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ABSTRACT

|
\

D A model is proposed for binary time series with marginal
probabilities given by logistic regression on explanatory variables, by analogy with
the first order autoregressive error model for least squares regression.
Measurements at adjacent time points are assumed to have an odds ratio that is not
equal to one and that is constant as a function of time. Measurements separated in
time are assumed to be conditionally independent given an intervening
observation.

Consequences of using an ordinary logistic model in the presence of
serial dependence are explored. The closest logistic model, defined as the one with
the minimum Kullback-Leibler distance, is shown to be the one with the same
marginal probabilities. Consistency of the maximum likelihood estimator of the
serial dependence model is proved under certain conditions, and a procedure for
finding these estimates is given.

Properties of the model are found, including expressions for the
joint probabilities and the odds ratio between observations separated in time. The
model is shown to generate *-mixing processes.

A score test is derived in order to test for independence after
performing an ordinary logistic regression, and properties of this test are explored.
The effects of missing data on the score test and on estimation of the odds ratio
(with known coefficients) are presented.

The model is applied to the problem of automatic classification of
EKG data based on feature extraction. A positive serial dependence is found in the
examples presented. (‘
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w Chapter 1
~ Introduction
1.1 The serial dependence model
Logistic regression is a common procedure for modeling a binary vector Y
when there are explanatory variables. Under this model
P[Yt=1]
— '
. log PIY, 0] X
:i where X is the vector of explanatory variables. This model assumes the
t observations on Y, given X, are independent. If Y is a time series, how
: ever, the independence assumption may not be realistic.
A similar problem can occur in ordinary least squares. If
= 14
Yt xts + 8, »
N it may be reasonable to assume the sequence {e,} is serially correlated.

The simplest model for a serially correlated series [etl is the first or-
der autoregressive model, with

&t T PEt1 * T
for some p less than 1 in absolute value and for a sequence of independent

normally distributed {“t} with common mean 0 and unknown variance o>,

The parameter p measures the correlation between successive values of &,
this is s natural parsmeter to measure dopendence between normsl random

variables. For binary varisbles, however, the odds ratio is in many re-
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spects the natural parameter for measuring dependence.

This reasoning leads to the following model for serial dependence in
logistic regression:

PlY =1]
logw = x;ﬂ » [1.1]

g PIY =Y _ =1] PIY =Y _ =0]
PIY =1,Y,_ =01 P[Y =0,Y _ =1]

= ¢ for all t, [1.2]

=
.

and Y and Y, are conditionally independent given Y, if r(s<t. (Al1

probabilities are conditional on the {Xt] sequence.) In the remainder of

this paper I will refer to this model as the "serial dependence model.”

1.2 Related models

Other models for binary time series have been proposed. For series with-
out covariates, Billingsley (1961) considers stationary Markov processes.
Keenan (1982) considers processes whose marginal probabilities are func-

tions of an underlying stationary process. Kedem (1980) also considers

stationary binary time series.

Logistic regression models for variables measured over time have been used
in studies of “"panel” or "longitudinal® data, in which repeated binary

measurements are taken on a large number of subjects. Typically each in-
dividual time series is short, and any asymptotic theory that is developed

holds as the number of subjects approaches infinity while the lemgth of

each series remains finite. Korn and Whittemore (1979) consider a model

-

L




e N T e ey MD gl mAh v s cnd ure ame

7
in which the conditional probability of {Yt=1} is given by logistic re-
gression on the covariates and on Y, ;. (In models such as these Y; must
be treated as a special case, and Korn and Whittemore assume the existence
of Y0=Yn. where n is the length of the series.) Most other models also

use a logistic function for the conditional probabilities.

Zeger et al. (1985) also consider longitudinal data, but their model is
similar to the serial dependence model in that they model the marginsl
probabilities as logistic functions of the covariates. Apart from their
application to longitudinal data, their model differs from the serial de-
pendence model in two respects. First, they use the correlation between
adjacent binary responses as their measure of association, and they assume
it is constant. Second, their covariates are functions of the subject

only and so do not vary with time,

The serial dependence model could be used for panel data, and many of the
other models in the literature could be applied to a single long binary

time series with time-varying covariates. However my motivation in pro-

posing this model is the automatic EKG classification example in Chapter

8, so in this paper I will consider only a single long binary time series.

Many measures of association are possible for binary random variables, but
there are some desirable properties possessed only by those measures that
are functions of the odds ratio. In this section I will discuss the pos-—

sibility that other measures may be useful.
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The analogy between the serial dependence model in logistic regression and
the autoregressive error model in linear regression breaks down in the
case of perfect association. In linear regression, if the correlation
parameter is ¥1 and the coefficients are known, then knowledge of Yt
provides perfect knowledge of Y' for all s)>t, since lctl is then a

constant for all t.

For binary variables an odds ratio of 0 or infinity does not provide anm
analogous property. Consider the following pair of two-by—two tables of

joint probabilities of (A,B) and (C,D):

14 o 12
Bl|.6 .z'.s C1|.6 01l .6
o .o .21 .2 ol .0 .4 I .4
6 .4 6 .4

In both tables the odds ratio is infinite, but only for the pair (C,D)
does knowledge of one member of the pair provide perfect knowledge of the
other member. This bappens only when the two random variables have the

same marginal probabilities.

This feature of the odds ratio was observed by Feinberg (1981)., He dis-
tinguishes between "complete” association, as in the (A,B) pair, and "ab-
solute” association, as in the (C,D) pair. Since the serial dependence
model does not distinguish between the two, it may not be a useful model
in an application where it seems necessary for "perfect” association to
imply "absolute” association. If correlation were used as the measure of

association, this implication would hold. Correlstion was used by Zeger

et al. (1985).
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Let the event {Yt_l#Yt} be called a "state change.” Examining the tables
above shows that in the serial dependence model with an infinite odds ra-

tio, state changes are possible if changing state would avoid moving to an

event of smaller marginal probability. For example, let Y, 1 be A and let
Y, be B in the above table. The transition from {A=0} to {B=1} avoids the
_E transition from {A=0} to {B=0}. Since P[A=0] > P{B=0], a state change is

possible.

Data from a variety of sampling models can be entered in a two-by—two

table. For example, fixed numbers of patients might be assigned to a
"treatment” and a "control” group, and then might be classified as "im-
proved” or "not improved” at the end of the study. One advantage of the
odds ratio is that it is invariant to row and column multiplications, so
in the hypothetical example it would not depend on the number of patients

assigned to each group.

The above tables of marginal probabilities suggest a sampling model in

&

which both classifications are random, and the row and column totals sum
to 1. This is the case in the serial dependence model. In sampling

models where the row and column totals are not arbitrary, the invariance

CAm e ann oo o
PRI .

property of the odds ratio loses some of its importance.

1.4 Notation
I will use the following notation in this paper. Relationships between

some of these quantities are shown in Figure 1.1, Note that throughout

Lo e et W, . S . R T UL A N AU AP AU I T IR S
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this paper the independent variables are treated as given, not as random

variables.

Symbol Meaning
Yt Dependent variable at time t
X, Vector of covariates at time t
Pe Prob(Y,=1] (marginal probability)

ne(j) Prob[Y,=1|Y,_;=j] (conditional probability)
o, Prob(Y,=Y,_;=1] (joint probability)
v Odds ratio between successive observations
p Vector of coefficients

;, B Maximum likelihood estimates under the serial dependence

model

5 Maximum likelihood estimate of § under the ordinary

logistic model
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Figure 1.1. Relationship Between Parameters

of the Serial Dependence Model

_.Curve of constant odds ratio:
T oa(1) = wa(0)/ (1 +(v-1)5(0))

Line satisfying relationship between
.~~~ marginal probabilities:
n(1) = (pt/pe-1) + ((pr-1-1)/pt-1) =(0)

; - (pt: pt)

—3» 7(0)

Pmin 1-Pruin

s

For any given values of v, p, and pt.1, the corresponding values of «(1) and

n(0) are those at the intersection of the curve of constant odds ratio deter-
mined by v and the line determined by p; and pt.1. The quantity pmin is
defined in Chapter 4.

PP e,
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Chapter 2

Properties of a Process Generated by the Model

In this chapter I will examine some properties of a process {Yt} generated
by the serial dependence model. I will derive the joint distribution of
two observations from the process and express the log linear representa-—
tion of this joint distribution in terms of the quantities obtained from
the model, namely the odds ratio and the marginal probabilities., I will
derive an expression for the odds ratio between Y, and Y., for a1, I
will prove that {Yt] is a mixing process. Finally I will illustrate some
of these properties with plots of the odds ratio between Y, and Y yp 8s 8

function of n and .

2.1 The joint distribution of two observations

In this section T will obtain the joint distribution of two observations
from a process generated by the serial dependence model, by relating the
parameters of a log linear representation to the marginal probabilities
and odds ratio. I will consider consecutive observations, but the same
results apply to non-consecutive observations if the odds ratio between
them is known. (A formula for the odds ratio between non-consecutive

observations is given in the following sectiom.)

For any given t let p, = P{Y;=1] and P¢-1 = PIY,_4=1], and let ¢ be the

(constant) odds ratio between Y, and Y, ;. Let Pij = P[Yt_1=i,Yt=j] be

ST e T e, S Pt R Y TN Rt e
. IR . e T T e e et T s e s e T T N T, e e T S N T AT T
K R T S VR S S VS ST A A VO O W W AW W L
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decomposed as

log pj; = v * up(y) * ua(j) * B12(ij)

with the usual constraints

E “1(1) T § B205) T E ®12(ij) § 12(45) ©

o.
First I will express the quantities obtained from the serial dependence
model as functions of the parameters of the log linear representation.

The marginal probabilities can be written as

Py = Pyp*Poy = exXP(0¥Ty (448, (5405 (11)) exP(BRE, (43400 (13%81001))

= explutuy 1)) Lexp(uy ()85 59y * exP(3()*835(01)"]

explvtuy 1)) Lexpl(o;y (y*21)) + *P (B (1) ™22y )

2 exp(n+nz(1)) cosh (u1(1)+n12(11)).

Similarly

Pe-1 = 2 exp(utuy(y)) cosh (uy(5)*u13(1y)).

The odds ratio satisfies the equation
log ¢ = log Py + log Poo ~ log P10 log Po1

= (utu ) + (u+u )

12 ™2 1¢(0)*%2(0)*"12(00)

- (ut+u ) - (u+u )

1(1)*%2(0)*"12(10) 1(0)**2(1)*"12(01)

= 812(11)"®12(00) 12(10) 12(01) 4

12(11) °
The log linear parameters can be obtained by solving three equations,
since given u1(1) B2(1)* and u35(11)° the other parameters are determined

by the four constraints given above and the constraint zij Pij = 1. The
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two—-factor term is, from above, u32(11) = (log ¢)/43 it depends only om
the odds ratio. Unfortunately the single-factor terms depend on the odds

ratio and both marginal p. rabilities. They solve the pair of equatioms

P, 2 exp(n+u2(1)) cosh (u1(1)+(log v)/4)
Piy =2 exp(n+u1(1)) cosh (u2(1)+(log v)/4) .

The parameter u can be removed by using these equations to obtain

p
log 1_; 2uy(4) * log cosh(ul(l) 1 log ¢)-log cosh(ul(l) : log ¢)

and a similar equation for log [p,_3/(1-ps_4)].

2.2 The joint distribution of three observations

For some r<{s<t let

pi.ik = P[Yr=i' Ys=J' Yt=k]

be represented by a log linear model:

log pijk =g +au +u

1) Y %2 Pt P 2ag T 2s(n
T P30 T M2335x) (2.1]
with the u~terms satisfying the constraints

2 94) Z 209 "L Yy T F 26 T f *12(44)

2300 = 2 P23 T 2 P13 T 2 "1acin)

M

123(ig%) = % 123(igx) T 2 £ "123(ijx) ¢. [2.2]

(These are not the same as the similarly named quantities in the previous

section.) The uj;3 and ujy3 terms are O because Y, and Y, are independent

given Y, (see Fienberg, 1981, page 33).
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Let g1 be the odds ratio between Y, and Y, and let g3 be the odds ratio
between Y, and Y,. (If the Y's are consecutive observations, then ¢y, =
¥23 = ¢). The object of this section is to find py3, the odds ratio

between Yr and Yt'

Let a dot subscript denote summation over the corresponding index, so for

example Pij. = 2 Pjjk- This quantity can be written as
Pyj. = exp(utny ()40 ()P a1 *P12(1) Y 23 (1)
*+oexplutuy ()4 (5)*83(0) P 12(15) T 23 (j0)

= 2 exp(u+u1(i)+u2(j)+n12(ij)) cosh(u3(1)+n23(j1)) .

Summing over the other indices gives

Pyx = 2 explutugytuggy) coshiny 0y ¥00s (11) %23 (1x)?

p.jk 2 exp(u+n2(j)+n3(k)+u23(jk)) cosh(u1(1)+n12(1j)) .

Then

v12 = (P11.P00.)/(P19.P01.)

and
log 912 =

loglexp(utuy 1)+, (1)+019(11)) (eXP(Rg1)¥By5(11) ) *exP(u5 61 *855(10)))
+loa[exp(u+n1(o)+u2(0)+n12(00))(exp(n3(1)+n23(01))+exp(n3(o)+u23(oo)))
~loglexp(utu, ()1+95 0)*812(10)) (exP(05 1) *8s3 g1))+exP (B ) +8,5500)))

-log[exp(n+n1(o)+u2(1)+n12(01))(exp(u3(1)+u23(11))+exp(u3(o)+n23(lo)))

This can be simplified by using the constraints [2.2] to relate the
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u-terms and obtain u3(1) = ~Y1(0)’ etc. The result is

108 v12 = 4 u12(11) » [2-3]

or u33(11) = (log g1,)/4. Similarly U3(11) = (log 923)/4.

The remaining odds ratio is given by
log v13 =

U8y (1) a1yt ioslexp(uy ()4890 (11) P23 (11) 022 (%, (0) *P12 (10) P23 (01) ]

tota, )83 (1) toslexp(ny (1)¥815 61)%823(10) ) 2P (25 614815 (00) P23 (00) ]

TuTg 1) 831y 1o lexp(uy ()40 1) 223(10) T eXP (%, (0) P12 (10) T ™23 (00) !

T8y (1) "3 (1) " 108 lexp(By () 4845 (01) *P23 (11) )+ XP (%5 (0)*P12(00) 23 (01) ]

= logl2 )1+1logl2 cosh(n

c0sh(B, (114915 (11)%23 (1) 200 ™"12011) 23 (11)]

-logl2 ))]+log[2 cosh(u

cosh(uy 114855 11) 72311 211200 %231 !

coshlu, ,,+(log p),+10g p,3)/4] coshlu, ,,-(log g, ,+l0g p,5)/4]

cosh[u2(1)+(log v12-10 9y4)/4] coshlu, ,,+(log ¢,,-10g ¢,5)/4]

This yields the relation

cosh 2u, ., + coshl (log p;,+10g 9,5)/2 ] (2.4]

®13 = Cosh 2u2(1) + coshl (log 912—103 923)12 1

For the special case of three consecutive observations, gj; = ¢33 = ¢, and
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cosh 2u
13 © Toshk 2u

+ cosh log ¢
+1

2(1)
2(1)

These expressions can be used to calculate the dependence between observa-

Lam an gn gn cusn _onsesesns:

tions separated in time. Suppose Y;,...,Y; have marginal probabilities

P1see.spy and common odds ratio ¢ betwen Y, and Y., for all t. Then
¥12=¢, and for any t>2, p;, can be found recursively by applying the above

expression with marginal probabilities (Pl'pt-l'Pt) and odds ratios f1,t-1

.nd 't_l . t='.

