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CHAPTER 1

INTRODUCTION

In this chapter, I sketch a short history of work leading to
this thesis. Then I give a summary of the results and organization of the

thesis.

1.1. Background

Narendra and Valavani (1978) opresented a stable model
reference adaptive controller. Since then, it has been recognized that scme
of the assumptions about the plant or about our knowledge of the plant are
unrealistic. It has become popular to study model reference adaptive
systems which are formed by applying this Narendra-Valavani controller to
a plant which meets these unrealistic assumptions and then perturbing the
plant without changing the controller.

In this way, researchers have been able to study more realistic
applications of adaptive control without having to develop entirely new
controller structures. In this thesis, I join the group of researchers who
have perturbed the plant by adding high frequency dynamics. The results of
a few of the researchers who have preceded me in studving the effects of
this perturbation are summarized in the following paragraphs.

Rohrs et al. (1981,1982) studied the effects of an additive
disturbance and unmodelled high frequency dynamics when the model reference
adaptive svstem is excited by a constant reference input. They show that

the magnitude of the adjustable feedback gains in the controller will

“ L el . e . S
CO " . . P [ -t . . . [N . A
NPVEPRIY. SR VPP SR SR RN PR PP S P G | oL ———t PG W WP PO




eventually become large. 1If the relative degree of the plant including the
high frequency dynamics is greater than two, the linear system with feedback
gains fixed at some large values would be unstable. The behavior of the

model reference adaptive systems studied by these researchers is characterized
by two different intervals of time. During the first interval the output

error becomes and remains small while the magnitudes of the adjustable

feedback gains drift toward infinity. At some.instant the adjustable gains
take on values at which the linear system with feedback gains held constant

at these values becomes unstable. This is the beginning of the second interval
during which the magnitude of output error and the magnitudes of the adjustable
feedback gains approach infinity in finite time.

The same group also studied by simulation the effects of high
frequency dynamics when the reference input contains high frequencies or
the initial conditions on the system states are large. They show that both
of these conditions can lead to instability. However, these instabilities
are not as easily described as the drift instability.

The drift behavior of the parameters in the presence of an
additive disturbance does not depend on the high frequency dynamics. This
drift occurs because the control scheme adjusts the feedback gains until
the output error is zero. For a constant reference input, there exists
an unbounded manifold on which the output error is zero when the disturbance
is zero. Except for certain special disturbances, perfect disturbance
rejection requires infinite feedback gain. Hence, the feedback gains drift
to infinity along the manifold. This behavior is discussed by Egardt (1980)

and also by Riedle, Cyr, and Kokotovic (1983).
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One obvious way to avoid the drift to infinity is to put a
dead zone in the adaptation law around output error equal to zero. One such
algorithm was proposed by Peterson and Narendra (1982).

Toannou and Kokotovic (1983) propose a different solution.

They replage the integrator in the original adaptation laws with a first

order low pass filter. For a bounded additive disturbance the output error
will enter and remain in a small segment containing zero and the adjustable
feedback gains will remain bounded. For a perturbation involving high
frequency dynamics, they define the term 'dominantly rich" input. This

is sufficiently rich input which does not excite the high frequency dynamics.
Then they show that, when the reference input is domidinantly rich and the system
is initially in a region of attractién, the output error enters a small segment
of the real line containing zero and the adjustable gains remain bounded.

Krause (1983) refines the notion of dominant richness and
studies the effect of high frequency dynamics when the reference input is
periodic, has at least as many spectral components as unknowns, and is
dominantly rich. He finds that when the states of the system and the
errors in the values of the adjustable gains are 0(1l), the adaptation will
be in the correct direction if the speed of adaptation is slow enough.

The approach taken in this thesis to make the system robust with
respect to perturbations is to make the unperturbed system exponentially stable.
Kosut (1983); Kosut, Johnson, and Anderson (1983); and Anderson and Johnstone
(1981) have also used this approach. Kosut et al. introduced the concepts of
"tuned system’ and ""tuned error" which are important in this thesis. They
showed that persistent excitation which provides exponential stability of the

unperturbed system provides robustness with respect to perturbations with
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E' bounded effects. However, they did not specify any particular type of
: perturbation and their method of proof is considerably different from
P
b
ﬁ. that of this thesis. Anderson and Johnstone considered the discrete time
case and used converse Lyapunov function results for difference equations in =
- a manner similar to the way I use converse Lyapunov function results for
S differential equations.
While none of the results of this thesis are new, I feel that

this work represents a good combination of the techniques and ideas mentioned

above. Choosing a particular perturbation, high frequency unmodelled

4

dynamics, allows me to study the effects of the perturbation in some detail.

With the concepts of tuned system and tuned error I am able to specify and .

solve a homogeneous problem before attacking the complete problem. Using .
the singular perturbation approach of Ioannou and Kokotovic to represent the
unmodelled high frequency dynamics provides a natural way to partition the
system. This natural partitioning of the system can be combined with the
converse Lyapunov results to get Lyapunov functions for each subsystem. The TT
final idea is then to use a composite of the Lyapunov functions for the

subsystems to prove the desired stability results.

1.2. Summaryv of Results and Organization of Thesis

This thesis contains two major results, as well as 1illustrative -
simulation examples. The first major result is that for a certain class of -
inputs there exists a unique equilibrium for a model reference adaptive

system when the nominal plant is perturbed by high frequency unmodelled -

dynamics. The second major result is that, for a small enough perturbation,

this equilibrium is exponentially stable.

-
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l‘ In Chapter 2, 1 derive the first major result in Theorem 2.1.
This chapter'also»provides a transfer function description of the system
and contains a section showing that a small singular perturbation has a

» small effect on the equilibrium values of the adjustable gains. Chapter 2

ends with remarks which are intended to provide either an intuitive

interpretation of the results on the chapter or a comparison with the work
of others.

In Chapter 3, I derive several resulté/including the second
major result of the thesis. The chapter begins with definitions and
theorems to be used in the derivations in the rest of the chapter. Then
the differential equations describing the system are presented and an
error system is derived. When the tuned error is zero, as it will be for
I' the equilibrium of Theorem 2.1, the second major result of the thesis is

stated in Theorem 3.9, After the nonzero tuned error case is handled,
Chapter 3 ends with remarks interpreting the results of the chapter.

'l In Chapter 4, I present two simple examgiéé/whiéﬁ show that
the system indeed remains exponentially stable when high frequency
unmodelled dvnamics perturb the original system. The examples also show
that estimates of the range of stable perturbations based upon the proof of
Theorem 3.9 are so conservative that these estimates are not of practical
use.

In Chapter 5, 1T offer some concluding remarks and suggestiouns

for future research.
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CHAPTER 2 &=
EXISTENCE OF AN EQUILIBRIUM
In this chapter I have three major objectives. First, I iy
describe the perturbation from the ideal which I have studied. Next, I »
) show that for a certain class of input signals a unique equilibrium point
exists in spite of the perturbation. Finally, I discuss the effects of
_f the perturbation on the parameter values associated with the equilibrium.
2.1. Preliminaries ==
' The following result will be useful in the proof of the
E uniqueness of the equilibrium point.
_ Lemma 1: Let Tl(s) be a polynomial cof degree < n-2, Tz(s) be a polynomial of ) —
degree < n, R(s) be a polynomial of degree n, and Z(s) be a polynomial of degree .
n-1. TFurthermore, let Z(s) and R(s) be relatively prime. Define Q(s) as a :
polynomial of degree < 2n-1, such that -
Q(s) = Tl(s)R(s) + Tz(s)Z(s) . (2.1) ‘s
et
Let X(us) be a function which can be represented by -
X{us) =1 + ; xi(us)i ¥s € {s:|s| <i—} . (2.2)
i=1

Further, require that X(us) satisfy

0<1 - }:lu:sf < |x(us)| <1l + izuIsi ¥s€ {s:|s] <I]J:} . (2.3)

- o AN . RN 5 .~ . . . s s : N P . N : s S
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Define

P(u,s) = Tl(s)R(s) + TZ(S)Z(S)X(US) . (2.4)

Then, there exists My G'Rf, such that ¥u€ [O,UO), if P(u,s) = 0 for 2n

distinct values of sj siesc i=1,2,...,2n, then Tl(s) = 0 and Tz(s) = 0.

Proof: First consider u = 0. Then P(0,s) = Q(s). Since the degree of Q(s)

< 2n-1 and Q(s) is zero for 2n distinct values of s, then Q(s) must be

identically zero. Therefore,
Tl(s)R(s) = - Tz(s)z(s) ¥s€C . (2.5)

Since R(s) and Z(s) are relatively prime and neither is identically zero,
(2.5) implies either Tl(s)E 0 and Tz(s)E 0, or Tl(s) contains Z(s) as a
factor. The latter is clearly impossible because of the degree of Z(s) is
n~-1 and the degree of Tl(s) is strictly less than n-1. Thus, the lemma is
proved for u = 0.

Now, consider 1> 0. Assume Tl(s) £ 0 or Tz(s) £ 0. Using
(2.1), (2.3) and (2.4) write

x; (us)’ VSE{S:[S‘<%} . (2.6)

P(u,s) = Q(s) + Tz(s)z(s)
1

[ l=

i
By assumption Q(s) has degree greater than n-2 and less than 2n, and, hence,

there is at least one S such that Q(si)#O. Without loss of generality let

this be sl. Let

IQ(Sl)l 1
[s [T,z DT 7 Tsyl

Hy = min { } . (2.7

-------

£ rr o)

T
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Then, if u€ (O,uo) =
IPGu,s )] 2 Qs | - ux]s [T, (s)2(sp >0 5 (2.8)
=
this contradicts P(u,sl)=0. Therefore, the assumption that Tl(s)¢0 or Tz(s)¢0 .
is false and the lemma is proved. -
2.2. The System
The Model Reference Adaptive System to be studied is the
Narendra, Valavani (1978) controller applied to a plant with unmodelled high- ;é
frequency dynamics. This system has also been studied by Ioannou and .
Kokotovic (1983), Rohrs et al. (1981,1982), and Krause (1983). The system n
has the block diagram shown in Figure 2.1. oy
o
The linear time invariant plant can be represented by a series
connection of two transfer functions, Wp(s) and Wf(us). The transfer function Z;
of the nominal or slow part of the plant can be written )
::
Z_(s) -1
Wp(s) = kp ﬁi?ET . (2.9)

where kp is a scalar, and Zp(s) and Rp(s) are relatively prime monic polynomials =
of degree n-1 and n, respectively. The transfer function of the fast dynamics
of the plant can be written -

Zf(us)

W49 = 3 Tisy

(2.10)




’l‘l .

ﬂ’

W (s)

»

‘ - .
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:;

NE(uS)

ND(S)
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z, (s)
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Figure 2.1. Block diagram of MRAS not showing

the update
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1
Z.(us) =1+ I z. () , (2.11)
f fk
k=1
N1+N2 .
R.(us) =1+ L r., (us) . (2.12)
£ oy £k

The following assumptions are made about the plant:

Al) n is known,

A2) the sign of kp is known (without loss of generality let
it be +),

A3) Zp(s) is Hurwitz,

a4) |z us)|>1 - zubs| >0 Vse{s:[s|<%},

AS5) if Rf(us) = 0 then Re(s) < - % y

A6) N >1 ,

2 2 RN+ N #0

2)
The model transfer function can be written

’ (2.13)

where km is a positive scalar, Zm(s) and Rm(s) are monic Hurwitz polynmials

of degree n-1 and n, respectively. Zm(s) and Rm(s) are chosen so that Wm(s)
. . . . T T,.T 2n
shown in Figure 2.1 with the adjustable parameter vector [co,c ,do,d JTERT.

