
IAD-Ri6i 344 STABILITY OF R REDUCED ORDER MODEL REFERENCE ADAPTIVE 
1/1

CONTROL SYSTEM WITH (U) ILLINOIS UNIV AT URBANA

SIIDDECISION AND CONTROL LAB B D RIEDLE MAY 84 DC-69

mhhA7 N881484--849EEG121hE



V2.

I1.8

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS 1963-A

¢. . .. . . . . . . . . . . . . . . e.-. . . . . .



-CODNA-- SCIENCEI IADIODATORY

DECISION AND CONTROL LABORATORY

L STABILITY OF A REDUCED
[ ORDER MODEL REFERENCE

4 ADAPTIVE CONTROL SYSTEM
I WITH PERSISTENT EXCITATION

L
UNVRIYO[LIOS T RAAC

1[88v;U



5 UNCLASSIFIED l.f:jI
SECURITY CLASSIFICATION OF THIS PAGE IZf'L(v7'

REPORT DOCUMENTATION PAGE
Sa.REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

- UNCLASSIFIED NONE
2a. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTIONiAVAILA8ILITY OF REPORT

AN/A Approved for public release, distribution
~211.OECLASSIFICAT;ONtOOWNGRAOING SCI4EOULE unlimited.
* N/A

.A. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION AEPORT NUMBER(S)

JR-1OO9( DC-69)UILU-ENG-84-2203 N/A

.-. & NAME OF PERFORMING ORGANIZATION 6b. OF FI CE SYMOL Ia. NAME OF MONITORING ORGANIZATION

3Coordinated Science Join aerice Elctonc PrograULaboratory, Univ. of Illinois_ N/A JitSrie lcrnc rga
r .,Gc. AOO RESS (City, State and ZIP Code) 7b. ACORIESS, (City. State and ZIP Code)

1101 W. Springfield Avenue Research Triangle Par k, NC 27709
~IUrbana, Illinois 61801

*A.. NAME OF FUNOING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IOENTIFICATION NUMBERI ORGANIZATION (If applicable)
* I N/A NO0014-84-C-0149

AOORESS (City. State and ZIP Code) 10. SOURCE OF FUNOING NOS.

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO.NO

' 11. TITLE irinc Ge Security UlaeAfi'callona

ISTABILITY OF A REDUCED ORDER MODEL REFERENCE.I N/AN/NANA
2. PERSONAL AUTHOR(S)

Bradley Dean Riedle
13a. TYPE OF REPORT 13b. TIME COVEREO ---- 14.ODATE OF AEPORTYr... Mo.. Dayo 115. PAGE COUNT
Tehia FROM T May 1984 I 87

4J6. SUPPLEMENTARY NOTATION

N/A

z7. COSATI COOES I&8 SUBJECT TERMS (Contmnue on rauerse t(necessam and Idmntify by block nuimberi

ft IELO GROUP -- SUB. OR.

.~.ABSTRACT iContinue on Feuerxe if necessary and identify by blockl numnbeip

I,.l

U.o. ZiSTRIBMION/AVAILABILITY OF AI'STRACT 21. ABSTRACT SECURITY CLASSIFICATION

I NCLASSIFIEO/UNLIMITEO X SAME Ab A4PT. OTIC USERS (7 UNCLASSIFIED

22a & AME OF RESPONSIBLE INOIVIDUAL I 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL
iinciude Area Coati

____________________________________-NONE
00OFORM 1473 ?3 APR ~* ....



-W -W -W V -W , -N - S. -- - N .I W. W. 17 -7 7 K

r UILU-ENG-84-2203

STABILITY OF A REDUCED ORDER MODEL REFERENCE ADAPTIVE
CONTrROL SYSTEM WITH PERSISTE1N.T EXCITATION

BY

BRADLEY DEAN RIEDLE

This work was supported in part by the Joint Services Electronics

Program under Contract N00014-84-0149.



STABILITY OF A REDUCED ORDER MODEL REFERENCE ADAPTIVE
CONTROL SYSTEM WITH PERSISTENT EXCITATION -,

BY

BRADLEY DEAN RIEDLE

B.S., University of Illinois, 1982

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Electrical Engineering

in the Graduate College of the

University of Illinois at Urbana-Champaign, 1984

Urbana, Illinois ii
-. . . . . - - - - - - - -- - . .

.. -' S . 5p° -



IACKNOWLEDGMENTS

As I could not have finished this thesis without the help of

many people, I would like to take this opportunity zo thank a few of them.

Many thanks to my friend and squash partner Mike. Mike was a

positive influence to start graduate studies and has kept me from becoming

a complete workaholic since I found out how much fun research can be.

This effort also owes much to my association with mv advisor,

P. V. Kokotovic. Thanks, P.K., for putting up with me while I did i11 those

things besides work and, of course, for the technical help, insightful

r comments, and inspiring discussions.

Finally, I must thank Dixie and Rose from the bottom of my

heart for their expert and quick typing of my thesis.

.

• . .. ?.

...- . *. --. ::iii:?i"ii'< -i i - ,.".. ii ii • iji -.- "i i~;. ,i .i.•"' "' *;2. ' ?)



iv

TABLE OF CONTENTS

CHAPTER Page

-1. INTRODUCTION.................................................... 1

1.1. Background................................................ 1
1.2. Summary of Results and Organization of Thesis ............. 4

2. EXISTENCE OF AN EQUILIBRIUM..................................... 6

2.1. Preliminaries............................................. 6
2.2. The System................................................ 8
2.3. The Equilibrium.......................................... 11
2.4. Effects of the Perturbation.............................. 13
2.5. Discussion............................................... 16

3. STABILITY OF THE EQUILIBRIUM................................... 19

3.1. Preliminaries............................................ 19
3.2. The Error System......................................... 24
3.3. Stability of the Equilibrium with e* 0 ................... 34

3.4.~~~ Efet of e* ........................................ 4

3.5. Discussion............................................... 55

4. EXAMPLES....................................................... 59

4.1. The Sample System........................................ 59
4.2. Example One.............................................. 64
4.3. Example Two.............................................. 67
4.4. Discussion............................................... 77

5. CONCLUSION..................................................... 81

APPENDIX. PROOFS OF THEOREMS 3.6 and 3.7.......................... 83

REFERENCES............ ............................................. 86



C1HAPTER 1

INTRODUCTION

In this chapter, I sketch a short history of work leading to

this thesis. Then I give a summary of the results and organization of the

thesis.

1.1. Background

Narendra and Valavani (1978) presented a stable model

reference adaptive controller. Since then, ft has been recognized that some

of the assumptions about the plant or about our knowledge of the plant are

unrealistic. It has become popular to study model reference adaptive

g systems which are formed by applying this Narendra-Valavani controller to

a plant which meets these unrealistic assumptions and then perturbing the

* plant without changing the controller.

In this way, researchers have been able to study more realistic

applications of adaptive control without having to develop entirely new

controller structures. In this thesis, I join the group of researchers who

have perturbed the plant by adding high frequency dynamics. The results of

a few of the researchers who have preceded me in studying the effects of

this perturbation are summarized in the following paragraphs.

Rohrs et al. (1981,1982) studied the effects of an additive

disturbance and unmodelled high frequency dynamics when the model reference

adaptive system is excited by a constant reference input. They show that

* the magnitude of the adjustable feedback gains in the controller will
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eventually become large. If the relative degree of the plant including the

high frequency dynamics is greater than two, the linear system with feedback

gains fixed at some large values would be unstable. The behavior of the

model reference adaptive systems studied by these researchers is characterized

by two different intervals of time. During the first interval the output

error becomes and remains small while the magnitudes of the adjustable

feedback gains drift toward infinity. At some instant the adjustable gains

take on values at which the linear system with feedback gains held constant

at these values becomes unstable. This is the beginning of the second interval

during which the magnitude of output error and the magnitudes of the adjustable

feedback gains approach infinity in finite time.

The same group also studied by simulation the effects of high

frequency dynamics when the reference input contains high frequencies or -

the initial conditions on the system states are large. They show that both

of these conditions can lead to instability. However, these instabilities

are not as easily described as the drift instability.

The drift behavior of the parameters in the presence of an

additive disturbance does not depend on the high frequency dynamics. This

drift occurs because the control scheme adjusts the feedback gains until

the output error is zero. For a constant reference input, there exists

an unbounded manifold on which the output error is zero when the disturbance

is zero. Except for certain special disturbances, perfect disturbance

rejection requires infinite feedback gain. Hence, the feedback gains drift

to infinity along the manifold. This behavior is discussed by Egardt (1980)

and also by Riedle, Cyr, and Kokotovic (1983).

-g

. •
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One obvious way to avoid the drift to infinity is to put a

dead zone in the adaptation law around output error equal to zero. One such

'* algorithm was proposed by Peterson and Narendra (1982).

Ioannou and Kokotovic (1983) propose a different solution.

They replace the integrator in the original adaptation laws with a first

* order low pass filter. For a bounded additive disturbance the output error

will enter and remain in a small segment containing zero and the adjustable

feedback gains will remain bounded. For a perturbation involving high

frequency dynamics, they define the term "dominantly rich" input. This

is sufficiently rich input which does not excite the high frequency dynamics.

Then they show that, when the reference input is dominantly rich and the system

is initially in a region of attraction, the output error enters a small segment

V- of the real line containing zero and the adjustable gains remain bounded.

Krause (1983) refines the notion of dominant richness and

studies the effect of high frequency dynamics when the reference input is

. periodic, has at least as many spectral components as unknowns, and is

dominantly rich. He finds that when the states of the system and the

errors in the values of the adjustable gains are 0(l), the adaptation will

be in the correct direction if the speed of adaptation is slow enough.
r

The approach taken in this thesis to make the system robust with

respect to perturbations is to make the unperturbed system exponentially stable.

Kosut (1983); Kosut, Johnson, and Anderson (1983); and Anderson and Johnstone

(1981) have also used this approach. Kosut et al. introduced the concepts of

* "tuned system" and "tuned error" which are important in this thesis. They

showed that persistent excitation which provides exponential stability of the

unperturbed system provides robustness with respect to perturbations with

I'
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bounded effects. However, they did not specify any particular type of

perturbation and their method of proof is considerably different from

that of this thesis. Anderson and Johnstone considered the discrete time

case and used converse Lyapunov function results for difference equations in

a manner similar to the way I use converse Lyapunov function results for

differential equations.

While none of the results of this thesis are new, I feel that

this work represents a good combination of the techniques and ideas mentioned

above. Choosing a particular perturbation, high frequency unmodelled

dynamics, allows me to study the effects of the perturbation in some detail.

With the concepts of tuned system and tuned error I am able to specify and

solve a homogeneous problem before attacking the complete problem. Using

the singular perturbation approach of loannou and Kokotovic to represent the

unmodelled high frequency dynamics provides a natural way to partition the

system. This natural partitioning of the system can be combined with the

converse Lyapunov results to get Lyapunov functions for each subsystem. The

final idea is then to use a composite of the Lyapunov functions for the

subsystems to prove the desired stability results.S

1.2. Summary of Results and Organization of Thesis

This thesis contains two major results, as well as illustrative

simulation examples. The first major result is that for a certain class of

inputs there exists a unique equilibrium for a model reference adaptive

system when the nominal plant is perturbed by high frequency unmodelled

dynamics. The second major result is that, for a small enough perturbation,

this equilibrium is exponentially stable.

-S
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In Chapter 2, I derive the first major result in Theorem 2.1.

This chapter also-provides a transfer function description of the system

and contains a section showing that a small singular perturbation has a

w small effect on the equilibrium values of the adjustable gains. Chapter 2

ends with remarks which are intended to provide either an intuitive

interpretation of the results on the chapter or a comparison with the work

of others.

In Chapter 3, I derive-several results including the second

major result of the thesis. The chapter begins with definitions and

theorems to be used in the derivations in the rest of the chapter. Then

the differential equations describing the system are presented and an

error system is derived. When the tuned error is zero, as it will be for

Uthe equilibrium of Theorem 2.1, the second major result of the thesis is
stated in Theorem 3.9. After the nonzero tuned error case is handled,

Chapter 3 ends with remarks interpreting the results of the chapter.

