microprocessor usually can be divided into two sections: the data

processing part and the control part 12,11). One can define faults for each

part. In this paper, we emphasize the control faults.

A. Data processing faults

(1) Data storage fault (R)/(R)'

This means that the content of register is changed fron (R) to (R)' due

to faults such as stuck-at, bridging and pattern sensitive faults.

(2) Data transfer fault -/-'

The fault occurs in the transfer path between the sources and the

destination. This type of fault includes stuch-at, bridging and pattern sensitive

faults.

(3) Data manipulation fault (f)/(f)'

This is the operation execution fault. Under this fault, the operation

f is executed, but the result of operation is wrong.

E. Control faults

This kind of fault involves register decoding faults, instruction decoding

faults and other control faults. A register decoding fault means missing or

changing the selected register, or selection of an extra register, denoted by

R/d, R/P.', and R/R+R' respectively. For instruction decoding faults, we

consider that an instruction can be executed partially. It means missing or

changing the selected operation, or selection of an extra operation in RTL.

'J~ i i~ , Z> Z"l~ -'i 7 i -i i.f'-.- .i 'i'Z-i
/ , ' I 

i. .l . i.i~ i
•." ." " . . . .. .. ... , .. - .-.. ,. . -
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In this case. the instruction decoding fault may be I./€, 1./Li., I /AI

I /Al+I, + l.I/lI+Alk, 1 /1 +1, and so forth where Al means part of

instruction I. The other control faults include instruction execution

sequence faults, condition faults and so on.

From the above observation, we assert that it is appropriate to represent

the control faults at the RTL level. Therefore, we will define the above

control faults at such a level. Let f denote D-f(S 1,S2,...), which is an operation

on the instruction-under-test, and re{f}, where {f} is the set of RTL operations

ot a microprocessor. Let f' denote D'-f'(S',S....), which is an unexpected

(faulty) operation, and f'c{f}.

We now define three classes (i.e. nine subclasses Fl, F2, ... , FO) of

control faults as follows:

(1) f/0- No operation is executed.

Fl. f/4

(2) f/f' - Instead of performing operation f, another operation V is

executed. It contains two subclasses of faults.

F2. Ef/f': Here means that the destination registers D and D' are

different and the fault is f/f'.

F3. of/f': a denotes that registers D and r' are the same.

(3) f/f+f' - In addition to operation f, another operation f' is also

executed. It can be subdivided as follows.

(3a) Registers D and D' are different.

F4. 6f/f+f': The source register list of f and f' does not include

D' and D respectively. We are not concerned with the execution order

.......................-.
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* of f and f'.

F5. 6f/f'f: The source register list of f includes D'. f' Is executed

before performing operation f; i.e. the execution order is

1. D -f' (S', S

2. D- f (S IS2, ....,D'*)

where register without * denotes its content before executing the operation,

register with * denotes its content after executing the operation.

F6. 6f/ff': The source register list of f' includes D and the execution

order is

1. D> f (S1 ,S 2 ,. .. .

2. D'-(f' (S ,S2, ...,D*)
1 

2

(3b) Registers D and D' are the same. When the source register

list of f and f' does not include D' and D respectively, if the execution order

is f'f, the fault does not affect the execution of f. If the execution order is

f f', it is the same as the case with the fault af/f'.

F7. cf/f'f: The source register list of f includes D, and the execution

order is

1. D*-f' (SI s

2. D+-f (SS2,...,D*)

F8. Cf/ff': The source register list of ft includes D and the execution

order is

1. D-f (SIS2,..)

2. D+ff' ,S'"e1 2' n
)

F9. ff/flf': Both f and f' are executed at the same time.

kf (Si,S2,.. )

4-ft

. where L denotes logical AND or OR function depending on the circuit implementation.

In this case, the final content of the destination D is the result of the

................. *..*. . . . .*
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composite value (i-.e. the result of the AND or OR function) of f and f'.

Note that the above control faults can occur at any place in an instruction

execution sequence. This control fault model can cover register decoding faults,

instruction decoding faults (including partially instruction execution),

instruction execution sequence faults, etc., since any control fault can always

be defined as missing, changing, or extra RTL opeations and will cause registers

to have wrong contents.

... . ... .... ... . .° .. o . .



III; REQUIRDMNTS FOR TESTING CONTROL FAULTS

Our purpose is to test the execution of microprocessor instructions.

Therefore, the objective of test pattern generation is to find the initial

data in registers (test data) needed for testing functions of an instruction.

This test data must satisfy certain requirements. From the control fault model

given in Section II, we can obtain various requirements for testing control

faults.

Let us establish the following notation. For a fault-free operation f,

we have

Vi = the value of register i.

VS. = the value of the operand in source register Sii

VD = the value of the operand in destination register 1.

19, = the value of the operation result stored in D.

For a faulty operation f', we obtain VS!, VD' and VD'* instead.

Theorem 1. Control faults T/4, T/T' and T/T+T' can be detected if the data

values of registers satisfy the following requirements:

QTTl. Vi # Vj , i V j

QTT2. Vi L V # Vi, i j

Proof. We shall prove this theorem by considering the nine fault classes

defined in Section II.

() For fault Fl (T/k) and F2 (6T/T'), in order to verify transfer

operation T, one needs VS 0 VD.

(ii) For fault F3 (cr/T'), the results rf T and T' should be different,

i.e. VD* I VD'*. To obtain this result, we must have VS J VS'.

(iii) For fault F4 (6T/T+T') and F5 (6T/T'T), we need only to detect the

extra operation T'. Therefore, VS' I VD'.

i~i.. .....................................-...---. ' . i- - - - . *.*../<-*-..- * -. .. "- -.-.. V...-.--. .
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(iv) Fault F6 (6T/TT') means that transfer operation D-S is perforned

first, then D'*D*. In order to detect the extra operation ', one needs

VS 0 VD'.

(v) Fault F7 (aT/T'T) yields D-S' followed by D4-D*. Therefore, we obtain

the requirenent VS' 0 VD.

(vi) For fault F8 (of/TT'), we have D-S, then D-D*. This fault does not

affect operation T. In order to verify T, we need VS # VD.

The above six requirements belong to QTTI.

(vii) For fault F9 (OT/TLT'), the composite value of both results of T and

T' should be different fron the correct result of T. i.e. VSLVS' 0 VS which

belongs to QTT2.

Q.E.P.

Theorem 2. Control faults T/A' and T/T+A' can be detected if the data values

of registers satisfy the follo:ing requirements:

QTAl. V i #V. , i# jj

QTA2. f' #VS

QTA3. fV # VD'

QTA4. VSLf # VS
A

where f' is the result of operation cf class A, i.e. f f (VS VS''...
AAA 1 2

Proof. The proof is similar to the proof for Theorem 1. Since A' instead

of T' is performed, we can change VS' to f' in the requirements (ii), (iii),
A

(v) and (vii) in the proof for Theorem 1 to obtain the corresponding

requirements for Theorem 2.

(i) For F2 (6T/A'), VS # VD, (QTAl).

(ii) For F3 (cT/A'), VS # f', (QTA2).

(iii) For F4 (6T/T+A') and F5 (cT/A'T), fV VP', (QTA3).

(iv) For F6 (6T/TA'), it means that D4-S first, ther D '-f' (' .,
A 1 i2

..-'..'.. " " " .".................................................................................," ";
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We need A (VSVS ',...,VS) # VD'. Since VS can be selected as any initial

data value, it can be considered as one of several source operands. Therefore,

we can rewrite f' (VSI VS ' ...,VS) 0 VD' as fV # VD', (QTA3).
A ' 2 A

(v) For F7 (cT/A'T), fV VD', (QTA3).
A

(vi) For FS (c/TA'), it implies D+-S followed by D'-f (SS ,...,D*).

This requires VS 0 V~ (VS{,VS2,..., VS). Here VS can be considered as a

dEstination operand VD'. So we revrite the inequality as VD' V f',(QTA3).

(vii) For FQ (oT/TLA'), VSLf' 0 VS, (QTA4). Q.F.D.
A

Theorer 3. Control faults A/ , A/T' and A/A+T' can be detected if the data

values of registers satisfy the following inequalities.

QATl. fA V VD

QAT2. fA # VS'

QAT3. Vi # V. , i# j

QAI4. f # I'D'

QA5. fA (VS') fA (VD)

QAT6. fA L Vs' # fA

where fA = fA (VS1 VV 2 ... )9 fA (vD) fA(VSl'VS 2,..1T)' fA(VSr)

f A (VsI' VS2'" ')

Proof. Since arithmatical and logical operations instead of transfer

operations are considered here, we can change VS to fA in the cases (i), (11),

(iv), (vI) and (vii) of Theorem 1.

(i) For Fl and F2, fA 0 VD, (QATI).

(ii) For F3, fA 0 VS', (QAT2).

(iii) For F4 and F5, VS' 0 VD', (QAT3).

(Uv) For F6, fA 0 VD', (QAT4).

(v) F7 (aA/T'A) means that D,-S' followed by D-4-f A (S,,...,I*) which yields

fA(VS When there is no fault, f(VS V .,D) is obtained.
A ,1 VS2.. '.'VS'A. A.- - - - 2'.
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Thus the condition for detecting this fault is fA (VSI, VS2,...,VS')

# f A(VS ,VS2 ... ,VD), (QTA5).

(v!) For F8, fA # VD, (QTA1).