Use of these formulas requires calculation of 82(1)° The log linear rep-

resentation provides the relation

Sy1) = (108 pyp; * 108 By, - 108 Pypy = 108 Pgyp)/4 .

The Markov property implies pyx = PIY,=1,Y,=j] PIY =k|Y =j] =

PIY =i,Y,=j] PIY,=j,Y,=k] / p;. The pairwise joint probabilities can be
obtained from the marginal probabilities and a=P[Yt=i.Y‘=j]. Equation
[1.1] provides an expression for a:

a(1+a—pr—p‘)
®12 ~ (pr-a)(p.-a)

. [2.6]

This determines a uniquely, because the quadratic
v(p,—a)(py-a) - a(l+a-p.-pg) = O
bas only one root in the interval of acceptable a values, or
max(p.,p,) < a( nin(1,§r+p,).
This can be seen by examining Figure 1.1. It can be proved by noting that

the right-hand-side of [2.6] increases from 0 at a=max(p,,p,) to infinity

st e=min(1l,p +p,). It therefore takes the value p;, an odd number of
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times. A quadratic can have no more than two roots, so there is a single

root in this interval.

2.3 A mixing property

There are various mixing properties that determine how dependence in a
stochastic process dies off as a function of time. The strongest is

®-pmixing.

Using the expressions for the odds ratio between observations separated in
time it is possible to bound the dependence between distant observations,
Specifically, I will show that a process generated by the serial depen-—
dence model is a ®-mixing process. I will use this property later to

establish consistency of the maximum likelihood estimator.

Definition: A process is defined as a *-mixing process (Hall and Heyde,
1980, page 40) if there exist a number N and a function f defined on the
positive integers such that

(1) f(n) is non-increasing in n for nd>N;

(2) f(n) approaches O as n approaches infinity;

(3) for all t, given any event A in the o-field generated by
[Yl,...,Yt} and any event B in the o-field gemerated by
(Yepoeeods

IP(AB) - P(A) P(B)| £ f(n) P(A) P(B),
where AB is the intersection of A and B. By the Markov property, it is

sufficient to consider only A={Y =1} or {Y =0} and B={Y,, =1} or {Y,,n=0].

.......
-----------------

e

. S
Y
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Take any fizxed t and let ¢, be the odds ratio between Y, and Y, .. Let
A={Y =1} and B={Y;, =1}. Then

_ P(AB) [1+P(AB)-P(A)-P(B)]
¥n = TP(A)-P(AB) 1 [P(B)-P(AB)] '’

= P(AB)-P(A)P(B)]
¥n [P(A)-P(AB)1[P(B)-P(AB)] *

|P(AB)-P(A)P(B) |

le,~11 [P(A)-P(AB)] [P(B)-P(AB)]

I~

le,-11 P(A) P(B),

The other combinations of A and B can be treated similarly, and two of

these combinations lead to the bound [(1/¢ )~1l. Therefore
IP(AB)-P(M)P(B)| £ max{lg -11,1(1/¢ )-11} P(A) P(B),

so it remains to show that ¢, approaches 1 uniformly in t. I will show

this for n=2J by induction on j. Then I will extend the result to other

values of n by showing |pn+1—1| £ lpn—ll for all n.

Suppose ¢>1 (the proof for g<1 is similar). The expressions given above
for py3 show that if @>1, then ¢ >1 for all n. Therefore 0 is a lower

bound on (p,~1) for all n in the following proof.

For each t there is a quantity u (equal to 82(1) in the log linear expan-
sion carried out above) such that

- cosh 2u + cosh log ¢
7 cosh 2u + 1 *

It is easy to see that if a, b, and c are positive and if b>c, then

(a+b)/(a+c) is a decreasing function of a3 its derivative with respect to

a is (b-c)/(a+c)?. Since cosh x 2 1 for all x, it therefore follows that

..... v




PAME I T Bt 2t S 2o Jaf S Aod et B sn e 4

for all t,

¢l tcoshlogg _ 1.1 1,¢3,2
v - 2 st lerg) ey

and therefore (pp~1) £ (y~1)/4.

Now for a fixed positive integer j, let a=23*1 gnd k=2-zj. and suppose for
all t

(pp/2-1) £ k(g-2).
Fix t and let p, and gg be the odds ratios for the pairs (Y,,Y;, ,o) and

(Yt+n/2‘Yt+n)' respectively. Then there is a value u such that

1 1
cosh 2u + cosh [ 3 log gy, + 3 log QB]

Y T h 20 + cosh [ 11 -1 ] '
cosh 2u 7 log ¢, ~ 7 log @y

Then for all t,

1 1 1 1
v, £ 3 * 5 cosh [ 5 log (1+k(g-1)) + 5 log (1+k(y-1)) ]
= 245 1 (g1 + (ke )
3.1
$ 24 =
= % + ry (1+k(')-1)) »
which implies g -1 £ k(g-1)/4 = (p=1)n"2, Therefore by induction, if f(n) y

is defined as (Q-I)n_z. then (p,~1) £ f(n) when n is a power of 2.

It remains to show that f can be suitably defined when n is not a power of
2. The above argument shows lim inf (p,-1) = 0, so it is sufficient to
show that |9n+1-1| < IQn—ll. But for any given t there is a quantity u

such that

cosh 2u + cosh [ %-log v, * %-log v]

®n+l

cosh 2u + cosh [ %-log | %-log vl




Then for all t,

1 +cosh [ %—log v, %-log vl
B

Pn+1 n+l’

1 1
1 +cosh [ 3 1og o ~ 5 log ¢l

say. If ¢=1, then B;,1=1, end as ¢ approaches infinity, B, ,; approaches
¥,- This implies g, .9 < ¥, because B .9 has no local maximum for ISQSQ,

since its derivative is always positive:

9B ., sinh [ 7 log ¢ + 5 log e, ]

oy 2¢p {l+cosh [ i—log - %-log Qn]}

sinh [ 7 log ¢ + 5 log v, ] {1+cosh [ -log v+ 1 7 log Qn]]

2 ¢ {1+cosh [ —-log v - i-log v, 132

1 1/2 -1/2
) 1_- 7 ((pp) -(wn) )
1 1/2 1/2
20 |1+ 5 (p/e ) (g /0) )
1 1/2 1/2 1 1/2 -1/2
7 e e 0 [ 1+ 7 (o 2etpe D) ]
1 1/2 1/2 2 I
[ 1+3 o Pece 10’ ]
Multiplying by the positive quantity
do [1+F Cergp!2eigwt’™ ]2

gives
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(o) 2-tow) M2 [ 14 3 cpre M 2eco i) ]

/ 1/2

- (oM -ttty [ 1+ 1 (top (o072 ]

) ("n)1/z_(99 y-1/

/ /2

2ot (e 1002 4 g - 11y

N O T B OV R I

/2. -1/2
e n n

= (p

which is strictly positive if ¢, 01, (If g =1, ¢, 41=1.)

Therefore if f is defined as

£(n) = [ (9-1)/n2 if n is a power of 2,

f(n-1) otherwise, (2.71

then f satisfies the three conditions in the definition of a ®-mixing

proposition,

‘i sequence. Repeating this proof for the case @<l gives the following
{
Y
3

Proposition: The serial dependence model genmerates ®-mixing sequences.

2.4 Some numerical calculations

Figures 2.1 through 2.6 show the log of the odds ratio between Y, and Y.,
for 15010, cslculated for some special cases using the formulas derived
in this chapter. The step functions are obtained from the upper bound f
on (p,~1) derived in the previous section, equation [2.7]. For each curve

the marginal probability p, takes the constant value 0.5 for all t.
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For plots with ¢<1, f is obtained by applying [2.7] to the process {Z,} =
{Yl,l-Yz,Y3,1-Y4....]t each even—numbered term is changed. If the origi-
nal process has odds ratio g . between Y and Y, the odds ratio betwen Zg
and Zt is st if s-t is even and 1/93t if s—-t is odd. Therefore the upper
bound obtained from f, and a lower bound that is the inverse of this upper

bound, bound the odds ratio of the original process.
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Chapter 3

Consequences of Ignoring Serial Dependence

In linear regression with serially correlated errors, coefficients esti-

mated by ordinary least squares are consistent, but the estimated standard
errors are not correct. In this chapter I will show that the same holds

for the serial dependence model. I will give some theoretical indication
that the ordinary logistic coefficient estimates are consistent estimators
of the coefficients in the serial dependence model, and I will verify this
with & simulation. I will also perform another simulation in which I will
show that confidence intervals computed using the standard errors from the

logistic model do not have the correct coverage probabilities.

3.1 Coefficient estimates

Suppose a process is generated by the serial dependence model with unknown
coefficients By. I will show that the nearest ordinary logistic model to-
the serial dependence model, in the sense of minimum Kullback-Leibler dis-
tance, is the one with the same coefficients. Since these coefficients
maximize the expected values (under the model that generated the process)
of log of the ordinary logistic likelihood, this is an indication that the
ordinary logistic coefficient estimates should converge to the true

values,

Let f be the density function in the true model, and let {p,} and {a;} be

T
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the usual marginal and joint probabilities in that model. Let g be the
density function for an ordinary logistic model, and let {qt] be the mar-
ginal probabilities in that model. They can be written
log § = log PIY;=y;]l+log P[Yz=y2|Y1=y1]+...+log P[Yn=yn|1n_1=yn_1]
= 2, [y, log q¢ + (1-y,) log (1-q,))

and

log f = y; log py + (1-y;) log (1-py) + thZ Y¢-1Y¢ log (ay/pe_y)

Then the Kullback-Leibler distance is

xfg = Ef [ 1og (£/8) 1]
"L, (1) log oot ) b
=p, log— + (1-p,) log —— + 2 a, log ——
1 q 1 1-q t P, 49
1 1 t=2 t-17¢t
pP,.~a P et * 1
t 't t-1 't
+ (p.-a, ) log _—— + (p 4@ ) log > (i)
t 't (1 pt-l) q, t-1 't Py 1 q,

1+a,p,17P,

+ (14+a_-p, _.-p,) log = -
t Ft-1 *t (1 pt-l)(l qt)

[3.1]

To minimize this distance it is helpful to collect terms and write
Kf' = A - p; log q; —- (1-p,) log (1-q,) - {thz a, log q,
+ (pt-at)log q *+ (pt_l-at)log (l—qt) + (1+at-pt_1—pt)log (l_qt)}
= A-p,log ql—(l—pl)log(l-ql)—[ztz2 p,log qt+(1-pt)log(1—qt)l ,
where A is a function of {pt} and {a;) but not {q.}. The derivative with

respect to q, is

a e
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') 4
_f}_=-1_+ - ~1_
aqt Py q, 1 pt) l—qt '

which is 0 if and only if p, = q;. The second derivative is positive for
a1l values of p; and q; between 0 and 1, so the Kullback-Leibler distance
is a minimum if q,=p, for all t. This condition is satisfied if the co-

efficients in the two models are the same, so the following proposition is

proved.

Proposition: The closest ordinary logistic model to any serial dependence
model is the one with the same coefficients, if distance is measured by
the Kullback-Leibler distance using the serial dependence model as the

true model.

Let A = log ¢, and suppose the coefficients in the two models are the
same. The value of the Kullback-Leibler distance between the two models
is well approximated by a fourth order Taylor series around A=0. If A=0,
then xf8=0 because the two models coincide. From the proof of the propo-—
sition, BKfalal = 0 at A=0., Taking derivatives in [3.1] and colle¢cting

terms with logarithms gives

K 3 da a (1+a -p -p, ,) da
af = 2 5q- 108 (t = §( - fal) tger W-1-141)
A ¢=p ¥ P70 Py 17% A\
n n F)
= } .a;‘t_ 105 = A 2 ._.u_t .
3e ¢ de
t=2 t=2

Applying the chain rule and taking repeated derivatives lead to

dk da
__f‘_ = Aex } _.L
oA dy

MR DR A A B AN et Aot e e e it et Srieead r;T




2 2
9°K da 9“a
;8 = ()."'1)01 2 wt + Aen' } -—Z"t—
aA dep
a3 da a2a a3a
——;5- = ().+2)e)' } a—t + (3).+2)e2)' } —2t + ).e”‘ } 3t
a v dy e
4 2 3
'K da “a 3°a
fs . (l.+3)e"§ — 4 (7).+9)e2" } t +(6).+3)e3"§ —t
4 a9 2 3
ax ¢ 1)

a%a

4) t
+ le —_—
2

Equation [1.2] or [2.6] defines a in terms of ¢ and the marginal proba-
bilities. The first derivative of a, with respect to ¢ is

Oat (pt-at)(pt-l-at)

d¢p Ty Dp,p,_;-20)

[3.2]

Higher derivatives can be obtained from this expression. At A=0, the
derivatives simplify to
da/dp = p, (1-p) p,_,(1-p _,)

a2a/0g?

-2 (da/dy) [pt(l-pt—l) + pt-l(l_pt)]

3 3 2, 2 2 _o 42 _
3°a/dy 6(3a/dyp) p,(2-p,_y) tp._1(1-p,) +3p, (1 pt)pt-l(l_pt-l)] .

Therefore the Taylor series up to 24 gives
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x 2 - -
K (A = (1/2) A% 2 p (1-p e, 4 (1-p ) i

+(1/3) 33 5 p (1-p ) (1-2p )p,_, (1-p,_,) (1-2p, )
+(1/8) a4 3 p,(1-p)p,_,(1-p,_;) [1-6p (1-p _ )-6p _ (1-p.)
2(,_ 2,6:2 (1.0 12 - -
+6p2(1-p,_)2+6p2_ (1-p )2+18p (1-pdp,_, (1-p,_)] ,

so it follows that

- 2 - -
Kfs(l) = (1/2) A% T p,(1-pp,_,(1 Pyq)
[1+(2/3)A(1-2p ) (1-2p,_ )+0(aD)]. [3.3)

This shows that given a sequence of {p,} such that {p,-1/2} and (p,_;-1/2]
tend to have the same sign, the logistic model is closer to models with
negative A than to those with positive A. The converse is true if

{pt—1/2] tends to oscillate in sign,

Figure 3.1 shows the exact Kullback-Leibler distance between the two
models for one example., Here I generated 100 independent normal random
variables {Xt] and used an intercept and slope both equal to 1.0, I
calculated the Kullback-Leibler distance for various values of the odds
ratio equally spaced on the log scale between 0.1 and 10. The curves are
values given by the first one, two, and three non-zero terms in the Taylor
series in A. The series up to Al gives a good fit to the exact distances

except for very low values of the odds ratio, where the two models are

more distant than the approximation suggests.

