. AD-A161 371 SWITCH-LEVEL TINING SIHULRTIDN lJF NOS V! 173
C(METAL-OXIDE~SEMICONDUCTOR VER.. (U) ILLINOIS UNIV AT
. URBANA COORDINATED SCIENCE LAB ¥ B RRO JAN 85 R-1@32
UNCLASSIFIED NO@914-84-C-0149 F/G 9/5 NL

b

LT Le W T N Bt A v e e e e ST Y TN A NEEA NS Wl A A A S il S AL A A
Ce T et atartstateat s mlelatatonas A R
3
N

-
(o
| 5
=
H.N
o

o

: | e

lizs J1is s

e ——

reerERER
N
N

EEF
S

—
.
-—
£r

r

re

N
o

I

- MICROCOPY RESOLUTION TEST CHART
b ! NATIONAL BUREAU DF STANDARDS ~1963 - A

L 2 am _adx oA sl ol g SO SRR b .

REPORT R-1032) MARCH 1985 - : UILU-ENG 85-2207 @ Ny

COORDINATED SCIENCE LABORATORY

-
I~
M
-
(o]
‘:t SWITCH-LEVEL
| TIMING SIMULATION
g OF MOS VLSI CIRCUITS
VASANT BA&éAl.ORE RAO
! L
DTIC =~ =
ELECTE ,:f ;
SNOV 20185 !
B =
E-;.J' APPROVED FOR PUBLIC RELEASE. DISTRIBUTION UNLIMITED. .:. 1
i .
e]
& =
T
ZRSITY OF ILLINOIS AT URBANA-CHAMPAIGN

l-'
-
"
--
-

‘[- Unclassified

ECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

.- 1a REPORT SECURITY CLASSIFICATION

1. RESTAICTIVE MARKINGS
. None

‘3 Unclassified
Za SECURITY CLASSIFICATION AUTHORITY
N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release, distribution

. 28.DECLASSIFICATION/DOWNGRADING SCHEDULE
N/A

un}l imited.

-.4. PEAFCAMING ORGANIZATION REPORT NUMBEAR(S)
= R-1032 UILU-ENG 85-2207

8. MONITORING OAGANIZATION REPORT NUMBERI(S)
N/A

.“Coordinated Science Laboratory (41 applicabie)

_t‘.NAMi OF PERFORMING ORGANIZATION [6b. OFFICE SYMBOL
aUniversity of Illinois N/A

7a. NAME OF MONITORING ORGANIZATION

Office of Naval Research

6c. ADDRESS (City, State and ZIP Code)
1101 W. Springfield Avenue
1'Urbana, Illinois 61801

7b. ADDRESS (City, State and ZIP Code)

800 N. Quincy Street
Arlington, VA 22217

: 8a. NAME OF FUNOING/SPONSORING 8b. OFFICE SYMSBOL

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

" GRGANizaTion Joint Services (17 appiicebie)
lElectronics Program and IBM N/A N00014-~84-C-0149 and IBM Tech
N8c. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NGS.
rJSEP - 800 N. Quincy St., Arlington, VA 22217 PROGRAM PROJECT TASK WORK UNIT
lIBM - General Technology Div., Burlington, VT ELEMENT NO. Na. No. No.
. 4 '
"1, TITLE (Include Secunity Classification) SWITCH-LEVEL TIMING N/A N/A N/A N/A

: OF MOS VLSI CIRCUITS
{2 PERSONAL AUTHOR(S) Rao, Vasant Bangalore

!Tk TYPE OF REPORT [nterim] 136 TIME COVERED

I Technical, final emom Aug, '80 troDec,'84
16. SUPPLEMENTARY NOTATION

14. OATE OF REPOAT (Yr. Mo.. Dey)
Jarluary 1985

15. PAGE COUNT *
245

"

N N/A

1

}

COSATI CODES
GAQuUP

SUB. GR.

18. SUBJECT TERMS /Continue on reverse if necessary and identify by block numoer)

, Switch-level simulation, timing simulation, NMOS circuits,
2 delay operation, graph algorithm

719, ABSTRACT Continue on reverse if necessary and identify by biock number)

This report deals with the development of

, large-scale integrated (VLSI) circuits consisting of metal-oxide-semiconductor (MOS) transis-
Such tools are called switch-level timing simulators and they provide adequate infor-

mation on the performance of the circuits with a reasonable expenditure of computation time

The algorithms presented in this thesis can handle only n-

" channel MOS(NMOS) circuits, but are easily extendible to handle complementary MOS(CMOS) cir-

tors.
'l.even for very large circuits.

cuits as well.

', The algorithms presented in this report have been implemented in a computer program
In all the circuits simulated thus far, MOSTIM provides timing information
- with an accuracy of within 10% of that provided by SPICE2, at approximately two orders of

called MOSTIM.

l magnitude faster in simulation speed.

;

a fast and accurate simulation tool for very-

—

ln CISTRISUTION/AVAILABIL: 'Y OF ABSTRACT
% ¢ JIUNLIMITED & SAME AS APT. _ OTIC USERS

s UNCLASS

21. ABSTRACT SECURITY CLASSIFICATICN

Unclassified

228 NAME CF RESPONSISLE INDIVIDUAL

{
30 FORM 1473, 33 APR

EDITION OF 1 AN 73 .S CBSCLETE.

22b. TELEPHONE NUMBER
iInciude Area Code,

22c. OFFICE SYMBOL
None

NCENY S YT YY)

Unclassified

AT o RO M e I 4

et

| €A

Il A

A, !

i.'j

SWITCH-LEVEL TIMING SIMULATION
OF MOS VLSI CIRCUITS

FLAN R A
l PRI

BY

LR
PSP

oL,

VASANT BANGALORE RAO

B.Tech., Indian Institute of Technology, 1980
MS,, University of Illinois, 1982

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Electrical Engineering
in the Graduate College of the

University of Illinois at Urbana-Champaign, 1985

]

L_A-E?ef"sion For
NTIS GRA&I

“
R

DTIC TAB ::
Unannounced 0 d
Justification. 7
By

Urbana, I1linois Distribution/

Avallahility Cedes
Avail cnd/or
Dist Special

QUALITY -
INSPECTED ‘
- . - cpmt——"

o e s . e o e et e maia b e e ity e % et S teit Satete
.- ‘_. PR) -~ vl » - Ay - ~ - - » - - LY - » L) ‘A { SR - - 5 J - - .- . B A
RIS SVARIRAS LU AR A S A A A Y AR S LR R T U S T

-
-

- '-‘ -. “

s

l"’l

D]

e

L o N

e W > e LA " e AN ._ ‘ " o Y gl u v v Ol Y d " e o e e e e PN g R :

SWITCH LEVEL TIMING SIMULATION
OF MOS VLSI CIRCUITS

Vasant Bangalore Rao, Ph.D.
Department of Electrical Engineering
University of Illinois at Urbana-Champaign, 1985

This dissertation deals with the development of a fast and accurate simulation tool for very-
large-scale integrated (VLSI) circuits consisting of metal-oxide-semiconductor (MOS) transistors. Such
tools are called switch-level timing simulators and they provide adequate information on the perfor-
mance of the circuits with a reasonable expenditure of computation time even for very large circuits.
The algorithms presented in this thesis can handle only n~hannel MOS (NMOS) circuits, but are easily

extendible to handle complementary MOS (CMOS) circuits as well.

An NMOS circuit is modeled as a set of nodes connected by transistor switches. Three strengths
and three states are used to represent the signals at the nodes in the circuit. The strengths in decreasing
order are input, pullup, and normal. The three states used are 0, u, and 1, with 0 and 1 representing
the conventional low and high signal values respectively while the u state is used to represent inter-
mediate signal values and sometimes to represent situations of conflict. Each switch is either open,

closed, or in an intermediate state.

The enhancement transistors in the NMOS network are first partitioned into driver and pass
transistors. The NMOS network itself is then partitioned into multifunctional blocks (MFB), pass
transistor blocks (PTB), and input sources (SRC). The partitioning is an automatic process that is com-
pletely transparent to the user and can be performed in linear time. The partitioned blocks are then
ordered for processing so that, whenever possible, a block is scheduled for processing only after all its
inputs have been previously processed. Since this is not possible for blocks forming feedback loops, a

novel dynamic windowing scheme is used to schedule such blocks.

q': ".
.

e Lt pmwmwmEey e S e m w e . P
AR ettt PPN
Cmnturle e s ‘al Y W LAY Y

v

The blocks in the partitioned network are then simulated at the switch level using graph algo-
rithms, producing so—called zero-delay ternary signal waveforms. The zero-delay signal transitions are
then delayed by using delay and filtering operators. The characteristics of the delay operator are com-
puted in a presimulation phase by simulating five different circuit primitives using an accurate circuit
simulator such as SPICE2. These characteristics are stored in a table. During the simulation a circuit
block is mapped onto one of the five primitives and appropriate delay values are obtained by fast table
lookup techniques. Several factors such as block configuration, loading, device geometries, and input

slew rates are taken into account while computing the delay values.

The algorithms presented in this thesis have been implemented in a computer program called
MOSTIM. In all the circuits simulated thus far, MOSTIM provides timing information with an accu-

racy of within 10% of that provided by SPICE2, at approximately two orders of magnitude faster in

simulation speed.

v

ACKNOWLEDGEMENTS

1 wish to express my sincere appreciation and gratitude to Professor Timothy N. Trick, my disser-
tation advisor, for his invaluable guidance and continuing encouragement during the course of my gra-
duate studies. 1 would also like to thank Professors Ibrahim Hajj and Vijaya Ramachandran for being
members of my dissertation committee and for their support. 1 wish to thank all the members of the
Circuits and Systems Group at the Coordinated Science Laboratory, Urbana, for many interesting dis-
cussions and helpful suggestions. 1 am very grateful to Mita Desai for her continued support and
understanding, and also for helping me with the manuscript. I would also like to thank Beth Piver,

Eric Peterson, and Rosemary Wegeng for their help in preparing the manuscript.

Finally, I wish to thank my parents, Indira and Sathyanarayana, for their everlasting love,
encouragement, patience, and support. They have always been a great source of inspiration to me. This

thesis is dedicated to both of them.

This research was supported in part by the Joint Services Electronics Program (US. Army, US.
Navy, and US. Air Force) under contract number N00014-79-C-0424, and in part by the IBM Corpora-

tion.

TABLE OF CONTENTS

CHAPTER

1. INTRODUCTION

2. OVERVIEW OF SIMULATION TECHNIQUES
2.1 Analog Simulation
2.2 Decomposition Techniques for Analog Simulation

2.2.1 Tearing Decomposition
2.2.1.1 Tearing of Linear Systems
2.2.1.2 Tearing of Nonlinear Systems

2.2.2 Relaxation Decomposition
2.2.2.1 Relaxation of Linear Systems
2.2.2.2 Relaxation of Nonlinear Systems
2.2.2.3 Relaxation of Differential Equations

2.3 Digital Simulation
2.3.1 Gate-level Simulation
2.3.2 Switch-level Simulation
2.4 Mixed-mode or Hybrid Simulation
2.5 Switch-level Timing Simulation

3. NETWORK PARTITIONING AND ORDERING
3.1 NMOS Network Model
3.2 Network Partitioning

3.2.1 Review of Graph Theory
3.2.2 Driver and Pass Transistors
3.2.3 Partitioning Algorithm and Its Complexity
3.3 Ordering of Partitioned Blocks for Processing
3.3.1 Directed Graphs
3.3.2 Presence of Feedback and its Detection
3.4 An Example to Illustrate Partitioning and Ordering
3.5 Conclusions

4. SWITCH-LEVEL SIMULATION
4.1 Ternary Signals and Sequences of Transitions

4.2 Switch-level Simulation of a Block

4.2.1 Simulation of an SRC

4.2.2 Simulation of an MFB

4.2.3 Simulation of a PTB

4.3 Conclusions

vi e

10
12
12
14
16
16
18

RN N

25RE

37 -4

42
42

47 -

A A

~i
[

]

91
91
97 .

.
¥

i 4

'l'f"l

116
127

.. .l

...............
..........

..........
--

e 2w 0 Iy

5. DELLAY AND FILTERING OPERATIONS
5.1 Computation of Delay Functions for Standard Primitives
5.2 Delay Functions for Nonstandard Primitives
5.3 Delay Operator for MFB’s and PTB’s
5.4 Filtering Operation

6. SIMULATING STRONGLY CONNECTED COMPONENTS
6.1 Waveform Relaxation Versus Time-point Relaxation
6.2 Event-driven Dynamic Windowing Algorithm

7. MOSTIM : IMPLEMENTATION AND PERFORMANCE

8. CONCLUSIONS

APPENDIX 1:PLOTS OF DELAY FUNCTIONS

APPENDIX II : MINIMUM FEEDBACK ARC SETS FOR DIRECTED GRAPHS

REFERENCES

129
130
139
143
154

157
157
161

167

197

202

215

230

238

L ‘s “s 7V
— P S N

] e

S T

be® 1" 0.

CHAPTER 1

INTRODUCTION

The design of an electronic circuit, traditionally, started with the designer who, with a mental
picture, translated his or her ideas into the form of a circuit schematic. This step relied heavily on the
human designer’s intuition, past experience, and knowledge to make reasonable approximations. This
was followed by the “breadboarding” phase in which an actual prototype of the circuit was constructed
from discrete components interconnected by external wires and was tested. The performance of the cir-
cuit, if not found satisfactory, was then improved by adjusting the circuit element values in a some-

what trial-and-error fashion.

The advent of integrated circuits, however, has greatly changed the picture. There are several
steps involved in the design of a very large-scale integrated (VLSI) circuit, which may consist of
several hundreds of thousands of components, mainly transistors. The circuit designer first obtains a
very high-level functional description of the circuit based on specifications provided by the user. The
synthesis, often called the top-down process, translates this high-level description into various levels
including the register level, the transistor level (or electrical level) etc. and t.erminates at the physical
mask-level, ie., the actual layout of the patterns of metal, semiconductor, and insulating material by

which the components and the interconnections are achieved. This is followed by the design verifica-

. tion, or the bottom-up process, wherein a software tool called an extractor is first used to obtain a cir-
? cuit level (or transistor level) description from the physical layout. The breadboarding phase is
: replaced by using a simulation tool to predict the performance of the circuit which is then compared
with the user’s specifications, thus completing the socalled design loop. If the performance is not satis-

factory, certain changes are made and the whole process is then repeated. The total time spent in the

.‘_'. [T R e e e P P i Y T I L

EYL AL et Vet e e, IR .
- - - 03 - . LI " v . -t - P p ® .
-4 at. - . N PR I R I N O SIS I
LI R SNE DR WAL D W P NP P oA P P P P P AP 3 L VPR

LSRN

'.T,‘l‘ I' r

(i)

.
.
.
.
“
-

........

design loor is usually referred to as the turn-around time.

The main objective of the VLSI circuit designer is to obtain designs with as low a turn-around
time as possible. Computer-aided design tools have become virtually indispensable at various steps in
the design process to perform tasks which would otherwise take a very long time if they were done by
human beings. Using silicon compilers can speed up the top-down synthesis process considerably since
they produce the mask level description, straight away, from the functional description without any
human intervention. Certain software tools known as design rule checkers (DRC) and electrical rule
checkers (ERC) are also used. These perform the rather mundane tasks of checking to see if the layout
satisfies all the design rules of the technology and whether there are any topological faults from the
electrical point of view such as a floating node, and a short between power and ground. There is, how-
ever, a bottleneck in speeding up the bottom-up design verification process which is in the simulation
of the electrical behavior of the circuit. This bottleneck is due to the unavailability of a simulation
tool that is capable of accurately predicting the performance of an entire VLSI circuit at a reasonable
cost. The accuracy of a simulator is important, since otherwise the integrated circuit which is fabri-
cated and tested might turn out to perform rather unsatisfactorily. For large circuits (typically of the
kind in today’s VLSI technology), the speed of simulation is equally important so that the entire circuit
can be simulated in a reasonably small amount of computation time. However, as we shall see in
Chapter 2 of this thesis, speed and accuracy of a simulator are often conflicting requirements among
existing simulation tools.

In this dissertation we will be primarily concerned with providing a fast and accurate simulation
tool to a VLSI circuit designer which gives adequate information on the performance of the circuit
with a reasonable expenditure of computation time even for very large circuits. In Chapter 2 of this
thesis we will review some of the existing simulators for integrated circuits and classify them into two
distinct categories, namely, analog simulators and digital simulators. Analog simulators treat an elec-

tronic circuit as a continuous dynamical system with electrical signals such as voltages and currents

NS S At IR A ol A T S B et B A B At i S

Digital simulators, on the other hand, view the circuit as a digital network with signals occupving
discrete states such as low (0) and high (1). For small circuit blocks where analog voltage levels are
critical in evaluating circuit performance, or where strong coupling exists, analog circuit simulators
such as SPICE2 {1] and ASTAP [2] can be used to predict the performance of the circuit very accurately.
As the size of the circuit (oumber of components) increases, however, using these simulators is no longer
cost-effective. Several decomposition techniques have been used to speed up their performance and
have resulted in a new generation of analog simulators [3-15] which are, however, cost-effective for cir-

cuits limited to at most ten thousand devices.

The existing digital simulators {13-27] can be further divided into Boolean gate-level [1 3-18] and
switch-level [19-27] simulators. In the Boolean gate model a circuit consists of a set of logic gates con-
nected by unidirectional memoryless wires. The logic gates compute Boolean functions of their input
signals and transmit these values along the Wwires to the inputs of other gates. Each gate input has a
unique signal source. Information is only stored in the feedback paths of sequential circuits. The
Boolean gate model, however, cannot describe some of the newer technologies currently used in VLSI
circuit design, especially circuits with Metal-Oxide-Semiconductor (MOS) transistors. The MOS transis-

tor can be treated as a voltage-controlled switch with three terminals : drain, gate, and source. The sig-

-4
nal at the gate terminal controls the connection between drain and source terminals. Therefore, some -

MOS pass transistor networks can implement combinational logic in ways that resemble relay contact

networks more closely than conventional logic gate networks. Dynamic memories using MOS devices "
can store information without feedback paths by exploiting the capacitance of the wires (interconnect)

T
region) and the gates of the transistors attached to them. A variety of bus structures can provide mul- ;j'- }
tidirectional, multipoint communication. Thus, MOS circuits consist of bidirectional switching ele- "':
ments connected by bidirectional wires with memory due to the interconnect and device capacitances ":;'

and hence cannot be modeled accurately by Boolean gate-level simulators.

A new class of digital simulators has recentiv emerged specifically for simulating MOS VLSI cir-
cuns. These switch-level [19-27] sLmulatc;rs model an MOS circuit as a set of nodes connected by
transistor switches. Each node occupies a discrete number of states 0, 1, or X for the intermediate or
unknown state and each switch is either open, closed, or in an intermediate or unknown state. These
simulators can handle a variety of MOS configurations such as logic gates, pass transistors, busses, static
and dynamic memory. Digital simulators, in general, operate at sufficient speeds to test entire VLSI
svstems, since the circuit behavior is modeled at a logical rather than a detailed electrical level. How-
ever, these simulators do not model the dynamics of the circuits properly and are often useful only in
predicting steady-state responses of the signals. Analog simulators, on the other hand, predict both
steadyv-state and transient responses fairly accurately, if the device models used are accurate, but are
cost-effective only for circuits with less than a few thousand components, which are considered small

in the present day VL3I technology.

The algorithms presented in this thesis have led to the development of a switch-level timing
simulator for MOS VLSI circuits. This simulator, MOSTIM, is an attempt to bridge the gap between
analog and digital simulators. It performs simulations at a switch level and hence runs at speeds close
to that of digital simulators. Further, it uses a delay operator to delay signal transitions accurately and

hence provides the timing accuracy comparable to that of analog simulators.

MOSTIM uses 3 strengths and 3 states to represent node signal values. The strengths in decreasing
order are input, pullup, and normal. The three states used are 0, u, and 1, with 0 and 1 representing
the conventional low and high signal values respectively while the u state is used to represent inter-
mediate signal values and sometimes to represent situations of con flict. The input to MOSTIM is a
transistor-level circuit description in a SPICE2 input format. The program begins by partitioning the
entire MOS network into several functional blocks. The partitioning is an automatic process that is
completely transparent to the user. The partitioned blocks are then ordered for processing so that,

whenever possible, a block is scheduled for processing only after all its inputs have been previously

R P P TP ey ywy

T T T T T T e e W W T W W — = %~ &~

processed. Since this is not possible for blocks forming feedback loops, a novel dynamic windowing

scheme is used to schedule such blocks. The blocks are then processed at a switch level producing so-
[._i;_' called zero-delay ternary signal waveforms. These zero-delay waveforms are first delayed suitably by
the delay operator and then filtered to produce realistic waveforms. MOSTIM, at present, handles
E only n-channel MOS (NMOS) circuits, but the algorithms presented in this dissertation can be easily

extended to complementary MOS (CMOS) circuits as well.

In Chapter 3, the algorithms for partitioning the input network into various blocks and the order-

ing of these blocks for processing are discussed. The input network to MOSTIM is assumed to consist of

voltage sources, NMOS transistors - both depletion and enhancement types- and a fixed capacitance
from each circuit node to ground. The key to the partitioning strategy is to divide the set of enhance-
ment transistors into driver transistors and pass transistors. A graph-theoretic algorithm achieves this
in computation time linear with the number of enhancement devices. The driver transistors are then
grouped together to form multi functional blocks (MFB) and the pass transistors are grouped together to
form pass transistor blocks (PTB). A third type of block called input source (SRC) is created from the
voltage sources, clocks etc. A directed graph G is then constructed with vertices corresponding to the
various circuit blocks, namely, MFB’s, PTB’s, and SRC’s, and directed arcs describing the interconnec-
tions between them. A modified version of a depth first search known as Tarjan’s algorithm {31] is
used to detect strongly connected components (SCC) in G. The vertices within an SCC correspond to
blocks forming feedback loops in the original circuit and are collapsed into single vertices thus creating

an acyclic reduced graph G. The vertices of G are then placed in topological order for processing.

The algorithms for the switch-level simulation of multifunctional blocks and pass transistor
blocks are presented in Chapter 4 An MFB is a single output, multiple input, unidirectional block
whose steady-state output is a Boolean function of its inputs. A graphical technique using internal-

node eliminations is used to evaluate the state of the signal at the output, given the input signal states.

No attempt is made to evaluate signals at the internal nodes of the MFB. In the switch level simula-

s _-J

g,

............
...........

..................
.....................

\l
X
3
\l
rl
r‘-
-~
\
s
2
AR
§
I
2
D
b
V
I
F
.’,5
I
y
P
,
I
|,
2
ke
%
;
23
4
\
L .
3
s
o
b
4
o' 7
y
3
b
| T P

tion of a PTB, however, the signal at everv node wit} ‘2 the PTB is evaluated. The transistors in a PTB
are modeled as bidirectional switches whose conduction states (ie. open, closed. or intermediate) are

controlled by the signal at the corresponding gate terminals. A strong node forces its state on a weaker

node connected to it via a path of conducting transistors at any given time instant. The algorithm is
quite similar to the one used in conventional switch level simulators such as MOSSIM [19] except for

the interpretation of the u state (or X state as used in MOSSIM).

The switch-level simulation algorithms described in Chapter 4 generate zero-delay ternary
waveforms for each pull-up node in an MFB and each normal node in a PTB. A delay operator,
described in Chapter 5, is used to delay pairs of complete transitions (ie, 0—u followed by u—1, or
1—u followed by u—0) in the zero-delay waveforms. The delay operator computes appropriate delay
values by taking several parameters into account, such as block configuration, loading, device
geometries, and input slew rates. For NMOS technology, knowing the delay characteristics of five dif-
ferent circuit primitives is sufficient, within reasonable limits of accuracy, to compute delays through
any general MFB or PTB. These five primitives are simulated using an accurate circuit simulator such
as SPICE2 [1] or SLATE (3] for various device and circuit parameters, and the delay values are
extracted and stored in a delay table. This can be done in a presimulation phase. During simulation,
MOSTIM then maps an MFB or a PTB into one of the five primitives and obtains the appropriate delay
value through fast table lookup methods, and interpolation when necessary. Clearly, the delay values
are functions of various circuit and device parameters. However, using time scaling techniques, it will
be shown that, only one parameter, namely, the input slew rate, is sufficient for determining delays in
three of the five primitives. The effect of the rest of the parameters can be accounted for by using cer-
tain scale factors. For the remaining two primitives, however, there are three parameters necessary to

obtain delay values. Thus, time scaling helps reduce the size of the delay tables considerably.

In Chapter 6 we discuss techniques used to process blocks within an SCC. In order to perform a

!
Al

switch level simulation of a block (MFB or PTB), the waveforms at the input nodes to the blocks must

Py
LN
A

v " -
AN

e

s,

1
(]
iV 3 —y

’

'
.
.
aa

,.
rh b e
. BT e

necessarily be known. Since this is not possible for blocks within a SCC, these have to be handled
separately. A wave form relaxation technigue could be used, wherein the blocks are processed itera-
tively in a predetermined order with unknown input waveforms initially relaxed and output
waveforms constantly updated. Several drawbacks of this technique will be discussed. A new
dynamic windowing method which overcomes most of these drawbacks will be presented. In principle,
this new scheme is quite similar to the classical event-driven time-wheel approach used in conventional
logic simulators [13,19] except that events take place during intervals of time instead of occurring
instantaneously. The entire time interval of analysis is automatically partitioned into variable size
windows such that the signal at each node in each block within the SCC occupies a steady state (ie, 0
or 1) at the window boundaries. Associated with each window is a set of blocks scheduled for process-
ing during that window. This new scheme does not require an a priori ordering of blocks within the

SCC, and is also seen to take less computation time and less storage.

A number of NMOS circuits have been simulated using MOSTIM. The performance is discussed
in Chapter 7. In all the circuits simulated thus far, MOSTIM provides timing information with an
accuracy of within 10% of that provided by SPICE2 [1] at approximately two orders of magnitude fas-
ter in simulation speed. The performance is also compared with some of the recent attempts made in
switch level timing simulation such as RSIM [26] Finally, in Chapter 8, we provide some conclusions

along with some suggestions for future research.

..
.
pPPIPY

D :"L. -;' .,' P S N

AR}

o

CHAPTER 2

OVERVIEW OF SIMULATION TECHNIQUES

Simulation plays a major role in the process of designing an integrated electronic circuit. By using
a simulator, the circuit designer can evaluate the performance of the design before going into the expen-
sive and time-consuming manufacturing process. There are two basic approaches to simulating an
integrated electronic circuit. The first, and more traditional approach is to treat the circuit as a con-
tinuous dynamical system and obtain a set of nonlinear algebraic-differential equations with electrical
variables such as voltage, current, and charge to describe its behavior. The objective of an analog simu-
lazor is to solve this set of equations, numerically, and obtain the detailed waveforms at various nodes
in the circuit. An alternate approach is to view the circuit as a digital system in which the signals
occupy discrete states. Since the majority of VLSI circuits are primarily digital in nature, digital simu-
lators are often successful in predicting steady-state responses in these circuits. Analog simulators are
generally quite accurate in evaluating the performance of circuits, but are not fast enough to handle
entire VLSI circuits. Digital simulators, on the other hand, are able to simulate very large circuits, but,

unfortunately, are not accurate in modeling the dynamics in these circuits.

2.1 Analog Simulation

For small circuit blocks where analog voltage levels are critical to determine circuit performance,
or where strong coupling exists, circuit simulators such as SPICE2 (1] and ASTAP (2] can be used to pro-
vide accurate information on the behavior of the circuit. These simulators will be referred to as szan-
dard circuit simulators. These are general purpose simulators in that they can handle almost any type

of circuit element such as resistors, capacitors, inductors (both self and mutual), voltage and current

.....
B . e .
- K

B A b S enciey M e 0 Wit un S Vs nr iAo Mt el b ~afecti -afnd

r 'l’ ". ‘l. ‘.A .
PR
MO

,,‘
0
" ..

x

...........
03

sources (independent and controlled), nonlinear devices (transistors, diodes, etc.), and transmission lines.
They can also perform many types of analyses such as dc analysis, ac (or small-signal) analysis, noise
analysis, and transient or time-domain analysis. In present day IC design, however, standard circuit
simulators are primarily used for time-domain transient analysis, which happens to be the most compli-

cated and expensive type of analysis.

The transient analysis of a circuit involves the solution of a system of nonlinear algebraic-
differential equations describing the analog behavior of the circuit. Standard circuit simulation

involves, essentially, three basic numerical methods in solving the circuit equations:

1. An implicit integration method which approximates the time-derivative operator in the system of
differential equations with a divided difference operator. The circuit equations are thus

transformed into a sequence of nonlinear algebraic difference equations.

2. The Newton-Raphson algorithm for solving the sequence of nonlinear equations, iteratively, by

generating a set of linear algebraic equations.

3. The Gaussian elimination method for finding the solution of a system of linear algebraic equa-
tions.

The circuit simulator SPICE2 uses the Modified Nodal Method (MNA) [32] to formulate the cir-
cuit equations, whereas ASTAP uses the Sparse Tableau [33] approach. In either case, the time T, spent
by the simulator to formulate the circuit equations grows almost linearly with the size of the circuit.
However, the time T, required to solve these equations increases at a faster rate and rapidly becomes the
dominant cost of analysis. Moreover, most of T, is spent in the Gaussian elimination process which
involves the solution of a matrix equation of the form Ax=b, where A is the circuit Jacobian matrix, x
is a vector of unknown circuit variables and b is a known source vector. In a typical large scale circuit,
the matrix A is usually very sparse (i.e, it has very few nonzero elements). Hence, the Gaussian elimi-
nation in standard circuit simulators is usually implemented by using sparse matrix methods [34] It is

important to exploit the sparsity of the matrix A, since the computational time required to perform

10

Gaussian elimination of a full nXn matrix, using Crout’s algorithm (34} is proportional to n? (theoreti-
cally, better algorithms exist with smaller exponents [67]). In digital circuits, however, using sparse ::j:j-_
i matrix techniques [1}, the Gaussian elimination has been empirically shown to take computational time

that is, on an average, proportional to n®, where a€[1.2,1.5]) .

b SPICE2 and ASTAP have proven to be reliable and effective when the size of the circuit, meas- S
ured by the number of components, is small. As the size of the circuit increases, the computer time and

storage space used up by these simulators increase rapidly despite the use of sparse matrix techniques.

In particular, the time T, required to solve the circuit equations exhibits a nonlinear increase with cir-
cuit size. In SPICE2, T, is less than 10% of the total computation time for a circuit with less than 30
nodes but reaches almost half the total time for a circuit with a thousand nodes [13} The problem is
further aggravated by the fact that for larger circuits, more information is generally needed to verify
the circuit performance, and hence, longer simulation times are required. It has been estimated that the
simulation of a circuit with around 10,000 MOS transistors from t=0 to t=1000ns, using SPICE2 on an
IBM 370/168 Computer, would take at least 30 hours of CPU-time [55] Since 30 hours is clearly .
prohibitive, the cost-effective use of standard circuit simulators is limited to circuits, with less than a :

few hundred components, which are considered small in the present day VLSI technology.

2.2 Decomposition Techniques for Analog Simulation

Several attempts have been made to speed up the performance of standard circuit simulators.
This resulted in the development of a variety of analog simulators such as SLATE [3] MACRO [4]
MOTIS [5] MOTIS-C [6] PREMOS [7] RELAX. [10] SPLICE [13] DIANA [14] and SAMSON [15] T
These nonstandard analog simulators can be meaningfully classified according to the decom position
techniques employed by them, in order to achieve the improvement in speed. Decomposition refers to
any technique that subdivides the original problem into several subproblems. Each subproblem

corresponds to solving only a subset of the original system equations for a subset of system variables.

Ctatara

A a-d 4 A K PR A s e R e e g T P r—— AZROVIC R A MR AT e Sru BB e e Srac e B i il e S

11

e Decomposition can be applied at any of the three levels of the standard circuit simulation approach.
namely, the differential equation level (or sometimes called the time level), the nonlinear algebraic
o equation level, or the linear algebraic equation level. The original system of equations is viewed by a
decomposition technique, no matter at what level it is applied, as a composition of several subsystems
with interactions among them. Each subsystem is usually solved in a manner similar to the conven-
tional techniques used in standard circuit simulators. Hence, the main feature of a decomposition tech-

nique is the handling of the interactions between the various subsystems.

The majority of large integrated circuits are digital in nature, and hence, several properties of
such circuits can be exploited during the simulation process. Digital circuits tend to be structurally reg-
ular and repetitive. A typical large digital circuit is usually composed of a number of small subcir-
cuits, normally referred to as logic gates. Several of these logic gates are functionally and topologically
the same, and thus analyzing one is very similar to analyzing the others. Furthermore, only a small
fraction of the circuit variables is actively changing state at any time instant in a large digital circuit.
:".-f For circuits containing over 1000 transistors, typically more than 80% of the circuit variables are
steady (not changing) at any given time instant. As the size of the circuit increases, the fraction of
active (changing) circuit variables tends to fall even further. This inactivity, or latency, in a large
digital network can be exploited by an analog simulator in 2 number of ways. The main advantages in

using decomposition techniques are
1. The structural regularity and repetitivity of the subsystems can be exploited.

2. Incorporating bypassing schemes at several levels to exploit the latency of a subsystem can result

in additional savings in computing time.

j:..if 3. Decomposition techniques are suitable for computers with parallel or pipeline architectures since

oo two or more subsystems can be solved concurrently.

There are two different approaches to achieving system decomposition, namely, tearing and relax-

ation (36} These two approaches are characterized by different ways of updating the interactions

T T S
G PR ST N

L

SIS DI

PR AR A A St Ak A A b A s

12

between subsvstems and by different numerical properties. The tearing approach aims to retain the
same numerical convergence and stability properties as of the standard circuit simulation approach,
while the relaxation methods (also called temporal or indirect methods) have completely different

numerical properties.

2.2.1 Tearing Decomposition

Solving a network by tearing decomposition is an approach in which a part of the network is torn
away, so that the remaining subnetworks are disconnected and thus can be analyzed independently.
The solutions of the individual subnetworks are then combined with those of the torn-away part of the
network in order to obtain the solution of the entire network. There are basically two types of tearing,
namely, node-tearing and branch-tearing depending upon whether circuit nodes or branches are
removed to tear down the network. The program SLATE [3) utilizes the node-tearing approach at the
linear equation level. The LU-factorization of the original Jacobian matrix during the standard Gaus-
sian elimination process is performed by cleverly exploiting the block structure of the matrix reordered
in a special form, thus achieving savings in computation time. Another approach is to decompose the
svstem at the nonlinear equation level by introducing additional iteration loops in the standard
Newton’s method. This multilevel Newton method is used in MACRO [4] Tearing methods, in gen-
eral, are well-suited for parallel processing and retain the numerical convergence and stability proper-

ties of the standard approach.

2.2.1.1 Tearing of Linear Systems
At the linear equation level, tearing is used to solve a set of linear algebraic equations of the form
Ax=b (2.1)

where A is an nXn matrix, X is an unknown vector and b is a known vector in R".

- « a0
et Nt
Lt

P

Tha

. e

o« 0w .
.

P, A.J;l.iA‘-

y
P
ok

Py

A L A R e s e e . e te R PR N =T Pl SN A

...... s - AAERARA AN I A A A A R AT A AT AT S Sl Bl S Lol

%

13

The standard Gaussian elimination process involves the L U-factorization of A such that A=LU,
where L and U are lower triangular and upper triangular matrices respectively. ln general, we have
PA=LU, where P is a permutation matrix. This is followed by a forward substitution step wherein a

temporary vector y is first computed from

Ly=b (2.2)
after which x is computed in the backward substitution step from

Ux=y. (2.3)

In case the permutation matrix P is not the identity, then we can replace the known vector b by the
vector Pb in Equation (2.2). It must also be noted that Equations (2.2) and (2.3) can be solved without
explicitly computing matrix inverses since the corresponding matrices are triangular. However, as the

size of the matrix, n, becomes large, even Gaussian elimination turns out to be prohibitively expensive.

Algebraically, tearing can be considered as reordering the network variables such that Equation

(2.1) has a bordered block diagonal (BBD) form

lgp
TT

where w € RX is the vector of tearing variables and v € R™ is the vector of the remaining unknown

y
s

w (24)

variables. T is a kXk tearing matrix corresponding to the variables in w. Removal of the variables in -}1
w tears the network into u independent subnetworks. D is an mXm block diagonal matrix

corresponding to these subnetworks. Assuming that the i'® subnetwork has m; variables and the g

m; Xm; matrix corresponding to this is D;, we then get the following partition : ;4
"3

D, 1 Y1 A

D, V2 Y2 <

D= . v=1. Yy=itj.1- .:

. - . ‘.9

D, Vi Y "1

=4

*

Further PT=[PTPS..PJ] and QT =[QF QS..QT] where P, and Q; are m;xk matrices
1

N

»
L

(4

....................
................
......................

b

.........

14

constituting the border.

The solution strategy is to first eliminate the variables v from the system resulting in the follow-

ing reduced subsvstem :

(T — Q'D~'P)w = s — QTD-ly. (2.5
Solving (2.5) gives the tearing variables w, after which the i*® subnetwork can be solved to yield

v; as
Divi =Y ij (2.6)
foreachi = 1,2,..,p .

It must be noted that both Equations (2.5) and (2.6) represent subproblems much smaller than the
original problem since, typically, k <<n and m; <<n . Further, these equations can be solved without
actually inverting any of the matrices involved. The details are given in [35] and will not be discussed
here. Parallel processors could be employed to solve Equation (2.6) for different subnetworks. Thus
tearing aids in saving computation time over Gaussian elimination of a rather large system of linear

equations.

2.2.1.2 Tearing of Nonlinear Systems

At the nonlinear equation level, tearing is applied in the multilevel Newton iteration procedure
used in MACRO [4] In this approach the circuit is assumed to be described in a hierarchical fashion.
In a two-level hierarchy, a circuit is composed of certain functional units, calied blocks. Each block is a
small subnetwork consisting of basic circuit elements such as transistors, resistors, and capacitors. The
circuit variables in a block are divided into two categories, namely, endogenous - those that interact
only with variables inside the block, and exogenous - those that also interact with variables outside the
block. Let u € R* denote the exogenous variables for a subcircuit. The endogenous variables are, in

turn, partitioned into two sets. The first set, called the owtpur variables, and denoted by y € Rk, are in

e e e e

A | et

LI T PN
"'."': e
s AR AL

i
x
L]

e
.

R I A A R A/ et el s St Sl i A S A S i iy T

15

1-1 correspondence with the exogenous variables. For example, if the exogenous variables are chosen to

be node voltages, then the set of output variables will be branch currents entering the subcircuit from

these nodes. The second set, denoted by x € R™, is the set of inzernal variables.

The static behavior of each subcircuit can be determined by solving a system of equations of the K

form
H(u,x,y) = 0. 2.7

Given u, the interaction of the subcircuit with the rest of the circuit is completely described by y.
Thus Equation (2.7) can be solved to yield an exact macromodel for the subcircuit, which is a mapping
from u to y. Therefore the original circuit can be treated as composed of black boxes whose input-

output behavior is modeled by macromodels, leading to the network equations of the form
Flu,y,w) =0 (2.8)
where w € RP is a vector of network variables not interacting with any of the subcircuits.

The two-level Newton-Raphson algorithm can then be described as follows. Each subcircuit hav-
ing equations of the form of Equation (2.7) is first solved using a Newton-Raphson iterative technique
vielding y as a function of u denoted by y = G{u) . The next level of Newton-Raphson iterations is

applied to Equation (2.8) with y = G(u) to yield the complete solution to the network.

The two-level technique can easily be extended to many levels of hierarchy in the circuit and is
extremely useful if circuits are described in a multilevel hierarchical fashion. The main advantage in
using this approach is that, at each level, the Newton-Raphson algorithm is applied only to a relatively
small number of equations, thus gaining computational speed. Like other tearing methods, this scheme
permits individual subcircuits to be processed in parallel while still retaining the essential properties of .-
the corresponding standard technique, which in this case is the quadratic convergence of the Newton- S

Raphson method.

2.2.2 Relaxation Decomposition

Relaxation or temporal decomposition techniques are used by several nonstandard analog simula-
tors such as MOTIS [5} SPLICE [13} RELAX [10] and SAMSON [15), to achieve higher computational
speeds. Relaxation can also be applied at anv of the three levels of the standard circuit simulation
approach, namely, the linear equation level, the nonlinear equation level, and the differential equation
level. These methods are characterized, however, by completely different numerical convergence and

stability properties.

2.2.2.1 Relaxation of Linear Systems

As in Section 2.2.1.1, suppose, once again, that the linear system of equations to be solved is of the
form Ax = b where x, b € R®, and A is an nXn matrix. There are two well-known relaxation tech-
niques that could be used to solve the above system iteratively. These are the Gauss-Jacobi method and
the Gauss-Seidel method. Both these methods are iterative in nature, as are relaxation methods in gen-
eral, and generate a sequence of vectors x°, x!, x3, +--, xi, xi*!, <. where x° is some initial guess.
This sequence converges to a solution x° for any initial guess, provided some conditions involving the
matrix A are met. In this case the iterations stop when the error §i*! = || xi*! — x' || < € where €>0
is preassigned.

The relaxation begins by partitioning A as

A =L+D+U (2.9)

where L and U are strictly lower and strictly upper triangular matrices and D is a purely diagonal

matrix. Thus the original system of equations can written as
Dx =b—Lx —Ux. (2.10)

The Gauss-Jacobi method then computes xi*! from xi as

Mot o - R 3 A3 y L o W W W ¥ U T I T U T ¥ye v a
P St St San Mgy Mensc . - AR R I A AN AL RCE A A A DS - . - t.

17

xi*! = Db — (L+UXk’) (2.11)
while the Gauss-Seidel computes
xi*! = D~}(b ~ Lxi*! — Uxi). (2.12)

More precisely, Gauss-Seidel computes the j** compenent of xi*! as j is incremented from 1 to n as fol-

lows:

j=1 n .
xj* = Db, — IZijx,{“ - 2 Uix) (2.122)

k=1 k=j+1
since Ly, = 0 for k> jand Uy = 0 for k € j by definition.
From Equation (2.11) one gets

(xi*! — xi) = —D~HL+UXxi — xi~1)

a.:d hence, for the Gauss-Jacobi method
§* < [ID-UL+U)|| & (2.13)
bv definition of the induced norm of a matrix [38] Similarly, for the Gauss-Seidel method one gets
§i+1 < |L+D) 'y} & (2.14)

In either case, we have §*! < |[M|| 8 where M denotes, generically, the matrices involved in Equa-
tions (2.13) and (2.14). From the above equations, it can be shown that these relaxation methods have

the following properties :

a) The iterations converge (i.e. 8 —0 as i—oo) for any initial guess x° if and only if 1A(M)| <1 for

each eigenvalue X of M.

b) The iteration converges in one step if the rows and columns of A are permuted such that U is

identically zero.

c) Speed of convergence, in most cases, is improved if A is permuted into nearly lower triangular

form.

A A A0 Lot A Sea re e e den g e -a s o Py Lot g Sad auLE Sl gt

18

d) In general, convergence depends on the numerical properties of L, D, and U. Convergence is typi-
cally rapid for the first few iterations, and then gets progressively slower. The asymptotic rate of

convergence is linear.

e) The speed of convergence of the Gauss-Seidel method is generally faster than that of the Gauss-

Jacobi method.