(vii) For F9, fA L VS' 0 fAs (QTA6). Q.E.D.

Theorem 4. Control faults A/A' and A/A+A' can be detected if the data values of

registers satisfy the following inequalities.

QAA1. fA # VD

QAA2. f # A

A A

QAA3. fV y VD'
A

QAA4. f'(fA) 0.V"'

QAA5. fA (fA Y"f( V )A A

QAA6. f'; (fA) fA

QAA7 fA f fA

where f (fA) =fA(VSi, V'1' f, A (q) f A(VSlVS 2 ,..,f

Proof. For the same reason, we ray change VS to fA' and VS' to f' for
A A

cases (i) to (iii) and (vii) in Theorem 1 to obtain QAA1 to (AA3 and QAA7

respectively. In addition, since the results of A and A' may affect each other,

we can obtain QAA4 to QAA6. Q.E.D.

Note that for requirement QAA7, if o-Eration f and f' of class A are
A A

executed in the same unit (e.g. AI), then beth results of f and fV can no
A A

longer be considered as obtained separately. Instead, QAA7 may be considered

as a data manipulation fault (f A)/(f )'
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IV. WRITE AND READ SEQLENCES

As a microprocessor is one type of sequential machine and all internal

registers are remory elements of the sequential machine, the content of registers

represents the state of the sequential machine. Therefore, the following Fcniral

procedure is utilized for testing microprocessor6.

1. Initialization of state of registers.

2. Execution of the instruction-under-test.

3. Read the state of registers.

In fact, Steps I and 3 consist ef write and read register sequences respectively.

Obviously, if we can guarantee the correctness of Steps 1 and 3 first, then

the testing prcbler will le simplified.

The testing approach used here is a kind of open loop testing [5]. It

implies the use of a test equipirent which provides the stimuli to the micro-

processor and observes the responses from the microprocessor.

Now let us discuss write and read sequences which are used for writing

and reading the register states of a microprocessor. They consist of several

basic instructions, called the kernel of microprocessor. These instructions

of the kernel can be carried out by a sequential machine, therefore, we can

use a checking experiment to verify the kernel.

A. The kernel of microprocessor

Definition 1. Kernel instruction set - A small subset of instructions of a

microprocessor which can be used for constituting the write and read register

sequences.

Definition 2. Register set - All internal registers of a microprocessor fror the

view of the architecture or progranming.

Definition 3. Kernel state - The register state, i.e. certain set of data values

of the registers.
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Definition 4. Kernel input - The write sequence for writing a set of data into

the registers, or the read sequence for reading out the contents of the registers.

Definition 5. Kernel output - The set of data values of the registers which are

read out by the read sequence.

B. Kernel instruction set

There exists many choices for the kernel instruction set. In order to

keep the kernel snall, the following requirements should be satisfied.

1. The nurber of instructions in the kernel instruction set should be

small.

2. Functions of each kernel instruction should be as simple as possible.

For instance, a kernel instruction contains mainly transfer type of operations,

or small number of RTL operations.

3. In order to simplify addressing, the priority order of choosing the

addressing mode of an instruction is as follows.

For write register instructions: Immediate, Direct, Indirect.

Fcr read register instructions: Direct, Indirect.

For the existing off-the-shelf microprocessors, most registers can be

written into or read from directly. These registers are called direct access

registers. Others are indirect access registers which can be accessed through

the direct access registers in certain order by using transfer instruction

azong registers.

C. Kernel state

In order to simplify the testing, during the checking experiment, we only

use a few states for the good kcrnel, i.e. we define several sets of data values

for the registers. Therefore, we should choose the data values (test data)

such that they car. cover as many faults as possible.

. . . . . .... -- . . , T



15

V. TEST DATA

We use the checking experiment tc verify the kerncl cf a microprocessor.

Thc main tas- is to decide how many states of the kernel and what test data we

USe.

Abrahar and Parker [5] use the ! -out-of- codes for their "register read

test" procedure, where r is the width of a code word (i.e. the length of register),

and k is the number of l's in the code word. As we will see, this type of code

is powerful since it can be used as test data to cover most control faults by

using fewer data. We will use the k-out-of- codes for verifying the write

and read sequences as well as for testing control faults. The k-out-of-m codes

can also detect stuck-at type faults, but do not guarantee to cover all data

processing faults.

To simplify the testing, we will only use transfer operations of the kernel

instructions in write and read sequences. Therefore, we only need to consider

the requirements of Theorems I and 2.

A. QTTI, QI and QTT2

The k-out-of-n codes used as test data can satisfy requirements QTT1,

QTAI and QTT2 (Vi # V and V. L V. Vi). This is because in the k-out-of-m

codes, all code words are distfnct and the AlTD(OR) operation of any two code

words will decrease (increase) the number of l's in the code word, thereby the

new code generated is different from both original code words.

B. QTA2

The requirement OTA2, f' # VS, is for detecting fault :A'. Htrc L. andA"

D' are the sam, register. During the checking experimc-nt fur the kkurnul, there

exists an input leaving the kernel state unchanged, i.L., thL transfer operation

I (in write secuence) keeps VD (=VD') unchanved. Th t - rt f #V bicomes

f, VS = VP - VD' which belongs to QTA3.



16

C. QTA3

The requirement QTA3, f'(VS, 1 VS',...) 0 VD', is for detecting an extra

operation. We list the restrictions of operands (test data) for detecting

operation of class A in Table 2.

Extra Operations Restrictions of Operands

BIT SET

BIT RESET

BIT CO.TLEMENT No

INCR L-YT No

DECRYZN'T No

DECI. A ADJUST

SHITF # 0 (all 8s), 1 (all Is)

ROTATE 0 0, 1

COMPLVENT No

NEGATE No

CLEAR #0

ADDITION #0

ADDITION TITH CARRY # 0, -1

SUBTRACT ION #0

SUBTRACTION WITH BORROW # o, -1

AND k-out-of- codes

OR k-out-of-m codes

XOR k-out-of-. codes

EXTEN SIG?," # 0, 1

ADDITION, D+-S1 + S2 the least significant bit LSE -1

ADDIT7:ON, D+r + s + SQ 0; vs, + vs; 0 0

ADDITION, D4-SI + S2 + S3

MULTIPLY # O, 1

DIVIDE # 0, 1
BIT TEST (

COMPARE )

Modifying flags

Table 2. Restrlctior.s of operands for detecting faulty

arithrnetic or logical operations

~. . . . . . . . . . .
-. i. .---- .- i .,,-.- ,-v ---... - . .. . - .- ', .- ....-.. ..--- v -. ... ... ,.-----,,.-.,..-, .... . . . ..*. -, ." . ." - -- .. - ,
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If we use two tests in which the source operands are complements of

each other, then one of the tests can detect thE faulty operation.

( These operations only set or reset the flags. We use two tests with

the identical source operands and two sets of flags which are complements to each

other. The faulty will change one of the flags.

© The execution of DECIM±AL ADJUSI (to add certain values) depends on the

value of source operand and the flags. We can use either method in case I

or either method in case 2 to detect the operation.

@ Operation D'-S1 + S2 + S3 is only used for memory address addition.

Here D means external address bus. In this case, the unexpected operation

does not affect the write and read registers. Hence it needs not to be

considered for verifying the kernel.

) During the checking experiment for the kernel, if we have considered

the main operations in arithmetic and logical instructions as the unexpected

operation, then we need not consider modifying flags which are auxiliary

operations.

For other operations, the restrictions are obvious. For example,

ADDITION WITH CARRY, D'-D' + S' + CARRY , if CARRY - 0 with the restriction

VS' # 0 or CARRY' = 1 with the restriction is VS' 1 -1, then VD'* # VD'.

Since we use k-out-of-m codes as operands, these restrictions can be satisfied.

For operation D'-D' + S' + S , since the negative value of any k-out-of-n
1 2

code word will not be any k-out-of-m code, i.e. VS1 + VS' 1 0; so VD' + VSI + VS,

VD'. For operation D'-S1 + S', we can divide the k-out-of-n codes into two

groups with different LSB (Least Significant Bit). These two groups complement

each other. Te group with the restriction LSB 1 1 will be used for testing.
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For operation ROTATE, the restriction is for the case of the odd number of

shifted bits. Otherwise, we need othcrrestriction (e.g. using subset of

k-out-of-n codes as operands).

D. QTA4

The checking experiment does not guarantee requirement QTA4, VS L. F' VS.
A

For example, for the normal transfer operation T, D'-S, with VS = 111000, VD = 011100

(using 3-out-of-6 codes), if there exists a fault aT/TLA' and the extra

operation A' is SHIFT LEFT, D -SHL D, then f' = 111000. If T is an AND function,

then VS L f' = VS. Thus QTAL cannot be satisfied. Therefore, we need another
A

test procedure to remedy this. The remedy is to change the value of S in the operation

D-S to 1 or 0 depending upon L being AND or OR respectively. From the above example,

we see that if : is an AND function, let VS = 1 then QTA4 becomes fP 1 which
A

can be satisfied. Similarly, if L is an OR function, let VS = 0 and QTA4 changes

to f' 0' 0.
A -

Nov let us check this remedy method for all operations of class A. Note

that we only change the value of S in operation D-S, and D' in operation A' can

be substituted by D.

