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I. INTRODUCTION

This final report for the Science Applications
International Corporation (SAIC) contract "Dynamics of High
Temperature Plasmas", contract number N00014-83-C-2138,
covers the technical period 15 March 1983 to 1 August 1985.
We present tbe results of studies in several topics of
importance for the understanding of high temperature
plasmas, performed in support of prbgrams of the Plasma
Theory Branch (CODE 4790) of the Plasma Physics Division at

the Naval Research Laboratory (NRL).

In the -following sections we describe briefly the tasks
performed. Deiails are included in the various Apéeﬁdices
to this réport. The topics discussed include: II. Envelope
Model for Beam Transport and Focusing in An Induction Linac,
IIT. High Current Accelerators (A), IV. Free-Electron Laser
Studies, V. High Current Accelerators (B), VI. Laser Beat
Wave Particle Acceleration, VII. Orbitron Maser Design,
VIII. Electron Beam Stability in the Modified Betatron, IX.
Relativistic Electron Beam Diode Design, and X. Free

Electron Laser Applications to XUV Production and Particle

Acceleration.
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II. ENVELOPE MODEL._FOR BEAM TRANSPORT AND FOCUS ING

IN AN INDUCTION LINAC

The NBS induction 1linear accelerator produces an
electron beam of energy 800 kev (v=2.5), beam current Ip=800
A, beam radius rp=0.5 cm, and beam pulsewidth 7p=2 us.
Experiments at NRL have used this beam to drive a
free-electron laser, where the wiggler field is By=0.1-1.0
kG, the straight section is L4=60 cm, the wiggler wavelength
is A\w=3 cm, and the solenoidal focusing field is By=1-5 kG.
With these parameters, peak output power =60 MW is possible
with a theoretical efficiency =10%, at an output wavelength

of A=3-4 mm (A=\y/272).

To realize these goals, it is necessary to transport the

electron beam through the induction linac and match it to
the FEL wiggler. FIgure 1 shown a schematic drawing of the

induction 1linac, showing the graded diode region, the

locations of the seven focusing coils, the two accelerating

gaps, and the iron cores of the induction moduieé. Figure 2
illustrates the FEL configuration with its solenoidal
focusing and wiggler fields. The last (seventh) focusing
coil of the induction linac is also shown on the figure, as
well as a plot of the wiggler field on-axis. Three
different approaches to the transport problem have been

utilized:
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o SLAC Gun code -- S. Slinker,

0o Numerical Simulation -- Austin Research Associates
(ARA),
0 Beam Envelope Calculations -- this report

The beam envelope equation may be expressed as

R' + n®rR - U/R - en’/R3 = 0,

where

2

a? = vy 2(2+v2)/(48%*) + nn;/(4n’7’c’)

U = 28v/y?

gy = IbckA1/17

= = 5
€.~ Bve = O.Z(Ib[kA])

R = (B‘r)”rb

vy = dv/dz = -IelEz(z)/mcz
= 2

noz' Iele(z)/mc

This equation will apply under the assumption that the
canonical angular momentum (Pg) of the electrons is =zero,
the transverse density and current density of the beam are
uniform, the beam and fields are axisymmetric (4,/36 = 0),
the axial fields are independent of r, and the radial fields
are linear in r. In addition, the paraxial approximation,

lvzl >> lval, is used for the beam. The radial fields are

......
] -

Nt e e T e e b L L Lt e e
_“.)-\.(_..r_ ‘.‘.'-‘ e d..'t" N N ‘e
, R A £

.......

L

%]

. td,
= I




lIlllIIllllIIIIlIIllIIllIllIIIIIIllI-l-lIllIIl-lI-I-Il-l--uu--u-u--h--n-v’
; .
]
b
E
® expressed as
E = -(r/2)E,"+ {self-flelds]
® Br= -(r/2)Bz'
When the fields have no 2 dependance, as inside a long
solenoid, the equilibrium envelope equation, R" = 0, may be
¢
solved for the equilibrium beam radius,
p
- 2 2_ 2 ,.2.%
o Ty,eq = (1/78) (U/20%) {1 +11 + 4n%e_?/u*1%)
Small oscillations of the beam radius about this equilibrium
4
) can occur with the frequency, w, given by
o
2_ 2 2 2 4
w'= N+ U/Req + 3en /Req
° Given a solution of the envelope equation, it is
possible to generate “sub-envelopes”, which correspond to
nested beam ellipses in phase space, ie. to ellipses with x’
. and x scaled in the same ratio as in the original ellipse.
®©
For these ellipses, I/€ will ve invariant, since I ~ x2 and
€ ~xx' and x ~ x'. The sub-envelope solutions can be used
; to determine the acceptance of any aperture in the
L
beam-1line.
b
{ If the beam is adiabatically compressed by a
- longitudinal magnetic field, its envelope will follow a flux
|
surface, given by r2?B; = constant. Unfortunately, the field




Py coils of the inductior linac do not readily lend themselves
] to this simple solution.

The accelerating gaps of the induction 1linac are

PY modeled as sections of pipe of length L and radius a with a
gap (of width d) located at L/2. The axial electric field
is assumed to vanish at 2z=0 and z=L, as well as along the
P pipe wall. In the gap the Ez field at r=a is assumed to be
uniform, E;. The E; field may then be expressed as

. E, = £, A.(r) sin(k z) ,

where kn = nw/L,

) A (3)

(2Eod/L)[sin(knd/2)/(knd/2)]sin(nn/Z) s

and

An(r) An(a) In(knr)/Io(kna)

The on-axis field due to each field coil is calculated
from a simple prescription. Let the coil have inner radius
® r,, outer radius r,, length 2¢, and be centered at z,. The

field at the center of such a coil is given by

!

Bz(zo) NIP(a,B)/[ZrLB(a-l)] s

I}

F(a,8) (4na/10)zn{ta+¢"(a’+n’)1/[1+¢‘(1+a’)1} ,

where a=r,/r,, B=t/r;, N is the number of turns (assumed
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uniformly wound), and I is the current per turn in Amperes.
Since the on-axis field at the center of a uniform coil must
be due to equal contributions from each half of the coil,
the on-axis field at the end of a coil is just half the
field at the center of an identically-constructed coil with
twice the length. The field at any on-axis location, 2z, may
then be found by a superposition of end fields of coils
having positive and negative current, as shown in Figure 3,

to obtain

B,(z) = NI[F(a,B+;)+F(a,B—E)]/[4r18(a-1)] ,

where Z = lz-24l/r,. Figure 4 shows the field due to each
of the seven c¢oils in the,indhction linac. The solid line
is the experimentally measured field strength on axis, while
the dots are the calculated field. The agreement is very
good, ekcept for coil #4, which is located close to the
induction cores, and is therefore more sensitive to the
magnetization of the cores.

To correct for the magnetization of the cores, the
magnetic field on axis was measured with no coils energized,
after running the field coils for some time. The resulting
residual Bz profile on-axis is shown in Figure 5. This
field has been digitized and is used as a correction for the

magnetic field in the envelope equations.

Figure 6 shows the complete on-axis field profile used
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Y in the code, including a nominally 2 kG solenoid in the
wiggler region. Each field coil in the model is treated as
a module so that once the fields have been calculated, it
e becomes a simple matter to redo the calculation with
particular coils shifted along the axis.
The solution of the envelope equation for this field %
o profile is shown in Figure 7. The axial locations of the
field coils is shown at the top of the figure. For this run
a 400 keV beam was injected and a single gap was energized
° with 300 kV, at the position marked by "G". The wall of the
guide tube is also shown on the figufe. (Note that the
scales of the R and Z axes distort the shape of the wall). ' {
® The envelope solution is also plotted, and displays some
rather violent oscillations before entering the wiggler
region. These results used r’'=0 as the initial condition at
® the anode plane.
The ARA simulations have been used to model the diode
region, and to obtain the entrance angle, r’, for
& initializing the envelope equations. The envelope in this
case (shown 1in Figure 8) displays oscillations which
qualitatively agree with those in the simulation. The outer 1
- beam envelope hits the wall near the first gap, where the
» ARA simulation calculates a scrape-off of 135 A of the 718 A
beam current. i
'. It is also possible to initialize a matched beam in the i
|
|
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wiggler solenoid, and to propagale Lhe envelope backward,
from right to left, as shown in Figure 9 for a beam with ep
= 0.260 rad-cm and req=0.704 cm in the wiggler solenoid. In
this case, the code determines the radial location and angle
at which the beam arrives at the anode plane. Since the
beam angle at the anode is difficult to control experi-
mentally, however, this approach proved of little benefit.
The experimental parameters and measurements used in
this model were suppled by‘ R. Lucey, often after making
measurements specifically for this purpose. The code was
transferred to the FEL experimenters (Lucey and Pasour) who
used it as a tool in adjusting the focusing system to guide

the beam to their FEL.}!
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III. HIGH-CURRENT ACCELERATORS (A)

The NRL Advanced Accelerator Project has embarked on
the task of developing a compact, high-current (~10 KkA)
accelerator. The first effort in this direction 1is the
modified betatron accelerator, which 1is a conventional
betatron focusing system, augmented by a toroidal magnetic
field to control the self-forces of an intense electron
beam. In parallel with the mainline program on the modified

betatron, NRL has supported a modest effort to explore other

configurations,' such as the racetrack induction
accelerator?, the stellatron3?, and the bumpy-torus
betatron®. These alternative approaches have in common the

use of strong-focusing fields to increase the tolerance of
the accelerator to mismatch between the vertical magnetic
field and the electron energy. In the 1language of
accelerator designers, the strong focusing increases the
"momentum compaction” of the accelerator, where the momentum
compaction is the ratio of momentum mismatch to beam
displacement. We describe this property of the
strong-focused accelerator in terms of the tolerance
"bandwidth", which is the relative energy (or momentum)
mismatch which can be tolerated before a beam initialized on
the accelerator reference orbit will hit the inner wall of

the vacuum vessel. For weak-focused accelerators, such as

............................................