In Chapter 4, I present two simple examples(which show that

the system indeed remains exponentially stable when high frequency

unmodelled dynamics perturb the original system. The examples also show

that estimates of the range of stable perturbations based upon the proof of

Theorem 3.9 are so conservative that these estimates are not of practical

use.

In Chapter 5, 1 offer some concluding remarks and suggestions

for future research.

L
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CHAPTER 2

EXISTENCE OF AN EQUILIBRIUM

In this chapter I have three major objectives. First, I

describe the perturbation from the ideal which I have studied. Next, I

show that for a certain class of input signals a unique equilibrium point

exists in spite of the perturbation. Finally, I discuss the effects of

the perturbation on the parameter values associated with the equilibrium.

2.1. Preliminaries

The following result will be useful in the proof of the

uniqueness of the equilibrium point.

Lemma 1: Let TI (s) be a polynomial of degree < n-2, T2 (s) be a polynomial of

degree < n, R(s) be a polynomial of degree n, and Z(s) be a polynomial of degree

n-1. Furthermore, let Z(s) and R(s) be relatively prime. Define Q(s) as a

polynomial of degree < 2n-l, such that

Q(s) = Tl(s)R(s) + T2 (s)Z(s) (2.1)

Let X('s) be a function which can be represented by

X(Ps) = 1 + Z x.(Ps) VsE {s:Is I <} 2.2)

i=l

Further, require that X(ps) satisfy

0< 1 - xlu SI < x(.s)I < + x PIs! VsE{s:Is <} (2.3)

U

S
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Define

e(,s)= T(s)R(s) + T(s)Z(s)X(vs) (2.4)

Ps+Then, there exists 11 0 , such that V1jE (0,po ), if P(p,s) = 0 for 2n

distinct values of s; s. EC i=l,2,...,2n, then Tl(s) E 0 and T2(s) = 0.

Proof: First consider p = 0. Then P(O,s) = Q(s). Since the degree of Q(s)

< 2n-1 and Q(s) is zero for 2n distinct values of s, then Q(s) must be

identically zero. Therefore,

T1 (s)R(s) = - T2 (s)Z(s) VsEC (2.5)

Since R(s) and Z(s) are relatively prime and neither is identically zero,

(2.5) implies either T1 (s)= 0 and T2 (s) = 0, or T1 (s) contains Z(s) as a

factor. The latter is clearly impossible because of the degree of Z(s) is

n-l and the degree of T1 (s) is strictly less than n-l. Thus, the lemma is

proved for P = 0.

Now, consider i > 0. Assume T (s) 0 or T2 (s) 0. Using

(2.1), (2.3) and (2.4) write

P(P,s) Q(s) + T (s)Z(s) ( x(Gs) VsE {s:Isl < (2.6)2 v

By assumption Q(s) has degree greater than n-2 and less than 2n, and, hence,

there is at least one s such that Q(si)#0. Without loss of generality let

this be . Let

40 min IQ(s 1) -F
.-.o = min Q )7 }(2.7)o ISl IT 2(Sl)Z(Sl) ' "
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Then, if u (0,o) 
0

IP(G,s) I > Q(s )I - IXlSlj T2 (sllZ(S1 )I >0 ; (2.8)

this contradicts P(u,sl)=0. Therefore, the assumption that Tl(s) 0 or T2 (s)W0

is false and the lemma is proved.

2.2. The System

The Model Reference Adaptive System to be studied is the

Narendra,Valavani (1978) controller applied to a plant with unmodelled high-

frequency dynamics. This system has also been studied by Ioannou and

Kokotovic (1983), Rohrs et al. (1981,1982), and Krause (1983). The system

has the block diagram shown in Figure 2.1.

The linear time invariant plant can be represented by a series

connection of two transfer functions, W (s) and Wf(us). The transfer function
pf

of the nominal or slow part of the plant can be written

Z (s)
W (s) =k p(2.9)
pp R(s)

p

where k is a scalar, and Z (s) and R (s) are relatively prime monic polynomials -
p p p

of degree n-l and n, respectively. The transfer function of the fast dynamics

of the plant can be written

Zf(us)

W (us) = (2.10)
f Rf(us)

f-.
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where

N 1
k

Zf(PS) = 1 + Z zfk(PS)k (2.11)
k=l

N +N
12 kk "

Rf(PS) = 1 + Z r fk(Ps) (2.12)

k=l

The following assumptions are made about the plant:

Al) n is known,

A2) the sign of k is known (without loss of generality let

it be +),

A3) Z (s) is Hurwitz,
p

A4) IZf(Ps)I > 1 - zliPsj >0 Vs{s:IsI <}

m 1
A5) if Rf(ius) = 0 then Re(s)<--

A6) N > 1 , r #0
2 - f(N + N2)

The model transfer function can be written

U Zre (s)

Wm(S) km (2.13)
m m R(s)m

where k is a positive scalar, Z (s) and R (s) are monic Hurwitz polynmials
M m m

of degree n-1 and n, respectively. Zm (s) and R (s) are chosen so that W (s)
.:. "m m

is a strictly positive real transfer function. The controller has the structure

T T T ?n
shown in Figure 2.1 with the adjustable parameter vector [coc ,d o,d ] EIR

Z (s) in the controller is the numerator of the model transfer function and

-,'." T(s) is defined

F 1
T(s) = s2 (2.14)

-n 24-.. * . s n -

-7 t:%_



11

2.3. The Equilibrium

In this section, I show that, when the perturbation parameter

* is sufficiently small and the reference input r belongs to a certain class

of signals, an equilibrium exists for the model reference adaptive system

described in the previous section. As usual, let the output error be the

difference between the plant output and the model output, e = y - y

If, for some constant value of the parameter vector, the steady state output

error is zero, then an equilibrium exists. Hence, when an equilibrium exists,

the Fourier transform of the output error will be zero.

Let W(p,s) be the transfer function of the controlled plant

from the reference input r to the output y for a constant value of the

parameter vector,

*Z M(s) p()fUS
W(p,s) c k T )Tsf (2.15)

Z (s)Rp (s) -c T(s)R (s) - k p(d Z m(s)+d T(s))Zp(S)Wf (s) )

If the only restrictions on the reference input, r(t), are boundedness and

continuity, then for the steady state output error to be zero, it is

necessary that

W(,s)= W (S) VsE C (2.16)m

However, when P#O the relative degree of W(p,s) is not equal to the relative

degree of Wm (s). Therefore, no constant parameter vector could assure (2.16).

Clearly, the reference input will have to belong to a more

restrictive class than bounded, continuous functions of time. Consider the

class of signals which are sums of n distinct sinusoids, that is,

[( ".- " . ' , "; . " 7 . . : . - .. " ' ' " . - ., ; " " ; i : . - . ., i . ' - ' . . i i ' : - ' . " : . " . - . " . - , -, : : . -i : , " " .
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n
r(t) = E r. sin(wit+ ) 0,w 0,wi-w.>,3_ riwi.a E IR (2.17)

Denote the set of s-values in (2.17) by S, that is,

. = {jW l,-jWl,...,JWn,-Jw n }  (2.18)

For an equilibrium to exist with an input signal in this class, it is

necessary and sufficient that

WW(,s) W W(s) for sES (2.19)

This is equivalent to

Zm(s)Rp (s) = cTT(s)Rp(s) + kp [ Rm(S)+ doZm(S) + dTT(s)] Zp(s)Wf(ps),
m(2.20) :

sES

Theorem 2.1: There exists o ER+ such that ViE [0,w), the MRAS shown

in Figure 1 and described by (2.9)-(2.14) with assumptions Al-A6 has a

unique equilibrium for a reference input described by (2.17).

Proof: (2.20) is a set of 2n linear equations in the 2n elements of the

parameter vector. Clearly, there exists at least one constant parameter vector

which satisfies (2.20). Furthermore, if the 2n equations (2.20) are linearly

independent, the constant parameter vector which satisfies (2.20) is unique.

Assume that the 2n equations are not linearly independent.

Then there must exist a nonzero constant parameter vector such that

0 cTT(s)R p(s) +kp Rm(s)+ doZm(s)+ d T(s)]Z (s)WfGJs) , sES (2.21)

".
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By Lemma 1 there exists a W 0E+such that, V1.e [0,0 ),the only solution

to (2.21) is the zero vector. Thus, J 1E [0,po),the 2n equations must be

linearly independent and the theorem is proved.

2.4. Effects of the Perturbation

Let e (0) be the unique constant parameter vector for which

the steady state error is zero in the unperturbed case, p=0. For

[c , T TT *
[ ,C ,d = e (0) and P=0, the transfer function of the controlled

plant is identically equal to the transfer function of the model. Since

the model transfer function is strictly positive real, so is the controlled

plant transfer function. In this section, I want to show that e"(i), the

unique constant parameter vector for which the steady state error is zero

in the perturbed plant, satisfies

e ( ) (0) +0() (2.22)

* *T * *TTp I also want to show that for [coc ,do,d = 6 (6), the transfer function

•k Z (s)Z (s)
c k p (2.23)

op*T *T
Zm(s)R (s)- c T(s)R (s)- k (d Z (s)+ d T(s))Z (s)

M p p pornm p

will be strictly positive real provided 1i is small enough. This transfer

• 'function is the transfer function of the controlled unperturbed n-th order

plant when the parameter vector is held constant at 0 ().

...
. .. i

. . ... .t
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From (2.20) e i sauisfies

k1

R T ~ )(s)Z SW(S

Z m(s)R p (s) 6*0(pi) T TsRP()sES .(2.24)

k Z (S)Z (s) O'sp m P )fG)

L kT(s)Z (S)W f(Is) j
Define the 2n by 2n matrix

k k

m m

H )T(jw_,)R (jw1 ) ................T(jw )R (-jw) p5

k Zm(jwi)z (jw )W (ijw). .k Z (-jw )z (-jw )W (-jw)
p m 1p i1f 1 pm n p n f n

k ~w)Z(.)W(jw k T(-jw )z (-jw )W (- w)
P P 1fp np n f n

From Theorem 2.1, if 11E (0,p)0 H(ij) is nonsingular. Assume

Li < min(2.26)0 SES Is,

Then, H(p-) has a series representation,

00
H~p) H 1(0) + Z H (2.27)

It follows from (2.27) that

H H(vi) H(0) + Z 2.8
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Then,

Zm( Wl.)Rp (w 1
* -1 T

e G) = (Hj) )
U-.. Zm ( -jwn)Rp ( -JWn) j

F I j Rp(w1 (2.29)

= [H(O) + E ii] --
Z~ Zm (-JWn)R Rp (-j n)

= e (0) + . e
i=l

This, the desired property (2.22) holds for w sufficiently small.

For a transfer function h(s) to be strictly positive real, it

must sati.'fy:

1) h(s) is real for real s,U
2) the poles of h(s) should lie in Re[s] < 0,

3) for all real w, one had Re[h(jw)] > 0, - < w < o.

Property (3) is equivalent to

3') for all real w, one has -90'<Phase [h(jw)] < 90' - <

Theorem 2.2: There exists a wI=R,I >0 such that, if IjE [0,.ip) and

* T * *T *
[co ,c ,d ,d ] = G (') (2.30)

0

then the transfer function (2.23) is strictly positive real.

L

~ H~c,~ U
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Proof: Condition (1) is met by construction of (2.23). The poles of (2.23)

are the zeros of the polynomial

Z (s)R (s) - cT T(s)R (s) - k (d Z (s) + d *T(s))Z (s)m p p po0m p

C[ T(s)Rp(S) 1
i T p= R (s)Z (s) - a e i k (s)Zp()(2.31)

m k pm (S)Zp(s)

The zeros of (2.31) are continuous functions of i. Since the zeros of

R (s)Zp (s) lie in Re[s < 0, there exists a vi' such that, if wE [0,1'),-m p

" .. then the poles of (2.23) lie in Re[s] < 0. The zeros of (2.23) are not

" functions of p. Since the phase is a continuous function of the pole positions,

and the pole positions are continuous functions of w, the phase is also a

continuous function of P. The transfer function (2.23) satisfies condition

3' for vi=o. Hence, there exists P" > 0 such that for PE [0,v" ), condition

3' is satisfied for the transfer function (2.23). Take w1 = min[',v"] and

* the theorem is proved.