(1) For class Al, D -f'(D). If we use k-out-of-r. codes, the nev
A

recuirEment QTA4', fP # 1 (0), depending on f, can be satisfied except the

operation CLEAF with L being OR. But in this case, the result of f' is alwaysA

0 which does not affect the operation D+-S.

(1i) For class A2, D"-fA(DS'). No matter S' is the same register as S

or not, QTA4' is true except the following case: when S' and S are the same

register, then for QTA4', f' # 1 (fW is operation OR and L is AND) and f' # 0A A A

(f; is operation AND and L is OR) cannot be met. But in this case, if S' and

S are the same, VSLf ' is always the same as VS, the fault do2s not affect r"-S,
A

i.e. VSA(VD'XS) = VS and VSV(VDAVS) VS for any operands D and S.
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(iii) For the EXTEND SIGN operation, Df'(S'), the result of f' is 0 or 1.

Similarly with case (f), either QTA4 can be met or the fault does not affect

operation T.

(iv) Fcr classes A3 and AF, QTA4 can be satisfied. For the sane

reason as QTA3, we need to consider neither modifying flags operation nor

D-S + S, + S

(v) For MULTIPLY and DIVIDE, since the execution period of these operations

generally is longer than that of transfer operations, fault arf/fLf' cannot exist

and we do not consider QTA4.

In su.ary, during the checking experiment we only need three sets of

test data for internal registers. Let n be the number of the internal registers.

r, be the length of registers. Suppose that m is even. Let V denote a complete

set of k-out-cf- code words. Usually, k = f. !I=! 1) will be the maximum
M/4

number of distinct codes. We divide them into two groups, y( and V with different
4 -1

LSB. These two groups are complementary to each other. Note that for most

rizcroprocessors, m is even, and IVI > 2n.

Let {} = {alCa2)''',r. 
}  = { l' 2 5'' 

} {a) and {a} belongs to

V and V respectively. We now construct four sets of data as follows.

Flag register Other registers

aI  a2, a3 , ... , an
a 1 Q2 -- 3--

CL 02 a 3 an
i Q2 , O 3 , ... ,

In order to satisfy requirement QTA3, we can choose any three sets of data as

the initial values of registers (test data). In fact, one needs a few more

data as external bus inputs during testing. Therefore, the final number of code

. - . " - .." . -. - . " ' . % - .
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words in {a) and {f} is larger than n.

It should be pointed out that the program counter (PC) is easy to test. We

can put a direct addressing branch instruction at the end of a write sequence.

This instruction stores a particular value into PC, then the content of PC is

checked at the beginning of the read sequence by observing the address bus.

VI. VERIFYING WRITE AND READ SEQUENCES

Now we will derive the checking sequence for the kernel. As we mentioned

before, we only use three sets of test data for the kernel, namely a, b and c.

First of all, just like a sequential machine we have to obtain a flow table of

the kernel. We consider two cases.

Case 1. For a microprocessor without indirect access registers, we obtain

the following flow table.

W W W Ra Wbc

A A B QC® A,a

B A B C B,b ®
C A B® C® C,c ®

Case 2. For a microprocessor with indirect access registers, we obtain

the following table.

a b c

A A (D B C ® A*,a ©
B A B C C ® B*,b 2
C A B ® C C*,c r

A* A B C ® A*,a* 2

B* A ® B c B*,b*

C* A ® B C ® C*,c*

....-.... ........ v-.......-..-.,.... .,..v .. .
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where W, Wb, W - write sequences for writing a, b and c respectively.
a b c

R - read sequence.

A, B, C, A*, B*, C* - Kernel states. A, B and C are the states after

applying the corresponding write sequences Wa, W b W . A E* and C* are the~C

states after applying read sequence R.

a, b, c, a*, b*, c* - Kernel output sequences produced by read sequence R

for states A, B, C, A*, B*, C* respectively.

( denote the state transition i.

Since we only use three sets of test data, the number of states of the kernel is

constant. It means that the above flow tables are independent of microprocessors.

* Therefore, we can easily obtain the checking sequences with the same form.

There are three requirements to derive a checking sequence (12]

1. Initialization of the machine (kernel) state using sychronizing

sequence or homing sequence.

2. Identify all machine states using distinguishing sequence.

3. Verify each transition using distinguishing sequence.

For our kernel, there exists sychronizing sequences W or Wb or W and•a b C

distinguishing sequence R. Therefore, we can easily derive checking sequences

* as follows.

Checking Sequence 1 (for case 1)

Initialization

, / Identify all states

W R R W R R W R P W R 141 R W R W R W R Wb  R V
a , xa b.Wa .c ,c b b a

(D 0 (0 I
Verify all state transitions (i.e. next states).

* * ...
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Checking sequence 2 (for case 2)

Initialization

/ Identify all states

WR R R abR R R Wc R R R Wa aR WaR
10'-'4\ % S'V k4 V1 '4e % '11

(D 0 !0 ((@ ® (0 (0 @ C
4 4 A to

Verify all state transitions (i.e. next states)

W IV R W V R W W R W W R W W R W W R W V R W R b Ila R
a a a b b b c C c c a a c cb ba

© 0 ® (:8 ( G 0 :

Finally, we can obtain two test procedures for verifying the write and read

sequences as follows.

Procedure 1: Checking experiment

1. If a microprocessor does not have indirect access registers, yve use

checking sequence 1.

2. If a microprocessor has indi"rect access registers, we use checking

sequence 2.

Procedure 2: Remedy testing

For each of the three sets of register values a, b and c, do the following

for each register.

1. Initialization of all registers.

2. Write 1 or 0 into the given register depending on the circuit

implementation.

3. Read the given register.

Therefore, from the previous discussion in this section, we obtain the fcllouring

theorem.

Theorem 5. Procedures I and 2 can verify write and read sequences, are after

that the registers of a microprocessor can be initialized to any values.

-' -.-'i ' -' ' -',-.-' -- -. .' -., .-',.. -. -. -' . .-. .- -" ." --" .'-". --'. "." - • - . -- -. . --7 . '
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VII. TESTING CONTROL FAULTS

During the verification of the correctness of write and read sequences,

we are only concerned with certain transfer operations (not all RTL operations)

in the kernel instructions. Therefore, when we test instruction decoding and

other control faults, we need to test all instructions included in the kernel.

Note that obviously, register decoding faults can be detected by verifying write

and read sequences using the k-out-of m codes.

Procedure 3. Testing instruction decoding and other control faults

For each instruction, do the following test,

1. Initialize register state using any particular initial values.

(test data)

2. Execute the instruction-under-test.

3. Read register state.

Note that we should first try to use three sets of data values a, b and c

at Step 1.

Generally we need several tests for each instruction to detect the

instruction decoding and other control faults. Obviously, the lower bound

of the number of tests using Procedure 3 for each instruction is two. This

is because any kind of microprocessors has several pairs of conditional branch

instructions based on two different values for the same condition sourse.

Therefore, when any instruction is under test, in order to detect an unexpected

branch instruction due to a fault, we need at least two test patterns.

The upper bound on the test for each instruction is dependent upon the

microprocessor-under-test. We can roughly estimat the order of tests for

detecting instruction decoding faults. We consider nI instructions to be

tested, assume that each instruction corresponds to an operation, class 7 or

Class A, used for distinguishin, instructions from each other. Lct nIT and

nIA denote the number of instructions which have operations class I and

,". ."" ... -.. .°. -. ..... .... ".,...".. . . . . . ..."..-. -, * . .'. . . , • .. . • - . , ' . % "% . .
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class A respectively, i.e. ni  nIT + n IA*

A. Testing instruction class T

1. The case of Theorem 1

Since for some condition branch instructions, their operations belong to

class T, and they are condition transfer operations. In order to detect this

unexpected operation ', two tests, in which test data are complement to each

other, are sufficient.

2. The case of Theorem 2

First of all, we use three sets of Initial values a, b and c for satisfying

the requirements QTAl and QTA3. In crder to satisfy QTA2 and QTA4, we can

modify a, b and c separately as new test data. As we have discussed in

Section V, if the instruction-under-test has a transfer operation D-S, we can

change VE in original data a, b and c to VD, then QTA2 becomes QTA3 which can

be satisfied. Similarly, we can change VS to 1 (or 0) to satisfy QTA4. Here

we need nine tests altogether. Thus, the order of the number of tests for

testing instruction class T is O(nIT).

B. Testing instruction class A

1. The case of Theorem 3

Test data a, b and c can cover QATl and QAT3. Similarly, in order to

satisfy QAT2, QAT4, QAT5 and QAT6, we can modify a, b and c in turn. First,

we change VS' and VD' to VD for covering QAT2 and QAT4 respectively. These

changes are done for each register, so it needs 3n tests, where n is the number

of registers. Then we change VS' to a particular value for covering QAT5 and

QAT6 separately. It needs 6n tests. So the total number of tests for each

instruction in this class will be 9n+3.