..........................
-----------------------------------------




the betatron or the modified betatron, the bandwidth is

approximately

av/vy = a/(4r )

where a/r, is the inverse aspect ratio of the torus. For
a/rg~0.1, the bandwidth 1is approximately 2.5%. The
strong-focused accelerators, on the other hand, can readily
achieve bandwidth in excess of 50%. Although it is possible
to use this property of strong-focused accelerators to
design fixed-field focusing systems operating at very large
mismatch (21000%)%, such devices will be limited to modest
beam energy and relatively poor beam quality. The addition
of strong focusing fields to a betatron configuration will
enhance the bandwidth of that accelerator while operating
near a matched field conditon. The enhanced bandwidth, in
turn, relaxes costly requirements on field uniformity,
injector ripple and shot-to-shot reproducibility.
Recognizing these potential advantages of strong-focused
betatrons, two types of strong-focusing fields have been
investigated in some detail, with research papers reprinted
as appendices to this final report. The first configuration
is the £=2 stellarator field, which is a rotating quadrupole
field, analogous to alternate-gradient strong-focusing
configurations used in most high-energy synchrotrons. The

second configuration is a bumpy-torus field, which is an 2=0

19
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stellarator configuration. Both of these configurations
provide an alternating transverse magnetic gradient at the
beam reference orbit; the alternating transverse gradient is
the defining characteristic of a strong-focused accelerator.
All other ft-number stellarator fields are weak-focusing.

The research papers in Appendices A and B demonstrate
the single-particle orbit stability of these configurations
and show that enhanced bandwidth (250%) can be obtained for

reasonable focusing field strength. They are titled,

respectively, "High current Betatron with Stellarator
Fields", C. W. Roberson, A.A. Mondelli, and D. Chernin,
Phys. Rev. Lett. 506, .507 (1983) and "A Bumpy-Torus
Betatroh“, D. Chernin, A Mondelli, and C. Roberson, Phys.

Fluids 27, 2378 (1984).
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IV. FREE~-ELECTRON LASER STUDIES

Analysis of the Free Electron Laser (FEL) has proceeded
on a number of levels and included analyses both of the

linear gain and nonlinear efficiency in both one and

e

three-dimensions. The fundamental configuration analyzed

A

describes the propagation of a relativistic electron beam ?
through a combined helical wiggler and axial guide magnetic k

field. Of particular interest is the effect of the axial

guide magnetic field on the FEL interaction, since this is
the configuration relevant to the experimental program at
the Naval Research Laboratory. This work has been described

in Appendices C ("Design and Operation of  Collective

Millimeter-Wave Free-Electron Laser, J. Quantum Elect.
QE-19, 346 (1983)) and D ("Study of Gain, Bandwidth, and
Tunability of a Millimeter-wave Free-Electron Laser
Operating in tﬁe Collective Regime", Phys. Fluids 26, 2683
(1983)).

Previous analysis of the linear growth rate of the FEL

in one-dimension showed substantial enhancements possible

y
3
‘4
K
1
K
-
N
E
3
E

due to a resonant interaction in the presence of an axial
guide field. This occured when the Larmor period due to the

axial magnetic field approached the wiggler period. 1In view

GNP/ N LT

of this result, a one-dimensional particle simulation code

was developed to study the nonlinear aspects of the

R | .‘ﬂt e e
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interaction with the goal of determining saturated power
levels for an FEL amplifier. Results of the nonlinear
analysis showed substantial enhancements to be possible in
the presence of an axial guide field. For the model
parameters chosen, efficiency enhancements of greater than
100% over the zero-guide field limit were found. Details of
this work are included in Appendix E of this report titled
"Nonlinear Analysis of Free-Electron Amplifiers with Axial
Guide Fields", Phys. Rev. A 27, 1977 (1983).

An anomalous effect on the electrostatic beam
space-charge has also been demonstrated in the presence of
an axial .guide field. In the collective Raman regime the
FEL interaction procceds by an induced scattering of the
wiggler field (which appears as an electromagnetic wave in
the electron beam frame) and a slow space-charge wave to
produce the output radiation. This is a three-wave
scattering process. In the absence of an axial guide field,
the beam space-charge waves are stable. However, it has
been shown that the presence of a strong axial guide
magnetic field can drive the electrostatic space-charge
modes unstable due to a negative-mass type of effect. This
can have profound consequences for the FEL interaction, and
experimental observations (see Appendix C) show peak output

powers precisely in the unstable space-charge wave regime.

This work is given in detail in Appendix F, titled "Unstable
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Electrostatic Beam Modes in Free-Electron Laser Systems”,
Phys. Rev. A 28, 1835 (1983).

Having completed the analysis of both the linear and
nonlinegr phases of the FEL interaction in one-dimension in
the presence of an axial guide field, attention turned to
the inclusion of three-dimensional effects on the
interaction. To this end, analyses of the linear gain were
conducted during the contract period for a configuration
which consists of the propagation of a relativistic electron
beam through a 1loss-free c¢ylindrical waveguide in the
presence of helical wiggler énd axial guide magnetic fields.
The analysis was performed in both the low-gain Compton and
high-gain collective regimeg, and included the effect of the
overlap of the electron beam and the waveguide modes (i.e.,
the filling factor) in a self-consistent manner. As in the
one-dimensional case, substantial enhancements in the linear
gain were found to result from the presence of the axial
guide field. The low-gain Compton regime is documented in
Appendix G, "Three-Dimensional Theory of Free-Electron
Lasers with an Axial Guide Field", J. Quantum Elec. QE-19,
322 (1983). The high-gain collective regime is found in
Appendix H, "Three-Dimensional Theory of the Free-Electron
Laser in the Collective Regime", Phys. Rev. A 28, 3438
(1983).

Finally, an important application of the theory,
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P developed during the contract period, was to the design and
interpretation of experimental results obtained by the FEL 1
amplifier experiment in Code 4740 at the Naval Research

® Laboratory. This work is described in more detail in the a

previously referenced Appendices C and D. i
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V. HIGH CURRENT ACCELERATORS (B)

High energy accelerators that can produce high current

electron beams are rapidly becoming an active area of .

research. Among the various schemes of  acceleration,
induction accelerators are the most promising. They are
inherently low impedance devices and are thus suited to
drive high current beams. Induction accelerators are
divided into linear and cyclic. In both cyclic and linear
devices, the acceleration process is based on the inductiQe
electric field produced by a time varying magnetic field.
In the linear accelerators, the total change in flux occurs
in one transit time, typically in less than 100 nsec, while
in cyclic accelerators the same change occurs over several
thousand revolutions in a typical time of one msec.

As a consequence of the slow acceleration, the
accelerated beam must be confined by the focusing magnetic
field over 1long periods of time and, thus, field errors,
instabilities and radiation losses pose limitations on the
cyclic accelerators. These limitations can be substantialy
relaxed if the acceleration could occur rapidly as in the
linear accelerators. A device has been proposed that
conbines the rapid acceleration of the linear accelerators
and the compactness in size of the cyclic accelerators. It

has been named REBA-TRON (Rapid Electron Beam Accelerator).
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.................

.« LN
NI
D 3 T N A e

----



N

- w Ml oo San aar ik Bk deae den Sea s g0 Ban den B Soa e

An extensive numerical and analytical investigation has
been carried out on the beam dynamics of Lhe rebatron
accelerator. The acceleration occurs by a localized, high
gradient electric field produced by convoluted parallel
transmission lines, and beam confinement is achieved by a
strong focusing torsatron magnetic field. The study
indicates that both the bandwidth and the maximum electron
beam current that can be confined by this device 1is
remarkably high. Details can be found in Appendix I, "Rapid
Electron Beam Accelerators (REBA-TRONS)", NRL Memorandum

Report 5503.

N
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VI. LASER BEAT WAVE PARTICLE ACCELERATION

The acceleration of charged particles to high energy by
"collective" fields in a plasma or in non-neutral particle
rings has been pursued vigorously for some time. The
promise of the delivery of high power (= 10!¢ watts) by
modern lasers is a great inducement to generate schemes
which could avail this power for accelerating bursts of
particles to energies in the TeV range and beyond. It is

also becoming apparent that the very suécessful schemes of

particle acceleration in current use may not be able to push
particle energy much above the TEV level without an enormous
i. ' amplification in cost. Thus the combination of a need for

{ superhigh energies and the availability of high powered

lasers spawned a recent LANL workshop on "Laser
1 L]
e Acceleration

One of the concepts presented at the workshop was a

proposal by Tajima and Dawson. Two plane laser waves with
Y frequencies w; and w;, well in excess of the electron plasma

frequency, wp, beat with each other to produce a plasma wave
' of frequency w,-w; = wp and wavelength k,-k, = kp. It is
- assumed that the amplitude of the beat wave saturates only

by accelerating and trapping a sizeable fraction of the

plasma electrons. Elementary estimates yield a saturated
. amplitude, as measured in the laboratory frame, to be Ep =
¢ 27




(mc/e)wp or Eg/4n = nemec?, where ne is the ambient electron
density. This very substantial electric field (10%v/cm for
Nne ~ 10 cm™3) can be employed for accelerating ions or
electrons and the proposal contains optimistic scenarios by
which a phased sequence of acceleration (up to 10%) could
get proton energy to 10l4ev.
Unfortunately a plasma supports an uncomfortably large
number of collective modes and although a particular
sequence of interaction between some modes may be postulated
for some process, in general, it is necessary to show that
the sum of all other possible interactions is not
significant for the success of that particular process. In
what follows we ocutline the following possible limitations
imposed on the Tajima-Dawson scheme. They include
(1) The finite transverse dimensions of the
laser-plasma interaction region, finite coherence
time and finite correlation length of the laser
beams .

(2) The inhomogeneity of the plasma density.

(3) The effect of the magnetic field caused by current

created by the accelerated electrons.
(4) The depletion of the beat wave energy through other
channels, typically through the parametric pumping

of short wavelength electron and ion fluctuations.