Zm(s) in the controller is the numerator of the model transfer function and

T(s) is defined

T(s) = s . (2.14)

S ar S A Sl S HNMIL e Sreh Ar L A S S 00 AL S Ar S ACRIME atuil SRR NS LA aRara it Rat astanan Sat b ac et e Jni et Myt bt R g Sam ikt bt Il s ]

is a strictly positive real transfer function. The controller has the structure
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2.3. The Equilibrium

In this section, I show that, when the perturbation parameter
is sufficiently small and the reference input r belongs to a certain class

of signals, an equilibrium exists for the model reference adaptive system

described in the previous section. As usual, let the output error be the i
=%

difference between the plant output and the model output, e = y - Yo' E;
If, for some constant value of the parameter vector, the steady state output #
error is zero, then an equilibrium exists. Hence, when an equilibrium exists, .ﬁ
the Fourier trahsform of the output error will be zero. ?
=

Let W(u,s) be the transfer function of the controlled plant é;

from the reference input r to the output y for a constant value of the 5
parameter vector, a

Zm(S)ZP(S)Wf(us)

W(u,s) = cok (2.15)

P 2y (9)R () - ¢ T(IR () - k (.2, (8) +dTT())Z ()W (us)

If the only restrictions on the reference input, r(t), are boundedness and
continuity, then for the steady state output error to be zero, it is

necessary that
W(u,s) = Wm(s) ¥s€C . (2.16)

However, when u#0 the relative degree of W(u,s) is rot equal to the relative
degree of wm(s). Therefore, no constant parameter vector could assure (2.16).
Clearly, the reference input will have to belong to a more

restrictive class than bounded, continuous functions of time. Consider the

class of signals which are sums of n distinct sinusoids, that is,
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n
r(t) = 121 r, sin(witi-ei) . ri#O,wi#O,wi-wj26>0, ri,wi,BiG R . (2.17)

Denote the set of s-values in (2.17) by S, that is,
S = {le,-le,...,an,-an} . (2.18)

For an equilibrium to exist with an input signal in this class, it is

necessary and sufficient that
W(u,s) = Wm(s) for s€8S . (2.19)

This is equivalent to

[od

Zm(s)Rp(s) = cTT(s)Rp(s)-i-kp [Ei Rm(s)i-dozm(s)i-dTT(s)} Zp(s)Wf(us),

(2.20)
s€S .

Theorem 2.1: There exists uoezm+ such that Wu€ Khuo), the MRAS shown

in Figure 1 and described by (2.9)-(2.14) with assumptions Al-A6 has a

unique equilibrium for a reference input described by (2.17).

Proof: (2.20) is a set of 2n linear equations in the 2n elements of the

parameter vector. Clearly, there exists at least one constant parameter vector

which satisfies (2.20). Furthermore, if the 2n equations (2.20) are linearly

independent, the constant parameter vector which satisfies (2.20) is unique.

Assume that the 2n equations are not linearly independent. 'j
Then there must exist a nonzero constant parameter vector such that i
T Co T }
= — c
0 c T(s)Rp(s)-'f-kp km Rm(s)4-dozm(s)-+d T(s) Zp(s)wf(us) , s€s . (2.21)

.:lll .
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By Lemma 1 there exists a uOG'R#'such that, ¥u &€ [O,MO),the only solution
to (2.21) is the zero vector. Thus, Wu€ HLuo),the 2n equations must be 1

linearly independent and the theorem is proved.

2.4. Effects of the Perturbation

*
Let 8 (0) be the unique constant parameter vector for which

the steady state error is zero in the unperturbed case, p=0. For

i K

%
[co,cT,do,dT]T = 6§ (0) and u=0, the transfer function of the controlled

plant is identically equal to the transfer function of the model. Since

the model transfer function is strictly positive real, so is the controlled
, *

plant transfer function. In this section, I want to show that 6 (i), the

unique constant parameter vector for which the steady state error is zero

in the perturbed plant, satisfies

% %
8 (u) =86 (0) +0(w) . (2.22)
* *T % *T_T *
I also want to show that for [co,c ’do’d 1" = 8 (u), the transfer function
*
Tk Zm(s)Zp(s)

op (2.23)

%T * *T
Zm(s)Rp(s)-c T(s)Rp(s)-—kp(dOZm(s)+-d T(s))Zp(s)

will be strictly positive real provided v is small enough. This transfer
function is the transfer function of the controlled unperturbed n-th order

*
plant when the parameter vector is held constant at 8 (u).
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*
From (2.20) 6 (u) sarisfies

-

‘ 1

_B

K Rm(s)Zp(s)Wf(US) i
|

Z (R () = 6T | T

kpZm(s)Zp(s)Wf(us)

ka(s)Zp(s)Wf(us)

Define the 2n by 2n matrix

P . . . P s . s
km Rm(le)zp(le)wf(“le)"'km Rm( an)Zp( Jw W (mujw )

H(u) = T(jwl)Rp(jwl) ............... :(jwn)Rp(-jwn)

[ K
|
g

kpZm(jwl)Zp(jwl)Wf(ujwl)....kpZm(-jwn)Zp(-jwn)Wf(— jwn)

ka(jwl)Zp(jwl)Wf(ujwl) ----- ka(-jWn)Zp(-jWn)Wf(- jwp)

—

From Theorem 2.1, if u€ [O,uo), H(p) is nonsingular. Assume

1
u <min {—}
° s €S |SI

Then, H(u) has a series representation,

H(u) = H(O) + = Hiul
i=1
It follows from (2.27) that
Ho) L= moy Tt oLt
j=1 *©

(2.24)

. (2.25)

(2.26)

(2.27)

. e




Then,
2, (B R ()
0" = @™ T .
2, (=39 )R (=34 )
2, (R (Gup) (2.29)
N i T :
= [H(O) + Z Liu ] = .
i=1 Zm(—jwn)Rp(-jwn)
- 67 (0) + z eiui )

i=1

Thus, the desired property (2.22) holds for u sufficiently small.

For a transfer function h(s) to be strictly positive real, it
must sati.fy:

1) h(s) is real for real s,

2) the poles of h(s) should lie in Re[s] < 0,

3) for all real w, one had Re[h(jw)] >0, - ® < w < «,
Property (3) is equivalent to

3') for all real w, one has -90° < Phase [h(jw)] <90° - » <w< =,

Theorem 2.2: There exists a ul‘ElR,ul > 0 such that, if u€ [O,ul) and
% KT % *T T *
[egoc Thd hd 7] =6 (W) . (2.30)

then the transfer function (2.23) is strictly positive real.

» ¥ B K,

Lle ax 2 -

et adt

et A B e s
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Proof: Condition (1) is met by construction of (2.23). The poles of (2.23)

are the zeros of the polynomial

*T * *T
Zm(s)Rp(s) -c T(s)Rp(s) - kp(dozm(s) +d T(s))Zp(s)

0
® , T(s)R _(s)
T p
=R (s)Z (s) - I u'e, (2.31)
m P i=1 i kpzm(s)zp(s)
I kpl(s)Zp(s) ]

The zeros of (2.31) are continuous functions of u. Since the zeros of

Rm(s)Zp(s) lie in Re[s] <0, there exists a u' such that, if u€ [0,u'"),
then the poles of (2.23) lie in Re[s] < 0. The zeros of (2.23) are not
functions of u. Since the phase is a continuous function of the pole positions,
and the pole positions are continuous functions of u, the phase is also a

continuous function of u. The transfer function (2.23) satisfies condition
3' for u=o. Hence, there exists p' > 0 such that for u€ [0,u" ), condition

3' is satisfied for the transfer function (2.23). Take Wy = min[u',u" ] and

the theorem is proved.

2.5. Discussion

In this chapter, I have shown that for a certain class of inputs
and a sufficiently small perturbation in the structure of the plant, a unique
equilibrium point exists. Furthermore, it is possible for the controlled
nominal plant with the adjustable parameters held constant at the equilibrium
values to be strictly positive real.

This second fact will be important in

determining the stability of this equilibrium point.
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I would like to highlight a few points which were not explicitly
stated in the derivation of this result.
Remark 2.1: The perturbation of 6* from 6*(0) will be a function of the
frequencies W, in S. This can be seen from (2.25). It can be intuitively
seen using the following argument. The equilibrium exists because the Bode
plot of the controlled plant transfer function can match that of the model at
the n frequencies in the input signal. The contribution of the unmodelled
dynamics to the controlled plant Bode'plot is a function of frequency.
Therefore, the amount by which the Bode plot of the controlled nominal plant
is moved from the Bode plot of the model is a function of the frequency.
It is not hard to believe, then, that choosing different values of we will
result in different perturbations of the parameters.
Remark 2.2: Choosing a reference input with more than n distinct frequencies
will result in a system that has no equilibrium. This is true because it
can be shown in a manner very similar to the proof of Theorem 2.1 that the
resulting set of more than 2n equations (2.20) in 2n unknowns is inconsistent.
One can also think of this in terms of the Bode plots. The 2n parameters
provide 2n degrees of freedom with which to bend the Bode plot of the controlled
plant. It is not possible to make the (2n + 1)-th bend to match at an extra
point.
1’
thev can be used in a different manner. For a given u which is small enough
so that the nominal plant dynamics and the unmodelled dynamics have a

reasonable separation, the wi’s of the reference input can be chosen so that

T, T Ty M A a A S AR dn i nt Tk B 4

P
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the unique equilibrium point exists. This is related to the idea of
dominant richness which was introduced by Ioannou and Kokotovic (1983).

Krause (1983) discusses how to assure that the reference input is in the

dominantly rich range.
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l‘ CHAPTER 3

STABILITY OF THE EQUILIBRIUM

In this chapter, I study the stability of the equilibrium of
Theorem 2.1 when the parameter vector is allowed to be time varying. After
some definitions and theorems about stability, I present the differential
equations which describe the behavior of the model reference adaptive control

svstem. From this system of equations I derive an error system which describes

the variations about the equilibrium.

The error system will have an input which is the difference of
the model output and the controlled plant output when 9=6*. 1In Chapter 2 it
was shown that for an input with exactly n sinusoids, the steady state value
of this difference will be zero. In this chapter, I will show that when
this difference is zero, there exists a u such that for all u€ {0,u), the

= zero solution of the error system is exponentially stable. Then I will show
that this difference is always 0(un) and that trajectories of the error svstem
which begin in some region of attraction converge exponentially to an

0(u) residual set containing zero.

3.1. Preliminaries

To insure that the reader and I agree on terminologv of
stability concepts, I state the following definitions. These definitions are

taken from Yoshizawa (1966) and Rouche, Habets, Laloy (1977). Consider a

system of differential equations

. TR
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if it is continuous, strictly increasing, and a(0) =0.

20

%= £(t,x) , (%) = f—t x (3.1)

Suppose that f(t,x) is continuous on Rx R". Assume that (3.1) has solutions

which are uniquely determined by the initial condition (t,x) = (to,xo). Let

x(t;xo,to) be the solution of (3.1) which passes through the point (to,xo).

Definition 3.1: The solution x(t) =0 of (3.1) is uniform-stable, if for

any ¢ > 0 and tOE]R, there exists a 8(e) > 0 such chat if nxou <§(e), then
||x(t;x ,t )|| <e for all t>t .
o’ 0 o

Definition 3.2: The zero solution of (3.1) is uniform-asymptotically stable

if it is uniform-stable,and if given any ¢

€1 0 and any toe R, there exist

a 6l> 0 and a T(el) >0 such that if "xon <§., then ||x(t;xo,to)|| <gg for all

1’
tzto + T(sl).

Definition 3.3: The zero solution of (3.1) is exponentially stable in the

large, if there exists an >0 and for any £ > 0 there exists a K(g)=z1
such that if nx " <2
o
[x(esx_,e )] <k Tk ) (3.2)
>To? o’ -~ o
+ + . ,
: R >R 1is said to be an element of class K

Definition 3.4: A function a

We write a€ K.
Let V(t,x) be a continuous scalar function defined on R x r"
and let V(t,x) satisfy locally a Lipschitz condition with respect to x.