2. The case of Theorem 4

We need three tests using a, b and c for covering QAAl and QAA2.

................ .... ".- -.-.. "- . ... "..."..'- -. - -. - .
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Thcn we attempt to find five particular tests to satisfy QAA3 through QAA7 for

each unexpected operation A'. So the number of tests for each instruction in

this class will be 3 + 5 (n1A -1) = 5 nA 2.

Therefore, the order of the nurber of tests for testing instruction class A

is 0 (n-niA + _) The order of the number of tests for testing instruction

decoding and other control faults is 0 (n + n.n +lA n 2). Note that using
IT 1A lA

Thatte and Abraham's approach [3] the order of the number of tests for testing

instruction decoding faults is 0 (n2).

,.,m.. . . . ,_ ... .. . ...-,. ... . ..,. . . ...... ... *,
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VIII. CONCLUSION

Any deterministic functional testing approach for microprocessors always

involves the initialization and the reading of internal registers in each test,

i.e. write and read sequences. If we devide the testing into two steps and

guarantee the write and read sequences' correctness first, then the complexity

of test generation will be reduced.

Since control faults possibly lead to the partial execution of an instruction

or changing the execution sequence, we assert that it is reasonable to define

a control fault model at the RTL level instead of the instruction level.

For test generation, usually one derives a test for a given fault. But if

we find a test to cover as many faults as possible, then test generation will

be more efficient. It seems that the k-out-of-m codes for test data are quite

powerful.

The function of write and read sequences can be modeled as a small sequential

machine which is almost independent of microprocessors. Therefore, we can easily

use the checking experiment to verify the sequential machine.

Further work includes the enumeration of the control faults at the RTL level

for the generation of tests to cover all possible faults.

In addition, for the data processing part of a microprocessor, it is easy to

handle storage faults and transfer faults. For data manipulation faults, it

seems that the best way is to find a set of test patterns to exercise each

operation based on the analysis of logic function of the operation, or simply

use random data (locally).

Combining the simplified functional testing method with the signature

analysis technique may be a good approach for implementing the Built-In Self

Test (BIST) of microprocessors.

i
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ABSTRACT cuit desizn/implementation (e.g., parallel adder

This paper presents a new algorithm for func- vs. serial adder). Especially for the users of
LSI/VLSI chips, the' have little other alternative

tioral test generation of digital LSI/V7LSI systems. but functional testing sincetecisdsgn
First, a register-transfer (RT)-level fault model f e the chips design/
is developed based on a well-defined register- implementation details are usually considered pro-
transfer-language (RTL). The analysis and prietary.
collapsing of faults in RT-level fault model were Several functional testing techniques have

performed. Then, the RT-level symbolic execution been proposed today. Su and Lin 3 recently over-
technique is employed. The major problems en- viewed most of the major techniques in literature.
countered are defined, analyzed and solved. Final- Shen and Su ,4' discussed the major issues involved

in functional testing of microprocessors. Brahme
l.a and Abraha. : proposed a nee i fault model for the
rithm is developed. This practical algorithm

applies software skills in hardware testing. It control and instruction decoding faults to increase
the practicality of their previous approach [15S.

is easy tc be automated and hence prcvides a
prr-isinz sclution for future testing problems of Based on the observations obtained in 73', most, if

not all, of the existing techniques need further
digital LS!/VLSI systems. development. There are still a lot of open prob-

1. INTRODUCTION lems which need to be solved.

Due to the rapidly increasing complexity of In this paper, a new algorithm to systematically

modern LSI/%LSI devices, functional testing has perform functional test generation for digital LSI/
VLSI systems using machine symbolic execution

received more attention than ever 7-3-. The high technique is presented. The digital system under
com:, exitv of VLSI makes conventional gate-level

test is described by the popular register transfer
testing very difficult and expensive to perform. language (RTL). This technique is based on two major
Techniques for design-for-testability (DFT) or foundations. First, after a standard syntax of a

built-in-self-test (BIST) consider the testing pro- regi nsFerstatee isdened a ofe

bler during the design stage of digital devices regste ra-ser satemel is d ed a compe-

with the objective of reducing the test complexity. h v t-l ver fault model s u Alyes
However, these approaches are not applicable to the of faults covered by the fault model are analyzed

existing off-the-shelf components (e.g., Z-80, 8080). and the number of fault cases is reduced. More

Function-level testing is another promising solution practical faults than other techniques are included
fu solve hese problems. functional tsting can be in this fault model. Secondly, based on the RT-

sovvl these probees dunctiona tesin canncu besytciused tc assure proper operations of a system with level fault model derived, the technicue of symbolic
of-the-shelf components and to "test" '(and hence execution which is intensively developed in high-
othe-hel a cosponense an to "st' nd he, level programming languages is employed in RT-level

improve) a digital system even in its design phase.execution is kind of
Functional-testing uses a representation of a test generation. S e i

digital systen higher than the gate-level testing. program execution technique which manipulates sv-
In -n stemna higr f- bolic variables instead of variable values during
Ifunctional testing, functional faults with re-

spect tc the functional specification (e.g., addi- program execution. Since the syntax structure and

tion operation in a processor) are tested instead operational complexity of RT-statements are much

of signal faults (e.g., stuck-at-O) at the inputs simpler than those of higher level languages, the

and the output of a logic gate or interconnections problems of s.mbolic execution encountered in FT-

among gates in gate-level testing. The purpose of level are less complex. Basically, the symbolic

functional testing is to validate correct functional execution is performed on both fault-free and fault-

operations of digital systems according to their injected machines. By comparing the symbolic results

specifications. Using functional testing techniques, an path constraints obtained from fault-free and

one cannot only reduce the test generation complexity fault-injected machines, the input test patterns to

but alsc obtain a test set for testing the digital distinguish "bad" machines from "good" ones can hence

devices with the same functions but different cir- be derived.
The formal syntax definition of the standard

• This work is supported by the United States Army register transfer statement (RT-statement) is giver
in Section Z. Section 3 presents the analysis anc

Communication Electronics command under Research collapsine of the RT-level faults. The basic pro-
Contract No. DAAB 07-82-K-J36.

.i.
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blers of machne-level symbolic execution and their below:
sol:utions are described in Section 4. Section 5

k: is a positive intecer representing the label of

outlines the steps in the overall test generation an RT-statement.
alg rirhm and explains the key ideas within each t: is a one-bit value timing flag.
step. Finally, a brief discussion along with con- c: is the condition expression with relational

operator specifyinz the condition for performing

2. THE RECISTER TRANSFER DESCRIPT:O!y the register transfer operation.

The register transfer (RT) description is a Pd: denotes the destination register of the RT-

powerful, and hence, popular tool for describing : statement.

digital systems. The RT-language introduced here s

uses the cot.only adopted syntax notations. Its f: stands for an ALU operator operating on the

design is mainly intended for the use of functional content(s) of source register(s).

representation and functional level test generation : represents the transfer of the result of RT-

of the digital system under test. With a little operation to the destination register.

nodification, it can be extended for use in other 'n: is the label of RT-statement to be jumped to

related applications such as formal machine specifi- after current RT-statement is finished and t

cations in computer-aided-design (CAD). and c are true if present.

The register-transfer level description of a The operands in RT-expressions may be regular

dizital syster is complete with two distinct de- registers with explicit bit-length, constant regis-

scrintive parts: the non-executable part and the ters with or without ex;licit bit-length, or macro

executable part. The non-executable part consists registers with explicit bit length. A macro regis-

o: a set of declaration statements. There are ter is a group of registers obtained by concate-
tcree kinds of basic declaration statements in this natlng two or more registers. Note that memory

cart: INPUT. OUTPUT, and INTERNAL. INPUT declares reference can also be directly expressed in an RT-

the inp:ut registers of the system. The OUTPUT and statement. All memory references are represented

:NTErNA! -eclare the output registers and the by a memory register. The above typical RTL state-

internal registers respectively. Following the ment includes the following types of RT-statements

non-executable part is the executable part. This as special cases:

zart is composed of register transfer statements Pure transfer statement: k: RdEs , -n

with svntax to be discussed in the next few para- dData operation staterent: k: R s)

graphs. At the end of the exezutable part, we use s

an "E?'- tc indicate the termination of the overall Conditional branch statement: k: (c),-n

P71 deszription of the system. To enable easy Constant transfer statement: k: P. 'C,"n.

readinz and understanding of the RT-statements, 
c

comnentary statements enclosing at both ends with Figure 2 shows the RT-descriptlon for a hypothetical

sv bol may be inserted anywhere in the descrip- machine called SI.LE-CALCUlATOR. After the first

ton. three lines of declaration, the RT-description of

A number of operands are defined here repre- the SIMhLE-CAICILATO. starts the instruction fetch

senting arithmetic operations, logical operations, cycle followed by the instruction decoding cycle

snifts, field extractions, and bit string con- and then the instruction execution cycle. More

catenation. The domain and range of these operands discussion of the defined Pr-language can be found

are bit-strings. The default value for bit string in :67.