28




@
Py (5) The generation.of ion sound caused by electron
drifts.
(6) The scattering of laser waves on such ion sound
e waves, the so-called Brillouin scattering.
(7) The actual requirements on phasing for ion
acceleration.
@
What emerges from this anlysis 1is that although the
interactions postulated by Tajima and Dawson do occur the
® bulk of laser wave energy will be transferred to heating the
plasma with concomitant drop in.the efficiency of electron
acceleration. We make no comment on techniques for ion
® accleration by beat waves because the development of_ this
aspect of the proposal has not proceeded beyond the s'tage of
elementary wishful thinking. As a first step in the
P investigation of the above -issues we have published two
papers, "Excitation of the Plasma Waves in the Laser Beat
Wave Accelerator,"” Appl. Phys. Lett. 45, 375 (1984) and
® *"Dynamics of Space-Charge Waves in the Laser Beat Wave
Accelerator", Phys. Fluids 28, 1974 (1985). These papers
are reproduced in this report as Appendix J and Appendix K
o respectively.
L
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VII. ORBITRON MASER DESIGN

In this work we have developed a device concept based on
the orbitron mechanism, originally seen experimentally by
Alexeff. We have also carried out extensive linear theory
analysis to obtain growth lengths for amplifier
configurations and thresholds for start oscillation for
oscillators. Our device concept, the orbitron maser, is
similar to an electron cyclotron maser that uses axis
encircling-electron orbits. However, an orbitron employs an
electric field to radially confine the electrons; instead of
a magnetic field. The device has a coaxial cylindrical
geometry with the inner .conductor held at a _positive
potential with respect to the outer conductor, as:shown in
Figure 10. The advantage of such a device is that, like the
gyrotron, it can produce very short wavelength waves (e.g.
A~1lmm or less) but it does not require a large magnetic
field. Thus the device can potentially be much cheaper and
more compact. A paper based on this work is in preparation

with W. Manheimer and J. Burk.
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VIII. ELECTRON BEAM STABILITY IN THE MODIFIED BETATRON

In the modified betatron application, previous work? has
shown that m = 2 resistive wall modes can be very dangerous
(m = poloidal mode number). However, that analysis was for
zero Larmor radius particles. The question arises as to
whether finite Larmor radius (FLR) effects will stabilize
these modes. In order to gain insight on the general
question of FLR effects on modes of this type we have done a
treatment, not of the cylindrical geometry resistive wall
mode, but rather of a simpler more analyticélly tractable
probiem: namely, FLR effects on diocotron modes in slab
geometry. The indication of the results of this analysis is
that FLR effects are ineffective in achiéving stabilization
of such modes. The basic problem considered was that of the
diocotron instability of an electron layer in which the
typical electron is allowed to have a Larmor radius of the
order of the layer thickness. The principal results of the

analysis are:

(1) An integral equation eigenvalue problem for
the Fourier transform of the electrostatic
potential is formulated.

(2) An exact analytical solution to the full

problem is given for a special case which,
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P (3)

(4)

however, is general enough to encompass the
full range of ratios of Larmor radius to layer
thickness and of Larmor radius to wavelength.
We believe that the results obtained for this
special éase are representative of what
happens in general.

Using the results of the analytical solution
we find the following: (a) Finite Larmor
radius does not stabilize a beam wherein the
guiding centers are localized (i.e., A& = 0,
where A is the half-thickness of the guiding
center spread), and instability persists at
all wavelengths, although the growth rates are
reducéd. (b) Beams of fixed thickness & =
2(a+p) (where p is the Larmor radius) are
destabilized by increasing the relative
fraction 2p/86 of beam thickness due to
gyroradius. (c) For a beam of fixed guiding
center spread A, increasing p is stabilizing,
in that the growth rates are reduced and the
range of unstable wavenumber becomes smaller.
A necessary and sufficient condition for
instability in the form of an energy principle

is derived for the case of a general symmetric

distribution of guiding centers that decreases
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monotonically away from the center of the
layer.
(5) As in the case of zero Larmor radius, the

- diocotron instability occurs only if the

@

component of the propagation direction along
the magnetic field is 1less than a certain
'-,. small critical value.
_ The paper resulting from this study is titled "Finite
'.' Larmor Radius Diocotron Instability", Phys. Fluids 28, 941

(1985) and is included here és Appendix L.
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IX RELATIVISTIC ELECTRON BEAM DIODE DESIGN

In collaboration with Drs. A. Fliflet and W. Manheimer

we have developed several one dimensional methods to aid in
the design of diodes for the production of high current
relativistic electron beams for gyrotron applications.
These methods are (1) relativistic slab model with or
without self By, (ii) non-relativistic conical model without
self Bg, (iii) superrelativistic conical model with or
without self Bg. These methods, together with electrode
synthesis, were used to obtain approximate designs for two
diodes. The diodes produce 1 MV beams with 2 kA in a field
around 2 kg, to be magnetically compressed to form a 1 GW
beam for a 35 GHz gyrotron oscillator. The Hermannsfeldt
code was used to refine the design to produce a beam with
these parameters and a relatively flat a = p./pax profile.
These results are summarized in the enclosed manuscript "One
Dimensional Models for Relativistic Electron Beam Design"” to
be submitted for publication. This paper is included here as
Appendix M.

We have begun a collaboration with Drs. W. Manheimer and
S. McDonald to study the eigenmodes of slotted vacuum
gyrotron cavities. The purpose of this study is to find a
cavity design that allows only one mode, i.e., has a high Q

for that mode and rather low Q for all others. We have

35
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begun to develop a numerical code to solve the Helmholtz
equation in c¢ylindrical geometry for TE or TM modes for
arbitrarily shaped (open or closed) cross section. The
computational method is based on a boundary-layer integral
formulation of the wave equation; this has the advantage
that only the boundary needs to be discretized (a
one-dimensional set, as opposed to the two-dimensional
interior discretized by standard finite-difference schemes).
‘Furthermore, outgoing wave boundary conditions are
automatically included in the free-space Green's function
used 1in thé boundary integral formulation. We have also
proved that the response in such a cavity to an arbitrary
‘beam interaction can be represented in terms of these damped
-eigenfunctions. To date, the code has been tested for thé
interior and the exterior of a circle and good agreement was
found. The code has been modified to treat walls that
consist of segments of elliptic cyiinders displaced by an
arbitrary amount and with a gap of arbitrary size.
Preliminary runs have been performed to determine the Q of
several TE modes that occur in the same frequency range,

namely the (m,n) = (1,4), (3,3), and (6,2) modes.

36
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X FREE ELECTRON LASER APPLICATIONS TO XUV

PRODUCTION AND PARTICLE ACCELERATION

‘- During this period we have performed studies of the
theory of Free Electron Lasers (FEL) and their applications

to the production of XUV electromagnetic radiation and

s particle acceleration to high energy. In the following we
descfibe the work done on each of these three subjects.
These works are clearly interrelated, and results obtained
in one area can often be useful in the other. |
The research on FEL's has made remarkable progress
during the last few years. Very exciting results have been
® obtained both theoretically and experimentally. Good
égreement exists between the theory and the experiments
performed up to now. The technology needed for FEL
P development is also making rapid progress. All this leads
us to explore new areas of applications, such as FEL's
operating at ‘short wavelength, in the XUV region of the
. spectrum, where commercial lasers are not |presently
available and few experimental systems have been operated,
at only a few wavelengths and with very low power.
We have studied the scaling laws for operation of an
FEL in the XUV region and they compare favorably with those

of other possible laser systems. The main requirements for

operation of an FEL in the XUV region are: small electron




beam emittance, small energy spread, and large current for a
large FEL gain.

The electron beam emittance must be smaller or on the
order of the wavelength that one wants to produce.
Analyzing the beam emittance produced by present day
accelerators, one comes to the conclusion that the only
accelerator that one can use for wavelengths shorter than
100nm is a storage ring. This has led us to the study of
electron storage rings® and the emittance 1limitations in
this system. The first results obtained show that it is
possible to design rings optimized for FEL's applications,
with an emittance small enough to reach FEL operation at
about 10nm.

It is important to notice that the same minimum
emittance requirement is also needed for the next generation
of synchrotron radia;ion sou}ces, and for the linear
colliders which are now being studied to push the high
energy physics frontier in the TeV region.

To analyse the large gain regime of an FEL we have used
the theory developed recently by Bonifacio, Pellegrini and
Narducci, Optics Communications 50, 373 (1984) entitled,
"Collective Instabilities and High-Gain Regime in a Pree
Electron Laser"™, and included here as Appendix N. These
results allow us to express both the gain parameter and the

condition on the beam energy spread using only one quantity,
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p, related to the relativistic beam plasma frequency and the
radiation wavelength. A calculation of this quantity, based
on the use of a 750 MeV storage ring to provide the electron
beam, shows that one can expect gains larger than 100% per
pass in a storage ring based FEL oscillator, down to
wavelengths of aboutilonm.

One problem in the successful operation of such an
oscillator is posed by the optical cavity mirrors, which
must have a reflectivity not smaller than 50% per reflection
and be capable of withstanding strong incoherent synchrotron
radiation produced by the undulator without a reflectivity
degradation. We have proposed and studied a possible
alternative to the oscillator, the operation of an FEL in
the Self Amplified Spontaneous Emission mode. These results
are given in detail in Appendix O entitled "Free Electron
Lasers for the XUV Spectral Region" and have been published
in Nucl. Instr. and Meth. A237, 159 (1985). This mode
requires the use of a long undulator, with a few hundred
periods, based in a storage ring bypass. Its main
advantages are the absence of optical elements and the
possibility of obtaining large peak power, on the order of
several MW, in the 10 to 100 nm region.

As discussed in the previous section we  have
reformulated the FEL theory in a form well suited to the

discussion of high gain experiments. This formulation has
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allowed us to introduce a single parameter that must ke
optimized in the design of the storage ring driving the FEL
and has thus allowed a better ring design. We have also
started the anglysis of other theoretical problems important
in defining the characteristics of the radiation produced in
the SASE mode, such as the laser startup from noise and the
coherence properties of the radiation produced. The work on
these problems is still in an initial stage and will re
further study.

The FEL can also be used to accelerate particles?. When
used in this mode we call it the Inverse Free Electron Laser
(IFEL). The question of whether the IFEL can be used to
accelerate electrons in the hundred GeV region has been
recently studied (9,10) and it has been shown that this 1s
possible using a laser waveguide to propagate and keep
focused a higﬁ power laser beam. We have done studies on
the éharacteristics of this waveguide and the possible
tolerances on imperfections and construction errors. The
results show that the waveguide needs to be built to quality
optical standards and that if this can be done one can
propagate a high power laser beam in the guide over a
distance of the order of kilometers with negligible losses.
The work on this problem is continuing, in particular to

study the region where the laser beam enters the guide.