Then define the function

V(t,x) = i (3.3)

s

+ 1. _ 1
D(B.l) h V(t+h, x+hf(t,x)) -V(t,x)

din s
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'i If V(t,x) has continuous partial derivatives of the first order, kS
+ 3V 3V ?ﬁ
P3.y¥E® =5 + 5 - Fe1) (3.4) E
where "." denotes scalar product. i:
] ’
- The following theorems will be used to investigate the stability
of the equilibrium of Theorem 2.1. The theorems are stated here without proof.
Theorems 3.1, 3.2, 3.3 and 3.4 are standard results and proofs can be found
in a number of texts. Theorem 3.5 is a well-known result of Lasalle and the :?*
proof can be found in BHale (1969). Theorems 3.6 and 3.7 appear in a monograph R
% by Yoshizawa (1966). The proofs of Theorems 3.6 and 3.7 can be found in the ti

appendix to this thesis. Consider the linear system N

x = A(t)x , (3.5)

}

where A(t) is an nxn matrix of continuous functions of time defined on R.
Theorem 3.1: If the zero solution of (3.5) is uniform-asymptotically stable,
I' then it is exponentially stable in the large and K in (3.2) can be chosen

independent of 3.

Now consider the differential equation (3.1) under the assump-

tions that f(t,x) is continuous on 0<t <=, [x|<H, B>0 and £(t,0) = 0.

£
) Theorem 3.2: Suppose that there exists a Lyapunov function V(t,x) defined
- on 0 <t <, ux"‘iﬂ which satisfies the following conditions;
= i) V(t,0) =0,

i1) a(fx]) < v(t,x) < b(|x|), a€K , bEK,

{11) Dr, (\V(t,x) < 0
. iii (3.1) ,X) < 0.
[ 3 Then, the solution x(t) =0 of the system (3.1) is uniform-stable.

.....
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Theorem 3.3: Under the same conditions as Theorem 3.2, if

+

D(3.1yV(t:x) < = e(|x|), where c€K

then the solution x(t)=0 of (3.1) is uniform-asymptotically stable.

Corollary 3.3: Under the same conditions as Theorem 3.2, if

+

D(B.l)V(t,x) < - cV(t,x) ,

where ¢ >0 is a constant, then the solution x(t) =0 of (3.1) is uniform-

asymptotically stable.

, n
Assuming that f(t,x) is continuous on 0<t<x, xER , and

f(t,0) X0, the following theorem applies.

Theorem 3.4: Suppose there exists a Lyapunov function V(t,x) defined for

0 <t <=, x€ R" satisfying the following conditions:

i) ﬂx" < V(t,x)

IA

k() ] for [x] <,

ii) D-*(-3 l)V(t,x) - aV(t,x), where a>0 is a constant.

1A

Then, the zero solution of (3.1) is exponentially stable in the large, that is,

"X(t;xo,to)" < K(B)e'd(t—to) "xo" for "xo" < B.

Theorem 3.5: Let V(t,x) be a continuous Lyapunov function defined on

. n
0 <t <», XEG, where G is an open set in R . Suppose that

i) given x€ E, the closure of G, there is a neighborhood of x, N‘{,

such that V(t,x) is bounded from below for all t>0 and all x in an G, and

+

ii) D(3 1)V(t:,x) <= W(x) <0 for 0 < t < =, Xx€ G and W(x) is

continuous on G.

Define

E = {x: x€G and W(x) = 0} . (3.6)

A

k-

I
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.l Let x(t;xo,to) be a solution of (3.1) which is bounded and remains in G

for t>¢t >0.
28,2

If W(x) has continuous first derivatives on G and

- . 3W(x) . ,
. w(3.1) = % f(t,x) is bounded from above along the solution x(t,xo,to),
then

x(t;xo,to)—>E as t » o«
Theoren 3.6: Suppose there exists a K > 1 and a ¢ such that
fxCesx_,e )| < Ke—c(t-to)"x | (3.7)
bl 0’ o - fo) bl .

where x(t;xo,to) is a solution of (3.5) and c is a constant (> 0). Then,
there exists a Lyapunov function V(t,x) which satisfies the following
conditions:

2 S E RS

ii) |v(t,x) - V(t,x")]| < K"x - x

*

111) Dy 5 V(E,X) < - V(e x).

Theorem 3.7: Suppose that f(t,x) of (3.1) is continuous for 0 < t < =,

x€ R and f(t,0) 2 0. 1If f(t,x) satisfies a local Lipschitz condition with

i

..\

. respect to x and the zero solution of (3.1) is exponentially stable
. in the large, i.e., there exists an 1+ » 0 and for anv 2 > 0, there
o

exists a K(B) > 0 such that if "xoﬂ < B,
| 3
y
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[x(esx e )] < k(e *(EF) x| for al1 e > ¢,

then there exists a Lyapunov function V(t,x) defined for 0 < t < =, x€ R"

which satisfies the following conditions:
i) "x“ < V(t,x) < K(B) “x“ for "x" < B, iy
i) |V(t,x) - V(t,x)| < L(t,B) |x - x7| for |x| <8, |x7| < 8,

iii) D'E3 l)V(t,x) < - qaV(t,x), where O0<q<1.

3.2. The Error System

For the unperturbed case, w=0, the proof of stability of the
equilibrium (e,9)=(0,6*) uses an error system representation of the model
reference adaptive control system. In this section, I derive an error
system representation for the perturbed case. It is a specific example of the
type of error system representation which has been presented recently by
Kosut, Johnson, and Anderson (1983).

My derivation will be made in several steps. First, I present
the differential equations describing the plant, the control system, and the
model. Next, I use a singular perturbation type of transformation on the
plant. This explicitly separates the high frequency unmodelled dynamics
from the nominal, or slow part, of the plant. The third step is the
introduction of a '"tuned system." Finally, I replace the original reference

model with the tuned system in order to get the desired error svstem

representation.




eINs

L

A Ar . v B e

The differential equations describing the plant are

. T n
= (<]
X Allx + blhzz . x€ER
N,+N
1 2
s - €
uz A222 + b2u , z€R
y = hfx
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(3.

(3.

The vectors and matrices in (3.8)-(3.10) satisfy the following equations:

T -1,
by (sI - A by =W (s)

11 P
T -1,
hz(usI - A22) b2 = wf(us)

The equations describing the auxiliary signal generators are

1 1 1

Avi + bu v € Rn-1

<
i

2 sz + by , VZE Rn—l ’

<
1]

where the vector b and matrix A satisfy

(sI - 1) Tb =

Define the parameter vector, 8, and the signal vector, W, by

D
]

T T,T
[CO)C ’do’d ] L)

The parameter adjustment law is then

§ = - Tw(y - v D= oTh oL
w(y &m) s 0

(3

(3.

(3.

(3.

(3

(3.

(3.

(3.

10)

.11)

12)

13)

14)

.15)

16)

17)

18)

x
!
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1
(;ﬁ and the input to the plant is
o u=elw . (3.19)
"\._ »
oy Finally, the model is described by
- k = AX +bT x € R, (3.20)
T
. Yp = hmxm . (3.21)
The vectors b_, h_ and the matrix A_ satisfy
m’ m m
L hi(sl - A)b =W (s) . (3.22) )
j m m’ m m
ihus, I have a set of differential equations which describe the behavior of
the MRAS shown in Figure 2.1. i
i% The choice of a representation for the "unmodelled" part of
ﬁi} the plant is the single most important factor in a study of the effects of
‘ ) "unmodelled" dynamics. I have restricted my unmodelled dynamics to the high -
fk frequency range. Because of this I was able to choose a system of differential
};f equations, (3.8)-(3.9), in singular perturbation form to represent the plant.
P Because there are stability results for the unperturbed case, I would like
to have my piant represented in a form which appears as an unperturbed plant
u:l plus a perturbation. Singular perturbation theory suggests the following .
35? method to transform (3.8)-(3.9) to the desired representation. First, set
o
;‘: u=0 in (3.9). This corresponds to making the fast part of the plant
e
?QF infinitely fast. Because A22 is assumed stable z converges infinitely
1o

e fast to

bzu

2
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'E Then z is considered the "slow" part of z. In order to separate the system

into its fast and slow parts, I define a new variable

N=z-2=24%AYb.u (3.23)

n 2272
to be the fast variable. Now I can rewrite (3.8)-(3.9) as

- ) T

‘ X = Allx + blu + blhzn s (3.24)
A= An + vALlb & (3.25)
HN T Bgon 22°2% - :
L] The MRAS using (3.24)-(3.25) has a block diagram shown in Figure 3.1.
Ff The third step in this derivation is the definition of a
*
"tuned system." Define r (t) to be an input as in (2.17). Assume that
3 # #xT % «T T
" LE [O,uo) so that a unique equilibrium exists. Take [co,c ,do,d ] to
* 4
be the solution of (2.20) with r(t)=r (t). Then, the tuned system is the c
S
"
linear time invariant system formed by the plant plus the controller with ™
T T x #«T % T ) ) ]
. [co,c ,do,d ]= [co,c ,do,d ]. An important point is that, whenever u#0, ;T
the tuned system is not positive real. 1In fact, the order and relative .
degree of the tuned system are unknown. The tuned system is represented {
-
o by the equations ?
t = A, x +bu +bhir (3.26a) y
S bR 1 172" ’ reod 8
J
; %* * % .
= T S (3.26b) J
3
* %* * -
o2 oyt (3.26¢)
, K * -1, % 1 B
o un = A22n + bA22 74 s (3.26d)
L *
<
y = hfx , (3.27)
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Figure 3.1, Block diagram of MRAS using transformed plant,
but not showing the update mechanism.
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u =8 w , (3.28)

* 1#T % 2xT T
wo= [r,vv L,y v ] . (3.29)

In order to substitute the tuned system for the reference model,
I must introduce the concept of tuned error. The tuned error is denoted by e

and is defined as the difference between the output of the tuned system and

the reference model,

y -y . (3.30;

Notice that the tuned error is defined for any reference input r(t). Also
3 . * * 03

notice that when r(t)=r (t), the steady state value of e will be zero.

Figure 3.2 illustrates the tuned system and the tuned error.

Now, define the error system variables as

%

x' = x - x , (3.31a)

vl = vl - vl* s (3.31b)

' *

v o= R ot (3.31c)
*

g' = § - 8 . (3.314d)
%

n''=n-n . (3.31e)

The differential equations describing the behavior of the error system are

L 1 ' T 9
X Allx + blu + blhzn s (3.32a)
' A
b= vl et (3.32b)
2' 7'
ve = AvT  + by’ R (3.32¢)
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Im

ot Y (s)

T <1,-1
r- Lehz(usl-:\zz) A22b2 h,n

Tuned System

P

Figure 3.2. Block diagram showing tuned system and tuned error.
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where

with

(9]
]
}
bl
<
~
<
+
(1]
b
~

*T
u' =8 w' + wTS' .

. . ;’fT *T
a' = WTB' +w /' +35 w4+ e'Tw'

T % _*T '
-—wlwy'+e ) +w 8

[}

v T t T
+ fI[x'T,Vl ,Vz ’8

T ' T
IT l' 2 ! - At ] T V\'
+ [x',v vE L0 $= 8"+ dlhibihon

+

vT vTv
dohlble W

* T
doAllhl
* *

J\TC + (bTC + h

T * * * £ %) 7
+ (b'd +d b + nl b.d
o 1 "I% 1
T
1 b;
I * F:
2fa" + Tt 4 nl boa
L0
T. % %
lbldo)w =

%
b,d )c

(S

=
-

*
(ch +h

Al ala.alial

e
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(3.32d)

.J‘ AL’.." FONCR

(3.33)

b

)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)
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. 0 i d_hb i Ajjhy + (bic 4 2d hib Ky i =
_--r--f_-'- T T * * T T T %= |
*
- = 1 5
Jl 0 : AN+ c¢b” + (b + dohlbl)I ; hlblc i }
T s + T T kT TTTTTTTT - /
0! a"bT ; hib.d .
1°1 I ‘
L -3
1 (3.39)
| h.bl
| 1 - j
|
L L L .
|
| 0 1
I 1
T j
|
A+ (be +d bl , |
] J
: [ o br 1 hlb.r | 0
. : : 171 : 1
. T - - - 3 T i
T %xT % *1,
ot L™+ BT L aTx + 0T v b
—_— J 11
J, = ! : ! *T (3.40) j
& T T % | T 2 ,
Y E 0 E hlblhlx i hlblv
N S - e
| i ] |
A l_ 0! 0 ! 0 { 0

-

Figure 3.3 shows a block diagram of the error system.