The advantage of the Gauss-Seidel method is that at each iteration only a triangular system of
equations has to be solved. Moreover, considerable improvement in speed of convergence can usually be
achieved if A can be permuted into a form which is nearly triangular. The disadvantage of this
method is its weak convergence. In some cases, if convergence is achieved, it is only linear. Thus if M
has an eigenvalue of modulus close to 1, it may take many iterations to reduce the error by an order of
magnitude. If A is diagonally dominant, which implies that all eigenvalues of M have modulus

strictly less than 1, then convergence is guaranteed.

2.2.2.2 Relaxation of Nonlinear Systems

Relaxation methods to solve nonlinear difference equations are used in a class of analog simula-
tors, known as timing simulators [5-8] The algorithms used in these simulators depart radically from

the methods used in standard circuit simulators in a number of ways ; some of which are

1) The types of networks are restricted to circuits containing only MOS transistors and lumped capa-

citors from each node to ground.

2) The nonlinear device characteristics, in most cases, are stored in tables, and are not evaluated

analytically during simulation.

3) Both sparse Gaussian Elimination and conventional Newton-Raphson techniques are discarded as

solution methods and some accuracy may be sacrificed in the quest for speed.

19

The first timing simulator to be implemented was MOTIS [5], which, in fact, is still considered a
landmark in the Computer-Aided Design (CAD) area. The original MOTIS, as implemented, had some
problems with accuracy, convergence. and coupling such as floating capacitors (i.e. a capacitor across
two nodes). Several simulators such as MOTIS-C [6] SPLICE [13] and MOTIS-II [7] were implemented
subsequently to overcome some of these problems. To v¢lucidate some of the ideas used in these simula-

tors, assume that the nodal equations of an MOS network are of the form
Cv+)v)=0 (215)

where v € R™ is the vector of node voltages as a function of time, Vv is its time derivative, C is the
capacitance matrix, and J(v) is the vector of currents feeding the capacitors. Using the Back ward Euler

method to discretize the time derivative operator, we get
VO = (vati — wa)fp (2.16)

where v¥ is the value of v computed at time t,, and h, = t,,, —t, . Assuming that the values of v
have been computed at time points tg, t;, ***, t,, we now develop the procedure to evaluate v°*! .

Substituting Equation (2.16) into Equation (2.15) and denoting the unknown variable v**! by y, we

get
Cy + h)y) - Cv, =0, (217)
which, in general, can be rewritten as a system of nonlinear equations of the form

gl(ylryzy e ,ym) =0
(Y 1s¥2 " s¥m) =0

. (2.18)

(Y132 s ¥m) =0

The relaxation techniques used to solve the above equations are often termed as point-wise relaxa-
tion methods as opposed to wave form relaxation methods [9] wherein the relaxation is applied at the

differential equations level itself. The point-wise relaxation techniques solve equations in (2.18) by

. Al g TN T T TR T,

20

sweeping one equation at a time and solving for one variable at a time while relaxing the remaining fan
variables to their previous values. The process is repeated until the unknown variables converge or the :;;::-

ALY
iteration count exceeds a preset value. In MOTIS a Gauss-Jacobi-like scheme is used to solve equations R

in (2.18) approximately by obtaining y; from the following scalar equation : -
gi(vln’vz " yv‘ln—l.y'pvi?b-)v bl ’v;) = o (2-19)

It must be pointed out that the above nonlinear scalar equation could be solved using a Newton- -—
Raphson iterative procedure. In MOTIS, however, the solution is taken to be the value obtained after
the first iteration itself. Furthermore, the values of y; obtained after the first sweep of the equations
in (2.18) are taken to be the values of v;"*! and, once again, the iterations are not carried out until con-
vergence. Thus the algorithms in MOTIS compute a vector y which solves the equations in (2.18) e
approximately, and sets v®*! = y. These approximations are justified when sufficiently small time

steps are taken to discretize the equations in (2.17). ==

The MOTIS-C program [6] modifies the procedure used in MOTIS by using a Gauss-Seidel-like

approach, which computes y; from the following equation : . .:

o
gi(vlnﬂ’vznﬂ’ cee vvi'l—-:11vai‘-‘f ETEIR 4 ;) = Q. (2.20) f:_.-;
Once again, the above nonlinear scalar equation is solved only approximately by stopping after a single _‘:"fl

Newton-Raphson step. Furthermore, only a single relaxation sweep is taken through the equations in
(2.18). In SPLICE [13] this approach is modified by repeatedly sweeping through the equations in

(2.18) until convergence is achieved or until the number of iterations equations exceeds an a priori -

s

[
Ve

M

bound, in which case, the time step h,, is reduced and the process is repeated. The advantage of using a

Gauss-Seidel-like approach over a Gauss-Jacobi-type approach used in MOTIS, is that, usually, the

PR |

v

Gauss-Seidel iterations converge more rapidly.

. P
L I

. .
‘,.2'1‘-. LR
4, % 8 4y [

»
»

The program PREMOS (8] uses a modified Gauss-Seidel predictor algorithm for the solution of

l§
N

o s
v e s

equations in (2.18). In this approach, while solving the i*® equation for the variable y;, the previous

'S "'-"n’ . w
AR R
Vo e

.
PN

e sl

.’.
»

]
*
]

. et
IR B R I T

-
.
O

.
.
Y
-"
.

21

variables are updated, ie, y; = vP*!' for j<i, while the variables with j>i are predicted by
yij=vP +(vpf=vP)h, ;/h,,. Among all the various time-point relazation methods discussed
above, the Gauss-Seidel, with prediction, is seen to perform the best, provided sufficiently small time-
steps are taken. Also, experience with SPLICE [13] and MOTIS (5] has shown that repeated iteration
sweeps are required in order to achieve accuracy. The convergence and stability properties of these

methods are studied in some detail in [36]

2.2.2.3 Relaxation of Differential Equations

In this section we discuss a technique in which relaxation is applied directly to the system of non-
linear algebraic-differential equations describing the circuit. As a result, the system is decomposed into
several decoupled subsystems of nonlinear algebraic-differential equations, each of which can then be
solved using standard techniques, namely, stiffly stable, implicit numerical integration methods,
Newton-Raphson iterations, and sparse Gaussian elimination. Furthermore, this type of decomposition
allows the latency of the subsystems to be exploited in the most natural way. This relaxation tech-

nique is called the Waveform Relaxation Method (WRM) [9] and is used in the simulator RELAX [10}

In order to describe the WRM process, consider the nonlinear algebraic-differential equations

describing the behavior of any general circuit to be of the form

f(x(t)x(t)u(t)) =0 (2.21a)

E(x(0) —x4) =0 (2.21b)

where t € [0,T] is the independent time variable, x(t)ERP is the vector of unknown variables at time
t, x(t) is the time derivative of x at time t, u(t)€RF is the vector of input variables at time t, xo€RP is
the given inijtial value of x, f : RPXRPXR"—RP is a continuous function, and E€R"*P is a matrix of
rank n<p, such that Ey(t) is the staze of the circuit at time t. Alternatively, the vector function x(t),

t € [0,T] can be treated as an element x in the vector space of bounded functions LE[0,T] with the

e e e T T T SN TR

——Tr,

22

norm defined as

liell = max Ix(oHl, (222

where for any Z€RP we define

el = _max_fa

where 2,,2,, * * * ,2, are the scalar components of z

There are two major processes involved in the WRM algorithm for solving the equations in (2.21)
over a given time interval [0,T], namely, the assignment-partition process and the relaxation process.
In the assignment-partition process, each unknown variable is assigned to an equation in which it is
involved. Then the system of equations in (2.21a) is partitioned into m disjoint subsystems of equa-

tions of the following form in which the dependence on time is not explicitly shown :

fl(il’xl’dhu)
£5(X5,X5,dp,u)
* =0 (2-233)
£ (X ilt)
BE(x(0) — x4) =0 (2.23v)

where, for each i=1,2,---,m , x;€ R™ is the subvector of unknown variables assigned to the i parti-

tioned subsystem, £,:RPXRPxR’*2PxRF—-R™ is a continuous function, and

d; = (xXp *** Xic1oXiag ** * KmpXns * ** KimpXinns * * * X))
For the i** subsystem, x; is the vector of endogenous variables, while x; with j#£i, are the vectors
of exogenous variables. If, for each i = 1,2, * < - ,m, the vector d, is treated as an input to the i** sub-
system, then clearly, the solutions of the equations in (2.23a) can be obtained by solving the m subsys-

tems independently. Therefore, the vector d; is called the decoupling vector for the i** subsystem.

The relaxation process starts with an initial guess of the waveforms for each unknown variable

and solves the equations in (2.23) iteratively. During each iteration, each subsystem is solved for its

23

endogenous variables for the entire time interval [0,T] by using approximated waveforms for its decou-
pling vectors. If we use the superscript k to denote vectors obtained during the k*® iteration, then the

WRM algorithm can be described as starting with an initial guess of waveforms xt): t€[0,T] such

that x%0) = x, and sweeping through the equations in (2.23a) one by one such that during the k*

f iteration, the waveforms x*(t) : t €[0,T] are obtained by solving

h f, i(iik,xi‘,di",u) =0 (2.243)
; Ei(x;"(O) e xio) =0 (2-24b)
b

-

where, if Gauss-Seidel relaxation is used, then the decoupling vectors are taken as

- -~ 2k sk ok=1 « k-1
dX = (xf, o xE XKL, e X ETLXS, XK er oK)T

or, if Gauss-Jacobi relaxation is used, then

- - - oy s k=1 e k=1 « k=1 .« k=1
d¥f = (xf - oo xEL AT o XA TNX Lt X X T X)

o The iterations stop when the error 8% = ||x* — x*~!|| becomes sufficiently small, where the norm of

j;:if the vector of waveforms is defined in Equation (2.22) above.

In contrast to the conditions for convergence of point wise relaxation methods discussed in the

previous sections, it has been shown by Lelarasmee [9] that the conditions for convergence of the

waveform relaxation method are fairly mild. First, the circuit Equations (2.21a) and (2.21b) are

v.. transformed into a canonical form so that the error after the k*® iteration can be expressed as a func-

-
-1

tion of the error after the previous iteration in the form of a contraction mapping. If the initial -

i

-

waveform guesses and the inputs are all piecewise continuous, and the canonical functions are globally ;1

A Lipschitz continuous and contractive, then it is shown in [9] that uniform convergence is guaranteed J

P

for the WRM algorithm under the norm defined in Equation (2.22). The convergence, however, is

linear as in other relaxation methods.

In spite of the surprisingly mild conditions for convergence which are easily satisfied by most

practical electronic circuits, the WRM procedure implemented in simulators such as RELAX [10] and

WRNORIIPE BN SIS

A A e Shd A Al Ak Mk A s daa A s it S Sl g

24

RELAX2 [11] suffers from certain drawbacks. The main drawback is that if fairly strong coupling
eXists between the various partitioned subsystems, as in circuits with logic feedback loops such as finite
state machines, asynchronous sequential circuits, and ring oscillators, the number of iterations required
for convergence may be prohibitively large and also proportional to the length of the interval of
analysis. Some of the drawbacks have been overcome in RELAX2.1 {12] , wherein the time interval
[0.T] is partitioned into certain slots or windows and the subsystems are analyzed only for the duration

of a present window before moving on to the next window, and so on. However, it has been shown in

[37] that, in the case of stiff systems where the coupling among the subsystems causes the stiffness, the
sizes of the windows have to be reduced considerably in order to keep the iteration count during a win-
i dow within a prescribed bound. This would then require an extremely large number of windows to

span the entire time interval of analysis.

2.3 Digital Simulation

Digital simulators [13-26] or logic simulators as they are often called, form an important class of
computerized tools for designing very large integrated circuits. These simulators provide a discrete
“on/off" type analysis of the circuit under test. Signal values are described by a fairly small number of
discrete levels rather than in a continuous range as is the case in an analog simulator. Through the use

of very simple models for the devices and Boolean arithmetic to perform operations on the discrete sig-

nal values, digital simulators are often capable of economically analyzing circuits containing the
equivalent of over 100k active devices. The dynamics of the circuit are, however, modeled by simply
delaying the various signal transitions between the discrete levels. In most cases a simple, user-defined
rise and fall delay between the input and output of a logic-gate or transistor-group is used. Thus digi- .':.{:.
tal simulators, at best, provide a fairly crude, first-order timing analysis of the circuit under considera-

1
1

1

. .‘

tion. . 1
j

.......

. TR TR TR NN W T T TSN "-.': AADAACYAAR A SRV A Y PR S Y AL SN PSS B Sl A SR Sadh S Sl Rl At b Aol Sl Sl Andrfnd Suh Sad &) 4

25

Digital simulators are useful and popular since most integrated circuits are primarily digital in
nature. The usefulness of a digital simulator, however, depends greatly on the consistency and accu-
racy with which it can model the logic behavior of a full range of design techniques available to the
designers of integrated circuits. Of course, no digital simulator can model all designs with complete
accuracy, because it does not simulate the detailed analog behavior of the circuit. It should, nonetheless,

provide as close a model as possible within a set of well-defined limitations. As a further requirement,

a digital simulator for VLSI circuits must be efficient enough to simulate entire systems with reason-
able speed. A digital simulator has, as its basis, an abstract model of how digital systems function. This
logical model describes both the structure and the behavior of a system in terms of a set of primitive
elements, a set of interconnections, and a set of rules for operation. For a simulator to accurately and
reliably simulate a system, the logical model must reflect its actual structure and operation. Digital ;
simulators can be divided into two categories, namely, Boolean gate-level simulators [13-18] and

switch-level simulators [19-27]

2.3.1 Gate-level Simulation

The Boolean logic gate model has formed the theoretical basis for logic design ever since the
advent of electronic logic. In this model a circuit is composed of several logic gates connected by uni-
directional, memoryless wires. The logic gates themselves are collections of transistors and/or other cir-
cuit elements which perform a logic function. A logic gate may be a simple inverter, NAND gate, or
NOR gate, or a more complex functional unit such as flip-flops and registers. The logic gates compute
Boolean functions of their input signals and transmit these values along wires to the inputs of other
gates to which it might be connected. Each gate input has a unique signal source. Information is stored .
only in feedback paths of sequential circuits. The Boolean gate model directly implements the well-
known two-valued Boolean algebra and hence has a well-defined specification which can guide the

simulator implementation.

g T — . g Mice A e aein bt eaau i s M A A e S M A A . ARG

26

The unilateral nature of logic gates is fundamental to the operation of gate-level simulators. For
each binary vector at the input nodes of a logic gate, the binary value (ie. 0, or 1) at the output is
computed and propagated on 1o the inputs of other gates that might be connected to it. Due to the iper-
tial elements such as node capacitances present in the circuit, however, a change in the state of the input
to a gate would propagate to the output only after a certain time delay. Simulators which do not
account for this delay can analyze only combinational circuits. Thus, s'upulators which handle sequen-
tial circuits must estimate the propagational delay through a logic gate and they do so in several ways.
Some simulators operate in the so-called unit delay mode, where all logic gates are assumed to have the
same delay. Unit-delay simulators, however, can verify only the steady-state behavior or the logic
functionality of the digital circuit. In order to provide some kind of timing information, some simula-
tors allow assignable delays where the user can assign specific delays through any of the logic gates
used in the simulation. Even in assignable delay simulators, the delay values may only be integer mul-
tiples of a fundamental time quantum, usually referred to as the minimum resolvable time (MRT). For
example, the MRT in a certain simulator may be 0.1 ns, in which case a gate delay of 10 units

represents an effective delay of 1.0 ns.

The difference in propagational delays through different signal paths in a network of logic gates
may sometimes cause undesirable situations, such as static hazards and dynamic hazards. Hazards
[28,29,39,40,64) are situations where it is possible for spurious glitches or spikes to appear in an other-
wise smooth analog waveform at the output of a logic gate. In a sequential circuit, the occurrence of a
glitch could cause the circuit to malfunction. Therefore, the detection of hazards and race conditions
[23,62,65] are very important, and hence, most digital simulators caution the user when they occur.
The detection of hazards is possible by introducing a third state, usually denoted by X, to represent sig-
pal transitions {28,29,39,40,64] In this dissertation, we do not consider race conditions since we assume

that timing is known, and hence any potential race condition will be resolved according to the timing.

r:“ ERL AR Abedrin A% S3 000 e A T e i AURA A R/ Rt S At b il A i it At At S MIE AR ALINE S A OO AN A OO S CE

27

The Boolean gate model cannot represent many of the design techniques currently used in VLSI
design. This is especially true in the case of MOS VLSI circuits. The MOS pass transistor is often used
to implement combinatorial logic in ways which resemble relav contact switches more closely than
logic gates. These bidirectional elements are difficult to handle using the gate model and are often »
approximated by unidirectional gates. Dynamic memory can store information without feedback paths
by exploiting the capacitances of the wires and the gate terminals of the transistors attached to them.
A variety of bus structures is often used to provide multidirectional, multipoint communication.
Hence, most existing digital simulators extend the Boolean gate model in various ways to handle MOS
circuits.

Many simulators extend the two-valued logic of Boolean algebra with a third value to represent
an unknown or unde fined logic level. This X state could indicate an uninitialized signal, a signal held
between two logic thresholds, or a signal in a 0—1 or 1—0 transition. The X state is handled algebrai-
cally by extending the binary Boolean algebra to a ternary or three-valued DeMorgan’s algebra [18,39]
Thus, even with this extension, many of the desirable mathematical properties of the Boolean gate
model are preserved. The X state implemented this way is also useful in the detection of hazards and
race conditions [23,28,39,40,62,64] Alternatively, some simulators implement the X state by an "
enumeration technique in which the simulation is repeated with the nodes in the X state set 10 all pos-

sible combinations of 0’s and 1'’s (411 Nodes that remain in a unique binary state for all combinations

are set to this state, while all others are set to X. To simulate tristate gates and logic busses, some simu-

t: - lators use a fourth state, called the high impedance state, and often denoted by H [16]. This H state is -
[also used sometimes to model dynamic memory by allowing a node to retain its previous logic state if -
r the outputs of all logic gates connected to the node are at the H level

As far as simulation is concerned, most gate-level simulators belong to one of two general types.
The first is based on the Huffman logic model [42} as shown in Figure 2.1. In this model, all the feed-

'.-’_'. back paths in the network are initially broken resulting in a purely combinatorial network, which is Dy

sl
o'

)

..

PRIMARY COMBINATORIAL PRIMARY
—w
NETWORK OUTPUTS

(leveled)

1

SECONDARY SECONDARY
INPUTS QUTPUTS

Figure 2.1 : The Huffman logic model for logic analysis T

CRla S ——— PRt e

g 0 1 An b A - I et “Shier S e e e indiin T n A S A S Sedh S i Snd Andi Al it T Al f I dn it Aot LA SIND ARA AN R et 4 ol

29

then levelized in terms of signal dependence. The feedback is restored by inserting delay elements
between the secondarv outputs and secondary inputs of the combinatoria] part of the network. The
analysis begins by applying the input excitations and following paths where the signal states change
through the network to the outputs The delays are applied to any secondarv output change and the
analysis of the combinatorial block begins once again. The process is repeated until the requested input
sequence has been completed. This approach is used in SALOGS [16] and is quite efficient for circuits

where relatively few delays are significant or, in other words, for nearly combinational circuits.

The second and more common approach is based on the use of a time queue (TQ) [43] as shown in
Figure 2.2. Each entry in the queue represents a discrete point in simulation time. Time moves ahead
in fixed increments which correspond to consecutive entries in the TQ. Each entry in the queue con-
tains a pointer to a list of events which are to occur at that instant of time. An event is usually
defined as a change in the logical state of an output node of an element. The element, in this case, may
be a voltage source or 2 logic gate. The new state may or may not be the same as the state already held
bv the output line. If the new state is different from the old one, then all elements whose input lines
are connected to this output line, called fanowt elements, must be processed to see if this change affects
their outputs. If an element gets processed at say, time t;, and the input event is found to cause an out-
put event, then the output event is assumed to occur at time t;,, Where k>0 represents a positive
delay through the logic gate. The fanouts of the output node then get scheduled for processing at time
ti4x- If the state of an output node remains unchanged, then the fanouts are not added to the time
queue. This approach is often referred to as a selective trace technique, or an event-driven scheme, or
sometimes even as dynarmic leveling. In the case of logic simulation, no penalty in accuracy or stability
of analysis is incurred with the use of the selective trace method. One of the advantages of this scheme
is that it allows different gates to have different delays and, moreover, the delay value through a gate
is also allowed to change as the simulation proceeds. This is especially good for MOS logic gates which
have different delays for rising transitions and falling transitions at the output respectively. Further-

more, the presence of feedback among the logic gates does not complicate the simulation, since the delay

T T T a———— A Tand Sl Sud Sadhini i At AniAnd Vet A it f I ot ARl AN SR MND QNG Qepahe QAR gh ared

w -r.v'.

wvr v, "

N IS SBPADA

s 2

L,

t=0
l

present time
(PT)

Events to be processed at

present Ctime

On=

.

U

o

Can schedule their fanouts to
be processed in the future.

Figure 2.2 : The principle of the time queue simulator

e

N

« .
ottt
ot
aa'a's

v
L

Xs

lllﬂ

__.
-l
3

o
(1
st a

[
)
v _r

o
'

Aafad gage it Jai e e e < Ba S et gt ek et et et IR e &t it g St S I IR CRSCEMCE S SR S B iR et it it S
B ML DR G i o0 R L Rl S R O L S - - EEE - - LA .

K}

through a feedback loop would scheduie a gate for processing only in the future and never at the
present time in the queue. Several logic simulators such as TEGAS [17], and SPLICE [13], use the TQ

approach successfullv.

Gate-level simulators, however, are not entirely suitable for the digital or logic simulation of
MOS circuits. This is due to the fundamental mismatch between the Boolean gate model and the
behavior of MOS logic circuits. MOS circuits consist of bidirectional switching elements connected by
bidirectional wires with memory (considering the capacitance of the interconnect and of the transistor
gates as contributing to the wire’s memory). Hence, the need for a different approach to the digital

modeling and simulation of MOS circuits is apparent and is discussed in the following section.

2.3.2 Switch-level Simulation

A new class of digital simulators known as switch-level simulators has emerged fairly recently as
an alternative to the more conventional gate-level simulators, specifically for the simulation of MOS
V'LSI circuits. The Boolean gate concept is discarded altogether in these simulators, and is replaced by a

bidirectional swizch model which closely matches the structure and behavior of MOS circuits.

One of the first switch-level simulators to be implemented is MOSSIM [19] in which an MOS
logic network is modeled as a set of nodes interconnected by a set of transistor switches. MOSSIM uses
three logic levels, 0, 1, and X, to describe signal values at the various nodes. The level X is the unde-
fined or sometimes unknown level used to represent a signal level that cannot be uniquely determined
due to an ambiguity in the network condition. Each node is also assigned a strength which indicates
the extent to which the node can force its value on other nodes connected to it via a path of conducting
switches. Input nodes are the strongest and provide externally generated signals such as, power lines,
ground, clock drivers, and data inputs. A node connected to a voltage source through a pullup resistor
is called a pullup node. The pullup resistor is normally realized using a depletion transistor with gate

and source terminals shorted. A pullup node is at level 1 unless there is a path of conducting

. e L te e e Tt . on L . R . e . . . L T N TR L L RSP AL RV L
I R R S R R T IR . R RN CRC R S T SO S e’ et ta® . P
PRI Ny T T iy T ST Uy U P T U L, L - PR TIE Sl AT T T AT S P ITTAT Wl 6 T, P AP AP AP AP W W . WP T R WP, NP A

M R AR ANL AAMENA s e gl g et a s e SIS

32

transistors to an input node, in Which case the pullup node takes on the value of the stronger node. The
rest of the nodes in the circuit are normal nodes. These nodes are the weakest and are capable of only
storing charge dynamically. Thus we have three types of nodes with strengths ordered as

input > pullup> normal " .

An MOS transistor is modeled as a three node device which acts as a bidirectional switch between
1ts drain and source nodes with the signal at the gaze node controlling the state of the switch. There
are two types of transistors allowed in MOSSIM : n-type and p-type. When the gate signal is a 0, the
n-type (p-type) switch is open (closed), and when the gate signal is a 1, the n-type (p-type) switch is
closed (open). The status of either switch is unknown, ie, it may be open, closed, or somewhere .
between, when the gate signal is in the X state. When a switch is closed, it is treated as a bidirectional

switch, and no distinction is made between drain and source nodes of the device.

The network can be described to MOSSIM in terms of transistors, logic gates, and user-defined © o

macros, but these are all translated into a transistor level representation for simulation. The program
begins by splirting each input node (including the ground node) into a number of physical input nodes,
one for each transistor to which it is connected. This is possible since the input nodes provide strong sig-
nals to the network which cannot be modified by the internal operations of the network. The gate -'Ell‘.:-‘
node of a transistor is treated as a pure input to the switch and 1ts state determines the conduction state ‘.r‘
of the switch. This helps partition the set of transistors into groups, which can be defined as follows :
Consider an undirected graph with a vertex for every node in the circuit and an edge between drain
and source nodes for each transistor. The graph will then have several connected components. The set

of nodes and transistors corresponding to a component forms a group. Thus all bilateral interactions .

between nodes take place within a group.

A clock in MOSSIM is defined as a set of binary sequences to be applied cyclically to a set of :f":::;
input nodes. A phase is one set of clock and input data values. The basic quantum of time is a unit AN

step. Within a phase, the circuit is assumed to settle down after a certain number of unit steps. The

CeTa Tl Salt e e . T
] ISP - U L. P LI PP SN

R

33

simulation begins by first initializing all nodes to the X state. At the beginning of each phase all input
nodes are assigned their new values and the groups whose input nodes are changed are placed in an
everu list that has initialized previously. Then a series of unit steps are taken until the event list is
emptied, indicating that the network has settled. Once the network settles, the simulation of the next
phase can begin. During a unit step simulation, the states of the transistors within a group are held
fixed and the values of the pullup and normal nodes are updated. This is done for each group in the
event list. Each updating results in a certain number (possibly zero) of nodes changing states which are
accumulated in a set of active nodes. After all the groups in the event list are simulated, the transistors
whose gate nodes are active are updated and the groups in which these transistors lie are added to a new
event list for use in the next unit step. By first changing the node states while holding the transistor
states fixed and then changing the transistor states with the nodes fixed, the transistors, in effect,
switch one unit of time after their gate nodes change. Thus if the transistor groups are treated as con-
ventional logic gates, the simulation appears very much like an event-driven, unit-delay gate-level

simulation. The procedure for updating the node states within a group, however, is very different.

We now describe the algorithms in MOSSIM used to update the states of the drain and source
nodes of transistors within a group based on the concept of node strengths. Initially, all pullup nodes
are set to logical 1. Next, an undirected graph is constructed with a vertex corresponding to each node
in the group and an edge between the drain and source nodes of each transistor in the closed state. The
connected components of this graph partition the set of nodes into equivalence classes. Within each
class, the strongest nodes are determined based on the ordering input> pullup>normal. The strength
of the class is then the strength of the strongest nodes. If the states of the strongest nodes are equal,
then class state is set to this state; otherwise the class state is set to X. If the class strength is pullup, the

class state is alwaysa 1.

If the group contains x-transistors, which are transistors having an X state on their gate nodes,

then the unknown switching behavior of these transistors could alter the class states. To deal with

55 T NN

I ¥ I

L At A A At A A A it AR MM S oA e

them consistently, MOSSIM adopts the following philosophy : if a node has a unique state regardless of e
the conduction state of the x-transistors, then the node will be set to this state; otherwise it will be set
to the X state. Thus the state of each class computed as described above is based on the assumption that N

all x-transistors are open.

The second part of simulating the group begins by forming a supergraph containing a vertex for
each class and an edge between two vertices if an x-transistor connects two network nodes in the two .‘
corresponding classes. The connected components of the supergraph partition the classes into a set of
superclasses, in which each superclass is a set of classes linked by x-transistors. If a superclass contains
only one class then no further analysis is needed. Otherwise, the strength of a superclass is computed as L
the strength of its strongest classes. The state of a superclass is set to the state of the strongest classes if -
they are all equal, and X if they are not. A class is said to be poisoned if its state is different from the
superclass state. Furthermore, a poisoned class could poison a neighboring class which is not stronger -
than itself even if the state of the neighbor is the same as the superclass state. Thus poisoning can -
spread through classes and be stopped only by classes with greater strength than the original poisoned
class. The state of each poisoned class is then reset to X. Once the states of all the classes have been

computed, the state of each node in a class is set to its class state.

Several modifications and extensions of the basic MOSSIM philosophy have been considered by a
number of authors [20-25,63,65]1 In [20] Bryant provides an abstract model for the switch-level simu-
lation of MOS logic networks which is more general and formal than the one in MOSSIM. Unlike
MOSSIM, only two types of nodes, namely, input nodes and normal nodes are allowed. A third type of
transistor, called d-type (for depletion), is introduced which is closed regardless of its gate signal. To
model raticed logic, transistors may have different strengths (or conductances) when in the closed state. Lo
Thus, a stronger transistor (such as an inverter pulldown) is able to override a weaker one (such as a -t
pullup load transistor). In MOSSIM, each normal node is modeled as having a capacitance of unknown

value which can store charge but cannot drive its signal onto another node in a different state. Unfor-

FTT I v—————— M S Y & S A 0a e en fas i 2t Sl A YA e 20 At At A Jaaie S e Sas Sand e A Mie eas SnE gl des i Ul et Aadh Al Anch et wadh Sauis

35

tunately, this model cannof describe the behavior of many bus designs in which a relatively high capa-

citance bus node is connected to a node of lower capacitance (such as the storage node in a three- f:
transistor dynamic RAM cell) resulting in both nodes having the same logic state that was originally
on the bus. In the new model each normal node is assigned a size. Which is indicative of the value of .

the node-capacitance.

The time and the electrical behavior of the logic network are described in a formal way in [20]

by introducing the notion of a target function. Given a particular set of input node, transistor, and

initial normal node states, the target function provides the final states of the normal nodes. For circuits

_ free of critical races, the logical behavior of the network can be modeled by repeated application of the

‘ target function. The passage of time is modeled just as in MOSSIM, i.e. every application of the target S
function is like advancing a unit step in time. The electrical behavior of the network is modeled by
defining the target state function in terms of a set of steady-state voltages in an order-of-magnitude
electrical network. This class of networks models the conducting transistors by linear resistors, where
the resistances (or conductances) of different strength transistors differ by orders of magnitude. Asa
~f:. result, any path to an input node containing only transistors of large strength is modeled as overriding :

-j'.'_- any path containing a transistor with lesser strength. Similarly, the normal nodes are modeled by capa-

citors where the capacitances for different size nodes differ by orders of magnitude. Thus, the target

P e AL A/

states formed on a set of nodes through charge sharing depend only on the state of the largest size
node(s) in the set. Furthermore, no attempt is made to accurately compute the node voltages. Instead,
they are classified into three logic levels, 0, X, and 1. Although the target state is defined in terms of
an electrical model, it can be computed logically, without evaluating any electrical network. By intro- __
'j;j ducing an abstraction called logic signals, an iterative method which uses only operations on a simple,

discrete algebra is used for computing the target state function. A logic signal provides a composite

R AN PRI

- description of a switch-level network at some node for a particular set of node and transistor states,

much in the same way as a Thevenin equivalent network for an electrical network. Finding the target

state then reduces to finding a minimum solution of a set of equations involving logic signals. -

T BRI M i it B A A A A

In [21] Byrd et al. have independently developed a consistent, complete, circuit theoretic based
interpretation of switch-level simulation and modeling. They formally relate the true behavior of real
conductance networks and the switch-level model. As in Bryant's model [20} transistor switches are
modeled as linear conductors whose conductances belong to an arbitrarily deep hierarchy of conduc-
tance classes, G',G?, -« * ,GP, where any g'€G* and g/€G/ satisfies g'>>gj, if i>} Some drawbacks of
Bryant’s solution of the conductance network using a minimum principle with a discrete algebra are

pointed out and a more general circuit theoretic based procedure which expresses a signal at a normal

node as a convex combination of the input signals is presented. PARCHEMIN is a switch-level simula-

tor using these algorithms.

In [22] the notion of a well-designed circuit is introduced and an improved switch-level simula-
tor that runs extremely fast on such circuits is presented. This simulator also detects race conditions
and handles the X state in a clean and efficient manner. A linear-time algorithm that detects race con-
ditions in any ponoscillating circuit (ie, a circujt that is acyclic within a clock phase) has been
developed by Ramachandran [23] In certain cases this algorithm is overly cautious and might indicate
a presence of a race condition, when in reality, the circuit has no race condition. In {65] the authors
introduce a new model, known as the NC-model, for switch-level simulation, and show that the simu-
lation of any circuit (including oscillating circuits) can be performed in quadratic time under this new

model.

An alternative approach to switch-level simulation is based on generation and evaluation of sym-
bolic logic expressions [24] A special discrete algebra is used, and logic expressions for a node are gen-
erated hierarchically, where each level of hierarchy represents the influence of node signals of a partic-
ular strength on that node. In evaluating the logic expressions, the undefined X state does not present
any special problem due to the versatility of the new algebra. Furthermore, simulating the basic faults
in MOS circuits is easily incorporated, thereby making this a fairly attractive scheme. These ideas are

used in EXPRESS-II [25], a fast and efficient switch-level fault simulator for MOS designs.

......

37

2.4 Mixed-mode or Hybrid Simulation

An ideal simulator for VLSI circuits would be one which has the speed and efficiency of digital
or logic simulators while providing the accuracy and detail of an analog simulator. An attempt to
achieve this is through mixed-mode or hvbrid simulation. In many of the VLSI circuits the detail and
accuracy provided by the analog simulators are not required for the entire circuit under investigation,
but only for some critical areas of the circuit. This is particularly true of large digital circuits, where
often a simple digital simulation (gate-level or switch-level) provides sufficient information about the
performance of much of the circuit, while some parts, such as sense amplifiers in memory circuits or

tightly coupled analog blocks, might require more detailed modeling and analysis.

By providing a range of models, from highly accurate and complex analog device models to much
less accurate but greatly simplified gate-level or switch-level models, the circuit designer can reduce the
simulation time significantly by choosing the computationally less expensive models whenever it is
appropriate and possible. Another property of large circuits which may be exploited is their relative
inactivity or latency. In a typical VLSI circuit, usually only less than 20% of the signals change values

significantly at any one time instant.

Hybrid analysis programs allow the designer to use a combination of analysis techniques and
models, ranging from circuit and timing simulation to much cheaper digital simulation, in the same
program. These simulators, such as SPLICE [13)}, DIANA [14] and SAMSON [15] have been observed to
realize a one or two order of magnitude reduction in simulation time and substantially lower memory

than standard circuit simulators, while still providing a detailed circuit-level analysis where necessary.

Mixed-mode or hybrid simulators, however, work well as long as only small, isolated sections of

the circuit need to be simulated as analog circuits. Unfortunately, the partitioning of the circuit into

sections which require analog simulation and those which do not is not fully automatic; some amount
of human intervention is still required. Furthermore, trying to combine analog and digital models in a

single program requires rather unsatisfactory approximations at the interfaces. For example, if the out-

I S S N P S T S -« ® & s+ @ s m o ® mia @ m s & p @ m R & m ow w &

...... ‘:'._.:.\...~ \.._'.:- ol N PN e SE e AP S Y

PURE P AT W)

‘‘‘‘‘‘‘‘‘‘‘
.....

. T T R R W T e T e T s AN AU T A AR PR S

35

put of a section of logic gates is to be interfaced to an input of a section modeled as an analog circuit, a
logic-to-voltage waveform conversion is required. This, of course, cannot be done with any accuracy,
since much of the necessary information is lacking. The resultant outputs of the analog section must
then be viewed somewhat skeptically. Similarly, certain states used in logic simulators, such as the
unknown state X, or the high-impedance state H, do not represent a single voltage and therefore cannot
be interfaced with an analog simulator. Therefore, unless great care is exercised, a hybrid simulator
could end up providing the accuracy of a logic simulator at the speed of an analog simulator, rather

than vice versa.

2.5 Switch-level Timing Simulation

The problem of switch-level timing simulation of a digital circuit can be defined as follows:

Consider the analog waveform V,(t), t€[to,t;] at a certain node n in a digital circuit and choose p—1

threshold values, ordered as v, <v,< *** <v,_,. Define the p-state digital equivalent of Vy to be
Xn(t) =X; if v; <Vn(t) QV;.,, (2-253)

where Xg,X,, *** , X, are the p digital states and vy and v, are the minimum and maximum

values of the analog waveforms respectively. We also define
Tn - {tk H Vn(tk)e {Vl,V2, e ’vp-l} }. (2.25b)

Thus T, is the set of threshold crossing times of the analog waveform at node n in the circuit, or alter-
natively, the set of state transition times of its p-state digital equivalent. The aim of a switch-level
timing simulator is to obtain the p-state digital equivalents X, for each n €II, with special emphasis on

computing (or estimating) the elements of T = |J T,, where II denotes the set of nodes of interest to
2€ Ml

the user. For brevity in notation, we shall use SLT to stand for switch-level timing, and so the elements

of the set T of threshold crossing times will be referred to as SLT estimates.

......

.......................

39

Since most VLSI circuits are primarily digital in nature, the circuit designer is very often satisfied
in performing an SLT simulation in the design-verification process since this enables him to estimate
the propagation delays, speeds of computation, optimal clocking rates, etc. The usefulness of an SLT
simulator can be measured by considering two factors, namely, the simulation cost which is primarily
an increasing function of the CPU time and memory used and, secondly, the accuracy of the SLT esti-
mates. There are two major approaches that could be used to perform an SLT simulation on a large
digital circuit :

(1) Use an analog simulator and convert the resulting analog waveform into their p-state digital

equivalents directly, by choosing an appropriate set of p-1 threshold voltages.

(2) Use a digital simulator with delay estimation that computes the p-state digital waveform at each

circuit node and generates the SLT estimates.

Since it is impossible to obtain the exact waveforms analytically, in a typical VLSI circuit, the
SLT estimates produced by standard circuit simulators are considered accurate enough and are often
taken as references to compare the accuracies of the SLT estimates produced with other simulators.
Simulators using the first approach include the so-called timing simulators such as MOTIS 5], MOTIS-C
(6] and PREMOS (8] which are analog simulators using relaxation techniques to speed up the simula-

tion process as described in Section 2.2.2.2 .

In spite of the several attempts made to speed up the performance of standard circuit simulators
as discussed in Section 2.2, analog simulators are still very expensive to use to analyze circuits with
more than 10k devices Digital simulators, on the other hand, have a distinct advantage in speed over
analog simulators. Several large circuits with over 100k transistors have been successfully handled by
these simulators. However, they provide rather inaccurate SLT information due to the poor modeling
of the dyvnamics of the circuits. Most digital simulators produce two-state digital waveforms and
account for the circuit dynamics by delaying the transition between states. In all cases the delays are

taken to be single-threshold delays. Furthermore, these simulators do not take into account the depen-

RS A S i Ve i S

.

T

A IR e s

dence of propagation delays on circuit parameters, such as load capacitance, strengths of devices, input

slew-rates, and other factors.

Based on the above facts, one can conclude that the circuit designer who wishes to use one of the
existing analog or digital simulation tools to generate SLT estimates in VLSI circuits is placed in a diffi-
cult situation. Analog simulators provide fairly accurate SLT estimates at prohibitive simulation costs,
while digital simulators can handle entire VLSI circuits but provide very poor SLT estimates, or some-

times, none at all.

It is therefore clearly necessary to provide the circuit designer with a simulation tool capable of
providing accurate SLT estimates for VLSI circuits at reasonable simulation costs, thus having the best
features of both analog and digital simulators. To this end, one is more likely to succeed in trying to
incorporate better timing modeis in digital simulators since efforts to speed up analog simulators seem
to be approaching a limit which is far below the speeds of the digital ones. Restricting oneself to the
MOS technology seems to make the problem a little easier. An attempt has been made recently to
model the MOS transistor as a linear resistor resulting in an RC-delay model for the circuit dynamics
which is used in RSIM [26] This is a logic-level timing simulator which predicts the logic state of a
node and uses an RC time constant to estimate the transition times if the node changes state. The
transistor model in RSIM is a gate-voltage dependent resistance Ry, between drain and source terminals.
When the switch is closed, we have Ry, = R4, When open Ry, = o0, and when in the unknown state
(which means Veare = X) the drain-source connection is described by a resistance interval, ie.,
Ry, = [Res,00] The effective resistance R is determined separately for each transistor as a function
of the device width and length, the transistor type, and other device parameters. The determination of
the effective resistance is made once for each transistor and is about the only device information used
by RSIM. Voltages in the RSIM model are quantized into one of three values, 0, 1, or X, and decided

by choosing two threshold voltages, vy, and v;gp.

41

The effect of the resistive network on a particular node is modeled by a Thevenin equivalent cir-

TLW

t-}'_ cuit. The values of V., and R,,.. are computed, in some cases approximately, based on a series-
::_:-‘;_ parallel-type approach which is illustrated in [27] The value of V,;., (which may be a voltage inter-
_ val in some cases) decides the new state of the node. If the new value at a node is different from the

previous one, then a transition is scheduled R,;.,Cioaq time units later, where C,,,4 is the net capaci-

tance at the node. Actually, RSIM uses three values of the effective resistance for a transistor, namely,

a static value used to determine V..., and two others 10 be used in determining rise and fall delays.
All these values are determined in a presimulation phase using an accurate circuit simulator such as
SPICE2 [1] Charge sharing effects are also taken into account. A nice feature of this type of simula-
tion is that the X state does not impose any particular difficulty as far as the simulation is concerned.
The simulator is event-driven and is fast enough to simulate circuits of up 1o 50k transistors. The SLT
estimates are, however, computed only by single threshold RC delays and are sometimes found to be
even more than 30% off when compared with those of SPICE2, especially in the case of MOS circuits

with large pass-transistor chains.

This dissertation deals primarily with the development of a switch-level timing simulator with
an empirically observed accuracy of the SLT estimates generated to be within 10% of those of SPICE2.
The high accuracy of the SLT estimates without the use of an analog simulator can be attributed to the

use of a delav-operator which will be discussed in detail in Chapter 5. This operator uses a notion of

two-threshold delays, and is thus able to account for, among several other factors, the effect of the slope

of the analog input waveforms on the timing at the output of a logic gate or a functional block.

T T T T T

42

CHAPTER 3

NETWORK PARTITIONING AND ORDERING

In this chapter an MOS network model that is used to provide accurate switch-level timing (SLT)
estimates will be presented. The network is then partitioned into several subnetworks, or blocks. The
set of blocks is further partitioned into its sti‘ongly connected components (SCC). The SCC’s in the net-
work are then ordered for simulation. Throughout this dissertation, the algorithms will be outlined
and discussed for n-channel MOS (NMOS) circuits with depletion loads only. Several extensions to
handle circuits with other technologies, such as complementary MOS (CMOS), will, however, be men-

tioned briefly in Chapter 8.

3.1 NMOS Network Model

An NMOS digital network { consists of a set of nodes N interconnected by a set of n-channel
MOS transistors M. The network description can be extracted directly from the layout using circuit
extractors (49,61} or has to be given by the user. In any case, the network description is assumed to
contain a netlist of all the NMOS transistors along with several geometrical and process parameters
such as length (L) and width (W) of each device, zero-bias device threshold voltage (VTO), transcon-
ductance parameter (KP), the analog waveform at the input sources and a fixed lumped capacitance
from each node to ground. Specifying a grounded capacitance from each node might seem to be a res-
triction, but most circuit extractors could be asked to compute equivalent device capacitances along
with the capacitance due to the interconnect regions. In this chapter, the only device parameter used

will be VTO. This parameter will separate the set of transistors into enhancement and depletion types.