Work has also continued to study the dynamics of the
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particles in the IFEL, with particular attention to the
problem of optimum undulator design to maximize the
acceleration rate and of emittance scaling with energy.
Optimum undulator design leads to an accelerator rate on the
order of 250 MeV/m, up to an energy of about 300 GeV. At
higher energy the synchrotron radiation losses produced by
the wiggling particle motion in the undulator, reduces the
acceleration rate to lower values. The emittance scaling
with energy offers interesting possibilities for producing
high energy-low emittance beams by proper undulator design.
This opens the possibility of using the IFEL as an injector
for a TeV, high luminosity electron-positron collider
system.

We can summarize the previous discussion, by 1listing
the main topics on which we have worked, in the three areas
of FEL theory, FEL operation in the XUV region, amd IFEL
accelerator concepts.

(a) FEL theory: high gain regime, collective FEL
instability, non linear saturation regime,
radiation self-focusing and diffraction effects,
FEL start-up from noise, coherence properties of
the radiation.

(b) FEL in the XUV region: scaling laws, Self Amplified
Spontaneous Emission operation mode, storage ring

for XUV-FEL, limitations on storage ring emittance

..........
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® and energy spread, design of storage rings for
FEL's, effect of multiple Touschek scattering on
storage ring emittance.

® ] (c) 1IFEL: scaling laws for acceleration rate, system
design for maximum acceleration rate, laser
waveguide design, laser waveguide error tolerances,

® longitudinal emittance scaling laws.

®
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High-Current Betatron with Stellarator Fields
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By adding an I =2 stellarator field to a betatron accelerator, a new configuration is ob~
tained which is capable of accelerating multikiloamp beams and which will tolerate a large
(more than 50%) mismatch between the particle energy and the vertical magnetic fleld. The
additional field is a twisted quadrupole which acts as a strong-focusing system. This de-
vice has been analyzed both analytically and numerically.

PACS numbers: 52.75.Di, 29.20.Fj

Conventional betatrons*-? are current limited at
injection. Recently, efforts have been made to ex-
tend the current-carrying capability of the beta-
tron. For example, the plasma betatron® employs
a toroidal magnetic-field in the direction of the
particle orbit to contain the plasma. Current in-
terest is focused on high-current nonneutral
electron acceleration in modified betatrons.*™®

By adding a stellarator field to a cyclic accel-
erator, a strong-focusing system’ is obtained
which can sustain high currents and large mis-
match between particle energy and vertical field.
The energy bandwidth relaxes the design require-
ments for the injector and the magnetic field sys-
tem.' Unlike fixed-field alternating-gradient beta-
trons,® the stellarator-betatron (or stellatron) in-
cludes a strong toroidal field to confine very high
currents. Figure 1 shows a sketch of the stel-
latron configuration,

We have quantitatively studied the stellatron
configuration. Our studies have consisted of nu-
merical and single-particle orbit calculations,
as well as analytical linearized orbit theory, in-
cluding the beam self-fields.

We may study the behavior of an intense elec-
tron beam in the stellatron quantitatively by con-
sidering small departures from a “reference
orbit,” a circle located at the null point in the
quadrupole field, at r =r,, 2=0, Here and below
we use a cylindrical (r,0,z) coordinate system
with origin at the center of the torus’s major
cross section. Quantities evaluated at the ref-
erence orbit will carry a subscript 0 below; de-
partures from this orbit will carry a subscript 1.

The twisted quadrupole field, of period 27/m,
then is written as

B, = kB, (-7, sinmb +z, cosmb),

(1)
B,=kB,(r cosm8+z,8inm8), Bg=Bg,,

where k,B,,B, are constants, and the betatron
field is

Brg-nBtozx/ro, B,EB,O[I-n(rl/ro)], (2)

where B, is the vertical field at the reference
orbit and n is the usual field index.

We consider the motion of an electron located
within a beam whose center is located at r =7,
+Ar, z=Az; the electron’s position is r =7,
+Ar+8r=r,+r,, 2=02+08z22,, Using a cylin-
drical approximation for the beam self-fields, we

Betatron
Field

Stellarator
Field

FIG. 1. Stellatron configuration.
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find
v 2 1w,? r? ¥,02 2. .
F +Q, 1 -n+ucosmbyr, - 3 —Ly =~ or + . Ar) = Y—-Lor = (uQ 2 sinmb)z, + Qo 2,), (3a)
0 0
. 2 1w,? r,? .
2, +0,.*n - ucosmb)z, - i-;’;(bz +;'5- Az) = = (U, 2 sinmb)r, - Q4 7,, (3b)
[+}

0,==(r /7o),

where Q,=eB,,/my., v, is the relativistic factor
for the reference orbit, w,?=4me?/my,, n, is
the beam number density, », is the minor radius
of the beam, a is the minor radius of the (perfect-
ly conducting) chamber, and u=kr,B,/B,,.

By performing a formal ensemble average of
(3a)-(3c) one may find equations governing single-
particle motion and that of the beam centroid.
Details will be published elsewhere. By changing
the independent variable from ¢ to §, and making
the transformation & =(r,+iZ,)/r, =% exp(im6/2),
one obtains an equation for ¥ which may be solved
in the special case, n=1, with the following re-
sults.

Particle motion is oscillatory (under certain
conditions; see below) about a center located at

5 T A-@)
v, Ry, +udm2emb-n,)t?

where &, =3 =n,, n, =w,2/2y 2,2, b=By,/B,
A =v,/B%,, and angular brackets denote an en-
semble average. There are five characterisitc
oscillation frequencies, mQ,, and (m/2+v,)Q,,,
where

v =i+ s G+ T (5)

4

with /i =f, +$b?, m=m+b. These frequencies

are real when the system is located within the
regions of the plane of Fig. 2 marked “stable.”
We remark that for low-current beams (n,~ 0)
the stability condition reduces to

lim2+ mb = 1| >|2u|. (6)

The “most” stable configuration results when the
field lines are twisted clockwise (m > 0) when
viewed in the direction of B,8, i.e., in the same
sense as electron gyration about B,.

Similarly, the motion of the beam center is it-
self oscillatory about a center located at

Ar @)
r, B, +u3(m3+mbh-n,)t’

(N

where i, =3 - (r,%/a®i,, with characteristic fre-
quencies as in (5), under the replacement n,
-{r,*/a*m,.

Two important features of the solution are worth
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(3c)

Ipointing out. First, stable motion is possible

throughout an injection-acceleration cycle. This
has been checked for many possible time histo-
ries. A typical trajectory in the stability plane is
shown in Fig. 2. The unstable region on the left
of the diagram would not be entered in this case
even if the acceleration were continued; “‘u”
never changes sign in this case.

The second important feature of the solution
pertains to the energy bandwidth of this machine.
We note that the radial shift (7) of the orbit of a
mismatched beam is, as expected, much smaller
than that in a weak focusing (u =0) device. (u
can easily exceed 100-200 in designs we have
considered.) The stellatron’s large energy band-
width has very helpful consequences for injector
and magnetic field design tolerances.

The introduction of fixed toroidal and helical
fields to the betatron causes the betatron wave-
lengths to depend on energy, resulting in reso-
nant instabilities driven by field errors during
acceleration. If the toroidal field is sufficiently
large, the betatron wavelengths will be insensitive
to beam current. Such instabilities may be avoid-
ed by holding all the fields in constant ratio dur-
ing acceleration, Alternatively, the effect of the

0s
v u=(b? + 2- 4n NMm+ b
04
v=|utm + bR
03
02
UNSTABLE UNSTABLE
014 v
STABLE STABLE
-1.0 0.0 10 20

v

FIG. 2. Stellatron stability plane (x =), The dotted
line is the trajectory of an experiment with / =10 kA,
Booas kG. €= al/”lb =l, m =20' ro=l m, while B.o
is raised from 118 to 1700 G, corresponding to an in-
crease in energy from ~ 3.5 to 50 MeV.
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instabilities may be minimized if the energy gain
per revolution is large enough to pass rapidly
through each resonance.

A single-particle code, which integrates the
relativistic equations of motion for an electron in
an applied magnetic field, has been utilized to
study certain nonlinear aspects of the stellatron
configuration, Unlike the analytical analysis of
the preceding paragraphs, this analysis does not
employ a paraxial approximation for the electron
motion and does not use an expansion in the parti-
cle displacement from a reference orbit. Also,
the applied field in this analysis includes toroidal
corrections to first order in the inverse aspect
ratio.

The total magnetic field utilized by the code
may be expressed as B=§,, +B,, where B, is
the conventional betatron field, given by Eq. (2),
and B, is the stellarator field, given by B, =V¢é,,
in terms of the magnetic scalar potential, &,,
which may be expressed as &,‘”’ +&, ‘!, where

$,°0,0,5)=Bg,ls +(€,/a),(x)sinlLip - as)]}.

Here, x =lap, a=2n/L, L is the helix pitch
length, and I, represents the modified Bessel
function. The coordinates (p,¢,s) form a local
cylindrical system centered on the minor axis,
where s =R 8 is distance measured along the
minor axis for toroidal angle 8, and (p,¢) are
polar coordinates in the plane transverse to the

200%
ﬂl LINEARIZED ANALYTICAL THEQORY
ug o
NUMERICAL
RESULT
100% |~

CONTAINED
ORBITS

- 100% L —1 N L N

10 20

FIG. 3. Stellatron single-particle bandwidth.