Remark 3.1: While the expression for 4' is extremely complicated, notice

that a . multiplies the &' term in (3.33) and thus 4' will have only a

small effect as long as |G E:O(%ﬁ.
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Figure 3.3. Block diagram of the error system.
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3.3. Stability of the Equilibrium with e =0

Two differences exist between the error sys .« T derived for
the perturbed case and the error system for the unperturbed case. The first
is the perturbation itself. Because of the perturbation, the linear time
invariant part of the error model is not positive real. The second difference
. * 3 . .
is the tuned error, e , which shows up as an extra external input. In this

section I study the stability of the zero solution of the error svstem when

*
e 0. I will consider the effects of a nonzero tuned error in Section 3.4.

The results of this section can be summarized as follows.
* r} . . . .
Assume that e = 0 and the reference input has at least n distinct sinusoids

. in the low frequency range. Then the zero solution of the error system

(3.32), (3.33) is exponentially stable. Furthermore, the magnitude of the

o]

region of attraction for this exponentially stable equilibrium is O(u_
3
for the slow variables and O(U- 2) for the fast variables.

These results are derived in several steps. The first step

is to decompose the error system into a fast subsystem and a slow subsvstem. %
;‘,. The decomposition is performed so that the fast subsystem is a stable linear r
! time invariant one by assumption. The next step is to prove that the slow -:
g subsvstem is exponentially stable. Then, I apply Theorem 3.7 to the slow fq
E: subsystem and Theorem 3.6 to the fast subsystem to get a conceptual Lvapunov ‘j
E?_ tunction for each subsystem. Finally, I use a combination of these two E]
&’gﬁ Lyapunov functions to prove that the zero solution of the error system (3.32),
E.- (3.33) is exponentially stable in the region of attraction of the zero 1
E '_ solution. j
g:: I get a good decomposition for this problem using the techniques
§§E of singular perturbation “heory. This decomposition was set up bv the J
@C




transformaticn (3.23) which introduced n to serve as a fast variable. To get

the slow subsvstem from the error system (3.32), (3.33), I set u=0 in (3.33)
which corresponds to making my unmodelled dynamics infinitely fast. Since
A22 is stable any initial conditions on n' will decay to zero infinitely fast.
Hence, my slow subsystem will be (3.32) with n'=0. In order to derive the
fast subsystem, I first rewrite the error system (3.32), (3.33) in terms of

a fast time variable, 1 = %—t. Then I set u=0 which corresponds to making

my nominal plant constant at its initial values. The resulting fast subsystem

is given by
—n' = A_.n' . (3.41)

In order to study the slow subsystem, I form a system of

L

differential equations from (3.32) by setting n'= 0 and e 0, and then

tT otT T
replacin [x’T,vl ,vo '] with X and 8' with ¢. This results in
g

. - % -
X = AX + b(uw" + DT 5, XERITZ, (3.42a)
. % -
Y= -7 (W +DNA'X, ¢ER"T, (3.42b)
where
i T | ol ] 1
! 5 hl i * [
App *dbihy |obe 1 pd R
______________ L__________L_______! 8
l 5T | *T 1 ) a
A= d“bh! b+ b T an T : (3.43) ]
el ! | :
______ SR T
bhy L0 LA | B
- | | -
87 = [(b,67,01 (3. 34) j
|
RL (h1,0,0] (3.45) ;




(3.46)

Note that DX replaces w'. TFrom Figure 3.3, it follows that the transfer

function of the linear time invariant part of (3.41) is

- - Z (s)Z_(s)
hT(SI—A) 1b = C:kp *T = : * T
Zm(s)Rp(s) -c T(s)Rp(s) - kp(dozm(s)i-d T(s))Zp(s)

(3.47)

Theorem 3.8: Let r(t) be a signal which satisfies (2.17). Let My = min{uo,ul}.

Then, ¥u€ [0,u the zero solution of (3.42) is exponentially stable in the

2)s
large.

Proof: By Theorem 2.2 the transfer function (3.47) is strictly positive real.

Then, by the Kalman-Yacubovich lemma, a positive definite symmetric matrix P

E:ﬂ: exists such that
o T
L': AP +PA=-qq-€L,L=1%0, €50 |, (3.48)
i )
-
3 Pb=f (3.49) b
.. "
y
- and the Lyapunov function .
e, | "
-1
L W(X, ) = XTPX + rTA b (3.50) _
. .

. e v e R T S e e oL e - W P . R S PRI} . .. LI
R et . R AL I S AR S e e B NS AL A R N A L e T et Na L. TR R P
N N AT I ST I Lom T e e T e T T e e T T T - T e et e R A T T B
Pd 2 o u - P APPSR v St S b B B medheos 3 P VR W T S PN, NP NP S SPNE O WA . R, S L APRAPEUIRUUE DPU- WO . WS (RN WO TOPR . WY
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has the derivative for (3.42)

. T, T (3.51)
= o (S
w(3.42)(x,¢) X (qq + €EL)X<O

From (3.50), (3.51) and Theorem 3.2 it follows that the zero solution of
(3.42) is uniform-stable.

Because w(3.42)(x’¢) <0, every solution of (3.42) initially
in the set G = {X,¢: W(X,9) <8} remains in G. Furthermore, by Theorem 3.5

X->0 as t»x . (3.52)

* . .
Since the elements of w are bounded continuous functions of
time with bounded derivatives and the states of the system (3.42) are bounded,
the states will be continuous functions of time with bounded derivatives.

Hence, the elements of
*
z =w + DX (3.53)

will be bounded continuous functions of time with bounded derivatives. Yuan
and Wonham (1977) have shown that since the elements of - are bounded con-

tinuous functions of time with bounded derivatives, (3.42) and (3.52) imply
ch>—>0 as t> . (3.3%)

From (3.42b) and (3.52), % converges to a constant as t-—~ <,

n
. n
Yuan and Wonham also showed that if, for anyv a€ R s

2 3(t) =0 t>0 = o =20 . (3.53)

L

.

e,
«



Cane' Jut 4
0
‘

then ¢ >0 as t—+«., Because of (3.52), (3.55) can be replaced by the

condition
T *
aw (t) =0 t>0 =a=20 . (3.56)

A sufficient condition for (3.56) to hold is that

*
ot (jv) =0 -w<y<o= g =0 (3.57)

* *
where w (jv) is the Fourier transform of w (t). Because

k
E: R, (3V)Z (GVIWL(3V)
* T(IVIR_(GVv) ;
SO = o] r(jv)
w (J\)) k Rm(jV)Z (jv)wf(j\)) ’ (3.58)
kpzm(jv)zp(jv)wf(jV) P P
ka(jV)Zp(jV)Wf(jV)

Theorem 2.1, guarantees that condition (3.57) is satisfied.

Since the zero solution of (3.42) is uniform-stable and every
solution of (3.42) with bounded initial conditions converges to zero as t -~ «,
the zero solution is uniform-asymptotically stable. If (3.42) is rewritten
with ¢ replacing w* + DX, it has the appearance of a linear system. Hence,
every solution of (3.42) with bounded initial conditions can be generated by
a uniform-asvmptotically stable linear system. Then, by Theorem 3.1, each

solution of (3.42) which begins with bounded initial conditions decays

exponentially fast to the zero solution and the proof is complete.
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T
Let Y = [XT,QT] . Then, from Theorem 3.8 and Definition 3.3,
there exists and al> 0, and for any & > 0, there exists a Kl(S): 1 such that

if Y(t; Yo,to) is a solution of (3.42), then

[¥ees v,e) iKl(E)e—al(t—to)"Yon , ¥ooco (3.59)

By Theorem 3.7, there exists a Lyapunov function Vl(t,Y) which has the

following properties:

jYf < vy ey sk @], Jyf s (3.60)
[V (e Y =V (Y [ < L Y =Y, Y] <8, Yo <8 (3.61)
Dt3.42)vl(t’Y)f,‘ q C'-1V1(C,Y), where 0<gq<1 ) ' (3.62)

Thus, the existence of a Lvopunov function for the slow subsystem is
established.
Define ¢ such that the real part of each eigenvalue of A22

is less than or equal to -o, that is
g = inf{-Re[A(Azz)]} . (3.63)

It follows from (3.63) and the linear time invariant nature of (3.41) that

there exists a K, such that if n'(7; né,ro) is a solution of (3.41), then

[n (s nlvr )] <Kpe TR L e (3.64)

-
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3 Replacing t with %t in (3.64) and applying Theorem 3.6 shows that there exists 4
a Lyapunov function Vz(t,n') which has the following properties: ]
1 \] 1 ~ ~
. "n " f Vz(t,n ) < Kzun N ’ (3.65)
o [Va(ean™ = Voleany|< Rofn® = |, (3.56)
“:.'". + . _g .
D(3.54)V2(t,n ) < y Vy(t,nt) . (3.€7)
- Thus, a Lyapunov function for the fast subsystem has been found.
.ﬁ Before composing these two Lyapunov functions to form a
- Lyapunov function for the error system (3.32), (3.33), I need to simplify
the expression for u'. Let
' T ' T T
- X = [x'T,vl ,v2 ] , (3.68)
! T
. Y= (x el . (3.69)
) » .
With e =0, (3.37) can be rewritten
" % x - -
o &' = -~ w*Tw RIX - 2w TDXA'X - X D IDXh X
o, LT T T, . JT |71 ., ,
S +w 8" + le + dohlblhzn + Y -J-,; 8 (3.70)
: ' T T VR
+ dohlbthn + dohlblS w
o ) * %
. Because r and r are bounded, the elements of w and w are bounded and

+
a i (S
there exist constants Gl’CZ’G3’G4’G5 R such that

e .. Lt T TR R,
il S stnilin, sl Lol e i Ll PRI il e soncine Snadl Sadeimaionsnendls nol inadi b P VAP PILP T Wy W) W O e W ¢
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The main result of this section is contained in Theorem 3.9.

Theorem 3.9: Let r(t) be the same r(t) as in Theorem 3.8. Then, there exists

%
a u3€5ﬁg'such that, ¥u€ [O,u3) the zero solution of (3.32),(3.33) with e =0 is

exponentially stable.

Proof: Take u3§_u Then, the Lyapunov function Vz(t,Y) exists and has

5
properties (3.60)-(3.62). Using these properties and (3.65)-(3.67), I can

write

X
"-1
Ve, Y) <= q oV (6,Y) + Ky(B)V,(e,n") , ) <8 (3.72) 2
- ¢S _ - ' )
D(3.33) *_ Z(t n') < ( G4 GSVl(t,Y))VZ(t,n )+f(V1(t,Y))Vl(t~Y), T
(3.73)
= sup{L, (e, 8)[b || n} (3.74) B
t> -
- 9
E(V,(£,Y))= G, + GV (£,Y) + G Vi(t,Y) : (3.75) .
R
3
Define M(Y,n') as the solution of :;
| UK, (M(Y,n")) | E
= Kl(“Yﬂ)“Y" o -u(c, +q a; + GM(Y,n b)) 2"n ” (3.76) -]
]
which satisfies M(Y,n') = Kl("Y")"Y —
- = ' : {
Let MO M(Yo,no) and define
uk, (M )
3y = qu - 3o FO) (3.77)

1 g-u G&—uGSMO—uq %

et aca .t . P . . C e - . -
YR I N ] T et LR : L
. .N'— Cod ,.; - R TN e e T e . C e
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Next, consider the Lyapunov function

uK3(MO)
B T !