To examine the coefficient estimates using the logistic model with data
generated under the serial dependence model, I performed a simulation.

The conditions were identical to those described in the previous para-
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graph. The results are shown in Table 3.1,

It appears that each of the quantities in the table is an increasing func-

tion of the odds ratio. The quantities associated with the intercept,
however, increase much faster. The sample bias and standard deviation
both double as the odds ratio moves from 0.1 to 10. For the slope, the
bias increases by a substantial proportion but the standard deviation is

more nearly constant.

The bias is too small a fraction of its estimated standard error to con-
firm the effect with a hypothesis test. For example, the difference be-
tween the bias at 9=10 and that at p=0.1 is about equal to its estimated
standard error., However the obvions trend indicates that the observed

difference is not an artifact of the simulation.

3.2 Standard Errors

The ordinary logistic coefficient estimates differ from the true coeffi-
cient values only by a small fraction of their standard deviations. How-
ever Table 3.1 shows that the standard deviations of the intercept esti-
mates change by a factor of two as the odds ratio changes from 0.1 to 10.
This is an indicstion that the standard errors produced by the logistic

model cannot be correct. Therefore inferences about the coefficients are

suspect,

This fact is more apparent in Figure 3.2. This shows the result of a

second simulation, with 1000 observations at each value of the odds ratio
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Table 3.1. Ordinary Logistic Estimates

Observed bias and standard deviation from a sample of 400 ordinary logis-
tic estimates for each value of the odds ratio. Each regression has 100
observations and a single explanatory variable. The true intercept and

slope values are both 1.,0.

Odds ——=—— Intercept —- == ————- Slope ~—-

Ratio Bias Std Dev Bias Std Dev
0.10 .025 .203 .048 .308
0.13 .026 .208 .054 .302
0.16 .029 .214 .061 .297
0.20 .024 .215 .063 .296
g 0.25 .024 .216 .060 .296
' 0.32 .023 .223 .061 .296
0.40 .027 .229 .057 .296
' 0.50 .031 .241 .061 .304
- 0.63  .031 .242 .060 .304
2 0.79 .034 .247 .060 .305
1.00 .038 .256 061 .311
1.26 .040 272 .065 .312
1.58 .040 .281 .066 .321
2.00 .035 .294 .064 .328
2.51 .044 .309 .066 .327
3.16 .044 .322 .073 .340
3.98 .042 .338 079 .335
5.01 .042 .352 .083 .339
6.31 .047 .375 .084 .340
7.94 .053 .391 .088 350
10.00 .054 .402 .097 .357

o e T T e S T e S e e e T
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but otherwise with conditions identical to those in the previous simula-
tion. In each sample I counted the number of "misses,” or the number of
times the true value of the intercept was not within 1.96 standard errors
' of the estimated value, with both estimates and standard errors from the
ordinary logistic model. This is a test of size 0.05 using the asymptotic

normal distribution of the estimates.

1.3
For each sample the proportion © of misses is an estimate of the size 6 of

the test. Since the number of misses follows a binomial distribution, a
. " + L3 a 1/2

95 percent confidence interval for the size is 0 ¥ 1.96(0(1-6)/1000) .

The Figure shows this confidence interval for each sample, along with a

line marking the nominal 0.05 level.

Clearly this test does not have the proper size if the odds ratio is not
equal to 1. For smaller odds ratios the estimated standard errors in the
logistic model are too large, so the intercept estimates are more accurate
than they appear. For larger odds ratios the situation is worse. Confi-
dence intervals computed using the ordinary logistic model are too opti-

mistic; their coverage probabilties are much smaller than their nominal

values.

PP S
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Chapter 4

Maximum Likelihood Estimation

In this Chapter I write the likelihood function and its derivatives. I
give conditions that imply consistency of the maximum likelihood esti-
mates, and I describe a method for finding these estimates. I also com—

pare the maximum likelihood estimator with some other estimators,

4.1 Solution of the likelihood equations

If the likelihood equation is written as the product of conditional like-

lihoods, its logarithm can be written

n

a
L = y,log p; + (l-yl) log(l-pl) + } ytyt_llog >
t=2 t-1
p,-a p, ,—a
t t t-1 7t
+y, (1-y, ) log —m—— + (1-y )y __,log —
t t-1 1 pt__1 t'7t-1 pt_1
l+a _-p -p
t “t “t-1
+ (1—yt)(1—yt_1) log i , [4.1]

Pia
where a, = Prob[Y,=Y,_;=1]. This quantity is defined by equation [2.6],
and its derivatives are
da (p,e)(pyy7ay)

“{o-1) pur—
dp 1-(¢p-1)(2a -p, pt;;7

2a pt(l—pt)xthpt_l-(q-l)at] + pt_l(l-pt_l)xt_llppt-(q-l)at]
ap 1—(9-1)(20t-pt—pt_1)

The derivatives of the log likelihood are most easily expressed in terms

B N L T S S B T S AP - - R Setat e
e e e T e et AT e T e T e e P A T T TR I TP S e S ‘ DR SR
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of the derivatives of a and the marginal probabilities. The marginal

probability py does not depend on ¢ but its derivative with respect to §
is py(1-pylx,.
The derivative of the log likelihood with respect to ¢ is

(l—yt)(l-yt_l) ]
1+a,~p, Py

n - -
oL _ 2 da, [ Ye¥er _ Te0¥ey) T Oy
de t=28' P,_17%

The expectation of the term in brackets is 0, so the second derivative of
Terms of that matrix

% Pe™%

a does not enter into the Fisher information matrix.

that involve derivatives with respect to ¢ are

2 2 [ 9a, ]2
- E [ > ; ] - } 9 : ] ['%—'+ ia * l—a * l+a —1 - ] [4.2]
g ‘= A t Pt % Pe-17% t Pt Pt-1

n
_E[azL -3 da, 2a, [1_+ 1,1, 1 ]
apoy . dp OB @ P, P70, 1+a.t--pt--pt_1

Pt_l(l-pt_l)(l-pt)xt_1
. —a)(iva—p 5 7 | 143
Pe17% t P¢ P1

_ aat pt(l-pt)(l—pt_l)xt
dp (pt—at)(1+at—pt-pt_1)

The remaining submatrix requires the derivative of the log likelihood with

respect to B:




Calt Calt

= 42

ii aL 3 da, [ VeVe1 Tl ¥ey) ¥, (y) -y )Q-y, ) ]
—— = - - +
® L ap % Pe™% Pe-17% ALV M

y (1-y __.) (1-y )(1-y__.)
+p,(1p )z, [ t'" Y17 t t-1 J

Pe™% 140, Py
| - - -
.o (lep. x [ yt_l(l yt) ) (1 yt)(l yt—l) ]
t-1 t-1"t-1 Pe_17% 1+a,=p, =P, 4
n-1
- 2 pt(l-pt)xt .
t=2

Here again the terms in brackets have zero expectation, so this simplifies

the expresssion for the information matrix somewhat.

n '
- E [a_zk = 2 _a_?_t_ _a.a_t [1_ + 1 + 1 + 1 ]
F B |e "pw e, 1tePPy

Tl t t  Pe
- - - ’
) aat [ pt(l-pt)(l pt*l)xt . pt_l(l pt_l)(l pt)xt_1 ]
9B (p~a, ) (I%e P =P gy  (Pyy70,)(1*a~p 7, )

) [ pt(l-pt)(l-pt_l)xt . P, 1(l—pt 1)(l-pt)xt_1 ] aat'
)

(e )(1+a-p =y gy By g0 ) (I*e-pmp, o
pz(l-p )2(1-p )’x . x! p (1-p )2(1- P, )x, .x!
. Dt P t-1" %% | P11 Pe t-1%¢-1
(pgma,)(1+a;-p ~p, ) (pyy- at)(1+at-pt—pt-i77
p, (12 )p, (7P, )
M i+a -p,.-p (xtxt 1 1*¢ )
t Py Py
n-1
- pt(l—pt) xtxt . [4.4)]
t=2

4.2 Consistency of the maximum likelihood estimates

Most proofs of the consistency and asymptotic normality of mazimum likeli-
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hood estimators involve assumptions about and manipulation of the Fisher
information matrix. This is difficult here because the information is un-

wieldy. However s proof of consistency is possible under some conditions.

Wald (1949) proved the consistency of the maximum likelihood estimator for
independent and identically distributed random variasbles under certain
regularity conditions. A simplified version was given by Chernoff (1972),
These proofs did not make use of the derivatives of the likelihood func-

tion. A similar proof can be used here by noting that the log of the

likelihood ratio (of the likelihood at an alternative parameter value to
the likelihood at the true parameter value) is a supermartingale, and by

applying a strong law of large numbers.

The strong law requires some degree of independence. As was proved in
Chapter 2, if [Yt} is generated by the serial dependence model then it is
a ®*-mixing sequence. It is easy to see that if {Yt} is also a Markov pro-
cess, then £(Y.,...,Y,, ) is a *-mixing sequence for any function f and

integer s. Strong laws are available for such sequences.

To prove consistency it is necessary to be able to distinguish the true
parameter value 63=(log gg.By) from any alternmative value 6=(log ¢,B).
(Values below calculated at =0, are given the subscript 0.) To do so it
is necessary that the conditional probabilities n.,q = (n,0(0),n,(1)) =
(PIY,=11Y,_1=0,04) ,P(Y =1]Y,_;=1,0,]) be ~~casionally different from the
probabilities n, = (7 (0),n, (1)) computed under the alternative @. Refer-

ence to Figure 1.1 indicates that these conditional probabilities coincide
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if F'o and if (ptn-l‘otptOopt_lnpt); where

falls on a set Sp=sp(0°,0) for which

pt-l.O ﬂto(l) + (I'Pt—l,o) ﬂto(O) = Peo [4.5]
Pe-1 ﬂto(l) + (l-pt_l) ﬂto(O) = Pt (4.6]
nto(l)(l-nto(O)) . (4.7]
(l—nto(l))nto(O) 0

for some n.,.

The set Sp corresponds to a set $,=5 (8(,8) in the (X, ;,X;) space. As

Iong as a substantial proportion of the pairs (X,_;1,X;) are removed from

S‘, one may expect to be able to discriminate between 6y and 6.

. I G ey sas v_vw T
ARRAE I D
) . R o] [ .

Consistency follows from the following assumptions.

ii [A1] Bounded covariates: there exists a positive M such that for all t,

<
Ix, 1<H.

This assumption implies the existence of a positive p. such that for all
t, p. < “in(PtO'l‘Pto)' This in turn implies the existence of Pmin 5Uch

that O(pminﬁp. and for all t, ppyp €< min(mig(1),1-m,0(1),meg(0),1-n,4(0)).

[A2] Identifiability: given B#fg, there exist e=e(B;.p)>0, n=n(Bg.B),

and T=T(B(,B) such that

n <ol gt 2%e%a and (X4 q.X,),S,) 2 e), [4.8]

where
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#A is the number of elements in the set A,
d(z,S) is the minimum distance between z and S, and

Sx=Sx(Oo.0). with 6=(log '0:5).

This assumption states that a non-negligible proportion of the (X,_;.X,)
pairs do not lie arbitrarily close to the manifold on which xy=n,q. It
appears awkward, but following the proof I will expand upon this condition

and give other conditions that imply it.

[A3] Compact parameter space: the true values of the parameters cam be

assumed to lie in a known compact region.

With this assumption we can consider the restricted maximum likelihood

estimator subject to membership in the compact set.

The first two assumptions imply the following two lemmas. The first shows

that a non-negligible proportion of the n,'s are bounded away from ..
The second shows that & non-negligible proportion of the log likelihood

ratios are bounded below zero.

[V WA AP SN

Lemma 1. If Assumptions [Al] and [A2] are satisfied and if 0=(log gg.B).

B#By, then there exist e;=¢1(8(,0), n=n(6(,08), and T=T(8;,8) such that for

all 2T,

n <ol #le: 28esn and dlmgLmg)2e). (4.9]

Proof: The set S, is the set of (X, _;,X;) for which xy=n.,. Let
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Dy = {(Xyy.X): X g1, IX 1S4, a((X,_;,X,),8.)2e). [4.10)
Since d(ﬂt'ﬁto) is a continvouns function that is positive on the compact
set D, it achieves some positive minimum value e4(e,0;,08) on it. Assump-

tion [A2] therefore establishes the lemma.

Lemma 2. If Assumption [Al] and the conclusion of Lemma 1 hold, there
exist n=n(8,,0)>0, e,=¢,(0,,8) and T=T(0;,0) such that for all mT,
n < o1 #(t: 25tsn and

Ellog £, (Y Y, 1.0)-log £,(Y, 1Y, _;1,080)] £ -&5}. [4.11]

Proof:

Ellog £, (Y 1Y, ;.8)-log £, (Y, IY, ;.08q)]

nt(l) 1-n,(1)
= pt-l.O ﬂto(l) 108 ;‘;;)—(TT + (l-ﬂto(l)) 103 W
nt(O) 1-n,(0)
+ (I'Pt-1,o’ nto(O) log ;:;TBT-+ (l-nto(O)) log TZE:;TET

Assumption [Al] confines the components of m,o to the interval
(Ppins1-Pmjnls 80 the expected value of the log likelihood ratio is

bounded above by

=8 1-348
sup Ppin [ s log 3;—- + (1-3) 1log 1:' ] .

(€1~
pnin"'l Pa

in

This inequality is true because for fixed s the quantity in brackets is
the negative of a Kullback-Leibler distance, so it is an increasing
function of 18], Because it is a continuous function of s that is nega-

tive on a compact set, it achieves some maximum negative value on that

set, Applying Lemma 1 concludes the prouf.

-----
........
.....

---------
'''''''''''
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Theorem. Let 6y = (log gg,By) be the true value of 6 and let C be any
compact subset of the parameter space that does not contain 90. Then

assumptions [Al] and [A2] imply

lim  sup fZ(Y2lY1'O) e fn(Yn'Yn—l'e) =0 w.p.1
nde 0eC T,(Y,IY ,60) -~ £ (Y IY__ .6
Proof: Note that the above event is equivalent to
n
lim  sup ) log £,(Y,I¥,_,0) - log £Y 1Y, .00 = —=. [4.12]

I will show that this equality holds almost surely.

Pick any 6 in C. Define

£ (Y |Y __.,0,p) = sup £ (Y |y __,07)
t Tt t-1 le-gl¢p ¢t b t71

and

U.(8,p) = log £,(Y, |¥,_1.,0,p) - log £ (Y, 1Y, ;,0p).
Ut(O.p) is an upper bound on the log of the likelihood ratio in a neigh-
borhood of 6. More specifically, for all 6'¢{6': |6-6'|<p}, U, (6,p) >

log £,(Y 1Y, ;.0')-1log £,(Y,1Y,_;.,84).