- - 2.5. Discussion

In this chapter, I have shown that for a certain class of inputs

and a sufficiently small perturbation in the structure of the plant, a unique

equilibrium point exists. Furthermore, it is possible for the controlled

nominal plant with the adjustable parameters held constant at the equilibrium

values to be strictly positive real. This second fact will be important in

determining the stability of this equilibrium point.

" - . -*-. ' - .
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I would like to highlight a few points which were not explicitly

stated in the derivation of this result.

Remark 2.1: The perturbation of e from * (0) will be a function of the

i frequencies w. in S. This can be seen from (2.25). It can be intuitively1

seen using the following argument. The equilibrium exists because the Bode

plot of the controlled plant transfer function can match that of the model at

the n frequencies in the input signal. The contribution of the unmodelled

dynamics to the controlled plant Bode'plot is a function of frequency.

Therefore, the amount by which the Bode plot of the controlled nominal plant

is moved from the Bode plot of the model is a function of the frequency.

It is not hard to believe, then, that choosing different values of w. will1

result in different perturbations of the parameters.

Remark 2.2: Choosing a reference input with more than n distinct frequencies

will result in a system that has no equilibrium. This is true because it

can be shown in a manner very similar to the proof of Theorem 2.1 that the

resulting set of more than 2n equations (2.20) in 2n unknowns is inconsistent.

One can also think of this in terms of the Bode plots. The 2n parameters

provide 2n degrees of freedom with which to bend the Bode plot of the controlled

plant. It is not possible to make the (2n + l)-th bend to match at an extra

point.

0,%

Remark 2.3: While the theorems in this chapter prove existence of o '

they can be used in a different manner. For a given p which is small enough

so that the nominal plant dynamics and the unmodelled dynamics have a

reasonable separation, the w. 's of the reference input can be chosen so that

i!-2-1

&d

-p
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the unique equilibrium point exists. This is related to the idea of

dominant richness which was introduced by Ioannou and Kokotovic (1983).

Krause (1983) discusses how to assure that the reference input is in the

dominantly rich range.

" I. •. -.

1 - -.
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CHAPTER 3

STABILITY OF THE EQUILIBRIUM

In this chapter, I study the stability of the equilibrium of

Theorem 2.1 when the parameter vector is allowed to be time varying. After

some definitions and theorems about stability, I present the differential

equations which describe the behavior of the model reference adaptive control

system. From this system of equations I derive an error system which describes

the variations about the equilibrium.

The error system will have an input which is the difference of

the model output and the controlled plant output when 9-e*. In Chapter 2 it

was shown that for an input with exactly n sinusoids, the steady state value

of this difference will be zero. In this chapter, I will show that whenI
this difference is zero, there exists a j such that for all uE [0,u), the

-. zero solution of the error system is exponentially stable. Then I will show

that this difference is always 0( i) and that trajectories of the error system

which begin in some region of attraction converge exponentially to an

0(,) residual set containing zero.

3.1. Preliminaries

To insure that the reader and I agree on terminology of

stability concepts, I state the following definitions. These definitions are

taken from Yoshizawa (1966) and Rouche, Habets, Laloy (1977). Consider a

system of differential equations

L

* . . -* ~-.

- - - - - -- - -* .- .- - -'- .- -~
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k f(t,x) , (X) x (3.1)

Suppose that f(t,x) is continuous on Rx Rn. Assume that (3.1) has solutions

which are uniquely determined by the initial condition (t,x)= (t ,xo). Let

x(t;x ,t ) be the solution of (3.1) which passes through the point (tox).
0 0 0

Definition 3.1: The solution x(t) 0 of (3.1) is uniform-stable, if for

any E > 0 and t 0E , there exists a 8(E) > 0 such chat if lxoi < 6(E), then I
Ilx(t;x 0 ,t0 )11 < E for all t>to

Definition 3.2: The zero solution of (3.1) is uniform-asymptotically stable
if it is uniform-stable, and if given any c > 0 and any t E IR, there exist

a 61 > 0 and a T(El)> 0 such that if lixoll < 1, then llx(t;xo,to)l < E1 for all

t-t + T(EI).

Definition 3.3: The zero solution of (3.1) is exponentially stable in the

large, if there exists an a> 0 and for any > 0 there exists a K() I

such that if 1 X11 !

IIx(t;xo,to)II <K(6)eO (t-to)l (3.2)

Definition 3.4: A function a : R+ -*R is said to be an element of class K

if it is continuous, strictly increasing, and a(O) = 0. We write aEK.

Let V(t,x) be a continuous scalar function defined on IRx IRn

and let V(t,x) satisfy locally a Lipschitz condition with respect to x.

Then define the function

D(B.)V(t,x) = - V(t+h, x+hf(tx))-V(t,x)} (3.3)
h _ 0

+ h
D( 1 V'.) i p{lth

h-~t
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If V(t,x) has continuous partial derivatives of the first order,

+ V~ ~v._ aV
D ( (tx) =- + -V F(t,x) , (3.4)
(3.1)V 3t x

where "." denotes scalar product.

The following theorems will be used to investigate the stability

.- of the equilibrium of Theorem 2.1. The theorems are stated here without proof.

* Theorems 3.1, 3.2, 3.3 and 3.4 are standard results and proofs can be found

in a number of texts. Theorem 3.5 is a well-known result of Lasalle and the

proof can be found in Hale (1969). Theorems 3.6 and 3.7 appear in a monograph

by Yoshizawa (1966). The proofs of Theorems 3.6 and 3.7 can be found in the

appendix to this thesis. Consider the linear system

=A(t)x , (3.5)

where A(t) is an nxn matrix of continuous functions of time defined on R.

Theorem 3.1: If the zero solution of (3.5) is uniform-asymptotically stable,

then it is exponentially stable in the large and K in (3.2) can be chosen

independent of 3.

Now consider the differential equation (3.1) under the assump-

tions that f(t,x) is continuous on 0< < , I<x <H, H 0 and f(t,0) 0.

Theorem 3.2: Suppose that there exists a Lyapunov function V(t,x) defined

• , on 0 t< , IIxB <H which satisfies the following conditions;

i) V(to) - 0,

ii) a(IIxjI) < V(t,x) < b(IIxI), aEK, bEK,

iii) D 3 .1)V(t,x) < 0.

I Then, the solution x(t)- 0 of the system (3.1) is uniform-stable.

J.
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Theorem 3.3: Under the same conditions as Theorem 3.2, if

+

D (3 1)V(tx) < - c(Ujxj), where cE ,

then the solution x(t)-0 of (3.1) is uniform-asymptotically stable.

Corollary 3.3: Under the same conditions as Theorem 3.2, if

D t3 )V(t,x) < - cV(t,x)

where c> 0 is a constant, then the solution x(t)- 0 of (3.1) is uniform-

asymptotically stable.
n.--

* Assuming that f(t,x) is continuous on 0<t<, xR, and

f(t,0)X0, the following theorem applies.

Theorem 3.4:- Suppose there exists a Lyapunov function V(t,x) defined for

0 < t < C, xEiRn satisfying the following conditions:

i) Dxll < V(t,x) < K(s) Ilxi for IDxl <

ii) D 3 I)V(tx) < - cV(t,x), where a> 0 is a constant.

Then, the zero solution of (3.1) is exponentially stable in the large, that is,

IJx(t;xo,t)l < K(a)e -' (t-t° ) Ix.11 for Jlxol l

Theorem 3.5: Let V(t,x) be a continuous Lyapunov function defined on

0 < t < °, xEG, where G is an open set in Rn. Suppose that

i) given xE G, the closure of G, there is a neighborhood of x, Nx

such that V(t,x) is bounded from below for all t> 0 and all x in N nG, and

ii) D+3 1 V(tx) < - W(x) < 0 for 0 < t < , xEG and W(x) is

continuous on G.

Define

E = {x: xEG and W(x) = 0} (3.6)

S
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Let x(t;xo,to) be a solution of (3.1) which is bounded and remains in G
00

for t> t >0.
-0

If W(x) has continuous first derivatives on G and

W(x) f(t,x) is bounded from above along the solution x(t;xo,to)-. W(3.1) ax 0x

then

x(t;x ,to) E as t -

Theorem 3.6: Suppose there exists a K > 1 and a c such that

J [x(t;Xo~to0)11 < Ke-C 0tt°)lXo (3.7)

where x(t;x ,t ) is a solution of (3.5) and c is a constant (> 0). Then,

there exists a Lyapunov function V(t,x) which satisfies the following

conditions:

i) J1xl < V(t,x) < K11xl

ii) IV(t,x) - V(t,x')l < K1x- x'11,

iii) D 5 V(t,x) < - cV(t,x).i)D(3.5)V -

Theorem 3.7: Suppose that f(t,x) of (3.1) is continuous for 0 < t <

xe n and f(t,0) = 0. If f(t,x) satisfies a local Lipschitz condition with

respect to x and the zero solution of (3.1) is exponentially stable

in the large, i.e., there exists an x 0 and for anv 0 0, there

exists a K(B)> 0 such that if xol <,

IL.
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Ilx(t;x0  )11 < K()et(t-t 0 ) IlX0A for all t > to,

then there exists a Lyapunov function V(t,x) defined for 0 < t < , xE nR

which satisfies the following conditions:

i) [xi < V(t,x) < K(S) lx for lixl <

ii) IV(t,x) - V(t,x'Dl < L(t,a) 1Ix - x-] for lxi i< , ix-iI <

iii) D+ V(tx) < - qaV(t,x), where O< q<1." '-" iii) (3.1) _.

3.2. The Error System

For the unperturbed case, P0, the proof of stability of the

equilibrium (e,O)=(0,6 )uses an error system representation of the model

reference adaptive control system. In this section, I derive an error

system representation for the perturbed case. It is a specific example of the

type of error system representation which has been presented recently by

Kosut, Johnson, and Anderson (1983).

My derivation will be made in several steps. First, I present

the differential equations describing the plant, the control system, and the

model. Next, I use a singular perturbation type of transformation on the

plant. This explicitly separates the high frequency unmodelled dynamics

from the nominal, or slow part, of the plant. The third step is the

introduction of a "tuned system." Finally, I replace the original reference

model with the tuned system in order to get the desired error system

representation.
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The differential equations describing the plant are

T n
x b b h z xE (3.8)

11 1 2 'X• . NI+N 2

A A22z + b2u zE R (3.9)

T
y hx (3.10)

1

The vectors and matrices in (3.8)-(3.10) satisfy the following equations:

T -
h I (s l - A -11  b = W p(S) , (3.11)

h2 (usl - A22)-b 2 - Wf(11s) (3.12)

The equations describing the auxiliary signal generators are

V _1+ v u I n-Iv + bu v E, (3.13)

2 Av 2 + by v 2 G (3.14)

I where the vector b and matrix A satisfy

(sl - A) -b = (3.15)
Z M(s)

Define the parameter vector, 6, and the signal vector, w, by

"'T T "T

• 9 = 0 ,cT d,dT T  (3.16)

1T T T
w [r,v ,yv' ] (3.17)

The parameter adjustment law is then

. - w(y - -) = T 0 , (3.18)

-M:
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and the input to the plant is

u 6 Tw .(3.19)

Finally, the model is described by

= A x + b r , x ERn (3.20)
m m m m m

Y =m hTx (3.21)m m m '

The vectors bm, h and the matrix A satisfy

h T(sI- A)b m  W (s) (3.22)
m mm m

Thus, I have a set of differential equations which describe the behavior of

the MRAS shown in Figure 2.1.

The choice of a representation for the "unmodelled" part of

the plant is the single most important factor in a study of the effects of

f"unmodelled" dynamics. I have restricted my unmodelled dynamics to the high

frequency range. Because of this I was able to choose a system of differential

equations, (3.8)-(3.9), in singular perturbation form to represent the plant.