V3(t,Y,n') = Vl(t,Y) + V2(t,n') . (3.78)

g-u G4

The right-side derivative of V3(t,Y,n') along the trajectories of (3.32)-(3.33)
*
with e = 0 satisfies

uK3(MO)
- HGgM - uq oy

+ ' _ _
D(3.32)-(3.33)e = oV3(t> Y0 Sl @) - o

4

CEV(£,1)) ]V (e,7)
o-u GA-uGSVl(t,Y)

- KoM ) (= ~ - -1V, (t,n")
3V o’ ‘g-u G4 ]JGSMO Hq ay 2
= '
aVa(e,Y,n")
WKy (M)
- — - (FGM) - £(V (£,9))V, (¢,Y) (3.79)
g-u G& uGSMo Hq oy o) 1 1
eK., (M )G
3V 0’75 p
- . =~ M_ -V (£, YV, (t,n")
o=u GA uGSM0 Hq @, o 1 2
MK, (M)
-« e Y2E01 )V, (E,n")

g-u Ga-uGSMO-uq @y
From (3.60), (3.65), (3.76) and (3.78) it follows that
L}
VB(O’Yo’no) < Mo . (3.80)

From (3.78) it is clear that

Vi(e,Y) < V3(t,Y,n’) . (3.81) )
From (3.79), (3.80) and (3.81), it follows that if a3> 0, then
' ' "0«3t j
Va(e,Y,n') < V3(0,Yo,no)e . (3.82)
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Hence, defining

0q oy

My T (q al)(G4 + q al) + K3(O)G

(3.83)
1

and taking Hy = min{uz,ua} completes the proof.
An estimate of the region of attraction is available from the
*
proof of Theorem 3.9. For every u€ [0,u3) there exists Mo(u)G'R#'such that

*
>0, and if Mo = Mo(u), then a,=0. Then the region

%
i [
if Mo [O,Mo(u)), then o 3

3

of attraction contains the set D(u) defined as
*
D(u) = {(Y,n) : M(Y,n") <Mo(u)} . (3.84)

From (3.77) ft is clear that if K3(B) = 0(1) for all BE€ Eﬁl then as u~+0

—~

%
M (W >0(u 2). If one further assumes that K (8) = 0(1) for all 8€ R,

then as u~ 0 the region of attraction includes points which satisfy

1
[} coe O,
3
Il z 06 )

*
Thus, the zero solution of (3.32)-(3.33) with e =0 and u fmall enough is

exponentially stable and the region of attraction is O(wu 2) in the slow

(98

variables and O(u -3) in the fast variables.

Remark 3.2: 1In this section I have required that r(t) have exactly n distinct

sinusoids in the low frequency range. However, the "exactly n" part of this
. * * »
requirement was used only to choose 2 (u). If we choose 2 (u) bv some cri-
terion other than making the steady state value of the tuned error equal to
zero, then we can replace "exactly n'" with "at least n" and the analvsis of

this section will still hold.
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*
Effects of e # 0

In this section I show that the effects of e* # 0 are only
O(u). This is accomplished in two steps. First, I show that I can choose
initial conditions on the tuned system so that le*l < 0(u) for all t>0.
Next I show that if M: represents the boundary of the region of attraction
when e*E 0, then the bou%dary of the region attraction when Ie*| = 0(u) will
be represented by (l-O(ui-))M:. At the same time I show that solutions of
(3.32)-(3.33) with |e*| = 0(u) beginning in this slightly reduced region of
attraction converge to an O(u) residual set containing zero.

In order to show that I can choose initial conditions on the

*
tuned system so that |e If O(u) for t > 0, I begin by choosing a different

representation of the model. Define

T ot o]
All : 0 ! 0
————— P . A
| | * T
A = I +8 (0) D . (3.85)
I 1
...._T.._E _____ _i____.
L bhl ! 0 ! A

Then the model equations (3.20)-(3.21) can be replaced by

. - %
= X (0) =X
X = AX_+ be_(O)r , X (® m_ (3.86)
v = h'x_ . (3.87)
m m
Next, I find a Lyapunov function for this representation.

Since

Z (s)Z (s8)Z (s)
Alsr - ) Lpe =k AP~ ®

o m Zm(s)Zp(s)Rm(s)

)

Wb,

VT N

ZJ

“: -

. . . ) . T e ettt . . . . . -,
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and because Zm(s), Zp(s) and Rm(s) are Hurwitz, I know that A is a stable
matrix. Define o) SO that the real part of each eigenvalue of A is less

than -
n Shp

o = inf{- Re{A(A)]} . (3.88)

Then, if Xm(t; Xm ,to) is a solution of (3.86) with r =0, there exists
o

a K& such that

B N L R N I (3.89)
(&}

o (o]

By Theorem 3.6 and (3.89), there exists a Lyapunov function Va(t,Xm) such

that
x| <v,(e,x) <k lx] , (3.90)
1 2 ol 2
v, (6,X ) = v, (e,X )] < KAI, X=X, (3.91)
D+ Vi (£,X ) < = 0.V, (t,X) (3.92)
(3.86) r =045/ 27 91Vatt Ay . 7
The first result of this section is contained in Theorem 3.10.
% T 1xT  9#T T .
Theorem 3.10: Let X = {x ,v ,v_ ] . Require r(t) and r(t) to be

* % *
bounded. If X (0) = Xm(O), n (0) = 0, and LIE[O,UB), then there exists

+
m6 € R such that for t >0

= . RO R
PP AP AT PR, WP W A VLA T W 0
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.
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*x
Proof: Take E = X - Xm. Then
5
. * * *
E=AE + (8 () -8 (0)TD(E + X) +| 0|hn, E©@ =0
0
- b
o1 * -1 x, * T - % T *
no= Ayjon F A22b2[cor + 8 (u) D(A(E + Xm) + bc0r+ 8 hzn )71,
*
n (0) =0 |,
* -
e = hTE

Because r(t) and r(t) are bounded, there exists an ml such that

[°:|"A2§bzﬂlf + 9*(U)TDSr[ <M

1

Since A is stable and r(t) is bounded, there exists an m2 such that
| Xa] <M,

Now, define m3, ma, and m5 such that
m, o= fake et e Toay

m4 ="bJ"hJ s

u, = | @ w) - 8%

Using (3.65)-(3.67), (3.90)-(3.91), and (3.96)-(3.100), I can write

+

Diy.g3)Va(tiE) € =@ = uK M)V, (£,E) + KM, V,(t;n )
+ uK4m5m2 s

DT Vo (t ﬂ*) < —éz - G,V (t *) + K. M.V, (£,E)

(3.94) 2200 7 = T 47 Vo tan YR MALE

+ Kz(ml + M, Mmy)

LA Mk AT S S HILS Sl el A i Abh e Raiv A am. et g
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93)

94)

95)

.96)

97)

98)

99)

100)

101)
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Then the Lvapunov function

T

' * oo * 3.103
Vs(e,En ) = V, (6,E) + oo — Vo (ton ) (3.103)
. 4 1
JH satisfies
N
K, MK, @m, +n.m,)
+ * %* L0272 1 3
P T < -, 2 - +
0(3.93)(3.94)\/5&,3,*1) < ASVS(t,E, )+u(K, Mo, PR a— )
- 4 1
(3.104)
where
K m. K. m
W= o - 4223 5
g = 7yt n(R M+ = “%““01) X (3.105)

* *
If u€ U),uB), then % > 0. Hence E (0) = 0, n (0) =0, (3.90), and (3.104)
imply .}
. , « K, M, Ky (M) + W,M5) ]
TE] < V,(6,E) - V_(t,E,n ) < u m, + ——————=) . (3.106)
-4 - 5 - 4 5 J=-1uG, ~ uo -3
5 4 1 L
The proof is completed bv defining i_ 
K, M, K,(M, + M m,) =
n - 52 £y * L _ =
6 ”hlﬂ T (Mg + s ) . (3.107) o
5 4 1 D
% .i.*
Now that I have a bound on |e |, I examine the effect of this T
-
bounded input on solutions >f (3.32)-(3.33). The approach is similar to that e
% , + -
when e = 0. First, I bound [4'|. Then, I write inequalities for D(3.32)
+
Vl(t,Y) and D(3 33)V?(t,n'). Next, I define some terms needed to state the

final result of this chapter. Finally, I summarize the results of this
chapter in Theorem 3.11.

As stated, I first find a bound on [4'| assuming that ;e*[ < ully -
Becausei}wjl is bounded for all time, there exist constants G6 and ;l such

that

e
]
<
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-1 xT  »
Kofagobyfw Tw <G, , >0 (3.108)
G, + -1 * G
1 R, AL, v m, < G, » t>0 . (3.109)
Next, define
G, = G, + uK,JA 35 ] |T|n (3.110)
2 2 20772272 I 6 : *
Then, I can bound |u4'| for t > 0 by
6] ¢ =2 (G| + E,0¥|% + oy + ¢ fn"] + Gaf¥]fn"
oK AL 1 2! 3 AN 5“ ]
2" 22 2” (3.111)
+ uG6m6]
Now, I need to write inequalities for D?B 32)V]_(t,Y) and
Dt3 33)V2(t,n') and define terms I use to state the final theorem. Using
(3.60)-(3.62), (3.65)~-(3.67), and (3.111) I write
+ 1
B(3.32)V1(E,Y) < = 0, (B)V1(£,Y) + Ry(BIVp(E,n") + K (BIW, (3.112)
+ [} _ 9_ _ _ ' 3
0(3.33)V2(t,n ) < (u G, GSVl(t,Y))VZ(t,n ) + £V (e, )V, (£,Y) (3.119)
+ uG6m6 ,
where
02(8) = qugy - um6"FHK3(B) R (3.114)
*
K. (8) = sup 1L (t,8)Tw ()} (3.115)
5
t>0
- = - i 2
f(vl(c,x))- G1 + (,Zvl(t,’x) + G3V1(t,Y) . (3.116)
Recall that for the e* = 0 case I defined M{Y,n"') which was used to bound
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Y| and estimate the region of attraction. 1In this case M(Y,né) will not

always be a bound on Y, and therefore, I define M, as the solution of

K. (1M,)G
3 IGg
MK M)+ — ]
M. = ° 5! 7 7 8lGy * K65t * ey ] (3.117)
My Ky (M) E () :
oy (uMy) - w5 u[G, + G M + qa ]

N m6K4(O)
which satisfies M, =

1 —0?—0—)— . Next, I define

- t
M2 = max{M(Yo,no),uMl} (3.118)

which I will use to bound "Y". The rate of exponential decay will be greater

than
a = o (M) - u %3 () F0p) (3.119)
6 272 g - u[G4 + GM, + qal]
Define 54 as the solution of
_ K,(0)G;
0 =0.,(0) - & —= (3.120)
2 4 o UA[GA + qul]
which satisfies 34 = Hyo where Hy is defined in the proof of Theorem 3.9, .‘
m1
* - p
To estimate the region of attraction,define a function M;:[O,u4]~*ﬁf-such {:
* 3 * Rk
that if M2€ [O,Mz(u)), then o >0 and if M2 = Mz(u), then EP 0. Next,
define

Y O
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Me Ky(M,)G,
M3 = E— [KS(MZ) +ou o - U[G + G M + qa ]] ) (3-121)
6 572
Y=o [Gémfz M1 T G- [E(U?QM?{ ¥ 3qa,] - (3.122)
T ulG, + GgMy + 3qoy

Finally, I define three sets which are useful for describing the behavior of

solutions of (3.32)-(3.33),

Dl(u) = {Y,n": M(¥,n") < uM,4 2"” | <» “I } , (3.123)
D,(u) = {Y,n': jYf < MMy i’ < w M } s (3.124)
Dy(w) = {Y,n': M(Y,n") < My} . (3.125)

The set DB(u) will be an estimate of the region of attraction, the set

Dz(u) will be a residual set to which all solutions, beginning in D3(u),
converge exponentially, and the set Dl(u) is a region such that solutions
beginning in Dy (W) stay in D,(u) for all t > 0. Theorem 3.11 shows that, for
yu small enough, these statements are true. Theorem 3.11 also provides a more
detailed bound on |Y| and |n'|.

Theorem 3.11: Let r(t) be the same as in Theorem 3.8. Let (Y,ﬂ')(t;Yo,n;)

be a solution of (3.32)-(3.33) beginning at (Yo,n;) at time t=0. Then,

- + - - . .
there exists a HY € R such that for all .€ [9,0), if (&o,w;)€.03(u), then

[¥) < MCr ,nDe 6" + iyl - 7765 (3.126)

lacim
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=
' ' g _ -
K 1]z Kl e l=G - 6 - 6pe)
| G M
o 2 6 6 (S _ _
. + u 5= (G, + G.M, + qa ][1 - exp| (u 04 GSMz)t] (3.127)
N 4 572 1
v 1y ~2pt _ -2t = a"%E L _ ot
a . f(M(Yo,no)e + uM3(1 e ))[M(Yo,no)e +LJ3(1 e )]
o - U[Gé + GSMZ + 3qal]
for tzO.
Proof: The proof takes several steps. First, I define U so that for all
- L€ [0, 1) Dl(u)C3D3(u). Next, I assume a bound on HY“ exists and show that
;; if (Yo,né)€503(u), then M2 is a bound on "Y". Confirmation of M2 as a

bound on "Y" leads directly to the bound (3.126). Finally, I use the bound on

"Y" to get the bound (3.127) on "n'".