There are two cases: either pfp,, or g=g; but B#By. In the second case
lemmas 1 and 2 hold. If 9#90. then there is some positive § larger thanm
the minimum distance between the curve

(z=(n(0),n(1)): p=n(1)(1-7(0))/n(0)(1-n(1)), pp; Sm(1)S1-p ;.

pninS"(o)Sl'pnin}

and the curve
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{m=(n(0),n(1)): gy=n(1)(1-7(0))/x(0)(1-n(1)), ppy Sm(1)1-p ;. ,
pminSn (0) Sl—pmin] .
This is most easily seen by examining Figure 1.1, and is proved by noting
that these curves are disjoint compact sets. Then for all t, d(!t'ﬂto)z‘l
for some e;. But this implies the conclusion of Lemma 1, so Lemma 2 holds

for this case as well.

Pick any positive ¢ small enough so that lemma 2 applies, and let n and T
be as in that lemma. Let I be the set of time indices such that

Ellog £,(Y Y, 1,0) - log £,(Y; 1Y, 1.60)] < -e,.
By continuity of the function El[log £, (Y ¥  ,,6’)] on the compact set
{((0’',X¢ 1.,X%.): 0'eC, Ixt_llﬁu, IxtISu}, and therefore by uniform continu-
ity on that set, there exists a positive p1=p1(00.0) such that for all

tel, E[U.(0,p)]1%-ey/2 if p<py.

Since Ellog £, (Y, Y, 1,0) - log £,(Y 1Y, 1,00)1%0 for all t, if follows,
again by uniform continuity, that there exists a positive py=p,(6(,8) such
that for all téI, E[U.(8,p)] £ nep/4(1-n) if p<py. Hence for nT and

poimin(p,(87.0),p5(8(,9)),

< < 2 ney
2 E[U,(8,p)] 3 -z=on+ 771:37'n(1_n) = -nne,/4 ,

t=2

which approaches ~» as n = =,

By compactness, there is a finite covering of C by sets {O: |0—0j|(p9j}.
j=1,...,k. For every 0¢C there is a jSk such that

2 0.(8;,pgy) > 2 log £,(Y ¥, ;,0) - log £,(¥ Y, ,.8),

s
.. e e et e te et PR
et act ..t L \ PL PR S PRI
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80 {Ut(ej.pej)}. j=l,...,k, form a finite collection of random sequences
that bound all the log likelihood ratios for 6eC. Therefore to prove the
theorem it is sufficient to prove that for every j, 2 Ut(ej,poj) - al-

most surely.

Because {Y,) is a ®-mixing process, {U ) is also a ®-mixing process. Be-

cause it is a continuous function on a compact set, it is bounded, so
@ n
-2 2 -1
D 2 2 El (U-EU )} <= and spp n ' DEIU-EU| o,
n n n t t
n=1 t=1

Therefore by Theorem 2.20 of Hall and Heyde (1980), n~1 3 [U,-EU] -0

almost surely. But } EU, - -=, so the theorem is proved.

Assumption 2 above requires that a non-negligible proportion of (X,_5.X,)
be at least some minimal distance from each of a certain family of mani-
folds. Unfortunately a smooth manifold could be put through any finite
collection of points, so this condition is hard to check. A closer exami-

nation of the manifolds may be useful.

Let p=yg, the true value of the odds ratio. The assumption requires that
if Bp is the true value of the coefficient vector, for any other vector B
& non-negligible proportion of the time (X, ;,X;) lie at least some
minimal distance from the manifold on which n,=n,,. Given X, 1'Bp and
xt'po. the marginal probabilities P¢-1,0 and Py,0 are determined, and
therefore Te0 is determined. But reference to Figure 1.1 clearly
indicates that for any value of p,_j there is only one value of Pt that

produces a given Moo Therefore given X,_;'B, X 'p is determined.




50

The same statments apply to the other linear combinations, so any three of
the quantities (X,_3'Bg, X.'Bp, X¢_3'B, X;'B) determine the other. There-
fore each of these quantities is a single-valued function of the other
three. There are two conditions under which points cannot be restricted

to be on this manifold:

1. (xt_l,xt) is a random variable with a non—degenerate distribu-
tion, so it is not concentrated along a lower dimensional mani-
fold with probability one.

2. There are integers t and s such that xt=xs but either xt_lfxs_l

or Xt_,,l#xs.u .

The second condition is likely to hold if the X's can take only a finite
collection of values, or if they are the result of an experimental design.

The first condition is likely to hold under a variety of circumstances.

The assumption is somewhat stronger; it requires that a non-negligible
proportion of the (xt_l.xt) be bounded away from the manifold. This con-
dition would likely be satisfied if the X's take finitely many values or
come from an experimental design. It would also hold if the {Xt] were
independent and identically distributed with a non~degenerate distribu-
tion, and would probably hold under milder conditions as long as the
dependence is not too great and the distributions do not converge to a

degenerate distribution.
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4.3 Comparison of Estimators

Using the expression for the first derivatives and the information matrix
from section 1 of this chapter, it is not difficult to find the maximum
likelihood estimates of ¢ and B by Fisher's scoring method. However the
results in the previous chapter suggest the ordinary logistic estimates of
p may be adequate. In this section I perform a simulation to compare

estimators of f§ and ¢.

In this simulation I generated samples of 100 observations Y, for which

the marginal probabilities p, satisfied log (p./(1-p.)) =1 + x., where

the {x,)} were independent standard normal random variables. I generated
200 such samples for each of 21 values of ¢ equally spaced on the log

scale between 0.1 and 10.

For each sample I estimated the coefficients both by ordinary logistic re-
gression and by maximum likelihood estimation for the serial dependence
model. I estimated the log odds ratio by three methods:

1, Unrestricted maximum likelihood estimation for the serial depen-
dence model (UMLE).

2, Omne iteration of the scoring method, starting with the ordinary
logistic coefficient estimates and with ¢=1 (1STEP). (This is
equivalent to setting the score statistic, defined in Chapter §,
equal to its expected value and solving for gp.)

3. Restricted maximum likelihood estimation, with the coefficients

constrained to their ordinary logistic estimates (RMLE).
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The simulation results are summarized in Tables 4.1-2 and Figures 4,1-3.

Table 4.1 shows the correlation between those estimators that estimate the
same quantity. In each case the correlation seems to vary with the odds

ratio, with lower correlations for odds ratios far from 1. Most correla-
tions exceed 0.9 when the odds ratio is not far from 1. The correlation

between RMLE and UMLE is quite near 1 for a wide range of odds ratios, so
this is an indication that if the odds ratio is not expected to be extreme
a priori, the restricted maximum likelihood estimator, which is simpler to

compute, may be as good as the unrestricted maximum likelihood estimator.

If the odds ratio is known a priori to be neither zero nor infinity, the
1STEP estimator has an additional advantage: it always gives a finite es-—
timate of the odds ratio., Perfect essociation occurred in many samples,

so the RMLE and UMLE estimates of the log odds ratio are infinite.

Table 4.2 shows the observed bias and standard deviation for the coeffi-
cient estimates. As was shown in the previous chapter, the standard devi-
ations of the intercept increase with the odds ratio, and this phenomenon
is apparent here as well. The bias of the slope estimates is smaller for
most of the maximum likelihood estimates, but there is no noticeable pat-
tern to the other quantities. Because the biases are small in comparison
with the standard deviations, a much larger sample would be required to
test for a significant difference between the logistic and maximum like-

lihood biases.
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Table 4.1, Correlations of Estimates

For each value of the odds ratio, the table gives the correlation between

the given pair of estimates in a sample of size 200. The last column

e
D NN

gives the number of observations with perfect association; for these sam-
ples the UMLE and RMLE values are zero or infinity. These observations

were excluded in computing the correlations,

Odds 1STEP/ 1STEP/ RMLE/ Perfect
Ratio Constant Slope BRMLE UMLE UMLE Association
.10 . 986 .869 .865 .693 .733 10
.13 .989 .903 .849 .723 .925 17
.16 .988 .877 .918 .848 .944 0
.20 .990 .894 .894 .779 .943 4
.25 .993 .969 .954 .944 .981 1
.32 .991 .952 .952 .898 .970 0
.40 .993 .959 . 964 .791 .868 3
.50 .996 .962 .985 .981 .998 0
.63 .990 .981 .981 .981 .999 0
.19 .999 .981 .995 .995 .999 0
1.00 .997 .962 .995 .994 .999 0
1.26 .999 .991 .996 .994 .998 0
1.58 .993 .989 .994 .993 1.000 0
2,00 .997 .962 .990 .955 . 969 0
2,51 .993 .989 .982 .981 .999 0
3.16 .995 .961 .986 .959 +972 0
3.98 .990 .965 .972 .935 .971 0
5.01 .989 .923 . 965 .859 .908 0
6.31 .985 .925 .939 .936 .998 0
7.94 .979 .927 .937 .179 .853 1
10.00 .987 .897 .897 .117 .818 5
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Table 4.2, Observed Bias and Standard Deviation
The elements in the table are the sample bias and standard deviation of
the coefficient estimates in the simulation. Observations with perfect

association are omitted.

---------- Constant ———————— ———=~————<— Slope —————————-
Odds Logistic MLE Logistic MLE
Ratio  Bias Std dev Bias Std dev  Bias Std dev Bias Std dev
.10 .0047 .208 .0024 .201 .0211 .309 .0153 .273
.13 -.0026 .180 -.0064 .176 .0694 3217 .0550 .289
.16 .0224 212 .0176 .207 .0057 .288 .0125 .275
.20 -.0088 .200 -,0121 .198 .0352 .254 .0249 .265
.25 .0409 .247 .0414 .253 .0793 .308 .0680 .320
.32 .0476 .235 .0492 .242 .0740  ,299 .0638 .316
.40 .0185 .211 .0169  .212 .0378  .355 .0298  .339
.50 .0314 .227 .0299 224 .0471 .291 .0394  .296
.63 .0290 .232 .0295 ,236 .0345 .347 .0363 .342
.79 .0369 274 0371 .276 .0360  .286 .0381 .290
1.00 .0451 .285 .0471 .288 .0605 .294 .0681 .307
1.26 .0323 .281 .0297 .281 .0523 .323 .0504 330
1.58 .0312 .306 .0289 .306 .00717 .300 .0073 .294
2.00 .0827 .310 ,0842 .311 .0676 .310 .0676 .319
2.51 .0547 .299 .0525 .300 .0234 .276 .0218  .276
3.16 .0213 .310 .0155 .308 .0452 .302 .0355 .307
3.98 .0687 .317 .0657 .319 .0911 .307 .0877 .297
5.01 .0649  .378 .0574 .373 .0474 317 .0330 .285
6.31 .0672 .426 .0590 .431 .0617  .330 0675 .308
7.94 .0150 .3217 .0139 322 0408 ,237 .0388  ,230
10.00 .0416 .395 .0351 .383 .0740 .283 .0546 .265
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Figure 4.1. Stem and Leaf Display of Log Odds Ratio Estimates
True Log Odds Ratio 1s 0.0

One-step Estimate. Values off plot: -1.8 -1.6 -1.3 1.3

1.4
5 -1.22
8 -1.100
11 -0.988

24 -0.7777766666666

41 -0.55555555444444444

69 -0.3333333333333332222222222222

(35) -0.11111111111111111111100000000000000
96 +0.0000000000000000000111111111111

656 +0.222222222222222333333333

41 +0.444444445555555

26 +0.6666667777777

13 +0.88889999

5 1.001
Restricted MLE. Values off plot: -2.1 -1.6 -1.5 -1.5
-1.5 1.6
8§ -1.111

14 -0.999888

25 -0.77777766666

42 -0.55555555554444444

71 -0.33333333333333332222222222222
(33) -0.111111111111111111000000000000000
96 +0.00000000000000000011111111111111
64 +0.22222222222223333333333

41 +0.44444444556555555

25 +0.666666777777

13 +0.888888999

4 1.1
3 1.22
Unrestricted MLE. Values off plot: -2.2 -1.8 -1.6 -1.6
-1.5 1.4 1.8
8§ -1.111

14 -0.999988
27 -0.7777777666666
44 -0.55555555554444444
71 -0.333333333333333222222222222
(33) -0.111111111111111111000000000000000
96 +0.00000000000000000011111111111111
64 +0.22222222222223333333333
41 +0.444444445555555
26 +0.6666667777777
13 +0.888889999
4 1.1
3 1.2
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Figure 4.2. Stem and L-af Display of Log Odds Ratio Estimators
True Log Odds Ratio is 0.69

One-step Estimate. Values off plot: -.9 2.2
5 -0.7766
6 -0.4

16 -0.3333333222

28 -0.111111110000

46 +0.000000001111111111

67 +0.222222222333333333333

89 +0.4444444444444455555555

(38) +0.66666666666666666677777777777777771771717
73 +0.8838888888888999999999999

49 1.0000000000111111111
30 1.2222222233
20 1.44444455555
9 1.66677
4 1.99
2 2.1
Restricted MLE. Values off plot: -1.0 2.4
2 -0.8
5 -0.766
9 -0.4444

17 -0.33332222

28 -0.11111110000

45 +0.00000000111111111

71 +0.22222222222333333333333333

88 +0.444444445555555655

(42) +0.666666666666666666666667777777777771777171777
70 +0.8888888888999999999999

48 1.0000000011111111111

29 1.2222223333
19 1.445555
13 1.666677777
4 1.888
Unrestricted MLE. Values off plot: -1.0 2.3 4.7
2 -0.8
5 -0.766
9 -0.4444

17 -0.33333222

28 -0.11111110000

45 +0.00000000111111111

69 +0.222222222233333333333333

87 +0.444444444455555555

(38) +0.666666666666666666777777777777777717171717

75 +0.888888888888869999999999

51 1.00000000111111111
1.222222223333
1.445

19 1.666667777
1.
2

-

P
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Figure 4.3. Stem and Leaf Display of Log Odds Ratio Estimators
True Log Odds Ratio is 2.30

One-Step Estimate. Values off plot: 0.1 0.2 3.6
6

4 +0.66
6 +0.89
11 1.00011
27 1.2222333333333333
43 1.4444444455555555
62 1.6666666666677777777
89 1.888888888888888889999999999
(39) 2.000000000000000000000111111111111111111
67 2.22222222333333333
50 2.44444444555555555
33 2.666666777777717
19 2.888888888999999
4 3.011
Restricted MLE. Values off plot: 0.1 0.1 4.3
3 +0.5
4 +0.6
6 +0.89
13 1.0011111
22 1.223333333
35 1.4444455555555
54 1.66666666667777777177
72 1.888888888888999999
93 2.000000000111111111111
(26) 2.22222222222333333333333333
76 2.4444444444444455555555
54 2.6666666677777777
38 2.8889999999
28 3.000111
22 3.222233333
13 3.444455
7 3.77
5 3.8899
Unrestricted MLE. Values off plot: 5.5 5.5 5.6 5.6
5.9 6.9 6.7 6.8 7.9 8.8
13.2
2 +0.11
6 +0.5689
24 1.000112223333333444
57 1.565556666777777788888888889999999
93 2.000000001112222233333333333344444444
(42) 2.556555555555666666666677777777788889999999
60 3.0000111122233444
44 3.5556777789
34 4.11112233
26 4.555789
20 5.00012222

5

.8
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Figures 4.1-3 show stem and leaf plots of the log odds ratio estimators
for three values of the odds ratio: 1, 2, and 10, In Figure 4.1, with
¢=1, there seems to be little difference between the estimators based on
this display, except the number of extreme values ("values off plot* in
the figures) is smallest for 1STEP and largest for UMLE. The medians of

the estimators are about the same, and all are close to the true value.