Because there are stability results for the unperturbed case, I would like

to have my plant represented in a form which appears as an unperturbed plant

plus a perturbation. Singular perturbation theory suggests the following

method to transform (3.8)-(3.9) to the desired representation. First, set

.=0 in (3.9). This corresponds to making the fast part of the plant

infinitely fast. Because A22 is assumed stable z converges infinitely

fast to

z b-A2bu
22 2
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Then z is considered the "slow" part of z. In order to separate the system

into its fast and slow parts, I define a new variable

--- l

Z z +A 22b2u (3.23)

to be the fast variable. Now I can rewrite (3.8)-(3.9) as

x A x + bU + blh T (3.24)

-12

S=22n + WA 22b2 (3.25)

The MRAS using (3.24)-(3.25) has a block diagram shown in Figure 3.1.

The third step in this derivation is the definition of a

"tuned system." Define r (t) to be an input as in (2.17). Assume that

*T * *T T
E [O,u ) so that a unique equilibrium exists. Take (co c ,dod ] toO

be the solution of (2.20) with r(t)=r (t). Then, the tuned system is the

linear time invariant system formed by the plant plus the controller with

T T * *T * T
[coC , d,d [coc ,d ,d ]. An important point is that, whenever pOO,

of 00 0

the tuned system is not positive real. In fact, the order and relative

degree of the tuned system are unknown. The tuned system is represented

by the equations

* * * T

x Alx +bU +bhr (3.26a)x +bu 1 12

" v + bu (3.26b)

2* 2*

%Av + by (3.26c)

* + +A Ib2  (3.26d)

C2 =2 A2n
• T ** T*hX (3.'27)

• " "'" ' " - - " ' : } : . -} > •- • ". , . /t," . ,
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r e

h2 (t (22 ) A22 2 
2

V

v v 2C 
-. 

T  
d 
T

d0

Figure 3.1. Block diagram of MRAS using transformed plant,
but not showing the update mechanism.



29

u = T* , (3.28)
., , I T , *T T

w [r,v ,y ,v ] (3.29)

MO In order to substitute the tuned system for the reference model,

I must introduce the concept of tuned error. The tuned error is denoted by e

" and is defined as the difference between the output of the tuned system and

the reference model,

e y *y m (3.30)

Notice that the tuned error is defined for any reference input r(t). Also

S-notice that when r(t)=r (t), the steady state value of e will be zero.

Figure 3.2 illustrates the tuned system and the tuned error.

U Now, define the error system variables as

x ' x -x (3.31a)

i V' i i * (3.31b)

2' 2 2*
v V v (3.31c)

e = - a (3.31d)

(3.31e)

The differential equations describing the behavior of the error system are

T,

x'A x'+bU' (3.32a)
11 1 u.1' 1v'

W + bu' , (3.32b)

•21 2'
S V + by' (3.32c)

v by

- ~----..--- i -



30

r

44

Tune System'Albh
L...----------------------------------------------

Figue 32. Bock diag am howi g tned yst m an tued eror
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' =- w(y'+e) , (3.32d)

, A2 2 n, + -1 b (3.33)22A22b2u

where

- h T hlX = y - y ,(3.34)
1~

W w - w = [O ,y', 2] (3.35)

*T Te
U' e w' + W' (3.36)

WT;, + '-Ta,+eT; j~

T T + ,T ,T

-- w (y' + e )

T ,T i'T 2 T  T T *T T.+ f [x ,v v e ] + d hlblh (3.37)

v ,1 1T 2L ' + 2 T T
x L T ' 2 j 0 1 2''

+ d ,h b

with

dATh + bTd+db c + h T bd 2 )h
T T( T * *i

.. c + (b c + h b d )c
1 h( Tc* T * (3.3)

d+ (b c+ h1 b d)
T *T "

( b
-

c +hlb d )w
0-
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* T T *T 
0 dohlb A h + (b c + 2d h b )h I

0 o 1 1'

J 0 T *T A + A (b c + dohbl)I h b c

------------------------------------------ 4----------------------. J

*TT * 
0 d b h bld1I

T (3.39)
h b

I-----------------------

0

T(b c + h hbl )I

0' br hi hbr I 0
1 1

TI I T(3.40)
S 1*T 1*TT T T 1* 2-(b + v b: h xb+hb v bV1 1

0 h hbh x h b v
1 1 1 1 1

- - - --- -- ------ -------- 4----- -- -- -- -- -- -- ---- 4 --- -- -- -- ---

oIo o

Figure 3.3 shows a block diagram of the error system.

Remark 3.1: While the expression for ti' is extremely complicated, notice

that a multiplies the i' term in (3.33) and thus i' will have only a

small effect as long as I' £0(i) •

.

U
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3.3. Stability of the Equilibrium with e 0

Two differences exist between the error sys T derived for

the perturbed case and the error system for the unperturbed case. The first

is the perturbation itself. Because of the perturbation, the linear time

invariant part of the error model is not positive real. The second difference

is the tuned error, e , which shows up as an extra external input. In this

section I study the stability of the zero solution of the error system when

e 0. I will consider the effects of a nonzero tuned error in Section 3.4.

The results of this section can be summarized as follows.
*

Assume that e 0 and the reference input has at least n distinct sinusoids

in the low frequency range. Then the zero solution of the error system

(3.32), (3.33) is exponentially stable. Furthermore, the magnitude of the
i1

region of attraction for this exponentially stable equilibrium is O(- 2)

3

for the slow variables and 0(. 2) for the fast variables.

These results are derived in several steps. The first step

is to decompose the error system into a fast subsystem and a slow subsystem.

The decomposition is performed so that the fast subsystem is a stable linear

time invariant one by assumption. The next step is to prove that the slow

subsystem is exponentially stable. Then, I apply Theorem 3.7 to the slow 7

subsystem and Theorem 3.6 to the fast subsystem to get a conceptual Lyapunov

function for each subsystem. Finally, I use a combination of these two

Lyapunov functions to prove that the zero solution of the error system (3.32),

(3.33) is exponentially stable in the region of attraction of the zero

solution.

I get a good decomposition for this problem using the techniques

of singular perturbation Theory. This decomposition was set up by the

$0.
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Ktransformation (3.23) which introduced n to serve as a fast vatiable. To get

the slow subsystem from the error system (3.32), (3.33), 1 set p=O in (3.33)

which corresponds to making my unmodelled dynamics infinitely fast. Since

P A is stable any initial conditions on n' will decay to zero infinitely fast.

Hence, my slow subsystem will be (3.32) with n'=- 0. In order to derive the

* fast subsystem, I first rewrite the error system (3.32), (3.33) in terms of

1
a fast time variable, T = - t. Then I set P=0 which corresponds to making

--

my nominal plant constant at its initial values. The resulting fast subsystem

is given by

U

d A22' (3.41)

In order to study the slow subsystem, I form a system of

differential equations from (3.32) by setting )' E 0 and e E 0, and then
T vl T ) tT T

replacing [x ,v , ] with X and e' with p. This results in

X AX + 9(w* DX) T 5 3n-2= A~~ +DX , Xei , (3.42a)-

= - F (w + DX)h x, E ,2n (3.42b)

where

* T ,T I T
+doblh b c bid11Alll

* T *T *T
A dbh A + bc I db (3.43)A0

bh T 0 A.- h1

;T = [b,bT ,0] , (344)

= [hT,0,0 ] (3.45
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01x(3n-2)

o I I Q
(n-l)xn 'n-i (n-l)xn-l

-A-----------.........
D = T (3.46)

h lxn-1 0 lx(n-l)
S-----------------.........

(n-l)xn I (n-l)x(n-l)l 'n-i

Note that DX replaces w'. From Figure 3.3, it follows that the transfer

* function of the linear time invariant part of (3.41) is

-T --- *Z (S)Z (S)
h(sI-A)' b ck- *(s -k(d

Z p (s)R (s) cT(s)R ps dZ (s)+ d T(s))Z (S)
m p 0mp

(3.47)

Theorem 3.8: Let r(t) be a signal which satisfies (2.17). Let p2 m lin{IJ O, Pl }

Then, V~i (Op the zero solution of (3.42) is exponentially stable in the

- - large.

* - Proof: By Theorem 2.2 the transfer function (3.47) is strictly positive real.

Then, by the Kalman-Yacubovich lemma, a positive definite symmetric matrix P

exists such that

T T T
A P + PA - qq -EL L L L >0, G > 0 , (3.48)

PbS (3.49)

and the Lyapunov function

W(x, X) =TPX + 7 Tl~(3.50)
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has the derivative for (3.42)

W( 3 4 2 )(X,) - xT(qqT + EL)X< 0 (3.51)

From (3.50), (3.51) and Theorem 3.2 it follows that the zero solution of

(3.42) is uniform-stable.

Because W(3 .4 2 )(X, )<0, every solution of (3.42) initially

in the set G {X, : W(X,4)< a} remains in G. Furthermore, by Theorem 3.5

X-0 as t-- (3.52)

Since the elements of w are bounded continuous functions of

* time with bounded derivatives and the states of the system (3.42) are bounded,

the states will be continuous functions of time with bounded derivatives.

Hence, the elements of

= w + DX (3.53)

will be bounded continuous functions of time with bounded derivatives. Yuan

and Wonham (1977) have shown that since the elements of - are bounded con-

tinuous functions of time with bounded derivatives, (3.42) and (3.52) imply

T" ~0 as t- (."

From (3.42b) and (3.52), converges to a constant as t .

Yuan and Wonham also showed that if, for any a E I2

T (355)(t) = 0 t_>0O = 0 ,(.5

hi-
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then 0 as t-. Because of (3.52), (3.55) can be replaced by the

condition

Tw
a w (t) = 0 t> 0 0 (3.56)

A sufficient condition for (3.56) to hold is that

T * -
a w (jv) = 0 - oo<v<== = 0 (3.57)

where w (jv) is the Fourier transform of w (t). Because

• k"
b."I:"R k - R(j v)Zp (j V) Wf 0V)

T(jv)Rp (jv) r(jv)
w (jv) k R (jv)Z (jv)WfjV) (3.58)

k Z (jv)Z (jV)W QV)

k p T(j)Zp (jv)Wf(jv)

Theorem 2.1, guarantees that condition (3.57) is satisfied.

Since the zero solution of (3.42) is uniform-stable and every -

solution of (3.42) with bounded initial conditions converges to zero as t- , -

the zero solution is uniform-asymptotically stable. If (3.42) is rewritten
,

. with ; replacing w + DX, it has the appearance of a linear system. Hence,

every solution of (3.42) with bounded initial conditions can be generated by

a uniform-asymptotically stable linear system. Then, by Theorem 3.1, each

-i

solution of (3.42) which begins with bounded initial conditions decays "

exponentially fast to the zero solution and the proof is complete.

S 
-

"-" :' .-' . ,47. 2 '"''d .-""" . ". - . ,".- . "-*'.'' . "" / .. '," .
"

- .
"

-.'" -, , - " . , ." , .. ' - " -.. "- ' . ', ' "-, , "
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T T T
Let Y [X ,~I.Then, from Theorem 3.8 and Definition 3.3,

there exists and a > 0, and for any ~ 0, there exists a K (5)- 1 such that

if Y(t; Y ,t) is a solution of (3.42), then

j1Y(t; Y 0 t0)jI < K 1 (S)ea10tt 1 jjY 1  vt -to (3.59)

By Theorem 3.7, there exists a Lyapunov function V (t,Y) which has the

* following properties:

11 Y11 V, (t,Y) K, K(3)11Y1I 11Y1 , (3.60)

1)+VDtY < - q a V(t,Y) , where 0 < q < 1 .(3.62)

(3.42 11

* Thus, the existence of a Lyopunov function for the slow subsystem is

established.

Define a such that the real part of each eigenvalue of A22

is less than or equal to -a, that is

a inf{-ReIIA(A 2 2 )]}1 (3.63)

*It follows from (3.63) and the linear time invariant nature of (3.41) that

there exists a K.) such that if n'(T; nl'T )r is a solution of (3.41), then
00

0' t(T; ri1 TrI < K e 0~ WT , T> . (3.64)

0'0 20
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Replacing T with -t in (3.64) and applying Theorem 3.6 shows that there exists

a Lyapunov function V 2(ton') which has the following properties:

fj' V2 (t,n') < Kjrij An (3.65)

V 2(t, n" 2 V(t,n')I< K 211n' - Y 3.06)

D V(t n) -< V (t'n') (3.67)(3.54)V2 2

Thus, a Lyapunov function for the fast subsystem has been found.