The rest of the parameters will be used in Chapters 4 and 5 to generate accurate SLT estimates.

TTTTYYT

bk St Mo B S0 A AHC AN S S i e AR A i e T S st S e I A IS Ty e Te e T T YT ran i f"'V‘j
-

43 -

There are three types of nodes : inpw nodes, pullup nodes, and normal nodes. Input nodes, which
are modeled as voltage sources, provide the strongest signals to the network from the outside. Examples

of input nodes include the power supply (Vpp), the ground node, as well as all the input clock signals.

! Pullup nodes are attached to the power supply Vpp via a pullup resistor. These include the output
nodes of NMOS inverters, NAND gates, NOR gates, etc. A pullup node retains the value of the supply
E_ unless forced to ground through a path of conducting devices. The remaining nodes in the circuit are
F classified as normal nodes. These are the weakest nodes as they cannot force their signals on a stronger

node but are capable of storing a signal dynamically.

In the context of switch-level timing simulation, as defined in Section 2.5 of this thesis, the user is
only interested in obtaining p-state digital equivalents of the analog waveforms at various nodes in the
circuit over a certain time interval [ty , t;} Clearly, the larger the number of states, the better is the
level of detail provided, and thus, the more useful is the information to the user. It is also clear that
using an analog simulator to obtain the analog waveforms and then converting them to p-state digital
equivalents is highly cost-ineffective for large integrated circuits. Hence, it is desirable to generate the
required digital equivalents directly via p-state digital simulation. However, the complexity of digital
simulation dramatically increases with the number of states p, particularly in the context of generating
accurate timing estimates. The choice of p=2 must be rejected outright, since in this case only binary

(ie, O or 1) waveforms are produced. Binary waveforms contain no information whatsoever, on the

slopes of the corresponding analog waveforms, the presence of glitches, or other information which is

often useful to a designer when evaluating the performance of a circuit. In our model therefore, we

use three states (i.e, p=3) to describe the values of digital signals, which seems to be a fair compromise
between the level of detail and the generation of accurate SLT estimates. Thus at any time t€[ty, t;1
the three-state (or ternary) digital signal X,(t) at node n€N is related to its analog counterpart V(t)

as follows:

...................
.- ~'-.‘~.-.~_..." . . P - L
CHR. Wl S WU LI, B 2 P Wy PRI PRy W ST, 1Y AP WP Ar

Cam am e o0 o o an ar

0 <==> 0.0<V, (VSV,
X, (t)={u <=> V <V, (t)<V, 3.1)
1 <==> VSV, ()€Vy,
where V; and V are two thresholds chosen such that 0.0<V; <V, <Vyp Here, u is an intermediate
state between the steady low and high states 0 and 1 used to represent signals in transition, model
slopes of changing analog waveforms, detect spurious glitches and hazards, etc. In cur model, the inter-
mediate state is not used as an unknown or unde fined state as the X state in MOSSIM [19] but rather as
an analog voltage between the two thresholds V; and Vy; and hence can never be considered as a steady
state O or 1. It is this interpretation of the third logic level that helps simplify the procedure for
switch-level simulation as will be seen later in Chapter 4. The ternary state X,(t) of a node n€N at

some time t €[tg,t;] will be denoted simply by X, whenever there is no ambiguity in time.

The ternary algebra used to manipulate the discrete signals is an extension of the binary Boolean
algebra. The ternary algebra is an algebra defined on the set L={0,u,1} , with three basic operations of
AND (/V), OR (V), and INVERSE (=). For any x,y €L, the operations of AND and OR are defined as

follows :

Xy U XVy | XNy
0]0 0 0
0 {u u 0
011 1 0
ul| o0 u 0
ulu u u
u 1 1 u
110 1 0
1 }u 1 u
1 1 1 1

and for any X €L its INVERSE -x is defined as follows :

...........

At A A At AR 54 G A AR A ‘el e iR N

-
...............

R S

45

=X
==
1
u
0

- O"N

Clearly, L is closed under all three operations and the system (L,/\,\/,~) forms a distributive lattice [39)]
with zero element 0 and universal element 1. Most of the properties of Boolean Algebra are preserved
in the terpary algebra, except for the Law of Excluded Middle since u\/-u=u # 1 and

u\-u=u=0.

An NMOS transistor is modeled as a three-terminal device with a switch between the drain and
source terminals and the signal at the gate controlling the status of the switch. In this dissertation we
will only consider transistors whose drain and source nodes are different. In some technologies the
drain and source regions of a transistor may correspond to the same net in the layout as a means of
implementing a variable resistance. We shall, however, exclude such networks from our model. Asso-
ciated with each device is a resistance which is a primarily a function of the ratio of the physical
length to width (L/W) of the device when laid out. There are two types of NMOS transistors, namely,
the enhancemenz type and the depletion type. Enhancement devices are characterized by positive dev-
ice threshold voltages (ie, VTO > 0) and behave as voltage-controlled switches. Depletion devices, on
the other hand, have a negative VTO and are mainly used to implement pullup resistors. The gate and
source nodes of a depletion device are usually shorted resulting in a two-terminal resistor. In the case
of an enhancement NMOS device, the switch between drain and source nodes is open, closed, or in an
intermediate state depending on whether the signal at the gate node is a 0, 1, or u, respectively. In the
case of a depletion device, the switch is always closed irrespective of the signal at the gate node. Alge-
braically, each transistor m €M has a state Z,, € {0,u,1}, where 0 indicates open, u indicates intermedi-
ate, and 1 indicates closed. Although the transistor states and the node states are different physical

phenomena, the same mathematical objects will be used to represent both.

..........................

NN

[
.ty

BN A

-

Cliail Al S diiieg MV a2 g Ao of_aul AL UL ISR O M et A M et i R At A M S A ACH AT A A

Mathematically, the NMOS network 02(N,M) can be specified by giving a listing of nodes in N

and transistors in M and the following functions:

NODTYP: N-{inpw ,pullup normal } the node type

TRNTYP: M-—{enhancement depletion} the transistor type

GATE: M-N the gate node
SOURCE: M-N the source node
DRAIN : M-N the drain node
CAP: N-[C..,Cumul the node capacitance
RES: M-[R,,,Run.] the transistor resistance

At any instant in time the state of the network is represented by f(X,Z) where X={X, : n€N}
and Z={Z, : m€M]} with X, , Z_,, €{0,u,1} representing the ternary states of node n and transistor m
at that time instant. Under stable or steadv-state conditions, the transistor states Z are functions of
node states X. For example. consider a transistor m with gate node m, ie, GATE(m)=n. If
TRNTYP(m) = enhancement, then Z, =X, in the steady-state, otherwise if

TRNTYP(m) = depletion , then Z,, = 1 always.

3.2 Network Partitioning

In this section we describe the strategy and algorithms to partition the NMOS network Q(N,M)
into several transistor-disjoint subnetworks Q,,Q,, - - *,{ where each subnetwork or block Q; hasa
certain special configuration that would aid the simulation process. The partitioning strategy is basi-
cally to divide the set of enhancement transistors into two types, namely, driver transistors and pass
transistors. The transistors of a particular type are then grouped together to constitute a subnetwork or
a block if they have a common DC-path between their source and drain nodes (a notion that will be

made precise in Section 3.2.2). The keyv to deciding whether an enhancement transistor is a driver

-~ L L. oL . Lo .‘-‘-_‘a'.'-_'-.‘ e e T - T AR
AT latan, L = S P SRR SOV “—;‘."*tW““:‘ iAot etd

P

)

T Y N W R T oS N N Y F oV T VA" >N

..... Pl RN

47

transistor or a pass transistor is in the notion of an external node which will also be defined in Section
3.2.2. It is much easier to formally present our ideas and concepts if the NMOS network is viewed as
an undirected graph; therefore we begin by reviewing some basic fundamentals from graph theory for
the sake of completeness and also for the benefit of readers who are not familiar with the subject. An

excellent reference on the fundamentals of graph theory is a book by Bondy and Murty {50}

3.2.1 Review of Graph Theory

An undirected graph H is an ordered triple (V (H).E(H)y). consisting of a nonempty set
V(H) of vertices, a set E (H) of edges, that is disjoint from V (H), and an incidence function
which associates with each edge of H# an unordered pair of (not necessarily distinct) vertices in H. If
e is an edge and v and w are vertices such that ¢ (e) = <v,w >, then e is said to join v and w, the
vertices v and w are called the ends of e, and moreover, v and w are said to be adjacent in H. In
this case we will usually refer to the edge e as simply <v,w >. The set of all vertices in A that are
adjacent to the vertex v is denoted by Ad j; (v). The two ends of an edge are incident with the edge
and vice versa. If the two ends of an edge are the same, then the edge is called a loop, otherwise it is a
link. The symbols (H) and €(H) are used to denote the number of vertices and edges in graph A
respectively, ie, HH) =|V(H)| and € H) = |E(H). When only one graph is under discussion it
will be denoted by H, and we will use V , E , v, and € instead of V(H), E(H), KX), and & H).
An undirected graph is usually represented pictorially on a plane by' associating one point (or a dot) for
each vertex and joining two points by a line (not necessarily straight) if the corresponding vertices are

joined by an edge. As an example, consider a graph H with

V(H)={v,vavivevs

E(H) = leexeseseseq

and the incidence function defined by

R R e e o
NS AN

()

Uule) = <v,vo>, Pyler) = <vav >, ¥y (en) = <vyviy>

Upled = <vyv >, ¥ules) = <vavy,; >, ¥hley) = <vyv >

The pictorial representation of this graph is shown in Figure 3.1. The point representing the vertex v
is isolated in the picture since there are no edges incident on this vertex in this case. Hence vertices
with no edges incident on them are called isolated vertices. Henceforth, we shall refer to a graph by its
pictorial representation.

A graph F isa subgraph of H ,writtenas F CH ,if V(F)QV(H), E(F)SE(H), and Y isa
restriction of Yy to E(F). If V'isa subset of V, then the subgraph of H whose vertex set is V' and

whose edge set is the set of all edges of H that have both ends in V' is called the induced subgraph of

H by V' and is denoted by H [V} The induced subgraph H [V \V] denoted by H —V ', is the sub-

L
D .
LN B

graph obtained from H by deleting the vertices from V' along with all their incident edges. If E'isa

1Y te

W

nonempty subset of £, then the subgraph of H induced by E' is the one with vertex set as the set of -
the ends of edges in E' and edge set E ', and is denoted by H [E‘]l The subgraph obtained from H by T
deleting the edges in E' is denoted as H —E'. It must be pointed out that deleting vertices from a
graph involves deleting incident edges also; however, deleting edges involves only the removal of edges
while leaving the set of vertices intact, i.e, V (H —E") = V(H). Similarly, H +E ' is a graph obtained
from H by inserting a new set of edges £ ' which are disjoint from the old set of edges E (i). Again,

in this case, the ends of the edges in E' must necessarily be in V(H) since no new vertices are added. If

F and H are two undirected graphs then their union is a graph, denoted by F UH , whose vertex set

is V(F)UV(H) and whose edge set is E(F)UE(H). If F and H are disjoint graphs, then their
union is usually denoted by F +H . The degree dy; (v) of a vertex v in H is the number of edges o

incident on v, with each loop counting as two edges.
A walk in an undirected graph H is a finite, nonempty sequence W =voe v evy - eV,
whose terms are alternately vertices and edges in / such that for each 1<i £k the ends of ¢; are v, _;

and v,. In this case W is said to be a walk from v, to v;, or a (v,,v; }-path in A, and the integer k is

...................
...................................
...........

..........
............

LaBLAws sk arats o
LTt

ASACRCICARANS i O

49

e
8
&
i
-]
9
5
2

.

¢ —

, 'yl

. o
r 0

\ 5 N
w.a &4

B i . .dp

",

FP-8826
-‘P-. 4 .n.'
W AP

Vs @
v,
P

.

»

._:‘}.

. o
R

-
.

D g

NERnat e s o agn oL sagd . uang

50

called the length of the walk. The vertices v, and v; are called the origin and terminus of the walk
respectively, while the vertices v ,v,, ..., v, . are its internal vertices. If all the vertices in a walk are
distinct then it is said to be a path. Usually, the subgraph of 4 whose vertices and edges are terms of a
path is also referred to as a path. A walk is closed if it has positive length (ie., ¥ >0) and its origin and
terminus are the same. A closed walk whose origin and internal vertices are distinct is a cycle; just as

with paths we sometimes use the term “cycle” to denote the graph corresponding to the cycle. Two ver-

tices v and w of H are said to be connected if there exists a (v ,w }-path in H. A subgraph F isa

component of H if it is a maximal induced subgraph such that any two of its vertices are connected.
If H has only one component then H is connected, otherwise, it is disconnected. The number of com-

ponents of H is denoted by w(H).

3.2.2 Driver and Pass Transistors

We begin this section by intuitively explaining the difference between driver and pass transistors
through some examples. We then formally present our strategy to decide whether an enhancement
device in the network is a driver transistor or a pass transistor and present an algorithm to achieve this
in linear time. Finally, we show how the nodes and transistors in a network can be partitioned into
various subnetworks or blocks, where each block could be one of three types, namely, input sources
(SRC), a collection of driver transistors along with a depletion device (MFB), or a collection of pass

transistors (PTB).

Before going into the formal definitions, we would like to provide the reader with some intuition
on deciding between driver and pass transistors in a network. We define external nodes to be the set of
nodes of "input” strength apart from the ground node together with those nodes of “normal” strength
that are either gate nodes of enhancement transistors or are user-requested output nodes. Now consider
a graph on the nodes of an NMOS network with an edge between the drain and source nodes of each

enhancement transistor. Let us focus our attention on a pullup node, say mp in the graph. For each

~ .
LT R IR
i3

'3
.

MU

-

T
Y ety

-

e

AT A AT A A et L S S PN e g S i SN ai R ging SR jgal gag Sy

51

such pullup node we consider the subnetwork composed of the depletion device connected to the pullup
o node and the transistors corresponding to all the paths between np and the ground node. If all the
nodes corresponding to the internal vertices in each of these paths are of "normal” strength and if none
- of these nodes is an external node, we can then define the above subnetwork to be a multi-functional
e block (MFB) and all the enhancement transistors in it as driver transistors. Furthermore, each MFB
e must contain a unique pullup node. Consider an example of an NMOS network shown in Figure 3.2(a)

and the corresponding graph in Figure 3.2(b). From the above definition, clearly m; is a driver transis-

tor. The transistors m, and m, are also drivers since the internal node, n,, is of "normal” strength and

is not an external node. The node n; is an external node by definition and hence m, and mg are not
e driver transistors. In fact m, ms, and m, are pass transistors. The MFB corresponding to the pullup
node, n,, in this example, is the subnetwork consisting of the depletion transistor mg along with the
driver transistors m,, m,, and mj. The subnetwork composed of the pass transistors my, ms, and my is
called a pass transistor block (PTB). As far as switch-level simulation is concerned, an MFB can be
treated as a switching network of driver transistors between the pullup node and the ground node.
oy Note, by definition, the only node that is stronger than the pullup node in such a switching network is
’ the ground node. Furthermore, one need not compute the waveforms at any of the internal nodes of
the switching network. Therefore the signal at the pullup node of an MFB is computed using a simple
technique using internal node eliminations, which will be discussed in Section 4.2.2 in Chapter 4. In
fact, as we shall see in Chapter 4, the steady-state signal at the pullup node of an MFB is simply a
Boolean function of the signals at the gate nodes of its driver transistors. For example, in the circuit of
Figure 3.2(a) the signal at the node mn, is =((x;/Ax;)\/x;), where x;, X,, and x; are the signals at the
gate nodes of transistors my, mj, and mj;, respectively. In other words, an MFB can be considered to be
a single output, multiple input logic gate. The switch-level simulation of a PTB, however, is a more
-::: difficult task since one needs to compute the signals at each node within the PTB. Therefore, the algo-

rithms used to simulate a PTB are much more complex than the ones used to simulate an MFB, and

these will be discussed in Section 4.2.3 in Chapter 4. Also, the techniques we will use to delay the

B - S e Sl N i, il ta bt S St Sl S ol et Yl S i St SN s AR ot ai)

52

a)

b) ™ (] Pult Up Node

@ External Node

FP-8839

Figure 3.2(a): An NMOS circuit with external nodes
(b): The graph representng the circuit in part (a)

" A
e s

AR .
e Wl

E
MRS T

53

signal transitions at the pullup node of an MFB are different from those we will use for the nodes of a

PTB. Hence we choose to differentiate between driver and pass transistors.

The above definition for a driver transistor is. in fact, only a sufficient condition satisfied by
driver transistors as the following example demonstrates. Consider the NMOS network shown in Fig-
ure 3.3(a), and the corresponding graph in Figure 3.3(b). In this example n, is an external node by
definition. Let us suppose n; is simply a node of "normal” strength and is not an external node. In this
case the path consisting of m, and mg would satisfy the above definition of driver transistors and
hence these transistors would be included in the MFB with pullup node n,. However, one needs to
compute the signal at n4 since this determines the switching state of transistor m,, and in order to do
this, we need to cfompute the signal at node n3 which, by the above definition, is an internal node of an
MFB. We therefore have to modify our definition of a driver transistor. To this end, we introduce the
concept of a pseudo-external node. A node of "normal” strength is said to be a pseudo-external node if
it can be connected to an external node by a path that does not contain a pullup node or the ground
node. Clearly, the signals at the pseudo-external nodes have to be computed in order to compute the
signals at the external nodes of "normal” strength. Hence such a node cannot be an internal node of an
MFB. We therefore modify our definition of driver transistors to be the transistors in those paths
between a pullup node and ground that do not contain an external or pseudo-external node. Thus
transistors my and mg in the example in Figure 3.3(a) are not driver transistors. The above modifica-
tion is, however, still inadequate to be a necessary condition to be satisfied by driver transistors as it
does not agree with our intuition in the following example. Consider the NMOS network shown in
Figure 3.4(a) and the corresponding graph in Figure 3.4(b). In this case we have two pullup nodes,
namely, n, and n, and no external or pseudo-external nodes in the network. However, node n, cannot
be considered an internal node in either of the two MFB’s since its signal can be influenced by either of
the two pullup nodes. Hence the transistors m,, mg, and m, must be treated as pass transistors in this
example. To include this case in our definition we would have to treat the other pullup nodes in the

network as external nodes while we are trying to determine the driver transistors between a particular

__________ LI S SR R T OO « - T e " C et et et b
. . . R L I TN S U YA .'.‘.'. e Te e o™ « " etetacw. A .~
L. S LA S S ST Sl S W W Talf ST AL U ¥ Gk PICRAP L P PP R AL WL o5, . WA WA WY

o - o . . - . 1-. . .
. BT I R P L e e -, R RS Pt PO TS IR
R RIETRIE R . e - SR “"e « s

LT e T N s . . . ~ AN

.
3

-

ORI,

-".- - t . -'.—.)V.D'N.-.---'-.
AT R NN X..'.' s’ W *"- ST

30 a e el Sl Jentit S Janl i it Sl il et Sl St Sk i At A A Seuilandt fy

54

a) Ny o-l my]
o

b) me
[¢] Pull Up Node

Ng o @ External Node

FP-8838

Figure 3.3(a): An NMOS circuit with pseudo-external nodes
(b): The graph representing the circuit in part (a)

s-‘ ‘f‘

2]

R
N K - - - - -

3 -".-'A."‘\"-'.'A "‘--'- - >"-’.-".'.-‘A-"."‘-'- AR RS ‘.-.--. . h‘.“
T as g e _'.'\‘\." - -."".f-“.. N R I A AN

-,\.‘-..-u.—‘-~1 AR P T LA SO A i A e i i A e i et s e I 2 Tetn Son S i A rhanum abien b i g e S b N e R dar B

55

a)

b) my Mg
' ' m, [3 Pull Up Node

FP-8521

Figure 3.4(a): An NMOS circuit with no external or pseudo-external nodes
(b): The graph representing the circuit in part (a)

“s "o "
A

s "a "o
.22

1 T

.
™
s,
n
R T A T P T I -, oo . . PN T Th T Tt UL I S B PO Y
R I N Y A T NPT SR Wl Nl W v\&-.‘. t- '.'-_-'-'-'.'-'-‘-q't‘-‘
. PR AT ST SO RN RO N . AR 'J‘;"LAL" “on ¢ .._'-'f_-_ <, A A\“ﬂ S T e Y

P i A St B i it Dok gl Stk St Sk Rad ol it

56

pullup node and ground. Thus, if we treat n, as an external node, then nj becomes pseudo-external and
hence we get m, and m, as the only driver transistors in the MFB corresponding to m,. Similarly, if

we treat n, as an external node we get m; as the only driver transistor in the MFB corresponding to n,.

The purpose of the above discussions was mainly to help the reader form some kind of an intui-
tive idea on the difference between a driver and a pass transistor. The above definitions were by no
means precise and were not meant to be formal defi'.'tions. We now develop a completely precise and
formal definition of driver and pass transistors by introducing the notion of splitting a vertex in a
graph. Consider an undirected graph H (V ,E) and vertex v in the graph of degree k 21, ie,
dy(v) =k 2 1. The vertex v is said to be loop- free if there are no loops incident on v. The entire
graph is loop-free if all its vertices are loop-free, i.e., it has no loops as iedges. A graph is said to be iso-
lated if all its vertices are isclated, i.e., it has no edges.

Definition 3.1: Let v be a loop-free vertex of degree k¥ =1 in an undirected graph H . The v-split
graph or the graph obtained on splitting v in H , is a graph obtained by splitting the vertex v into k
new vertices y; ,¥,,‘** ,y;» With each edge formerly joining the vertex v to w; now jining y; tow;.

We denote the v -split graph as A/ ®v. More formally we can define the v -split graph of H as
Hev =(H—)UY)+E, (32)

where Y denotes an isolated graph on the k new vertices {y,,y,, '-.,y;} and

E, = {<w, ,y; > :i=12, - k). Thus splitting a vertex creates a new graph with ¥ —1 more ver-

tices but with the same set of edges. This is in contrast to the notion of adding new edges to a graph in , -j;j;
which case the vertex set is unaltered while new edges are added to the graph. It can easily be seen
that if k& =1, then splitting the vertex v does not alter the graph, ie, Hov = H if dy(v)=1. Simi- r__ﬁf
larly, the notion of vertex splitting can be extended to include the case k¥ =0 by defining H ev = H if l.:-;_‘

dy(v)=0. If V' ={v, v,, -+ v, | is a subset of loop-free vertices in / then the V "split graph of H

can be defined as follows :

.............
............

57

HeV'=(---(Hevev,) - ev,. (3.3)

H @\’ is well-defined since the order in which the vertices of V' are split does not matter. The end
result is always the same. As an example consider the graph shown in Figure 3.5(a). The graph

obtained by splitting the vertices v, and v, is shown in Figure 3.5(b).

An undirected graph H represents a network Q if there is a vertex in H corresponding to each
node in the network and an edge between two vertices if the corresponding nodes are the source and
drain nodes of some enhancement transistor. Let Mg and My denote the sets of enhancement and
depletion transistors in the network respectively. We can then formally define a graph representing a
network as follows :

Definition 3.2 : An undirected graph H (V ,E Wy) is said w0 represent an NMOS network Q(N,M) if
there exist bijections 6:V =N and ¢:£ —=M; such that yyle)= <v.w> if and only if

{6(v),8(w)} = {DRAIN(¢ e), SOURCE(¢(e))}.

Theorem 3.1:If H represents an NMOS network Q, then H is a loop-free graph.

Proof : If e is a loop in H, then it follows from the above definition that
6(v) = DRAIN(¢(e)) = SOURCE(¢{e)) where v is the vertex incident with the loop. But this is
impossible since this means that the source and drain nodes of some transistor are tied together and we

do not consider such networks in our model as explained in Section 3.1. Hence A has no loops. O

Let N,;, Np and Ny denote the sets of input, pullup, and normal nodes in the network respectively.

It must be noted that, by definition, the ground node (GND) is treated as an input node. Also, by

definition, Np = {n €N : n=SOURCE(m) for some m €Myp)}, i.e, every pullup node is a source node for

a depletion device. The fact that there is a unigue depletion device for each pullup node follows from
the practices of conventional NMOS circuit designers. Let No&Ny be the subset of normal nodes at
which the user wishes to observe the output waveforms. Also, let Ng = {n€Ny : n=GATE(m) for
some m € Mg} denote the set of normal nodes that are gate nodes of enhancement transistors in the net-

work. The nodes in Ng are also called controlling nodes (22,23] since these nodes control the state of

............

ML ien- i tan - A 2 e it s aearat i
W P T I —_—_—rm, P e e e anse s e vt bl St It Hha ot i i A S S

58

a)

b)

FP-8811

Figure 3.5(a): A loop-free graph A
(b): The graph obtained by splitting v, and v,in &

59
the transistor switches in the network.
Definition 3.3 : The set of external nodes is defined as
Nr = Ng U Ny U (N\{GND}) (3.4)

the union of three sets, namely, the set of normal nodes which are gate nodes of enhancement transis-

tors, the set of user-requested normal output nodes, and the set of input nodes without the ground node.

Let V; ,V, ,Vr denote the sets of input, pulluﬁ, and external vertices in A corresponding to the
input, pullup, and external nodes in the network. Let H; = H @V, be the graph obtained by splitting
the input vertices in A . In other switch-level simulators [19,25,26], the transistors in the network are
partitioned into several groups where each transistor group is simply a component of H;. We would,
however, like to further partition the transistors into driver and pass transistors. For this purpose we
consider i, = H; eV which is the graph obtained by splitting the pullup vertices in addition to the
input vertices from /. The strength of a vertex v in A is the strength of the corresponding node
6(v) in the network Q. Splitting a vertex retains the strength, i.. the strength of the new vertices is
the same as that of the original vertex before splitting. Also, splitting a vertex in a graph does not
change the set of edges. Let C# denote the subgraph of A induced by the edges in £ (C) for any com-
ponent C of H;p. Note that £(H,;,)=E (H) and hence C¥ is well-defined. Consider a component

C of H;p. Then, clearly, C¥ satisfies one and only one of the following conditions :
1. C¥ contains at least one external vertex.

2(a). C¥ contains no external vertices and no pullup vertices.

2(b). C# contains no external vertices and exactly one pullup vertex.

2(c). C¥ contains no external vertices and at least two pullup vertices.

Definition 3.4 : A component C of H,p is said to be a driver component if C# satisfies condition

2(b) given above.

VAR

.. ey
v 5 e T

(N IS N

z

PN B SNSRI

. ce".
PP Y Y

ARTORAT Y. 57,

60

Definition 3.5 : A component C of H;; is said 10 be a pass component if C# satisfies either condi-

tion 1, or 2(a), or 2(c) given above. v

A component satisf ying condition 2(a), i.e., having no external and no pullup vertices, is very rare since .
this represents a subnetwork containing only normal nodes, with the possibility of the ground node
being included, while none of the normal nodes being gate nodes of enhancement devices or user-
requested output nodes. Thus, this type of subnetwork neither interacts with other subnetworks nor is
of any interest to the user. For the sake of completeness, however, we include this possibility also and

label the component as a pass component.

The edges in a pass component are called pass edges while those in a driver component are called
driver edges. It must be mentioned, once again, that splitting vertices in graphs does not alter the edge o

set of the original graph and so we have a partition of the edges of // into two sets, namely, the set of

pass edges £, and the set of driver edges £5,. We are now ready to define driver transistors and pass -
transistors in the NMOS network. K:E:.
Definition 3.6 : An enhancement transistor m in the NMOS network Q is a driver transistor if
¢ {(m)€E, and is a pass transistor if $"(m)€EE,, where ¢ m) =e <=> m = ¢e). e

We now form subgraphs with pass edges and driver edges and use these to define partitions of the
NMOS network into special subnetworks. Let H#! = H, — E, be the graph obtained by removing all ::E-'.:

the pass edges from the V', -split graph of # and let #°= H, — E be the graph obtained by remov-

ing all the driver edges from H;. Hence H! contains only driver edges and H 2 contains only pass

edges. The subgraph induced by the driver edges in a component of H ! is called a D-block of H and ‘,
the subgraph induced by the pass edges in a component of H 2 is called a P-block of H . Once again, we _—
make no distinction between edges in 4 and the graphs obtained by splitting its vertices since all these -
graphs have the same set of edges. We thus have partitioned the graph X into several edge-disjoint .
subgraphs H, ;i=1,2,---,s where each H; is either a D-block or a P-block. If H; is a D-block then it ot

T R T R T T T N O T T o T v L v Ty Ty v v W, = g

61 o

must have a unique pullup vertex and no external vertices as a consequence of its definition. This fact .
and that in conventional NMOS designs a pullup node is connected to a unique depletion device allows N
~

us to make the following definition. The notion of an induced subnetwork is similar to that of induced

subgraphs in a graph.

Definition 3.7 : A mudtifunctional block (MFB) is a subnetwork of £ induced by the transistors

corresponding to the edges of a D-block in i together with the depletion device connected to its pullup
vertex (node). An MFB is a proper MF B if it also contains the ground node (which incidentally is not
an external node and hence does not violate the above definition). In an improper MFB the pullup
node is always stuck at 1 (ie, maintains the value of \‘IDD) and hence we shall only consider proper
MFB'’s which we will refer to simply as MFB. The pullup node is the owtput node of the MFB while
the gate nodes of the driver transistors are its input nodes. The rest of the nodes, namely the drain and
source nodes of the driver transistors, apart from the pullup node and the ground node, are the internal

nodes of the MFB.

Definition 3.8 : A pass transistor block (PTB) is a subnetwork of induced by the t@&om
corresponding to the edges of a P-block in /. Once again, the gate nodes of all the pass transistors are
input nodes to the PTB. The rest of nodes, namely, the drain and source nodes of the pass transistors, -
could either be input nodes, or output nodes, or both (sometimes called ioputs for both input and output
[7D. or none of the above depending upon the interaction of the PTB with the other blocks in the net-
work. If a drain or source node of a pass transistor is of input strength it is an input node to the PTB, if
it is of pullup strength it is an ioput (ie, both input and output) node, and if it is a normal external

node it is strictly an output node of the PTB.

The above definitions of driver and pass transistors completely agree with the author’s intuition
in all cases considered. For example, consider, once again, the circuit in Figure 3.4(a). The graph H,,
in this case, shown in Figure 3.6, has three components. The subgraph CH in this example is the same as

the component C; itself, for each i = 1,2,3. The components, C, and C,, clearly contain no external

RPN S

PR APOP .

)
3
~”
Y]
|
3
on
]
.,
g
I
Q
L
n,
X
~
(=)
3
L
o0
v
L
~
<
[ag]
[%
[
>3
b
b

y n Pl avel Buvd ahh atvis aini SAD add i il aorl atvl vl o acke dei aBCh Jvie o

63

vertices and exactly one pullup vertex and hence both are driver components according to Definition
3.4. The component C,, however, contains no external vertices but has two pullup vertices and is hence

a pass component according to Definition 3.5. A more detailed example is given in Section 3.4.

3.2.3 Partitioning Algorithm and Its Complexity

i-»'_ B In this section we will discuss the algorithm to partition the NMOS network into MFB’s and

PTB's. Instead of dealing with the network ©(N,M) we will be concerned with the graph H (V ,E)

Po—

that represents the network. Obtaining the graph that represents the network merely involves altering
the data structure that represents the networks to the one that represents a graph. Once we have iden-
tified the D-blocks and P-blocks in A then, clearly, identif ying the MFB's and PTB’s is trivial. Hence
we shall mainly concentrate on the procedure PARTITION given below that partitions the graph H

into several edge-disjoint subgraphs and labels each subgraph as either a D-block or a P-block.

Algorithm 3.1

Input : An undirected graph H (V ,E) with
V', : the subset of input vertices and
V', : the subset of pullup vertices.
V' ¢ the subset of external vertices.
Output: A set of edge-disjoint subgraphs L = {H , ,H,, " H,}of H
and a function BLK : E—{"D =block" ,"P —block" }.

procedure PARTITION (H)
begin
Ep —Q
F!'—SPLIT(H V,)
2=SPLI(FLV,)
& —COMPONENT(F 2)
for each C, €P do
begin

ng ~|Vg nv(cH),

np —|Vp NV (CH)

if(np =1& ng =0)then
Ep—Ep UE(C)) R

else
Ep—~Ep VE(C))
. end if
o end Ny
N L, —COMPONENT(F!=E;) N

for each H: €Z, do

BLK (H,)="D —block"
ZZhCOWONENWT(F l"‘ED)
for each H; €X.do

BLK (H;)~"P —block"
- 21U23
retwn (I,BLK)

end

In the above algorithm we must ensure that any vertex that is split in a graph is, in fact, loop-
free. This is indeed the case since from Theorem 3.1 we have that the entire graph X is loop-free. The
time complexity of an algorithm to solve a problem is said to be O (f (n)) if the maximum amount of
computation time (or number of computation steps) taken by the algorithm is at most ¢ f (n) over all
inputs of size n, where ¢ is some constant. The space complexity is similarly defined as an upper
bound on the amount of space required by an algorithm to solve a problem. Two excellent references
on the subject of time and space complexity of algorithms are Aho, Hopcroft, and Ullman [51] and
Garey and Johnson [52] In most graph algorithms the input size n is taken to be [V |+|E |, where |V |
and |E | are the number of vertices and edges in the graph respectively. The time (or space) complexity
is said to be linear if f (n)=n. The following theorem demonstrates that Algorithm 3.1, described

above, is of linear time complexity.

Theorem 3.2 : The Algorithm 3.1, described above, correctly partitions the edges of H into driver
edges and pass edges and its time complexity is O(|V |+|E |) where V' is the set of vertices and E is the
set of edges in graph H .

Proof : The correctness of algorithm can easily be verified since it partitions the edges of H directly

according to Definitions 3.4 and 3.5.

In order to discuss the time complexity, we will use the adjacency list [51] representation for
graphs. This consists of a list of vertices and a linked list of edges. Each element of the vertex list con-
tains the name (or label) of a vertex, say v, followed by a pointer to the location in the edge list of the

first edge incident on it. Each element of the edge list contains the name of the vertex adjacent to v, an

.............

2 \
- 65

L edge label, followed by the location of the next edge incident on v, and so on. A null-pointer (0) indi- i
cates that there are no more edges incident on v. This is repeated for each vertex in the graph. In case N
i:‘_- of undirected graphs each edge <v,w > appears twice, once in the adjacency list of v and once in that =

of w. In this case there is a link established between the two locations. The total storage space required

N by this representation is O (|V |+|E |).
The procedures SPLIT and COMPONENT are used several times in the above algorithm. If we

can show that the time complexity of each of these two procedures is O ([V |+|E |), then we are done
with the proof since the rest of the computations in PARTITION can easily be verified to be of linear
time complexity. Consider the operation of splitting a vertex v of degree X from a graph F. This

merely involves altering the data structure to represent the new graph and can be easily shown to have :

a time complexity of O (k). Thus SPLIT (F,V") is of time complexity O(g) where V'QV (F), and y

g = X dp(v). Since ¢ €|E(F)| we have that SPLIT (F,V") is of complexity O (|JE (F). We have

pan R e
therefore established that both SPLIT (H,V;) and SPLIT (F 'V,) require O (|E |) computation steps,

where £ = E(H) = E (F?), since the splitting of a vertex from a graph does not alter the edge sets.

The procedure COMPONENT (F) returns the various components in the graph F. A Boolean
array of the vertices is maintained to mark a vertex as new or old, such that every time this array is
-:j': altered, a pointer exists to indicate the location of the first vertex marked new. Initially all vertices of .

F are marked new. The procedure begins by starting from the first vertex marked new and using a
T depth-first search (DFS) algorithm [51] to determine all the vertices connected to the starting vertex via
a path in F. These vertices induce a component and are all marked old. The whole process is repeated
by starting from the first vertex that is now still marked new until all vertices are marked old. Each -
application of the DFS algorithm returns the list of vertices in a component of F in computation time
linearly proportional to the number of edges in that component [S1] Thus if one does not have to scan

) the array to look for a starting vertex marked new, which is possible by maintaining the required

- pointer, the time-complexity of the entire procedure COMPONENT (F)} is O (|E(F))). Since this pro- |

L e SR i e S S Sl Ve e gt T i i S i i

cedure is used thrice in PARTITION (X) and each time on a graph with at most |E (H)| edges we can

conclude that the time-complexity of PARTITION (H) is O(JV |+|E|).O

To model the voltage-source elements connected to the input nodes of the network we introduce a
third type of block called input sources (SRC) consisting of onlv a node of input strength (and no
transistors). This node is said to be the outpwr node of the SRC. Thus, in this section, we have shown
why and how we partition an NMOS network Q(N,M) into several subnetworks where each subnet-
work is one of three types, namely, MFB, PTB, or SRC. We have also demonstrated an algorithm by
which this partitioning can be achieved in computation time that is at most linearly proportional to the
number of nodes and transistors in the network. We will use the same symbol T to denote the set of
partitioned blocks in the network and henceforth we shall refer to the partitioned NMOS network as
Q(N,M,E) along with a function BLK : Z—{"MFB","PTB","SRC"} indicating the type of block.
Furthermore, INP(£};) and OUT(;) will be used to denote the sets of input and output nodes of sub-

network ;€L

3.3 Ordering of Partitioned Blocks for Processing

Let Q(N,M,I) be the NMOS network that has been partitioned into MFB’s, PTB’s, and SRC’s. We
will say that the above network has been processed if the ternary digital waveforms at each external
node in the network are obtained. The network will be processed by processing each of its blocks in a
certain order. A block is said to be processed, if given the ternary waveforms at the input nodes to the
block, the waveforms at its output nodes are obtained. Thus, in order to process a block, the ternary
waveforms at its input nodes must be known. Hence, we must process the blocks in a certain order so
that this condition is always satisfied (whenever possible). In this section we will show when such an

ordering exists, and if so, how one obtains it

Definition 3.9 : For each node n;EN in the network, let FOUT(n;) denote the fanour list for the

v,
s
s A
SRR

el s

o

‘l'll

'

.
.
LRI

2]
. .l

MO NE A

- A e A e T T T .o s "

A N AR NS T A
[NS A L R

67

node which is the set of blocks in £ having n; as an input node, and let FIN(n;) denote its fanin lst
which is the set of blocks with n; as an output node. Thus,
FOUT(n;) = {01 H niGINP(Qj)}

and

FIN(ni) = {0, H n,EOUT(Q,)}.

It must be noted that if n; is an ioput node of a PTB then the PTB would appear both in its fanin and
fanout lists. Furthermore, either list could be empty for certain nodes; for example, both lists would be
empty for internal nodes of an MFB. Let (£ ;,Q,,n;) denote an ordered triple EXEXN. The ordered
triple (2, Q,,n;) is said to be an I/O-triple if @;€FIN(n;) and @, €FOUT(n;). If a node n; is of

pullup strength, i.e. NODTYP(n;) = pullup, and if it is an ioput node of a PTB, Q » then the I/O-triple

s 7 T ¥ B R s ks o v s
. .:‘q‘l '.’.' -' ’ .
e I S s :

(2,90 ,n;) is said 1o be a nonad jacen: 1/O-triple. An 1/O-triple that is not a nonadjacent I/O-triple is

said to be an ad jacent 1/0O-triple. It must be emphasized that in the case n; is a pullup node that is an
ioput of a PTB, 1, then the only nonadjacent I/O-triple in FIN(n;)XFOUT(n;)x{n;} is (Q ,Q ,n;); the
remaining I/O-triples are adjacent. In this case, if there is another node ng that is not of pullup
strength, i.e, NODTYP(n,) # pullup, such that @ j appears both in its fanin and fanout lists, then the
I/O-triple (@, Q,n,) is indeed an adjacent 1/O-triple. The fact that a pullup node can be an ioput of
only one PTB follows from the definition of the PTB. Thus we have partitioned the set of 1/O-triples -
into two disjoint categories, namely, the adjacent ones and the nonadjacent ones. Using the adjacent

I/O-triples in the network, we will now introduce the notion of a good ordering in which the blocks of -

a network could be processed.

Definition 3.10 : A sequential ordering R on the blocks of a partitioned network Q(N,M,L) is a 1-1 .
function R: E—{1,2, - s} where s = |E|. The sequential ordering R is said to be a good ordering for .
the network if R(Q;)<R(Q,) for every adjacent I/O-triple (Q,Q,,n;) in the network. We exclude

nonad jacent I/O-triples from our definition since in this case the equality will be forced (and so the

AT N T e "r"'_‘ A St PAolall S Bt Shrh Bafohes Aafd ”‘, Padia

68

inequality will never be satisfied) for any sequential ordering.

A good ordering, as defined above, is clearly a desirable ordering for processing the blocks in a
network, since in this case, whenever a block is scheduled for processing, all the blocks in the fanin lists
of each of its input nodes have been previously processed, thus, providing input signals to the this
block. A good ordering, however, may not exist for some networks. As an example, consider an MFB
0, in a network having its output node n, connected back to one of its inputs. In this case, the net-
work is said to have feedback, and the definition of a good ordering would be violated by the adjacent
1/O-triple (2,,Q,n,) for any sequential ordering. Hence, there is no good ordering for such a net-
work. In the remaining part of this chapter we will show that a good ordering exists only for net-
works not having any kind of feedback, and proceed to handle the case of a network with feedback.
The latter is important since most of the networks designed in present day NMOS technology do have
feedback in some form or another, for example, flip-flops, ring oscillators, and most clocked sequential
circuits in general. To this end, we will use the notion of a directed graph derived from a partitioned
network. But first we review some basic concepts on directed graphs from Bondy and Murty [50}, for

the sake of readers not very familiar with the subject.

3.3.1 Directed Graphs

A directed graph G, often abbreviated as a digraph, is formally defined as an ordered triple
(V(G),A (G)) consisting of a nonempty set V (G) of vertices, a set, A(G), of arcs that is disjoint
from V (G), and an incidence function y; that associates with each arc of G an ordered pair of (not
necessarily distinct) vertices of G. If a is an arc and v and w are vertices such that y;(a) = (v,w),
then a is said to join v to w; v is the tail of a, and w is its head and the arc is usually referred to as
simply (v,w). A digraph G' is a subdigraph of G if V(G)CV(G)A(G)SA(G) and the incidence
function Y- is the restriction of y; to A(G'). With each digraph G we can associate an undirected

graph A on the same vertex set ; corresponding to each arc of G there is an edge of /' with the same

? ‘,’_...-_-.._,, o

t

................

E S
N

A
FONE A KRN

69

' ends. The graph H is said to be the underlying graph of G. The terminology and notation for subdi-
\ graphs are similar to those used for subgraphs. Just as graphs, digraphs also have a simple pictorial
o representation. A digraph is represented by a diagram of its underlying graph together with arrows on

its edges, with each arrow pointing towards the head of the corresponding arc. Figure 3.7(a) shows a

o digraph G and its underlying graph H is shown in Figure 3.7(b).

v A directed walk in G is a finite nonempty sequence W = (vya,v,, -4,V), whose terms
alternate between vertices and arcs, such that, for each i =12, -,k the arc q; has head v,_; and tail v;. :]
Directed paths and cycles are similarly defined. The vertex v, is called the origin of the directed path

while v, is its terminus, and the rest of the vertices are called internal vertices. The integer k denotes >

»l

the length of the directed path. Once again, the integer k denotes the length of the directed cycle. A

directed cycle of length % is referred to as a k-cycle. If there exists an arc @ in G such that

Ygla)=(v,v) thena isaloopin G, and v,a,v isan example of a onecycle in G. As with paths and

cycles in undirected graphs, we will also refer to the subdigraphs induced by the arcs in a directed path =
j'-j. or cycle as a directed path or cycle. Further, for convenience, we will drop the term "directed” and refer ~

to directed paths and directed cycles simply as paths and cycles.