Because K3(B) is a nondecreasing function of 8, it follows that

* - #
Mz(u) is a decreasing function of u on w€ [0,u Furthermore, MZ(O) =+

4]'
0. (Clearly, there exists a USEE(O’GQ) such that if u€ [O,us),

£ _
and MZ(MA)

* * - ) ‘
then Mz(u) > uMl and Mz(us) < ule. Take p = mln{u3,u5}. Now,

take v € [0, [), and assume that a constant M_ exists which bounds “Y" for

5
t > 0. Define
Ky (M)
1y - ' '

— Ve(e,Y,n') = v, (e,Y,n") + u —— 6. ¥ G T g0l Vy(t,n') . (3.128)
‘ 4 575 1
L
3
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Using (3.111) and (3.112) I can write =
4
. MK (M) E (M) A
1 - <
P(3.32)(3.33) 6010 £ =009~ TrE SE M+ aey 10T ;
uK, (M) =
- 22 qa,V,(t,n") .
o - u[Ga + GSMS + qa1] 172 -
WK (M) G R
+ ull (K, (M) + — ] (3.129)
6145 o-u[G, + GM, + qa,] .
.:‘
K3(M5)E(M5)
<= (o,(M) - w— YV (t,Y,n')
25 a u[GA + GSMS + qal] 6 .
M) =
UK., (M.)G
375776
+ ul [K, (M) + ] By
6475 o - u[(;4 + GSMS + qal]
Assume further that Mo < M;(u). Then _d
- od
' ' Ko (Mg) £ (M)
v6(t,Y,n ) < Ve (£,Y ,nl) exp[-(cz(Ms) - U c-u[GA YoM, + qall)t] R
Ky(5)Gg &
m [k, (1) +1 TG, o, T a 1]] (3.130)
+ u A
K, (M) T OA) 5
0, (Mg) - u [C +G.M. + qa.]
7T uE, 55 9% R
o4
In order for M. to bound |Y| I can choose M. to satisfy
5 5 -
UK, (MK, [In '] .
3572 o ¥
M. = max K(IYH)YH+_ R
5 ( l'o “o o} u[GA+G5M5+qa1] .:
Ky(M)G, (3.131) <4
ull [K, (M) + u — ]
645 g u[Ga + GSM5 + qocl] }
K F(M
0, (M5) - w5 [GB(TS; \(4 Si 1
KB, + Ggflg 7 4%y J
")
]
X
-

. . . ~ ., - -
. - . P " - T e .
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l 1f M5 is equal to the first term on the right-hand side of (3.131), then

MS = M(Yo,né). If M5 is equal to the second term on the right-hand side

of (3.131), then Mg = uM;. Hence, M; = M, and M, bounds “Y" for t > 0.

%
\ .
For (Yo,no)€D3(u), then M2 < Mz(u) and I can write

JY] < V(6,0 < Ve (e,Y,n) < MY ,nlde V60 + iy (1- 7765 (3.132)

which provides the bound (3.126) on “Y” .

Next consider the function

uf(vl(t,Y))vl<t,Y)
v (t)Y9n') =V (tsn') - — (3°l33)
7 2 c U[Gl& + GSMZ + 3qal]
Using (3.112) and (3.113), I write
ot Vo(t,¥,n") < (2 -G, - G.M)V. (t,n') + uG.M
(3.32)(3.33) 7 " - 4 527724 66 g
_ - 2 . ]
> + ,Y) + 3G LY :
. [E(Vl(t,y)) . ;0—2(1[1(2;) (:;_lG M2G+2-V§(; ]) 36,V (t ))]Vl(t,Y) ::;
Hlby 509 T 9% bi
i
o o :
< - (; - G, - GM)V,(t,n") + uG M, (3.134) :
_ u3<32(M2) | g
+ £(v. (e, YP[1 + V. (t,Y) 1
1 s-ulG, +GM, + 3qul] 1 -
o
]
- g - - ' _‘.
27 G 6y - GMIVy (e YunT) + Gl 3
4
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From (3.134), it follows that

' ' 9 _ -
V7(t,Y,n ) < V7(O’Y°’no) exp(- (U G4 GSMZ)t]

(3.135)
CeMe,

2 g
T 3qa1][1-exP[- (;‘ -G, - G5M2)t]]

+ u

o- u[G4 + GSMZ

Using (3.65), (3.132), (3.133) and (3.135) leads to the bound (3.127) and
completes the proof.

In the introduction to this section, 1 claimed that the effect
of the 0(u) e* on the region of attraction was very small. To see this,
assume that K,(8) =0(1) for all ser", Irl=0(1), and sgp”w*(t) I=0(1).
Under these assumptions, M;(u) is chosen so that if MOE [O,M;(u)), then

£ ) £QM)
Mo+qa1] “o

0< qa, - uM7 (MO) - Uu (3.136)

0—u[G4+G5

where M7 >0 is an 0(1l) valued function of (Mo)' Recall that M:(u) was

chosen so that if M € [O,M:(u)), then

?,
K3(.{0)
g- u[G4 +G5L40+qal]

0<qa, -u £M ). (3.137)

Comparing (3.136) and (3.137) we see that as u—=>0

* 2 * 2
Mz(u) = (Mo(u) -0(u)) (3.138)
3
and thus we have Mi(u) =3*() (1 -0w?)).

Remark 3.3: Notice that Theorem 3.10 does not restrict the number of
sinusoids in the reference input. That is, the bound Ee*} < um6 does not

depend on the number of sinusoids. Using a relaxed version of Theorem 3.8,
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_._‘ as suggested in Remark 3.2, one could relax the hypothesis of Theorem 3.1l

P | I VAL

to r(t) sufficiently rich and low frequency without changing the conclu-

e

sions of Theorem 3.11. If we relax the "exactly n"” requirement then we

-

g must choose o*(u) by some criterion other than making the steady state

e*=0. An interesting criterion is 9*(n) =9*(0). For this choice of 9%,

the previously discussed relaxed version of Theorem 3.1l would be an excellent
- proof that low frequency sufficient richness, i.e., dominant richness,
provides robustness with respect to high frequency unmodelled dynamics.
I use robustness here in the sense that in the presence of high frequency
unmodelled dynamics, the adaptive control system remains stable and tracking

and parameter errors become and remain small, O(u).

3.5. Discussion

In this chapter I have shown that trajectories of the model
l. reference adaptive control system excited by n low frequency sinusoids
which begin in a region of attraction will converge exponentially to an 0(u)
L residual set if u is sufficiently small. Furthermore, if r(t) = r*(t), the
~ steady state value of e* is zero and the equilibrium eventually becomes
exponentially stable. It was also shown that if the rate of convergence of
fﬂ the unperturbed M%és, i.e., when p=90, is 0(1), theg the region of attrac-
= tion may be O(u_‘i) in the slow variable and O(u- 75 in the fast variables.

Through Remarks 3.2-3.3 I have also detailed a method by which one

can prove that robustness with respect to high frequency unmodelled dynamics

can be gained via low frequency sufficient richness of the reference input. z

This method was based upon the idea of fixing the reference input and then :

:{

> y

! .

) 1

‘.:

b
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showing that for sufficiently small u, exponential stability is retained.
How does one use the ideas in this chapter if u is fixed and the problem
is to choose r(t) and T to provide robustness with respect to the

perturbation? The first step is that a, must be positive. From (3.75)

3
and (3.77) we see that at the very least one needs G1< O(u-l). This leads

for one condition to w*TFw*-<0(u-l). Another requireme?t might be that

6
that keeping irl, |r|, and |r| all small with respect to u 2 will probably

M <0(u 2). This leads to [rl <0(x 2) and |r| <0(u 2). Yfe begin to see

accomplish the desired goals.

tL -

AL FE

Before going on to examples in Chapter 4, I would like to discuss

the relationship of this work to that of other authors. o

e Y,
faoataoasa s,

Remark 3.4: While Remark 2.3 suggested that dominant richness was important

L
i Y

for the existence of a unique equilibrium, it is easily seen that the sta-

bility of this unique equilibrium requires a stronger dominant richness

e e

"' .!

condition. For a given nu >0, each w, in the input must be less than O(u-l)

i

M
[

'l',’

to assure existence. As just discussed, stability can be assured only when
the existence condition is met and when each product, T Wis is less than

O(u_ 75. This more restrictive condition corresponds exactly with the notion =
of dominant richness as discussed by Ioannou and Kokotovic (1983) and Krause
(1983).

Remark 3.5: Krause (1983) has also found that when the reference input is sy
dominantly rich and u is sufficiently small, the convergence of the trajec-
tories of the model reference adaptive control system toward e=0, 6= e*(O)

for 0(l) parameter errors can be assured by choosing “F" sufficiently small. 13

The results of this thesis agree in the following way. If the assumptions
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of dominant richness and p sufficiently small guarantee that o, >0 when

6
I'=0, then there must exist I with ”FN small enough so that 36>>0 with
HF”>~0. Since o, >0 is sufficient for the convergence of trajectories in

6
D3(u) to Dz(u), the trajectories will then behave as previously described.

Remark 3.6: While it is easy to see that the exponential stability of this
system with e*z 0 can be used with standard stability results to show robust-
ness with respect to additive disturbances, it is not clear what happens if
the reference input is the sum of a dominantly rich input and a high frequency
input. Astrom (1983) showed via averaging techniques that for small “T”, the
low frequency excitation provided robustness with respect to the high

* is the

frequency excitation. This can be partially seen by realizing that e
difference of the outputs of two low pass filters, and hence, ]e*l will be
very small for components of the reference input which are high frequency.
Thus the forcing effect of high frequency inputs for slowly varying 4(t) will

be small. However, the techniques of this thesis may not be able to prove

this because of the w* coupling term between fast and slow subsystems.

Remark 3.7: As a final comment on this chapter, I must say that the results

of this chapter could be interpreted as a special case of the work done by
Kosut, Johnson, and Anderson (1983). However, I believe that much can be
gained by dealing with the special case I have chosen and by using the

Lyapunov approach, which is not the approach of Kosut, et al. First, the
special case of high frequency unmodelled dynamics which I have chosen is
in itself a fairly general and very important topic of current research in
adaptive control., Second, the representation 1 was able to choose for the

unmodeled dynamics allowed for a natural decomposition of the problem
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which in turn provided the starting point for the composite Lyapunov function
proof of the results. Finally, the results help to point out that high -

frequency inputs and high adaptation gain are the main problems to watch

'r.’

out for when applying model reference adaptive control to a plant with

»

v e

unmodelled high frequency dynamics.
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l' CHAPTER 4

EXAMPLES

» In Chapter 3, 1 derived conditions for stability of a model

; reference adaptive system with unmodeled high frequency dynamics. 1In this

" chapter, I present a sample system of this type and apply the results of

~ Chapter 3 to derive conditions for stability of this sample system with two
different sets of parameters. While these two special cases will not
illustrate every aspect of the theory presented in this thesis, they provide

- ] sufficient insight to appreciate the method suggested by the theory and to
discover the main drawbacks of the suggested approach.

This chapter is divided into several sections. In the first

.' section I present the sample system and derive the associated error system
following the ideas of Section 3.2. The second section is devoted to a
study of the sample system with the parameters chosen so that it becomes

!) a linear time invariant system. 1In the third section, the parameters are

’ chosen so that the system becomes the simplest nonlinear system possible
and the study is repeated for the new case. 1In the final section I discuss

- the problems illustrated by the two special cases and some aspects of the
theory which are not illustrated by the two special cases.

- 4.1, The Sample System

- In this section, I present a somewhat general model reference

.' adaptive system with high frequency wunmodeled dynamics. Then, following
Section 3.2,I derive the error system representation of the sample system.
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This error system is used with two different sets of parameters to create

the examples used in Sections 4.2 and 4.3.