30

The

bandwidth Ax /u,, where x =y3, is plotted against ¢,
=2u/mb. The accelerator is matched at y=7 with B,,
=118 G, and B,y =1 kG.

minor axis at s, The toroidal correction, ¢, ‘*’,
is given to first order in the inverse aspect ratio
by Danilkin.® All calculations have been per-
formed for =2, The variables u and m, which
describe the helical field in the previous analyti-
cal analysis, are given by u=embd/2 and m
=2aR, for =2,

This model has been utilized to investigate the
single-particle bandwidth of the stellatron. As
€, increases, the allowed mismatch in the stel-
latron becomes too large to be correctly modeled
by the linearized theory. Figure 3 shows the re-
sults from both models for bandwidth versus ¢, .
These calculations assume a torus having a 1-m

a) -01

o | 1T T T
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-
o ~50% +50%
D L
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-
-
—
-0 L1111 1 1 1 1111
-01 01

DR
F1G. 4. Single-particle orbits. (a) Without the

helical field components (¢; = 0}, Au/uy=+3%; (b) stel-

latron orbit with e, =}, Au/uy= =+ 50%.
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major radius and a 10-cm minor radius. A test
electron is launched tangent to the minor axis
with relativistic momentum « =y3, which differs
from the matched momentum, u,, by varying
amounts, Au. The figure shows Au/u, against €, ,
and represents the maximum |Au/u, for which
the test orbit remained confined in the device.
Mismatch in excess of 50% can be tolerated for
these parameters, .

Figure 4(b) shows typical stellatron orbits, pro-
jected on the minor cross section, for Bg,=5
kG, €, =% for + 50% mismatch. The betatron field
is again 118 G with n =3, Without the helical field
contribution, Fig. 4(a) shows that as little as
+ 3% mismatch is not tolerable.

The superposition of twisted quadrupole, toroi-
dal, and conventional betatron magnetic fields ap-
pears to offer significant practical advantages
for the confinement and acceleration of large
electron currents (tens of kiloamperes) to moder-
ate energies (hundreds of megaelectronvolts).
Foremost among these advantages is the greatly
improved energy bandwidth over that of a weak-
focusing device. The large bandwidth of the stel-
latron relaxes the requirements for monoener-
getic injection, for a uniform (within a few per-
cent) magnetic field configuration, and for a rigid
mechanical design. Injection should not be any
more difficult than for other high-current ac-
celerator concepts, and is facilitated by the ex-
ternally applied rotational transform of the stel-
lerator field. The orbits should remain stable
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from injection up to the highest energies achiev-
able by conventional inductive acceleration.
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A bumpy-torus betatron
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The combination of a bumpy-torus field and a conventional betatron field leads to an interesting
strongly focused, high-current accelerator configuration. The question of orbital stability of a test
particle in such a device is discussed and it is shown that the alternating gradient focusing in this
accelerator can easily lead to greater than 20% bandwidth in allowed mismatch between the
vertical magnetic field and the average beam particle energy.

Conventional betatrons' are current-limited due to the defo-
cusing effects of space charge at injection. In recent years
there have been several renewed attempts at overcoming this
(rather severe) space-charge limit. Specifically, there have
been high-current conventional betatrons proposed® which
employ high-energy injectors as well as so-called modified
betatrons™* which employ a toroidal magnetic field to pre-
vent space-charge blowup of the beam. In both of these
cases, however, a mismatch between the injection energy
and vertical field of a few percent or so will cause the beam to
hit the wall, a matter of some concern in a high-current de-
vice. The maximum allowed error in the vertical field is typi-
cally on the order of a few gauss in designs which have been
considered. Recently, it was shown® that the combination of
an i = 2 stellarator field and ordinary weak focusing beta-
tron field results in a strong focusing high-current betatron
or, “stellatron,” with a large energy bandwidth. Such a con-
figuration has the advantages of relaxing the vertical field
and injector tolerances. In addition, the strong focusing in-
troduces a threshold for the negative mass instability, so that
this instability does not operate at injection (though other
fast growing resistive or kink modes may occur below the
negative mass threshold). In this brief communication we
report analytical and numerical results on the bandwidth
and stability of an alternative strong focusing scheme, name-
ly, a combination “bumpy torus” and betatron field, corre-
sponding to the / = 0 stellatron.

The bumpy-torus betatron field consists of a superposi-
tion of an / = O stellarator field and the field of a convention-
al betatron. Near the minor axis at 7 = ry, z = 0, this field has
the form

B, = — nyB, + 16B,mx sin mé,

B, =B’°[1+(6Bo/390)cosmel, (l)

B, = B4(1 — nx) + } 6B,my sin mé,
where x=(r — r,)/ro,y=z2/r,, 0 is the azimuthal angle,  is
the vertical field index, and m is the number of bumpy-torus
field periods around the torus. 8,,, B,,, and 6B, are con-
stants.

Treating the self-fields of the beam by a simple cylindri-
cal model, we find the equation of motion for a test particle
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within the beam is, in the paraxial approximation, for n = |,
dy 1
H-FT”? [2 —_ 4’!, -+ bz(l + € cos 20,,,)2][&
=2 %’- exp[(ib /2m)(26,, + € sin 26,,)], @)
m
where °
8,=mb/2,
y=(x + iy) exp [(ib /2m)(20,, + €5in 20,,)],
b EBoo/B‘), 65639/390.

Here P, is the momentum of a particle which would circulate
on the minor axis, 6P is the “momentum error,”
n=awl/(2 2 2%)where w,, 2, are the beam plasma fre-
quency and the vertical field cyciotron frequency, respec-
tively, and y,==[1 + (P,/mc)*]'/>. We are interested both in
the solution to the homogeneous part of (2), which will give
orbital stability criteria, as well as in the solution to the inho-
mogeneous problem which will give the momentum com-
paction of the machine.

The quantity n, appearing in Eq. (2) describes the (net
defocusing) effect of the self-electric and magnetic forces of
the beam. Since it depends on beam density and therefore on
the beam minor radius, n, will in general vary with azi-
muthal angle  around the device in a manner governed by
the standard beam envelope equation. Consequently, when
the beam envelope is stable, we expect n, to behave as
n,(0)=ngy + n, cosmé + .-- but we shall assume here,
for simplicity, that ebyn,, so that, in (2), n, may be ade-
quately approximated by its average value.

Equation (2) is a Hill equation, which has characteristic
bands of stability, as shown in Fig. 1. The boundaries of the
stable regions have been obtained numerically, using stan-
dard methods.® The shaded regions in the figure are unstable
portions of the plane, € vs 5/m, for the case n, = 30 and
m = 30. The intersections of the unstable regions with the
abscissa are given by

(b2+2—4n)/m?=¢* where ¢=0,12,...,

which is the condition that the transverse rotation frequency
of a particle within the beam is an integer multiple of the
*“focusing frequency,” m{2,, —a condition which allows res-
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FIG. 1. Stability plane for the bumpy-torus betatron, for the case
n, = m = 30. The shaded regions are unstable for particle motion.

onant transfer of energy from the longitudinal to transverse
degrees of freedom and, consequently, exponential growth
of the betatron oscillation amplitude.

As B, is increased during acceleration, one typically
would not wish to increase B, simultaneously since this
would require significant additional energy storage. The re-
sult is that the operating point of the accelerator will move

-right to left in Fig. 1. Consequently, the accelerator should

be run in the left-most stable band to avoid crossing unstable
bands. These considerations require m > b at injection and
force the use of a large number of field periods in the design
of the focusing system. The left-most unstable band, corre-
sponding to ¢ = 0, is due to beam space-charge and rapidly
disappears during acceleration since the self-field index n, is
proportional to ¥; °, where 7, is the relativistic factor. The
left-most stable band, therefore, becomes broader during ac-
celeration; the first stable band is at its most narrow at injec-
tion, when y, is smallest.

We next consider the important question of contain-
ment of particles whose average momentum is not matched

40 T
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FIG. 2. Single particie bandwidth. Data points indicate the maximum vaiue
of momentum mismatch tolerated by the device versus the bump size € for
particles initialized on the minor axis, for the specific case 8, = 118 G,
Byo = 2kQ, 7y = 100 cm, m = 30.
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FIG. 3. Stability plane for bumpy-torus betatron with the single particle
resonance lines k=0, 5, 10, 15, 20, 25, indicated for the case n, =0,
m = 30.

to the vertical betatron field, i.e., the question of the momen-
tum compaction of this configuration. In order to address
this question we have examined numerically the behavior of
single particle orbits, neglecting beam self-fields but employ-
ing the full Bessel function representation of the / = 0 focus-
ing field. Figure 2 shows the allowed mismatch, 5P /P,, plot-
ted against e=8B,/B, for By, =2kG,B, =118 G,
n = |, 7, = 100 cm, and m = 30. This piot is generated nu-
merically by launching particles on the minor axis in the
toroidal direction with various amounts of mismatch. The
figure shows the largest mismatch for which the calculated
orbits are contained in a 10 cm minor radius chamber. Con-
tainment of particles with a mismatch of + 20% is obtained
for em0.2. We stress that the momentum compaction of this
configuration is due to the alternating gradient field of the
“bumps,” though the phase shift per period is dominated by
the average value of the toroidal field. Using Eq. (2), with
n, = 0, a perturbative calculation valid for small values of ¢,
of the momentum compaction factor, gives

Sr/ry [ ( emb )’ 1 ]

—_—L =2l - (—) ———] 3

éP /P, 2 m? —b? G
which holds only for m > b. One sees in (3) the helpful effect
of a bumpy torus field.

In conventional betatrons, resonances are automatical-
ly avoided by increasing the particle momentum and the ver-
tical magnetic field in synchronism. The introduction of
nonsynchronous fields (a fixed toroidal field, for example)
makes the betatron wavelengths energy dependent, which
can lead to the crossing of resonances driven by field errors
during acceleration. As in all strong focusing devices, the
occurrence of orbital resonances plays an important role in
the operation of the bumpy-torus betatron. Using the Flo-
quet solutions to (2) (for n, = 0) it is possible to obtain a
condition for the integer resonances, when space-charge ef-
fects may be neglected:

Y7 = cos {m[(b+ 2k)/m)}, (4)
where ¥,(6,,) is the solution to (2) with 8P =0 satisfying
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¥10) = 1, ¥} (0) = 0 and where k is an integer, the Fourier
component number of the dipole field error. Equation (4)
provides the basis for a numerical calculation of contours in
the stability plane on which (4) is satisfied for a given &; an
example is given in Fig. 3.

If all the fields cannot be made synchronous with the
particle energy, the effects of orbital resonances might be
minimized by making the energy gain per pass large. Other
possibilities for coping with resonance crossings are current-
ly under investigation.