A path in G with origin v and terminus w is called a (v, w)-path. If there is a (v,w }-path in G -’.'
then the vertex w is said to be reachable from v in G. This, however, does not imply that v is also
reachable from w. Two vertices v and w are said to be strongly connected in G, denoted by v ~w, if
each is reachable from the other. Clearly, ~ is an equivalence relation on V(G) and it partitions
V(G) into nonempty subsets V ,V,, ...,V , such that if v €V, and w is strongly connected to v in
G, then w must also be €V;. The subdigraphs G{V,1G[V,},....G[V] induced by the partition are

called the strongly connected components of G. Note, by definition, a vertex v in G is always

i

.,

strongly connected to itself, i.e, v ~v since one can aiways choose a directed path of length O and reach

PN
n"f' R

4
v from itself and vice versa. Thus, G[V,]is a trivial strongly connected component if it contains only }1

one vertex, ie, [V,| = 1. It can be easily shown that if G[V,]is a nontrivial strongly connected com-

A T A I R

..........

>

a)

b)

FP—8824

Figure 3.7(a) :
(b): The underlying graph H(V ,E)

A digraph G(V .4)

'.-- -. .-. .-. - - .-.-.-“. --- _.- _-. _.."- 3--"- ...-‘ . o . ..‘. :. _.- AR -- e -
DAL AL AN AP AP PR TR PO C TR IR - o TS Ve e e e e e e,

LR Bashcia St St i S 2 ML A A

70

Fes

Ty
e T
L A

71

ponent of G, ie, |V,~| 2 2, then it must necessarily contain a k <vcle with £ 22. Thus, presence of
nontrivial strongly connected components in a digraph implies the presence of directed cycles. We use
#(G) 10 denote the number of strongly connected components in G. We say that G itself is strongly
connected if u(G) = 1. Figure 3.8(a) shows a digraph which has three strongly connected components
as shown in Figure 3.8(b). Hence the digraph is not strongly connected, while its underlying
undirected graph is connected, since it has only one component. This clearly illustrates the difference

between strongly connectedness in digraphs and connectedness in undirected graphs.

The in-degree dg(v) of a vertex v in G is the number of arcs having v as their head vertex.
Similarly, the out-degree d;'(v) of a vertex v is the number of arcs having v as their tail vertex. Just
as with undirected graphs, we shall use the symbols G) and &G) 10 denote the number of vertices

and arcs in G. We shall also drop the letter G from most of the notations whenever possible.

3.3.2 Presence of Feedback and its Detection

Let Q(N,M,L) be a partitioned network. Let Y denote the set of 1/O-triples of the network, i.e.,
Y= LE}\FN(ni)xFOU'ITni)X{nJ, and let Y, denote the set of adjacent I/O-triples in Y.

nEN
Definition 3.11 : A directed graph G (V ,A ,y;) is said to be derived from an NMOS partitioned net-
work O(N,M,E) if there exist bijections @I~V and ¢:Y,—A such that the triple
v=(90,,Q, 1)€Y, is an adjacent I/O-triple in the network if and only if yg ($v)) = (K2 ;)& Q,).
Thus for every adjacent /O-triple v=(Q ;,Q,n,) of the partitioned network, there is an arc
a = ¢(v) in the derived digraph G with tail vertex &(Q ,) and head vertex Q). The digraph G is
said to be acyclic if it has no directed cycles. Just as with blocks in a network, we have sequential ord-

erings on vertices of a digraph.

Definition 3.12 : A sequential ordering R on the vertices of a digraph G is said to be a topological

———— N SRC e R N e SMEL AR < e e et sk shanin

72

{b) £P-8530

e -
S
IS
PR

Figure 3.8(a): A digraph G
(b): The three strongly connected components of G

s

A
Py

.

’
A >

sov

telee 0

e
4
S
- \.
LS
~ o
' 7
J—

.........

73
ordering if for every arc a with tail v and head w the strict inequality R(v)<R(w) is satisfied.

Theorem 3.3 : If Q isa partitioned NMOS network and G is its derived digraph, then the following

three conditions are equivalent :

(1) there is a good ordering on the blocks of Q,
L‘, (2) G isacyclic, and
W (3) there exists a topological ordering on the vertices of G.

Proof :

We shall first show that (1) => (2). Suppose R is a good ordering on the set of blocks T of the
network. We will show that the derived digraph cannot contain a directed cycle. Suppose G has a
directed k—cycle. If k& =1, then there is a loop @ with both ends at some vertex v. By Definition 3.11,
there exists an adjacent I/O-triple ¢~4a) = (Q,Q ,n;), where ;= §7X(v) in the network. This adja-
ceni 1/O-triple would clearly violate Definition 3.9 for R. If k¥ >1 then let v denote the vertex in the
k-cycle C whose corresponding block ©; = 87!(v) is ordered first by R among blocks corresponding to
the other vertices in the cycle, i.e. R(07(v)} £ R(6~%w)) for all w €C. Since k >1 there is an arc a
from w to v in the cycle (and hence in G) with w ®v . But this would mean that there is an adjacent
I/O-triple (Q ,,Q, n,) in the network where Q , = 67w), thus leading to R(Q ;) < R(Q,) which

contradicts the above choice of the vertex v. Hence the proof by contradiction.

The fact that (2) => (3) is 2 well-known result on digraphs and can be found in most standard

textbooks on graph theory, such as [50] Hence we will only outline this part of the proof. Suppose G
is an acyclic digraph. Then there must be a vertex of in-degree O in G, since, if not, consider the long-
est directed path in G. If the first vertex of this path does not have in-degree O, then either G has a
cycle or a longer path. Hence pick a vertex, say v, whose in-degree is 0. The rest of the proof that G -

has a topological ordering is by induction on the number of vertices of G. The basis for induction is

BT R

clearly satisfied for all digraphs containing only one vertex. Now suppose that all acyclic digraphs on

TR A
o LAAA. (I

N VY ———y

p—

DY

C oW W P ST NP T W L S P NP IR S P

74

less than v vertices have a topological ordering. Let G have v vertices. Then G —v has no cvcles and
has v—1 vertices, and so must have a toplogical ordering, say R'. Now let R be an ordering of G such
that R(v)=1 and R(w)=R(w)+1 for all other vertices w v in G. Then clearly, R is a topological

ordering for G .

The fact that (3) => (1) follows trivially from the definitions of good orderings of I, topological

orderings of vertices in G and the fact that G is derived from &.0C

We now introduce the concept of feedback in a partitioned network.

Definition 3.13 : A partitioned NMOS network is said to have feedback among its blocks if its
derived digraph G has directed cycles. Thus § is feedback-free if G is acyclic and is internal
feedback-free if G has no directed loops. A block Q€L is said to have internal feedback if the

corresponding vertex € Q) in G is incident with a directed loop.

It 1s clear that this definition of feedback in the networks conforms to the standard notion of
feedback in circuits. It should also be clear now why we only considered adjacent I/O-triples while
constructing the derived digraph. Had we chosen all I/O-triples 1o create arcs in G we would have
directed loops corresponding to every nonadjacent I/O-triple. This would then amount to declaring
that a network has internal feedback simply because it has a pullup node that is an ioput of a PTB,
which does not conform to our usual conception of feedback in circuits. We are now ready to say that
a network has a good ordering if and only if it is feedback-free. We state this result without proof

below, since it easily follows from Theorem 3.3 and the definition of feedback-free networks.

Theorem 3.4 : A partitioned network {N,M,X) has a good ordering on its partitioned blocks if and

only if it is feedback-free.

A good ordering of the blocks in a feedback-free network can easily be obtained by first placing
the vertices of the derived digraph (which in this case will be acyclic, by definition) in a topological

order and then placing the corresponding blocks of the network in the same order. If, however, the

75

network has feedback (which is the more common case in the present-day NMOS designs), the derived
digraph contains directed cycles and hence no topological (good) ordering exists on its vertices (blocks).
In this case, therefore, one must detect the blocks in the network that are within feedback loops, treat
these as special blocks and and place the rest of the blocks in a "good” ordering. We formalize these

ideas below.

Definition 3.14 : If V, is a set of vertices in a strongly connected component of G, then the
corresponding set £; = {873(v):v €V, } of blocks in T is defined to be a strongly connected component

(SCC) of the network. Thus we have a partition Z,,E,, . .., I, of the blocks in E.

Let V,V,, ...,V , denote the partition of the vertex set of the digraph G into strongly connected
components. We define the condensation of G to be a digraph G consisting of vertices w,w,, ..., w,

with an arc having head w; and tail w, if and only if { 3 j and there is an arc in G with head x €V,

J
and tail y €V ;. Consider the digraph G shown in Figure 3.8(a). Its condensation G, shown in Figure
3.9, is clearly acvclic. We will show that, for any digraph G, its condensation G is acyclic 2ad hence,

from Theorem 3.3, it has a topological ordering, which corresponds to an ordering of the SCC’s of L. To

this end we need the following intermediate result.

Lemma : If C denotes a directed cycle in the digraph G then all its vertices must be within a strongly
connected component of G.

Proof : (See |>U). Consider any two vertices, say, x and y in V(C). Since C is a cycle, there is a
directed path from x to y and also a return path from y to x in C. But C is a subdigraph of G and
hence x is reachable from y and v is reachable from x in G. Therefore, by definition x and y must

be in the same strongly connected component. O

Theorem 3.5 : The condeasation G of any digraph G must be acyclic.

Proof : (See [50,53)). By definition, G has no directed loops, and so has no onecycle. If C is a k-cycle

in G with k >1, then the vertices of G in the set U 'V, must belong to a directed cycle and hence,
w €C
/

T T T T T,

) SOV Ol T3S L'i

. .
PRI

Lo
dnad Sk

PPN

e el

ISP &

¢ i
o a0

Yot
——rte 2tal s

IR,

(4 g . b i - Sadb U e Y

76

FP-8538

Figure 3.9 : The condensation of the digraph G in Figure 3.8(a)

.o,
o

S e

R N R A A AT e e ~
TSI AE AP, PL ¢ N AR AEPCAL A AT PC AL NPT A

.-."."' b

77

from the above lemma, must all be in one strongly connected component, which is a contradiction. O

Our strategy to schedule the blocks of I for processing is to start by detecting the strongly con-
nected components in the derived digraph G. We then obtain the condensation of G and proceed to
find a topological ordering in G. This then corresponds to some ordering on the SCC’s of Z. The pro-
cessing of the network Q then begins by processing the SCC ordered first, followed by the one ordered
second and so on. An SCC is said to be simple if it contains only one block of Z and that block has no
internal feedback. A simple SCC is processed by algorithms described in Chapter 4. If an SCC is not
simple then the blocks within it are processed using special techniques described in Chapter 6. The
algorithm presented below, well-known as Tarjan’s algorithm [31] partitions the vertex set of any
digraph into its strongly connected components. A vertex w is an in-neighbor of the vertex v in G if
(w,v) is an arc of G and is an ow-neighbor of v if (v,w) is an arc of G. We use Ad j¢(v) and
Ad jg*(v) to denote the sets of in-neighbors and out-neighbors of the vertex v in G. In Tarjan’s algo-
rithm two integers k [v] and L{v]are computed for each vertex v in the digraph G, known as depth-
first number and lowpoint [53] respectively. A digraph G is said to be a rooted digraph if it contains a
vertex, say root , such that all vertices in G are reachable from root . In the case of the derived digraph
G we try and make it a rooted digraph by inserting a new vertex called root and directing arcs from
this new vertex to every vertex of in-degree O in the original G. In the original derived digraph G
every vertex corresponding to an SRC block in the circuit must indeed have in-degree O and so the
above notion is well-defined. Further, if there is a vertex that is not reachable from the new vertex
root then it is also not reachable from any of the vertices corresponding to the SRC blocks in the net-
work. This means that the input signals would never propagate to such blocks in the network and so
they need not be simulated. Hence we are only interested in simulating those blocks in the circuit that
correspond to vertices that are reachable from the vertex root in the above new digraph. We will still

refer to the modified derived digraph as G itself and will assume that it is a rooted digraph.

PILARL A A S i A% - L e N AT A A B Bl R o B S S At B iRt A S e an e

v r ve

PRI

BYa"h »

*
v
»
¥
5
-
'

B R W

78

Algorithm 3.2

Input : A rooted-digraph G (V ,A), with a special vertex root .
Output: A partition of V —root into strongly-connected components

ViVa V.
procedure SCC__DETECT (G)
begin

t+~1;

for each v €V do

MARK [v]}~ "new™

u=0;

initialize STACK to empty;

Vv «root;

DFS (v}
end

procedure DFS (v)
begin
MARK [v]~ "old™
klv]—i:
i—i+1;
Llvlk[v}
push v on STACK;
for each vertex w € Ad jg'(v) do
begin
if MARK [w] = "new" then
DFS (w),
Liv}~MIN(L[vIL[wD;
J else if k[w] < k[v]and w €STACK then
L[v]~MIN (k[wlL[vD;
end if
end
if L{v]=k[v]and v #roor then
peptl;
V, -2
repeat
pop x from STACK;
V-V, Ulxk
until x =v;
end if

end
The above algorithm terminates for finite digraphs and does so with linear time complexity and,

furthermore, correctly partitions the vertices of the digraph into strongly connected components. This
fact follows from the theorem below which we state without proof. Its proof can be found in several

books on graph algorithms such as [31], (51}, and [53]

RN A M I At e ite St e et S A IR A S N L A D At A Sl A Al i A A cadete Rt o tind Ml il Sudh Bk Sad Au 'l ¢

79

Theorem 3.6 : The procedure SCC_DETECT (G) partitions the vertices of V into its stronglv con-

nected components correctly with time complexity of O (max(|V ||A D).

We now describe an algorithm that creates a new digraph G which is the condensation of the
digraph G. We will use two procedures CREATE (x) and ADD_ARC (x,y) to create vertices and add
arcs in the data structure that represents G. The data structure is the same as that for undirected
graphs explained in Section 3.2.3, consisting of a list of vertices, and for each vertex an adjacency list,

implemented as a linked list, of the out-neighbors of the vertex.

Algorithm 3.3

Input : A digraph G (V ,A) with a partition V' ,,V,,...,V,
of its vertex set into strongly-connected components.
A function SCCOMP : V —{1,2,..., u} such that for any
vertex v €V, if i = SCCOMP(v) then v €V/,.

Output: The condensation digraph G of G.

procedure CONDENSE (G)
begin -
V(G)2
A(G)—g;
for i —1 until u do
CREATE (w,);
for each arc (x,y)€EA (G) do
in
i ~SCCOMP(x);
j —SCCOMP(y };
if i =, then
ADD_ARC (w;,w; %
end if
end
return G ;
end

The above algorithm clearly is of time complexity O (v+€), where v = |V (G)| and € = |A (G).
We finally present an algorithm to produce a topological ordering on the vertices of the digraph G
which is known to be acyclic from Theorem 3.5, and hence, from Theorem 3.3 must have such an ord-
ering. This algorithm uses a QUEUE to store some vertices. One could also use a STACK instead which
would result in a different ordering. We use d (w) and Ad j*(w) to denote the in-degree and out-

neighbors of vertex w €V G), i.e, we drop the subscript G from the usual notations for convenience.

..................................

80

Algorithm 3.4 [51]

Input : An acyclic digraph G (V ,4), with u=|V |.

Output: A 1-1 function R : V ={1,2,..., u} such that
for every arc (w;,w;)in A, R(w;)<R(w;).

procedure TOP_ORDER (G)

begin
k~1; -
for each vertex w; €V do
in
Ilw;}=d(w;);
if d(w;) = 0 then
push w; into QUEUE;
end if
end
while QUEUE is not empty do
begin
pop vertex w, from QUEUE;
Rlw j]~k
k —k +1;
for each vertex w, €Ad j*(w;) do
begin
Iw, 1w, }-1;
if 7 [Wk] =0 then
push w; into QUEUE;
end if
end
end
return R;
end

The topological ordering R on G provides us with an ordering ORD on the set of SCC's

{25 ..., E,} such that ORD(E)) = R(w,), where w; is the vertex of G corresponding to the SCC
I,

3.4 An Example to Illustrate Partitioning and Ordering

In this section we will consider the NMOS network shown in Figure 3.10 as an example to illus-
trate the partitioning and ordering algorithms described in the earlier sections of this chapter. This net-
work consists of 17 nodes N={ng,n,,...,n;,} and 20 transistors M={m,,m,, ..., my}. The set

M;g={m,,m,, ..., ms} is the set of enhancement devices and Mp={m,q, - . . , My} is the set of deple-

...

...............

L e e R TR T TR TR T T T TG T A R T W W At W A W -l . d T e e T TEL FTRTI I TEINTI TETA T

81

“ tion devices. The set of nodes can be partitioned into three classes according to their strengths, namely,

D
(]
.

the nodes of "input” strength

P
ol

]
»

N;={ng,n;,n,,n;3n,ns},

the nodes of "pullup” strength
Np={n¢,n,,ngn9,n,},

. and the nodes of "normal” strength
Nn={ny;,0,2,0, 30,4050}

The node n, is the ground node and n, is the supply node to the network. The set of external nodes in

Y
this case is
: . Ng={n,,n;n nsn,,n;}.
- The graph /A representing this network is shown in Figure 3.11. We only show the nonisolated
vertices in the graph. Also, we refer to the vertices and edges of the graph as nodes and transistors in
the network, respectively, for the sake of convenience, i.e, in this case the bijections @ and ¢ used in
| Definition 3.2 are both identity mappings. The graph H, obtained by splitting the nodes of input
strength from A is shown in Figure 3.12 and the graph H;p is shown in Figure 3.13(a). The graph
H,;p has seven components. The subgraphs of A induced by the edges in each of these components are
shown in Figure 3.13(b). Among these subgraphs, the subgraph C4 has two external nodes while C¥
has two pullup nodes, and so the corresponding components C, and Cs are declared as pass com-
ponents. The rest of the componcnts can easily be verified to be driver components. Thus, the set of
driver transistors is
E Mp={m,,m,,m;m,ms,mem,,mg,mo,m;q} -
- and the set of pass transistors in the network is "1
. 8
1: R
z :
!

. 'l
ad

T T TV W W W W Wy S

82

L

FP-8832

Yy

P

e on om0

‘ Figure 3.10 : An example of an NMOS network h \1

myq @ M m,
@ Cmad
N Ng

N2

E Pullup Vertex

@ External Vertex
FP—8543

w3

-
]

=

Bar el AP

-illA

Figure 3.11 : The graph A representing the network in Figure 3.10

Ul R T T S NP - A 3 . - co Al - - -
P A I A A P B St e . R SRR
PRI e S T SR SR R TG R A CA . NN

ak e loa

83

P L

‘.' '-,‘ FR AR

e e e o s e s
I'. l. l' ‘. “ 1' l";

- . .
A et flln n

e ata
7

L

{3

WP

oy B RIS

-

:'_ Figure 3.12 - The graph A; for // in Figure 3.11 \::

.

tw

- - . - - . - . - a - . - - .‘-'~'."’-“m'.‘
P AT PR S P I S UL T N R Y Yy
R R T L A P P S R RSN
“-‘:'-“'"‘—l‘h;‘"f PO, R W R WL PR WA W

-'l'
K '_- K ‘I .0
S)

85

Cr g A B 'o’.-.
PR R
et R
IRARITTE A

M -‘L"l PAPey| WPRPREY

[

e

Al

FP-_g842

{:'. Figure 3.13a): The graph A, for & in Figure 3.11 ¥
(b): The corresponding edge-induced subgraphs of ;,i

........................

', . '-,.-.!.’.".‘r.".".'.f".-.'.r«* AP RNl ECa A S Al i A it Aie A A Sl S Sl L A M Tl Ak m APl i i

Pt

86

My={mu,m12,m,3,m,4,m,5|.

It can easily be verified that the subgraphs C¥ and C# are the P-blocks of H and the rest of the sub-
graphs in Figure 3.13(b) are the D-blocks of A . Thus the transistors in the network can be now parti-
tioned into seven blocks, two of which are PTB’s and the remaining five are MFB’s. We provide below
a listing of the transistors in each block along with the set of its input and output nodes. In the case of

an MFB the first transistor in its list is a depletion load device.

Block Transistors Input Nodes Output Nodes
MFB, m,,In;,Mm; nyn; n,

MFB, m,4,Mm; n, n,

MFB; | mgmgmsmem,mg | NDgRo,Nyeny My, | Dg

MFB, m,9,My ng Dy

MFB, m5g,Myo Do Rye

PTB, m,,,m,, n3,N4,N, DDy 1eNy 2
PTB, m,3,Mm,; 405 N4y N5,09,Ng,N0 Ng,Ng

In addition to the seven blocks given above, the network also has five SRC’s which we list below

along with the node of input strength in each of them.

Block Output Node

SRC, n,

SRCZ n, :
SRC3 nj . :'
SRC, n, .
SRC; ns I

We have thus partitioned the network into five SRC’s, five MFB’s and two PTB’'s. We are now
ready to form the fanin and fanout lists for each node in the network. The table below gives these

lists for each node which has both its fanin and fanout lists nonempty. .f:;.'

-
e

* . r.T., LTty
PR RGPV Y . .2

#

£ a8

VXA
S ey
v a "

"
K “‘..".

L L T
R P P
..............

Node Fanin List Fanout List

> SRC2 Nﬂ"'Bl

nj; SRC3 NIFB, ml

D4 SRC, MFB,,MFB;,PTB,,PTB,
g SRCs MI.B‘;,P TB;_

n, MFB,,PTB, PTB,

D4 MFBZ MFB;,P TBz

ng MFB,,PTB, | PTB,

nyo MFBg MFB,
n,; PTB; m;
Ny PTB, MFB3

From the above table, we see that, node n, is an ioput of PTB, and nodes ng and n, are ioputs of PTB,.
Hence, out of the 22 1/O-triples we get three nonadjacent triples, namely, (PTB,PTB,n,),
(PTB,,PTB;,n,), and (PTB,,PTB;,ng). The remaining 19 triples are adjacent 1/O-triples. Given the
adjacent I/O-triples, we can construct the derived digraph G as shown in Figure 3.14. This digraph
contains ten vertices and 19 arcs. We also include a vertex “root” and join it to the five SRC vertices as
shown in the same figure. Using Algorithm 3.2 on this digraph gives us ten strongly connected com-

ponents which we list below.

SCC Blocks
I, | SRC,

I, | SRG,

L, | SRGC,

)9 SRC,

I, | SRC;

I, | MFB,

L, MFB,

Lg MFB,

L PTB,

Lo MFB;,MFB;,PTB,

Thus, Ey is the only SCC that is not simple. Since G has no self loops, the network has no internal
feedback. Note that had we considered the adjacent I/O-triples in constructing the derived digraph, we
would get self loops. The network, however, has an SCC that is not simple, and hence, has feedback

among MFB,;, PTB,, and MFBs. The condensatica digraph G is shown in Figure 3.15. From Algo-

Sate il e el A S A A A It A A e e ey

Figure 3.14 : The derived graph G

Sr T e e A T e T . P

- N l_ﬂ - . NS P I . L I A A . N ST ., . e e S0
PREIRL I NS 3 S TR ATV I N S AL A T SR P A s et e s £ PSPV SR WS AP Y. P . |

AD-AL64 371 SNITCH-LEVEL TINING SINULATION OF MOS VLSI
(METAL~0XIDE-SEMICONDUCTOR VER.. C(U) ILLINOIS UNIV AT
. URBANA COORDINARTED SCIENCE LAB V B RAO JAN 85 R-1832
UNCLASSIFIED N00014-84-C-0149 F/G 9/3

S

I -

'

[. 2.5
g 3
= 22
TR
= s

N
o

I

MICROCOPY RESOLUTION TEST CHART
" NATIONAL BUREAU OF STANDARDS -1963 - A

e s,

I

89

i FRRCS P . g CouCEaisuteg
AN e . .)] ’ ety -...\

n...u.-;.-..-...-..t.-. \ [N ...‘.-‘... ...‘..... ri.ut h_....A, -...,...... .4. .n..n-. F. r...r.--".-' AR ;.\\\- AR S I -.. .
.
[
3
o
-
2
L D
2 =
£
b0
[=]
=]
=1
perd
y 2
3 <
9
[<]
Q
(¥}
L
> =
2 .
o -
3 4
=
S
(] .
3 i
oo .
4
w
- Y
t X J
.
-.......- . N o gy, . . P R e I-.... R M

- - - - - . . . -
- . ‘e - ot o * EOEA Y e W Y . PRI LIRS
PN P YR Y TP YT W ~ a Sy . e g . p

e N e e e RIS ML RN . e RIPIGY T

e A e S R s A ARG AOM IR AR & A o A et e o Ao

rithm 3.4 on G we get a topological ordering R such that R(w;)=i ;i=12,...,10. This induces an

ordering ORD on the SCC’s of the network such that ORD(L;) =i;i=1,2,..., 10, in this case.

3.5 Conclusions

In this chapter we began by representing an NMOS network Q(N,M) as a set of nodes N inter-
connected by a set of NMOS devices M. We then partitioned the set of enhancement transistors into
driver transistors and pass transistors. Following this, the driver transistors are grouped together to
form MFB’s while pass transistors are grouped together to form PTB's. Another type of block, called
SRC, is introduced to model the input voltage sources connected to the input nodes of the network. The
partitioned network is represented as 2{N,M,L), where I is the set of partitioned blocks which could
be MFB’s, PTB’s, or SRC’s. We then introduced the concept of feedback among blocks in the network
and showed that a good ordering for processing the various blocks is possible only for feedback-free
networks. In case the network has feedback, the set of blocks is partitioned into its strongly connected
components (SCCs). Finally, we came up with an ordering of the SCC’s for processing. The partition-
ing and the ordering of the blocks have both been shown to take computation time that is linear in the

number of circuit nodes and number of devices.

P PRI | N A
- LI)
ALY A &

LIRS TR TN S L SRS AT ST TR a

91

CHAPTER 4

SWITCH-LEVEL SIMULATION

Let @(N,M,L) be a partitioned NMOS network in which the set of blocks I has been further
partitioned into its strongly connected components (SCC’s) E,,E,, ..., L,. Let ORD denote the order-
ing in which the SCCs have been scheduled for processing. If an SCC is simple, ie, it consists of
exactly one block (an MFB, PTB, or SRC) with no internal feedback, then it is simulated at the switch
level by algorithms described in this chapter. By simulating or processing a block, we mean obtaining
the ternary digital waveforms at the output(s) of the block given those at the inputs to the block over
the entire time interval of interest. In case the SCC is not simple, a special event-driven windowing
technique, to be described in Chapter 6, is used to simulate the various blocks within the SCC. This
special technique partitions the entire time interval into several windows and uses the algorithms

described in this chapter to simulate only the active blocks within each window.

4.1 Ternary Signals and Sequences of Transitions

Let (L,\/,/\,~) denote the ternary algebra on the set L = {0,u,1} with binary operations OR (V/),
and AND (N\), and a unary operation INVERSE (=), as defined in Section 3.1. Let [to,t;] denote the
time interval in which the network is to be simulated. At each time instant, the signal at a node in the
network is assumed to occupy a ternary value from L, i.e, a 0, u, or 1, while this value might change
with time. Such a signal is called a ternary signal. A node m;€EN is associated with a ternary digital
wave form, denoted by X;, which is a mapping X; : [to,t;]—L, such that X;(t) is the ternary value of
the signal at node n; at time t€[t,t;] A transition in a ternary signal is defined as a change in the

ternary value of the signal taking place at a certain time instant. Thus, to completely specify a

AT o
>
" N ..Ih * n‘

92

transition, we need to specif v both the type of transition and the time at which it occurs. A transition
type is an ordered pair (x,y) where x,y €L and x #y. There are six possible transition types, namely,
(0,u),(u,1),(1,u),(,0),(0,1),(1,0). In accordance with the fact that a ternary digital waveform has a
corresponding analog waveform, given by the inverse of the transformation in Equation 3.1, only the
first four out of the six types of possible transition types are allowed. These allowable transition types
are (0,u),(y,1),(1,u) and (u,0). We will consider only allowable transition types and, henceforth, drop
the qualifier "allowable” whenever possible. For the sake of convenience in implementation, the entire
simulation time interval [to,t;] is discretized by choosing a minimum resolvable time (MRT), denoted by
h,,,. S0 that a time point t can be represented by an integer k if t€[ty+k*hy;, , to+(k+1)*hy,). Thus
two different time points within this interval are considered indistinguishable and are represented by
the same integer k and vice versa. If K = (t;—ty)/h,;,, then the time at which a transition takes place
within [ty,t;] can be denoted by an integer k €[K]}={0,1,2,...,K}. The value of hg, is usually
chosen to be very small, typically one or two orders of magnitude smaller than the rise or fall times of
the analog signals. We can now represent a transition a as an ordered triple (x,y,k) € LXLX[K] where
(x,y)€LXL is the transition type and k denotes the time of its occurrence. Furthermore, X is the initial

value of & and y is its final value.

Let $ = ay,a;, ..., @, be a sequence of transitions where each a;=(x;,yk;)}. The sequence S is
said to be chronological if k) <k,< +++Kk, A chronological sequence is said to be compctible, in addi-
tion, if (x,¥;) is an allowable transition type for each 1<j<p and y;=x;,, for each 1$j<p—1.Ina
compatible sequence therefore, the final value of every term in the sequence is equal to the initial value

of the succeeding term.

Let t, = ty+kXh,,, and let X(t)t€[ty,t;] be a ternary signal waveform such that no more than
one transition occurs in a time interval [ty,ty,,) for any integer k. We will call such a waveform a

proper waveform. Clearly any ternary waveform will be a proper waveform if hg,, is chosen as sug-

gested above. Henceforth, we will assume that such an h;;, has been chosen and that all ternary

et e
'-‘o'..' . -

L P . e
I SR 2 BP S I VT P R R

l" ‘.

93

waveforms are indeed proper. In a proper waveform, therefore, if a transition occurs at a real time
t€[t,,t; ;) then any other transitiop must occur in some other interval disjoint from this. We use the
notations t~ and t* to denote time points just before and just after the time t. We represent a proper

waveform X by a sequence S of transitions as follows :
1. Initially, S+, and k+O0.

2. If there is a t€[t,,t,,;) such that X(t™) == X(t*), then set x—~X(t™), y~X(*), and append the

transition a=(x,y,k) to S.
3. Set k~k+1 and repeat step 2, until k=K.

If, however, a ternary signal is constant throughout the time interval [t,t;] then it does not
undergo any transitions. We represent such a signal by a sequence consisting of a single transition of a
suitable type taking place before ty. Thus a waveform that is always O is represented by (u,0,—1), and
a constant 1 signal by (u,1,—1), where the integer —1 represents all time points t <to. A constant u sig-
nal, though seldom occurring in practice, can also be represented either by (0,u,—1) or (1,u,—1). We
will adopt the convention that —1 will be used to denote transition times in the case of constant signals

only.

Let S, = aj,a5,...,a, and S, = B,,8,, ..., B, be two sequences of transitions, and let X, and
X, denote their corresponding ternary digital waveforms respectively. The waveform X, such that
X (1) = X,(t)V/X,(t) for each t€[ty,tc] is called the "OR" of X, X, Similarly a waveform X, is the
"AND" of XX, is X4(t) = X, (t)AX,(¢t) for each t€[ty,t;] The sequence S, of transitions that
represents X, is denoted by S,V/S, and S, that represents X, is denoted by S,/\S,. Also, we can define
the "INVERSE" of a sequence S, representing the waveform X, to be the sequence of transition, denoted
by =S,, representing a waveform X,, where X (t) = =X,(t) for each t€[ty,t;}] We therefore have two
binary operations \V/ and /\ and one unary operation - on sequences of transitions. As an illustration

consider two (compatible) sequences of transitions:

ERUIIRS |
SN .
LRSS

" U ‘.

IR L3 TN

CHATMA O el ral e A

94

S, =(0,,10), (v,1,70) , (1,u,100), (u,1,110), (1,u,500) , (u,0,600)

S, = (1,u,200) , (1,0,300) , (0,u,700) , (u,1,800).

The corresponding waveforms X, and X, are shown in Figure 4.1. The sequences obtained by perform-

ing the "OR" and "AND" operations on these two sequences are

‘h and

respectively, and their corresponding waveforms X, and X, are also shown in Figure 4.1. The sequence

S,VS, =(1,u,500), (u,0,600) , (0,u,700) , (u,1,800)

S. NS, =(0,u,10) , (v,1,70), (1,u,100) , (v,1,110) , (1,u,200) , (1,0,300)

obtained by performing the "INVERSE" operation on S, is
=S, = (1,9,10), (4,0,70) , (0,u,100) , (u,0,110), (0,u,500) , (u,1,600)
which is obtained by simply inverting each ternary value in every term of the sequence.

Two sequences S, = {a;}2, and S, = {B;};L, with the same number of terms, and where
a;=(x;,,y;,k;) and B8;=(x',¥';,k’;), are rype-equal if x;=x; and y;=y’; for each 1<i<p and time-equal if
k;=Kk’; for each 1<i€p. The two sequences are equal if they are both type-equal and time-equal. It
must be noted that two sequences can be compared for equality if and only if they have the same
number of terms. For example, the two sequences

(0,u,100) , (u,1,200) , (1,u,300) , (u,0,400)

and
(0,u,110), (1,1,190), (1,u,250) , (u,0,360)
are type-equal but not time-equal, whereas

(0,u,100), (u,1,200) , (1,u,300) , (1,0,400)