In Figure 4.2 the situation is little different. There is a very large
value of UMLE, but otherwise the shapes of the distributions appear to be
very similar. Again the medians are about the same, and all are close to

the true value.

Figure 4.3 shows a more dramatic difference. The estimator 1STEP retains
the bell shape it assumed in the other figures, but RMLE has a noticeably
heavier upper tail. The shape of UMLE is even more skewed, with eleven

extreme values off the high end of the plot.

The median of 1STEP seems to be a little smaller than the true value,
while UMLE is a little larger. However for five observations (nmot in-
cluded in the plot) perfect association occurred, so RMLE and UMLE both

were infinite.

In summary, this relatively small simulation does not show any advantage
to using maximum likelihood estimatiom in the serial dependence model
rather than ordinary logistic coefficient estimates. Using these esti-

mates and p=1 as starting values, performing a single iteration of the

A
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scoring method gives a good estimate of the log odds ratio. When ¢ is
near 1 this estimator is not noticeably different from the others, but

when ¢ is extreme it avoids the problem of perfect correlation.

If the standard errors of the estimates are also of interest, as is
usually the case, then the maximum likelihood estimate remains important.
The standard errors produced by this model differ from those produced by

the ordinary logistic model, and are closer to reality.

...........
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Chapter §

A Test for Independence

5.1 Introduction

Compared with ordinary logistic regression, maximum likelihood estimation
of this model takes a relatively large amount of computer time and re-
qnires specialized software. It would be useful therefore to be able to
test for dependence without having to do the maximum likelihood computa-
tions. In some cases it may not be thought necessary to compute the
maximum likelihood cstimates if a preliminary test does not reject the

hypothesis of independence.

Such a test can be based on the score statistic, which requires maximiza-
tion only over the subset of the parameter space that satisfies the null
bypothesis. Since independence implies p=1, testing for independence re-
quires computing the ordinary logistic estimates, as they maximize the
likelihood subject to this restriction. As a result the score test can be
performed with little more computational effort than that required by

logistic regression.

In ordinary linear regression, a test for serial correlation can be based
on the sample autocorrelation function of the residuals, or equivalently
on the Durbin-Watson statistic. A test based on the latter was developed

in a series of papers by Durbin and Watson (1950, 1951, 1971). As I will
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show below, the score test for this model is based on the sample autoco-

variance of the data.

The score test is described by Rao (1973) and by Cox and Hinkley (1974).
Let U be the score function and i the information matrix, To test a por-
tion ¢ of a parameter vector (¢,B), Cox and Hinkley define the score

statistic W by

¥ o= U i%u (5.1
A4 4 :
where U_ is the portion of the score function corresponding to ¢ and i¥¥

v

is the corresponding submatrix of the inverse of the information matrix,
When ¢ is a scalar it is more convenient to retain the sign by using
instead

w/2 _ Uv(i“’)uz. (5.2}

I derive the score statistic for this problem in section 2., In section 3
I give the asymptotic distribution of W under the null hypothesis and ex-
amine the empirical distribution in finite samples. In later sections I

consider the distribution under alternative hypotheses.

5.2 Derivation

The score function is defined as the derivative of the log likelihood.
Expressions for the derivatives appear on pages 41-42, Since this is a
test for independence, these expressions are to be evaluated at p=1.

Therefore G, = PePi-q and the score functions become

n
aL
Uy = By " Ez(Yt—pt) (Y, =P,y [5.3]
t=
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n
aL
- UB = a— = 2 -pt) xt . [5.4]

o
.

-
ht)

-
.

-«

Note that since the unconditional expectation of Y, is p;, the score func-

tion for the odds ratio has the form of the autocovariance of the {Yt}.

The statistic also involves the information matrix. The three components

evalvated at =1 are

= 2p (1-p)p,_,(1-p _,) . [5.5]
= 3 pt(l-—pt)xtxt [5.6]
0. [5.7]

- F [ op 39

Therefore the complete information matrix can be written
i i
[ ivv KL ]
i
Be BB

= 2 pt(l-pt) .
t=1 I.x

pt-l(l_pt—l) 0
? » [508]

if py is taken to be equal to 0.

The score statistic is therefore

_ 2
[2 (¥ -B )Y, _,B,_4)]
25,0-5) F,_,Q-p )

, [5.91]

where §, = 1/(1+exp(—x¥3)) and § is the estimate of B in the ordinary
logistic model. Since this is a test on & scalar parameter, the other

statistic can also be defined:
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RV [z Y5 )X, _-F, )] (5.10]
(5 5 ~ N~ o 172 .
pt(l—pt) pt_l(l-pt_l)]

5.3 Distribution of the score statistic under the null hypothesis

According to asymptotic theory, the distribution of W under the null hy-
pothesis of independence should be central chi~square with one degree of
freedom, and the asymptotic distribution of '1/2 should be standard nor-
mal. To examine the distribution of W for finite samples I used a simula-
tion., Figure 5.1 shows a normal probability plot of a sample of '1/2

generated by the following procedure:

(1) generate Xjse0+:X190 independent standard normal random
variates

(2) generate Yy..0:¥700 independent Bernoulli random variates
vith probability p; of success satisfying log(p,/(1-p,)) =
1+Xy

(3) perform ordinary logistic regression and compute wi/2

I generated a sample of 400 score statistics by this procedure, using the
same {xt} each time. From the plot, the sample seems consistent with a

standard normal distribution.

Since W is a test statistic, its upper tail behavior is of interest. For
example, (0.10)(400) = 40 of the score statistics could be expected to
fall above the 0.90 point of the chi-square distribution, or 2.706. In

this sample 48 were observed above the critical value. If the distribu-
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Figure 5.1. Normal Probability Plot for Score Statistics
Generated with ¢ = 1

Score
statistics
4.5+

- *

Standard normal quantiles




LA g and Andt RN A e Sl S

L s e g aovh gr B sien

65
tion is correct, the number of significant statistics should have a bino-
mial distribution with mean 40 and standard deviation [(0.1)(0.9)(400))1/2
=6, s0 a difference of 8 from the expected value is not significant at

the 0.05 level.

The Kolmogorov—Smirnov distance between the empirical cumulative distribu-
tion of '1/2 and the standard normal cumulative distribution function is
0.049, a value that is below the 0.95 point of the distribution of the

Kolmogorov-Smirnov statistic, or 1.36271/2 = 0,068,

5.4 Distribution for nearby alternatives: first order approximation

To get some idea of the power of the test, it would be useful to find the
distribution of the score statistic when the odds ratio is not equal to
one. It is simpler to work directly with the odds ratio, but when con-
sidering alternative hypotheses it seems more natural to use A=log v s
the parameter measuring dependence. Unlike ¢, A can vary in either direc—
tion without limit. As will be seen below, the effect of alternative
values of A on the distribution of the score statistic depends on the

magnitude of A but is independent of its sign, or mnearly so.

The asymptotic distribution of a score statistic under altermative hypoth-—
eses is given, for example, by Cox and Hinkley (1974). Suppose the score
statistic W is computed for a sample of size n. With the null hypothesis
Hy: A=0, if a sequence of alternatives Bn: L=6n-1/2 is to be considered,
then the asymptotic distribution of W is non~central chi-square with one

degree of freedom and with non-centrality parameter G'iklln. (This is

o awey B R g —p— L A R e - aienana b Pl it —
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true here because the information matrix is block diagonal. In general

-Xl)—l

ilk should be replaced by (i » where ihA is the corresponding

wi/2

submatrix of the inverse of i.) Equivalently has an asymptotic

normal distribution with mean 6(ilx/n)1/2 and variance 1.

As a basis for comparison, I generated twenty additional samples of 400
score statistics as above for various values of the odds ratio. I used
the same set of {Xt] in each case., I calculated the observed power func-
tion in each case as the proportion of W values larger than 2.706, the
0.90 point of the central chi-square distribution with one degree of free-
dom. These values are those labeled "observed power” in Figure 5.2, For
each value @ of the observed power, I calculated a 95% confidence interval
for the true power as 6 ¥ 1.96(0(1-9)/400)1/2, and these confidence inter-

vals also appear in Figure 5.2.

The power given by asymptotic theory is simply P[V)>2.706], where V has a
chi-square distribution with one degree of freedom and with non—centrality
parameter Azixx = 3.1(log 9)’. In Figure 5.3, this curve is superimposed

on the simulation results.

Clearly there is some lack of fit, since eight of the twenty—one confi-
dence intervals do not contain the value on the curve. Qualitatively,
though, the curve does seem to predict the observed power pretty well.
For 0.3$'$2.5, the intervals do contain the curve. It is not surprising

to see a lack of fit for more extreme values, since the curve is obtained
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by an asymptotic calculation valid for nearby alternatives.

The above procedure sheds some light on the upper tail of the distribution
of the score statistic, but not on the bulk of the distribution of W. I
used the Kolmogorov—-Smirnov statistic as a summary of the difference be-
tween the cumulative distribution functions of the empirical and asymp-
totic distributions, and the results appear in Table 5.1. Colummn 1 con-

1/2

tains the odds ratio, and column 2 containg n*/“=20 times the Kolmogorov-—

Smirnov distance D between the two distributions. (The other columns are

explained below.) Values larger than the upper 95% point of the distribu-
tion of n1/2D. or 1.36, are marked with an asterisk. The results here are

similar to those above; there is no significant lack of fit for .4$9$2.5.

The following sections describe two attempts to improve the accuracy of
the power curve. In the first attempt I obtain a higher order approxima-
tion to the distribution of W using the results of Harris and Peers
(1980)., In the second I use more informal techmniques to examine the
deviation of the simulated Wl/z from its theoretical distribution and I
find an empirical adjustment that improves the approximation to the

observed power.

5.5 Distribution for nearby alternatives: higher order approximation

One approach toward improving the fit to the observed power function is to
find a higher order approximation to the distribution of the score statis-—
tic. Peers (1971) gave such an approximation for simple tests, and Harris

and Peers (1980) extended the results to composite tests.
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Table §.1. Normalized Kolmogorov—Smirnov Distances Between the

Empirical and Fitted Distributions

For each value of the odds ratio the other columns give n1/2=20 times D,
the Kolmogorov—Smirnov distance between the empirical distribution of the

corresponding sample and the fitted distribution. Values larger than the

0.95 point of the null distribution of nllzb. or 1,36, are marked with an

. asterisk.
F 0dds First Order Higher Order Empirical
Ratio Approximation Approximation Approximation
.10 7.903% 2.456* 1,330
.13 5.842# 1.076 1.017
.16 4,931+ .803 1.402%
.20 2,352s 1.609+ .810
.25 2.342+ 1,350 .785
.32 1,713% .985 .159
.40 .734 1.571# .931
.50 .860 1,080 .861
.63 1.076 1,331 1.317
.79 1,338 1.304 1,205
1.00 .972 .972 .972
= 1.26 .596 .637 .593
u 1.58 1,255 1.341 1.234
. 2.00 .929 1.461¢ .816
2.51 .881 1,794+ .590
3.16 1,712¢ 3.207+ 1.012
3.98 2,314+ 4.391% 1.144
5.01 2.888* 6.201% .769
6.31 3,718+ 7.950% .560
N 7.94 3,603 9.032+ 1.309
10.00 4.361¢ 11,154¢ 2,826
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Because the derivation is lengthy, I present the results first,.

1/2 can be written as a

The density of the score statistic W to order n~
linear combination of non-central chi-square densities, each with the same
non-centrality parameter but with different degrees of freedom. More

specifically the density is

3
g(w) = £(w;1,p) + n—ll2 } cj f(w;1423,p) + o(n71), [5.11]
j=0

where f(.3j,p) is the density of a chi-square random variable with j
degrees of freedom and with non—centrality parameter p. I will give the
values of p and the cj's below.

Several points can be made about this approximation. First, the first
term on the right hand side is the usual (first order) approximation to
the distribution of W under alternative hypotheses. Second, under the
null hypothesis all the cj's are zero, so both approximations lead to the
same distribution in this case. Third, this is simply an approximation to

an asymptotic distribution, and it will not necessarily integrate to one

in finite samples.

Figure 5.4 contains the power function for this higher order approximation
as well as the power function examined earlier. Any improvement here is
marginal., The new curve seems to give a better fit to the observed power
for p(1, but it gives a poorer fit for ¢>1. Because it is not a true den-

sity and does not integrate to one, it gives values of the "power func-
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tion” that are larger than one for 928. Since the first order approxima-
tion has the advantage of simplicity, there seems to be no reason to

prefer the more complex approximation.

The third column of Table 5.1 contains the normalized Kolmogorov-Smirnov
distances between the empirical distribution of the sample and the higher
order asymptotic distribution. It, too, shows mixed results, with an im—

proved fit for g<1 but a poorer fit for ¢>1.

The remainder of this section consists of calculations of the quantities

needed to apply the Harris and Peers results to this model.

Though it is more natural to use A = log ¢ &8s the parameter of interest,
it is more convenient to work with ¢. To convert the results for use with
A requires use of the chain rule to derivatives of up to third order. For

any function u(y),

9 _ o du

In ’39

82n 2 azn du

—23 __2-+——

C 2N - op

33n 3 33u 2 82n du
— - =t W5 v e .
ax ) dy de

Following the notation of Harris and Peers, define

@ = [01 ] = [x ] » o = 1 aL R
o, B i 172 98,

..................................
...................
"~
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= 14

4 ) = l —-—-azL o = 1 asL

- iy~ = 9090 ijx = 377 96,30 96,

~ ~ _ 1/2

. ij " E[uij]' ki,j = E[uinj]. ki.j,k n E[uiujnk].
> _1/2 _1/2

. ki,jk = E[uiujk]' kijk =n E[uijk] ’

where L is the log likelihood. All expectations are taken with ¢=1 and
with the true value of f. All the k’s are O0(1)., Relations between these
quantities are given by Harris and Peers; in addition to the familiar
relationship

ki.j + kij =0,
there is a relationship between the remaining expectations:

Eije t ki, *EjLan tEy,i5 tEyL5,e =00

Let the symbol K represent the matrix of ki.j'st it is simply the informa-

tion matrix calculated earlier. Let subscripts on K refer to the corres—

‘
D) .A‘.I'. .

ponding submatrix, for example K,, is the submatrix of K corresponding to
B. Let a dot subscript refer to the entire dimension of K, so K; =
[xll 112]. Define triply-subscripted K’'s similarly, so for example Kz.._

is a three dimensional array of ki'jk' with i’1,

Let ¢ = al/2 log ¢ measure the distance between the hypothesized and true

values of A. Define the following:
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[ : ] [ o 1 ]

n = 1 &, J = -11.