In conclusion, we find the spatially alternating trans-
verse magnetic field gradient associated with a bumpy torus
leads to a potentially interesting strongly focused accelerator
configuration which is seen to have a region of stable orbits,
and to have a significant bandwidth in allowed mismatch
between the vertical magnetic field and the particle momen-
tum.
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" DESIGN AND OPERATION OF A COLLECTIVE
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Design and Operation of a Collective
Millimeter-Wave Free-Electron Laser

ROBERT H. JACKSON, STEVEN H. GOLD, ROBERT K. PARKER, HENRY P. FREUND. PHILIP C. EFTHIMION,
VICTOR L. GRANATSTEIN, MELVIN HERNDON, A. K. KINKEAD, JOHN E. KOSAKOWSKI. anD THOMAS J. T. KWAN

Abstract—A new [ree-electron laser experiment has been designed at
NRL to operate st millimeter wavelengths using a collective beam-wave
interaction. Critical features of the experiment include an apertured

beam dynamics and the beam-wave interaction have been studied.
Measurements indicate a pesk power production of 35 MW at4 mm with
an electronicefficiency of 2.5 percent. Aspects of the experimental design

=2
-

diode which provides a low-emittance electron beam, a wiggier magnet  are discussed, and the resuits of a parsmetric study of the power depen- hY
with adiabatic entrance and exit, and an operational domain centered  dence on the (ieids are presented. Detailed caiculations (both analytic '1‘1
around the wiggler-guide fieid gyroresonance. With the experiment con- and computational) have been performed (o anslyze the linear and non-
figured as a superradiant amplifier, the effects of the gyroresonance on  linear effects in the experiment. The resuits of these calculations are ;
shown to be in good agreement with lsboratory measurements. -
Manuscript received July 7, 1982; revised October 1, 1982. This work ™~
was supported by the U.S. Naval Air Systems Command Under Contract N
WF32-389-592, and by the U.S. Air Force Office of Scientific Research 1. INTRODUCTION o
under contract to North Carolina State University. . . . <
R. H. Jackson was with North Carolina State University, Raleigh, NC HE free-electron laser has become the subject of intensive ~
3/7650. I;e is now with the Mission Research Corporation, Alexandria, research because of its potential as an efficient. high-powec ;
A 22312, . . . . :
. H. Gold, R. K. Parker, H. P. Freund, P. C. Efthimion, V. L. Granat. >0Urc¢ of continuously tunable coherent radiation. Essentially. i
stein, A. K. Kinkead, and J. E. Kosakowski are with the Naval Research  the free-electron laser is a linear fast-wave device in which a &
Laboratory, Washington, DC 20375. ' signal wave is amplified at the expense of the axialkinetic energy -
Dg '2(:;.7?‘?1: ;':o:'glc':l';.:“" Research Laboratory, Washington,  of 5 codirectional relativistic electron beam through interaction y
T.JT. Kwan is with Los Alamos National Laboratory, Los Alamos, With the periodic transverse field of a “wiggler” or pump
NM 87545, magnet. The output wavelength is related to the wiggler period 3
0018-9197/83/0300-0346301.00 © 1983 IEEE :.
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by the approximate relationship N, = \yy/2y%, where A, and
Aw are. respectively, the output wavelength and wiggler period
and v is the relativistic mass factor. This frequency upshift
provides an obvious advantage for high-frequency power pro-
duction.

Within the range of available electron beam and wiggler tech-
nologies. free-electron lasers can be designed such that the
beam-wave interaction can be dominated by either single par-
ticle or collective effects. If the Debye length of the electron
beam is less than the wavelength, collective effects dominate
and the resultant three-wave parametric interaction is described
as stimulated Raman scattering. This relationship leads to a
requirement for a high electron density and a small spread in
the axial velocity distribution of the electron beam. More
specifically. the axial velocity spread must be much less than
Awwp (Y- 1)/4myy], where w) is the invariant plasma fre-
quency, y=(1-8TY2, g=vfc v, =(1- I3, B, =v,/c.
c is the speed of light. In practical terms, this constraint means
that considerable care must be taken to control the beam emit-
tance if intense beam experiments conducted at millimeter and
submillimeter wavelengths are to exhibit wave-wave scattering.

When collective effects are dominant, positive gain is achieved
when the pump-shifted, negative-energy. space-charge wave is
synchronous with an appropriate waveguide mode. The primary
advantage of wave-wave scattering is that it offers significantly
higher gain and intrinsic electronic efficiency than can be ob-
tained with- wave-particle (Compton) scattering. The higher
gain of the collective interaction is sufficient to make amplifier
operation practical. Calculations based on an idealized model
{1] indicate that electronic efficiencies in excess of 10 percent
and power exponentiation lengths of several centimeters are
achievable at millimeter wavelengths.

Critical performance features predicted for the collective
interaction have not been demonstrated in previous experi-
ments. Although exceptionally high peak powers have been
reported, the corresponding gains and efficiencies have been
comparatively low. [n an early stimulated scattering experiment
conducted at NRL [2], a superradiant output of | MW at 0.4
mm was generated with an approximate efficiency of 1072
percent using an electromagnetic pump wave. A subsequent
oscillator experiment {3] with a magnetostatic pump produced
a comparable peak power at the same frequency with an effi-
ciency of 3 X 1072 percent. In other experiments, peak powers
of 8 MW at 1.5 mm and 20 MW at 11 mm with corresponding
efficiencies of 0.2 percent and 0.3 percent have been repocted
(4], [5].

Recent computational analysis of the electron flow in the
cold-cathode diodes typically used in these experiments has
indicated that poor beam quality likely had a strong influence
on observed performance [6]. Recognition of the constraints
on beam quality led to the assembly of a new experimental
configuration designed to study the Raman interaction at
millimeter wavelengths [7]. With this apparatus, the combined
effects of the axial guide and helical wiggler magnetic fields on
the electron dynamics and the beam-wave interaction have been
studied in initial experiments. These effects are of interest
because a significant gain enhancement can be obtained near
the gyroresonance which occurs when the electron transit
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time through a wiggler period corresponds to one cyclotron
period.

[I. EXPERIMENTAL APPARATUS

A. Experimental Configuration

For these studies. the VEBA pulse-line accelerator was modi-
fied [8] and interaction parameters were selected to ensure a
collective interaction. Computational analysis produced an
injection diode design (9] which provided significantly improved
beam quality. As shown in Fig. 1, the diode was formed by
locating a cylindrical graphite cathode with hemispherical tip
at a distancz of 1 cm from a shaped graphite anode. A 6 mm
diameter aperture in the anode plate was used to collimate the
injected beam. Electrode contours were derived computationally
to provide radial force balance for near-axis electron trajec-
tories. With this design. the axial velocity spread of the beam
injected through the aperture was reduced to less than 0.1
percent. which corresponds to a normalized beam emittance of
30m mrad - cm.

The pump wave was a right-hand circularly polarized magne-
tostatic field produced by a 63 cm long bifilar helix of 3 ¢m
periodicity. The bifilar helix consisted of two coils ot copper
magnet wire with four layers per coil wound on a grooved
nylon form. To prevent perturbation of the beam. a gradual
transition into the wiggler field was necessary. A 21 cm tran-
sition region was provided by flaring the radius of the helical
windings along a circular arc while keeping the period of the
windings constant. The windings were joined at the end of the
flare by wrapping alternate layers in opposite directions around
the nylon form. This counter-winding reduced the magnetic
field perturbation caused by the termination of the windings.
The measured and calculated [10] fieldsin the taper are shown
in Fig. 2. With the exception of field vaiues near gyroresonance.
the adiabaticity condition was well satisfied by the transition
field as discussed in the section on theory. Inaddition.a |5 cm
adiabatic exit from the wiggler was provided to reduce possible
RF noise production resulting from unnecessary perturbation
of the beam.

The initial experiments were conducted with the device con-
figured as a superradiant, or noise. amplifier. With 1.35 MV
applied to the diode, a 1.5 kA electron beam of 60 ns dura-
tion was extracted through the anode aperture and propagated
through a tapered-wall transition into a cylindrical stain-
less steel waveguide of 1.1 cm inner diameter. The axial mag-
netic field was held constant from behind the cathode to
beyond the interaction space and was variable up to 20 kG.
The wiggler field was variable from 0.1 to 4 kG. With this
selection of parameters, the beam axial velocity spread had to
be much less than 0.5 percent for collective effects to dominate
the interaction.

To provide temporal isolation from reflected signals, the
radiation diagnostics were separated from the interaction space
by a 5 m length of waveguide. The principal radiation diagnostic
was a Laser Precision KT 15408 pyroelectric detector which
provided a time dependent measure of radiated power. Absolute
integrated power measurements were made using a pyramdal
millimeter-wave calorimeter [11] constructed at the labora-
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Fig. 1. Experimental setup for superradiant millimeter-wave Raman
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3
©
-

8

PERPENDICUL AR MAGNE TIC FIELD INORMALIZED MAGNITUDE)
= 3
~—

s 2
AXIAL DISTANCE (NTO WIGGLER (cm)
Fig. 2. The on-axis wiggler field profile in the 21 cm adiabatic entrance
of the bifilar helix. The solid curve is based on the equations in {10],
and the squares are the normalized measurements.
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tory. Spectral information was obtained by sequentially placing
a series of high-pass filters in front of the detector. The high-
pass filters were cutoff waveguides of two mechanical designs,
both fabricated from aluminum cylinders. The filter designs
used either a single axially located hole with tapered entrance
and exit or symmetrical arrays of constant diameter holes.