Before composing these two Lyapunov functions to form a

Lyapuflov function for the error system (3.32), (3.33), 1 need to simplify

the expression for 6' Let

~T l' T VT T
X [xI ,v ,v J ,(3.68)

Y= (X 0'] .(3.69)

With e =0, (3.37) can be rewritten

Ci' w Tw X 2~Dj TDTr~.

+ + *Te T +fY +A b h~ T YT J1e (3.70)

+ 1 d +~ hfn +d h bet-

o 112 o1

Because r and i are bounded, the elements of w and w are bounded and

t1-qre exist constants G, 2 G 3G 4 uhta
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< ' - 21A 1 1 [GIIIYII + G 211YII 2  + G-311YII 3  + G 411n +  C-51Y 1 11 (3.71)K 2 A 22 b 2112 3~

The main result of this section is contained in Theorem 3.9.

Theorem 3.9: Let r(t) be the same r(t) as in Theorem 3.8. Then, there exists

a 3oi m+ such that, VviE [Ow3) the zero solution of (3.32),(3.33) with e O is

exponentially stable.

Proof: Take 33 <- 2 " Then, the Lyapunov function V2 (t,Y) exists and has

properties (3.60)-(3.62). Using these properties and (3.65)-(3.67), I can

write

D (3 .32)e*_=0 V1 (t,Y) <- q CtV (t,Y) + K3 (B)V2 (t,n') , JYJ . , (3.72)

D + V(t, <- ( G _ G (t,Y))V (t,n,)+ f(V(t,Y))V (ty)3 (3.33)e,_o02 (4 5 1 2 1

(3.73)
. where

K3) = sup{L l (t,6) jb l h1 1h, (3.74)

2 tY)= (3.74)

f(Vl(t,Y))= G I + G2V(t,Y) + G 3VI(tY) (3.75)

Define M(Y,n') as the solution of

a1( (Y n ) +" 5 (~i') 2 ihY Y+ -(G4 + q a 1 + G5C n) K211 n 'l(37

which satisfies M(Y,n') K I (IIYII)IIYII + -P K3 (M(Yrl'))K2ir'Ii

Let Mo M(Yono') and define

'K 3 (Mo )
3-~ - G4-G5Mo-q lI f(Mo) (3.77)

3 1 4
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Next, consider the Lyapunov function

W.K 3(M 0
V 3(tYon') V V1 (t,Y) + cy-pG4 G5M0 p V 2 (t'n') .(3.78)

The right-side derivative of V (t,Y,n') along the trajectories of (3.32)-(3.33)
3

with e :E0 satisfies

+ VwYn' 3-[ - -ii (M 0)
(3.32)-(3.33)e 503 ~1 cy-wG -iiG M - q a

f(V 1 (tY))V 1(t,Y)

-- i K 4- PG 4 51 -1) 1t (
K MO a - p~ G 4 - p G5 M- pq a 1 1) 2 ('

- -iV(t,Y,n')

pK 3(M )G

a-uj G 4 - PG 5M 0-q o (f( 0 ,Y)V (t,r))v1( )(.9

p~K (M )G
-( 3 0 5 fMV 2 tr'
a-w G -PG M -iqa(M0-V1tY) 2 o)

From (3.60), (3.65), (3.76) and (3.78) it follows that

V (0,Y In') < M .(3.80)

3 0 0

From (3.78) it is clear that

V (t,Y) < V (t,Y,n') .(3.81)

33

3 ')e 3t(.2
V 3(tyor') < V 3(0,9Y, 0 (382
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SHence, defining
oq (3.83)

4 (q a)(G 4 + q a) + K3 (O)G1

and taking p 3  minii 2,V14 } completes the proof.

An estimate of the region of attraction is available from the

* +
proof of Theorem 3.9. For every iiE [0,j3) there exists M (P)EIR such that

if M E [O,Mo(P)), then a > 0, and if Mo = M (i), then a =0. Then the region
o o 3 o 0 3

of attraction contains the set D(P) defined as

D) = {(Y,q) M(Y,n') <Mo(w)} (3.84)

0+

From (3.77) it is clear that if K3 (B) = 0(1) for all E IR, then as 11-0

M (P)- 0(i 2). If one further assumes that KI(£) = 0(l) for all BR

then as -0 the region of attraction includes points which satisfy
" 1

Yo 0
* 32

* Thus, the zero solution of (3.32)-(3.33) with e 0 and u small enough is

exponentially stable and the region of attraction is 0(P 2) in the slow
3

variables and 0(p 2) in the fast variables.

Remark 3.2: In this section I have required that r(t) have exactly n distinct

sinusoids in the low frequency range. However, the "exactly n" part of this

requirement was used only to choose 9 (;i). If we choose (u) by some cri-

terion other than making the steady state value of the tuned error equal to

zero, then we can replace "exactly n" with "at least n" and the analysis of

this section will still hold.

p "
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3.4. Effects of e #0

In this section I show that the effects of e # 0 are only

0(p). This is accomplished in two steps. First, I show that I can choose

initial conditions on the tuned system so that le*I < 0(G) for all tZ0.

Next I show that if M represents the boundary of the region of attraction
0

when e - 0, then the boundary of the region attraction when le I = 0(p') will' 3

be represented by (l-0(l 2 ))Mo . At the same time I show that solutions of
( .2 -3 3 )0

(3.32)-(3.33) with le l = 0(u) beginning in this slightly reduced region of

attraction converge to an 0(p) residual set containing zero.

In order to show that I can choose initial conditions on the

tuned system so that leI < 0(0) for t > 0, I begin by choosing a different

representation of the model. Define

" IA 0 0

II

. I
".A= 0 A 0 + 0 ()D (3.85)

bh 0 A

Then the model equations (3.20)-(3.21) can be replaced by

X = AX + bc (0)r X X (0)=X (3.86)Sm m o m m (.6

v =hTx (3.87)

Next, I find a Lyapunov function for this representation.

Since

- -* Z (s)Z (s)Z (s)
hr(sl-A)bc

* = m p m
o m Zm(S)Zp (s)Rm(s)

• ..

/ 1...- .

S . .
"

-
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and because Zm (s), Zp (s) and R (s) are Hurwitz, I know that A is a stable

matrix. Define so that the real part of each eigenvalue of A is less

than

01 = inf{- Re[X(A)]} (3.88)

. ..-'" Then, if Xm(t; Xmo,t o ) is a solution of (3.86) with r---, there exists
in in0 0

a K such that
4

-ai (t-t o )j

Xjt;x mt) L K e- t > to (3.89)Im( ,t) 0 K4  m o  -o "

By Theorem 3.6 and (3.89), there exists a Lyapunov function V4 (t,X) such4 m

that

X < V (t,X) < K 4m (3.90) ,

in 4 M 4 in

IV 1' V ' )I v~ < KIX' -x i (3.91)
4v tX 4 \t/ m 4' in i

D+(3.86) r oV4 ) - 1V4 (tXm) (3.92)

The first result of this section is contained in Theorem 3.10.
-::* *T 1*T 9 T 2

Theorem 3.10: Let X = [x ,v ,v I Require r(t) and f(t) to be

- bounded. If X (0) = X (0), n (0) = 0, and u E[0,u3), then there exists

il6 E +such that for t > 0
* 6

le I < fM6

6. . . _ " , ; " :7 : , _ 7 . • . "
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Proof: Take E= X - Xm . Then
m

* Tb T*E AE + (e(io - e (o)) D(E + Xm) +0] h2q , E(O) = 0 , (3.93)

-=-A 2 2
n  + A2 2 b 2 [c°* +  (o )D(A(E + X) + bc r+ h M,

* (3.94)
n (0) = 0

e* =TE (3.95)

Because r(t) and i(t) are bounded, there exists an M1I such thatw1

c * I A-1bmI l + 0*(I)T Dbr < M1  (3.96)

Since A is stable and r(t) is bounded, there exists an MI) such that

11 XmIi < M2  (3.97)

Now, define M3 ,1 M4 and M 5 such that

3 22 JA 2 b111J -1(b)T DAI (3.98)

14 =IIb 1Illhjf (3.99)

-I ... - ~l 5  J(0*( O* 0 ()TE 1

0)= To)) I (3.100)

Using (3.65)-(3.67), (3.90)-(3.91), and (3.96)-(3.100), I can write

D- D(3.93 ) 4 t E < ( l - uK 4 M5)V4(tE )  + K 4V2(t 'rl)

D"v.-+ )Km

+ ;1K 4ll 5T 2 (3.101)

T *
D (3<94) (t, ) G )v (t ,) + K M3V4(tE)

(3.102)
+ K, (m~ + Mf, ffl3

S3
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Then the Lyapunov function

V5(tE, n) = V4 (t,E) + 4 V (t, ) (3.103)
5 a - P G 2

satisfies

+K,, IK 2(M1 + M -M
(3 .93)(3 94 )V5(t

'E - D_(E.)+u(4 NsI + ),• ' - ) - 4  - 1

(3.104) --

where

(K=I - +(K4 4 + 2 2 3 (3.105)
*- 

*G4  1

If LE [0,1 3), then a5 > 0. Hence E (0) = 0, q (0) = 0, (3.90), and (3.104)

imply

K KM 2  K2(M I + M'Q) M

V- V4(tE) V3(tE, < (m5 + K(,- + -'3 ) (3.106)
A-5 j a-uG -LIo
5 4 1

The proof is completed by defining

KG 4 1 2Q(+ 1 + 3) (3.107)

5 ~ 4 1

Now that I have a bound on ! , I examine the effect of this

bounded input on solutions Df (3.32)-(3.33). The approach is similar to that

when e 0. First, I bound u6 1. Then, I write inequalities for D(3.32)

V (t,Y) and D (.)(t,-'). Next, I define some terms needed to state the
(3.33)V-

final result of this chapter. Finally, I summarize the results of this

chapter in Theorem 3.11.

As stated, I first find a bound on Iassuming that e [- 6"

Becauseilw l is bounded for all time, there exist constants G and I such

that
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K 2A22b2 T rw < , t > 0 , (3.108)

G- + i 12K2A 1 G t > 0 (3.109)

1 12I 22b2 11 11'w) I"6 < 1

Next, define

G2 = G2 + iK 211A2 b211 IFIVn 6  (3.110)

Then, I can bound I z'l for t > 0 by

; - KaJJA2 N2 I [GIIIYIf + G2!Y1I2 + GBIIYII3 + G411 ' 1 + G5I1YII1 'I1 (3.111)
+ iG6 M6]

Now, I need to write inequalities for D(3 3 2)Vl(t,Y) and

D (3.3 3)V2 (t,n') and define terms I use to state the final theorem. Using

(3.60)-(3.62), (3.65)-(3.67), and (3.111) 1 write

D +
D(3 .3 2)Vl(tY) <- 2 (6)Vl(t,Y) + K3 (B)V2 (t,n') + jK5( (3.112)

, + ,- 2

+ < - G4 -G 5 VI(t,Y))V2 (tr') + f(VI(t,Y))V1 (tY)D 4, 5121(3.113)

+ iG6lU6

*| where

.% .GT() = qKL1 - uf6 IK 3(B) , (3.114)

K-( ) = sup fLl(tB)IIrw*(t)II} , (3.115)
t>0

f~ltY)=C + 2Vl t ) + c~2
1 +'2 1(tY) + G 3V(t,Y) (3.116)

Recall that for the e - 0 case I defined M(Y,n') which was used to bound

i"-I
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1IY11 and estimate the region of attraction. In this case M(Y,no) will not

always be a bound on 11Y1, and therefore, I define M as the solution of

M K(K( WM 1 ) G6

6 [K( M) + T - P[G + G5M + qa(.