is 's-complement for arithmetic operations and

unsigned for lcgical operations. Both decimal and %DECCARATION PART

tinary integer constants may be used in the state-

ments. Each operator has well-defined rules for the OlUTPL: AS(l). A(8, 0(8), F(l) 3

resultant bit-length as a function of the sizes of 'TER.
input operands. in addition, some operations in- INENAL: BS(l), B(S), EM, SC(S), OS(l' SG

elude implicit sign- crzero-extension of shorter PROGRJAM PART,

operands to match a longer one. Figure 1 lists 0: S START. - I

those operators defined here in group of their 1: (,-0), - 0

natures. Where, - is the concatenation operator 2: E OP, - 3

and .. is the field extraction operator. Z1NSTRUCTION DEC:IN- CHANT
DC3: (E-OOIB). 1 ii ADDS

nary-operators:: - unary- NOT INC DEC 4: (E-OlOB). - 1: %SUBTKA CT7
adding-operators:: - - :(lB) 1 SUTCT

5: (E-011B). - 13 %.MLTIPLY,
logic-operators:: - AND OF XOR , NOT

relational-operators:: - 7: (E-OlB) - 23 ZLOAD BT

rerresentational 
8: (E-llOB). 25 10LA7 C'

operators:: - sh t shr .. 9: (E110B), 2' %LOAD SC

10: S -11o,) 2" %LA :OSEWS

Figure 1 Operators defined in RT-statements 10: S - A, A 0 B, -
11: F 0 A A + B. 1 C

A typical RT-statement syntax is giver below: 12: F @ A A - B, I0

k: (tc R 13: AS - BS XOR Q5, - 74
l s '" i , 14: A 0. - 15

where K, t, c, Rd f, R and - are called FT- 15: F - 0, - 16

conponents. The meanine of each is briefly described 16: (0(7.l-) 1 1 A A - B, - 17
17: F A SHF F - A C, - 1
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18: SC - SC-I, - 19 where, single-bit stuck-at fault is assumed in (ii)
!Q: SK 1> 0). - 16 and (iii).
2¢: -- 0, -0 Proof:
21: A - DE, - 22 (1) If k/k' occurs, one of the possible faulty cases
22: AS - DBS, - 10 is that the addressing mechanism for k is totally
23: B - DE, - 24 masked. In this case, no k. therefore, will be
2 E: BS DB l, - 10 found by the system's execution mechanism.
25: Q - DB, - 26 (ii) (iii) Suppose A is the maximum valid address26:0 QS DBS, - 10s27: Sc DB(I..3), 10 in the R"-address space of current digital syster_7: and B is the bit length of label k. her k/k't:

occurs, there are B faulty possibilities k., 1 , i
Figure 2 An exam-ple of RT-description L B, with only one-bit different from the correct

3. T-iE RT-LEVEL FAVt' MODEL AND FAULT COLLAPSINGC bit value of k. For those k' with value k ' As,

Based on the typical RT. statement given in the they belong tc the fault type k'ik For those k

last section, nine types of RT-level faults car with the value k' > A , they belong to the fault
be derived. The functional effect of these faults i s

can be analyzed. The results are described in type k' B k=.
several lermas. Based on these lemmas, analysis To savZ space, following lemmas are stated

without proof. The detailed proofs can be found
for PT-level fault collapsing is conducted andin'. in "6>.
several important theorems are derived. For brevitv

only the major lemmas and theorems will be pre- Lena 2. The jump section of an RT-statement may
sented in this section. Detailed discussions of become faulty. We use the notation -ni-r.' to rep-
the ov rall development can be found in :6:. resent that such type of fault occurs. If bridging

Definition 1. After a digital system is described fault and stuck-at-fault are assumed in the jump

'" a set of RT-statements, the overall behavior of section, then the possible faulty situations are:

the system is determine- by the resultant functions (i) n'E:, label n disappears.

of the associated RT-statements. Each basic co- (ii) n' n . n, is another faulty label with one
ponent i an RT-state en is called a register- bii dilferent from n within the system's

RT-address space.transfer (RT)-comDonen.. (iii) n'En_, ns is a non-existent label with one

Definitirn 2. A digital system is said to be fault- bit different from n within the system's
free if it operates correctly with respect to its RT-address space.
functional specificatic.:s. Otherwise, it is said (iv) n'En + n , both n and n. are simultaneously
to be faulty due to sore register-transfer level activaed. n* is another label defined
fault occurring in the basic function component in (ii). l
of the system. Faults which are considered in the where, single-bit stuck-at-fault is assumed in (ii)
s-stem may be classified according to their fault and (iii).
effect or certain RT-component as fault tvre. The
different fault values under each occurrence of Lepa 3. The timing signal of an RT-statement may
fault type is called fault case. be faulty and is represented by t/t'. When t/t'

occurs, the corresponding RT-statement will not be
Definition 3. When an RT-component F becomes fault- executed.
with fault type F', we denote it by F/'F'.ithfault te ty' iae dete itaebya, F/F'. ve Lemma 4. The condition control mechanism of an RT-

Eased on the typical RTL statement. RT-level
faults can be classified into the following nine statement may be faulty and is represented by c/c'.
types. When c/c' occurs, the reverse condition instead of

k/k' : label fault the normal condition is true. Under this case, the
t/' : timing fault corresponding RT-statement will not be executed.
c/c' : condition fault Lema 5. The content of a register may be faulty
(R)/(R)' : data storage fault and is represented by (R)/(R)'. We assume that
-I- , : data transfer fault stuck-at and bridging faults are considered in this
R,P' : register decoding fault case and B- R is the bit length of register R.
f'f' : operator decoding fault (i) If R is a regular register which can be read
(f)l(f) operator execution fault or written, then every bit in R may either be stuck-
-nj--n' : Jump fault at-O or stuck-at-l, and every bit-pair combination

The followin lemmas are established: in R may also be bridged together. 1he total num-
ber of multiple stuck-at-faults is 3 -1 and the

Lemma I. Fault k/k' means that the label of an total number of bridging faults is B x (B-1)/2.
RT-statement changes from k to k'. If stuck-at- (ii) If R is a constant register, then the total
fault is assumed, then possible faulty situations number of fault cases is B by considering only
are: single-bit stuck-at faults.
(i- k'= . label k disappears. Lem 6. The content in a register transfer path
(ii) k'lk., k, is another faulty label with one ma 6. t cnt in aerester transf pth

bit different from k within the system's may be faulty and is represented by -/''. If stuck-
RT-address space. at fault and bridgint fault are considered, then

(Jill) k' ka, k: is a non-existent label with one every bit in the path may be stuck-at-O or stuck-
bit different from k within the system's at-l and ever- bit-pair combination in the path may

tdiferent fro. walso be bridged tocether. The total number of

tT-address space.

I.|
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multiple stuck-at faults is 3B-1 and the total case. Now, since k/k'tk. occurs, the original Sk
nurber of bridging fault is B x (B-l)/2, where B

fbr-idting oult s p x(B /2,whercan no lon2er be addressed within the valid addressis the bit-width of the transfer path.
1 h~space. That is, every Si i' {Si will activate a

Leema 7. The decoding of a register may become 
i

faulty and is represented by R/R'. Assume at most trap to a non-existent address k. In other words,

one register will be selected at a time, then the the result of the appearance of k/k'Ek, in Sk turns

possible fault cases are: out to be functionally equivalent to the fault of

(i R'E:, no register is chosen. -k/-n. in each S, of -Si.

(ii) R'FR., R_ is another register with similar

re-iStEr characteristics in the sste.(ii) Suppose in the RT-description there are other
RT-statements -S. with jump section -Z, and there

Lemma 8. The selection of an operator in the
Arithmetic Logic Unit (ALU) may be erroneously per- exists an RT-statezen: S. with label 2. .nen

formed and is denoted by f/f'. Assume at most one k,/k'ik2 Ei occurs, both {Si;'and :S.: are not affected.

operator will be selected at a time. The possible Whereas the label of S. becomes k- Z. Whenever any

faulty situations are: K

(i) f'S:, no operator is chosen. S in {S is executed, the next RT-statement to

(ii) f'"f', fa is another valid ALI: operator differ- i
ent from f. be executed are S. and S. instead of Si alone in the

fault-free case. And any .i s owwl ci

Le.....a 9. The execution of an operator in AL: may 
in a S now wl in 1-

be fau t and is denoted by (f)/(f ''. Due to the vate a trap toa non-existent address k. In other

nature of the faulty effect of (f)/(f)', this type words, the result of the appearance of k/k'5k £i

of fault is difficult for modeling in register trans- in S turns out to be functionally equivalent to
fer level and may on! be attacked at the circuit/ k

gate-level or implementation-dependent level, the combined faults of -k-n- in each Si of S. and

Based on the above Lerznas, RT-level fault ,

ccllasinz analysis similar to that of gate-level 
3'l/ (k+k) in each S. of S The notation

stuck-at-faults can be performed. The result is '+k" indicates that the PT-statement with label £

described in the following theorems, and the RI-statement with label k are both executed.