)2 K31 LN S99
2 ()

B - xl-35 = | 0p)p 0 ) ,
0 0

-

Then the probability density of the score statistic is given by equation

[5.11] with non-centrality parameter

F p = n'kn = kz/Zpt(l-pt)pt_l(l-pt_l)

J and with coefficients
c, = 1 [ z3(k -k...) + 333(k +k ) — 3e(K _+2K )oYy ]
0 6 1,1,1 "111 111 71,11 L1,

¢

l o = ¥ [ ‘3“‘111’2"1,1,1’ - 3"3“‘111”‘1.11) - 3‘*1,1.1"""2

+ 32([0 1+2K...1)‘J ]

1 2
¢, = i—ekl.lnlnplx
1 3
°©3 = T°®k,1,1°

The notation A®*B used in the expressions for co and c; means ziinjBij'

I present expressions for the remaining quantities without proof:

= n 1 - - _ _
Kj,1,0 =8 2P 3(p _0Q-2p ) p (1-p,)(1-2p,)

= -3g~1 - - - -
1111 37" 2 pt_l(l pt—l)(l 2pt_1) pt(l pt)(l 2pt)
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K =K =K =K

1,1 51,20 =K1 ,2,2°85,1,2 =K =0

2,2,1
K = K = —n_l 2p,(1-p) p, .(1-p ) x x’
2,12 2,21 t t t-1 t-1 tt-1

-1
Kygp =2 2p,(1-p) py ,(-p, ) (x ;xt +x.x0 )

$.6 Distribution for nearby alternatives: empirical approximation

i: Lack of fit of '1/2 to its asymptotic distribution could take various
forms; it could have a normal distribution but with a different mean, a

Ef normal distribution with a different mean and variance, or a distribution
&i that is not normal. In this section I will find the nature of the lack of
fit. I will apply exploratory techniques rather than large-sample theory

to model the lack of fit and improve the power curve.

i- First suppose the distribution is normal, but the parameter values are not
as predicted by asymptotic theory. The sample means and standard devia-
*I tions of the score statistics '1/2 obtained by simulation appear in Table
5.2 and in Figures 5.5 and 5.6, as a function of the odds ratio. The

dasbhed lines in the Figures give the values predicted by theory.

The sample means are quite near the lines for odds ratios near 1, but they
- are smaller in absolute value for more extreme values of the odds ratio.
The sample standard deviations are near 1 when the odds ratio is larger
than 1, but decrease as the odds ratio approaches 0. I will attempt to
fit these points empirically and see if the fitted parameter values pro-

duce a power curve that is closer to ths observed power.




A N A Al S el S S~ At St i e A A e el Jues il i M Pllueg Brt. auni Bt ane A RS SeSCERECIMS A atvicariioadth Jahh- ari Ol S iR e

17

Table 5.2, Sample Means and Standard Deviations for the Score

Statistics 11/2 from the Simulation

For each value of the odds ratio, the table contains the mean and standard

deviation for the corresponding sample of 400 simulated score statistics.

. 4 Py
. . NN
'“ Py e e

s Odds Ratio Mean Standard Deviation
- .10 -3.1401 .811
.13 -2.9747 .854
: .16 -2.7089 .857
- .20 -2.5578 .891
.25 -2.2370 .872
.32 -1.8835 .891
.40 -1.5818 .950
.50 -1.2058 .927
.63 -.8701 1.03
.19 -.4426 .877
: 1.00 -.1030 971
E: 1.26 .3228 1.03
* 1.58 .7173 1.03
2.00 1.1245 979
2.51 1.5460 1.03
3.16 1.8816 1.01
3.98 2.1756 1.03
5.01 2.4961 1.00
6.31 2.8428 1.01
7.94 3.1542 1.03

10.00 3.5221 .962
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Because the sample means appear to be an odd function of the log odds
ratio and because the simple linear function fits well for odds ratios
near 1, this suggests adding a cubic term in log ¢. A least squares fit

with the linear term constrained to 3.11/2 (the square root of the infor-

mation) leads to —0.065 as the coefficient of the cubic term. This is the

dotted line in Figure 5.5, and it appears to give a good fit to the sample
E means.
[
!

The sample standard deviations, however, appear to lie on two lines: one
;. at the constant value 1.0 for ¢>1 and the other with a positive slope. It
seems reasonable to assume continuity, so I fit the second line by least
squares subject to the constraint that it pass through the point (1,1),

‘i The estimated slope is 0.078. This is the dotted line in Figure 5.6.
h
h

Figure 5.7 shows the previous power curves along with one obtained by

using parameters given by this empirical fit. The new curve is a marked

improvement; it misses only 2 of the 21 confidence intervals,

The last column in Table 5.1 also shows a good fit. Omly the score
statistics calculated with the odds ratios equal to .16 and 10 produce a
normal distribution that is significantly different from the empirical

distribution at the 0.05 level.

Normal probability plots of the samples show that the normality assumption
is justified, Figures 5.8 and 5.9 contain the plots for ¢=0.1 and ¢=10,

respectively, The points seem to lie on a straight line. Plots for other
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Figure 5.8. Normal Probability Plot for Score Statistics
Generated with ¢= 0.10
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Figure 5.9. Normal Probability Plot for Score Statistics
Generated with v = 10

Score
statistics
7.0+

- .

- P
5.5+ *3

- 352

- *4+49

- 2++
4.0+ +++

- +++

- ++3

- 3+2

- 5++
2.5+ L R

- 38

- 365

- 232

Standard normal quantiles

.........................................
...............................
..........................
......
.......




e e R T LU e T W

83

values of the odds ratio are similar.

To see if the empirical fit holds more generally, I performed a second
simulation. I generated {X,} via the relation X; = pX, 4 + u,, where {u,]
is a sequence of independent stamdard normal random variables, p = 0.5,
and X5 = 0. The sample size, intercept, and slope were 150, -1, and 0.5,

respectively.

The results are summarized in Figures 5.10-5.12, In Figure 5.10 the
dotted line is the curve

= 5.391/2(10g ¢) - 0.065 (5.39/3.10)1/2(10g )3,
where 5.39 is the information number in the second simulation and 3.10 is
the information number in the original simulation. The agsymptotic line
gives an excellent fit to the observed meens when 920.5. unlike the pre-
vious case. For ¢<0.5 the behavior is qualitatively similar to that found

in the first simulation, but the empirical fit is not as good.

In Figure 5.11 the results are similar to those found earlier, but there
seems to be a steeper slope for ¢<l and there is some indication that when

¢>1 the standard deviation exceeds 1.

Figure 5.12 contains a plot of the observed power, first order asymptotic
power, and the power obtained b, the empirical fit. The fitted power may

be marginally better than the ssymptotic power for ¢<0.6, but the asymp-

totic power seems better elsewhere.
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In summary, the simple first order approximation to the distribution of

the score statistic gives a power function that is not significantly

different from the power observed in a random sample when the odds ratio

differs from one by a factor of no more than two or three. For more ex- l
treme odds ratios the approximation overestimates the power, though it
might be considered adequate as a qualitative description of the power. A

higher order approximation does not significantly improve the agreement

PRI

between the empirical and theoretical power curves.

A look at the sample of score statistics, though, shows that their distri- I
bution is normal but with parameters that vary systematically from those

predicted in the asymptotic approximation. Fitting a smooth curve to

these parameters allows calculation of a power function more in agreement
with the observed power. This empirical fit can be obtained by simulation
for any given set of X's, but a fit obtained for ome particular set of X's

does not appear to be valid for other X's,
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Chapter 6

Missing Data

In this chapter I will examine the effect of missing Y values on the score
statistic and to a more limited extent on the estimation process. I will
assume that the corresponding X values are not missing, and I will comment

on this assumption where appropriate.

6.1 Effect on the score test for independence

In this chapter I will examine the effect of missing Y values on the score
statistic for testing independence (p=1) and on the estimation process.
Recall that with no missing data the log likelihood function and its

derivatives can be written

L = 1log P[Y1=y1] + 2 Y, log n + (1-Y,) log (1-n),

oL _ g Y-m__ dm
n(1-n) 4B ’

where n = P[Y,=1]Y,_;1. This leads to a score function for ¢ that

containsg products of consecutive Y values,
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Suppose Y,_; is not observed but X, 4, Yi_ 9, and X, _, are observed., If I
define my , = P[Y,=11Y, ] and n,(2) = P[Y;=1|¥,_;=2), then if Y =1 the

contribution to the log likelihood from Y, is

log ny o log( PIY =11Y, ;=1] PIY, ;=1Y¥,_,]

+ PIY,=1]Y,_4=0] PI[Y,_;=0lY 51 )

log( my(1) me_q(Ye_p) + mp(0) (1-me_4(¥, p)) ),

and if Yt=° the contribution is log(l—nt'z). (Note that these are random

variables; they depend on Y, ,.)

Using this expression for the likelihood, the score test can still be per-
formed and parameter estimates can still be found by maximum likelihood
when a single Y value is missing., If two or more comsecutive Y values are
missing, Mg, m C8n be written similarly by summing over all possible values
of Y, ; through Y, _.q. This cannot be done, however, if the correspond-

ing X's are missing, because the likelihood is a function of all these

X's.

Suppose first that only Y, ; is missing. The contribution of the tth term
of the likelihood to the score function for ¢ can be written

1 an In
Y L2 - awxp 1 t.2

t 2 op 1_"t,2 de

with
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!_ ant'z ) an (1) CE )+ ant_l(Yt_z)
T de de t=1 "t-2 t dy
. an_(0) . _ (Y )

t _ _ t-1""t-2
- + —T‘;— (1 ﬂt-l(Yt-z)) ﬂt(O) —__39 .
\f Evaluated at g=1 this simplifies to
. an, o
b dp (Q-p, o, U2l p , + 2, WX Py plp, (2 )]

+ [-pt_lpt(l-pt)] (l—pt-l) - P, [(Yt-z-pt—z)Pt—l(l—pt—l)]
= 0-
Therefore there is no contribution to the score statitistic due to the de-

pendence between Y, and Yi_, if Y, ; is missing.

This is also true if more than one observation is missing, as can be seen

j by writing
_k Tk - "t,z(l) "t-2,k—2(Yt—k) + ﬂt’z(O) (1_"t-2.k-2(Yt—k)) .
2 so that
;: ant'k ) ant’z(l) . T )t D ant-Z,k-Z(Yt—k)
- ap op t-2,k-2 "tk t,2 oy
R (1-n (¥, ) -n, (0 Me-2,k-2 e .
o9 t-2,k-2 "tk t,2 LT

The first factors in the first and third terms are zero (from above),

while the second and fourth terms cancel, since “t,z(l) = "t,Z(O) under

the null hypothesis.




In summary, if Yt-l is missing there is no contribution to the score sta—

tistic from the dependence between Y, and Y,. The only positive terms
in the score statistic are those that involve comsecutive observations.
The reduced dependence between Yt-k and Y, cannot be meagsured by this

statistic for any k1.

If, for example, every second observation in a sample were missing, it
might be possible to reparametrize and use 6 = f(yp) as the measure of de-
pendence, where f is such that f’(1)=0, The score function would be
(0L/d¢p)/£'(p), so it might approach a finite non-zero value as ¢ ap—
proaches 1 for a suitably chosen f, However in such a case it may be
simpler to assume a model in which the odds ratio between Y, and Y, _, is
constant for all t, and to treat the problem as if no data were missing.
This is a different model, but it might be nearly the same if the marginal

probabilities are nearly constant.

In the more likely case of some consecutive observations together with
some separated by gaps, however, the contributions from consecutive obser-
vations are infinitely larger than the contributions from observations
separated by gaps. Therefore no such reparametrization is possible in

this case.

There is no standard procedure for modifying the Durbin-Watson statistic

for missing values when testing for serial correlation in a least squares

regression. Three possible modifications are given by Savin and White
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(1978) and by Honohan and McCarthy (1982). Two of these are similar to
the score statistic presented heres they omit the terms in the statistic
that involve missing values. The other simply removes any missing values
and treats any surrounding observations as if they were taken at consecu-

tive times.

6.2 Effect on estimation of the odds ratio

It is still possible to write down the likelihood function in the presence

of missing data, so the maximum likelihood estimates can be found. Be-

cause there is no simple general expression for the derivatives of the log
likelihood, however, it would probably be easier to use a derivative—free
maximization procedure in this case. Using Newton’'s method would require
calculating and programming first and second derivatives for every "gap

length” observed in the sample.

It seems that some information would be lost if n observations span m)n
time periods, in comparison with the information in n consecutive observa-

tions. I will show below that this is usually, but not always, the case.

Suppose the coefficients and therefore the marginal probabilities {pt} are
known, and I want to estimate the odds ratio ¢. Then the comtribution to
the Fisher information for estimating ¢ can be calculated for an observa-
tion both when the previous value is observed and when it is missing. The
ratio of the two information numbers gives the asymptotic relative effi-
ciency of the two estimators and provides a measure of the information

loss caused by the intervening missing observation. These information
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numbers are calculated below.

Table 6.1 contains this ratio under the following conditions. In the case
of consective observations I assume they each have marginal probability
0.5 of "success.” In the second case I assume the same two random vari-
ables are separated by a single missing value whose marginal probability

of success takes values between 0.5 and 0.95 in increments of 0.05, In

both cases I nse odds ratios increasing from 1/32 to 32 in multiples of 2.

The surprising feature in this table is the appearance of ratios larger

than 1 for py_1 near 0.5 and for extreme values of the odds ratio. This

indicates that for those parameter values, if only two observations cam be

. v o
NP OO,
N

taken it is advantageous not to take them consecutively, but to allow an
intervening value to pass unobserved. When ¢ is very large two comsecu-—
tive observations take the same value with a very high probability, so

little information is gained about the value of ¢. Skipping an observa-

tion reduces the dependence and provides more information.

This effect is more pronounced in Table 6.2, where the marginal probabili-
ties of the observed values sre 0.1. Here the ratio exceeds 1 for certain
values of the other marginal probabilities when the odds ratio is as high
as 0.25., For these values of the odds ratio, however, the dependence is
not simply reduced by inserting a missing observation, its direction is

also changed.

Suppose a statistician is able to take a fixed number of observations of a

----------------
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Table 6.1. Asymptotic Relative Efficiency

when p, = 0.5

Asymptotic relative efficiency of the maximum likelihood estimator of the
odds ratio when a single missing value intervemes between two observa-

tions, as compared with two consecutive observations. P is the marginal

probability that the missing variable is 1. The observed variables all

have marginal probability 0.5 of success.