M = K3 ) F (Il) (3.117)
CY2 ( Il) - €o- J[G4 + wG5MI +ql]i

6K4 5O 1"

which satisfies M 1 02 (0) Next, I define

M2 = max{M(Y,n'),M I} (3.118)

which I will use to bound IY Y. The rate of exponential decay will be greater

than

K3 (f 2 ) fT(M 2 )

6- a2 - W[G 4 + G5 M2 + q,?] (3.119)

Define -,4 as the solution of

0K
3 (OG I)G

0 02(0) - P (3.120)
24 a-71[G + qa 1

which satisfies U4 = 49 where P4 is defined in the proof of Theorem 3.9.

To estimate the region of attractiondefine a function M2 :[0,i 4]- IRsuch
*

that if Me [0M()) then 6 > 0 and if M M(), then 6 < 0. Next,

- define

iL

. *.. ._

" ,*
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SM 6  K(M K3 M2 )G6  (3.121)
3 6 5(2 -[G + G5M + qa

M G6M6 +f(PM3)M 3
4 -. -[G 4 + G5M 2] a - [G4 + G 5 M (3.122)

Finally, I define three sets which are useful for describing the behavior of

solutions of (3.32)-(3.33),

DI(j) = {Y,n': M(Yn') < PM3, K2 ii'II < i2M 4} (3.123)

11 32  21 r 11 2

SM 4 (3.124)

D (G) = {Y,n': M(Y,n') < M2 ( )} (3.125)
32

The set D3 (u) will be an estimate of the region of attraction, the set

D (p) will be a residual set to which all solutions, beginning in D

converge exponentially, and the set DI (p) is a region such that solutions

beginning in D1 (pi) stay in D 2 (W) for all t > 0. Theorem 3.11 shows that, for

Wi small enough, these statements are true. Theorem 3.11 also provides a more

detailed bound on FJYJB and

Theorem 3.11: Let r(t) be the same as in Theorem 3.8. Let (Y,n')(t;Yo,n')

be a solution of (3.32)-(3.33) beginning at (Y ,.I) at time t = 0. Then,
01 0

there exists a E k+such that for all -E [O,,-), if (YOo ')e D3 (u), then

ilYII <- M(Yofo)e - 6t + uM3 (1 - e-O6t) , (3.126)

S. '0I

S.:.
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<[ K2O exp[-(- G G5M

G M
+ 6 6 [1 -exp[-- G (1

C- + 4 + G 5M 2 + qal - 4 - G5M 2 )t ]  (3.127)

f(M(Yoo)e o + PM3 (l - e-c6 )[R(yono)e +t M3(I _ e-O6t

• - G + G5 M 2 + 3qa]

• for t> O.

Proof: The proof takes several steps. First, I define - so that for all

WG [0, p) D1(G)CD3 (P). Next, I assume a bound on JJYJ exists and show that

if (Yono) ED 3 (,), then I2 is a bound on IIYII. Confirmation of M as a

bound on IIY[j leads directly to the bound (3.126). Finally, I use the bound on

. [YII to get the bound (3.127) on jjn'jj.

Because K3( ) is a nondecreasing function of a, it follows that

M2(,4) is a decreasing function of p on ' [0,4 Furthermore, M2(0 ) = +

and M2 ( 4) = 0. Clearly, there exists a 5 (0, 4 ) such that if uE[0, 5

then M2('¢) > 'M and M2 (p5 ) < u5 M1 . Take ' = min{uf 5}. Now,

* take wE [0, 7), and assume that a constant M exists which bounds JIIYJ for

. t > 0. Define

" K3 (M5 ) 2

V 6(t,Y,n') = Vl(t,Y,n') + 3 a - i[G4 + G5 M5 + qal V2 (t,n) (3.128)

°.4

1.

U_

- - U.<-" * ***.
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Using (3.111) and (3.112) 1 can write

- K 3(M5)f(M5).% +  V6ty3' 5M 5
D (3 .32 )(3 .3 3 )V6 (t Y <') -(02 (M-5) 4a- G + + qcl])Vl(t 'Y)

SK3 (M5)

a- 4 + GDM 5 + qa1J qa1V2(t'r')

+ P 6[K 4 (M5 ) + K 3 (M 5 )G 6 (3.129)
6 5 (- W4G 4+ G 5M 2 q+ ] (3.29

K3 (M5)f(M5)< - (a2(M5) - ' a_ i[G 4 + 05 M5 + qc1] )V6(t,Y,
n')

K3 (M5 ) G6+m6 [K4(M5 ) + a G
2- 5 a [G4 + G5M5 + qal ] ]

4 5 5 +q 1]

Assume further that M5 < M2 (u). Then

VIs-V''miv(tYKB(M 5 )f(M 5 )-. V(t,y,n' ) < V6(t,Yono) exp[-(a 3(M5 ) )t

6- 6 o' oG 2(M5) - ii + G5 M5 + q )t
M [K (M-+K3 M5) G6(310

6 [K4 (M5) + -[G4 + G5M5 + q (3.130)

K 3 (M5 ) (M5 ) "

2 5 a- [G4 + G5M5 + qa1 ]

In order for M to bound I'Yii I can choose M5 to satisfy
5 5o

-K3 (M5 )K2  ' -,
M. = max K+(Yl +11 J r-I[ G4 + G5M 5 + qcl ]

K3 (M5 ) G6  (3.131)

6 u64(M5+ 5 Gu[G4 + G5M5 + ql 1
K3 (M5 )F(M5)

2(M5) - ' +-G +GM+ ql
4 5 5+c 1

. .-.,.,
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if M 5is equal to the first term on the right-hand side of (3.131), then

M = M(Y ,') I is equal to the second term on the right-hand side
5 no00 I M5

of (3.131), then M= i Hence, M= Mand Mbounds IIYDJ for t > 0.

AN, ~ For (Y ,n')ED 3 "') then M 2 < M 2 (i) and I can write

<V 1 (t,Y) < V 6 (t,Y,rn') < M(Y ,n')e 'V+ M le~t (3.132)

which provides the bound (3.126) on 11Y11

Next consider the function

(tY~ri') = - f(V (t ,Y) )V (t,Y)(31)

7 V2(ta -) - [G 4 + G 5 A2 + 3qot 1 1

Using (3.112) and (3.113), 1 write

D3 3 )+ 3 3  V7 (t,Y,T') G (a - C GM )V2(~ + .iGflM

+ 2
+ ~l [(MV)(,(G)+ 2G V (tY) +3G V (tY))1 ~( Y

+ f( lty) +a j[G4+ G 5 M2 + 3qa 1] I 1 tY

< G2 4 G G5 M2)V 2(tr + XG6 M 6  (3.134)

+ f(V 1(tY))[1 a P[G + aG 2  ] ql V (t,Y)

--- G M )v (t,Y,n') + w~G Mfl

U
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From (3.134), it follows that

V7(tYn') < V7(O•YoVn') exp[- - - G5M2)tJ7 7 7o'o4 5

S G6(3.135)
S + 3 [l- exp[- - G5M)t

a-PG4 +G 5 M2+3q t1] ii 4 5 2

Using (3.65), (3.132), (3.133) and (3.135) leads to the bound (3.127) and

completes the proof.

In the introduction to this section, I claimed that the effect

of the 0(;j) e* on the region of attraction was very small. To see this,

assume that K3(8) = 0(1) for all tiER II = 0(0), and supju*(t) j= 0(1).
t

Under these assumptions, M*() is chosen so that if MOE [0,M*(p)), then

K3 (Mo )
0< qa.-UM7 (.o) -' a-( t G4 +G 5M +qI] f(M) (3.136)

where M > 0 is an 0(1) valued function of (M). Recall that M*(i) was"7 o O

chosen so that if M E [0,1*(1)), then
0 0

q 3G4G + f3(Mo) (3.137)

a+ qc[1] +o

Comparing (3.136) and (3.137) we see that as u - 0

* 2 2
. G2) (*( ) -0( )) (3.138)

3

and thus we have M(v)= M*(v)(10( ))•."

Remark 3.3: Notice that Theorem 3.10 does not restrict the number of

sinusoids in the reference input. That is, the bound le*i < uP6 does not
W67

depend on the number of sinusoids. Using a relaxed version of Theorem 3.8,
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as suggested in Remark 3.2, one could relax the hypothesis of Theorem 3.11

*to r(t) sufficiently rich and low frequency without changing the conclu-

sions of Theorem 3.11. If we relax the "exactly n" requirement then we

must choose 6*(P) by some criterion other than making the steady state

e*= 0. An interesting criterion is *(u) = a*(0). For this choice of 9*,

the previously discussed relaxed version of Theorem 3.11 would be an excellent

proof that low frequency sufficient richness, i.e., dominant richness,

provides robustness with respect to high frequency unmodelled dynamics.

." I use robustness here in the sense that in the presence of high frequency

unmodelled dynamics, the adaptive control system remains stable and tracking

and parameter errors become and remain small, O(p).

V
3.5. Discussion

In this chapter I have shown that trajectories of the model

reference adaptive control system excited by n low frequency sinusoids

which begin in a region of attraction will converge exponentially to an O(W)

residual set if u is sufficiently small. Furthermore, if r(t) =r*(t), the

steady state value of e* is zero and the equilibrium eventually becomes

exponentially stable. It was also shown that if the rate of convergence of

the unperturbed MRAS, i.e., when i= 0, is 0(l), then the region of attrac-
1 _ 3

tion may be O(t 2) in the slow variable and 0(0 7) in the fast variables.

Through Remarks 3.2-3.3 1 have also detailed a method by which one

can prove that robustness with respect to high frequency unmodelled dynamics

can be gained via low frequency sufficient richness of the reference input.

This method was based upon the idea of fixing the reference input and then

f
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showing that for sufficiently small li, exponential stability is retained.

How does one use the ideas in this chapter if p is fixed and the problem

is to choose r(t) and r to provide robustness with respect to the

perturbation? The first step is that a 3 must be positive. From (3.75)

and (3.77) we see that at the very least one needs G < O(i). This leads

*T-for one condition to w rw < 0 i) Another requirement might be that
1 1 1

m6 O(L- 2). This leads to r1 <0(- 2) and rJ <O(U- 2). We begin to see
61

that keeping iril, irl, and Irl all small with respect to v 2 will probably

accomplish the desired goals.

2' Before going on to examples in Chapter 4, I would like to discuss

the relationship of this work to that of other authors.

Remark 3.4: While Remark 2.3 suggested that dominant richness was important

for the existence of a unique equilibrium, it is easily seen that the sta-

bility of this unique equilibrium requires a stronger dominant richness

condition. For a given p > 0, each wi in the input must be less than O( -Ii)

to assure existence. As just discussed, stability can be assured only when

the existence condition is met and when each product, riwi , is less than

0(u 2). This more restrictive condition corresponds exactly with the notion

of dominant richness as discussed by Ioannou and Kokotovic (1983) and Krause

(1983).

Remark 3.5: Krause (1983) has also found that when the reference input is

dominantly rich and p is sufficiently small, the convergence of the trajec-

tories of the model reference adaptive control system toward e=0, e= e*(o)

for 0(1) parameter errors can be assured by choosing IId sufficiently small.

The results of this thesis agree in the following way. If the assumptions

-7
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of dominant richness and p sufficiently small guarantee that a> 0 when

T=0, then there must exist F with INI small enough so that a6 >0 with

11I11 >0. Since a 6 > 0 is sufficient for the convergence of trajectories in

03(u ) to D2(i), the trajectories will then behave as previously described.

Remark 3.6: While it is easy to see that the exponential stability of this

system with e*= 0 can be used with standard stability results to show robust-

ness with respect to additive disturbances, it is not clear what happens if

the reference input is the sum of a dominantly rich input and a high frequency

input. Astrom (1983) showed via averaging techniques that for small 1I1!1, the

low frequency excitation provided robustness with respect to the high

frequency excitation. This can be partially seen by realizing that e* is the

difference of the outputs of two low pass filters, and hence, Ie* will beU
very small for components of the reference input which are high frequency.

Thus the forcing effect of high frequency inputs for slowly varying e(t) will

be small. However, the techniques of this thesis may not be able to prove

this because of the w coupling term between fast and slow subsystems.