For these experiments, the beam-wave interaction parameters
were chosen such that the pump-shifted negative-energy space-
charge wave would couple with the fundamental TE,; mode
of the cylindrical waveguide. An overlay of the uncoupled beam
and waveguide dispersion curves shows that two intersections
with the forward wave are possible. Primary interest 1s centered
on the upper intersection, which produces a large relativisti
upshift. In the limit §; =0 (8, = v /c), this intersection occurs
at about 180 GHz, while the lower intersection is about 20
GHz. The effect of increasing the wiggler field is to increase
B, while simultaneously decreasing the axial velocity §.. This
shifts the upper intersection to lower frequencies (and the
lower intersection upwards), until coupling is lost at =60
GHz for B, = 0.34. To block the transmission of any low-
frequency power not associated with the upper intersection,
a 5 mm (60 GHz) high-pass filter was inserted near the detector.
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B. Diode Design

Theory places severe constraints on the quality of an electron
beam for collective processes to dominate the beam-wave
interaction. Computational analysis of the toil-less diodes used
in previous experiments has shown that the beams taken as a
whole did not satisfy the theoretical quality requirement,
although in some cases layers within a beam were cold enough
to permit marginal collective interaction [6]. Furthermore.
the analysis indicated that there are inherent problems in
obtaining high-qualtiy beams in foil-less diode geometries.
Two alternative designs were considered: injection through an
anode foil and a collector anode with a beam extraction aper-
ture. The use of an anode foil was considered to be unattractive
because of consequent beam scattering in the foil, the necessity
for replacement of foils after every shot, and resuitant beam
pinching in the diode. Analytic and computational analysis
of the apertured diode indicated that this approach could pro-
vide the required beam quality.

The apertured diode was designed using a modified version
[11] of the SLAC Electron Optics Code [12]. The objective
was to produce paraxial electron flow in the diode near the
axis by shaping the electrode surfaces to provide a radial electric
field to balance the pinching effects of the beam self By field.
Since the cathodic electric fields were too high to control the
emitting surface, it was necessary to collect the excess current
(=90 percent) and allow only the cold, near-axis portion of
the beam to propagate into the interaction region. The final
diode design, along with the computed electron trajectories. is
shown in Fig. 3. In this design the cathode was a graphite

- cylinder with a hemispherical tip. To keep the emitting surface

small and the diode impedance high, the cathode tip had a
radius of curvature of 2.5 cm on the face and 0.5 ¢cm on the
edge. The anode was a graphite disk with a 10° conical depres-
sion and a 6 mm diameter aperture on axis. The aperture was ex-
tended 15 c¢m into the interaction region with a gradual taper
to the 11 mm diameter of the cylindrical waveguide. Because
the 1 cm diode gap was sensitive to voltage prepulse [13].a
dielectric surface-flashover switch [11] was installed in the
cathode shank. The switch eliminated prepulse problems and.
in addition, sharpened the voltage rise time. The reduced rise
time enhanced the formation of a homogeneous, uniformly
expanding cathode plasma, and thereby acted to preserve the
basic diode geometry. The importance of eliminating prepulse
problems was illustrated by two experimental observations.
First, when a prepulse current occurred, the beam noise (no
wiggler) in W-band jumped by more than an order of magnitude.
Secondly, with the wiggler field, power output was greatly
reduced when even small prepulse currents occurred. These
observations indicate a reduced beam quality when the cathode
plasma formation is not rapid and uniform.

The calculated trajectories shown in Fig. 3 represent the
electron flow expected fora guide field of 10 kC and an applied
voltage of 1.5 MV. The “grid” in the figure is a computational
device used to give a physically meaningful boundary condition
to the electron emission from the cathode shank while avoiding
the problems of resolving the crossed-tield flow. The net effect
of the applied and self-generated fields is to produce an elec-
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Fig. 3. The VEBA apertured diode with the calculated electron tra-
jectories (only haif of the trajectories are shown). Note the paraxial
flow close to the axis between the cathode and anode, and the
detocusing effect of the aperture.
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Fig 4. Perveance of the apertured diode as a function of axial guide field.

tron flow near the axis which exhibits little radial motion until
the aperture is reached. The radial electrostatic fields created
by the aperture then act td defocus the beam and produce a
small, coherent radial oscillation in the extracted beam. Results
from these calculations indicated that beams with less than 0.1
percent axial velocity spread could be produced with the aper-
tured diode configuration.

Where possible, code results were compared with laboratory
measurements to validate the caiculations. In comparing the
calculated and experimental values, it should be noted that the
code dealt with the *“cold™ geometry, whereas the effective
cathode in the experiment was an expanding plasma. The initial
comparisons were made with respect to two parameters which
describe the macroscopic properties of the electron flow in the
diode. These parameters are the diode perveance [14] and the
current transmitted through the aperture. The perveance is
calculated from the total diode current and voltage and is
shown in Fig. 4 as a function of the axial guide field. The
decrease in perveance with increased guide field indicates a
change in the effective diode geometry. The observed reduction
results from the restricted radial expansion of the electron
trajectories and the cathode plasma at the higher fields. At
low guide fields where the entire diode gap decreases, the
difference between the computed and observed perveance can
be used to estimate the plasma expansion velncity. For the
values at 2 kG, this gives an expansion velocity of 2-3 cm/us
which is in good agreement with previous measurements [15].

349
N1 .
L]

12t
< . a
2 09
s
Z &
w
g 06
© o EXPERIMENTAL VALUES

a CODE CALCULATIONS
0.3F
Y
o — X ,

o} 2 4 6 8 1Q 2 14 6 8 20
AXIAL MAGNETIC FIELD (%G)

Fig. 5. The current transmitted through the diode aperture as a function
of axial guide field.

As the magnetic field is increased. the cathode plasma does
not continue to expand at the same rate in all directions. How-
ever. the field strength should have no effect on the axial ex-
pansion at the cathode face. The effect of cathode expansion
on extracted current is apparent in Fig. 5. At the higher mag-
netic fields, the plasma expansion velocity derived from these
values is also consistent with a 2-3 c¢m/us expansion velocity.
Plasma expansion at the lower field levels (< 8 kG) does not
show as large an effect because the current is limited by aper-
ture defocusing and not by the available current.

C. Beam Quality Measurements

When corrected for plasma expansion, the predjcted values
of diode perveance and transmitted current are in excellent
agreement with experimental measurements. Although the
comparison of macroscopic features provides a tentative ver-
ification of the computed results, the more critical issue is
the velocity distribution within the transmitted beam. In
general, experimental measurement of the velocity distribution
within an intense, relativistic electron beam is extremely
difficult. However, using the special properties of the apertured
diode, a simple method was devised to experimentally verify
the code results. For these measurements, the 6 mm diameter
anode aperture was extended by 15 cm with a uniform dia-
meter drift tube which terminated in a Faraday cup. The
perpendicular velocity of electrons at the beam edge was then
calculated by comparing the transmitted current at a given
value of axial magnetic field (Fig. 5) with that estimated for
an infinite field. The axial velocity spread was then derived
from the beam-edge transverse velocity. This analysis requires
that the cathode tip emission density and the electron guiding
center radius be independent of the axial field. and that the
beam be monoenergetic. Analysis of results computed at
several values of the guide field indicates that these conditions
were well satisfied. In addition, a uniform beam density is
assumed, although this method could still be used if the
density profile were known. Code results and experimental
damage patterns have shown that the assumption of a uniform
beam was a good approximation.

The relationship between transmitted current and axial
velocity spread was derived as follows. In the limit of an in-
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finite tield. the electron Larmor radius is zero. As the field is
reduced. the electron guiding center remains unchanged, but
the Larmor radius becomes finite. Only those electrons for
which the sum of the Larmor and guiding center radii is less
than the aperture radius can be propagated. The current ratio
is therefore given by

IB,)I=) = (r, - rL Y rs, 1

where r,, and r;_are, respectively, the drift tube wail and
Larmor radii, B, is the axial guide field, and /() is the trans-
mitted current in the limit of infinite magnetic field. When
solved for the perpendicular velocity, this expression becomes

By = {1 - U(B,)I(=)]"*}e Boryimc?y. (@

Numerical analysis of electron trajectories in the diode and
drift tube verifies this prediction of the electron perpendicular
velocity at the beam periphery. The axial and transverse veloc-
ity spreads are related as follows:

AB./8, = (AB.L)Z/ZB2 ol [ﬁl(’w)lz/‘wz . 3)

With this relationship, the transverse veiocity at the beam
periphery can be used to estimate the axial velocity spread.
As seen in (2), a measure of /(%) is required to complete the
estimate. As a lower bound, the transmitted current at 20 kG
was measured to be 1.5 kA. The Child-Langmuir current,
when corrected for cathode plasma expansion, serves as a
reasonable upper bound and is 1.8 kA for this diode geometry.
When the applied axial field was set at 10 kG, the transmitted
current was 1.3 kA. The resultant beam onditions are esti-
mated, therefore, to be within the foilowin -ange:

"0.033 €8,(r.,) <0.072
and 4
3X 10~ < AB,/8, < 14X 1073,

For comparison, the computed value for AB,;/B, was 9.5 X
10™* at 10 kG. Even at the upper limit, the beam axial velocity
spread is well below that required for collective effects to
dominate the interaction. To place this achievement in proper
perspective, it should be noted that these velocity spreads are
more than an order of magnitude less than those typically
associated with electron beams of this intensity.

I[Il. THEORY

The analysis of the beam-wave interaction in a millimeter-
wave free-electron laser is a complex endeavor requiring not
only a linear theory to illuminate the interaction physics and
to predict gain but also a nonlinear analysis to examine satura-
tion effects and efficiency. To make the linear analysis more
tractable, several simplifying assumptions are usually imposed
on the model. In the linear theory which follows, a cold elec-
tron beam and an ideal helical wiggler field are assumed.
Because of the complexity of the saturation phenomena, the
nonlinear analysis was performed using a fully electromagnetic
numerical simulation of the interaction. Although the code did
provide the desired nonlinear capability, the provision for only
one spatial dimension limited the analysis to the idealized
wiggler fields. To assess the consequences of this limitation in
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The axial velocities are shown as a function of normalized guide
field. Note that the Typel orbits become unstable at Q,/ck,, =0.765.

the linear and nonlinear analysis, the effects of the realistic
wiggler fields were investigated with a multiparticle trajectory
code. Using this code, the impact of the wiggler field gradients
on the velocity spreads of an initially cold beam were studied
as a function of the pump strength and the proximity of the
guide field to gyroresonance.