L e

Odds Ratio
P 1 2 4 8 16 32
.50  ,000 .114 .400 .743 1.059 1.314
.55 .000 112 .388 .708 .974 1.134
.60 ,000 .104 .353 .612 .767 .761
.65 .000 .093 .301 .482 .529 .434
.70 .000 .078 .239 .346 .328 .225
.75 .000 .061 .174 «225 .185 .109
.80 ,000 .043 .114 .131 .094 .049
.85  .000 .026 .065 .066 .042 .020
.90 ,000 .013 .028 .026 .015 .007
.95  ,000 .003 .007 .006 .003 .001
P 1 1/2 1/4 1/8 1/16 1/32
.50 ,000 .114 .400 .743 1.059 1.314
.55 .000 .112 .388 .708 .974 1.134
.60 ,000 .104 .353 .612 .767 .761
.65 ,000 .093 .301 .482 .529 434
.70 ,000 .078 .239 .346 .328 .225
.75 .000 .061 174 225 .185 .109
.80 ,000 .043 114 .131 .094 .049
l .85 .000 .026 .065 .066 .042 .020
.90 ,000 .013 .028 .026 015 .007

ey

.95 .000 .003 .007 .006 .003 .001
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Table 6.2, Asymptotic Relative Efficiency
when p, = 0.1
Asymptotic relative efficiency of the maximum likelihood estimator of the
odds ratio when a single missing value intervenes between two observa-
tions, as compared with two consecutive observations. P is the marginal
probability that the missing variable is 1. The observed variables all
have marginal probability 0.1 of success.
Odds Ratio
) 1 2 4 8 16 32
.50 .000 .061 .085 .054 .024 .009
.55 .000 .051 .062 .036 .015 .005
.60 .000 .041 .044 .023 .009 .003
.65 .000 .031 .030 .015 .005 .002
.70 .000 .023 .020 .009 .003 .001 ]
.75 .000 .016 .013 .005 .002 .001 ]
.80 .000 .010 .007 .003 .001 .000 ]
.85 .000 .006 .004 .001 .000 .000 i
.90 .000 .002 .001 .001 .000 .000
«
.95 .000 .001 .000 .000 .F00 .000 ]
P 1 1/2 1/4 1/8 1/16 1/32
.50 .000 .146 .464 .613 .523 .350
.55 .000 .169 .618 .915 .851 .601
.60 .000 .187 .800 1.351 1,394 1,057
.65 .000 .200 1,005 1.971 2,309 1.925
.70 .000 .203 1,218 2,822 3.864 3.664
.15 .000 .194 1.404 3.919 6.482 7.336
.80 .000 .179 1.505 5.140 10.595 15.241
.85 .000 131 1.434 6.040 15.678 30.099
.90 .000 .079 1.095 5.668 17.669 41,728

.95 .000 .027 .480 3.033 10,030 21,221
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binary first-order Markov process with known marginal probabilities, and
his object is to estimate the odds ratio of the matrix of tramsition pro-
babilities. The calculations used in creating these tables could be used

to determine an optimal sampling scheme. For example, if the margimal

probabilities were all 0.5, the first row in Table 6.1 indicates that more
information about the odds ratio is obtained by observing the process at

times 1 and 3 than at times 1 and 2 if ¢ 2 16.

These tables show that for certain sequences of marginal probabilities, if
the odds ratio is known a priori to lie in a certain region it may be
profitable to observe the process intermittently rather than coatinuously.
In such cases calculation of the above ratio could allow an optimal sam-
pling scheme to minimize the asymptotic variance of the estimate of the
odds ratio. However for most values of the odds ratio and marginal proba-
bilities it is better to take consecutive observations, In these tables
and in all others I examined, the ratio is always less than 0.21 for odds
ratios within a factor of 2 of 1, It is unlikely that in any realistic
application the evidence presented here warrants letting values pass

unobserved.

This phenomenon was observed previously in the case of stationary first
order autoregressive processes with known mean O by Dunsmuir (1981). (His
univariate continuous model is analagous to the binary process with known
constant marginal probabilities.) His results can be used to show that
for values of the autoregressive parameter larger thamn 3—1/2. it is more

advantageous to skip a time point between observations than to take two
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consecutive observations of the process.

Dunsmuir goes further and derives formulas that can be used to compute the
asymptotic relative efficiencies whenever the frequencies of gap lengths
are given. He applies these results to two types of sampling schemes:
Bernoulli sampling, where the series is observed or not at each time point
according to a sequence of independent Bernoulli random variables, and
regular A-B sampling, where the series is observed according to a repeat-—

ing pattern of A observations and B missing values.

In the binary case the asymptotic relative efficiency could be calculated
for any particular pattern of regular A-B sampling. Bernoulli sampling,
on the other hand, involves random unbounded stretches of missing observa-
tions, and since no general expression for the information as a function
of gap length seems to be feasible, the asymptotic relative efficiency

cannot be calculated in closed form.

In the remainder of this section I will calculate the Fisher information
only for the two cases used in computing the ratios in Table 1: consecu-
tive observations and observations separated by a single missing value.
The Fisher information for consecutive observations is given in Chapter 4,

but I repeat it here for convenience.

For an observation Y, preceded by another observation Yy, the contribu-

tions to the log likelihood and its derivatives are

NP RP AT IOIN

c. .
22
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L = Yle log a, + (I—YI)Y2 log (pz-az) + Y1(1-Yz) log (pl—az)

+ (1-Y,)(1-Y,) log (l+a ),

27 P17

oL 2, [YY, (-1)Y, _L0-Y)  (-7)(-1,)
oy ay ’

+
ey P70y L) 1+a,-ps-p,

1Ys .
) P79 P79, 1+a,py-p,

2 3 - - - -
0“L 9 a, [ Y. X Q1 YI)Y2 _ Yl(l Yz) (1 YI)(I Yz) ]

oy d¢

+

2 - - - -
) 302 Yle N (1 YI)YZ . Yl(l Yz) (1 Yl)(l Yz)
de @  (pa%  (p-a,)% (1+a,-p,p,)?

The expectation of the first term in the second derivative is 0, so the

Fisher information is
2
-E[ﬁ]=[ﬁ] [x_+1+1+ 1 ]
ap’ e 9y P79 P79 ltey7py-p,

(py=a))(pyma) P2 [ 1 1 1
= — 4 + + .
1+(p-1)(p +py-2a,) 9 P79 P9 ltay7pytpy

This is the information obtained from an observation when the preceding

observation is not missing.

Now suppose a single unobserved Y, intervenes between two observed values
Y1 and Y3. For convenience define the following four quantities and their

derivatives:

D1 = (l-pz)aza3 + pz(pl-az)(p3-aa)

...... L e e e e T T e e S e T e e e e e e e e e e -
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=
n

2 (l-pz)(pz-az)a3 + p2(1+a2-p1-p2)(ps-a3)

o
1

3 = (l-pz)az(pz—as) + pz(pl-az)(1+a3—p2-p3)

o
"

. (l-pz)(pz-az)(pz-aa) + p2(1+a2-p1—p2)(1+a3-p2-p3)

D, [ da, 003 ]
(R U B T R TN

da da
P [——i(p—a)-(p-a)—sl
2 dp 3 73 172 9y

aD da da
2 _ _ 2 _ 3
—ai’ = (1 pz) [ _69 o, + (p2 0.2) _69 ]
[ aaz aa3 ]
+ p, 3;r~(p3-a3) - (1+az-p1-p2) 3;—
6D3 [ 302 da ]
W = (l-pz) W (p2—u3) - a2 -aT-

[ aaz 603 ]
*ory | T 3y (tegTeyeg) * (pymey) 5

3D4 da da

e (5 —a) - (p -q ) —3
3;7- = (l-pz) [ 3y (p2 a3) (p2 az) 3y ]

[ da, da, ]
+ p, 3;7-(1+a3~p2-p3) + (1+cz-p1-p2) e ]

Simplifying these derivatives leads to
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8D1 3D2 3D3 3D4 da da

= - - = (g~ —2 - -3
ST oy - (937PpP3) ot (oyTeepy) 50T -

Then letting A = pz(l-pz). the contribution to the likelihood from the
Y3 term can be written

log L = YlY log [ DllA 1 + (1—Y1)Y3 log [ D2/A ]

3
+ Yl(l—Ys) log [ D3/A 1+ (1-!1)(1—13) log [ D4/A 1.

The score function is therefore

Y. Y, aD (1-Y,)Y, D Y, (1~Y,) @D
d logL _ 13 1 . 13 2 ., 1 3 3
op b, a9 D, op D3 op

(1-Y1)(1—Y3) OD4

+
D4 op

[ da, da, ]
3;—-(a3-p2p3) + IS (a,-p,p,)

- +
D, D, D, D,

N [ Y1Y3 (1-Y1)Y3 _ Yl(l—Y3) (1-Y1)(1-Y3) ]

The expectation of the second factor in square brackets is zero, so the

Fisher information does not contain the derivative of the first term. The

expectation of the second derivative is




Sal Adh a3 17

100

3 da
0 log L - [ 2 -
E [ 22 3y (%37PyP3)

YIY 6D1 (1-Y_)Y

802

PG Sra suis arolt aah Sl SRR sk N v aivh MRS i )

603 ]
*oae (%27PiRy)

YI(I-YS) oD

(1-Y1)(1-Y3) aD

3 173 3
- + +
X E 2 2 2
D, oy D, oy D; oy

4

2
4

é‘ da da
1 = +

2
3p (%37PyP3)

D

1 oD 1 aD
X [ 1 2

[aa2 da
Jp (%a7PpPy) *

U'H

x[.;.+;_+
1 2 3 4

1l @, 1o, 1 9 4
D, 3y D, 9 D, 0y D, oy

2
—3-(c—pp)]
oy 2 “1%2

+1_]
D .

dy

1
3 —T
3y (%27PyPy) ] p,(1-p,

1 ap

—-1
pz(l-pz)

The negative of the latter quantity is the expression for the Fisher

information that was used in computing Tables 6.1 and 6.2.

L ot
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Chapter 7

Graphics

Autocorrelation in least squares regression is often easily detected in a

plot. If the coefficients are estimated by least squares and the esti-
mates are used to compute residuals {rt]. then a plot of r, as a function

of t will generally show any serial dependence

Similar plots are not as useful in the serial dependence model. One
reason for this is that the residuals in some sense caanot be separated

from the fitted values as they can in least squares.

The two models differ in the constraints placed on the residuals. In
least squares, adding any fitted value 9t to any residual 8 produces an
acceptable observation ¢ = it + 1. In binary regression for each fitted

probability Bt there are only two possible residuals, l-ﬁt and -ﬁt.

Another difference is in the effect on joint probabilities of the marginal
probabilities, In least squares, if the true error process is {et]. the

probability that ¢, and e, 4 have the same sign is a function only of the

sutocorrelation. In binary regression the probability that Y¢ Pt and
Y¢-1"Pg-1 have the same sign depends not only on the odds ratio but also
on p and p,_3. If both marginal probabilities are close to one, then for

some ¢ values smaller than 1 the probability that the two errors have the
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same sign is larger than 0.5.

Figure 7.1 contains three plots of residuals from an ordinmary logistic
regression as a function of time. In each case there are 100 observations
vith marginal probabilities satisfying log (p,/(1-p,)) = 1+x,, where {x.]
are independent standard normal random variables. I chose these plots
subjectively as typical results for sequences generated using ¢ = 4, 1,
and 0.25. The values of the score statistics for testing independence are

also given on the plot.

The residuals used in the plot are standardized as follows:
1/4 v, B,
1
]
[Zﬁt(l-ﬁt)ﬁt_l(l-pt_l)]

1/2

r =n

t /4

I chose this scale because n~ TeTe g is a component of the score statis-
tic. This will be more important in Figure 7.2, Here it does not change
the visual impression of the plots, only the scale markings on the verti-

cal axis.

At first glance the appearance of each of these plots resembles that of
the least squares residuals from a process with negative autocorrelation,
since the lines are jagged and they cross the axis frequently. However
this is in large part due to the discreteness of the residuals rather than

their serisl dependence.

If the three plots are compared, some festures become apparent. Wide

kills and valleys are more common for large values of the odds ratio than

......
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for small values. This is especially true for deep valleys; consecutive

large negative residuals occasionally appear when =4 (such as at t=16 and

28) but rarely when ¢=0.25. Also more numerous peaks and valleys for low
values of ¢ give the impression that the plots are more "stretched” hori-

zontally moving from the bottom plot to the top.

Unfortunately none of these visual impressions is as striking as the

values of the score statistics associated with each plot.

Because the score statistic is so useful, it can be presented visually by

noting
n -8 P
w2 - S Vi Pt Te-1 Pe1
- a8 a 1/4 a _&8 & a 1/4
o=z 3B -B)OB _ (- )] 29, (1-p)p,_,(1-P _,)]
= n-1/2 Z r, r

t t-1°
so a plot of r, against r,_; may be useful. Figure 7.2 contains these

plots for the same residual vectors used in Figure 7.1.

There are several features in these plots that are worth exploring.
First, the plot for ¢=4 appears to be divided into four clusters. This
phenomenon occasionally appears in this type of plot for any value of g3
it is caused more by the marginal probabilities than by the value of ¢.
If there are few small marginal probabilities, then there will be few
small negative residuals. Therefore the scatter plot will be sparse just

below the horizontal axis and just to the left of the vertical axis.

A gsecond feature is the presence of many points near the origin in the
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first quadrant. This again depends on the marginal probabilities; if
there are several consecutive marginal probabilities near 1, there will be
several small positive residuals. If the odds ratio is large, though,

this tendency will be more pronounced, as in Figure 7.2.

A third feature, perhaps not as obvious as the other two, is that there
are more extreme points in quadrants I and III if ¢>1 and more in quead-
rants IT and IV if @<l. (Here I define "extreme” points as those with
both coordinates far from 0.,) It is this feature that seems to be a good

indicator of serial dependence.

Extreme points indicate that two consecutive observations took values for
which the marginal probabilities were relatively low. The odds ratio,
however, is a measure of how the joint probability differs from the prod-
uct of the joint probabilities, so the frequency of these events gives
some information about the odds ratio. (In Figure 7.2 there are no ex-
treme points in quadrant I when ¢=4, but this is not typical of such

plots.)

The score statistic is a multiple of a sum of the products of consecutive
standardized residuals, so the contribution of a point depends on the
product of its coordinates. Therefore in interpreting these plots it is
helpful to consider each point in relation to the hyperbolas defined by
constant values of L4Te 10 It may be useful to superimpose these hyper-

bolas on the plot.
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It may also be helpful to look at this plot as a pictorial representation
of a two-by-two table., If {pt} were constant, the maximum likelihood es-
timate of ¢ would be

e _(# of points in quadrant I) (# of points in quadrant III)
= ot points in quadrant II) (# of points in quadrant IV) °

(The points wounld also appear in the same plotting position.) If the mar—
ginal probabilities do not vary a great deal, this relation suggests that
counting points in each coordinate, or just obtaining some visual impres-

sion of the counts, may give information about ¢.

In summary, residual plots for the logistic regression model do not give

M e e e g o

the strong visual indication of serial dependence that they give in ordi-

nary least squares. Information about serial dependence can be obtained
through inspection of these plots, but the most striking features of the
plots are not those that are most useful in detecting serial dependence.
Experience or careful study is needed in order to extract the desired
information. The score statistic is 8 much better indicator of serial

dependence.
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Chapter 8

Application to EKG Data

The inspiration for the serial dependence model came from work on the
autcmatic classification of heart beats by their EKG traces. In this
chapter I give a brief description of the problem. I also apply some of
the procedures developed in this paper and I mention some of the diffi-

culties that arise.

8.1 Background

In this section I give a brief description of the automatic beat classifi-

cation problem. More details are given by Ngwengwe (1984).