A block diagram of the sample system is shown in Fig. 4.1.

235
The differential equations describing it are -
- model: X = =-x +7r, 4.1
- m m
/5
x = ax+b 2 01}z, (4.23)
plant: - - -
-1 .5 0 o
uz = z + /[5 u , (4.2b) e
-.5 -1 2 -
control: u = GTw, w g [r x]T, (4.3)
v v 0 ey
L parameter 5= | 1L 1w(x—x y. (4.4)
¥ update: 0 m -
X Yo -
The first step in the derivation of the error system is to make the “?
transformation
n=z=/5 |,]|u. (4.5) =
K The plant equations (4.2) become
4 B /5_ 7] . -
. X = ax+bu+b 2 Ofns (4.6)
1. _ —_—
N
B 3 ~
) -1 3 — ] 1
+ A 7 ~
un = n-u /(%i ] u ( ) -
i -5 -l | 2
h
!
AR R B N A R R e S T T
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1 %) .5 X

1+ 1.6us+.8(us)> T sta

Figure 4.1.

Block diagram of sample system,

(4.1)=(4.4).
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9 - v Y_T
] -
b~
A
(" 62
-
F‘ Next, define the tuned system =
b
= . % *\ _* * [ B ] * :
X = (a+b62)x + belr + b 5 0] n™, (4.8a) -
- &
-1 .5 11
.k 2 . -
pun = n*-u /'5- ‘Iu*, (4.8b)
-.5 -1} 2
A
where
u* = o*Ty*, W= x*L. (4.9)
The tuned error is then defined as =
* *
e =X -X. (4.10)
Figure 4.2 shows a block diagram of the tuned system and the tuned error.
Finally, making the definitions |
' %
X = X=X ,
o' = g-8*, (4.11) -
1 *
n = n-=n .,
I write the error system equations -
)'c'=ax'+bu'+bi‘/% 0_1 a', (4.12)
., (Yl 0 .
un =-' wix'+e™), (4.13)
: 0 Y2
) , -1 .5~1 5 1 -
- AR 1
fo.s -1 | 2
L- - ~ - 2
- R T T T O R R SR P R, th
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. .
) -
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n
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-ps(1.6 + .8us)

1+1.6us+.8(us)2

. 5 - 4 "
. s+a .
+ .

.
*
>y

-

Figure 4.2. Block diagram of the tuned system and tuned error for
- the sample system.
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where =
u' = wie' e’z‘x', (4.15) K
. 1]
&' = wle' + ¥y 4 92}2' + o0 -
2 .
6*(a+b6*)—(y r2+y x*2+2y x*e®) .
2 22~ 2 2 -
[] ' ' . .
= [x 61 62] br+r
bx* +x*
B * * 1 * 1 '— ] i :
-(2Y2x +y2e ) 0 —2-(a+2b62) i1 X e
|
q ' ' ' 1 |
. + 8 = -
g [x 1 62] 0 0 > br ‘ 61 :
- l %* _1_ * ' |
2 (a+2b62) 2br bx | 62 N
-
12 V20 * /5— ' ' /_S_ '
- 2 9 2
+ (bez Yo% x + 62b|r > 0] n+8.b 5 0] n
2 2 * -
- (er +y2x* Ye . (4.16) *_
y 4.2. Example One -—
The first special case I want to examine has the following set of |
.-jﬁj parameters:
Y .
:‘ a = -1 ’
= 3y =9l =0
t‘_ﬁ-, f2.7 72 2
- b = % , 4.17) B
-.‘.: '3* = 2 ]
1
b =1
E : /1 = .
' e .
F o
sl L '-'-':.u"-p':{‘ix‘l-'.".',"::.' e T T L e e e L L L e ]
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This corresponds to a plant whose '"slow" pole matches the model pole but
which has an unknown dc gain of % The choice e’f= 2 provides the
correct dc gain. The choice of the adaptive gain Yy =1 is arbitrary and,
hopefully, reasonable for this problem.

One of the first things to notice about this system is that u*=2
is a constant. Therefore U*=0 and hence it follows from (4.1), (4.8), and

(4.10) that the choice x*(0) =xm(0), n*(0) =0 results in e*= 0. Using this

and (4.17) I write 4 for this case,
@' =[x 8] . ' (4.18)

Rewriting the error system using the appropriate modifications for this

special case and Y= [x' GilT results in

-1 .5 .5 //gg 0
Y + !
0

¥ = n', (4.19a)
-1 0 i 0
. M ’ -1.s|
pn' = q //:? [L =51y + _ T (4.19b)
| =

3| 2

Now I want to apply the method developed in Theorem 3.9 to determine
a 0 such that (4.19) is exponentially stable for all ue[0,0). The first

step is to consider the subsystems

S
Y

-1 0|

(4.20)
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Solutions of (4.20) satisfy

Il < 2.a44e”

66
-1 .5 ,
n .
-.5 -1
Sty o).

Hence, there exists Vl(t,Y) such that

IYl < v ey < 2.44]v],

!vl(t,Yl)-vl(t,Yz){ < 2,440 2,

+
Des.200V1

(t,Y) < -.5V1(t,Y).

In fact, for this case, one such function is

. - l—v _l.
/ 4 T‘ L -3 \ 2
v, (¥) = Y Y
! | 3-/5 -1 1
\ P2 2|

and D+V1(t,Y)==é% V,(¥). Solutions of (4.21) satisfy

and we use

vz(n )

Vz(n'), of course, satisfies a set of conditions similar to (4.23).

Now I can write

+

D 4. 19a)

Vl(Y)

_L,
e Y "l
="y,

£ -5V (D) + (260 (5 (DY, 0N,

L malh il Akt S son b o

(4.21)

(4.22)

.23)

27)

¥

..

]I
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s
2

+

' ' 2 /5
Dig.19pyV2(n ) s - TV (n) 4+ (/g)(@)(/z)vl(Y)- (4.28)

NI N

Then using

bl

u(2.44) (.5)( %)

Va(¥,n) =V, (V) + =005 Vy(n') (4.29)
I get
5,
+ , B2 (/D
(4 19)V3(Y,n ) < -(.5) VI(Y)+ BT Vz(” )
(2.44) (. s></></></‘></§>
e T-u(.5)
u(l. 22)(2 5) '
< (=.5 + 1 (.5) )V3(Y,ﬂ ). (4.30)

Hence, if u€ [0, .15], (4.30) guarantees that (4.19) is exponentially stable.
Using linear time-invariant system techniques one can show that (4.19) is
exponentially stable for ue[0, 1.2). Thus we see that the estimate of

range of stable u's given by the method of Theorem 3.9 is conservative.

4.3. Example Two

Since adaptive control is in general a nonlinear problem I consider
a nonlinear example in this section in order to illustrate more fully the

ideas of Chapter 3. I will, however, be modest and choose the simplest

possible nonlinear problem. The parameters for this simple example are

-
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Y

2]

]

[
A1

a=1 |, ,j
Y2 = 1 » -
% ]
62 = -4 |, (4.31) =
J
b =1
2’ .
* S|
6, =2 , :
6'
Y = =0 . -
1 1 5]
"l
This corresponds to a system for which the high frequency gain of the "slow" i
part of the plant is known to be %‘but the desired value is 1, and hence I set £x
*
61 = 2. Unlike the previous example this plant is unstable without control D
* !
since a> 0. The choice of 62 = -4 provides the correct d.c. gain and the

%
steadv state value of e 1is again zero. The choice of Yy = 1 is again arbitrary

SN

but, hopefully, reasonable.

...
—t .t

This example possesses three difficulties which were missing in the

*
first example. The first difficulty is that because of the feedback 9., it is

*
possible to make e = 0 only when xm(0)= 1. The second potential difficulty

is that the unperturbed system is nonlinear and determining the constants

_'. t 5

associated with its exponential decay is not an easy analytic task. The

third difficulty is that the region of attraction of the exponentially

stable zero solution of the perturbed system is not the whole space as it

| S

was for the linear example.
*
I will discuss the problems associated with the nonzero e first a
since they are the most easily handled of the three difficulties. Noting .
that for this case u = -4 x , I can write the tuned system as
5y
5
"]
-
]
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x4+ 1+ [.5/% oln"

(4.32)

PR SR N 1 . S0 .
un = n + u2 [L 0ln - u4/§ (x -1)
-.5 -1 2 2

bl
* * *
Using e = x —xm, I can write the equations describing e ,
% % 5 *
&= et + [.5/% 0ln (4.33a)
- - _
% -1 5], 1 . 511
up = n o+ u2 (1 0ln - ulu/gj (x, - 1) (4.33b)
- -5 -1 | 2 2]
-
* *
- Choosing x (0) = xm(O) and n (0) = 0, as usual, and using
)
) T Y 4 I
I vé(e ,n) = le | + ——— |[n " . (4.34)
i 1-u(l+2/5)
I get
" N . . u D . D@D,
N
- I A B R =il Lil M <)
. ’ 1-u(l+2/5) 1-u(l+2/5)
-
N = -
5 2 —
RN IOYAND
- + — Ixm- 1| (4.35)
y 1-u(l+2v5)
* k 03
cae 25y Mt 25 g
1-u(l+2/5) 1-u(l+2/5)
*
Since V4(e ,n*) =0 at t=0 it follows from (4.1), (4.34), (4.35) that
"‘-
!.
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* 42/5 A
e | < Va(e*,n ) < ——“:ééji—_f:— [xm(O) - 1lle t (4.36)
1-u(l+4/5)

for all .€ [0, 1 —
1-45
is sufficiently =rall e will be negligible.

). Clearly, if . is sufficiently small or [xm(O) -1

In order to discuss the remaining aspects of this example I need
the error system tor this special case. Letting Y = [x',GQIT, the error

svstem can be written

l s Ty v S5
] -1 x| JYqu S s 00
Y = . R e A L (4.37a)
L-x 0 J - -Yi 3 L 0 0
, -1 .5 /;'rlj
un = ‘r]' - uv '3-! [ a' . (4.37b)
-5 -1 2]
r x2 * x - * 3
4 - x - 2x e -2 + e -5 |
r =yl +yr 2 iy
u * X 3 *
[.5x + % ;] -3 5x J
2 2 /‘3 ‘5 (4. 38)
+(5Y, - 1Y - (275 0la' 4 Yz[.S/—z— 0]n
2 N %2 &
- (er 2X e
In order to simplify the problem, first consider the case wiien xm(ﬂ) = 1.