and

(0,u,100) , (u,1,200) , (1,u,300) , (u,1,400)
are time-equal but not type-equal.

~~~~~~~~~~~~ Y el N R A R S T T T S S S N
e e AL s A AEAEAR R OGRS S ::\.:‘.-_..:_\..__. e T e e
o

A IR TR SR NE S JaC S ot N S St T




) Qe stara v e Gt /M SO i STICRCIOMIL AL Pug CRERURIN:

- :
b “
P =y
.
X .
a

95

.

A

F. ) ».. ..
‘- 1~ --

Ky

'c . .o- o
8 s

k. S0

. o

-
c——— -———— —®

~—-- SRS ---- =

R ———— camm

Ternary digital waveforms

f - - o g d - ou o o =

Figure 4.1

=== ﬂ........ — 8




T T T T

We now introduce notions of complete and partial pairs of transitions in a compatible sequence

S. = aj,a3, . .., ap Where a; = (x;,¥;,k;).

Definition 4.1 : Two successive terms a; and a;4, in a compatible sequence with x; €{0,1} are said to
form a complete pair of transitions if y;4;=-X; and a partial pair if y;,;=x;. It must be noted that
since the sequence is compatible and the transition types are allowable, the above choice of x; forces
Yi=Xia U

For example, the pair (0,u,100) , (u,1,200) is a complete pair while (0,u,100) , (4,0,200) is a par-
tial pair. A complete pair of transitions corresponds to an analog waveform crossing both the threshold

limits, thereby completing the transition, whereas a partial pair represents a potential glitch or a hazard

(29]

Definition 4.2 : A compatible sequence of transitions is said to be a complete sequence if it has no par-
tial pairs. The completion of a compatible sequence is the maximal compatible subsequence consisting

of only complete pairs of transitions. For example, the completion of the sequence

(0,u,100), (u,1,200) , (1,u,250) , (u,1,260) , (1,u,300) , (1,0,350) , (0,u,400) , (u,0,420)
is the sequence

(0,u,100) , (u,1,200) , (1,u,300) , (u1,0,350).

Given two compatible and complete sequences S,={(x;,y,,k;)};&, and S;={(x;y;,k’ )&, that are
type-equal but not necessarily time-equal, we define a measure on the difference in trapsition times

between the two sequences to be

I 4.1

ki—k'i
Msa’sb) - ]ré]ia(xpl ki

It must be noted that the above measure is defined only for compiete sequences which are type-equal.
Two compatible sequences (not necessarily complete) are said to be time-comparable if their completions

are type-equal. If S, and S, are two time-comparable sequences, i.e., their respective completions §, and




ST T TN N N T O T R T

97

S’y are type-equal, we then define an extended measure p to be

PSS, = plS'LS'y). (42)

As an example, consider two compatible sequences

S,=(0,u,40) , (1,0,50) , (0,u,100) , (u,1,200) , (1,u,300) , (u,0,400)
and

$,=(0,u,110) , (u,1,195) , (1,u,260) , (u,1,280) , (1,u,330) , (1,0,450)

whose completions are

§,=(0,u,100) , (1,1,200) , (1,u,300) , (u,0,400)

and

§,=(0,1,110), (1,1,195) , (1,4,330) , (u,0,450)

respectively. Since S, and §', are type-equal we have S, and S, are time-comparable and, in this case,

PLS,,5,)=plS .S, )=12.5%.

4.2 Switch-level Simulation of a Block

Let S; denote the sequence of transitions, computed by switch-level simulation, and let V, be the
actual analog waveform at a node n;EN in the network. We can obtain the three-state digital
equivalent of V, using the transformation in Equation 3.1. Let §i denote the sequence of transitions
corresponding to this ternary digital equivalent. We define the aim of our switch-level timing simula-
tor to compute S; that is time-comparable to §i, such that, 5(§i,Si)<e where € is a measure of the accu-
racy of the timing in the simulation. It must be noted that we are only interested in guaranteeing the
timing in case of complete pairs of transitions and not for partial pairs. However, partial pairs will be
included in the sequence to warn the user of a possible glitch or hazard at a node in the network. In
this section we will discuss algorithms that will compute a so—<alled zero-delay sequence of transitions
at the output nodes of a block in a simple SCC of the network. The complete pairs of transitions are

then delayed by a delay operator to be discussed in the next chapter, followed by a filtering operation




98

to produce sequences that represent realistic waveforms and improve the accuracy of the timing in case

of partial pairs of transitions.

4.2.1 Simulation of an SRC

Let . be an SRC with output node n, in a partitioned NMOS retwork. Since an SRC, by
definition, does not have any inputs, its corresponding vertex cannot be in any directed cycle in the
derived digraph. Let V, denote the analog waveform at node n, during the time interval [ty,t;} Since
NODTYP(n,) = input a description of V, would be available in the input description of the network.
Thus, simulating an SRC would simply amount to computing the sequence of transitions S, directly

from the analog waveform V, as described below.
Algorithm 4.1

Input : An SRC Q, with output node n,,
an analog waveform V (t) for t €[ty,t]
and two threshold voltages V| and V.

Output : A sequence of transitions S, representing the ternary
equivalent of V.

procedure SRC__SIM (Q,)
begin
S, ~@;
k<0
ty =t
ind~"constant®”;
repeat
t,—t,,
ty—t,+h,
v, =V (t,)
v.,*-Vo(tl,);
vyev,—V;
vy+—vy—Vy;
vie—v,— Vs
VvV
if (v; €0 & v,>0) then
append (0,uk) to S
ind+—"variation”;
else if (v3€0 & v,>0) then
append (u,1,k) to S;




99

ind—"variation”;
else if (v;20 & v,<0) then
append (1,u,k) to S;
ind+~"variation";
else if (v; 20 & v,<0) then
append (u,0,k) to S;
ind+"variation”;
end if
k~k+1;
tb"_tb'Fhmm:
until t, > t;
if ind="constant” then
if (v, <0) then
append (u,0,~1) to S;
else if (v; 20 & v;<0) then
append (0,u,~1) to S;
else if (v;>0) then
append (u,1,—1) to S;
end if
end if

BRI TR RASULN |

end
In the above algorithm, the indicator ind is used to decide whether the analog waveform crossed

any of the threshold limits. In case it does not, then the sequence is set to the appropriate transition
occurring at integer time k=—1, i.e, at rea] time t<ty. We now state the following theorem, the proof

of which is fairly obvious, but it is an important result to be used in the later sections.

Theorem 4.1 : The sequence S, computed by Algorithm 4.1 is a compatible sequence and represents the

ternary equivalent of the analog waveform V.

4.2.2 Simulation of an MFB

Let 0 be an MFB that is to be simulated with n, as its (unique) output node and INP(Q,) as its
input nodes. For each input node n; let S; denote the sequence of transitions at that node, and let z; €L
denote the ternary value of the node signal at some time instant. Also, let §; be the sequence of transi-
tions to be computed and z, denote an instantaneous value of the signal at node n, Let INTERN
denote the set of internal nodes within the MFB. As mentioned earlier, an MFB can be viewed as a net-

work of switches between the drain and source nodes of its driver transistors whose conduction states




S S TR e ki Ml S

100

are controlled by the ternary signals at the gate terminals. Since an MFB has no external nodes, by
definition, the sequences at its internal nodes need not be computed. The fundamenta] idea in conven-
tional switch-level simulation is that the signal at a node can onlyv be changed by a signal at a stronger
node and can change the signals only at weaker nodes. In a proper MFB the only node stronger than
the output node (which is a pullup) is the ground node whose signal is always at 0. Hence, to compute
Z, one only has to compute the state of conduction of the switches connecting the output node to the
ground node. Thus, we can think of z, to be a special kind of a ternary function of the input signals
{z,: n; EINP(Q()]. If the MFB is not proper, its output node signal is always at 1 irrespective of its
input signals since no internal node can influence the value of this signal. This specialized structure of
an MFB enables us to use a much simpler and more efficient algorithm for its simulation rather than
using the more complex conventional switch-level algorithms such as the ones used in MOSSIM [19] or

EXPRESS-11{25]

Before we describe the actual algorithms to simulate an MFB we digress briefly to study the pro-
perties of some ternary functions. Let p be a positive integer and let LP denote the p** Cartesian power
of L, i.e, LP is the set of all ternarv vectors (z,,2,, ..., zp) where z;€EL for each i=1,2,...,p. A p-

variable ternary function (2,,2,, . ..,2,) is a mapping f:LF—L.

Definition 4.3 : A p-variable B-ternarv function is a p-variable ternary function which is either con-
stantly O or 1, or obtained from its arguments z,Zy, ..., z, by successive application of the algebraic

operations of \/, /\, or ~. An example of a five-variable B-ternary function is
£(z,,25,23,24,25) = ~(z, N2\ 2;NZ NN 2y N2 N\Z N2, N\ 25N\ 25)). (4.3)

Associated with each variable z; are two literals, namely, z; and ~z;,. Thus a p-variable B-ternary
function can have at most 2p literals. We will use the symbol w; to denote a literal. The literal is said

to be in its normal form \f w;=z; and in its inverted form if W;==-z; A product term is a B-ternary

function that is obtained by successivelv performing the /\ operation on its literals. For example, if




-------

£ A O T S e Sl St sadh St

101

W;1,Wi2 . - -, W, are T literals, then the corresponding product term is w;;/AW;;/\ * - Aw;.. Since the
/\ operation on L is both associative and commutative, the order of the literals does not matter and
hence the product term is well-defined. Thus any p-variable B-ternary function f consisting of q
literals Wy, W,, . . ., W, Where £ 2p can be expressed as

f=gVgV-Vg, (4.4)
where g; is a product term of a subset of the q literals, for each j=1,2,...,». This result follows
directly from the corresponding well-known result that any switching function can be expressed in a
sum of products form and can be found in any standard text book on switching theory, such as [54]
since the relevant laws of conventional two-valued Boolean algebra used in its proof are easily
extended to the ternary case. We will use the term sum as analogous to the \/ operation and product as
analogous to the /\ operation. Thus the result in the above Equation (4.4) can be simply stated as any
B-ternary function can be expressed as a sum of products of its literals. Similarly it can also be shown
that any B-ternary function f can also be expressed as a product of sums of its literals [54) i,

f =h;AhN\---N\h, (4.5)
where each h; is a sum of a subset of literals.

We now introduce the notion of zero-delay through a block in a network. By this we mean that
there are no delay elements present in the block and that at any instant of time the ternary value of
the output signal can be determined from those at its input signals at the same instant of time. We say
that an MFB with p-inputs 2z,,...,2, realizes a p-variable ternary function f if the ternary output
signal z, can be expressed as z, = f(z,,2, ...,2,) while the MIFB is assumed to operate in the zero-

delay mode.

The zero-delay value of z, of an MFB of p driver transistors m;,m,, ..., m, can be computed as
follows. Let z; be the value of the signal at the gate node of m;. Let H; be the D-block in the graph
representing the network corresponding to the MFB. Each edge of H; has a conduction state associated

with it which is equal to the ternary value of the gate signal of the corresponding driver transistor.




102

The state of a path P in the graph is definea as the product term of the states of the edges in the path.
If there is a path between the output vertex and the ground vertex with state 1, then, clearly the signal
at the output node will be forced to have the value of the ground signal (which is stronger) which is a
0, ie, Z, = 0 in this case. If all paths between the output and the ground vertices have state 0 then
Z, = 1. If there are no paths with state 1 and at least one path with state u then, in this case, z, = u
Let P,,P,, ..., P, denote all the paths between the output vertex and ground vertex in the MFB and
let g; denote the state of path P; for each i=1,2,...,s. Clearly, each g; is a product term of the ter-
nary signals at the gate nodes of the transistors corresponding to the edges in path P;. From the above
simple arguments it is clear that the ternary value of the output signal can be obtained by summing all

the g;’s and inverting the resulting sum, i.e,
7, = g, Vg,V - - Vg). (4.6)

Thus z, is a p-variable B-ternary function of its arguments z,,2,, . . ., Z;, Which are the signals at the
input nodes to the MFB. It must be noted that in each product term g; above, no literal appears in its
inverted form, ie. all literals appear in their normal form. Such a product term will be referred to as
a normal product term. We now present some interesting results in the synthesis of networks composed

of MFB's to realize any combinatorial switching function.

Theorem 4.2 : Any p-variable B-ternary function f(z,,2,,..., zp) that can be expressed as the inver-
sion of a sum of normal product terms, as in Equation (4.6), can be realized by a single MFB with p
input nodes.

Proof : We begin constructing an MFB with a supply node (connected to a power supply Vpp)
ground node, and p input nodes n,,ny,...,n, such that the ternary signal at n; is z; for each
i=1,2,...,p. We then include a depietion transistor with drain node connected to the supply and
source and gate nodes tied together at a node n, which we will call the output node of the MFB. We
now introduce the notion of a series chain of transistors which will be made use of in the construction

of the driver block of the MFB.




AR

-

AL R NSRS
. sﬂ'._s.':.s:m&.'-‘ T

103

A set of & transistors is said to form a & series chain if the subgraph induced by the edges
corresponding to these transistors in the graph representing the network is a path of length 8. The
nodes corresponding to the end vertices of the path will be called the end nodes of the chain. An

example of a 4 series chain is shown in Figure 4.2.

Let the B-ternary function be expressed in the required form as
f = ~g,Vg,V -+ Vg)

where g; is a product term of §; normal literals for each j=1,2,...,s. Corresponding to each g; we
insert a §; series chain of enhancement transistors with one end node as n, and the other as the ground
node. Each transistor in a series chain is associated with a normal literal appearing in the corresponding
product term. The gate node of a transistor corresponding to a literal z; is connected to the input node
n;. We thus have s series chains of enhancement transistors connected in parallel across the output node
n, and the ground node. It can easily be verified that such a configuration would correspond to a D-
block in a graph representing the network and hence the subnetwork we have constructed constitutes

an MFB. Furthermore this MFB would realize the required B-ternary function. O

The simplest proper MFB is an inverter consisting of exactly one driver transistor as shown in
Figure 4.3a). Even simpler than this is an MFB with no driver transistors, in Which case, the ternary
signal at the output is always at 1 (which incidentally is a B-ternary function by definition). Figures
4.3(b) and (c) show two-input NAND and NOR gates respectively. As an illustration of the technique
used in the proof of the above theorem we consider the five-variable B-ternary function given in Equa-
tion (4.3). An MFB with ten driver transistors realizing this function is shown in Figure 4.4. This con-
sists of four series<chains connected in parallel across the output of the MFB and the ground node con-
sisting of two, two, three, and three driver transistors respectively. One measure of the complexity of
an MFB could be chosen as the number of driver transistors in the MFB. It must be noted that
Theorem 4.2 does not say anything about the uniqueness of the MFB realization. In fact there could be

several MFB'’s realizing the same B-ternary function. Figure 4.5 shows another MFB realizing the same

DR N - - L TN et " el . SLe -

A

._'. e e e B R Y G O W M W WLRTRO & 3

r 2 i 2

e TR LRI

N B N R R S R



T T T 7T

Figure 4.2 : A 4 series chain of transistors




Voo

o

b) e ny
nye—{ "2°—4‘

FP-2537

Figure 4.Xa): A simple inverter
(b): A two-input NAND gate
(c): A two-input NOR gate

Ryt reyY

105



N

oo

- f

#p-8823

Figure 4.4 : An MFB realization of f in equation (4.3)

.‘..:
3%
‘-'t':.

106 Vo
-~
.- "
RS
e
-“
4_\.‘
Y

.

"
s

RN IA

.

=0

.-



(i A BRI It i S et st S S g S gt A N oy e NI ot o AR s i Sl AR ares it ag

107

B-ternary function as in Equation (4.3). This MFB, in fact, has only five driver transistors and is an
example of using bridged con figurations to reduce the number of transistors in a series-parallel realiza-

tion.

The B-ternary functions considered bﬁr Theorem 4.2 are of a rather restricted nature. If we relax
the requirement that only a single MFB be used in the realization, we can consider a subnetwork of
MFB’s realizing any general B-ternary function. The number of levels in a subnetwork composed of
blocks can be def‘ined as the length of the longest directed path in the corresponding subdigraph within
the digraph derived from the partitioned network. The following resuit shows that any B-ternary

function can be realized by a two-level subnetwork of MFB’s.

Theorem 4.3 : Let f(2,,2,,...,2,) be any p-variable B-ternary function. Then f can be realized by a
at most two-level subnetwork consisting of 8+1 MFB’s with B of these MFB’s being simple inverters,
where B<p.

Proof : Let £ =h;/\h,/\---/\h, be the product of sums expression of the B-ternary function f.

Since ~(—(f)) = f we can rewrite the function as
f= -v(g,ng\/ b \/gs)

where g; = ~(h;) can be easily shown to be a product term for each j=1,2,...,s, through simple ter-
nary algebraic manipulations. The rest of the proof is very similar to that of Theorem 4.2 in that an
MFB is constructed with a series chain for each product term and the number of transistors in a series
chain equal to the number of literals (both normal and inverted) in the corresponding product term. If
all literals appearing in the product terms are in their normal form, then from Theorem 4.2, a one-level
realization can be obtained. If a literal -z; appears in a product term g; in its inverted form, the gate
node of the corresponding transistor in the series chain is connected to the output of an inverter whose
input is connccted to node n;. Clearly, the number of inverters needed is equal to the number of
literals appearing in their inverted form in a product term which is at most p. It can be easily verified

that the output of the MFB apart from the inverters in the subnetwork is the required B-ternary




FP-3819

Figure 4.5 : Another MFB realization of f in Equation (4.3)

108

PR
o s T e e
2 .




109

function of the signals at the input nodes of the subnetwork. Furthermore, this is a two-leve] subnet-

work. O
As an illustration consider the following three-variable B-ternary function
f, = (z; N2\ (-2, \/2,)N\2;)
which can be expressed in its products of sum form as
£, = (2,\V-2,\/2,)/\(2,\V ~2,\/ 23) (=2, \V 2,)/\(2,\ 2D\ (2, \/ 230 N\ (=2, N 2,\ 230 N\(2, \/ 2,\/ 233).
Using simple algebraic manipulations this reduces to
~(~z; A2y N\~2 N\ =2y N2y \~23\(Zy N\ ~2Z. )N/ (2 N\ ~ZIN =2y N\~Z N (24 N\ =23 N2 )N (52, N\~2,/\~25)),

which is in the required form as an inverse of a sum of product terms. We then have a series chain for
each product term above. In the first series chain, the gate of the first transistor is connected to the out-
put of an inverter whose input is connected to node n,, the gate of the second transistor is connected
directly to node n,, while the gate of the third is connected to the output of another inverter with
input node n,. This is repeated for each of the remaining series chains. The complete realization
involving an MFB with 18 driver transistors and three other inverters is shown in Figure 4.6(a). A
much simpler realization with an MFB containing only six driver transistors and three inverters is
shown in Figure 4.6(b). Thus, Theorem 4.3 only guarantees the existence of an MFB that realizes a B-
ternary function, and its proof describes a technique to construct one such realization using series chains
of transistors connected in parallel across the output node and ground. However, it may be possible to
construct another MFB to realize the same B-ternary function using a different design philosophy and
may turn out to be even simpler than the first realization. Therefore, MFB’s play a very important role
in NMOS designs since any combinatorial switching function, which is a restriction of a B-ternary
function to the two-valued Boolean algebra, can be realized by a at most two-level subnetwork com-

posed of only MFB’s according to Theorem 4.3 . In practical designs, however, the designer may want

to realize several combinatorial switching functions in the same subnetwork which might require more




110

1

FLrIy

FP-852%

Figure 4.6(a): A two-level MFB realization of f,
(b): A single VMFB realization of f,




FS———

Ll S-S R A (BNl " Rl AP " A A A e P P AN

111
levels. Furthermore, the use of pass transistors in realizing combinatorial logic [56] sometimes yields
NMOS designs with better performance.

We will now describe the algorithm to simulate an MFB with no internal feedback. The algo-

rithm begins by first assumming that the MFB is in a zero-delay mode and computes a sequence of tran-

o sitions called the zero-delay sequence at its output node. Each transition in the zero-delay sequence is
then delayed by a delay operator followed by a filtering process that produces a chronological and com-
patible delayed sequence. In this section we will focus our attention only on obtaining the zero-delay
sequence at the output node of the MFB given the sequences of transitions at its input nodes. The delay

[
|
2
-
i _ and filtering operations will be discussed in Chapter 5.

Consider an MFB with a set of driver transistors My={m,,m,, ..., m,}, a set of input nodes

INP;={n,,n,,...,n,} and an output node n,, where n;=GATE(m,) for each i=1,2,...,p. Let S, be
the sequence of transitions at node n; with transition times between integers K; and K,. In the case of
MFB’s in simple SCC’s we can assume K;=0 and K,=K, i.., the input sequences are known for the
entire time interval. In other situations the values of K, and K, would be decided by an algorithm to
process blocks in a general SCC to be discussed in Chapter 6. Let H; be the D-block corresponding to
the MFB in the graph representing the network. Each edge e; corresponding to transistor m; is associ-
ated with an edge sequence S{e;) which is initially set to S;. Two edges in a graph are said to be paral-
lel if they have the same end vertices. A simple graph is a graph with no self loops and no parallel
edges. The simpli fication of a graph is a graph obtained by collapsing all parallel edges into a single
edge whose edge sequence is the sum (\/) of the sequences of the parallel edges. We define the elimina-

tion of a vertex v from a simple graph as a procedure involving the following two steps :

(1) For every pair of vertices a and b adjacent to v in the graph, add an edge between a and b with
the edge sequence of this new edge being the product (/\) of the sequences corresponding to the

edges <v,a> and <v,b>, respectively.

e e ma . asam e, e
I e e el e e lele
ED BT R TR RIS SIS SR R P S R S




s EaS S EuA e o e Sh Mg T SO San AR 2

112

(2) Delete the vertex v (and all edges incident on it) from the new graph obtained in step (1).

It must be noted that eliminating a vertex from a simple graph could create parallel edges in the
new graph. If we treat the graph H; as a two-terminal network of switches between the output vertex
and the ground vertex, we can define a transmission function T that denotes the state of “conduction”

between the output and ground vertices as follows :

a)  Each edge of the graph represents a switch whose state at any instant of time could be open,
intermediate, or closed, denoted by symbols O, u, or 1, respectively. Thus the edge sequence
represents the variation of the state of the switch with time and can be defined to be the transmis-

sion function through the edge.

b)  The transmission function through a path is defined to be the product (/\) of the transmission

functions through the edges in the path.

¢)  The transmission function T between the output vertex and ground is the sum (\/) over all possi-

ble paths between the two vertices of the transmission function through each path.

Clearly, T is a sequence of transitions and S,==-T.

Theorem 4.4 : The operations of simplification of a graph and internal vertex elimination in a simple
graph do not alter the transmission function between the output vertex and the ground vertex in the
graph.

Proof : Let us consider a set of parallel edges ﬁ={e,,e2, ..+,€,} between vertices a and b in a graph
H. Let us partition the set of all paths Il between the output vertex and the ground vertex in H into
two sets, namely, II and IT, where II is the set of all paths containing an edge eiEﬁ and IT' is the set not
containing any eieﬁ. Let H, be the graph obtained from H by replacing the set E by a single edge e’
between a and b, with S(e’)=S(e,)\/S(e,)V/ - - - \/Sle,). If I, denotes all paths between the output
vertex and the ground vertex in H, containing €', then, clearly the set of all paths II; between output
and ground vertices in H, is I, =0, UI'. Let T(P) denote the transmission function through a path P

and let T(II) denote the sum of transmission functions through each path in the set II. The

K "'_" .
e .

! LI

. v N
L AR
NPT P S SN

A




113

transmission function between output vertex and ground vertex in H is clearly
T=TUDVTT)

while that in H, is T(II,)\/TUI). Let P be some path in I, and F=P—e¢". Clearly, F is either a path or
a union of two disjoint paths. In either case let T(F) denote the product of the transmission functions

through the edges in F. It is also easy to see that P;=F+e; isa path in 1 for each i=1,2, ... »q and
T(P)=T(FINS(e")=T(P VTPV - - - VT(P,).

Therefore, TU)=T(II,), and so the transmission function between the output vertex and ground vertex
in H is the same as that in H,. We can repeat the same argument for a set of parallel edges in H, and so
on until we end up with a simple graph. Hence, the transmission function between two vertices in a

graph does not change on simplification of the graph.

Now let us consider a simple graph H and an internal vertex v in the graph. Let II, be the set of
paths from the output vertex to the ground vertex containing the vertex v and let II' be the ones
without v. If TI denotes the set of all paths between the output and ground vertices in H, then clearly
the transmission function T=T(I)=T(IO,)VT(I). Suppose the degree of v in H is q and let
Adjy(v)={w,,w,, ..., w.]. Since H is simple, all vertices adjacent to v must be distinct. Let ¢; denote
the edge jpining v and w; in H. Let H; denote the graph obtained from H by eliminating v. Let the
new edge that joins w; and w; in H; be denoted by e;. By definition Sle;;)=S(e;)/\S(e;). Let
E,=le,;:1,j=1,2,...,q,i#j}. Let II, denote the set of all paths between the output vertex and
ground in H,. If Tl denotes the set of paths between the output vertex and ground vertex in H, that
contains edges from E,, then clearly H,=f1 U I'. We can divide the set I into two disjoint subsets, ﬁ,
containing only one edge from E, and flz containing more than one edge from E,. It can be easily
verified that given any path P,eﬁ, there exists a path P,Eﬁ, such that the terms in T(P,) are sub-
sumed by the terms of T(P,), ie. T(P,\/T(P,)=T(P,). Therefore, T(I)=T(1l,). Given a path P€M,
such that w; and w; are the vertices adjacent to v on this path, we can construct a path P, such that

P,=P—v+e;. Clearly, P,€ll, and T(P)=T(P,). Thus there is a 1-1 correspondence between paths in

S e T T AT e Mt e T et it et T At Mt =t
. L, S S S T T e DA . - . .
- - . T PN A L X - . T Lo o-, D TR SR VAT S

DB EPOR r I R I I BRI T Tt i St A Y N SN S S S Y n et . -

. - P - - - - - - - .\-.
A A R K AR e A A
Ryt S I A PV ALACOACRCAE v /. T L VAV PR - VL PG TP VR TR S S S PR PREWRCNETE SRR

e




114

0. anc I, and T(IL,)=T(,). Therefore,
TUI)=T(I\/TUD)=TI,)\V/ TU)=T, )/ TN =TI =T,
and hence the theorem is proved. C

The algorithm to obtain the zero-delay sequence of transitions at the output node of a MFB begins
with the simplification of the D-block corresponding to the MFB. It then picks an internal vertex in
this simple graph and eliminates it and then simplifies the resultant graph. This process of elimination
followed by simplification is repeated for each internal vertex. The end result would be a simple graph
on two vertices, namely, the output vertex and the ground vertex. If the MFB is proper, then its D-
block is a connected graph containing the ground node, and so the graph resulting from the elimination
of all internal vertices followed by successive simplification would have an edge between the output
and ground vertices. From Theorem 4.4, the transmission function between the output and ground ver-
tices is the sequence associated with this single edge, and S, would be the inverse of this sequence. Once
the zero-delay sequence is obtained the transition times are delayed by a delay operator and the whole

sequence is filtered using techniques to be discussed in Chapter 5.
Algorithm 4.2

Input : An MFB Qg, a set M; of driver transistors,
a sequence of transitions §; at the gate node of each
m; € M, the D-block of the MFB H{(V,E,)
with all vertices in V apart from the output vertex and the
ground vertex marked as "internal”.
K, and K, are the end points of an interval during
which simulation is to be performed.
Output : A sequence S, of transitions at the output node n, of the MFB.

begin
S, @
for each edge ¢,€E, do
S(e,)— WINDOW (S,K,K,);
H,—SIMPLIFY (H,);
=0
while there exists a vertex v in H; marked "internal” do

begin

. et .
i B

- . - - ot - - . - - CUN
AT N Sl Y WA Rl I SNl Uil S VAP N S




115

H' ~ELIMINATE (v,H));
H;,, ~SIMPLIFY(H');
jeitn

end

if there exists an edge in H; then

e,+ edge in H;;

S,—-S(e,);

DELAY_FILTER (S, Q)

else
append (u,1,~1) t0 S;
end if
end
procedure ELIMINATE (v,H)
begin _
H~H
for each pair of vertices w;,w;€ Adju(v) do
begin
e+ <v,w;>;
e~ <v,w;>; .
add a new edge ¢;; in H joining w; and w;
Sle;)— Sl )N\Ste;);
end
return H—v;
end

In the above algorithm, the choice of ¥ as an internal vertex picked for elimination from H; is
important from the complexity point of view. If the degree of v in H; is q, then the total number of
edges added as a result of eliminating v from H; is q(q—1)/2—q, which is equal to q(q—3)/2. Note
that q 22 if v is to be on a path in H;. If q=2 then the new graph has one edge less than the number
in H; while the number of edges is unchanged if q=3. Hence a vertex of lowest degree in H, is picked
as the best candidate for elimination. The procedure WINDOW returns a sequence of those transitions

occurring between K, and K, in its input sequence.

At this stage, we would like to point out that the procedures used in Algorithm 4.2 can be used to
compute the transmission function between any two nodes in a two-terminal switching network pro-
vided the states at the internal nodes in such a network are not required for simulating other blocks in

the network. In the case of an MFB, by definition, such a switching network exists, naturally, between

the pullup node of the MFB and the ground node. Now let us consider a PTB which is viewed as a net-

T YT T .




116

work of switches between the drain and source nodes of its pass transistors. A general PTB would
clearly result in a multiport switching network. Once again, in general, one would be required to com-
pute the states at several nodes within such a network since these could be external nodes according to
our definitions in Chapter 3. Furthermore, the delay characteristics of PTB's are different from those of
MFB’s as will be seen in Chapter 5. Hence we choose to differentiate between MFB’s and PTB's and we

simulate them using different techniques.

4.2.3 Simulation of a PTB

Let Q, be a PTB  with a set of pass transistors M, Let
NDS, ={DRAIN(m;),SOURCE(m;) : m; €M,} be the set of drain and source nodes of the pass transistors
in the PTB and let NG,={GA TE(m;) : m;EM,} be the set of gate nodes. Consider the set @ of transi-
tion times of the signals at the gate nodes arranged in an ascending order. These time points divide the
time interval of simulation into several phases such that during each phase ¢j=(kj,kj+,) the signal at
each gate node in NG, is at a fixed ternary value, i, a 0, u, «v 1. The time k; is the initial time and the
time K4, is the final time of phase b Let s;,j denote the fixed ternary state of the signal at gate node
n; ENG, during phase ¢; We partition the set NDS, of drain and source nodes of pass transistors in the

PTB into three subsets:

1. N;={n, ENDS, : NODTYP(n,)="input"}, the set of nodes of input strength,

2. N,={n, ENDS, : NODTYP(n,)="pullup"}, the set of nodes of pullup strength, and
3. N,={n, €ENDS, : NODTYP(n,)="normal®}, the set of nodes of normal strength.

We are given the sequences of transitions at each node in N, and N, in the PTB. Our task is to
compute the sequences of transitions at the nodes in N,. We do this in phases. Initially all the node
sequences for N, are set to the null sequence. We then simulate the PTB in the first phase ¢, followed

by the next phase and so on, updating the node sequences for the normal nodes in each phase. The

S

VYR

,_‘,
.,
1l

i
o




PR

117

simulation of a phase ¢; begins by constructing an undirected graph H, with vertex set V,=NDS,
corresponding to the drain and source nodes of the pass transistors and the edge set E, initially empty.
For each pass transistor m; €M,, an edge is inserted between DRAIN(m;) and SOURCE(m,) if s;;=1,
Le, if the signal at the gate node of the transistor is at a 1 during ¢; Each connected component of the
graph represents a switching network with nodes connected by two terminal switches that are in the
closed state. Consider a component C, of the graph. Let STG, denote the subset of the strongest nodes
(vertices) in C,, where the node strengths are ordered as input > pullup > normal. The strength of
the component C, is then defined to be the strength of its strongest node(s). If |STG,>1 and the
strength of C, is either input or pullup, then a con flict is declared at each normal node in the com-
ponent. In case a node is experiencing a conflict in the present phase ®;, there could be two possibilities,
namely, the node was in a conflict in the previous phase ¢;_,, or it was not. In the former case the
duration of the present phase is added to the existing value of the duration of the conflict. In the latter
case the conflict is said to have started in the present phase and its duration is set to the duration of the

phase.

If the strength of C, is normal, then charge sharing is said to take place among the normal nodes
in the component. Given any sequence of transitions, one can define the initial value of the signal to be
the ternary value before the occurrence of the first transition and the fnal value to be the one after the
last transition. For each node mn, €C; let S(n,) denote the existing sequence of transitions at the node
and s, denote the final value of this sequence. We define an equivalers voltage v, corresponding to the
ternary signal s, as v,=0.0, a*Vpp, or V, depending on whether s,=0, u, or 1, respectively, where
0<a<1is an empirical parameter. The default value for a is 0.5. The charge on a node n, is defined
to be the product v,*CAP(n,), where CAP(n,) is a lJumped capacitance from node n, to ground. In the
case of charge sharing among the nodes of a component of normal strength, the total charge in the com-
ponent is computed by summing up the charges on each node in the component and this quantity is

divided by the total capacitance to yield a final voitage

. - RSN PSS -
. - - t .. - - -t e .
IR G RS TRy 5.y DA 1Pa Wy




118

Y, v,*CAP(n,)
n,EC,
o= .
f CAP(n,
n,€C,

The final ternary value s; reached by all the nodes in the component after charge sharing is then com-
puted from v; as s,=0, u, or 1 depending on whether v;&V,, V| <v;<Vy, or Vy<Xv,, respectively,
where V, and Vy are the low and high thresholds as defined in Chapter 3. For each node n,, if s,=5s¢
then no further analysis is required. Otherwise, if either s, or s; is a u, then the transition (s,,s,,kjﬂ)
is appended to the sequence S(n,). If s,€{0,1} and s;=-s,, then the pair of transitions
(s,,uk;), (u,se,k;4y) is appended to the node sequence S(n,). The transition times are then suitably

delayed and the sequence is filtered appropriately.

If |STG,|=1 and the strength of the component is either input or pullup then the component is
simulated as follows. Let n; be the unique strongest node in the component. Let S, be the sequence of
transitions at the strongest node occurring within the phase, ie, taking place between k; and kj,,.
Consider a normal node n, in this component. If the node was experiencing a conflict in the previous
phase then the conflict is declared as resolved in the present phase. Suppose a conflict that existed
between times k; and k; for some i<j at n, has now been resolved in the present phase. If the dura-
tion of the conflict k;—k; is more than a preselected parameter €., known as a con flict parameter, then
the conflict at n, is declared as a major con flict, otherwise, it is 2 minor conflict. In case of a major
conflict, a transition from the state of the node n, just before k; to the u state is created at time k; fol-
lowed by a transition from u to the initial value of S; at time k. Thus, in a major conflict, a node is
forced to occupy the u state for the entire duration of the conflict. Minor conflicts are totally ignored.
Once all conflicts (if any) are resolved, we again consider each normal node n, in the component. If the
initial value of S, is different from the final value of the existing sequence S(n,), then the appropriate

transitions to the iritial value of S are appended to the node sequence S(n,) followed by appending the

sequence S, itself. Each of the transitions appended is then suitably delayed and filtered.




119

Thus far, we have only considered transistors which are in the closed state during a phase ¢, A
pass transistor is said to have a state u’ if its gate node is at the u state in the present phase but occupies
a 1in the next phase. A transistor in the u’ state in the present phase is in an intermediate conduct-
ing state but would occupy a closed state during the next phase. This interpretation is radically quite
different from the interpretation of the presence of the X state at the gate node of a transistor in con-
ventional switch-level simulators such as MOSSIM [19] The second part of the simulation of the PTB
within a phase begins by constructing a supergraph with a vertex for each component C, of H, and an
edge between two vertices C, and C, if a transistor in the u’ state has its drain node in C, and source
node in C; or vice versa. The transistors whose gate signals are in the O state or in a u but not in a w’
state are ignored during the present phase. The connected components of the supergraph partition the
components of H, into supercomponents, such that each supercomponent consists of a set of components

linked by pass transistors in the u’ state.

If a supercomponent consists of only one component, then no further analysis is required for this
phase. Otherwise, the strength of the supercomponent is computed as the strength of the strongest com-
ponent. If the strength of a supercomponent is input or pullup and it contains more than one strongest
component, then this would lead to a conflict in the next phase and the simulation is postponed until
the next phase. If the strength of a supercomponent is normal then this would clearly lead to charge-
sharing in the next phase and, once again, the simulation is postponed until the next phase. The only
situation left to consider is when the strength of a supercomponent is input or pullup and it has only
one strongest component. Suppose the strongest component has only one strongest node whose final
value in the present phase is s;. Then for each node in each normal component, the transitions from the
final value of its node sequence to s; are appended to the node sequence. The transitions are delayed
only if the node is not in a conflict during the present phase. If the strongest component has more than

one strongest component then, once again, the simulation is postponed until the next phase.




Al

120

The algorithm, described above, for the simulation of a PTB is somewhat heuristic, and instead of
presenting a formal description, we will illustrate several of its features through an example. Consider
a PTB shown in Figure 4.7, consisting of six pass transistors. We would like to simulate the PTB
between 0.0 and 80.0 ns with a minimum resolvable time hg;,,= 0.01 ns. Thus transition times will be
represented by integer multiples of 0.01 ns. Let us suppose that we will ignore any conflict lasting less
than 0.1 ns, i.e, we choose the conflict parameter €.=10. For purposes of illustration we use an arrow
head at a node to indicate innut strength and a triangle to indicate pullup strength. Thus nodes ny, ns,
and n,, are of input strength while nodes n;, n,, ny, and n4 are of pullup strength. The nodes n4 and
n; are normal nodes in the circuit. The set of gate nodes for the pass transistors is NG={n,,n;,n;}. Let

us assume the sequences of transitions at these nodes, which have already been computed, to be

S,=(0,u,4025) , (1,0,4060) , (0,u,6025) , (u,1,6070)
S,=(1,u,2015) , (1,0,2025)

$;=(0,u,2025) , (1,1,2060) , (1,u,6075) , (1,0,6100)

respectively. The signal at the ground node ny is at O for all time and that at the supply node n, is at a

1 always. Node ng is driven by a pulsed voltage source with a sequence of transitions

S; = (0,u,1001), (u,1,1005) , (1,u,2014) , (u,0,2018) , (0,u,3002) , (u,1,3006) , (1,u,4013), (u,0,4017),
(0,u,5002) , (u,1,5006) , (1,u,6014) , (1,0,6018) , (0,u,7002) , (u,1,7006)

and the node ng, which is the output of an inverter with nj as input, has a zero-delay sequence

S,=-Ss. The transition times of the gate sequences S,, S,, and S,, arranged in order gives us the set
0={2015,2025,2060,4025,4060,6025,6070,6075,6 100}

which has nine elements and hence results in ten phases. The first phase is ¢,=(0,2015), the second is
$,=(2015,2025), and so on, until the last phase Which is ¢yo- We recall that s;; is the fixed ternary

state occupied by the gate node n; during phase ¢ We will represent these in a 3X10 matrix




121

Figure 4.7 : An example of a PTB

N P A A A S S N TR Y
OO T AR A e

ORI P PU P P P P ¥




122 T

»

]
Q = O
o s O
e ©0
- OO
-0 s
-0 O
-0 &
— O
B O

1 g
ol (4.7)
0

For example, from the third column of the above matrix we see that nodes n; and n, are in the O state
during the third phase and node n; is in the u’ state. The second row of the matrix says that node n, is

in the 1 state during ¢,, in the u state during ¢, and O from then on until the end. The simulation in

each phase will consist of two parts. In the first part we will contruct a graph on six vertices, namely, i
Ny, D4, Ns, N, N4, and ng, With edges corresponding to transistors whose gate signals are in the 1 state. : ,
The second part will deal with a supergraph whose vertices are components of the first graph and edges _
corresponding to transistors with gate signals in the u’ state. - '_
Phase 1, (0,2015)
! From the first column of the matrix A in Equation (4.7) we see that in this phase only node n, is -—’
in the 1 state. The graph is shown in Figure 4.8(a) and has four components. Components C; and C, : :.}.':
have only one node each and therefore no analysis is necessary. The strength of C, is input and it con- \::
tains only one input node ny. The node ng is always in the O state, i.e, its corresponding sequence is '\:
(w,0,—1). The the normal node n, in this component will have this transition appended to its existing Z::t
sequence, which is the null sequence initially. The strength of the component C, is also input and it
also contains only one strongest node, namely, ng. The sequence of transitions in S5 occurring within v
: b, is (O,u,IOOi) , (1,1,1005). This will be the zero-delay sequence to be appended to the sequence at \‘
the normal node ng in this component. Thus on delaying and filtering the sequences at the normal \:.:‘
nodes we get :’.’h“'c
,-
S, = (u,0,~1)
S = (0,1,1022) , (4,1,1188). ‘
Since there are no transistors in the u’ state in this phase, the second part of the phase simulation can be "‘11
bypassed. Y




(5]

)]

Ca

=8-3540

Figure 4.8 : Graphs and supergraphs for different phases in the PTB example

123




F,— T O T R B Y = v~ —>— ™~~~

124

Phase 2, (2015,2025) "

There are no transistors in this phase with gate signals either in the 1 or in the u’ state, and hence

the entire phase simulation can be bypassed. There is no change in the sequences S, and Sy given above. o

Phase 3, (2025,2060)

There are no transistors with gate signals in the 1 state in this phase. The graph therefore will

have no edges and hence the first part of the simulation in this phase can be bypassed. The signal at
node n; however, is in the u’ state, thus resulting in a supergraph with six vertices and two edges as - '-'_'.j

shown in Figure 4.8(b). Two of the supercomponents SC, and SC; contain only one component each

and therefore need not be analyzed any further. The supercomponent SC, has C, as its only strongest o
component, and the final value of node ns, Which is the only node in Cg, in this phase is 0. Since this &
agrees with the final value of the existing sequence at node n4, Which also happens to be the only nor-
mal node in C,, we conclude that there is no change in sequence S, in this phase. The supercomponent LR
SC, is of strength pullup consisting of a pullup component C, and a normal component Cs. The com- \
;:bnem C, consists of only one pullup node n,, the final value of whose sequence in this phase is a 1. :
Once again this agrees with the final value of the existing sequence at node ng, which is the only nor- :"
mal node in C;, and hence there in no change to either S+ or Sg in this phase. _
Phases 4, 5, and 6, (2060,6025) e
—
From time 2060 up to 6025, node nj is fixed at the 1 state and node n, is fixed at 0. Node n,,
however, is at O during ¢,=(2060,4025), occupies the u state temporarily during ¢5=(4025,4060), and :
- -

comes back to the O state during ¢,=(4060,6025). The graph during these three phases is shown in