Remark 3.7: As a final comment on this chapter, I must say that the results

of this chapter could be interpreted as a special case of the work done by

Kosut, Johnson, and Anderson (1983). However, I believe that much can be

gained by dealing with the special case I have chosen and by usinq the

Lyapunov approach, which is not the approach of Kosut, et al. First, the

". special case of high frequency unmodelled dynamics which I have chosen is

in itself a fairly general and very important topic of current research in

,adaptive control. Second, the representation I was able to choose for the

unmodeled dynamics allowed for a natural decomposition of the problem
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which in turn provided the starting point for the composite Lyapunov function

proof of the results. Finally, the results help to point out that high

frequency inputs and high adaptation gain are the main problems to watch

out for when applying model reference adaptive control to a plant with

unmodelled high frequency dynamics.

5

-+..f,' - i- ,, :-, . -" :-., io + - ' 1.2 , i +.i -. • " . " . . . .- K' -'. -.-" " - ' - -
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S CHAPTER 4

EXAMPLES

In Chapter 3, I derived conditions for stability of a model

reference adaptive system with unmodeled high frequency dynamics. In this

chapter, I present a sample system of this type and apply the results of

Chapter 3 to derive conditions for stability of this sample system with two

different sets of parameters. While these two special cases will not

illustrate every aspect of the theory presented in this thesis, they provide

* sufficient insight to appreciate the method suggested by the theory and to

discover the main drawbacks of the suggested approach.

This chapter is divided into several sections. In the first

section I present the sample system and derive the associated error system

following the ideas of Section 3.2. The second section is devoted to a

study of the sample system with the parameters chosen so that it becomes

B a linear time invariant system. In the third section, the parameters are

chosen so that the system becomes the simplest nonlinear system possible

and the study is repeated for the new case. In the final section I discuss

the problems illustrated by the two special cases and some aspects of the

theory which are not illustrated by the two special cases.

4.1. The Sample System

In this section, I present a somewhat general model reference

adaptive system with high frequency unmodeled dynamics. Then,following

Section 3.2,1 derive the error system representation of the sample system.

. .. . . .. . . . . . . . . . . . . . .
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This error system is used with two different sets of parameters to create

the examples used in Sections 4.2 and 4.3.

A block diagram of the sample system is shown in Fig. 4.1.

The differential equations describing it are

model: x = -x +r, (4.1)m m

plant:

"I] -[ + / u (4.2b)

control: u = w [r x] (4.3)

parameter 0= - w(X-Xm). (4.4)
update: 0 2 m

The first step in the derivation of the error system is to make the

transformation

n = z-/ 21u. (4.5) -

The plant equations (4.2) become

= ax+bu+b n, (4.6)

-1 .1 1 2 l (4.7)
-.5 - 2

• _ -u 5L2/ a ,.
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U+

+ ]
+ +m

Figure 4.1. Block diagram of sample system, (4.1)-(4.4).

2?



62

Next, define the tuned system

x=(a+bel)x + be r + b L1 0jnI (4.8a)

-1 .5

-x . (4.10)

**ek w [ *T (4.11)

Thre te error isyte dequinsa

e x -x(4.13)

Un' I i - i ~(4.14)

ax'5 + -i+ 5 4.2

b /
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xo

- m

•+

rn

-PS(I.6+ -psa) . n

,~ . 1 .6vs+.8( s)

Figure 4.2. Block diagram of the tuned system and tuned error for
the sample system.

. .
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where

%T

u w + 6X, (4.15)

22

T-, *T '.,
u w u + w e 2 + e2x.2 *2

9*(a +b6*)-(-yr +yx+2y *e*)

= [x' 61 62] br+i

bx* + k* "

-(2y 2 x*+y 2 e*) 0 -(a+ 2b62 ) ix'

[x' ' e21 0 0 br eI

22 2 2'2(a+2b2) bbx* 5 2

+ (MO2 - x x' + e b[ + /- oe 2b

2 *2*(yIr +y 2x )e* . (4.16)

4.2. Example One

The first special case I want to examine has the following set of

parameters:

a-1

" 2 = 62 O,

(4.17)2

". =2

" -'- _ . . ..- / ' "' " . ". - : > ,'-. - -" - '' .. '- - " " . . - ". . - - " " . - • ", -". -
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This corresponds to a plant whose "slow" pole matches the model pole but
1 _

which has an unknown dc gain of -. The choice e* = 2 provides the
2 1

correct dc gain. The choice of the adaptive gain y1 = 1 is arbitrary and, .

. hopefully, reasonable for this problem.

One of the first things to notice about this system is that u*= 2

is a constant. Therefore A*=0 and hence it follows from (4.1), (4.8), and

(4.10) that the choice x*(0) =x (0), n*(0) =0 results in e* 0. Using this
M

and (4.17) I write u for this case,

u" x = x' e] . (4.18)

Rewriting the error system using the appropriate modifications for this
, ,T

special case and Y= [x e1 results in

'1 .5 .5 5-

Y +[] n', (4.19a)-1 0 0 01 .5
= -Y +I (4.19b)

25- -.5 -1

2Lq

Now I want to apply the method developed in Theorem 3.9 to determine

a w such that (4.19) is exponentially stable for all iE[O,4). The first

step is to consider the subsystems

!--1 .5]
=! Y  (4.20)

6-1 0H

"- " . '.: . :. . . , . i-
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and

-1 .5
1-In= n.(4.21)

.5 -11

Solutions of (4.20) satisfy

JYJ 2.44e-'5t 1Y(O) II. (4.22)

Hence, there exists V (t,Y) such that

111 vi( , ) : 2.4411Y11,

V (tY 1) -V I(tY 2) 2.4411Y'1-Y 2 11, (4.23)

D4.0 D V (t Y) -.5V 1(t,Y).

In fact, for this case, one such function is

K Y Y2Y (4.24)

and D+V(tY =-EV(Y). Solutions of (4.21) satisfy

Kil=e u l2(0)I (4.25)

and we use

V (n') =H.(4.26)

vof course, satisfies a set of conditions similar to (4.23).

Now I can write

+ 5
D V (Y) f -.5V (Y) + (2.44)(.5)(V/)V( , (4.27)
(4.19a) 1 1 2

7.
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K,( + 1 V2 n) 2 )(V5)(/'V (Y) - (4.28)
(4.19b)V2 ( n  < J 5 A

Then using

u(2.44)(.5)( A)

V3(Y')) VI(Y) + i(5) W) (4.29)

I get

+ j(2.44) (.5) (/-

D(4. 19)V3(Y,) _ -(.5) V1(Y) + - u(.5) 2

(2.44)(.5 ) ( 5 2) ( 5)
+ P i (. V2 (Y )

5 + (1. 22)(2.5) (4.30)
I -,(. 1 ')V3(Y,r1). (4.30)

Hence, if [0, .15], (4.30) guarantees that (4.19) is exponentially stable.

* Using linear time-invariant system techniques one can show that (4.19) is

* exponentially stable for ji [O, 1.2). Thus we see that the estimate of

range of stable u's given by the method of Theorem 3.9 is conservative.

4.3. Example Two

Since adaptive control is in general a nonlinear problem I consider

a nonlinear example in this section in order to illustrate more fully the

ideas of Chapter 3. I will, however, be modest and choose the simplest

possible nonlinear problem. The parameters for this simple example are

I

* * . . - ** - - -
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a-

- .r = l ,

* -4 (4.31)

b 1
2

O1 "

YI=el 0

This corresponds to a system for which the high frequency gain of the "slow"

1part of the plant is known to be 2 but the desired value is 1, and hence I set

1 = 2. Unlike the previous example this plant is unstable without control

since a> O. The choice of 8 = -4 provides the'correct d.c. gain and the
2

steady state value of e is again zero. The choice of = is again arbitrary

but, hopefully, reasonable.

This example possesses three difficulties which were missing in the

first example. The first difficulty is that because of the feedback e 2 it is

possible to make e H 0 only when x (0) = 1. The second potential difficulty
m

is that the unperturbed system is nonlinear and determining the constants

associated with its exponential decay is not an easy analytic task. The

third difficulty is that the region of attraction of the exponentially

stable zero solution of the perturbed system is not the whole space as it

was for the linear example.

I will discuss the problems associated with the nonzero e first

since they are the most easily handled of the three difficulties. Noting

that for this case u = -4 x , I can write the tuned system as

'K--.* .. - . .



69

5 0 r
x--x + 1 + [.5/g O2

(4.32)
LIS [ -. 5n + 2 [Li ln - 4/ [ (x - 1)

Using e = x mI can write the equations describing e

e =-e + [.5- 01r* (4.33a)

I 2
= ij=n + 2 On - p4 5 (x - 1) (4.33b)

Choosing x (0) = XM (0) and n (0) = 0, as usual, and using

V4 (e*,l) -- ej + n (4.34)1 (1 - ( + 2 V -5 )

I get

+ + ** e*~~ U('5)!/2-) ((5) ) (4) ( 45)D(4.3)V (e ,n ) < -(Ie I+ 2i 5-l
(4 3 ) V- - (1 + 2i,1- p ( 1+ 2 vr')

- (15)1

, .5) )  (4) ( ( 5)
"-+ - x m - 11 (4 35)

'] i1 - ;1(l + 2/5)m

<(-1+ v2V5 )V 4 (e,n) + vM2/5 -
I i- (1i+ 2 5) 1 - p(1i+ 2 /5)

o* .

Since V4 (e ,n ) = 0 at t=0 it follows from (4.1), (4.34), (4.35) that

L4
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e V 4(e n X (0) - le- (4.36)
l- (I+4/5)

for all .G [0, --- ) Clearly, if is sufficiently small or Ix (0) -11

is sufficientiv -ra!l e will be negligible.

In order to discuss the remaining aspects of this example I need

the error system for this special case. Letting Y = [x',&IT, the error

system can be written

-1 .5x I .5YIY 5 0
*1 i  Y = , ) Y +J + 0 (4.37a)

L-x j 0 _

-1 .5- - i;

1 1

4 -x 2x e -2x + e 2

i T +yT +T 2 y
L + * 3 .5x*

2 2 _ 5 + Y [.5

(.5Y - [2i- 0 1 2 .'

2 ,2 *

- r + 2x )e

In order to simplify the problem, first consider the case wihen x (03) 1.

Then, e 0 and x -i. Under these conditions I can bound 1'A' by

hi i i,_ [4. 311yi + 3.8 JlYII2 + v ,l l + 2§3 Il 'I+ .5 5 !IY!{ '" I . (4.39)
2

. . . ......... . 8....................5.. 5 . .. ..-..-. ....
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.U Now, I consider the fast and slow subsystems separately in order to find a

Lyapunov function for each. Since the fast subsystem is again given by

(4.21), I will use V2(n') for this case also. The slow subsystem is given

by by

- .57 .5Y
1 y + 1 (4.40)

-1 01 L_ -Y '

The zero solution of this nonlinear slow subsystem is exponentially stable

in the large. However, it is not easy to analytically determine the

constants associated with the exponential convergence of (4.40). Therefore,

I resorted to numerical techniques. Since I wanted (x,e2) = (1,0) -

(x',e6) = (0,4) to be in the region of attraction of the zero solution of

(4.37), I choose to estimate the exponential rate of convergence of (4.40)

for IJYoJI < 5. First, I simulated (4.40) with initial conditions at 16

uniformly spaced points on a circle of radius 5 centered at Y = 0. Second,

I plotted the maximum value of the JJYJJ over the 16 trajectories at each

sample instant. The integrations were done using the IMSL subroutine DVERK

which determines its own step size to remain within a prescribed tolerance

in integration error. For plotting purposes I sampled the integration 10

times per second. Finally, I used the plot of the maximum value of jjYl.

versus time to estimate that

-0. 077t
<JYJ< 1.82 e-  jjY(0)j V Y(0) S5 (4.41)

where S ={Y: ilY < 5}. Figure 4.3 shows the plot of the maximum and

the bound (4.41). Figure 4.4 shows JJYJI vs t and Y1 vs Y2 for an example
" ~trajectory with initial condition Y(O) =[0,5]T 1,

- -- - * .