Definition 4. Two R7-level faults F1 and F2 in a Theorez 2. Assume the internal paths among rezisters
digital syste= are said to be functionally equi- of a digital system are all parallel links. In the

vaent if and coly if their faulty results observed RT-description of such a digital system, the (R)/(R)'

are type of fault defined in Lemma 5 is covered by the

in the Ri-level description of the system /' type of fault defined in Lemma 6. After all
identical. -/' type of faults are tested, the (R)/(P ' type

Theore. 1. InanRT-description, the k/k' type of of faults are automatically tested.

fault is coverec by (a subset of) the --n'-n' type Proof: If a register is redundant in the system,

of fault by Lem= 1 and Le..- 2. That is: then either its behavior is transparent to the

i) Both k/kE: and k/k'Ek- are functionally system specification or it is meaningless to the

ecuivalent to - , o -k' -:. correct system operation (e.g., design error). For

(ii) sk' k; is :unction.llv eiuivalent to the every non-redundant register Ri in an RT-description,

combfnation cf "!.':' - k/-n and""-' k -- k
, .  there always exists at least a path in the system to

? -of: nte R--escr4.ti'n, there are transfer the content of Ri out to a destination

certain FT-state.emts wit? Jum. sertion -k, and register, say, R,. Whenever the content of R. is

there exsts an P- :atetent S. with statement moved out, its value is copied onto the transfer

a neall fault k : cc-.rs. are not path. Therefore. whatever (F.)' faults will be

affeote. imerea, tn aa"el of s heo-eZ :. When- mapped cn:o its associated trinsfer path in the RT-
statement. If all -/-' fault cases on these trans-

an. exe -.e-. -ce x .-state- er paths conne:tinz all register :R in the RT-

Ce t " e ;e e isc n sa,;:t-fee case. Now,r adescription are tested, then all fault cases of

sne 'is n, P-'aenent wItO (Z ,'F)' are autoraticallv tested.

o-. ea7.$mwrf. S is u 1.y I~-xset
Theorem 3. in an FT-descriptior, fault tt' is

~rete.an f. in w tua.' activate a :overe! b. the co=binaticn of -m--n' and c c' types

trun a ~ n-s 'e~ a ether wo-rcs, of faults by Le.a . 3 and .. That is:

tres tca t-e a d eso, in.ot w rs ( i) When t Is present in an RT-statement while c is
,he resj!t -'f the a-:earaIe f k','-: in S, turs absent. t't is funcrionally ecuivalent tc -n'-n'sC_- t e thle fa,..t c', -k "n- in e8,-, P- - absen , trt i

n-l, where n is the label of this RT-statement.

of 5, , whore r is a n --ex:4tet P7 lahe: in the (ii, When both t and c are present in an RT-statement

t/t' is functionally equivalent to ctc'.

'i. r. When k .' K cc'r . S" are not affected. Proof7 (1) By thC dcfinitlon of t't', when t' occurs,
the associated RT-statement will not be executed.

V ereas tne :are: nf S Delomes k w 1: I non- .he next RT statement to be executed is hence the
FT-statement next to current statement in the RI-

eisnt enevai ade e on t5 descrtion. This is exactly what hap ens when
tion. W ene',er an cn -mii 1' exected, the ccr.

" " -- -' .'nn occurs,

next RT-state-ent t2 he exec",e= 1 SK in fault-free

-.- -... - . - .... , _:s.. .. ;,r ,,w - | a l, ,4 ,,li~ 
<

; b t . . . .. '- ' - - ' . .
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(ii) in general digital systems, the timing control the svmbolic execution. During the process of svm-
signal is first applied to activate the associated bollc execution, every internal variable can always
.T-statement. If t' occurs, the corresponding R- be described as an expression of constants and s v-
statement will not be activated. When t is active bolic values of external input variables. Vnen the
and fault-free, then c is checked if present. if symbcli execution proceeds, a binary tree, called
c 4s true, then the associated RT-statement will symbolic execution tree (SE) which shows oaths
be executed otherwise it will not. However, if of all possible symbolic execution flows of a pro-
0 c' occurs, the associated Ri-statement will not gram wilK be developed. If a particular sv-5olic
be executed even if t is valid. Hence, t,'t' and execution path is followed up to its termination,
c z' both. produce the same faulty' behavior, and we a set of path c(nstraints and that path's sv.bolic
ma'. conclude that after cc' is tested, the t/t' results will be obtained. Since a svmbclic exe-
type of fault of the associated RT-statement is cution takes the symbolic values of all its ex-
atsc autonatically tested. ternal input variables as input data, a substantial

Usinc the above three theorems as basis, we number of actual input data combinations are in-
establish the following two theorems for test cluded under the path constraints within a single
cenera: ion. symbclic execution of the program. By a straight-

* -rer -. In an PT-descriion, not every RT-level forward computation the desired input test patterns

fauit type defined in Lerm-a 1 throus Le--a 8 need which distineuish fault-free from faulty operations

be consicered for a comnlete test set under the may be systematically computed. It is this im-
dcofined RT-level fault model. In other words, the portant feature of symbolic execution that makes

e fat ti a powerful tool in the test generation algorith=numbrer of faut types car be redj:e,4. First, the
sent nodeled PT-level fault types can be collapsed uner development in this research.
t1five by Thezrem i through Theorem 3. Second, Although symbolic execution has existed for a
onlyv one of these RT-comoponents which functionally long time as a means of determining the se-antics

ccrresocnd to the same part of hardware need be of programs, it, however, has been invariably used

:cnsidered for fault cases. mostly for programs written only in a high-level
?roef: (Toe proof is lengthy and omitted here.) language. Little work has been done in the domain

of symIolic execution of formal machine description.
ec:re7 5. A complete test set for the fault .de. Oakley ,-. , however, did a good Job in laying the

s:ateo in Lea 1 through Lemma 8 can be derived if basl: thecretical foundation in the investigation
the follcwin five fault types in every RT-statement of this tooic. Indeed, there are two major did-

are considered with each fault case in each fault ferences between machine-level symbolic execution
type being considerec onlv once: (MSEi and hIgh-level-language symbolic execution

R'R', f/f',. .. .!-....and c/c' (HSr:. First, the major goal of HSE is to confirm
Proof: The proof is obvious by Theorem 4. Suppose that the programer has put together his software
every RT-statenent in the RT-description is scanned prozram statements in a correct manner, whereas
serialv according to a predefined order derived MSE is mainly concerned with the correct functioning
from the RT-description. If any" of the above five of the hardware primitives themselves. The second
fault types Fi occurs in an R-statement and the major difference is that due to human factors and
tests for F' are no: vet derived, then its test set the high complexity of software design, PIE is still
w:l be generated and added to the tests obtained so very difficult and restricted to use in many arpli-
ar. if .' is already tested somewhere before cations. The MEE. on the other hand, is m.re
current RT±statement, then it is skipped. The con- amendahle to a systematic method because of the
;fete test set can hence be computec using this relative simplicity of the definition of the hard-
-rt-eire repeatedly until every RT-statement is ware description language (e.g., the PT- language
processed in this wa. defined in Section 2, the simpler way of hardware

4. M. .cyaIyT SY.MECLIC EXEWTIO TECHNIOtE description and so on. While the above statementsXAC _____ EXTare true, MSE still has its own problems. The basic
The symbolic execution is a very useful soft- issues in MS- are: ecuivalence of machine syzbolic

ware engineering technique developed originally for execution and actual machine execution, variation of
program analysis inclucinz test data generation bit-widtn among internal rezister paths, the repre-
-7,8- and program validation :9,10:. Due to the sentation of symbolic context and path constraints,
similarities between so:tware and hardware imple- the problez of loops and termination during sv=bolic
nentatior, most key principles in this powerful execution, and the sinrlification of svmbclic ex-
technicue for software analysis may also be used for pressions. A detailed discussion of all cf these
hardware testing and verification iil2[. Su and and their solutions can be found in [6,l. and is
Hsieh *13- first pointed out the general idea of omitted here.
generating tests for digital svstems by symbolically The symbolic execution system developed in
executing the fault-free and fault-injected machines. this research is composed of four major =odules

Svbolic execution is a process of prograr and has the system organizational structure as
execution similar to normal execution except that shown in Figure 3.
s:.bnlic values of variables and their operation
rules are included in addition to normal ones. It o xeui Moio ( eS

involves assigning expression instead of values to svmbcic ,=bolic S i
varia les while following a prograr path. An ex- Execution I Expression ne uality
pression represents the computation that would have 'Interpreter (SEI) Stmplifier (SES) Sclver (SIS)

r evolved to compute each variable's value. A
s-.rnolic value is an expression of constants and Fizure 3 Organization of the sytbclc:
variables whose contents are fixed but unknown during execution system

Dr
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In Figure 3, SE2 is for the overall control of 5. ThE TEST GENERATIO!Z ALCORIMY
sv=bclic execution process. SE: interprets the In this section, the design of an explicitly
semantics of a-, R-statement. SEE performs syr.- defined svstema: ic test generation algorithr is
bolic expressicn sim~lificaticn. SIS is called presented. The overall test generation algcrith=

an- hnd ute este-mDc, resls o the fault-free is developed based on the RT-level fault model
andfaut-i~ece at'' -' ar obaind dscuse inSection 3adthe RT-level s,.bclic
The whole s~~~~~ xoi ecto s:ste i~~2 ecuIn' technique described in Sectijon There

tutes a mcdular part of the overall test generatic-n arc man'- three design considerations bef.Ind th-s
alzrcthm tc0 be disc-_ssed in the next section. :t funtoa - ee test generation algorithm:
acts in a cocrdinatec way with other control "'ivIde andcoue tc artonabgpoe.

ecaioin the tes: generation algorithm. Fro7 intoer stale ones.na i po_-e:

:r.e onerationa: standpcint, the internal executicr -- Modularity and Flexibility for stets in th:e
flow of the whole scoholic exeoution, syste. is alcorith.
derit:ted in Figure - . The execution. loop between 3) - ~oih vs. heuristics for better efficiencN.
SE: and 5SF5F will cont-nue until the last RT-state- Before we go into- details of the test generation*
7,nt on tne current selected pzth is executed. At algorithm, several basic assumptions and definitions
t-at tim-e. S-IS will be activated to commence exe- of comm~on terminologies are in order.
cuti:on.