Figure 4.8(c). 1t consists of four components. Two of these components, C; and C,, contain only one
vertex each and need not be analyzed any further. In C;, node n4 is connected to ns. Let S denote the
sequence of transitions in Sg occurring between 2060 and 6025, ie.,

S = (0,0,3002), (1,1,3006) , (1,0,4013) , (1,0,4017) , (0,1,5002) , (u,1,5006) , (1,1,6014) , (4,0,6018). 7




125

Since the initial value of S agrees with the final value of the existing S,, we simply append Sto S. In
C,. node ng is connected to the node n,. The sequence of transitions in S, occurring during these phases
is clearlv -§ Once again, since the initial value of -'5, which is 1, agrees with the final value of the

existing Sg, we simply append S 10 Sg. On delaying the transitions that were just appended we get

S-

(0,u,3023), (u,1,3189), (1,u,4032) , (1,0,4076) , (0,u,5023) , (u,1,5189), (1,u,6032) , (1,0,6076)

(0,1,1022), (u,1,1188), (1,u,3065), (1,0,3237), (0,u,4174) , (u,1,4657) , (1,u,5065) , (1,0,5237),
(0,4,6175) , (u,1,6658).

It must be noted that the last pair of transitions in S; takes place well after ¢b, and could be deleted by

the filtering operator during simulaiion in ¢»,. Furthermore, the second part of the simulation can be

bypassed.

Phase 7, (6025,6070)

The graph during this phase is the same as the one in Figure 4.8(c) and there is no change in either
S, or Sg after the first part of simulation in this phase. The supergraph constructed in the second part
of the simulation is shown in Figure 4.8(d). The supercomponent SC, consists of only one component
C, and hence need not be analvzed any further. The supercomponent SC,, however, consists of three
components, namely, C,;, C3, and C,. C; and C; are of input strength while C, is of pullup strength.
Since the transistors linking the components in this phase would be closed in the next phase, a possibil-
1ty of the three components merging into one during the next phase exists. The new component would
then have two strongest nodes, thereby leading to a conflict. Hence, we do not make any changes in

either S, or Sy even after the second part in this phase.

Phase 8, (6070,6075)

In this phase both n; and nj are in the 1 state, thus resulting in the graph shown in Figure 4.8(e).
The component C, has two strongest nodes, namely, n, and ng. Therefore a conflict is declared at the

normal nodes ny and ng. The duration of the conflict at both these nodes is 6075—6070=5, or 0.05 ns

in real time. Note that this situation was anticipated in the second part of the simulation of ¢-. The




126

component C, has a single node and hence need not be analyzed any further. Since there are no gate —

nodes in the u’ state during this phase, the second part can be bypassed.

Phase 9, (6075,6100)

The graph constructed in the first part of the simulation in this phase is shown in Figure 4.8(f). It
consists of four components, two of which, namely, C, and C,, have only one node each. The com-
ponent C; consists of a normal node n4 connected to an input node ng. The component C, has normal
node ng connected to the input node ns. Since both n, and ng were involved in a conflict situation in
the previous phase, this conflict is now resolved. The total duration of the confiict in either node was §
in integer time, which is less than €.=10, and hence the conflict is declared as a minor conflict and is
ignored. The final value of Sy is 2 0 while the state of the node ng is a 1 since it is the supply node.
Hence we append the pair (0,u,6075) , (u,1,6076) to S,, which on delaying would result in

S- = (0,u,3023), (41,1,3189), (1,0,4032) , (4,0,4076) , (0,u,5023), (u,1,5189) , (1,u,6032) , (4,0,6075),
(0,u,6106) , (u,1,6273).

The initial state of the node ng in this phase is a 0. The final value of Sg can be seen to be a 1.
However, the last pair of transitions (0,u,6175), (u,1,6658) takes place well after the present phase.
Hence this pair is deleted from Sg and now the final value of Sg is a 0 which agrees with the initial
state of the strongest node, ns, in its component. This is an example of the filtering operation to be dis-
cussed in Chapter 5. Since S5 has no transitions occurring in this phase, we are done with the first part
of the simulation in this phase. The second part is bypassed. Thus the sequence at node ng after this
phase turns out to be _
Sg = (0,4,1022), (v,1,1188), (1,u,3065) , (1,0,3237), (0,u,4174) , (v,1,4657) , (1,u,5065) , (1,0,5237). <

Note that we have deleted the last pair of transitions from the previous sequence Sg.

Phase 10, (6100,8000) L

In this phase the graph remains the same as in the previous phase. The sequence S- does not

change since n, is still connected to the supply node n,. The pair of transitions (0,u,7002) , (u,1,7006) E:::"

- . " A 4 s . P
LIPS DAUTPRRING R D P P AP S




127

from 85 occurring within this phase get delayed and appended to S.

Thus the final result is that the sequences at nodes n, and ng are

S- = (0,u,3023), (u,1,3189), (1,u,4032) , (u,0,4076) , (0,u,5023), (u,1,5189), (1,u,6032), (u,0,6076) ,
(0,u,6106) , (u,1,6273)

and

S$; = (0,u,1022) , (u,1,1188), (1,u,3065) , (u,0,3237), (0,u,4174) , (u,1,4657) , (1,u,5065) , (1,0,5237),
(0,u,7023), (u,1,7189).

4.3 Conclusions

We began this chapter by defining transitions between ternary states and showed how sequences
of transitions can be used to represent ternary digital waveforms of signals. We also presented algo-
rithms that perform a switch-level simulation of SRC's, MFB’s, and PTB'’s. In the case of an SRC the
sequence of transitions at the output node is constructed directly from the input description of its ana-
log waveform. In the case of an MFB we showed that the zero-delay state of its output node at any
instant of time is a B-ternary function of the states of its input nodes at the same time instant. Furth-
ermore, the output node of an MFB is of pullup strength and the only stronger node in the D-block of
the MFB is the ground node. On exploiting all these properties of an MFB, we came up with a fairly
simple graph algorithm based on simplification of graphs and eliminating internal vertices in simple
graphs to compute the sequence of transitions at the output node of an MFB directly from those at the
input nodes of the MFB. For a PTB, we presented a more complex, and somewhat heuristic, approach
utilizing the full power of conventional switch-level simulation. This approach is similar to that of
MOSSIM (19] except for the interpretation of the intermediate u state (or the X state as used in MOS-

SIM). We illustrated the approach with the help of a simple example.

If a block of a partitioned network appears in a simple SCC, and if the SCC’s have been processed

according to the ordering presented at the end of Chapter 3, then the sequence of transitions at each

input node to the block will be known for the entire time interval of interest. In this case the block

..............
......

i YT W S Ty PP UPY S, Y SO I, -




128

can be sumulated for the entire period of time by algorithms described in this chapter. Otherwise, the

blocks are simulated onlv over certain windows in time. The end points of these windows are specified

by a special algorithm to be described in Chapter 6.

.........

S e A e e e e e e e
PRSI o W WD PR A W W R Wl wPR




129

CHAPTER §

DELAY AND FILTERING OPERATIONS

The algorithms described in the previous chapter compute zero-delay sequences of transitions at -
the output nodes of an MFB and normal nodes of a PTB. By zero delay, we mean a transition at the
gate node of a transistor causes a transition in the switching state of the transistor immediately, and
this change affects the state of other nodes without any delay in time. In this chapter we will consider .
altering the transition times so that the resulting sequence would then correspond to a ternary
waveform that is fairly close to the ternary equivalent of the analog waveform if computed by an
accurate circuit simulator. The task of the delay operator is to alter the transition times only for a
complete pair of transitions. Each application of the delay operator is followed by a filtering operation
which accounts for the effect of delaying a complete pair of transitions on the future transitions in the
sequence. The filtering operator also transforms a partial pair of transitions into a form that can be

handled by the delay operator.

The delay operator is characterized by delay functions which are computed for a set of standard
circuit primitives and stored in tables. This step involves the use of an accurate circuit simulator to
simulate each primitive and could consume large amounts of computation time. The circuit primitives,
however, do not change as long as the technology remains fixed and hence the computations of the
delay functions need be performed only once for each technology. This step, therefore, can be con-
sidered as a preprocessing phase since the same delay tables could be used to simulate many different
networks designed in a fixed technology. The delay operator then computes new values for transition
times in a complete pair of transitions at a certain node in a general block in two steps. First, a map-

ping technique is used to transform the block into a configuration that resembles one of the primitives




130

for which the delayv functions have been computed. Time scaling is then used to transform the new

configuration into a standard primitive after which the delay values can be obtained through a table

lookup.

5.1 Computation of Delay Functions for Standard Primitives

In the case of conventional NMOS depletion load technology, we consider five basic configurations,

called primitives.

Primitive 1: A simple inverter driving a lumped grounded capacitance C,. An input signal V;, is

applied at the gate node of the driver transistor mp and the output, V,, is observed at the source node

of the load transistor m; as shown in Figure 5.1. We consider two types of input waveforms, namely,
Type "0": V, rising fromOVto 5V

and

Type "1": V;, falling from 5 Vo O V.

Primitive 2 : A pass transistor mp whose drain is connected to a constant DC voltage source Vpc and
the gate driven by a pulse V;, rising from O V to 5 V. The source node of my is connected to a
grounded capacitance C, as shown in Figure 5.2. The output waveform V, in this case is observed at
the source node of mp. We consider two types of Vpe namely,

Type "0": Vpc =0V
and

Type"1": Vpe=5 V.

Primitive 3 : A pass transistor mp whose gate is held fixed at 5 V and drain driven by an input pulse
Vis- The source node, which is also the output node, has a waveform V, and is connected to a grounded
capacitance C, as shown in Figure 5.3. We consider two types of input waveforms, namely,

Type "0": V, rising fromOVto 5V

R
o
P T

e

o
darniatad idhedend

RPN
. dt s
LM M




L TR T T T TR T MAFE S e e e e s e pd v » - -
R AT N REREAR I PR i it DAl ."(_‘-.'-_"I_"“ a R NS T VYIRS e N Ve N TN TN N Y oYY TY

131

Figure 5.1 : Primitive 1 of the delay operator

el flion e

ST R e P T T i T e s S S P T e . e e e e ’ L T e T U TP Tt et M,
. L T I T R N U

LT AR
WP ST e e N e, R
‘;.’h‘."_‘.' SO, COROB A AR




- -

-

TUET Y

.....
)

Q —
Al
AN

Figure 5.2 : Primitive 2 of the delay operator

LY .
v, = LR TR

RO S A AR AT AT A AT iy

132

s
a4

%
’ ‘I‘-":’

g

. I3 FE A
Vo . .
L] - -
PRI LA RS RN
v, AL
Ly

P
Jay

2l A

o



133

17t

FP-8515 .

Figure 5.3 : Primitive 3 of the delay operator




134

and

Type "1 : V;, falling from 5 Vo O V.

Primitive 4 : A simple inverter with driver transistor mp and load m; driving a pass transistor mp.
Grounded capacitors C; and C, are connected to the pullp node of the inverter and to the source node of
the pass transistor, respectively. A pulse V;, rising from O V to 5 V is applied at the gate of the pass
transistor mp while the gate of the driver transistor my, is connected to a fixed DC voltage source V¢
as shown in Figure 5.4. There are two types of Vp, namely,

Type "0": Vpc=0V
and

Type "1": Vpe=5 V.

Primitive 5 : Same configuration as primitive 4 except that the gate of the pass transistor my is heid
fixed at 5 V while a pulse V;, is applied at the gate of the driver transistor my, as shown in Figure 5.5.
Here, we consider two types of input pulses, namely,

Type "0": Vi, rising from O Vto 5 V
and

Type 1" : V,, falling from S Vto O V.

In each of the above primitives we have an input waveform V;, which varies between Vpp=5 V
and 0 V and produces an output waveform V,. For a fixed input waveform, the shape of the output
V, could depend upon several circuit, device, and process parameters. The parameters we would con-
sider are the following: zero-bias device threshold (VTO), both for enhancement and depletion devices,
a resistance for each device which is a function of the ratio of its channel length (L) to its width (W),
the transcor ductance parameter, KP=u,€,,/t, Which in turn is a function of the carrier mobility g,
the permittivity of the oxide material €,, and the thickness of the oxide t,,, and finally, the capaci-

tance at each node. Among these parameters we assume that all enhancement transistors have the same

zero-bias threshold, VTOg, all depletion transistors have the same VTOy, and that these values remain

,-,~
.o vt
s
LA
PR

)
2"
[ A

A




. W e W T

135

WP BY S P

Figure 5.4 : Primitive 4 of the delay operator

- -
. ‘

.

D L
o ‘
T b

. !
- L




136

o —

Type 1

[P N L)
Ll
[
1
[l
]
]
!
]
i

|
i
1
I
th 2

Q —

FP-8817

Figure 5.5 : Primitive 5 of the delay operator




AL )
e

)
4

pa TR T e Pliateadiad . Badase - I. l- I.‘ ikl . s Ll AR e iata ettt lnrBcate A e AR Auci i “IRe SAR AR JUAe Sbfe 2

137

fixed for a given technology. Typical values are VTOg=+1.0V and VTOp=—3.0V. The rest of the
parameters are allowed to vary between the different devices and nodes in the network. In the five
primitives described above, we let Rp=RES(mp), R; =RES(m, ), and R;=RES(mj;) denote the device
resistances of the driver, load, and pass transistors, respectively. We will choose a standard driver, a
standard load, and a standard pass transistor, and let Rpg, R, s, and Rpg denote the resistances of these
standard devices, tespectively. A typical set of standard devices is

Load :W=5pu,L=104u,

Driver : W=10 g, L=5 »,

Pass :W=10.,L=10 4.
For the above choice of standard load and driver devices, we notice that Ry ¢/Rps=4. We will refer to

this ratio as the standard inverter ratio and denote it by 8.

Let C;g denote the standard capacitance in the case of the i*® primitive. Typically, C;s=0.01 pF
for i=1,2,3 and C;s=0.1 pF for i=4,5. A primitive is a standard primitive if Rp=Rps, R =Rys,
C,=C,s in primitive 1, Rp=Rps, C,=C,5(Csg) in primitives 2 and 3, and Rp=Rps, R;/Rp=3§,
C,=C,s(Csg) in primitives 4 and 5. In primitives 4 and 5 let us define two dimensionless quantities
B=Rp/Rp and y=C,/C,. We use these two additional parameters to completely specify the standard

primitive. We allow B and y to be variable over ranges [BiBmax) 20d [¥mumsYmax) respectively.

Consider one of the above primitives. We treat V;, to be an analog ramp waveform with a full
swing of Vpp. This waveform will then cross both the threshold voltages V; and V. Let t; and t,
denote the two threshold crossing ﬁmes. Clearly, this change in the input waveform would cause the
output waveform V, to cross both the thresholds also. Let t', and t’, be the output threshold crossing
times. We define A;,=t,—t, as a measure of the slew rate of the input signal and two delay quantities,
At,=t',—t,, known as the inertial delay, and At,=t',—t'|, known as the rise/ fall delay. Thus, given t,

and the two delay quantities, we can easily compute t';=t,+At, and t,=t|+At,. We will use the

symbol At, to refer to both the delays collectively.

: L LIS




. T ep—

138

We will now consider computing At, for standard primitives. We first consider the standard
primitive 1 with rising inputs, 1e, type "0". In this case the device sizes and node capacitances are fixed
at their standard values. We consider an input ramp V;, with a certain rise time, resulting in some
value of A;,. We then simulate this circuit using an accurate circuit simulator, such as SPICE2 [1]
which gives us a falling waveform for V,. From both the input and the output waveforms we can
compute the thresh. d crossing times t,, t,, t,, and t,, and hence both the delays Aty and At,. We
then repeat this for a falling input ramp, i, type "1", with the same slew rate as before and compute
two more delay values. This experiment is then repeated with input ramps of different slew rates, each
time producing four more delay values (two in each type), which are stored in a table as functions of
A,,. The entire procedure is repeated to generate the delay tables in the case of standard primitives 2
and 3. The tables in all three cases are one-dimensional since their entries are functions of only A;,.

Each wable entry contains four values, namely, At, and At, for type "0" and the same for type "1".

In the case of standard primitives 4 and 5, we need to specify the values of C;, Rp and Rp in
order to completely specify the circuit. We do this with the help of the parameters B, ¥, and 8. For
fixed values of these parameters, we get C,=yC,, Rp=BRy, and R; =8Rp, where Rp and C, take on the
standard values. For the present we consider the inverter ratio 8 to be a fixed parameter. We will
remove this restriction in the later sections. We start with some initial values for 8 and 7. simulate the
circuit using SPICE2 [1], and obtain a set of delay values for each value of A;;,. We repeat this pro-
cedure for different values of B and vy and generate three-dimensional delay tables. Each entry in the
table contains four delay values as before; however, these values are now functions of three parameters,
namely, the slew rate of the input A,,, a ratio of driver to pass transistor resistance B, and a ratio of
capacitances ‘y.

We have therefore described the generation of delay tables for a fixed technology. In case of a

change in technology, the procedure has to be repeated to generate a new set of tables. It must be noted

that we consider a change in the values of the zero-bias device thresholds VTOp and VTOg as a change




RIS Al e A fieu

139

in the process technology. However, if there is onlv a change in the transconductance parameter (KP)
or any of the parameters that affect its value, we can use the same set of delay tables as will be shown
in Section 5.2. The delay values are plotted as functions of input slew rate A;, for primitives 1, 2, and

3 and as functions of A;,, B and y for primitives 4 and 5 in Appendix I for a particular technology.

5.2 Delay Functions for Nonstandard Primitives

In this section we will show how we can compute the delay values for nonstandard primitives
from the delay tables for standard primitives computed in the previous section. By nonstandard primi-

tives, we mean, primitives that have nonstandard devices and nonstandard node capacitances.

For the analysis below we choose a simple DC analog model for an NMOS transistor by ignoring
body effect, channel length modulation, short channel effects, and other higher-order effects. Then for
any primitive i, where i=1,2,3, we can write the first-order differential equation for the output

waveform in the following simplified form :

£.(V(1),V,.(¢) (5.1)

1
dt a;
where
_ Ry,
= KD
RpC,
nKP’

o,

62=°'J=

7 is a fixed constant for a given technology, and f}, f, and f; are some nonlinear functions of their
arguments. It must be noted that in case of a nonstandard primitive 1, the Equation (5.1) is obtained
by assuming that the inverter ratio 8=8;, where 85 denotes the standard inverter ratio. We justify

this assumption with the following arguments. In the case of falling output waveforms, i.e., a type "0

situation, the current Ip through the driver transistor is primarily responsible for discharging the out-

N,




r - - M A I e e e e e AEEARE A A - menc P e I Y W W W VW ST Wy W r =Y v~ Y~ w =y ~

140

put capacitance C, and hence there is no significant change if, in this case, the load transistor is replaced -
by a depletion device with R; =8sRp,. Similarly, for rising output waveforms, ie, a type "1 situation,
the current I; through the load transistor is primarily responsible for charging C, and hence there is no
significant change if, in this case, the driver is replaced by one with Rp=R, /8s. It is, therefore, reason-
able to assume that even in the case of a nonstandard primitive 1, the inverter ratio is fixed at 8, and

so 8 need not be included as the third argument for the function f.

In the case of a nonstandard primitive i, where 1=4,5, we can describe the analog behavior of the
two unknown waveforms V,(t), the voltage across the capacitance C,, and V(t), the output voltage,

with the help of the following two first-order differential equations :

dv,(v) 1
d't = ?i-fu(Vo(t),V,(t),Vin(t),B,'y) (5.22)
v _ L e v v,V (1),8,y) (5.2b) ‘""-::“
dr didoOl!xnvv" . v
where
__RG -
T4=95= kP

f41, £42, £55. and £, are some nonlinear functions of their respective arguments. Once again, we have
not included the parameter 8 as one of the arguments in \he above functions since it is reasonable to

assume that §=8; using the same arguments as in the case of primitive 1.

From Equation (5.1), it is clear, that in a fixed technology, if we fix the input waveform V,; and
the value of the parameter o, then we will get the same output waveform V, in primitives 1, 2, and
3. If, in addition, we also fix the type, namely "0" or "1", in a primitive, then fixing V;, is equivalent to
fixing the value of A;,, which is the measure of the input slew rate. Hence, in the case of a nonstan-

dard primitive i, where i=1,2,3, the delays (both inertial delay and rise/fall delay) at the output, col-

lectively denoted by At,, are only functions of \wo parameters, namely, A;, and o;. In the case of




141

primitives 4 and 5, from Equations (5.2a) and (5.2b), it is clear that if we fix V,, B. y. and 0, we will
get the same waveforms for both V, and V.. Hence, in the case of a nonstandard primitive i, where
i=4,5, the delayvs At, are functions of four parameters, namely, A;,, B, ¥, and 0. In the previous sec-
tion we have computed the delay functions for the case 0; = @5, Where 0jg denotes the value of the
parameter 0; computed for a standard primitive i= 1, 2, 3, 4, or 5. Using the same set of delay tables,
we will now demonstrate a technique, known as time scaling, to compute the delay functions for non-

standard primitives, ie., primitives with o; # O,

Suppose we introduce a new time variable 7 = art, where a is a scale factor. we can then rewrite

the Equations (5.1), (5.2a), and (5.2b) in terms of 7 as:

dv(r) _

= Z £(V (), V() (5.3)
dr o;
and
av,(r)
d‘f = 7:‘, £,(VA1),V(1),Vo(1),8,) (5.42)
dv (r)
—— = 7:_ £,(Vo(7),V,(7),V.o(7),8,7). (5.4b)

If we now set a=0;/0 5 in each of the above equations, we get :

VD) | 1 (vimvia) (5.5)
dr Tis
and
VAT _ 1 (VL)) (5.6a)
dT (Tis it o t A ¥ in | 17 02
dv (7)
Snbalp a‘: (VD) V (1), V. (1),8,y) (5.6b)

which are the same as Equations (5.1), (5.2a), and (5.2b), respectively, with t and o replaced by 7 and




142

a;s. Thus, the Equations (5.5), (5.6a), and (5.6b) represent the behavior of the standard primitives in a
new time domain with T as the time variable. The slew rate of the input in this new time domain is
A,,/a. If AT, denotes the delays (both inertial and rise/fall) at the output in the new ume domain,
then clearly At, = aAT,. But A7, can be obtained from the delay tables compiled in the previous sec-
tion for standard primitives for input slew rate A;,/a in primitives 1, 2, and 3, and for resistance ratio
B and capacitance ratio ¥, as additional parameters, in primitives 4 and 5. Let g;(A) denote the delay
functions tabulated as a function of input slew rate A, for standard primitive i, where i= 1, 2, or 3,
and let g;(A,B,y) denote those tabulated as a function of input slew rate, resistance ratio, and capaci-
tance ratio for standard primitive i= 4 or 5. We can then outline the scheme for computing the delay

values of nonstandard primitives from those computed for standard primitives as follows :
a)  Let i be the primitive number and let A, be the input slew rate. Compute o,

b) Compute a*~0,;/0;s.

¢) Ifi= 1, 2, or 3, then obtain At,—ag;(A;,/a).

d)  If i= 4 or 5, then obtain At,—ag;(A;,/a,B,y).

It must be pointed out that the delay functions for nonstandard primitives could be computed
just as in the standard case by introducing an additional parameter o; in each of the tables for the i*®
primitive. This would then mean storing two-dimensional tables for primitives 1, 2, and 3, and four-
dimensional tables for primitives 4 and 5. By using the scaling technique outlined above, we have
managed to obtain the delay values with only one-dimensional and three-dimensional tables, respec-
tively. Thus we have considerably reduced both the CPU-storage space and the preprocessing time for
generating the delay tables However, we have used a very simple device model for the NMOS transis-
tors to derive this technique, and this could cause some errors in the delay predictions if more complex

device models are used. This is one of the factors responsible for timing errors of the delay operator.

. R P RN R IS I SN S T ST S R TRt PO SR S R R e .
— b, S, . [ AT T AL S ) -'\_'Li A S N Gl A A G AT ST ST S o Tl N W W o bl )

N




= 143
. 5.3 Delay Operator for MFB's and PTB’s

In this section we describe a delay operator which alters the transition times in a complete pair of

i zero-delay transitions at the output node of an MFB and at normal and pullup nodes of a PTB.

We first consider an NMOS network in which each MFB is an inverter and each PTB consists of a
single pass transistor. Let n, be the output node of an inverter and let (x,uk;), (u,~x,k;,,) be a pair of
complete transitions of the zero-delay sequence S, computed by the switch-level simulation algorithms
given in Chapter 4. Also, suppose that n, is not an ioput node of a PTB. Let C,=CAP(n,) denote the
lumped capacitance from the output node to ground. Let Rp and R; be the device resistances of the
driver and load transistors of the inverter, respectively. Let us first consider the case x=1. In this case
the pair (O,u,k;), (u,1,k;,,) must have been in the sequence at the input node of the inverter. We
model this as a type "0 situation in a primitive 1 with A;,=(k;4;—kj)Xhy,. We then compute
a,=(RpC,)/(MKP) and the scale factor a=0,/0;s. Let A7, and A7, be the inertial and fall delay
values obtained from the delay tables for the type "0" case in a standard primitive 1 corresponding to
the input slew rate of Aj;/a. We then compute kX'j=k;+aA7,/hy, and K, =k';+aAr,/hy, and
replace the transition times k; and k;,, by the new times k’; and k'j,,, respectively, in the sequence S,.
In the case x=0 we compute the new transition times in the same manner as above, except that we

model it as a type "1” situation in a primitive 1 and compute o, with Rp=R; /8.

We now consider a PTB consisting of a single pass transistor. The only situation in which we will
use the delay operator is when one node among the drain and source nodes is a normal node and the
other is either a pullup node or a node of input strength. Without loss of generality we assume that the
source node is the normal node with a capacitance C,. Consider a certain phase in the simulation of the

::;'.‘_. PTB and let the complete pair of transitions (x,uk;) , (,~x,X;,,) be discovered at the source node dur-
e ing this phase. Let us first consider the state of the gate node to be fixed at 1 during this phase. Then

clearly the same pair of transitions must have occurred at the drain node during this phase. If the

drain node is of input strength, then this is modeled as a primitive 3 with type "0" if x=0 and type "1"




Ry Ty

144

if x=1. In either case the delay values for this nonstandard primitive are computed with
A, =(k;4;—khy,, and 03=(RpC,)/(NKP) where Ry is the resistance of the pass transistor. If the drain
node is of pullup strength then let Rp and R; denote the resistances of the driver and load transistors in
the corresponding inverter and let C; be the capacitance at the drain node. If x=1, we model this as a
type "0” situation in primitive 5 and compute A;, and O as in the case of primitive 3, shown above. In
addition, we compute B=Rp/Rp and y=C,/C,. If x=0, we model this as a type "1 situation in primi-
tive 5 and compute the same parameters as before, except that, B=R;/A8sR;). In either case we can
alter the traasition times k; and k;,,; by computing the delay values for the appropriate nonstandard
primitives. We now consider the case when the gate node of the pass transistor is in the u’ state in the
phase. By definition, there must be a transition (u,1,k;) at the gate node. Let the transition time of the
previous transition at the gate node be k;, where k;<k; If the drain node is of input strength we
model this as a primitive 2 with type "0" if x=1 and type "1" if x=0. If the drain node is of pullup
strength, we model this as a primitive 4 with type "0° if x=0 and type "1" if x=1. In all these situa-
tions we compute A;,=(k;—k;)h,,, and the other parameters as in the previous case and compute the

delay values for the appropriate nonstandard primitive.

We have thus defined the delay operator for inverters and PTB’s consisting of single pass transis-
tors. In the case of a general MFB, we describe a mapping technique that maps the MFB into an
equivalent inverter and use the delay operator on the inverter. In the case of a general PTB, we
describe a mapping technique based on the use of the Elmore time constant [46], which maps a com-
ponent (or a supercomponent) occurring in a phase during the simulation of the PTB into an equivalent
single pass transistor driving some equivalent load capacitance. We can then use the delay operator,

defined above, on this single equivalent pass transistor.

Consider an MFB with output node mn, and a load transistor of resistance R;. Suppose
C,=CAP(n,) is the capacitance at the output node of the MFB. Now, let us consider the case when a

complete pair of zero-delay transitions (O,u,k,-) ) (u,l,k,-,,,) occurs at the output node. We then map the




145

MFB into an equivalent inverter driving the capacitance C,, with load transistor having a resistance R,
and a driver transistor with resistance R;/8s, where 85 is. the standard inverter ratio. If
(l,u,kj) ’ (u,O,kjﬂ) is the sequence of transitions at the input node of the equivalent inverter, then

(0,uk;), (u,1,k;4;) would be the zero-delay sequence at the output node of such an inverter. Thus, the

two configurations are zero-delay equivalent. We assume that these two are also delay-equivalent and
S obtain new transitions k'; and k'j,; by using the delay operator on the inverter and treat these as the
h new transition times at the output node n, of the MFB. Let us then consider the other case when the

S zero-delay transitions (1,uk;), (n,O,kj,,,) occur at the output node of the MFB. In this case we first

construct a network of resistances with a resistance of value =RES(m;) between the drain and source
nodes of a driver transistor m; if its gate node is at the 1 state in the interval (ky;,kjs1+1). Let Reg
denote the equivalent resistance between n, and ground in such a network. Let C,q denote the sum of
all capacitances at the internal nodes of the above network and C;=C;+C,, denote the total capaci-
tance obtained by lumping all the internal node capacitances on the output node. We then map the
MFB into an equivalent inverter driving a net capacitance C; with a driver transistor of resistance
Rp=R.q and load transistor of resistance Ry =8sR.q. The sequence at the input node of the equivalent
inverter would then be (0,u,k), (u,1k;,,). We have two zero-delay equivalent configurations once
again and we define the delay operator on the MFB to be the delay operator on the equivalent inverter.
We illustrate the mapping technique with an example shown in Figure 5.6(a). In this case, the zero-
delay sequence at the output node n, is (1,u,100) , (1,0,200). In the time interval (200,201), we see
that the signals at the gates of transistors my,m;,m,, and mg are each in the 1 state. Hence, we obtain

the resistive network as shown in Figure 5.6(b), with R;=RES(m;), and compute the equivalent

impedance R.,. The equivalent inverter, shown in Figure 5.6(c), consists of a driver with resistance
:r-:_:".‘_ R, a load with resistance 8GR, The signal at the gate terminal of the driver is (0,u,100) , (u,1,200)
and the effective load capacitance at the output node of the inverter is the sum of the node capacitances

at nodes n, n,, and 0, in the original MFB as shown in Figure 5.6(c).




—

(0,u,100), (u,1,200) (u,1,-1)
mi

Nyp———] ———dn

rl (1,4,100), (4,0,200) o,
{ < o

-
~ o
Ng -

.[. m2]| | (u.0.-1)

m3

2
(u,1,~1)-—| mé ms:l |-. (u,1,~1)

b)

(0,u,100), (u,1,200) e—] | Ro = Rag

Figure 5.6(a):
(b):
(c):

Mo
N2 ﬁ Reg = Ry+ Ry ll{Ry+ Ry)
Rs
Voo
R.=53Rp
No
\ -
C_= CAP(ng) + CAP(n, )
+ CAP(ny)
£P-g633
An examplie of an MFB -~y
The corresponding resistive network e
The equivalent inverter
‘,",q
=9
.:'wl
1




.":-._ y .;".‘—. _'I._' e LAMNE SN AN Ade i et o sl aodl- il sl asid )

MMM ANE A ANL AN SN AN M oML ER S JRA A

147

We now digress a little to discuss the implementation of an algorithm to find the equivalent con-
ductance between two terminals 8 and b in a network of conductances (or resistances). We can treat
such networks as weighted graphs with each edge having a weight equal to the corresponding resistance
and hence can use the terminology we developed for graphs for networks as well. Any node other
than a or b in the network is an internal node. Clearly, any set of parallel conductances can be
replaced by a single conductance equal to the sum of the parallel conductance. We define this process as
the simpli fication of the network. Now consider an internal node of degree 2 in the network. We can
eliminate this node from the network by replacing the conductances G, and G,, connected to it by a
conductance of value G,G,/(G,+G,) between the two nodes adjacent to it. It must be noted that elim-
inating such a node does not change the equivalent conductance between the nodes a and b in the net-
work. We now extend the notion of eliminating an internal node to nodes of degree k=2. Let ny be
an internal node of degree k=2 in a simplified network and let nyn,, ..., n, be its adjacent nodes.
Let G; be the conductance between n, and n; for each i=1,2,...,k. We then define the elimination of

ny from the network to be a new network without ng with a conductance G;; between each pair of

K
nodes n; and n; originally adjacent to ng, such that G;;=G;G;/G,,,, Where G.:=2.G; is the sum of all

i=1

the conductances connected to ng in the old network.

Theorem 5.1 : The elimination of an internal node from a simple network. does not change the
equivalent conductance between the nodes a and b in the network.

Proof : Let ng be an internal node of degree k=2 and let ny,n,, ..., Ny be its adjacent nodes. Let I
denote the current flowing through G; from n; to n, in the network for each i=1,2,...,k, as shown
in Figure 5.7(a). If for each i=1,2,...,k we can show that the sum of the currents flowing away
from n; through the all the conductances G;;, j=1,2,...,k j#i in the new network is equal to I,

then we are clearly done with the proof. To this end, suppose v; denotes the voltage at node n; for each

k
i=0,1, ...,k Then I;=G,(v;—v,) and } I, = 0. Therefore,

i=1

-
-
i
-
0
»




Ly Ty vaw.

Figure 5.7(a) :
(b):

An internal node, n,, in a conductance network
The network obtained after eliminating n,




5 " Bl A A B Bl e ‘At Al Sl el Al et S fha i
A AR -t - e T e T [ A Y i s T . AR A A A I ] A " ”

LU

149

x
2Giv;

_i=l

Vo= G
tot

A
where G, = ZGi. On substituting this value for v, in the previous equation, we get for each
i=1

i=L2,...,k

2.Gjv;

G.v.—G. = =1
171 1 Gm 1

which on simplification gives

ZGij(vi—vj) = Ii‘

joui
Now the above equation is valid for each i=1,2, ...,k and, furthermore, its left-hand side is precisely

the total current leaving n; through the conductances Gj;, j=1,2,...,k j*¢i. The network obtained

after eliminating n, is shown in Figure 5.7(b). Hence the proof is completed. O

QOur algorithm to compute the equivalent conductance G,, between two terminals a and b in a

network of resistances can now be described as follows :

1)  Simplify the network, ie, replace all conductances in parallel by a single conductance equal to

the sum of the parallel conductances.

2)  Pick an internal node of smallest degree in the existing simple network and eliminate it from the

network.
3)  Simplify the resulting network.

4)  If there is an internal node in the existing network, then go to step 2. Otherwise, set G,, to be the

conductance between a and b in the final network and STOP.

Notice the similarity between this algorithm and Algorithm 4.2 used to compute the zero-delay

sequences at the output nodes of an MFB. In fact, both these algorithms can be run in parallel on the

........................
...............................................
..................................

YR N N Y L SO e N . v SRR T R T I It et e Y e

R}
PR



150

same data base used for representing graphs. It must also be noted that the above algorithm would still
work if we had picked any internal node as the next candidate for elimination However, we, pick the
node with the smallest degree for the same reasons as explained in Algorithm 4.2. This completes our
discussion on the implementation of the algorithm to compute the equivalent conductance between two

terminals in a network of resistances.

We now describe the delay operator for a general PTB. We begin by introducing the notion of
the Elmore time constant [46] in an RC-tree. A graph T is a ¢ree if it is connected and has no cycles. In
each tree, we can focus our attention on a special vertex called the root of the tree. If a vertex aisa
root of a tree T, then T is said to be rooted at a, denoted by T,. In any tree, there is a unique path from
the root to any other vertex in the tree (in fact, there is a unique path between any two vertices in a
tree). We say that a network composed of resistances and capacitances forms an RC-tree if the subnet-
work of resistances, when viewed as a weighted graph, forms a tree and there is a capacitance from
each node of the network to ground. Note that all capacitors in such a network are grounded, i.e., there
are no floating capacitors. Consider an RC-tree rooted at node n, and let nj,n,, ..., n, be the rest of
the nodes. Let C; denote the capacitance from node n; to ground, for each i=1,2,...,p. Let P; denote
the unique path from the root ny to the node n; and let P;;=P;NP; denote the portion of the path
between the root and n; that is common to that between the root and n;. Let R;; denote the sum of all
the resistances in P;;. If P;;=@, then R;;=0. We can now associate a time constant 7;, known as Elmore
time constant for each node n; in the RC-tree, defined as

7= iR-,,Cj.
j=1
Without loss of generality, we need only consider rooted trees in which the root vertex has degree 1,
since if the root vertex has degree k> 1, then we can split this vertex and obtain k subtrees, each rooted
at a vertex of degree 1. As far as computing Elmore time constants is concerned, we need only consider
the subtree containing the node for which the time constant is to be computed since the node capaci-

tances in the other subtrees have no effect on its computation. Let us, therefore, consider an RC-tree

-



LR [ ) LR s S - I A RS MRS NCR A hta it At A A A S A S Akl it A Bt~ Aon N

151

rooted at node ng and let R, be the (unique) resistance connected to ny. An exampie of such a network
is shown in Figure 5.8. Then for each node n; we define an Elmore equivalen: capacitance Ceq.i to be
the ratio of the Elmore time constant 7; to the resistance R,, i.e., Ceq.i=7i/R,. For the node n, in the

network in Figure 5.8, the values for the Elmore time constant and equivalent capacitance are

Ty =R1(C1 +C2 +C3+C4+C5+C6 +Cy)
Ceq.l =C] +Cz +C3 +C‘+Cs +C6+Q

while for node n4 they are

7,=R,(C;+C;+C3+C(+C5+C +C,) + Ry(C;4+C,+C,+C5) + R,(C,+C,) + R,C,

R R;+R R R, +R+R
c,q_,=c,+cz+(1+_k_’.)c,+(1+- 3R ‘)C,+c5+(1+R_’)c6+(1+_3_R‘__”)(‘,,.
1 1 1 1

Let us now consider a phase in the simulation of a general PTB. Let O be a component of the
graph that is constructed in the first part of the simulation in this phase. The only kinds of components
on which we will be using the delay operator are those containinig exactly one strongest node, and that
node being of input or pullup strength. The other kinds of components would lead to conflicts or
charge sharing. Therefore, let O be a component with the strongest node ng and let m,,n,, ... »n, be
the rest of the nodes in the component. We then construct an RC-network from O by replacing each
edge by a resistance equal to the resistance of the corresponding pass transistor and a capacitance
C;=CAP(n,) from each node n; to ground. We first simplify the network and then obtain a spanning
RC-tree, T, from the network. By a spanning tree of a graph, we mean a subgraph which is a tree and
includes all the nodes of the original graph. The fact that every connected graph has a spanning tree is
a standard result in graph theory, the proof of which can be found in almost any textbook on the sub-
ject, such as [50} For each node n; , i=1,2, ..., p we compute the delays for a compiete transition in
its node sequence as follows. Let R, be the unique resistance connected to the root ng in the tree T. In
case the degree of ng is k> 1, we then split the node ng and consider the rooted subtree containing n;.

We begin by computing the Elmore equivalent capacitance Ceq.i at this node, which involves the com-

putation of the Elmore time constant. We then construct an equivalent circuit with a single pass K




W ey

*

..

| .
’

[ Jadity

.

152

FP—8534

Figure 5.8 : An RC-Tree rooted at n,

<
B
S
n:..‘
.« e T T T T U e REETA et et et ettt et Tt e Tt e T ettt
-..'-. e e ey e .\"“-'~ Y -'.‘.“_q"-"‘-.~ R A Ny '.'.'.' L " -.‘...'\'_\'_‘- _'.._‘.' N '.'_\.\.'.. ~ AT RS ‘.-_'-‘. .._ LR \.‘\ .\‘.‘-'." _\.' ‘..'_ Y ‘}‘



‘
DYOENNDD o,
,
H
.

:.:.1_1_',','-

153

transistor of resistance R, with drain node m, and source node n;. The capacitance at node n, is
CAP(ny) itself, while the capacitance at the source node of this equivalent pass transistor is Cpq;. If Do
is of input strength, then this is a nonstandard primitive 3. If ng is of pullup strength, then we
replace the corresponding MFB by its equivalent inverter and treat the whole configuration as a non-
standard primitive 5. We then obtain the new transition times for node n; by applying the delay
operator on the equivalent single pass transistor configuration. This process is repeated for each node in
the component. In case the node n, is of pullup strength, we delay the transitions in its sequence by
lumping all the capacitances in the RC-network at ng and reduce the resulting configuration to a non-

standard primitive 1, using the mapping technique that maps an MFB into an equivalent inverter.

Let us now consider a supercomponent SC in the second part of the phase simulation of a PTB.
We will only consider the situation when SC has only one strongest component and that such a com-
ponent has only one strongest node. The other situations lead to conflicts or charge sharing and hence
are not handled by the delay operator. We will, first, restrict ourselves to the case when SC has only
one edge, say €. Let Oy and O, be the two components jined by € and let Ry denote the resistance of
the pass cransistor corresponding to this edge. We define contraction of a component to be collapsing all
the vertices of the component into a single node with capacitance equal to the sum of all the node capa-
citances in the component. The strength of this node is the strength of the component. Without loss of
generality let us assume that Oy is the stronger component. Hence, we will be interested only in
obtaining delay values for transitions at nodes in component O;. Let n, be the node (drain or source) of
the pass transistor corresponding to € in the component O,. We begin by obtaining a spanning tree T,
of O, that is rooted at m;. Let nq be the strongest node in Qp. We contract the component Oy into a sin-
gle node, which we will still call ng. We then modify the tree T, by including the node ny and pin-
ing it to m; by an edge €. We then declare the root of the new tree T to be the node n,. We then con-
struct an RC-tree rooted at n, by replacing each edge of T by the resistance of its corresponding pass

transistor and a capacitance from each node to ground. We can now compute the Elmore equivalent

capacitance for each node in this RC-tree. Then for each node in O, we consider a single pass trassistor



P

e and sed Mek e iandl aed 2 Bad Al A

154

w1th drain node ng and its associated capacitance and source node driving the Elmore equivalent capaci-
tance of the node under consideration. This then corresponds to a nonstandard primitive 2 or 4 depend-

ing upon whether the node n, is of input or pullup strength, respectively.

The case of a supercomponent SC having more than one edge seldom occurs in practice. We shall,
however, discuss this situation too for the sake of completeness. We begin by constructing a spanning
tree on the components of the supercomponent with the root being the strongest component, say Og. Let
ng be the strongest node in Oy Consider an edge of this tree e, joining components O; and O; Without
loss of generality, assume that O; is closer to the root than O;. In this case O; is said to be the father
component and O is the son component of e,, respectively. For each edge e, then, we apply the delay
operator on the nodes of its son component by contracting all the components present in the path con-
necting its father component to the root into a single node ng and treating €y as joining ny and the son
component. This corresponds to the situation of SC having only one edge e, and so we can now use the

RC-tree technique described in the previous paragraph.

We have, therefore, described the delay operator which could be used to alter the transition times
of a complete pair of zero-delay transitions at the output node of any MFB and at normal and pullup
nodes of any PTB. There are mainly two steps involved. The first step is to map the MFB or PTB into