* *
Then, e =0 and x = 1. Under these conditions I can bound ' by
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Now, I consider the fast and slow subsystems separately in order to find a

Lyapunov function for each. Since the fast subsystem is again given by

(4.21), 1 will use Vz(n') for this case also. The slow subsystem is given

by
i1 .50 T.5Y.Y
Y = |y + ! 122 X (4.40)
__l 0.! 1_ -Yl

The zero solution of this nonlinear sldw subsystem is exponentially stable
in the large. However, it is not easy to analytically determine the
constants associated with the exponential convergence of (4.40). Therefore,
I resorted to numerical techniques. Since I wanted (x,ez) = (1,0) =
(x',eé) = (0,4) to be in the region of attraction of the zero solution of
(4.37), I choose to estimate the exponential rate of convergence of (4.40)
for "Yo" < 5. First, I simulated (4.40) with initial conditions at 16
uniformly spaced points on a circle of radius 5 centered at Y = 0. Second,
I plotted the maximum value of the "Y" over the 16 trajectories at each
sample instant. The integrations were done using the IMSL subroutine DVERK
which determines its own step size to remain within a prescribed tolerance
in integration error. For plotting purposes 1 sampled the integration 10
times per second. Finally, I used the plot of the maximum value of "Y"

versus time to estimate that

-0.077t

jY| <182 jr@f . vy@es, , (4.41)

where S; = {Y: "Y" < 5}. Figure 4.3 shows the plot of the maximum “Y“ and

the bound (4.41). Figure 4.4 shows "Y"vs t and Y, vs Y, for an example

1 2
trajectory with initial condition Y(0) = [0,5]T
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Figure 4.3. Plot of max "Y“ for (4.40) and the bound (4.41).
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Figure 4.4. (a) Plot of Y; vs Y, and (b) plot of |Y} vs t for sample
trajectory of (4.40) beginning at Y= [0,5]7.
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From (4.41) and Theorem 3.7, it follows that there exists

Vs(t,Y) such that

Y| < ve(e, ) < 1.82 ||, VWES,

, Y.€S_.,Y.€s5. , (4.42)

1 7572 5

{VS(t,Yl) - vs(t,Yz)l < L(t,S)“Y1 - Y9

- *

D(A.AO)VS(t’Y) < —q(.O77)V5(t,Y) , 0<g<1

For the purposes of this discussion it will suffice to make the unjustified

(and optimistic) assumptions that
:u q=1 . L(t,5) < 1.82 . (4.43)

Using (4.39), (4.42), and (4.43) I write

- + . . 15 '
- D(3.372)e* = gV5(Es¥) £ = 077 Vo(e,¥) + 1.82 (.5) ¢/ PV,(n"), (4.44)
:l: D *_ Vo(n') < (- 1.5+ (.5)75 YV, (n")
y (3.37b)e =02 T : [ Y[V, (n
(4.45)
+ 4.3+ 3.8 Y] + 2 Y|PV (e,

Letting M_ be an upper bound on "Y", 1 define

Nl

(.91)Y 2 (4.3 + 3.8 M+ V2 Mi)
g = 2077 - — . (4.46)
1-u(2/5 + .077 + .5/5 M)

- It is easily shown that if M is an upper bound on ”Y“, then

-
2 (.91)/2

Ve (t,Y,n") = Vs (e, ¥) + u — — v,(n") (4.47)
1-4(2/5 + .077 + .35 MO) -

o

f 'y “
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A 5
! satisfies =‘?
+ ]

. % , _ . ,
: Di4.37)e™ = oV6(EsY5n") < - agVe(t,¥,n") : (4.48) :
=3

m Hence, if o, > 0 and Mo is an upper bound on VG(O’Y(O),n'(O)), then Mo 3

- 6
) is an upper bound on "Y" since "Y" < Vs(t,Y) < V6(t,Y,w') - V6(0,Y(O),n'(0)).
This is the motivating force behind the definition of M(Y,»') as the solution

of

u(.9l)/§-"n'"
M(Y,n') = 1.82 "Y" + . (4.49)
1-u(2/5 + .077 + .5/5 M(Y,n")

b -3
1
Then taking Mo = M(Y(0),n'(0)) ensures that Mo is an upper bound on 5
V,(0,Y(0),n'(0)). 1If I want to guarantee by this method that the set 3
. (Y,n")YE{Y,n': YE Ss,n' = 0} is in the region of attraction of the zero 1
solution of (4.37), I must show a6> 0 for MO = 9.1. This can be done only %
for € [0,.00034]. 1
'. Returning to the more general problem when xm(O) # 1 but for %
) example satisfies Ixm(O) - 1[ < 2, one expects that the requirements on }
L will be at least as restrictive as in the xm(O) = 1 case. Thus, start with :
4 < .00034. Clearly Ie*i is then negligible with respect to the other terms -
in (4.38) so that the bound (4.39) is good with respect to e* at least. :
Because Ie*l is negligible
|
x Fx =1+ (x(0) - 1e " . (4.50) B
m m
- In order to truly determine the effects of this time varying x* one may
L

need to find a new bound similar to (4.41) for the slow subsystem
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ve=| Y + (4.51)

with x* given bv (4.50). However, I know that the zero solution of (4.51)
is exponentially stable in the large, provided x*#O. Furthermore, x* - 1 for
t>3. Thus, for t> 3 the previous analvsis should hold with Mo = M(Y(3),
n'(3)). With these thoughts in mind one might consider a pseudo worst case
+

analysis in which one assumes that VS(t,Y) satisfies only D(4 57)

0 <t < 3. Under this assumption and the assumption that (4.39) is a

Vs(t ’Y) _: 0 for

reasonable bound over 0 < t < 3,one gets u > - .077 for p€[0,.00034] and

6
M = 9.1. From this it follows that

e(.077)(3)

V(3,Y,n") < V(0,Y,n")

Since MO = 9.1 must bound V(3,Y,n'), this psuedo worst case analysis reveals
that the guaranteed region of attraction is reduced by a factor of

e—'z31 = 0.8.

How useful is it to know that for u < .00034 I can guarantee that
my desired region is contained in the region of attraction? This requires
the unmodelled high frequency dvnamics to be 3,000 times as fast as the
modelled dvnamics. This seems like a pretty unrealistic requirement.
However, to be accurate, the answer to the first question depends oa the
answer to; "How big can u really be before the region of attraction does
not contain my desired region?" Working with the desired region

(Y,n) € Y,n:YE Ss,n= 0}, I tested via simulation whether » = .1 was small

enough so that the desired region was contained in the region of attraction
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of the zero solution for the xm(O) = 1 case. I found that it was small

enough. For this test I integrated (4.37) with x*E 1 and e*E 0 using the
same 16 initial conditions on Y as when I studied (4.40) and the initial
condition n'(0) = 0. Then, I again took the maximum of ”Y" at each sample
instant. Figure 4.5 shows the plot of max "Yu vs t for both the unperturbed
svstem (4.40) and the perturbed system (4.37). Figure 4.6 shows a sample
trajectory of the perturbed system with initial conditions Y(0) = [0,5]T and
7(0) = 0 and with u = 0.1. Compaing 0.1 and 0.00034 it is obvious that the
estimate provided by the proof of Theorem 3.9 is so conservative that it is

of little or no practical use.

4.4. Discussion

I have investigated two simple examples which have illustrated the
theory of Chapter 3. That is, for each example there was a >0 such that
for u€ [O,ﬁ) the zero solution of the error system with e*E 0 retained its
exponential stability. Furthermore, it was shown that I does not have to
be an incredibly small number. However, the examples also showed that, even
for these simple systems, the estimates of ﬂ and the regioﬁ of attraction
developed from the techniques of the proofs of the theorems in Chapter 3 are
so conservative that they are of little practical use. This conservation
arises from the fact that the technique assumes the terms coupling the fast
and slow subsystems together always have the maximum detrimental effect upon

the stability of the error system while the coupling terms actually have a

nmuch smaller effect on the stability of the error system.
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(4.40)

ax Y|

(4.37)
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Figure 4.5.

Plots of max |Y| vs t for (4.37) and (4.40). w
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As the system gets larger and contains more adjustable parameters, q

this conservativeness problem will only get worse. This is because of the

Py

time-varying nature of the larger systems. First, the technique bounds a

time-varying quantity with its maximum absolute value. Then, it applies
the maximum detrimental effect idea. This double maximum approach can

hurt the accuracy of the estimate very much since the effect of time-varving

coupling term may depend upon its average value or the average value of its .1

correlation with another time-varying quantity.

..
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CHAPTER 5

CONCLUSTON

This study of model reference adaptive control in the presence
of unmodelled high frequency dynamics has shown several interesting results.
The first of these results is that for any input in the class of signals
which provide exact sufficient richness, the system has a unique e = 0
equilibrium provided the high frequency dynamics are at frequencies above
the frequencies in the input. Along with this result, it was shown that
the equilibrium values of the parameters are only a small distance from

the ideal parameters for the unperturbed case.

The remaining results concern the stability of this equilibrium.

Taking the two-time scale approach to the problem leads to the satisfying
theoretical result that this equilibrium is exponentially stable after the
model transients have settled provided that the high frequency unmodelled
dynamics are sufficiently high frequency. Through the remarks it was
pointed out that this technique can be used to show that the error system
converges exponentially to an 0(u) region around e = 0, 6 = e* provided
u is sufficiently small.

Finally, the examples showed that there indeed exists a
1 >0 such that the equilibrium is exponentially stable for all LE [0,1).
However, the examples also showed that the estimates available from the
proofs are not large enough to be of practical use. Clearly, an important
goal for new research is to find an approach to this problem which can

result in better estimates of the range of u for which the equilibrium
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retains its stability. Hopefully, an approach which provides realistic

1

estimates will come close to providing a fundamental understanding of .

,.
=
-

the problem and thus lead to measures for counteracting the destabilizing

effects of the unmodelled high frequency dynamics.
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APPENDIX

PROOFS OF THEOREMS 3.6 AND 3.7

The following proofs are taken directly from Yoshizawa (1966).

Préof of Theorem 3.6. Let V(t,x) be defined by ??
V(t,x) = sup "x(t+r;x,t)“eCT . (A.1) f;
>0 “d
- -4
Then clearly "xu < V(t,x) and by (3.7) -
V(t,x) < sup Ke “x[eT = K[| . (A.2)
>

Since the system is linear, we have the relation

x(t+t3x,t) - x(e+1t3;x',t) = x(e+13;x-x"',t), and hence,

(V(t,x) - v(t,x")!

A

sup "x(t*—r;x,t) - X(t+T;X',t)“eCT
™0

< sup Ke ST x-x"[e T =K|x-x"] . (A.3)
>0

Now we shall prove the continuity of V(t,x). Take a §>0.

We have

lV(e+a,x") - v(t,x)] < [V(e+35,x") - v(t+$,x) |
+ {V(E+38,x) - V(t+&,x(t+8;x,t))]

+ V(E+8,x(t+5;5x,t)) - V(t,x)| . (A.4)

Since V(t,x) is Lipschitzian in X and x(t+4&;x%x,t) is continuous in 5, the

first two terms are small when "x-—x'” and S are small.
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Let us consider the third term. Since x(t+ &+ 1;x(t+5;x,t),t+8)

= x(t+8+1;x,t), we have -]

V(e +38,x(t+8;x,8)) - V(t,x)|

| sup ||X(t+<5+T;x(t+6;x,t),t+ c)"em
TiO

- sup ||x(t+ "c;x,t)"eCT|

>0 ~
= lsup "x(t+r;x,t)"eme_cr’
1':0 4
- sup ”x(t+r;x,t)”ecrf . (A.5) -
>0
Set a(S) = sup "x(t+r;x,t)“eCT. Then a($) is nonincreasing and a(&) ~ 0
>
as §-+0, becagse "x(t+r;x,t)n e®" is a bounded continuous function for all j
. ]
1> 0. Thus,
1
V(t+6,x(e+33x,8)) - V(t,x)]| = !a(é)e—c(s— a(0)| (A.6) ;

implies that the third term on the right-hand side of (A.4) tends to zero
as 3+0. Therefore, the continuity of V(t,x) is verified. 4
Finallyv, we shall establish condition (iii). Let x'=x(t+h;x,t),

h>0. Then,

Vv(t+h,x') = sup ”x(t+h+r;x',t+h)”eCT
>0
= sup "x(t+ r;x,t)“eme-Ch < V(t,x)e_Ch, (A.7)
T>h
which implies
V(t+h;x') - V(%) e
2 o 2 < V(t,x) -~ (A.8)
From this, we obtain D+ (t,x) -~ v
s (3.5) »X) < o= cV{(t,x).
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Proof of Theorem 3.7. For a constant q such that 0<q<1l, define

V(t,x) = sup "x(t+r;x,t)"ean . (A.9)
>0
Then ux“ < V(t,x) and for x€ SB £ {x:"x" < B}
”x" < V(t,x) < sup K(B)e-(l—q)arﬂxil < K(B)Hx" . (A.10)

r:O

Now we shall prove (ii). In the course of the proof, we shall
determine L(t,R) explicitly. Let T(B) be such that K(R) = e(l-q)aT(B).
Ny -(1-q)ar ) .
If = >T(8), then K(8)e "x” < ”x" and hence, from (A.10), it follows
that V(t,x) must be defined for T such that 0 < 1t < T(a). Therefore, for

x€S_and x'€S_,
8 B

V(t,x) - V(t,x")| qut

iA

sup Jx(e+t5x,8) - x(e+135%",t)|e
T < T(8)

0=

t+ T(R)
ean(B)exp[ / M(S,B)ds]“x-x'" . (A.11)
t

I A

where M(s,8) is a continuous function of s such that "f(s,x) - f(s,x')"

S M(s,3) Jx-x'| for x€5,, ,) and xTE Sy o)

The remainder of the proof can be verified by the same

argument as in the preceding proof.
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