* .- * .. -- . . . .
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10-
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4-

0 10 20 30 t 40 .

Figure 4.3. Plot of max IJYII for (4.40) and the bound (4.41).
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From (4.41) and Theorem 3.7, it follows that there exists

V 5 (t,Y) such that

* <I V5 (t,Y) <1.82 iY1 , y VES5

1v V(t,Y 1 ) - V(t,Y 2)1 < L(t,5)iY 1 - 2 Y E S5 ,YES5  (4.42)

D 44)V5( )< -q(.077)V 5(t,Y) O < q< <1 .

For the purposes of this discussion it will suffice to make the unjustified

(and optimistic) assumptions that

q = 1 , L(t,5) < 1.82 .(4.43)

Using (4.39), (4.421), and (4.43) 1 write

+5
D (.37~e*-0V5(t,Y) < -. 077 V 5 (t,Y) + 1.82 (.5)(/ ~)V 2(W), (4.44)

+ 1WD * V2(' <(1 + 2V5 + (5V 1(3.37b)e E 0 11' .)s Y 1 V(i
(4.45)

+ (4.3 + 3.8 11 + /2I1 Y1 )V 5(t,Y)

Letting M be an upper bound on I define
0 1

2.1) (4.3 + 3. 8 M 0+ v2M0)
-. 077 -. (4.46)

1 -(2V5 .77+ . 5/5-M0)

It is easily shown that if M is an upper bound on FJY11, then
0

91)
V (t,Y,n,') v V(t,Y) + W V9(n') (4.47)

1 - -(2i5 + .077 + v'5 M 0)-
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satisfies

D+ * -VtY1') < - c 6V6 (t,Y,r') (4.48)

Hence, if a >0 and M is an upper bound on V6 (0,Y(O),n'(0)), then M

is an upper bound on JJYJJ since JJYJJ < V5 (tY) < V6 (t,Y,"') V6 (O,Y(o),n'(O)).

This is the motivating force behind the definition of M(Y,.-') as the solution

of

S. 91)/ I ' t!
M(Y,n') = 1.82 flY1 + (4.49)

i- P(2/% + .077 + .5v' M(Y,n')

Then taking M = M(Y(O),n'(0)) ensures that M is an upper bound on0 0

V6 (0,Y(O),n'(0)). If I want to guarantee by this method that the set

(Y,n')e{Y,': YeS,n' 0} is in the region of attraction of the zero

solution of (4.37), I must show a 6 > 0 for M = 9.1. This can be done only

for ,.E [0,.00034].

Returning to the more general problem when xm(0) # 1 but for

example satisfies ixm(0) - 11 < 2, one expects that the requirements on

4 will be at least as restrictive as in the x (0) = 1 case. Thus, start with
m

j < .00034. Clearly le* 1 is then negligible with respect to the other terms

in (4.38) so that the bound (4.39) is good with respect to e at least.

Because le I is negligible

x - x = 1 + (X m(0) - l)e (4.50)mm

In order to truly determine the effects of this time varying x one may

need to find a new bound similar to (4.41) for the slow subsystem
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.5xYIY

S[ , Y + . 2 (4.51)
_X 0 -Y j

with x given by (4.50). However, I know that the zero solution of (4.51)

is exponentially stable in the large, provided x 10. Furthermore, x I for

t > 3. Thus, for t > 3 the previous analysis should hold with M = M(Y(3),o

n'(3)). With these thoughts in mind one might consider a pseudo worst case
+

analysis in which one assumes that V5 (t,Y) satisfies only D(4 5 7)V5(tY) 0 for

0 < t < 3. Under this assumption and the assumption that (4.39) is a

reasonable bound over 0 < t < 3,one gets 6 > - .077 for iE[0,.00034] and

M = 9.1. From this it follows that
0

V(3,Y,n') < e (0 (O,Y,n )

Since M 9.1 must bound V(3,Y,'), this psuedo worst case analysis reveals
0

that the guaranteed region of attraction is reduced by a factor of

-.231-e = 0.8.

How useful is it to know that for u < .00034 1 can guarantee that

my desired region is contained in the region of attraction? This requires

the unmodelled high frequency dynamics to be 3,000 times as fast as the

modelled dynamics. This seems like a pretty unrealistic requirement.

However, to be accurate, the answer to the first question depends on the

answer to: "How big can ,1 really be before the region of attraction does

not contain my desired region?" Working with the desired region

(Y,-) E Y,n:YES 5 ,n= 0}, I tested via simulation whether . = .1 was small

enough so that the desired region was contained in the region of attraction

.3
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3 of the zero solution for the xm(0) = 1 case. I found that it was small

enough. For this test I integrated (4.37) with x 1 1 and e E 0 using the

same 16 initial conditions on Y as when I studied (4.40) and the initial

condition n'(0) = 0. Then, I again took the maximum of 11Y11 at each sample

instant. Figure 4.5 shows the plot of max vY vs t for both the unperturbed

system (4.40) and the perturbed system (4.37). Figure 4.6 shows a sample

trajectory of the perturbed system with initial conditions Y(O) = [0,5] T and

() = 0 and with P = 0.1. Compaing 0.1 and 0.00034 it is obvious that the

"* estimate provided by the proof of Theorem 3.9 is so conservative that it is

of little or no practical use.

4.4. Discussion

u I have investigated two simple examples which have illustrated the

* theory of Chapter 3. That is, for each example there was a i> 0 such that

for uE [0,4) the zero solution of the error system with e 0 retained its

exponential stability. Furthermore, it was shown that p does not have to

be an incredibly small number. However, the examples also showed that, even

for these simple systems, the estimates of i and the region of attraction

developed from the techniques of the proofs of the theorems in Chapter 3 are

so conservative that they Are of little practical use. This conservation

arises from the fact that the technique assumes the terms coupling the fast

and slow subsystems together always have the maximum detrimental effect upon

the stability of the error system while the coupling terms actually have a

much smaller effect on the stability of the error system.

S.o

p-

- .& ~ ffi -..- -
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6- a ~1(4-37)

rmax K
4-

0 t0 20 30 t 40

Figure 4.5. Plots of max JH~ vs t for (4.37) and (4.40).
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0-
1.0 10 20 30 t 40

Figure 4.6. (a) Plot of Yvs Y., and (b) plot of IYI for sample
trajectory of (4.37 beginning at Y= [0, 5 ]T.

.7 .
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As the system gets larger and contains more adjustable parameters,

this conservativeness problem will only get worse. This is because of the

time-varying nature of the larger systems. First, the technique bounds a

time-varying quantity with its maximum absolute value. Then, it applies

the maximum detrimental effect idea. This double maximum approach can

hurt the accuracy of the estimate very much since the effect of time-varying

coupling term may depend upon its average value or the average value of its

correlation with another time-varying quantity.

.. , .

.... .......................
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CHAPTER 5

CONCLUSION

This study of model reference adaptive control in the presence

. of unmodelled high frequency dynamics has shown several interesting results.

The first of these results is that for any input in the class of signals

- "which provide exact sufficient richness, the system has a unique e = 0

equilibrium provided the high frequency dynamics are at frequencies above

the frequencies in the input. Along with this result, it was shown that

the equilibrium values of the parameters are only a small distance from

the ideal parameters for the unperturbed case.

The remaining results concern the stability of this equilibrium.

* Taking the two-time scale approach to the problem leads to the satisfying

theoretical result that this equilibrium is exponentially stable after the

* model transients have settled provided that the high frequency unmodelled

dynamics are sufficiently high frequency. Through the remarks it was

pointed out that this technique can be used to show that the error system

converges exponentially to an 0(u) region around e = 0, 8 = 8 provided

u is sufficiently small.

Finally, the examples showed that there indeed exists a

-i >0 such that the equilibrium is exponentially stable for all JE [0,P).

However, the examples also showed that the estimates available from the

proofs are not large enough to be of practical use. Clearly, an important

goal for new research is to find an approach to this problem which can

result in better estimates of the range of u for which the equilibrium

.. . . . . .. . ... ]
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retains its stability. Hopefully, an approach which provides realistic

estimates will come close to providing a fundamental understanding of

the problem and thus lead to measures for counteracting the destabilizing

effects of the unmodelled high frequency dynamics.

L,

41

.J .
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APPENDIX

PROOFS OF THEOREMS 3.6 AND 3.7

The following proofs are taken directly from Yoshizawa (1966).

Proof of Theorem 3.6. Let V(t,x) be defined by

V(t,x) SU spIIX(t+ T;x,t)iiec . (A.1)
T>O

Then clearly ljxi < V(t,x) and by (3.7)

V(t,x) < sup Ke-c 1xjjec CT K11 xi (A.2)

T>O

Since the system is linear, we have the relation

X(t+ T;X,t) -X(t+ T;X',t) =x(t+ T;x- x',t), and hence,

V(t'x) -V(t,x')[ s< SU jx(t+T;x't) -x(t+Tr;x,t)ie CT

< Sup Ke-CT 11jx-.x, 1e CT K11 x -x'11 (A.3)
TC>O

Now we shall prove the continuity of V(t,x). Take a 6>O0.

We have

V(t+ 'x') -V(t,x)I < V(t+ 6,x,) -V(t+ 6,x)I

+ V(t+5,x) -V(t+6,x(t+;x,t))[

+ !V(t+ 6,x(t+ 6;x,t)) - V(t,x)I (A4

Since V(t,x) is Lipschitzian in x and x(t+ 6;x,t) is continuous in ~,the

first two terms are small when lix -x1 and 5are small.
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Let us consider the third term. Since X(t+ 6+ T;X(t+5;X,t),t+ 6)

X~t+ 6+ TX~t ,we have

V(t + 6,x(t + 6;x,t)) -V(t,x)j I sup jx(t + 6+T;X(t +6 ;X,t) t + )je C'
T>0

su SU I x(t+ T;X,t)I e T
T>O

= sup jjx(t + r;x't)jje 1e C
T>Q

-sup jx(t + r;x, t) e I .(A-5)

Set a(6) =sup Ijx(t+ :;x,t)lecT. Then a(5) is nonincreasing and a(0)- 0
T>O

as 6- 0, because jjx(t+ t;x,t)Ilec is a bounded continuous function for all

L >0. Thus,

V(t+ 6,x(t+ S;x,t)) -V(t,x)= - a(S)ec e- a(0)1, (A.6)

implies that the third term on the right-hand side of (A.4) tends to zero

as 6- 0. Therefore, the continuity of V(t,x) is verified.

Finally, we shall establish condition (iii). Let x'= x(t+ h;x,t),

h > 0. Then,

V(t+ h,x') =sup lix(t+h+7;XY,t+h)lec
- >0

jj~t _;~tIIcT -ch V~~)-ch,=sup It+:xtIe e <Vtxe ,(A.7)

which implies

-ch
V (t +h; x') - V (t ,x) V(t,x) e 1(A.8)

h -h

From this, we obtain D( 3 (t~x) -cV(t~x).

(3.5)~ t.
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Proof of Theorem 3.7. For a constant q such that 0< q< <1, define

V(t,x) =sup .j~+T~~~l (A.9)

*Then ljxi < V(t,x) and for x GS = {X:Iixi 8

1xi V(t,x) <sup K(S)e- lq) 01T1 1 K(B) xj (A.l0)
TC>0

Now we shall prove (ii). In the course of the proof, we shall

*determine L(t,8) explicitly. Let T(8) be such that K(O8) = e(- aT

If : 7> TO3), then K(3)e 1
- jxj and hence, from (A.10) , it follows

that V(t,x) must be defined for T such that 0 < T < T(ct). Therefore, for

x ES and x'E SV,

V(t,x) -V(t,x')i < sup l1x(t+ T;X,t) X~t TA't~
0 < < T(S)

T~8 t t+T(a)

where M(s,B) is a continuous function of s such that iif(s,x) -f(s,x')Ii

<M(s,3) lix-x' for xES and x'E S

The remainder of the proof can be verified by the same

argument as in the preceding proof.

I-

**~~~* -.-, .* , * .. *,. . . . . . . . . . 2A. . . . .7A
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