a nonstandard primitive and the second step is to use time scaling to compute the delay values in non-
standard primitives from those computed for standard primitives. Both these steps could cause timing
errors. However, as we shall see in Chapter 7, the switch-level timing estimates generated by this

approach are fairly accurate in a variety of NMOS circuits considered.

5.4 Filtering Operation

L

In this chapter, thus far, we have described a delay operator which alters the transition times in a

'
.
+
.
.
]
o g

.

pair of complete transitions. Thus, if a sequence consists of only a pair of complete transitions, then we

r e Y

v
s

can use the delay operator directly on this sequence. In this sequence we will consider the effect of

et e e

2t




e A i I b e A P i 2 S i e

155

delaying a pair of complete transitions on the subsequent terms of the sequence. As an example, con-

sider an inverter, with the following zero-delay sequence computed at its output node.
S.=(0,uk,), (u,1,k,), (Luk;), (u,0k,).

This sequence is the result of a compatible and chronological input sequence, and is, therefore, also com-
patible and chronological. Let us first apply the delay operator to the first pair of transitions and com-
pute the new transition times k'; and k',. By definition, k', <k',. If k', <k; then we simply apply the

delay operator to the second pair also and compute the resulting delayed sequence to be :

S°=(0,ll..k'l) N (u, l,klz) . (l,u,k'3) » (u,O,k',,).

This delayed sequence is compatible and chronological. If, however, k'; <k; <k';, this means that at
the time the driver transistor of the inverter starts to turn ON, the output node is still in the u state
and so the (u,1)-type transition cannot occur at the output. Hence we simply compute the delayed out-

put sequence in this case to be :
So=(0,u9k'l) ’ (“90’k4)

which is a partial pair of transitions that would represent a glitch at the output node. Furthermore, if
k;<Xk';, then there cannot be any transitions taking place at the output and so the output remains in

the O state for all time which is represented by the sequence :
S,=(u,0,—1).

What we have described above is the example of the filtering operator, which takes the zero-delay
sequence as its input sequence and using the delay operator computes an output sequence that provides a
better representation of the ternary equivalent of the analog waveform at the node under considera-

tion.

We now describe the filtering operation in general. Consider any sequence S of transitions. We
mark a term of S as "delayed" if the delay operator has been used previously on this term, otherwise,

we mark it "undelayed.” The subsequence of S consisting of all its terms marked "delayed" is called the

.......




P

T

156

delaved part of S. The rest of the sequence is the undelayed part. Thus, we can consider any sequence

of transitions to be the catenation of its delayed part and its undelaved part. Let us consider S as an
input sequence to the filtering operator. The output of the filtering operation will then be a sequenc; S
i which is computed as described below. First, the filtering operator replaces any partial pair
(x,uk;), (u,xXk;,,) of transitions in the undelayed part of § by two complete pairs

(x,u k), (u,~xk;+1), (-x,uk;,,—1), (,x,k;,,). This is done by procedure COMPLETE (S) used
& below. We will also make use of the procedure WINDOW ( Sk,,k,) that returns those transitions in §

2 occurring between K, and k,. The algorithm that performs the filtering is given below.

Algorithm 5.1
procedure FILTER (S)
begin _
S—@;
S—COMPLETE (S);,
while there is a transition in S marked "undelayed" do
begin
(x,u,k;)+ first transition marked "undelayed" in S;
(u,~x,k;,, )+ next transition marked "undelayed” in S;
K,k —DELAY (k;k;4,);
mark (x,u,k;) as "delayed” in S;
mark (u,~xk;,,) as "delayed” in S;
S—WINDOW (S,0,k;):
y+ final value of §;
if (y=x) then
append (x,u,k’;), (u,~x,k',,) S;
else if (y=u) then
append (u,~x,k;,,) S;
end if
end
return S;
end

The sequence of transitions S obtained after filtering can easily be verified to be compatible and

chronological.




MEgan Bow Mera AN SIS (I Sl I A sl A Ant M Al et e

157

;::'.f:. SIMULATING STRONGLY CONNECTED COMPONENTS

In this chapter we discuss the use of a special windowing technique to simulate the MFB's and
PTB’ within a strongly connected component (SCC). The algorithm presented splits the entire time
interval of interest [0,K] into various time slots or windows such that all pairs of signal transitions
(both partial and complete) take place entirely within one of these windows. This is achieved by main-
taining a sequential list of intervals of transitions which is updated dynamically as the algorithm
progresses. The algorithm is, in a sense, event-driven, since only those circuit blocks that are active
within a window are processed and the fanouts of the output nodes of these blocks are scheduled for
processing in the future. We begin by reviewing two well-known and classical techniques, namely, the
waveform relaxation method and the time-point relaxation method, that could be used to simulate the
blocks in the network. We will show that neither of these schemes are entirely suitable in our type of

simulation and hence there is a need for the event-driven windowing technique that we will present.

6.1 Waveform Relaxation Versus Time-point Relaxation

Let O(N,M,L) be a partitioned NMOS network in which the set of blocks E is further parti-
tioned into its strongly connected components E,,E;, ..., L,. Let [0,K] denote the time interval of
simulation. Suppose the SCC I, is currently scheduled for processing. If E; is a simple SCC then the i
single block contained in it could be simulated during [0,K] by the algorithms discussed in the previous

chapters. Hence, suppose that £,;={Q,,Q,,..., Q,}, where p=2 and each Q; is either an MFB or a

PTB.




158

The blocks within E; could then be simulated using a waveform relaxation iterative scheme
WR_SIM described below. Let R; be an ordering on the blocks of Z,. Without loss of generality we
can assume that the blocks of I; are placed according to R;, ie, Ri(Q;)=j for each j=1,2,...,p. For
anv node n,; €N in the network let S, denote the most recently computed sequence of tra.nsitions or the
presen! sequence at the node and let §k denote the previously computed sequence or the past sequence
at the node. Also, let s, €{0,1} denote the initial state at node ny, which is either provided by the user,
or is arbitrarily set to 0. Let N; denote the list of all the ciréuit nodes contained in the blocks within
Z,. The algorithm begins by setting the present sequence of transitions at any node that has not been
previously computed to a constant sequence corresponding to the initial condition at that node for all
time [0,K]} The iterative procedure begins by setting the past sequence equal to the present sequence for
each circuit node in the SCC. The individual blocks within the SCC are then simulated according to
the ordering R; over the entire time interval [0,K] by algorithms described in the previous chapters. In
each case the present sequences at the input nodes of a block are taken as the input sequences for simu-
lation and the present sequences at the output nodes of the block are updated after the simulation. The
procedure EQUAL then checks for equality between the present sequence and the past sequence during
the time interval [0,K] at each node and returns the value O if they are found equal and 1 if not. Here,
two sequences are considered equal if they have the same number of terms and are both type-equal as
well as time-equal as defined in Section 4.1 in Chapter 4. The iterations are carried out until both

present and past sequences are found equal for each node in the SCC.

Algorithm 6.1

Input : A strongly-connected component E; and an ordering R,
such that the blocks within E; are arranged according to R;.
Output : Sequences of transitions at output nodes of each block within L.

procedure WR_SIM (Z,R;,0,K)
begin

- N - . .. - - . . RSN . - - . - - . . . .a .. . - - BN . a4t - a® . Tat e tat et Lt
", e et e e e e e . A e N L LR N T T R T [SURAL RN . NCRAN
. T e e e e T T T T T e e T T e e s e el e L ST T N N .. .
e T P U N Il 1
DRSPS SRR ALY PSP P Wiy Ay B W P 1




Praps

Eali i a4 DO S AN AN Sl L Al A e aral sl i il asih

159

for each node n, €N; do
begin
if (S, =@) then
Sy +—(us,,—1)
end if
end
repeat
for each node ny €N; do
Sk ’—Sk;
for j—1 until p do
if Q;isan MFB then
MFB_SIM (Q ,0,K)
else if {1;is a PTB then
PTB_SIM (2 ,0,K)
end if
ind«~0;
for each node ny €N; do
begin -
ind—EQUAL (S,,S,,0,X);
end
until ind=0
end

We now discuss several features of the above algorithm. We first consider obtaining an a priori
ordering R; on the blocks of the SCC. Given any such ordering, we define a node to be initially relaxed
if it is an input node of a block within the SCC and its present sequence has not yet been updated in
the current iteration at the time of simulating the block. In the above algorithm, the present sequence
of a node gets updated only after simulating the block to which it is an output node. Hence, in the case
of an initially relaxed node the blocks in its fanin list are ordered after the blocks in its fanout list.
Given an ordering on the vertices of a digraph, we say that an arc is a forward arc if its tail vertex
appears before its head vertex in the ordering ; otherwise, the arc is said to be a feedback arc. If we
consider the vertices of the derived digraph, as defined in Chapter 3, corresponding to the blocks within
the SCC E;, then any ordering R; would result in a set of feedback arcs. Furthermore, the number of
feedback arcs produced by R; is an upper bound on the number of initially relaxed nodes due to R;.
Clearly, the best choice for R; is one which results in the least number of initially relaxed nodes since
this would speed up the convergence of the above algorithm. However, this corresponds to finding an

ordering that results in the minimum number of feedback arcs, which is an NP-Complete problem

N N T W P N N W W W W W W I W WL vy

AR Sal T AR

¢ v s x

'Ad', ala‘a o ety




ARG e i Jhtns /i 8 S 2 ettt 2 “h e kMt At S M e i Sy v

160

[52.53,57} Therefore, the choice of the a priori ordering R, affects the speed of convergence of the -
above algorithm and finding the best ordering, in this respect, turns out to be a difficult problem from

the computational complexity point of view. This is one of the drawbacks of the waveform relaxation o

scheme.

Another aspect that needs to be considered is that the number of iterations turns out to be propor- : K
tional to the number of transitions at the various circuit nodes in certain circuits such as the ring oscil-
lator. This is also one of the major drawbacks in the waveform relaxation method WRM [9] Finally,
this scheme requires storing two sequences of transitions for the entire time interval [0,K] at each node o
which could be a considerable amount of computer storage for large SCC’s. In spite of all these draw-
backs, this scheme could still be used in our type of switch-level simulation since it is easy to imple-
ment and is compatible with the delay and filtering operations. In Appendix II, we will discuss the
problem of finding an optimum ordering that results in the minimum number of feedback arcs in a

digraph. We also discuss an algorithm, proposed by Younger [60], that finds such an ordering in case of a e

a
general digraph. This would then be the a priori ordering R; used in Algorithm 6.1. ;-:1'"

An alternative approach is to use the time-point relaxation method for the simulation of the
entire partitioned network Q(N,M,E). In this approach there is no need to handle blocks within an
SCC in a special way since the scheme is eveni-driven, as discussed in Section 2.3.1, and is used in ':j o
several digital simulators [13,17,19,25,26] In order to use this approach in our type of simulation, we
could define an event as a transition (x,y,k;) occurring at time k;. A time queue (TQ) is used to main-
tain a list of events occurring at different instants of time. If an event (x,y,k;) occurs at some node n;
in the network, then all the blocks in the fanout list of n; are processed at time k;. If on processing a
block at k;, a transition is observed at an output node of the block, then this is defined as a new event, o
and is scheduled to occur at time k';>k;. Thus, k';—k;>0 is a positive delay in propagating an event
occurring at an input node of a block to an output node of the block. It is this feature that makes the R

use of time-point relaxation particularly attractive for processing blocks within feedback loops.

R T R R
3 . I LR AR AL A AP AP I L
RREA ARSI P R G A A A T AT S




LA Bl S S s Sac S Savt At A\t il SBS SN SR AL @ Theg Ak shl il Aeke b ot

161

In our type of switch-level simulation, the emphasis is on generating accurate timing estimates
which is possible by using the delay and filiering operations described in Chapter 5. However, the
delay operator can only operate on a pair of complete transitions and therefore, events can be pro-
pagated through a block only in pairs. Consider an example of an inverter with a sequence
(0,u,k,), (u,1,k,) at its input node causing a sequence (1,uk';), (u,0,k’,) at its output node. In order to
use the time-point relaxation scheme, we would have to be able to compute the value of k', only with
the knowledge of the input event (O,uk,). This is however impossible, since the delay operator needs
to know the values of both k, and k, before it can compute k'; and k’,. Furthermore, it is possible to
have k', <k,, which means that the input event (u,1,k,) causes the output event (u,0,k’,) at an earlier
time, thus violating the basic assumption that one only advances in time in the TQ and never has to
backtrack. Therefore, the time-point relaxation method, as such, is not suitable for our type of simula-

tion.

6.2 Event-driven Dynamic Windowing Algorithm

In the previous section we discussed two relaxation methods to simulate the blocks in a network.

“en9

0t
e e

The first method, namely, the waveform relaxation method, could be used in our type of simulation
since it is compatible with the delay and filtering operations, but suffers from several drawbacks in the

case of blocks within a strongly connected components. The second method, namely, the time-point

RIS

relaxation method, is used in several digital simulators, mainly because blocks within strongly con-
nected components do not pose any special problems, but it is found to be incompatible with the delay
and filtering operations, and hence, cannot be used, as such, in our type of simulation. In this section we
describe a new scheme to handle blocks within a SCC which overcomes most of the above drawbacks in
the waveform relaxation method by incorporating some of the ideas of the time-point relaxation
method. The main idea is to use the so-called windowing technique in the waveform relaxation pro-

cedure, as suggested in [11,12] wherein it is shown that the number of iterations is exponentially pro-

ISP S IR P P U T IS S ST ST L S S Sl N T St S i Rt e N B S S
D N B .

a . - -.- - - ~ -
S R A AR LR 2
PYREVAY S UYL IRC R W ey

= a® e
o




R i A e i e T i A i i M Tl A S g

162

portional to the size of the time interval of analysis. This suggests dividing the entire time interval of
interest into many time slots or windows so that waveform relaxation can be performed within each
window. These waveforms generate initial conditions for the next window and so on. If all the win-
dows have the same size, then there exist an optimum number of windows which minimize the total

number of iterations (and hence the total CPU time for analysis) as shown in [11].

The choice of windows, however, is very crucial in our type of switch-level simulation since the
initial states at each node for each window must be the steady states 0 or 1 in order to obtain good tim-
ing through the delay operator, and to perform the filtering operation successfully. This appears to be a
no-win situation since deciding on the placement of windows seems to require a prior knowledge of the
digital waveform (or sequences of transitions) at each circuit node within the SCC. Here we describe a
successful solution to this problem by using a sequential list of time intervals which is dynamically
updated as the algorithm progresses. In addition, the new scheme is event-driven, and therefore
requires no a priori ordering of blocks within a SCC. Before going into the description of the algo-

rithm, a few definitions and notations are needed.

Consider an SCC I, consisting of a set of blocks Q,,Q2,,..., &, Let EXT; denote those circuit
nodes in the blocks within the SCC for which the node sequences have already been computed. For
each circuit node n, in the SCC, let FO(n,)=FOQUT(n,)NZ; denote the set of blocks within E; for

which ny is an input node.

Definition : A transition interval for a node is the time interval during which the node is in the inter-
mediate state u. Associated with each transition interval I for a node n, is a fanout list of blocks,
denoted by F(I), which is initially set to FO(n,). Let a(I) and b(I) denote the initial and final times of

the transition interval L

Let 1; and I, be any two transition ir.tervals. We say that I, <I, if and only if b(I,)<a(L,). If
1, N1,2@, then we say that I; and I, are incomparable. We thus have introduced the notion of a par-

tial order "<" on a set of intervals. Let L={I;I,, ..., } be a sequential list of intervals. We say that

RN A A BN gl el Nl Asl A o e itk i el e A R el Sad

e

}osT,
"

.
iy e 2

s
M AL

e
PR

2ty

v
N

4

s
e,

L
| P



163

L is an ordered list if 1,<I,< +++ <I,. We say that an interval I is contained in L if 1K<, for some

I;€L. Given any interval I and an ordered list of intervals L the following procedure returns an

updated ordered list L containing the interval L

Input : An ordered list L={I,,l,, ..., L} of intervals,
and a new interval L
Output : A new ordered list L containing L

procedure INCLUDE(LL)
begin
L@,
n+-0;
for j~ luntilq do
begin
if I;<I then
7-L
L-LUI;
else if INI;>G then
n-L
1-1Js5;
FID—FD |J Fay;
else if I<I; then
if =1 then
L-LUt
end if
70
L-LU5;
end if
end
return L;

The algorithm for the new dynamic windowing technique can now be described as follows. The
ordered set L is initialized to the empty set. Every transition interval at each node in EXT; is included
in L. The set L is altered dynamically as the algorithm progresses. At any stage, we have a partition of
the entire time interval [0,K] into windows by taking the final times of the disjoint intervals in L as
the boundaries of the windows. The set L plays the role of the time queue (TQ) used in the time-point
relaxation method. Here events take place over transition intervals rather than occurring instantane-

ously. If a transition interval at an input node of a block causes a transition interval at an output node




Pal S S

164

of the block, then the end puints of the new interval can be computed by our delay operator. Thus,

this new scheme is compatible with our delay and filtering operations.

Algorithm 6.2

procedure WIN _SIM (E,)

begin
L~g;
for each circuit node n, €EXT,; do
begin
for each transition interval I; of ny do
begin
L+~INCLUDE (I,L)
end
end
K,+0;
while L is not empty do
1+ first interval in L;
Kl "'Kz;
while F(I) is not empty do
begin
K, ~—b(I);
Q,+ first block in F(I);
for each output node n, of 2, do
Sk '—WINDOW(SK,K"KZ);
if @, is an MFB then
MFB_SIM (2 K, X,)
else if £, isa PTB then
PTB_SIM (2K, K,)
end if
for each output node n, of Q. do
begin
Sy~ WINDOW(S, K, K,) <
for each transition interval I, of n, do -,
begin
if I<I,, then 3
L~INCLUDE(,,L), ]
else if S, S, then F ‘i
L+~INCLUDE(I_L) T
end if R
end e
end o
delete the first block from F(I); N
end .
delete the first interval from L; RS
end S
end e
SRS
.‘_:: :
-




PPN A S Ui ST T RT R IEFTETETY

165

The above algorithm to process the blocks within an SCC begins by forming L by including each
transition interval of each circuit node in EXT;. The first interval in L is chosen as the window of
interest. The blocks in its fanout list, which are MFB’s and PTB’s, are then only for the duration of the
present window until the list is empty. Each time a block gets processed, a transition interval in an

output node is included in L if and only if one of the following two conditions are satisfied:
a)  All transitions in the output node occur after the present window, L

b) The transitions at the output node, occurring during the present window after processing the

block, are different from those before processing the block.

After the fanout list for the present window is empty the interval is deleted from L and the

whole process is repeated until L is empty. 0

Consider the execution of the above algorithm on an SCC I;,. After the initialization of L by N
including the transition intervals of the nodes in EXT;, it could get updated by the inclusion of the
transition intervals at the output nodes of the block that has been just simulated. This could alter >
either the endpoint, K,, of the present window, or could append a set of blocks to the existing fanout "
list F(I) of the present window. If the latter situation continues, it is possible that a block could reap-

pear in the fanout list of the present window, after it has been deleted before, and is hence resimulated

v

during the present window. We say that an SCC is well-behaved if, during the execution of Algorithm .

6.2, none of its blocks is ever resimulated during the same window.

Thus, in a well-behaved SCC the delay characteristics of the various blocks are such that one does
not have to perform any iterations at all. If, however, the SCC is not well-behaved, then the algorithm Y
extends the fanout list of the present window and resimulates the active blocks until convergence is
achieved for the duration of the present window. This is equivalent to performing waveform relaxa-
tion iterations within the present window. It is possible to conjure up an SCC for which the initial

window gets continually extended until it becomes the entire time interval. In this case using the

oS, 8§ @Oy Ty Ty e T

above Algorithm 6.2 becomes equivalent to Algorithm 6.1. However, such a situation is of theoretical




166

tnterest only, and probably never occurs in practical circuits. Thus, in the worst case, the new dynamic
1 windowing technique performs at least as well as the waveform relaxation method. In fact, the SCC’s
in several practical circuits considered were all well-behaved, in which case Algorithm 6.2 performs
much better than Algorithm 6.1 in all respects. To begin with, there is no need to place the blocks of
the SCC in any particular order, since the procedure in Algorithm 6.2 is event-driven, ie, only those
k blocks that are active in a window are processed during that window. Secondly, no iterations are per-
E formed in case of a well-behaved SCC, thereby saving considerable amounts of computation time.
. Finally, the active blocks are processed only during a window (and not for the entire time interval),

thus causing a reduction in both computation time and memory space required to store the sequences of

transitions.

R W o N W Y W = W W W T W W = ws




167

MOSTIM : IMPLEMENTATION AND PERFORMANCE

The algorithms described in Chapters 3 to 6 have been implemented in a computer program called
MOSTIM, a switch-level timing simulator for NMOS circuits. MOSTIM is written in FORTRAN and
runs on a VAX 11/780 computer with the UNIX operating system. It has about 9600 lines of FOR-
TRAN code which includes about 5800 lines from the front end of SPICE2G.1. The main flow chart
for MOSTIM is shown in Figure 7.1. The NMOS network is described to MOSTIM in the same input
description language as SPICE2 [1] The three overlays MAIN, READIN, and ERRCHK, borrowed from
SPICE2G.1, read in the input file describing the network and establish the data base to store the neces-
sary information about the circuit elements, their model parameters, and interconnection, etc. A
dyvnamic memory manager is used to allocate space for each element. The input description language
allows the use of a multilevel hierarchy of subcircuits, which is flattened out in the ERRCHK overlay.
This overlay alsy checks for topological errors, such as a node connected to less than two circuit ele-
ments and a loop of voltage sources as well as errors in the specifications of the model parameters for
the circuit elements. The subroutine PARTITION then partitions the NMOS network into MFB's,

PTB’s, and SRC's, using algorithms described in Chapter 3 of this thesis. The set of blocks in the parti-

tioned network is then further partitioned into strongly connected components (SCC’s) and these are
ordered by subroutine ORDER. The subroutine SIMULATION processes the SCC's in the above order- 2
ing. If an SCC is simple, then the appropriate subroutine SRC_ SIM, MFB__SIM, or PTB__SIM, described _’ﬂ
in Chapter 4, is used to simulate the block for the entire time interval of interest. If an SCC contains 1
more than one block, then it is simulated by subroutine WIN__SIM, which, in turn, uses subroutines
MFB_SIM and PTB_SIM to simulate the individual MFB's and PTB’s over windows in time, as 5

described in Chapter 6. The subroutines MFB_SIM and PTB_SIM interact dynamically with

........................................................................
T e e N e e T e T e T T e T T e T e e e T e e e .-.---.-.~.~.;.-.~.~ e N T T T




N
.I 168
MAIN
READIN
ERRCHK
PARTITION
ORDER
~ SIMULATION -
WIN_SIM 5
' .
4 A »
SRC_SiM | {MFB_SIM | | PTB_SIM
1 ."~,
\ o
FILTER .
FP-8513 S
Figure 7.1 : Flow chart for MOSTIM T
]




e A e Mo e —— R R N N R R T P o e EUi 2l it S it S A e

169

subroutines DELAY and FILTER, described in Chapter 5, to alter the transition times of the zero-delay
sequences produced and filter the resulting delayed sequences. Extensive use of linked lsts is made
throughout the program. These linked lists are implemented in FORTRAN with the help of one-

dimensional arrays.

We now evaluate the performance of MOSTIM based on its computational speed (complexity) and
the accuracy of its switch-level timing (SLT) estimates. We first evaluate the computational speed by
considering severa] examples. The first example is a combinatorial NAND gate implementation of a
one-bit full-adder circuit, shown in Figure 7.2, which was cascaded to produce full-adders from one to
four bits. Table 7.1 shows the rate of growth of CPU-time versus the number of transistors. The total
CPU-time taken by MOSTIM includes the time taken for partitioning and ordering, and also the time
for the switch-level simulation, the delay and filtering operations. The total job times taken by SLATE

[3] and SPICE2G.1 [1] are also provided for comparison.

Table 7.1 : The growth-rate of CPU-time of MOSTIM, SLATE, and SPICE2G.1

Adder Number of CPU - Seconds
Bits Transistors MOSTIM SLATE SPICE2G.1
1 33 1.40 61.1 184.0
2 66 2.03 1332 3711
3 99 2.55 195.8 556.3
4 132 3.45 2529 767.0

This table shows that the total time taken by MOSTIM is fairly linear with circuit size and is about

120-200 times faster than SPICE2G.1 and about 40-60 times faster than SLATE. A second example is a

chain of identical inverters. Figure 7.3(a) shows a chain of five inverters. Throughout this chapter we




CafiFSaN

170

Xeq

Figure 7.2 : A one-bit combinational full-adder

...........................
................................




171

\‘ B
-,
--‘
‘. -
-

—N

FP—8520

Figure 7.3(a) : A chain of 5 inverters




172

will represent analog waveforms produced by SPICE2G.1 with solid lines and the ternary digital
waveforms produced by MOSTIM with dotted lines. The waveforms at the output of everv fifth
inverter in a S0-inverter chain produced by both MOSTIM and SPICE2G.1 are shown in Figure 7.3(b).
Table 7.2, below, gives the CPU-times taken by both MOSTIM and SPICE2G.1 for a chain of identical

inverters. These values are plotted against the number of inverters in the chain in Figures 7.3(c) and

7.3(d).

Table 7.2 : CPU-times taken by MOSTIM and SPICE2G.1 on a chain of inverters

Number of CPU - Seconds
Inverters MOSTIM SPICE2G.1

5 0.62 21.63
10 0.87 43.10
15 1.18 70.35
20 1.48 121.83
30 2.05 235.98
50 319 645.28

From both of the examples considered above, it can be conciuded that the CPC;time taken by MOSTIM

grows linearly with circuit size and is around two orders of magnitude faster than SPICE2G.1.

We now consider several examples of NMOS circuits simulated using MOSTIM. A one-bit full- "-:I::

adder circuit with pass transistors used to realize part of the logic is shown in Figure 7.4(a) and a cas-

oyy
et

-3

1

caded two-bit adder in Figure 7.5(a). The input and output waveforms in both these circuits are shown 'J
in Figures 7.4(b) and 7.5(b), respectively. The presence of a partial pair of transitions in a ternary digi- ::Z:::j
(S

tal waveform indicates the presence of a glizch in the corresponding analog waveform. We classify a ‘Z'ﬁ

ey
M .

glitch as a major glitch or a minor glitch according to whether or not the glitch crosses a threshold

v T e
2 0
Pioira

A

TR P
Aalala'elsin’e




173

. .\
A '. t.'
E - (A
-‘ I_
.
- - g
. o
. »
.

" -

X '
< <
wn -
)

-
] " L
R

20 f :'.'_
':'_ 25 :::
L_ oo ;

30

ot
LN

35

3
]
5 '

o Y40 ' 3

; A :

) I I I g

Time (ns) —

! : 0,

Figure 7.3(b) : Waveforms for a 50-inverter~chain circuit

A

* .
LN Sy

L SRR

T



174

§—
3+
MOSTIM i
CPU-seconds
2
-
=
" l |
v lflrllIrTlllrl—lllTllllTII
8 10 i 3 40 o9
Number of inverters —
Figure 7.3(c) : CPU-time taken by MOSTIM on a chain of inverters




SPICE2G.1
CPU-seconds

48—

[~ ~ )]

MICTE -7 - e DT T -
P S R
f Al s A e IR
P . - .\ - - e¥ .
PP S R L P o

T (T [T T [TI T [TTTT
18 28 3 @ e

Number of inverters —-

Figure 7.3(d) : CPU-time taken by SPICE2G.1 on a chain of inverters

TR I SRR

...
N
T ¥

o
%

D PN AN B N




T e Ay T v w T o o
AL NS A A e T W Ny P o rpey T ~rE—
- L v PR AN e SRCR A AN 0 By LA Sal et Sl ol

’ 176

: sv ,

| J ]
; | X
515 @ LE T 0.1t . ]'LZOI_S_
P e
mn e ] O]
+ i ® '__"ails 20/5 == %05 of
‘ I
- @ J QO3S pf ' xvs
- {laors | l—{i_s/s
- Il ' 310
'~ Q07 pf e 20)/5
- 579 @4 .3 I [—' 7 Uy S O
; ll?.ils llils '.__‘ s Q.01 pt ]' 0Spf

. : T
L| LZi/5 —|I§|O/5 s=Qlpt ©) T
:i l # L ™ J-{‘ 20/8

Figure 7.4(a) : A one-bit full-adder with pass transistors
- &




- 177

Inpat 1

Input 2

Carry in 3

~

58
~
~

- e om o
- . o

Carry out 4 ¢

seovssssaserenecsy l—“ ‘..-..-.o

Sum out 5

R Time (ns) —
R Figure 7.4(b) : Waveforms for a one-bit full-adder with pass transistors




178

Courp—ec,

Cin

8
3

NP L
INP 2

e

J

o

Sq

Cour

A two-bit full-adder with pass transistors

Soutr—e

-
-

Co) ———r— Gin

Figure 7.5(a)

Bo_..-.._..__. INPZ

By




B AL e B 2B -0 A 20 G A i -0 WS T T Y S e Dalb M A ARt Sl Sl
W W, W oa Wy Wig W . . V. e e e e e BT . CaE A TR .

o 179

14 . .

o A 3
Bo

: l

3 g

o P — P |

:". S | 4 t 3

0 ! ' ;
L/ '

.l‘l,‘((‘—r‘

»
<

) 14

- .

-t . -

-' - '-

2 6 X B K 1@ (5 (B I i

Time (ns) —

Figure 7.5(b) : Waveforms for a two-bit full-adder with pass transistors




180

limit. MOSTIM indicates only major glitches in the plots of its waveforms. However, every glitch,
major or minor, is flagged and printed out in a separate diagnostic file for each circuit if it is required
by the user. An SR-flip-flop circuit is shown in Figure 7.6(a) and its waveforms in Figure 7.6(b). A
three-stage ring oscillator is shown in Figure 7.7(a). The final partition of the interval [0.0ns,40.0ns]
into windows along with the list of blocks to be simulated in each window are given in Table 7.3.
Here MFB, is the two-input NOR gate, and MFB, and MFB; are the two inverters, respectively. The

waveforms for this circuit are shown in Figure 7.7(b).

A one-bit register is shown in Figure 7.8(a). It is used to realize a three-bit shift register shown in
Figure 7.8(b) which can shift both left (down) or right (up). Pass transistors are made use of in several
places in the circuit, first, to load the input data onto a bus (r;ode 1), then to transfer data between the
bus and registers and also to precharge the bus. The input waveforms applied and the output
waveforms produced are shown in Figure 7.8(c). A tally circuit composed of only pass transistors [56]
is shown in Figure 7.%(a). In this circuit, all the pass transistors constitute a single PTB. The
waveforms for this circuit are shown in Figure 7.9(b). The simulations of the three-bit shift register
circuit and the tally circuit test the performance of the mapping technique of the delay operator using
Elmore-equivalent capacitances as described in Chapter 5. Finally, we consider a PLA with 149 transis-
tors as shown in Figure 7.10(a). This network is partitioned into 42 MFB’s and 12 PTB’s. The only

nontrivial SCC in the partitioned network consists of 17 MFB’s and 4 PTB’s. The waveforms for this

circuit are shown in Figure 7.10(b).

)

AR

Among all the networks described above, let us first consider those networks with feedback.

Table 7.4 compares the performance of the waveform relaxation method (Algorithm 6.1) and the new

e,
A SEORA

event-driven dynamic windowing scheme (Algorithm 6.2) used to simulate the blocks within the

1]
L.t

SCC's. This table demonstrates that the new windowing technique performs considerably better and is

more efficient than the waveform relaxation method. In Table 7.5 we provide a list of all the circuits

that have been simulated using MOSTIM thus far, along with the number of transistors (indicated in




181

W/L=5/10

2 (D)
w/L=20/5 \2™
Two-Input ;
20/5 NAND Gate N

ST I A I

®

SR Fiip Flop

. ®
X2
Q.lpf ‘ Qlpf
@
Xa
=

re- reag

Figure 7.6(a): An SR-flip-flop




G A St il .~'Av' el R S A _d" o .r-' _v_'."",.‘: 'r_ '1-—‘ 'r—_ 'v:v-. T e e

- a—

182

8 18 28 3 48

Time (ns) — f‘-.-'

Figure 7.6(b) : Waveforms for an SR-flip-flop i




183

Figure 7.7(a) : A three-stage ring oscillator

...............................

R S R T e e L e ) I NI R R
L AT R A e T it indh s gt




184

el A A e A stk e

<

Time (ng) —-

Figure 7.7(b) : Waveforms for a three-stage ring oscillator

.........




SWITCH-LEVEL TIMING SINULATION OF ﬁoé

yLS1
C(METAL-OXIDE-SENICONDUCTOR VER.. (¥> ILLINOIS UNIV RT

URBRANA COORDINRTED SCIENCE LAB V B RAD
N@@914-84-C-0149

3/3
JAN 8 R-L.Z




lis £E
= =~ 2
e

= |5
Ji2s Jlis s

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS ~1963 - A




Table 7.3 : Final list of windows for a three-stage ring oscillator

WINDOW

0.00 1.08

1.08 346

346 4.65

4.65 649

6.49 7.68

7.68 9.52

952 1073
10.73 1257
1257 13.78
13.78 15.62
15.62 16.83
16.83  18.67
18.67 19.88
19.88 21.72
21.72 2293
2293 2477
24.77 2598
2598 2782
27.82  29.03
2903  30.87
30.87 3208
3208 33.92
3392 3513
3513  36.97
3697 38.18
38.18  40.02




faiake T e acEnCl S A Y L0l YA iy

186

SHIFT-RIGHT § | SHIFT-LEFT
clock CLOCK ‘

e & ’
L

13
Figure 7.8(a) : A one-bit register ,‘




CRNACHL A Tk I YA S AR MaC S i iare o

s R R N R I T R Y A TS v, v v vy vy

187

o O — © _ o
- Dlg?-m A 5"?-' i ';@ TPoitauml
B R of

]
: 2 S e 3
- ONE-AIT REGISTER

e« s 7

—1
@® ©

z 8 s 3
ONE-RIT REGISTER

Pre—
CE€Lareo €

®

.
ctoex &

2!_ a8 E) 3
ONE-AIT RECISTER

e 4 5 7 )
Q5 a @ \.

SHIFT=RIGHT SHIFT e

CLoek ¢4) LEF

cLock (+) .

Figure 7.8(b) : A three-bit shift register




i "
: 188 N
’.-’.l
2 Input Data LS
3 >

[ 3

: waeme UL :

_‘ s pescares T n '
Bus + Reg J_\ ﬂ ﬂ

i Reg + Bus n ﬂ

Delayed C ﬂ ﬂ

1\

5 Clock C

3 Shift Right I_\ -
Shift Left ﬂ ﬂ e

[EEsYer - 2 e———— reee P ——— A
Bus Output ? ‘ { ‘ , ‘ -

v(13) ___f_\i : r—' ‘

V(e | 3
3 v(15) o~
v(16) | ‘ ? ‘ ? ‘
’ v(17) _\ ‘ i | i i

v(18)

Time (ns) — o

Figure 7.8(c) : Waveforms for a three-bit shift register g




........... PA g gl At/ A s At i i ittt i it S i S S S G G m i A e A S i A i

189

Figure 7.9(a) : A tally circuit composed of only pass transistors

L I S S S N R NI A TP S I T T R TR T TRt T Tt T T S P P N P T T UL S P VUL AU I SR
......................

.....
..........................
.................................
.................................................
IR R WY T




- .\ . - . -
- - e oo SR
RS A PG W P L VIRV WIS PR LU #C S DN W8

—t

1 ' :

L AL

cosvacnans
[

o

3

8 2 9 68 8

Time (ans)

Figure 7.9(b) : Waveforms for a tally circuit

- % e, e T
PR o et e, - - -
PRI PR TR L AP I S AT T
SRR . - ~ -
T 8’ e - - LRI




a4 - A S e L AE St s sk el M i SR N ST b S " v

Py Y o 26] 2%

[+
A
A AR AR

ic

i
B

&
oY
- - ~ -> - rS - ~ -

- - ~ » - 4 [ ™ -
.

-

N il

<

A

Figure 7.10(a) : A PLA circuit




V(55)

V(56)

V(57)

v(58)

v({59)

v(35)

v(36)

v{37)

V(38)

V(39)

V(40)

v(4l)

Figure 7.10(b) : Waveforms for a PLA circuit

FArian sus g sabuies gert RS SRS SN

192

R

.1. "l'l

. e ‘e
oA
o .

R I
] s, .':‘
’
S TR SR A R
NG N

-
AR

. s e N N e
Loatate et
g LN S I

DAU
LATA

LR
4




193

Table 7.4 : CPU-seconds taken by Algorithms 6.1 and 6.2 to simulate networks with feedback

5 MOSTIM

- CIRCUIT SPICE2G.1

S Algorithm 6.1 | Algorithm 6.2

F 3-stage Ring Oscillator @) 523 1.05 104.60

o SR-flip-flop (12) 1.33 0.86 90.37
3-bit Shift Register (29) 19.23 6.55 363.30
15-stage Ring Oscillator ~ (31) - 1.36 139.85
2-bit Full Adder (42) 7.82 5.27 79425
PLA (149) 13.56 5.85 827.43

parenthesis), and the CPU-time taken by MOSTIM. The CPU-time taken by SPICE2G.1 is also given

for comparison.

From each of the waveforms in the circuits described above, one can easilv verify that the SLT
estimates generated by MOSTIM for pairs of complete transitions are fairly accurate. More precisely,
consider the sequence of transitions S at some node in a circuit that is produced by MOSTIM and let S
be the ternary equivalent of the analog waveform produced by SPICE2G.1 at the same node. We then

consider the extended measure 5(5,8), defined in Equation 4.2 of Chapter 4, to be the measure of the

accuracy of the SLT estimates generated by MOSTIM. Figure 7.11 is a scatter plot of the transition
times of complete pairs of tramsitions as computed by MOSTIM against the corresponding threshold

crossing times of the analog waveform as computed by SPICE2G.1 for each node in each of the circuits

. . -




............................

} 194

Table 7.5 : A list of circuits simulated by MOSTIM

CIRCUIT MOSTIM | SPICE2G.1
3-stage Ring Osciilator (7 1.05 104.6
SR-flip-flop (12) | 0.86 90.37
Tally circuit (18) 3.59 132.37
1-bit Full Adder 2 1.28 119.32
3-bit Shift Register (29) 6.55 363.30
15-stage Ring Oscillator (G1) | 136 139.85
2-bit Full Adder (42) 527 794.25
50-inverter chain (100) 319 645.28
4-bit Combinatorial Full Adder (132) 345 767.00
[ PLA (149) 5.85 827.43

listed in Table 7.5. The maximum percentage error in the timing estimates produced by MOSTIM in
all these circuits is 8.75%. For purely combinational logic circuits with no pass transistors, such as the

chain of inverters shown in Figure 7.3(a), the error is less than 3%.

In the case of RSIM [26] which is also a switch-level timing simulator for MOS circuits, some of
the timing predictions even for purely combinational circuits have been reported to be around 30% of

those of SPICE2. For circuits with chains of pass transistors, the predictions are even less accurate. In

''''''''''''''''''
.....




Rt a4 e aati S St O R T S I T e L AN A ) LA TR AT LIPS i Gl Sk Al iadh ol St Al ade e i el it B AT T gﬂ_‘
. b ™
o)
o)
o

I 195

MOSTIM
Transition 80—t . j
Times in (ns) s

!

| =
e .. 49 08 8 108

Threshold crossing times —

in SPICE2G.l (ms) ':::;f
L]

1

]

< 9

e

il

Figure 7.11 : A scatter plot illustrating the timing accuracy of MOSTIM

e
e H
PRI WIS )

»
l’ 1"

!
Yy

P

P A S N SR T e L T e et I P S N TSI
e T ® ~ = Lt CECIETAAPTLIPUE ST SN A I . R R L e
AN « . . BRI G G L P R P PO AP T N T T TR AR I R TR IPSRRPIL AP RSN
A%t - + ™. - . ] - -t - . -® o LT T Rt W e A
e PP P o S e - L) P P AT R AR AT AT . L .




pETTTT———————— T " - D e v i e AN i M A Mec R e S A e i A e e A Sl s S

196

comparison, the results presented in this chapter indicate that MOSTIM is capable of generating timing
estimates within 10% of those of SPICE2G.] at speeds of around two orders of magnitude higher, which

1s around the same speed improvement as obtained with RSIM.




197

CONCLUSIONS

The aim of switch-level timing simulation of VLSI circuits is to provide the circuit designer with
digital waveforms at various nodes in the circuits with special emphasis on the accuracy of the times at
which the signals change state. In this dissertation we have described a switch-level timing simulator
for NMOS circuits which is a fast and accurate simulation tool that gives adequate information on the
performance of the circuit with a reasonable expenditure of computation time even for very large cir-
cuits. In Chapter 2 of this thesis we reviewed some of the existing simulators for integrated circuits
and classified them into two distinct categories, namely, analog simulators and digital simulators. We
found that digital simulators in general operate at sufficient speeds to test entire VLSI systems, since the
circuit behavior is modeled at a logical rather than a detailed electrical level. However, these simula-
tors do not model the dynamics of the circuits properly and are often useful ouly in predicting steady-
state responses of the signals. Analog simulators, on the other hand, predict both steady-state and tran-
sient responses fairly accurately, but are cost-effective only for circuits with less than a few thousand

components, which are considered small in the present day VLSI technology.

The algorithms presented in this thesis have lead to the development of a switch-level timing
simulator for NMOS VLSI circuits called MOSTIM, an attempt to bridge the gap between analog and
digital simulators. MOSTIM performs simulations at a switch level and, hence, runs at speeds close to
those of digital simuiators. Furthermore, it uses a delay operator to delay signal transitions accurately

and, hence, provides the timing accuracy comparable to those of analog simulators.

In Chapter 3, we discussed the algorithms for partitioning the input network into various blocks

and the ordering of these blocks for processing. The key to the partitioning strategy is to divide the set




C i M A T i Ay D A S B ) Y

198

of enhancement transistors into driver transistors and pass transistors. We presented a graph-theoretic
algorithm that achieves this in - “mputation time which is linear with the number of enhancement
devices. The driver transistors were then grouped together to form multifunctional blocks (MFB) and
the pass transistors were grouped together to form pass transistor blocks (PTB). We created a third type
of block called input source (SRC) to model voliage sources, clocks, etc. We then constructed a directed
graph G with vertices corresponding to the various circuit blocks, namely, MFB's, PTB’s, and SRC's, and
directed arcs describing the interconnections between them. A modified version of a depth first search
Known as Tarjan’s algorithm [31] is used to detect strongly connected components (SCC) in G. The ver-
tices within an SCC correspond to blocks forming feedback loops in the original circuit and are col-
lapsed into single vertices, thus creating an acyclic reduced graph G. The vertices of G are then placed

in topological order for processing.

The algorithms for the switch-level simulation of multifunctional blocks and pass transistor
blocks are presented in Chapter 4. An MFB is a single output, multiple input, unidirectional block,
whose steady-state output is a Boolean function of its inputs. A graphical technique using internal
node eliminations is used to evaluate the state of the signal at the output, given the input signal states.
No attempt is made to evaluate signals at the internal nodes of the MFB. In the switch-level simula-
tion of a PTB, however, the signal at every node within the PTB is evaluated. The transistors in a PTB
are modeled as bidirectional switches whose conduction states (ie., open, closed, or intermediate) are
controlled by the signal at the corresponding gate terminals. A strong node forces its state on a weaker
node connected to it via a path of conducting transistors at any given time instant. The algorithm is
quite similar to the one used in conventional switch-level simulators such as MOSSIM ({19] except for
the interpretation of the u state (or X state as used in MOSSIM). This algorithm also handles situations

of conflict between two strong signals, charge sharing, etc.

The switch-level simulation algorithms described in Chapter 4 generate zero-delay ternary

waveforms for each pullup node in an MFB and each normal node in a PTB. A delay operator

N N

" s - Ta - . . v -
PRIPRS n..s_L..AL{ A'._h_.._;.gfg_f‘.ﬂ'._t‘-'.“-' PRI A"A’.--{- PRI I iy ‘.

PO P I

" ", « '- .- ._..._,.‘_......". .._. ._._". ._- —_..' ‘... T e '.,: ~'7 --.‘~._.-.,-»__. - e e teta et '.. .:. _:\._'. .". e




PRI o i A i an B Ssnr- R S iee - R At st R A P St Al A el Ml A0 b 1 ARl AN SN SRR AN RUILIAR gt e rel gt & AR R AN

199

described in Chapter S is used 1o delay pairs of complete transitions (i.e. 0—u followed by u—1. or
1—u followed by u—0) in the zero-delav waveforms. The delay operator computes appropriate delay
values bv taking several parameters into account, such as block configuration, loading, device
geometries, and input slew rates. For NMOS technology. knowing the delay characteristics of five
different circuit primitives is sufficient, within reasonable limits of accuracy, to compute delays through
anv general MFB or PTB. These five primitives are simulated using an accurate circuit simulator such
as SPICE2 [1] or SLATE [3] for various device and circuit parameters, and the delay values are
extracted and stored in a delay table. This is done in a presimulation phase. During simulation, MOS-
TIM then maps an MFB or a PTB into one of the five primitives and obtains the appropriate delay

value through fast table lookup methods, and interpolation when necessary.

In Chapter 6 we discussed techniques used to process blocks within an SCC. In order to perform a
switch-level simulation of a block (MFB or PTB), the waveforms at the input nodes to the blocks must
necessarily be known. Since this is not possible for blocks within an SCC, these have to be handled
separately. A waveform relaxation technique could be used, wherein the blocks are processed itera-
tivelv in a predetermined order with unknown input waveforms initially relaxed and output
waveforms constantly updated. Several drawbacks of this technique were discussed. A new dynamic