A selected' path P t~efinition 5. A functiona-l fault is redundant if
sue (for fault-iniectec2 its appearance in the digital system. does not affect

C L '_ machine- prep areCd the correct func-tional onerations specified for that
by exterral control dlgital system. Otherwise, it is non-redundant.
mec n an n

Definition 6. A functional fault is itself testable
anotherif it is non-redundant and its faulty effect car,

SE: Iterminated4 always be observed at the output port of the system.
s.cbclic re- Ot'nerwise, it is untestable.

/final s;7.bolic suit and Definition 7. A functional fault is detectable by a

reah rsltain pat aits con- certain test set if it is observable and by using

n"trainh tris 'r Proper exercising inputs, its faulty effect can be
pat- end ) n P. fault-free observed at the outpuit port of the system. Other-

machine" wise, it is undetectable to that test Set.

2ef nition 8. A functional fault is enumerable if
i it is non-redundant and can be enumerated- within a

515 certain u ' per limit base d o n reasonable assumptions.

Figure - Otherwise, it is non-enumerable.

-h snblc si i tves Pate t ra~ Assum:otion I. 1In the test generation algorithm we

The '~boic es~.t i repeseted ntenall rma the physical transfer mechanism such as a bus
as a directed tree. One of the features described In the RT-description into a logical trans-
of tree structure is th-e easy handlinz of its fer path. This is because test engineers working
zrowt- . A a-. exanple, consider the followinc in a user environment mav not know the detailed' im-

tnre P aa e '''plementation cf the mechanism.s for trans-errinc data
RP between functional untts, or how thev are shared or

6: Sh F.. - multiolexed_ aronvrdifferent PT-sta-ements. 1:asing
the logic transfe Paths, the fault mrodel for the

7: C- data transfer function is independent of the actual
.mo~lementation details of the transfer mechanisns.

After stale~e- fa ezecuted,. the svmclic valuet
C. w' l s hn -r z P-- which is reAssuntion 2 In the teat reneration algorithm,

- single functional fault writhin the grour ot sensi-
* h fcl~cinctree. .' Ntized PT-statemlents is assumed'. But, we allow the

presence of any number of faults as long as they
don't itask the one currently under consideration.

The overall test generation algorithm is con-
ceotually divided into, three parts: pre-process,

S / main-process (the S-aleorjthm), and post-process.
'he simplified interaction, between these three parts
is depicted in 71i7urre 5.

4 ., . 5<Prerroces-

The pre-process is mainly to perform sy-ntax
*(C fills in the checking of the R-descrition' of the systet-under-

s.SR_. lef t-mcost bit) test, partition the whole RT-description into a set

cf ordered function submodules. and set up the basic

wh ere, SF.. and SF denrte the primnary r,.hnr lic value data bases needed at later two stages. The order
3 ~of test generation amonc the R7-statements in. over-

of input register R, and R, respecrivelv. AR. rep- all PT-descrirti4on is a crucial issue. :: is de-

resets he urrnt vmbl~rvale o ~.rived using the function submodules in the R-
description as th.: basic units to be ordered. A

t........................................................
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Source R:-description Is it 0 of 1' of Order
of system-under-test RT-statements pure- dist. dist. of test

FS ; in the loop trans. RT-St. Re2. gen.

1 0-1-2-3-11-10-0 N 2 6

pre-process 2 0--2-3-4-12-10-0 N 2 4 7
3 0-1-2-3-4- 5--13-14- N 9 9 8

15-16-17-18-19-20-0
4 0-l-2-3--:5--6-2l- . Y 3 5 3

22-10 -0S-algcrithm 5 &-l-2-3-4-5-6-" 7-23- Y 3 5
24-10-0

6 01-2-3-4 45-6-7-8- Y 3 5 5I 25-26-1i0-0

post-process 7 0-1-2-3-4-5-6-7-8- Y 2 3 -

9-27-10-0
8 0-1-2-3-4--6-1-8 -  Y 1 1 1

fault case Output the 9- __10-_0

processed report of test Figure 6 Function submodules in the
set SIMPLE-CALCLATOR

Firure 5 Simlified test generation flow injected one at a time into the fault-free RT-

description. For each fault case a, the svmbolic
function submodule is a loop of path starting from execution subtree of the fault-injected machine
the first RT-statemen: in the RT-description and has (SE'a) is set up for a terminated path. T7.e inter-
no branching path at the last node of the path right meiate sybolic values along the fault-free path

before the loop is formed. The logical meaning of are saved and used to speed up the generation of
function submodule in a general digital system is such a path. An input test pattern for detecting
just like the "instruction" in a processor, this fault is then derived by comparing the symbolic
The order of test generation of testable function results and path constraints of the fault-free and
submodules is set as f"llows: fault-injected machines. Four major issues must be

.irst: pure-trans:er vs. non-pure transfer considered in the S-algorithm: how to find the near-
second: the nuinber of distinct RI-statements minimal covering of distinct RT-statements in the
third: the nunber of distinct registers. function submodules, the design of transfer-test-

A function submodule with neither arithmatic oper- finding heuristics for data transfer faults, enumer-
ation nor logical operations is called a pure-trans- ation and identification of enumerable faults, and
fer submodule. The start-small principle is applied the solving of symbolic inequalities.
in the derivation of the test order so that assump- Usine the assertions stated in Theorem 4 in
tion 2 can be reasonably justified. Section 3, only all distinct RT-statements in each
The steps performed in preprocess stage are shown function sub-module FS need be considered. There-
below: fore, not every symbolic execution path in FS. need
Sten 1: Perform syntax checking of RT-descrption be traversedif a subset of symbolic execution paths
representing the system-under-test (St'T) and set up which near-minimally covers all distinct RT-state-
associated data bases. ments in FSi can be found. The term "near-minimal"
Step 2: Derive all function submodules within the is used in thanbe n .that the RT-statement coverin

SL7. is formed using heuristics rather than strict complex
Ste; 3: Prepare the order of test generation among algorithm. The data transfer faults (-/-') is re-
all function submodules using the start-small prin- garded as non-enumerable faults. The heuristics
ciple. for transfer-test-finding are specially designed
Fieure 6 shows the derived order of test generation for the efficient generation of tests for such kinds
among the eizht function submodules in SL-PLE- of faults.
CALc-I.ATOF. Except transfer faults, other faults need to be

5.2 The S-alsorithm enumerated. After an enumerated fault is selected
Tne "S" stands fcr- "symbolic". In this stage, for test generation, it is injected into the cor-

the RT-level symbolic execution technique is in- responding RT-statement. The enumeration process
tensively employed fcr test generation of each fault exhaustively processes each enumerable fault under
modeled in the RI-level fault model. In the S-algo- consideration. Solving symbolic inequalities is
rith, the fault-free description of current function performed after the symbolic results and path con-
submodule (FSi) is symbolically executed to set up straints of the fault-free and the fault-injected

machines under a fault a are obtained.
a smbolic execution subtree (SETi) which near- The steps executed by the S-algorithm are listed
minimally covers all distinct RT-statements in FSi .  below:

First, test inputs for data transfer faults S F ctn u o
except constant transfers (e.g., RI-l), are computed perform machine symbolic execution of FS i's RT-de-

using the transfer-test-finding heuristics and the scription to set up a symbolic execution subtree
symbolic results obtained at each terminated path. SET,1 which near-minimally covers all distinct RT-
Faults in other fault types are enumerable and are statements in F~i by the path set Pijj.