Examination of EKG traces can give valuable information about the likeli-

hood of future heart problems. Often life—threatening heart trouble such
as ventricular fibrillation is preceeded by milder arrhythmia. Detection l
of abnormalities can therefore aid the physician in deciding whether pre-

ventative measures are required.

Figure 8.1 shows a typical normal beat. The curve is the electrical po-
tential measured between two electrodes placed on the patient’s chest.
Each beat consists of a small P wave, a8 larger QRS complex, and a small T

wave. A physician can detect abnormal beats such as premature ventricular
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Figure 8.1. Idealized Normal Beat. This figure shows the components of a

normal beat observed without noise on a single channel.
|

| R

|

Figure 8.2. Choice of Points for Ellipse. The solid curve is the magnitude of
the signal. Only consecutive points around the peak with a magnitude at

least ten percent of the peak height are used in the ellipse calculation.

>
Points included/‘ Baseline=0
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contractions (PVC’s) by examining the EKG trace for beats that differ in
some way from this normal form. Ngwengwe studied the use of automatic

procedures for detecting abno: ~alities by computer.

This study used the MIT/BIH database. The database contains EKG measure-
ments on forty-eight patients, each about thirty minutes in length. Each
observation consists of a pair of measurements, giving the electrical
potential between two pairs of electrodes placed on the chest along

roughly perpendicular axes. Along with each trace is a set of beat loca-

tions and classifications provided by a cardiologist, so the number of
beats and the type of each beat can be considered known for the purpose of

this work.

Ngwengwe carried out a stody of the ability of variovs features of the EKG
traces to discriminate between normal heart beats and premature ventricu-

lar contractions. Among the techniques used to measure the power of each

feature as a discriminsting variable were linear discriminant analysis,

recursive partitioning, and logistic regression.

Some of the best features were suggested by a simple graphical procedure.
If the two compopents (or channels) of the EXG measurement are plotted
against each other and observed over time, they appear to trace out an
ellipse. The appearance of the ellipse is different for PVC's than for
normal beats. Ngwengwe found that features associated with this ellipse

provided excellent discrimination between normal beats and PVC's.
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Figures 8.2 and 8.3 illustrate the procedure Ngwengwe used to obtain the
ellipse features. Between ecach pair of beats is a relatively long stretch
over which the signal is roughly constant. Taking the median signal over
a long range therefore provides a “baseline” signal that can be subtracted
from the entire range. This can be done for both channels. This provides

an origin, and the distance of the two dimensional measurement from this

origin is plotted in Figure 8.2.

The bulk of the apparent ellipse consists of points in the time ramge
during which the magnitude of the signal is at least ten percemnt of its
peak value. This is the cutoff line im the figure. Only points in this
range are used in the ellipse calculation, For normal beats, this range
generally includes only points from the QRS complex. For PVC’s, on the
other hand, this criterion may cause points from the P wave or the T wave

to be included.

Figure 8.3 is a typical plot of the two components of the EKG trace. Ome
end of the ellipse contains many points, including those along the base-
line. These are excluded by the cutoff. The other points trace out the
ellipse, and the distance between these points generally increases as the

points move toward the opposite end of the ellipse.

The parameters of the ellipse can be estimated by computing the mean vec-

tor and covariance matrix for the points outside the cutoff. Because of

the closer spacing at one end of ellipse, it is necessary to weight the

points according to a scheme described by Ngwengwe. The ellipse then con-
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Figure 8.3. Ellipse Parameters. The parameters of the ellipse are estimated
by a method described by Ngwengwe (1983). Parameters used in this chapter

are the number of points in the ellipse and the coordinates of the center.

f . Center of fitted
x « ... ellipse

. . Excluded by
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sists of those points with a Mahalanobis distance from the center equal to

two.

Ngwengwe investigated the ability of the five ellipse parameters and the
number of points in the ellipse to discriminate between normal beats and

PVC's. The three measurements he found most useful are the following:

NPOINTS: the number of points in the ellipse, & measure of the width
of the beat.

XCENTER: the X coordinate of the center of the ellipse, a measure of
the height along channel 1.

YCENTER: the Y coordinate of the center of the ellipse, a measure of

the height along channel 2.

These are the features that I will use in this chapter.

8.1 Logistic regression

Various difficulties occur in trying to fit the probability of a PVC as a
function of the above features by logistic regression. For many patients
it is possible to separate the normal beats and the PVC’'s by a hyperplane
in the three dimensional feature space. In some cases a single feature,
usually NPOINTS, would separate the two beat types. This is a sign that
the features work well, but it prevents the fitting of a logistic

regression. I will refer to this as "perfect separation.”

One sssumption made in logistic regression is that observations are inde-

pendent given their covariates. This does not seem to be a reasonable
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sssumption here, and that is the subject of this section. I will apply

the techniques used in this paper to two of the patients.

The difficulties in fitting s serial dependence model exéoed those in
{ fitting an ordinary logistic regression. Clearly for those patients with
perfect separation, the serial dependence model cannot be fit. Even with-
out perfect separation, a high degree of serial dependence may lead to an

infinite odds ratio estimate.

Another difficulty is a consequence of the excellent discrimimation pro-

vided by these feastures. In many cases the fitted probability of a PVC is

near zero for normal beats and near one for PVC's., When the odds ratio is
large and two identical beat types sppear in a row, the marginal proba-
bility of the observed pair may be very close to ome. This leads to

numerical problems in the maximum likelihood computations.

Logistic regression for patient 217 produces the following estimates:

Coefficient Estimate Standard Error
, Intercept 3.946 1.242
3 NPOINTS -.1228 .03121
L ;; XCENTER -.0003469 .003575
‘ YCENTER -.1009 .01487

DT 4
. ]

The score statistic is 71/2 = 0,23419, giving a one-step odds raiio esti-
mate of 1.4850, There is perfect association, so the maximum likelihood

estimate of the odds ratio is infinite.
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To examine the effect on the coefficient estimates, I computed restricted
maximum likelihood estimates of the coefficients with the odds ratio set

at various values. The results are as follows:

Odds Ratio Intexcept NPOINTS XCENTER YCENTER

2 3.911 -.122 -.00033 -.1000

4 3.879 -.121 -.00032 -.0979

8 3.898 -.122 -.00033 -.0941

16 3.963 -.125 -.00034 -.0883

32 3.922 -.1258 -.00029 -.0825

64 3.810 ~.122 -.00023 -.0778

128 3.677 -.119 -.00018 -.0745
256 3.573 -.116 -.00018 -.0723
512 3.490 -.114 -.00020 -.0709

Throughout this range the estimates remain within one half of a standard
error of the logistic estimates, so the serial dependence does not seem to

have had any adverse consequence on the coefficient estimates.

Patient 210 is an example of a data set with perfect separation. However
if NPOINTS is not used the perfect separation disappears, so I will per-
form logistic regression using only the other two features. I do this in
order to illustrate the effect of serial dependence, but of course NPOINTS
is the best feature in this case and it should not be ignored in a search

for the best model.

.............
__________________________
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The results are as follows:

Logistic Logistic Serial Dep. Model
Coef. Estimates Std Errors Coef. Estimates
Intercept -.315 272 -.313
XCENTER .0318 .0023 .0322
YCENTER -.0288 .0039 -.0276

The score statistic is 71/2 = 1,2979, and the one-step estimate of the
odds ratio is 4,67, The maximum likelihood estimate of the odds ratio is
1.79. Here again there is not a significant difference between the logis-—
tic and maximum likelihood estimates, as measured by comparison with the

logistic standard errors.
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Chapter 9

Summary

In this chapter I give a brief summary of the paper. I also comment om
alternative models for serial dependence in binary regression and I pre-

sent some generalizations of the serial dependence model.

9.1 Suamary

In this paper I have proposed a regression model for bimary time series,

by analogy with the first order autoregressive model for normal time
series. Dependence between successive observations is measured by the
odds ratio, and this odds ratio is assumed constant over time. The pro-
cess has s Markov property, so two observations are independent given an
intervening observation. The marginal probability of [Yt=1] is a logistic
function of covariates. In the special case of independence, the odds
ratio is equal to one, and the model is equivalent to the ordinary logis-

tic model.

With this model calculations of quantities involving marginal probabili-
ties are quite simple. Calculations of joint probabilities are more com-
plicated, but they are conventiently dome by defining the quantity a; =
P[Yt=!t_1-1]. which is the solution of a quadratic equation. The param-
eters of a log linear representation for joint probabilities can be re-

lated to the parameters of this model, and the interactions terms are
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simple functions of the odds ratio. A simple expression gives the odds
ratio between observations that are not adjacent. A crude bound on the

expression proves that the model generates *-mixing sequences.

If a logistic model is fit to a process generated by the serial dependence
model, inferences about the coefficients are suspect, becanse the standard
errors of the estimates are not correct. However the closest logistic
model to any serial dependence model is the one with the same coefficients
if the distance is the Kullback-Leibler distance using the serial depen-
dence model as the true model., This suggests that the ordinary logistic

coefficient estimates ought to be consistent.

In fact the maximum likelibood estimates of the coefficients and the odds
ratio are consistent under certain conditions, and a siwulation shows no
significant difference between the logistic and the maximum likelihood co-
efficient estimates., The maximum likelihood estimates can be calculated
by Fisher's scoring method, which is equivalent to Newton's method with
the second derivative replaced by its expectation., A simple estimator for
the odds ratio is obtained by computing the ordinary logistic coefficient
estimates and the score statistic for independence, and by finding the
odds ratio for which the expected value of that statisic is the value
actually observed. This estimate performs about as well as the maximum
likelihood for moderate vilues of the odds ratio. For more extreme values

is underestimates the magnitude of the log odds ratio, but it avoids the

problem of infinite estimates.
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The score statistic for testing independence is simply the autocovariance

DIRAE o, MR

or its square root. The size and power of the test are well approximated
by the values given by large sample theory. The accuracy of these approx-
imations decreases as the odds ratio leaves the range [0.4, 2.5]. A

higher order approximation does not improve the accuracy outside this

ey AN
. AR
P

range. For any given set of covariates an empirical approzimation to the

power function can be obtained, but it is not valid for other covariates.
This suggests that the power depends on more than just the information and

the odds ratio.

If observations are missing, the contribution to the score statistic (for
testing independence) given by the dependence between observations on
either side of the gap is infinitesimal, so the terms in the statistic
must be summed over consecutive observations. An asymptotic relative
efficiency calculation shows that under some circumstances a statistician
may prefer to take a fixed number of observations spread out rather than
consecutively. However these circumstances are not likely to occur in
practical calculations, since they would require an extreme prior estimate
of the odds ratio and they might require advance knowledge of the marginal

probabilities,

Graphical displays of the residuals do not give vivid demonstration of

serial correlation here as they do in least squares. However careful

study of certain plots can be revealing.

Fitting of this model to features obtained from the MIT/BIH database of
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EKG traces is complicated by perfect or near perfect separation of the
features of normal beats and premature ventricular contractions. In ome
case with perfect association, restricted maximum likelibood estimates of
the coefficients do not vary a great deal as the odds ratio is set at
various values. In another case maximum likelihood estimation is possible
and the estimated odds ratio is 1.79. The alternative estimator gives a

higher value of 4.67.

9.2 Other models
Other models for serial dependence are possible. A direct gemeralization
of the least squares model with an autoregressive error term is the
following:

log (py/(1-py)) = X 'B + €4, €y = peg_q + Uy
where {nt} are indepenent normal random varisbles with mean zero and
common unknown variance. However this is no longer a logistic regression
model even when p=0. Under this model the sequence {p.) has a joint
logistic-normal distribution., Some properties of this distribution are
given by Aitchison and Shen (1980)., Simple expressions for the moments
are not possible, and maximum likelihood estimation of this model is

likely to be quite difficult.

A simpler model is the one used by Korn and Whittemore (1979); Y, 1 is
included as an explanatory variable for Y,. I will refer to this model as
the "lagged dependent variable” model. Under this model the conditional

rather than the marginal probabilities take the logistic form. Fitting

the model is quite simple, since it can be done by ordinmary logistic
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regression. Calculation of conditional probabilities is also simple.

As in the serial dependence model, the odds ratio between consecutive ob-
servations is constant, Since the process has a Markov property many of
the results from Chapter 2 apply to this model as well. In particular the
expression for the odds ratio between distant observations applies, and
this model also generates *-mixing sequences. It is interesting to note

that the expressions for g3 in equations [2.4] and [2.5] involve the

quantity uy(3), & parameter in the log linear representation for the joint
probabilities of three observations. These joint probabilities cannot be
determined under the lagged dependent variable model, because the marginal
probability of the first observation is unspecified. However the condi-

tional probabilities are sufficient to calculate Uy(1)°

Any proof of the consistency and asymptotic normality of maximum likeli-
hood estimates that is valid for lomngitudinal data is not likely to apply
under the conditions sssumed in this paper. However a proof of comsis-—
tency along the lines of the ome in Chapter 4 may be possible given the

$-mixing property.

Calculation of marginal probabilities is difficult under the lagged depen-
dent variable model. In particular the marginal distribution of Y1 is not
determined by the conditions I have stated; it requires a specified prior,
or an assumed value or prior for Y;. Then the marginal distribution at

each time is determined. Unfortunately calculating the marginal distribu-

tion at time t requires summing over all possible values of Y'. s{t.
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9.3 Generalizations

The serial dependence model consists of two compoments: the relationship
between the covariates and the marginal probabilities, and the serial

dependence. Both of these could be generalized.

The logistic model is perhaps the most common binary regression model, but
other models are possible. Most take the form p, = F(X 'B), where F(.)
is some continuous cumulative distribution function., This is the most
general model for which Py is a continvous monotone function of xt'p and

for which py approaches zero or one as X,'B approaches plus or minus

infinity. Common choices for F, aside from the logistic, are the normal,

extreme value, and uniform.

The analysis here could be repeated for these models. Some of the re-
sults, such as the ®*-mixing property, depend only on the dependence and

not on the form of F, These results apply for amy choice of F.

The odds ratio does not extend to higher dimensions. But from Chapter 2,
the constant odds ratio condition can be restated as follows: for all t,

log PIY,_;=i,Y,=5] = u(t) + -DI*a (0) + (D)3, (e) + (-1)1ta,,,
where u;, is not a function of t. This suggests the following second or-
der model, with the plus or minus sign taken as appropriate to the usual
log linear model convention:

log PIY, ,=i,Y, ;=j.Y,=k] = u(t) * u;(t) T uy(t) ¥ ug(t)

*

+ + +
U912 © U23 - U313 ~ U323
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HBere the final four terms are not functions of time. It may make sense to

require uvy,=uy3, snd the special case n123=0 may also be interesting.

Higher order generalizations can be defined similarly.
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the joint probabilities and the odds ratio between observations
separated in time. The model is shown to generate*-mixing processes.

A score test is derived in order to test for independence
after performing an ordinary logistic regression, and properties of
this test are explored. The effects of missing data on the score test
and on estimation of the odds ratio (with known coefficients) are
presented. '

The model is applied to the problem of automatic classification
of EKG data based on feature extraction. A positive serial dependence
is found in the examples presented.
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