windowing method that overcomes most of these drawbacks was presented. In p;inciple. this new
scheme is quite similar to the classical event-driven time-wheel approach used in conventional logic
simulators [13,19] except that events take place during intervals of time instead of occurring instan-
taneously. The entire time interval of analysis is automatically partitioned into variable size windows
such that the signal at each node in each block within the SCC occupies a steady state (ie,, 0 or 1) at the
window boundaries. Associated with each window is a set of blocks scheduled for processing during
that window. This new scheme does not require an a priori ordering of blocks within the SCC, and is

also seen to take less computation time and less storage than the waveform relaxation method.

X

-

ol

- P e
‘1 e Te T Te tl 0,
P YT S S

X IR C NS

s *.
AA A

P AN
y %5
a’a’a




LS ool i - - Arial Sl St Ml oes

200

A number of NMOS circuits have been simulated using MOSTIM. The performance is discussed

in Chapter 7. In all the circuits simulated thus far, MOSTIM provides timing information with an

accuracy of within 10% of the timing provided by SPICE2 [1], at approximately two orders of magni-
tude faster in simulation speed. MOSTIM also provides much better timing estimates than RSIM [26] at

approximately the same speed of simulation.

We now consider several extensions that could be used to improve the performance of MOSTIM.
At present, MOSTIM is capable of only handling NMOS circuits. A few modifications are needed to
include CMOS technologies as well. In the partitioning scheme, the graph used to represent the net-
work would now consist of two types of edges, namely, n-type and p-type edges, corresponding to n-
channel and pchannel transistors, respectively. In conventional CMOS circuits, pass transistors are usu-
ally implemented using nchannel and p-channel devices having common drain and source nodes. The
edges corresponding to these transistors can be easily detected and removed from the graph. Once this is
done, a pullup node can be identified as a node adjacent to both n-type and p-type edges in the resulting
graph. One can then use the scheme described in Chapter 3 of this thesis to complete the partitioning.
An MFB in CMOS would consist of a2 network of n-channel devices between the pullup node and
ground and a dual network of p-channel devices between the pullup node and Vpp. A PTB would also
consist of both n-channel and p-channel pass transistors. The algorithms to perform the zero-delay
switch-leve] simulation remain primarily the same, except that a pchannel device is modeled as a
switch that is closed when its gate signal is at 0 and open when its gate is at 1. The delay primitives
have to be redefined by using CMOS inverters and pass transistors and the delay functions have to be
recomputed for these new primitives. The mapping techniques used by the delay operator must now
also account for the resistances of the pchannel devices in addition to those of the n-channel devices.

With the above modifications MOSTIM can be extended to handle CMOS circuits as well.

The use of ratioed logic, as suggested in [20,21], would result in a better scheme to handle conflicts

in a PTB. The delay operator has to be extended to provide better timing in these situations. Providing

R I S PRI LIPS PN

- R
. < e - - ) DAY .
RIS N g S P Sl S Sl St S Lo il P AN P PR A D I --"2.'.\ PRI Y S A A WP R 1

.................
...................




201

better timing estimates in case of charge sharing also needs to be investigated. Most conventional net-
work extractors create an RC-network to model the interconnect regions in an integrated circuit. The
resistance of the metal lines can be neglected. but the resistances of the polysilicon and the diffusion
lines have a considerable effect on the propagational delays in the circuit. Using reduced-order model-
ing techniques, such as the Elmore time-constant approach, to generate equivalent lumped capacitances
at each node in the circuit is another topic that needs to be investigated. Further research is also needed

to use a MOSTIM-like approach for other technologies, such as bipolar, ECL, and I’L.

Thus far, we have only considered the deterministic simulation of integrated circuits. It is well-
known, however, that random fluctuations inherent in the IC manufacturing process affect the perfor-
mance of VLSI circuits significantly. This is further aggravated by the scaling down of device sizes and
the interconnect regions. The circuit designer is, therefore, of ten interested in obtaining some statistical
information about the timing in the circuit. A Monte-Carlo simulation of the entire VLSI circuit can
prove to be prohibitive in terms of CPU-time. As an alternative, one could compute the statistical
behavior of the delays through stadard primitives using the conventional Monte-Carlo methods and
store the necessary information in tables. One could then map a general block in the network onto one
of the standard primitives and obtain the statistical timing information through a look-up table. This
approach is very similar to the operation of the delay operator in MOSTIM, and it needs further inves-

tigation.




202

]

APPENDIX 1

A 'n‘ R g
...-I-'. "y

PLOTS OF DELAY FUNCTIONS C.

In this appendix, we will show plots of the inertial delay, At,, and the rise/fall delay, At,, in
both types, "0" and "1%, as functions of the input slew-rate A,, for standard primitives 1, 2, and 3, and “‘

as functions of B and vy, in addition, for standard primitives 4 and 5 for the following technology.

VTOg=+1.0 V
VTO,=—3.0V
VDD=+5'0 v

KP=100 uzA/V?

Standard devices : RN

Load :W=5u,L=10u RO
Driver : W=10u ,L=5 u .
Pass :W=10u,L=10p o

Standard capacitances :
C,5=0.01 pF
C,s=0.01 pF
C;35=0.01 pF

C.s=0.10 pF 0y

v
C55=0.10 pF ) :.-
D
..- -‘ 9
Ly -L 3
A
Uy
\
——
n“'.q.‘_
e
ARy
.
LR
L e et e emetet o e T Tt T e e T AT AT m et T e T T e T et e Tt et T T e e T et e T e St et e et LI LT S
.-' ........................ N '-.,'-..‘- ..... .~ .'."‘- 2T e e e e T e e e T e e N “.- ORI Y _‘.'.\ P .'-‘ SN \' LG '.I', L LR \~ " (A
PP RPN R P, W, WILSPICAPL L ST S WP WL L WL L oL w1 WA WP S P W Pl W Wy A A : 2




A 2 0 A0 2 2 0 T A A A M s A SR AR LA T T T AT

205
19!

Type '0'

-
.
wn

POV NG W S WY U

-4_.._}“;".*._,_"‘
T
1

L

v

12.5 3T
3- Type '0' i Type '1'
# u.o—i— ]
. 1 15—
1
4
At 751 At 4
15T =
1 18-
5.6— ¥
4
j' -4
3 St=
z.s-j— J
. ;j?
: DN
.':lll'frglrff B O B -rrT TTT T T T T T T :-:
L ] 0 15 b | ] S 10 1S b | .\111
%4n 44n =T
Sy
h‘:\‘:'
» ‘--.'
Figure A1.2 : Delay functions for standard primitive 2 RARS
N




LM Type o'
(X ]
Atl LR
i

DYWL, Ny,

A O TS W WV W W TR TI I TF W WY NS it e et

W v Ty

R R Y

lllfflr_ffr'llTl‘llfr1

]
lTrlrlllrllrFrlg—rrrrJl
15 r- |

Ain

..lsT Tyve '1'

8
==}

.
.

. A
T P

LS SN
AR
ad o Lo

.
e
s s

00T T T T T T T T[T T T T T

8 S A 10
in

XIT_FIT_TITjIIillllI!I

e
e

5

RIS

Ry

Figure A1.3 : Delay functions for standard primitive 3

PN
PR )
.

P s

""-‘-.'s‘-'.'4‘.'4-.-.‘.--

r..\‘.'z.r T

----- -"'.'-'. Tt - T .-'_~ - . o
x_m\_.-s.-“n..-.g.. ‘...)\'-'A.&A_&x_&...__._d

w, &ty
AN AN



IS NS St iU EMCIAAC I A S YA R A S S (e e g a i e e S MRS IR R Al A AR A el D canlh s Je et et el e

203

Dimensionless parameters :

B €{0.1,1.0,5.0}

R o)

vy€{0.1,1.0,10.0}) - -

5=4.0

:Z:"' The plots are shown in Figures Ai.1 to Al.11. The delay values in all these plots are in nano

seconds.

P I S R

o v gV
. B
.

roroe

(R

ety e e -

IO O

AOS oNLI

R N S ) o e e . P T e T I P oy - - B N T L
. ' 1 M. e . L - PN RRS ] e St s . - .. “t . Y )

3V - N et ey . LAY \ P P N T I A S R L S R A i L N AR MU L A

LAY AN, - - » "u)’e -y e % - " DRI . - N -, oy wN




........

ad I—T i I | L LD ' T l LRI '
(] 5 All 1§ |
in

Y a !
hd l 1 LR FI LB LS I LB R R [ LR R T—I ." i_fl ] l*{ LR L { LR ! LIRS T_l
] ] 8 18 b ] ] § 19 11 F ]
A A
in in

Figure A1l.1: Delay functions for standard primitive 1




s

8 = 0.1

y = 0.1,1.0,10.0

. | | | |
Tlﬁf[T lﬂtl LR llTll I
’ 5 " 1] |

44n

g =1.0

vy = 1.0,10.0

207

-‘_‘. o: ‘I a
p." 'rr‘rrr T[Ty '
9

(] s 10 1 b,

Ai.n

Ifllfllilli

T T I+4T1 TT
S 10 1§ b

Ain

Figure A1.4 : Inertial delay for standard primitive 4, type 0"

-
Q..
.
R
“
L%
bt
_'1
.
-

Y

4




- N gid M v —
TETTT S Y U TR T TR T
ey A A

Fo

R |
s

-

g ;
o s le_m.

2

208

1
Yy

o

AN
PR
PN

»

14
L

B
[N A A
.

'n-,--' .
LY

y = 0.1,1.0,10.0

. ] 19 1S a3

: 5 B=1.0 8 =5.0
15
| ol
. 4
1]

DR AL A A 1) -..' ht?

w -,
-lv"...‘-y
Gy

%

.:_:.:

-lﬁr1r|T|T||rrﬁrlIr—r“r—E ‘.-:j::
' § " s ] =
A o

in “in : 1

i

.
A.l‘l

Figure A1.5: Rise delay for standard primitive 4, type "0"




Eane - NPTy Lot nan v v——r Lt o
Mg SN SRA AN Yo Sl Sl N AN S S Sl . RGN Il S A il adl oo ¢

209

8 = 0.1

y = 0.1,1.0,10.0

g = 1.0 T g =5.0

V"rvvvv,v' g L w4
' . ! . AN R

2.5

—r

| [ ]

i IR R i | RS B i | DL ' T Jl = I LR SR} l LR ER) : L 'Ll T T f‘%
] S 19 1§ . | ] -] 19 1§ 3
“in %in

Figure A1.6 : [nertial delay for standard primitive 4, type "1"




B o S e e e o I et e it e A St e Sk et dnd At el Al S A ind /e A A el Bl S A b e

210

y = 0.1,1.0,10.0

1
T

: 8 = 1.0 T 3=5.0

R I | | |

'l.frrl—FIllllllT—llTFT] TTTI|IFIIlTTII|IIT_r|
‘ § " 15 2 ' § RLJ 15 2
*in “in

4 0%
1

Figure A1.7 : Fall delay for standard primitive 4, type "1"

e, - v
[ i A

' ad [ et e e T

PP P "SI SR LW TR T G G I B IS "




A2 SN St e da " e
AASMACEC A it afaaie
.
x
.
e *
)
D'T'
» -y

Ot R i A S bl S Sal i And Nl i e &

~ T

g = 0.1

................

LI

8 =1.0

|11r1|

15

.........

2

g8 =5.0

e i

1

''''''''''''''

PR .
---------

]

19
A
in

=TITIIlrllllTI L9

15

rivi

Figure A1.8 : Inertial delay for standard primitive 5, type 0"

-----------

--------

.......
.......

R s PR N



T n T
. 8 = 0.1 | i

0
e

| o
‘|ﬁ111|r111111r1|f1|ﬂ
’ 5 All 15 a

in .'_-'_.'{.

ST C

e
o
~
&
_L-t._l._l._l..L_
I -
i)

| S -I—L.T- -+
Al
4
|

y = 1.0

7w 0.1 el

A
T

:

!lllllllll|Il 1 s LA L B N L L L BB O
¢ ] 18 15 3 s 5 :l 1§ . |

Ain in £ -

Figure A1.9: Fall delay for standard primitive 5, type "0"
A\
SO
Q.‘.l
T e e e g S N N S



213
B » 0.1

L
.

At

—
-4 .L_J. ju N

Sy G

y = 1.0

L —

{@—t=

L_____/—ﬁm/
1'

.-=[TITT‘ITTI,TITII—I—II \ =’IIII|IITIIIT_TT[IFII|
' S 19 1§ - ] ! ] 10 15 r: ]

2in Bin

Figure A1.10 : Inertial delay for standard primitive 5, type "1"

---------------
...............
.........................




- 214
B = 0.1

'lrlllﬁrlrrrTl[llll}
' 5 8 15 3
A
in

8 =1.0

N\y = 10.0 '

B
e
noo

3
a
L4~L44

>
"
N
¥J»L4_
[
"
~N
S .

oy

31' Vel 1.0
1 = 0.1
\[Y
. | ]
ol B LIS LR AR A %Tﬁ ™7 }r rr‘r% .A—Tﬂ'Tﬂ_+T—T1 1: 1lﬁ’|} T 1 lT{
] s Jl 1S b ] | H 19 :1 3
“in *in

[
.

.
o
e

- e
e

" .
2"
‘2’2 4 o s

!;"’ ". .l. ./




e e T T T TR TR TR T S T R ST AN T AT A A VORI N R I RO N ite Sl Pal, S S A R Wi g 0

MINIMUM FEEDBACK ARC SETS FOR DIRECTED GRAPHS

A minimum feedback arc set for a directed graph is a minimum set of arcs which if removed

leaves the resultant graph free of directed cycles. This problem has attracted the interest of both

mathematicians and engineers over the recent years. Feedback is inherent in most engineering applica-

tions, such as sequential switching circuits, control mechanisms, regulatory devices, and large-scale sys-

tems. A good deal of success has been achieved, however, in analyzing complicated systems without

feedback. Therefore, in order to analyze systems with feedback, an appropriate number of feedback

loops are broken to reduce the system to one without feedback. The complexity of this analysis, on the

other hand, increases drastically with the number of loops to be broken; hence, a knowledge of

minimum feedback arc sets would be extremely useful.

The problem of finding minimum feedback arc sets (FAS) in directed graphs, when phrased as a

decision problem, is known to be NP-Complete [52,53,57] This problem remains NP-Complete even for

a restricted class of graphs such as line-digraphs [58). In this appendix we shall study an algorithm pro-

posed by D.H.Younger [60] which attempts to solve the FAS problem by establishing a relationship

between feedback arc sets and orderings on the vertices of a digraph. It will be shown that this algo-

rithm does indeed find a minimum feedback arc set in any digraph, but could take exponential time, as

should be expected, on certain digraphs. The problem of finding minimum feedback arc sets for planar

graphs, however, has been shown to be solvable in polynomial time {59}

We begin by establishing a relationship between feedback arcs of a digraph and orderings on its

vertex set. In fact, a2 minimum feedback arc set is shown to be determined by an optimum ordering R

of vertices which minimizes the number of arcs (u,v) such that R(u) 2R(v). A key concept used to find




k
N
.
]
L3
»
~
)-
|3
4

216

optimum orderings is that of an admissible ordering [60l While finding optimum orderings may be
hard (since the problem is NP-Complete), we will show that finding admissible orderings is relatively
much easier since it can be done in polynomial time. For most digraphs of interest to the practical user,
admissible orderings turn out to be almost as "good” as optimum orderings in that they generate "fairly

small” feedback arc sets.

We begin with some definitions and notations. For a directed graph a feedback arc set is a set of
arcs which, if removed, leaves the resultant graph free of directed cycle. A feedback arc set is
minimum if no other feedback arc set for that digraph has fewer arcs. For any sequential ordering R on
the vertices of a digraph G(V,A), let Fp={(u,v)€A such that R(u)2R(v)} designate the feedback arc
set determined by R. Also let Q(R)=|Fg|.

Definition : A sequential ordering R’ is said to be an optimum ordering if Q(R")<Q(R) for all sequen-
tial orderings R. Given a sequential ordering R of a digraph, a consecutive subgraph is an induced sub-

graph on any (non-empty) set of vertices that are consecutively ordered by R.

We are now ready to state some properties of optimum orderings from {60}

Theorem A2.1: A feedback arc set F of a digraph G is minimum if and only if there exists an
optimum ordering R such that F=Fp.

Proof : See [60]

The above theorem clearly illustrates the equivalence between optimum orderings and minimum

feedback arc sets of a digraph. Hence the problem of finding optimum orderings is indeed NP-Complete.

Theorem A2.2: The set of optimum orderings for a given digraph is invariant under the removal of
self-loops and directed cycles involving two arcs.

Proof : See (60}

In accordance with the above theorem, two digraphs are said to be order equivalent if the removal

of all self-loops and two-cycles from each digraph results in isomorphic graphs. A subgraph of a

-
-
«
»
"
LR
.
o
‘.
o
.
R
~
L
‘e
-
«
-,
1]
<.
-




..............

217

digraph obtained by removing all self-loops and two-cycles is called the reduced graph. Therefore, an
optimum ordering for a digraph is also an optimum ordering for its reduced graph. It must be noted,
however, that a minimum feedback arc set of a reduced graph is only a subset of some minimum feed-

back arc set of the original graph.

Theorem A2.3 : Given an optimum ordering R of a digraph G(V,A), let G, be any consecutive sub-
graph of G according to R, and define

Fp={(u,v) : R(u)2R(¥) and u,v€V(G,)} and F,3=Fz—F, 3. Then
(a) F,g must be a minimum feedback arc set of G,;

(b) F,x must be a minimum feedback arc set of the subgraph H obtained from G by deleting all arcs

and coalescing all vertices of G,.
Proof : See {60]

It follows from part a) of the above theorem that for an optimum ordering R on a digraph G, for
any two vertices u and v such that R(v)=R(u)+1, the number of arcs from u to v is no less than the
number from v to u. In fact, a much stronger result follows.

Notation : Suppose G, and G, are two disjoint induced subgraphs of a digraph G. We use (G,,G,) to
denote the set of arcs in G with tail vertex in G, and head vertex in G,. Given an ordering R, two dis-

joint consecutive subgraphs G, and G, are said to form an R-ad jacens pair, denoted by [G,,G,] if
min{R(v) : v€G,}=max{R(u) : u€G, }+1.

Theorem A2.4 : Given an optimum ordering R for a digraph G, let [G,,G,] be an R-adjacent pair of

disjoint consecutive subgraphs of n; and n, vertices, respectively. Then
a) I(GIOGZ)l ? KGZ’Gl)L and
b)  if fG,G))|=KG,G,)} then the ordering R, obtained from R as follows, is also optimum :

R{u)=R(u) if u is neither in G, nor in G,.

R.(u)=R(“)'-n' ifu er.

LN N Sl Sl g e A At i et S Bl Sl ok Sl et dal Sk |

4 2L _arw e e

i
-z




......

----

R(u)=R(u)+n, if u€G,.

Proof : See [60}.

Definition : A feedback arc set for a digraph is minimal if it contains no proper subset that is also a

feedback arc set for this graph.

Definition : An ordering R for a digraph G is said to be admissible if

a)  The condition |(G},G,)|Z|(G,,G;)| is satisfied by all R-adjacent pairs [G,,G,] of disjoint consecu-

tive subgraphs of G, and
b)  The feedback arc set Fy determined by R is minimal.

By definition and by Theorem A2.4 a) it is clear that all optimum orderings of G are also admissi-
ble. However, there might be admissible orderings that are not optimum. We shall show that starting
from any arbitrary ordering of a digraph it is possible to obtain admissible orderings in polynomial
time. Hence for a class of digraphs in which an admissible ordering is also an optimum ordering in each

digraph, finding minimum feedback arc sets is indeed solvable in polynomial time.

The strategy we wish to employ to find optimum orderings is to start with any arbitrary ordering
and first obtain an admissible ordering. The vertices of the graph are relabeled as a\b',c,, - - - according
to this new ordering which we will refer to as the admissible reference ordering. This ordering is

then selectively perturbed to obtain a new admissible ordering with fewer feedback arcs (if one exists)

which then becomes the admissible reference and the process is repeated till an optimum ordering is ‘.'.';.
found. We need some more terminology and results before going into the description of the entire algo- ;E:ﬂ
Fas
rithm. ™
e
Definition : Two sequential orderings of a digraph are F-identical if they determine the same feedback "‘:',.:“I
.-'::1
arc set. An F-identical class of orderings is a set of orderings all of which are F-identical. Given an r "j

T

P . . . . . . . . L
admissible reference ordering R, and an F-identical class ¥, the ordering in ¥ that is lexicographi- ey
e

T

4

<4

fndiare,

gt

-_:_1

N SR T o A A s .‘\._\ RO




e Sy - g r A —— LB e s o Rt s sl Saul n S et
R Yn i taf Al Rag ot el LR S A A 0 it Bt el Bl P et A . Ve A ARA el AP

219

cally closest to R, is said to be the F-represenzative of ¥. Given a digraph with vertices labeled
according to some admissible reference ordering R,; and given any arbitrary ordering R, a sequen:
derived from R is an ordered pair of vertices [u,v] for which R(v)=R(u)+1. If, further,

R,(u) <R (V) then [u,vj is an up-sequent; if R er(W)>R V) then [u,v]is a down-sequen:.

Theorem A2.5 : In a reduced graph G whose vertices are labeled according to an admissible reference
ordering R, given an F-identical class ¥ with an admissible F-representative Rg, there exists one or
more arcs (u,v) in G for every down-sequent [u,v] derived from Rg.

Note : The arcs from u to v are forward arcs under Ry but are feedback arcs under R.

Proof : (See {60D. Since G is a reduced graph, there cannot be arcs both from u to v and from v to u.
So, if we eliminate the possibilities of one or more arcs from v to u, or no arcs between u and v in G,

then we are done.

Suppose G has one or more arcs from v to u. Since {u,v] is a sequent derived from Ry (i,
Rp(v)=Rg(u)+1), reversing the order of u and v in Ry produces an ordering with a feedback arc set

that is a proper subset of that determined by Rpg, thereby contradicting the minimality and, hence, the

admissibilitv of Rg. Now suppose that there are no arcs between u and v in G. The ordering produced
from Rf by switching the positions of u and v is then lexicographically closer to the reference R, ¢
than Rg. while having the same set of feedback arcs (i.e, the new ordering is also in ¥), which is a con-

tradiction to the designation of Rg as the F-representative of ¥. 0O >

We now begin by describing an algorithm, which, for any given directed graph G(V,A) and some

arbitrary initial ordering R, obtains an admissible ordering R,. The algorithm to find optimum order-

ings then treats R, as a reference and selectively perturbs it to obtain a better ordering. This procedure

is iterated until an optimum ordering is obtained.




220

Main program -
INPUT : Reduced graph G(V,A) and initial ordering Ripi..

OUTPUT : An optimum ordering R, of G. ~

g AAAAP o g

BEGIN
ADMISSIBLE (G(V,A) , R;;;, » R) '

p+-0

OPTIMUM (G(V,A),R,R', p)

IF p=1 THEN
R+R .
GO TO step 2)

ELSE z
Ry +R
STOP

ENDIF e

.
Pt
oo
A

END

subroutine ADMISSIBLE (G(V,A), R, R,) )
BEGIN
1)i~0;R,-R; no-|V|
2) CONSEC (G(V’A) »Ri,Rin» p) -
3) MINIMAL (G(V,A) . Rm ’ Ri‘l'l » q) ‘.:f
4) [F p=1or q=1 THEN -l
i—i+1 T
GO TO step 2) -
ELSE SR
RA._Ri ".“ )

RETURN R, :
ENDIF
END .'_.
subroutine CONSEC (G(V,A),R,R', p)
BEGIN -
1) p+o. N

2) Relabel vertices of G as v,,¥V3, ..., V, =

such that R(v;)=i for each i=1,2,...,n o7

3) FOR i=1TO n DO By

R(v)—R(v;) -

4) FOR i=1 TO n—2 DO -

BEGIN A
FOR j=i+1 TO n—1 DO *

BEGIN :

FOR k=j+1TO n DO ~

BEGIN o




5) Vl'-'{vi,vi“, ceey vj—l,
VoAV ¥iets oo o s Vi)
n,—{V,
n, |V,
G, —G{V,]
G,+-G{V,]
6) Sl ‘_uG],Gz)
SZ°_ szGl)
7 IF S, <S, THEN
p—1
FOR m=i TO j—1 DO
R(vy)—R(v_ )+n,
FOR m=j TO k—1 DO
R{v)—R(v)—n,
RETURN R
ENDIF
END
END
END
END

subroutine MINIMAL (G(V,A),R,R', q)

BEGIN
1) q+0
2) FOR EACH vertex v€V DO
R(v)~R(v)
3) F,~{(n,v)€A : R(u)ZR(¥)}
4) G+~G—F,
6) FOR EACH arc a€F, DO
BEGIN
G'~G'+a
IF G is still acvclic THEN
F: '-Fz—a
q+-1
ELSE
G'+~G'—a
ENDIF
END
7) IF g=1 THEN
R’ <- topological ordering on G’
ENDIF
RETURN R
END

subroutine OPTIMUM (G(V,A), R, R', p)
BEGIN

221

meL et
kel

]

“ e
()
Aon'l

J_ T

P o S B N
AT ]



222

1) Relabel vertices of G according to R ; R'—R
2)ie1;G,~G;R;~R;1,0;
Q,+{(u,"€A(G) : R,(w)2R,(V)}] s M~Q,.
3) TREE (i, M)
4) NEXTSON (i, j, noson)
5) IF noson=1 THEN
IF i=1 THEN
p-0
R'+R
RETURN R’
ELSE
i—~FATHER()
GO TO step 4)
ENDIF
ELSE
ie—j
ENDIF
6) IF Q, <M—I; THEN
p-1
R'«R
RETURN R
ELSE
GO TO step 3)
ENDIF
END

subroutine TREE (i , M)
BEGIN
1) F—{(u,v)€A(G,) : Ri(u)2R(¥)}
2) FOR EACH arc (u,v)€F DO
BEGIN

UNITE (u,v,G;,R;,G'R’T)

IF M—(L;4+I)20 THEN
ntree+—ntree+1
jntree
l,‘—l,+l'
G)‘-G'
ADMISSIBLE (G',R’,R))
Q- |{(x,y)€A : RX)ZRWY}|
FATHER())+~i
SON(i)~SONG) U {j}

ENDIF

END
RETURN

END

'y . e e o e -
. L et AT
R A T R S
AL Lt (AR
dr.’, .- . s d

The subroutine ADMISSIBLE starts with an ordering R; and calls CONSEC to check if it satisfies

uv-'j
l‘l

s
o ‘e’
U]
Yy o

condition a) of admissibility. If it does (indicator p=0) then there is no change; however, if not

.
P

P

]

WA




223 :1

(indicator p=1), then an intermediate ordering R;, is produced with fewer feedback arcs. Subroutine

MINIMAL 1s then called to check for minimality of the feedback arc set F; of R;,. If F, is found
minimal (indicator q=0) then, again, there is no change, otherwise (indicator g=1), the minimal proper
subset F, is found and a new ordering R;,, with this as its feedback arc set is obtained. If either p=1 or
g=1, then Q(R,,,)<QR,;), in which case i is incremented by 1 and the process is repeated. In fact

Q(R,,,)=Q(R,) if and only if both p=0 and gq=0, in Which case the program halts.

Theorem A2.6 : Given a digraph G(V,A) with n=|V| and a=]A| and any initial sequential ordering,
the subroutine ADMISSIBLE halts at an admissible ordering and the number of computations involved
is bounded above by a polynomial P(n,a) in n and a.

Proof : Let Re,R;,R,, ..., R;, - * be the sequence of orderings produced during each iteration of sub-
routine ADMISSIBLE. Let m;=Q(R;) be the number of feedback arcs determined by R; Since
m; 2m;,, 20 for each i, there exists a smallest integer s such that m,=m,,, and m;>m;,, for each
0<i<s Therefore the program halts after s iterations. At this stage both indicators p and q must be O
which means that R, must be admissible. Clearly s S<mgy<a; therefore, the number of iterations is at

most the number of arcs in G.

During each call, steps 2) and 3) of CONSEC together involve at most 2n computations, while

steps 5), 6), and 7) require at most (2n+a) computations for each R-adjacent pair [G,,G,}

,L Lemma : Given a digraph G{(V,A) with n=|V|, and an ordering R, the number of R-adjacent pairs

[G,,G.] of disjoint consecutive subgraphs of G is (n+1)n(n—1)/6.

Proof : Relabel the vertices of G as v,,V,, ..., V, according to R. Arrange n dots labeled 1,2,...,n
on a straight line in ascending order frm left to right. Place dummy dots O on the left of 1 and n+1
to the right of n. We now have a linear arrangement of n+2 dots creating n+1 empty spaces between .
them. If we pick any three spaces among the n+1 empty spaces and place a slash (/) in each of them,
then we can associate V, to be the vertices corresponding to dots between the first and second slashes

while V, to those between the second and third slashes. G, and G, are then the consecutive subgraphs




T

D
A RS AL AR

224

of G induced by V, and V,, respectively. Hence the proof of the lemma.

Therefore, the total number of computations performed during each call to CONSEC is at most
(2n+(2n+a)x(n3-n)/6). In subroutine MINIMAL step 6) requires at most nXa computations while
the other steps would need at most n+3a computations. Thus each iteration of ADMISSIBLE performs
at most Q(n,a)=2n+(2n+a)x(n3~n)/6+n+3a+na computations. Since the number of iterations is
at most o we have P(n,a)=aQ(n,a) as the upper bound on the total number of computations involved

in obtaining an admissible ordering for G. O

We now consider the algorithm to find an optimum ordering of a digraph. By Theorem A2.2 we
need consider only reduced graphs. So, for a reduced graph G{V,A) with some arbitrary initial order-
ing, an admissible reference ordering R is first obtained. For each feedback arc of R a cyclic shift by
one order position is perforrued on the vertices of a consecutive subgraph, where the subgraph has,
before the shift, the feedback arc connecting its two extreme vertices. Of the two possible directions for
this cyclic shift, it is convenient to choose the one which results in fewer feedback arcs. This results in
a new ordering which has a down-sequent corresponding to the feedback arc of R. This results in Q(R)
new orderings which are made admissible by passing them through subroutine ADMISSIBLE. If one of
these admissible orderings R’ is better than R, ie. Q(R)<Q(R) then R’ is treated as a new reference. If
one of the initial perturbations does not establish a new reference, then each of these is selectively per-
turbed in a similar way and thus the search branches out. [t is clear that we are only looking at order-

ings whose down-sequents are feedback arcs of R. The following result justifies this approach.

Theorem A2.7 : Given a reduced graph G(V,A) and an admissible reference ordering R. If R is not
optimum then there exists an ordering R with Q(R)<Q(R) such that every down-sequent of R’
corresponds to a feedback arc of R.

Proof : Label the vertices of G according to the reference ordering R. Let R, be an optimum ordering of
G. Since R is not optimum Q(R,)<Q(R). Let ¥ be the F-identical class containing R,. Let R’ be the

F-representative of ¥. Since R’ is optimum, it is also admissible. Also R’ cannot be the same as R since

L S —

T

PR T
L .

¥, r

)



. Y
A ol el o,

(254
(o]
O

Q(R’)<Q(R) and so must have at least one down-sequent. But by Theorem A2.5 every down sequent
[u,v] of R' must correspond to an arc (u,v) in G. Since [u,v] is a down-sequent, we must have

R(u) ZR(¥), by definition. Hence (u,v) is a feedback arc of R.

We now describe a limiting mechanism which keeps the search for better orderings from becom-
ing extremely unwieldy. It is useful to imagine a tree which grows from a root vertex (labeled 1).
Associated with each vertex i of this tree is a reduced graph G;, an admissible ordering R; on the ver-
tices of G;, Q;=Q(R,) and an integer I; which indicates the difference between the minimum number of
feedback arcs of G and G;. Initially G;=G, R;=R and I,=0, and M=Q(R). The subroutine TREE(i,M)

creates 'sons’ for vertex i in the tree as follows:

For each feedback arc of G; according to R; a cyclic shift is performed to establish the end points
of this arc as a down sequent. The two vertices of this down-sequent are united into a single ver-
tex and all self-loops and 2-cycles created by this union are eliminated resulting in a reduced
graph G’ and an ordering R'. Let I' be the number of 2-cycles thus eliminated. Each vertex of G’
thus corresponds to a consecutive subgraph of the original graph G. The down-sequent, say [u,v]l
which gets united into a single vertex, gets an equivalent label which is the label of v appended
to the label of u. Thus, R’ can also be treated as an ordering of G by reading off the labels of G’ in
order according to R. A ’son’ j is created only if M—;+I)20, in which case G;=G, R;=R;, and
L=L+I. If M—(I;+I)<0 then it means that any ordering that will be derived from R’ by the
above procedure will have at least I;+I' arcs of G in its feedback arc set; therefore, an ordering

better than the original R can never be obtained this way.

We would now like to make a few comments about the computational complexity of this pro-
cedure. The number of iterations in the main algorithm is again at most the number of arcs of G, since
successive orderings are better than the previous ones. So if computations within subroutine OPTIMUM
can be performed in polynomial time then, indeed, the entire algorithm runs in polynomial time. This

is impossible since by Theorem A2.7 this algorithm indeed terminates in an optimum ordering, while

Ce L . e
Wt e e e e L e et e e e e e
S WA . .

ARV AP PP P
e e te e 0, P




Y
.

-y "'v. g

TR

vvr—v—v"rv'j'v' P

- . .
......
_______

226

obtaining one is known to be NP-Complete. However, if one examines the computations within subrou-
tine OPTIMUM, the only quantity that can grow exponentially with n=|V| is the number of vertices
of the tree. It would be interesting to find such a digraph on n vertices for any general n. An upper
bound on the depth of the tree is n—1 since the leaves of the tree correspond to two-vertex digraphs
and the digraph associated with a son ha.s one vertex less than that associated with its father. So, even

bounding the number of sons by k gives us at most k® vertices in the tree which does not help.

We now illustrate with an example the use of the above algorithm. Consider the reduced graph
G(V,A) shown in Figure A2.1. The natural ordering a,b,c,d,e can easily be verified to be admissible.
Figure A2.2 shows the tree structure of the search for a better ordering. Note that [e,c,a] represents a
consecutive subgraph of G with three vertices e, c, and a appearing in that order. The search ter-
minates at a three-vertex digraph with indicator p=1 meaning that the ordering b,e,c,a,d is a better
ordering. Indeed this new ordering has only two feedback arcs which is one less than that of the

natural ordering. The vertices are relabeled as a,b',c\,d'e’ according to this new admissible reference.

Figure A2.1 : A reduced graph G(V,A)

...........

------
......

A Aaats St S Sags Snte ante gl Sath b S Jaute Jhsth Sant Shets e Beox S ek 4

»



Ealiy W_ . L L
L A S T T BN Y A .‘.!--_\“'_'.. AR A S Gs (R AN SR oAl N arie oyl ML UM Ak A e S ek el e S i aagte aa < -

227

R=3becde Q(R) =3
”@ o) Q=3
S l4=0
(c.a) (e,2) (e,c)

e (=20

£P-8538

Figure A2.2 : Tree structure with R as the admissible reference




EhdR AR A A AR Al Aol Sl Sa K it Sl Sl v sas Sak by

228

Figure A2.3 shows the tree-structure for the search for a better ordering. Since Q;+I;> 2 for each ver-
tex in the tree apart from the root, the search terminates at the root vertex with indicator p=0 meaning

that the reference ordering is indeed optimum.




R'=becad Q(R) =2

...............
------------ .

Figure A2.3: Tree structure with R’ as the admissible reference

R T S N AT LA I S S
- ® 4 .‘5 _-".-‘ ] ¢-'__. >~ :- »

R v v et
J - . ". . . . . "..‘.v‘
SRR IR W SR AN ) O L)



Ml e S Al B B N A S i AR s e et e P g

230

REFERENCES

[1] L. W. Nagel, "SPICE2: A Computer Program to Simulate Semiconductor Circuits,” Electronics

Research Laboratory Report #ERL-MS520, University of California, Berkeley, May 1975.

(2] W.T. Weeks, A. J. Jimenez, G. W. Mahoney, D. Mehta, H. Qassemzadeh, and T. R. Scott, "Algo-
rithms for ASTAP - A Network Analysis Program,” IEEE Transactions on Circuit Theory, Vol.

CT-20, pp. 628-634, November 1973,

[3] P. Yang, L. \. Hajj, and T. N. Trick, "SLATE: A Circuit Simulation Program with Latency Exploi-
tation and Node Tearing,” Proceedings of the IEEE International Con ference on Circuits and

Computers, pp. 353-355, October 1980.

[4] N.B.G. Rabbat, A. L. Sangiovanni-Vincentelli, and H. Y. Hsieh, "A Multilevel Newton Algorithm
with Macromodelling and Latency for the Analysis of Large-scale Nonlinear Circuits in the Time
Domain,” /EEE Transactions on Circuits and Systems, Vol. CAS-26, pp. 733-741, September

1979.

[S] B R. Chawla, H. K. Gummel, and P. Kozak, "MOTIS - An MOS Timing Simulator,” /EEE Tran-

sactions on Circuits and Systems, Vol, CAS-22, pp. 901-910, December 1975.

[6] S. P. Fan, M. Y. Hsueh, A. R. Newton, and D. O. Pederson, "MOTIS-C: A New Circuit Simulator
for MOS LSI Circuits," Proceedings of the IEEE International Symposium on Circuits and Sys-

tems, Phoenix, Arizona, pp. 700-703, April 1977.

[7] C. F. Chen, C. Y. Lo, H. N. Nham, and P. Subramaniam, “The Second Generation MOTIS Mixed
Mode Simulator,” Proceedings of the 2Ist Design Automation Con ference, Albuquerque. New

Mexico, pp. 10-17, June 1984.

[8] Y.P.Wei L N. Hajj and T. N. Trick, "A Prediction-Relaxation based Simulator for MOS Circuits,”
Proceedings of the I1EEE International Con ference on Circuits and Computers, New York, Sep-

tember 1982.




.............

'_‘.: 231

[9] E. Lelarasmee, "The Waveform Relaxation Method for the Time Domain Analysis of Large Scale

Y

Nonlinear Dvnamical Systems," Ph.D. Dissertation, University of California, Berkeley, 1981.

: r
d ot
o a
‘l

O [10] E. Lelarasmee, A. E. Ruehli, and A. L. Sangiovanni-Vincentelli, “The Waveform Relaxation

,.,

Method for the Time Domain Analysis of Large Scale Integrated Circuits,” / EEE Transactions on

Computer-Aided Design, Vol. CAD-1, No. 3, pp. 131-145, July 1982.

(11] J. White and A. L. Sangiovanni-Vincentelli "RELAX2 : A Modified Waveform Relaxation
Approach to the Simulation of MOS Digital Circuits,” Proceedings of the 1EEE International

Sym posium on Circuits and Systems, California, pp.756-759, May 1983.

\“ {12] J. White and A. L. Sangiovanni-Vincentelli, "RELAX2.1 : A Waveform Relaxation based Circuit
. Simulation Program,” Proceedings of the I EEE Custom Integrated Circuits Con ference, Roches-

ter, New York, pp. 232-236, May 1984.

[13] A. R. Newton, "The Simulation of Large-Scale Integrated Circuits,” /EEE Transactions on Cir-

cuits and Systems, Vol. CAS-26, pp. 741-749, September 1979.

(14] G. Arnout and H. De Man, “The use of Threshold Functions and Boolean-Controlled Network Ele-
ments for Macromodelling of LSI Circuits,” JEEE Journal of Solid State Circuits, Vol. SC-13,

pp. 326-332, June 1978.

[15] K. Sakallah and S. W. Director, "An Activity Directed Circuit Simulation Algorithm,” Proceed-

ings of the IEEE International Con ference on Circuits and Computers, New York, pp. 356-360,

October 1980.

[16] G. R. Case, "SALOGS - A CDC 6600 Program to Simulate Digital Logic Networks, Vol. 1 - User’s

2 Manual,” Sandia Laboratory Report SAND 74-0441, 1975. %

::::?' (17] S. A. Szygenda, "TEGAS2 - Anatomy of a General Purpose Test Generation and Simulation Sys-

e tem for Digital Logic,” Proceedings of the Ninth ACM Design Automation Workshop, June
o 1972. :




232
[18] J. Jephson, R. McQuarrie, and R. Vogelsberg, "A Three-value Computer Design Verification Sys-
tem,” /BM Systems Journal, Vol. 8, No. 3, pp. 178-188, 1969.

[19] R. E. Bryant, "An Algorithm for MOS Logic Simulation,” LAMBDA (now VLSI) magazire, Vol.

1, No. 3, pp. 46-53, 1980.

[20] R. E. Bryant, "A Switch-level Simulation Model for Integrated Logic Circuits” Ph.D. thesis,

MIT/LCS/TR-259, Massachusetts Institute of Technology, Cambridge, March 1981.

[21] R. H. Byrd, G. D. Hachtel, M. R. Lightner, and M. H. Heydemann, "Switch Level Simulation :
- Models, Theory and Algorithms,” (to appear in) Advances in Computer-Aided Engineering Design,
E A. L. Sangiovanni-Vincentelli, Editor, Jai Press, 1985.

[22] V. Ramachandran, "An Improved Switch-level Simulator for MOS Circuits,” Proceedings of the

20th Design Automnation Con ference, Miami Beach, Florida, pp. 293-299, June 1983.

[23] V. Ramachandran, A Linear Time Algorithm for Race Detection in Transistor Switch-level Cir-
cuits,” Proceedings of the IEEE International Conference on Computer Design, New York, pp.

345-348, November 1983.

[24]) 1. N. Hajj and D. G. Saab, "Logic and Fault Simulation of MOS Circuits Based on Symbolic Expres-

sion Generation,” (submitted to) /EEE Transactions on Circuits and Systems.

[25] L N. Hajj and D. G. Saab, "Symbolic Logic Simulation of MOS Circuits,” Proceedings of the

IEEE International Symposium on Circuits and Systems, Newport Beach, California, pp. 246- o
249, May 1983.

(26] C.J. Terman, "RSIM - A Logic-Level Timing Simulator,” Proceedings of the IEEE International

Con ference on Computer Design, New York, pp. 437-440, November 1983. o

[27] C. J. Terman, "Simulation Tools for Digital LSI Design,” Ph.D. Thesis, Department of Electrical
e

Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, 1983. : 1




nnnnn

........................................................... ULy S P S L N S I T P TR
T T A N T T e el e

[28)

[29]

[30]

[31]

[32]

(33]

(34]

(35]

(36]

(37]

- ".%'-.

----------------------------------

233

V. B. Rao, T. N. Trick, and M. R. Lightner, "Hazard Detection in a Multiple Delay Logic Simula-
tor,” Proceedings of the IEEE International Symposium on Circuits and Systems, Rome, Italy,

pp. 72-75, May 1982.

Vasant B. Rao, "Algorithms for a Multiple Delay Simulator,” M.S. Thesis, Department of Electrical

Engineering, University of Illinois, Urbana, March 1982.

V. B. Rao, T. N. Trick, and L. N. Hajj, "A Table-driven Delay Operator Approach to Timing Simu-
lation of MOS VLSI Circuits,” Proceedings of the IEEE International Con ference on Computer

Design, New York, pp. 445-448, November 1983.

R. Tarjan, "Depth First Search and Linear Graph Algorithms," SJAM Journal of Computing, Vol.

1, No. 2, pp. 146-160, June 1972.

C. W. Ho, A. E. Ruehlj, and P. A. Brennan, "The Modified Nodal Approach to Network Analysis,"

I1EEE Transactions on Circuits and Systems, Vol. CAS-22, pp. 504-509, June 1975.

G. D. Hachtel, R. K. Brayton, and F. G. Gustavson, "The Sparse Tableau Approach to Network
Analysis and Design,” IEEE Transactions on Circuit Theory, Vol. CT-18, pp. 101-113, January

1971.
L. O. Chua and P. M. Lin, Computer-Aided Analysis of Electronic Circuirs : Algorithms and
Computational Technigues. Englewood Cliffs, New Jersey: Prentice-Hall Inc., 1975, pp. 631-664.

L. N. Hajj, "Sparsity considerations in Network Solution by Tearing," I EEE Transactions on Cir-

cuits and Systems, Vol. CAS-27, No. 5, pp. 357-366, May 1980.

G. D. Hachtel and A. L. Sangiovanni-Vincentelli, "A Survey of Third Generation Simulation

Techniques,” Proceedings of the IEEE, Vol. 69, No. 10, pp. 1264-1280, October 1981.

W. K. Chia, T. N. Trick, and L. N. Hajj "Stability and Convergence Properties of Relaxation
Methods for Hierarchical Simulation of VLSI Circuits,” Proceedings of the IEEE International

Symposium on Circuits and Systems, Montreal, Canada, pp. 848-851, May 1984,

..



[38]

(39]

(40]

[41]

142

(43]

[44]

(45]

[46]

(47]

(48]

W TR — Aaiahe Dt SIS Sec ot S hecban e S A/ SRS S A A SO A St b A adie an Sl da A acSie S AAn Aan S St § el N S AU B4 §

234

D. G. Luenberger, Optimization by Vector Space Methods. New York: John-Wiley & Sons Inc.,

1969, pp. 144-145.

M. Yoeli and S. Rinon, "Application of Ternary Algebra to the Study of Static Hazards," Journal

of the ACM, Vol. 11, No. 1, pp. 84-97, January 1964.

E. B. Eichelberger, "Hazard Detection in Combinatorial and Sequential Switching Circuits,” /BM

Journal of Research and Development, Vol. 9, pp. 90-99, March 1965.

P. Wilcox, "Digital Logic Simulation at the Gate and Functional Level," Proceedings of the IEEE

Design Awomation Con ference, New York, pp. 242-248, 1979.

S. Seshu and D. N. Freeman, "The Diagnosis of Asynchronous Sequential Switching Systems,” /RE

Transactions on Electronic Computing, Vol. EC-11, No. 4, pp. 459-465, August 1962.

S- A. Szygenda and E. W. Thompson, "Modelling and Digital Simulation for Design Verification

and Diagnosis,” /EEE Transactions on Computers, Vol. C-25, pp. 1242-1253, December 1976.

H. N. Nham and A. K. Bose, "A Multiple Delay Simulator for MOS LSI Circuits,” Proceedings of

the 17th Design Automation Con ference, pp. 610-617, June 1980.
E. G. Ulrich, "Exclusive Simulation of Activity in Digital Networks," Communications of the
ACM, Vol. 12, No. 2, pp. 102-110, February 1969.

W. C. Elmore, "The Transient Response of Damped Linear Networks with Particular Regard to

Wideband Amplifiers,” Journal of Applied Physics, Vol. 19, pp. 55-64, January 1948.

P. Penfield and J. Rubinstein, "Signal Delays in RC Tree Networks," Proceedings of the 18th

Design Automation Con ference, pp. 613-617, 1981.

C. Chicoix, J. Pedoussat, and N. Giambiasi, "An Accurate Time Delay Model for Large Digital Net-
work Simulation,” Proceedings of the 13th Design Automation Conference, pp. 54-60, June

1976.

NN . SRR AL N e
T T T T T e W T BT T T T e e T T e e
. o . 5 5 " .



235

{49] C. M. Baker, "Artwork Analysis Tools for VLSI Circuits," M.S. Thesis, Department of Electrical

Engineering and Computer Science, Massachusetts Institute of Technology, Camgridge, June 1980.

[50] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications. New York: North-Holland .

Publishing Company, 1982.

[51] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms.

Reading, Massachusetts: Addison-Wesley Publishing Company, 1974.

[52] M. R. Garey and D. S. Johnson, Computers and Intractability : A Guide to the Theory of NP-

Completeness. New York: W. H. Freeman and Company, 1979.
[53] S.Even,Graph Algorithms. Rockville, Maryland: Computer Science Press, 1979.

[54] Z. Kohavi, Switching and Finite Automata Theory, Second Edition. New York: McGraw-Hill

Book Company, 1978.

[55] A.R. Newton and D. O. Pederson, "Analysis Time, Accuracy and Memory Requirement Tradeoffs
in SPICE2,” Proceedings of the Eleventh Annual Asilomar Con ference on Circuits, Systems and

Computers, Asilomar, California, pp. 6-9, November 1977.

[56] M. Y. Tsai, "Pass Transistor Networks in MOS Technology : Synthesis, Performance, and Testing,"
Proceedings of the IEEE International Symposium on Circuits and Systems, Newport Beach.

California, pp. 509-512, May 1983

[57] R. M. Karp, "Reducibility among Combinatorial Problems,” Complexity of Computer Computa-

tions. New York: Plenum Press, 1972, pp. 85-103. !

-
1
.
Y
\
L3
1)
y
I N L ST RS S I I A I I ST S R ORI A SR N KR SO T ft SR S S S L S G
OO IR PR P I i e ST AP S [ A T SR VT TP I IR W SRS T Nl b A LT 9
- . -, ., . . . N - - A IR IR T B A R B I R IR L Y . - - .
O PRI T, A I I T S A e - N IR S A I AT N N ¢ N A ‘f_."'..(kfn_f.‘tn_!..f-".ﬁ




[58])

(59]

(60}

(61]

[62)

[63]

236

F. Gavril, "Some NP-Complete problems on Graphs,” Proceedings of the Eleventh Con ference on
In formation Sciences and Systems, Johns Hopkins University, Baltimore, Maryland, pp. 91-95,

1977.

C. L. Luchesi, "A Minimax Equality for Directed Graphs," Doctoral Thesis, University of Water-

loo, Canada, 1976.

D. H. Younger, "Minimum Feedback Arc Sets for a Directed Graph,” / EEE Transactions on Cir-

cuit Theory, pp. 238-245, June 1963.

A. Gupta, "ACE : A Circuit Extractor,” Proceedings of the ACM-IEEE 20th Design Automation

Con ference," Miami Beach, Florida, pp. 721-725, June 1983.

R. E. Bryant, "Race Detection in MOS Circuits by Ternary Simulation,” VLS7 83, F. Anceau, Edi-

tor. New York: North-Holland Publishing Company, August 1983.

R. E. Brvant, "A Switch-level Model and Simulator for MOS Digital Circuits,” /EEE Transac-

tions on Computers. Vol. C-33, No. 2, pp. 160-177, February 1984.

[64] J. A. Brzozowski and M. Yoeli, "On a Ternarv Model of Gate Networks," /EEE Transactions on -
Computers, Vol. C-28, No. 3, pp. 178-183, March 1979. ~ 4
[65] T. Lengauer and S. Naher, "Delay-independent Switch-level Simulation of Digital MOS Circuits,” 4
(a pre-print from) VLS! : Algorithms and Architectures, Amalfi, Italy, May 1984. ‘_;'
[66] E. M. Reingold, J. Nievergelt, and N. Deo, Combinatorial Algorithms : Theory and Practice. i
Englewood Cliffs, New Jersey: Prentice-Hall Inc,, 1977. K
e R,




Tl

Tr—rvvv, .

[N [N i' l' i, X D

R R MO S
e H L

M WYt

237

(67] D. Coppersmith and S. Winograd, "On the Asymptotic Complexity of Matrix Multiplication,”

SIAM Journal on Computing, Vol. 11, No. 3. pp. 472-492, August 1982.

et et e,
e at .
I I W

‘:.
N
l-‘
)

kAR A 4
ducdeadadenittos

ENDEISPEN . KIS/

e

R s PLPLINN,




Pt i A B Sl e oAl it Sy S it S o a i ® et = e lia® St St i S

238

VITA

h Vasant Rao was born in Bangalore, India, on July 25, 1959. He received his Bachelor of Technol-

ogy degree in Electrical Engineering (Electronics) from the Indian Institute of Technology, Madras,

Py

India, in June 1980. In August 1980 he entered the University of Illinois at Urbana-Champaign and
veceived his M.S. degree in Electrical Engineering in March 1982. From August 1980 to December 1984

he worked as a Research Assistant at the Coordinated Science Laboratory, Urbana, and as a Teaching

pp——y

Assistant with the Department of Electrical Engineering at the University of Illinois. He has accepted a

position as an Assistant Professor in Electrical Engineering at the University of Illineis at Urbana-
Champaign. His research interests include the areas of simulation of VLSI circuits, computer-aided

design, semiconductor device modeling, and combinatorial and graph algorithms.

Tt e Te e et N T AT e et
DI T S R T O R I IR

TR AU VR I UL A M R ST S
AP T, T SOOI AT W W




-
L
“

-86

- DTIC

'“‘;'-'" - - - '-' - -- .p .- -.— -

e
N