" "... " ]( ' .. .e.'.. ...........,.....-"......."'; "" "-"- - -J• ' """" /" t -
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Step 5: Perform heuristics of transfer-test-finding Suppose we consider F'-AS, then the symbolic results
o ind test patterns for data transfer faults in FSi . of the fault-free machine are:Stec.: Choose the nest path P in {P" S- F-carr(SA,SB)ASSAS A-SA SB, where S is a sv-

Step 7: Based on the R-leve' fault model used, bolic value marker and the s5mbolic results of the
enumerate and inject a fault 0 which has not been fault-injected machine are:
tested along - F-S AS,-carry (SA,SB) AOL- SA*SB, where a is

F P/AS both under the path constraints: S-I
Step 8: Set up symbcliz execution subtree for the E-001.
Tault-iniected machine. Choose one terminated path We then solve the set of algebraic inequality

P a for faulty symboliz results and path constraints, equations:
S -Sa -

Ste; 9: Derive test patterns for fault o by cor- F Fa  carry (SA, SE) 0 SF - 0
paring the symbolic reslts and path constraints of AS 0 ASa- O-SAS 0 carry ($A, SB)
F and P. kA A, -
ij ij Therefore, S-1 E-00l A-10000000 B-20000000 is a

To show the process of test patterns generaticn, feasible test pattern for this fault case.
let us consider several typical illustrative examples (3) -12/-12' - The fault cases under this fault type
of fault cases. are:

During the process of test generation of the 12'c {13-001i01 8-001001 28-011100
simple-calculator, the KT-statement ll:F A-A-B, I 14-001110 4-000101 44l0ll00
in "addition" submodule (submodule #1) will be tested Suppose we consider -12' -13, then the symbolic
alone the path: 0-1i2_3-1-10,IO-. results of the fault-free machine are: S-0 F-carrv

Based on the conc:usion of the RT-Ievel fault (SA,SB) A-SASB and the symbolic results of the
collapsing analysis (Theorer 4.4 and 4.5), only fault-injected machine are: S,O Fa-borrow
the following fault types need be considered for (SA+SB-SB)-borrow(SA)-STC- A,-?A+SB-SB-SA, both
this statement: under the path constraints: S-- E-001. We then

(I) -/,' solve the set of algebraic inequality equations:
(2) R/R' with R :F, A, B] S V Sa i €

(3) -12,/l!F'  Fa  - 0 1 carry (SA, SB)
(4) +/+' A A  $ASB 0 SA which turns out to be

where,(2), (3), (4) are enumerable fau' s. SB 0 0.
Now, we consider one fault case out of each Therefore, S-1 E-Ol A-10000000 B-1000000 is a

fault type for illustration. feasible test pattern for this fault case.
(1) -/-' - In performz the Transfer-Test-Finding (4l +/ ' - The fault cases under this fault type
operation of this funtion submodule, the transfer are: +'E{-, XOR, shrI
paths of statement 1 must be considered are: Suppose we consider +I to be -, then the symbolic
- transfer paths of registers A and B to ALU in- results of the fault-free machine are: S-0 F-carry

put ports. (SA.SB) A-SA+SB and the svmbolic results of the
- AL" output port t: registers F and A. fault-injected machine are: SI-0 FI-borrow(SA,SB)

Signal stuck-at-faults and bridging faults are con- A-SA-SB, where a is -/+' - +/- both under the
sidered in -/'' fault type. constraints: S-I E-001.
( - Since before statement 11 is executed, the sym- We then solve the set c, algebraic inequality
bolic value of A is $1 and B is SE, to test path of equations:
A to AU input port, wE must ap;ly: S 0 S --

SA SB F 0 Fa carry(SA,SB) 0 borrow (SA,$B)
1:11111 00A00001 A &1 SASB & SA-SB which turns out
11110001 0"00009 ^  to be SB 0 0.
1100110: 0300Ic Therefore. S-I E-001 A-!0000000 B-10000000
1i0101C2 000i is a feasible test pattern for this fault case.
00000001 0007'0I: 5.3 Postprocess

T test path of B tc AUL" input port, we m's. aiy: The postprocess stage performs the following
SA SB tasks:

0000000 1ii11111 :) Perform fault screening (elimination of covered
090O0 ,c 11:101 faults from the fault list1 using the test pattern
O0000000) 1i110: just derived for a specific fault in stage two.
000000o lllOiiZ 2) Repeat the S-algorithm if any unprocessed fault
0090000 00000000 case remains.

- Since after ALl" pero rmed the addition, the re- 3) Perform clean-up for hard-to-test faults.
sult if AL* will be SA-EB, to test path of AL out- 4) Prepare the test generation report.
put pert to register F and A, we must apply: The process of fault screening is actually aA-o00000rt B-000000 kind of simulation which simulates the test pattern

in addition to those input test patterns inG. just derived in the S-algorithr on current fault-free

R/' with Roz{F, A. It- The fault cases under path. Similar fault identification and numbering
this fault type are: technique used in the S-algorithm will be needed here
F'E"AS, BS. 05, 5 A'r:B, 0 B'{A, Q. again.

Note that the fault cases of A' and B' are already W'hen the steps in the S-algorithl are terminated,
considered in function submodules '4 and #5 and need a set of global test patterns which has broad fault
not be tested ag3ir. here. coverage for the entire systen-under-test has been

generated. Typically, a reasonable n,,ber of faults

I...
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• would still be undetected. The difficult task now [33 S.Y.H. Su and T. Lin, "Functional testing tech-
is to generate tests to "clean-up" those undetected iques for digital LSI/VLSI systems", (Invited
faults. Since each individual fault case to be at- paper), Proc. of 21st Design Automation Conf.,
tacked by the clean-up operation is really "hard-to- June 1984, pp. 517-528.
test" (possibly due to the very complex hardware L4 Shen and Su, "A functional testing method for
behavior or limitation of the test generation policy microprocessors", Proc. of 14 Fault-Tolerant
currently adopted), the combination of automatic Computing Conference, June 1984. pp. 212-218.
test generation and human aids are both included in [51 D. Brahre and J.A. Abraham, "Functional testing
our current approach. The steps performed in the of microprocessors", IEEE Trans. on Computers,
postprocess stage are: Vol. C-33, No. 6, June 1984, pp. 475-485.
Ste; 10: If no test pattern is obtained in Step 9, L6 T. Lin, "Functional test generation of digital
then return to Step 8 and try another %; other- LSI/VLSI systems using machine symbolic executionii technique", draft of Ph.D. dissertation, Computer
w-ise substitute this test pattern as an input data Science Dept., State University of New York -
into P . and simulate all untested faults remaining Binghamton. Aug. 198L-.
on P Perform possible fault cases elimination [7] J.A. Darrineer and J.C. Kin, "Application of

along Pij. symbolic execution to program testing",

SPe !I: If there is more fault cases left in P COMPULTE, April 1978, pp. 51-60.
ij' [8: L.A. Clarke, "A system to generate test data

then return to Step 7. and symbolically execute programs", IEEE Trans.
Step 12: If there is more P. left in FS (fP ) on software engineering, Vol. SE-2, No. 3,

h l i  j Sept. 1976, pp. 215-222.
then return t i Step 6. [9 J.C. King, "A new approach to program testing",Stet. 13: If there is more FSi left i. the SL, then Proc. of International Conf. on Reliable Soft-
go to Step 4 and repeat. ware, April 1975, pp. 228-233.:Perform possible clean-up operation for '1'wrAil 97,p.2-3.

Step14:Perormposibl clen-u opraton or lO:R.S. Boyer, B. Elspas, and K.N. Levitt, "SELECT-'hard-to-test" fault cases left which are indicated L A fo r , . f s tig and deving pro-
i in the housekeeping tables. A formal system for testing snd debugging pro-

Ster 15: Prepare test generation report including grams by symbolic execution", Proc. of Inter-
test patterns obtained, their input sequence and national Conf. on Reliable software, April 1975,

pp. 234-244.other useful statistics. 11: l.A. Darringer, "The application of program

6. DIS ISSI3N AN7 CONCLUSIN verification techniques to hardware verification",
The complexity of the overall test generation Proc. of 16th Design Automation Conference, 1979,pp. 375-38:.

algorithm in the last section is dominated mainly Z W Carter, W.H. Joyner Jr., and D. Brand,
by the S-algorithm. A preliminary theoretic "Symolic simulation for correct machine design
analysis of the S-algorithm shows that the complexity Proc. of 16th Design Automation Conf., 1979,
of the S-algorithm is dependent on the total number pp. 2f 26.

" of RT-statements and the complexity of the sym olic 113] S.Y.H. Su and Y•I. Hsieh, "Testing functional
:13:execution sYste".

ex eution sstm defaults in digital systems described by registerThe S-algorithm developed has se-eral - transfer language", Journal of Digital Systems,

analogies to the conventional gate-level D-algo-Vo.6N.2,18,p. 6-8. As,
rithr.. It has the following features:pp. 161-183. Also,
1) For each testab:e RT-level fault, guarantee Digest of papers, 1981 International Test Conf.,

to find an input test pattern for detecting that pp. 447-457.
fault. 14] J.D. Oakley, "Symbolic execution of formal

machine description", Ph.D. thesis, Computer
2) Systematicaly find ar. input test pattern as Science Dept., Carnegie-Mellon Univ., April 1979.
early as possible. 15: S. Thatte and J. Abraham, "Test generation for
3) Identify untestable RT-level faults.

microprocessors", IEEE Trans. on Computers,-"The experim~enta; prototype cf the overall test Vol. C-29, N. 6,june 199Cpp.429-441.
" generation algcrithr is being implemented on the o

IBM 370/168-compatible main frame computer at SiN"-
Binghamton. The preliminary experimental results
are encouraging. More theoretical studies of
complexity analysis of the S-algorith= and more
solid experiments on several typical samples are
being performed. By using valuable experience
earned in software testing for hardware testing,
this technique shows a promising way for future
testing problems of digital LSI/VLSI systems.
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