A. Linear Analysis

Recent theoretical work {16}, {17}, {18] has shed light on
the collective interaction in the presence of an axial guide
field by perturbation methods about equilibrium orbits. For
combined axial guide and helical wiggler magnetic fields, two
classes of stable helical equilibrium orbits exist [19], [20]
with constant velocity v, and transverse velocity

vy = Q02 /(2 - ThWU:). . (%)

where Q, , =e8, ,/mc, k,, = 2a/),,, and B, and B, are the
axial and transverse magnetic fields (see Fig. 6). Group I orbits
occur at low values of the guide field (2, < vk, ¥;) and exhibit
high v, which decreases monotonically with increasing B,.
Such orbits become unstable at a critical value of axial field
given by Q, =v(1 + (v /v;)*) " k,v;. Group II trajectories
exist for all B, but exhibit high axial velocities only when
Q, > vk, c. The growth rate in the limit of stimulated Raman
scattering is given by

(Im K)pax = 1/2 |ﬁ1 I (“"p"w"lzd’lr2 /02)1/2 (6)
where wj, is the invariant plasma frequency, and
=1- Qv (v + DR, - Thuz]. @)

Note that the presence of the axial guide field leads to gain
enhancement both by increasing the transverse velocity and
through &, which comes from the ponderomotive potential.
In the limit of zero beam temperature, the Raman regime is
valid as long as '

1 2
wp BT >> = glyd ':i K- (8)
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Therefore. the Raman regime, in this limit, is accessible even
for lower beam densities when an axial field is present and &
is large. The strong pump regime occurs in the opposite limit
and is characterized by a maximum growth rate of the form

~\/—§— (ﬂi AR
(m Ba =3~ (S8 ¢) ke (9)
where £ = wp/ck,, is the beam strength parameter.

A calculation of the maximum gain as a function of B, for
parameters corresponding to the experiment(y ~ 3.5,8, ~ 0.63
kG), using the results of the complete stability theory, is shown
in Fig. 7. The dashed line in the figure represents the frequency
corresponding to peak gain, and the calculation has been per-
formed only for frequencies greater than the 60 GHz cutoff
imposed experimentally. As anticipated, the growth rate in-
creases as the gyroresonance (£, ~ yk,v;) is approached
from above or below. The apparent discontinuity shown in the
growth rate for Group I orbits at 8, ~ 9 kG corresponds to a
transition from a Raman to a strong pump interaction [1].
For guide fields below this value. as well as for Group Il
trajectories, the gain is given predominantly by the Raman-
scattering result. It is important to recognize. however, that
nonlinear (saturation), finite geometry, and nonideal effects
are not included in these calculations. As a result, Fig. 7 cannot
be used to predict the detailed variation in the output power
with B,, and can only be used to obtain the parametric limits
of radiation production and to estimate the smail-signal gain.

B. Nonlinear Simulation

The effects of beam temperature on the saturated efficiency
of the experiment were studied with a fully electromagnetic,
relativistic particle code [21] which included one spatial and
three velocity components. Although the electron beam was
assumed to be monoenergetic, the electrons were allowed to
have random velocities in the directions perpendicular to the
beam propagation. Such a scattered electron beam can be
modeled according to the momentum distribution function

f(p)=8(p - p,) exp (-p}/Ap}) [P, AP\ F(po/Ap)]  (10)

where Fix) = exp (-x?) [§ exp (t?) dt, p is the particle momen-
tum, p, =mec(y* - 1)"2 'and Ap, is the FWHM of the perpen-

P LT R vy e T T T T T T T W R e T W T T

L aan ass aud-aad At abe o

351

dicular momentum distribution. For this distribution the
spread in axial velocity is given by

2
%:.l.(ipi.) for A_pL<<1. (an
8. 2\ po Do

The velocity spread produced by (10) representsa true, random
temperature, unlike the experimentai value which represents
the radial dependence of the velocity distribution. The exact
correspondence between these types of velocity spread is un-
clear; however, they are expected to have similar effects on the
beam-wave interaction.

Electron beams with a momentum distribution given by (10)
were initialized self-consistently in the simulations. The simu-
lations had an immobile ion background to provide the neces-
sary electrostatic neutralization and periodic boundary con-
ditions for the electromagnetic fields and the beam particles.
The simulation parameters were chosen to match experimental
values to the degree possible.

The dependence of the efficiency of energy transfer from
the electron beam to the RF wave is illustrated in Fig. 8.
The striking result is that the efficiency drops dramaticaily
when the momentum spread increases slightly from 0 to
0.65 percent. However, after the initial sharp drop. it becomes
rather insensitive to the spread. [t should be noted that the
efficiency, as shown in Fig. 8, takes into account the energy of
all unstable electromagnetic modes. This rather surprising result
from the simulations shows a completely different nonlinear
behavior for the free-electron laser interaction than-might be
expected from the effects of momentum spread on the satura-
tion by electron trapping of the relativistic two-stream insta-
bility [22].

The simulations are considered to be accurate representations
of the experimeni provided that three-dimensional effects are °
not dominant, and that the code electron beam adequately
models the experimental beam. For a beam with the velocity
spread observed in the experiment (= 0.1 percent). simulations
predict an efficiency of roughly 2 percent. This value is remark-
ably close to the 2.5 percent peak efficiency observed in the
experiment. Because of the previously mentioned differences
between the simulations and the experiment, some caution
should be exercised in applying the code results to interpret
the experiment. Nonetheless, the good agreement between the
experiment and the simulations is noteworthy, and supports
the beam quality calculations and measurements discussed
earlier.

As shown in the experimental results section, there are definite
combinations of the wiggler and guide magnetic fields which
determine the onset, maximum, and cutoff of radiation pro-
duction. The spatial evolution of the electromagnetic radiation
for three sets of experimental parameters which correspond to
these conditions is shown in Fig. 9. At radiation onset. the
simulation shows that the linear growth rate of the instability
was so small that the electromagnetic energy could not achieve
an appreciable amplitude within the length of the wiggler.
Thus, a change of magnitude of the wiggler field and/or the
guide field to enhance the transverse velocity of the electron
beam would increase the output of radiation. This is illustrated
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Fig 8. Electron-beam-power to RF-power conversion efficiency as a
function of momentum spread. The 0.1 percent velocity spread
observed in the experiment corresponds to a momentum spread of
4.5 percent [see (11)].
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Fig. 9. Spatial growth of electromagnetic energy for field values
corresponding to the onset, maximum, and cutoff of power in the
experiment. The axial distance is normalized by the wiggler period
(2, = 3 cm), and the simulations start in the uniform wiggler section.

in the second case in Fig. 9. The electromagnetic energy satu-
rated at a high level at about two-thirds of the wiggler length.
The fact that the electromagnetic energy did not decay away
as the electron beam continued to interact with the wiggler
field indicates that the coherence of the electron bunching
was not destroyed. Consequently, the electron beam could still
deposit energy into other unstable electromagnetic modes, The
third case shown in Fig. 9 had the highest wiggler field, and
showed a strong linear growth of the instability. However, the
instability saturates in a relatively short distance, and the total
electromagnetic energy decays due to strong wave-particle
interaction. As a result, the emitted power is significantly
reduced.

C. Realistic Wiggler Effects

Neither the linear analysis nor the nonlinear simulations took
into account the beam transition into the wiggler and the
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Fig 10. Transmitted current at the wiggler exit as a function of axial
guide fieid.

spatial variation of the actual wiggler field. To evaluate these
-effects, a multiple-particle trajectory integration code was
developed and used to study beam propagation in the first-
order wiggler fields and in a finite geometry waveguide [23].
A comparison of calculated and measured current transmitted
through the wiggler is shown in Fig. 10 for an effective wiggler
field of 0.7 kG. Since the initial current in the code is normalized
to 1 kA and diode phenomena which affect the injected current
(see Fig. 5) are not included, a superficial disagreement exists
for fields less than 6 kG. With that exception, the agreement is
excellent, and the features predicted by the idealized wiggler
orbit theory are clearly present. The rapid decrease in current
at 9.5 kG results from current loss to the waveguide wall as
the Group 1 orbits become unstable at the critical value of
axial magnetic field. Increased propagation in Group II orbits
is seen above 11.5 kG as the wall losses progressively decrease.

The wiggler used in the experiment was designed to provide
an adiabatic entrance for the beam (see Fig. 2). Calculations
incorporating the experimental wiggler profile indicate that
the transition is adequate, but not perfect. As a result, the
electrons in the uniform section of the helix oscillate about
the ideal equilibrium orbits. At modest pump levels and for
fields far from resonance, the osciliations are small: however,
as gyroresonance is approached or as the pump level is increased,
the amplitudes of the oscillations increase dramatically. This
velocity oscillation can act as an effective temperature because
of the slippage between the beam and the RF wave as the
wiggler is traversed.

The spatial variation of the first-order wiggler field induces a
cross-sectional velocity spread. The magnitude of this spread
depends upon the beam area, wiggler period, pump amplitude,
proximity to gyroresonance, and whether the axial field is
above or below the “transition” field of the wiggler. The
transition field is given by

2
Br ="k, (6 + 6D (1)

and represents the axial field above which the denominator ot
(5) cannot be driven to zero for any value of pump tield. The
dependence of the velocity oscillation and the velocity spread
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ents near gyroresonance. The wiggler field amplitude is the same as in
Fig. 10, 8, = 0.70 kG.

on pump strength is shown in Fig. 11 for guide fields above
(15 kG) and below (10 kG) the transition field. Note the
striking difference in the behavior between the two cases as
the pump level approaches a critical value at which the orbits
. become unstable. The open circles on the graph indicate field
2 values at which the beams have the same average velocity. In
general, the code results show that for beams with the same
average velocities, operation below the transition field or
closer to gyroresonance leads to larger velocity spreads.

The effects of operating near gyroresonance are shown in
. Fig. 12. Since the resonant denominator in (5) acts to enhance
o the effects of field differences, the beam becomes more sen-
sitive to field variations near the gyroresonance. This rapid
beam thermalization near gyroresonance will act at some point
to offset the effects of increased v, in producing an enhanced
gain. The cold-beam limits shown in Figs. 11 and 12 indicate
the ranges of field strengths where this is likely to occur.
Experimentally, peak RF emission occurs in the regions before
. the cold-beam limit is reached (cf. Fig. 13). The effect of these
- velocity spreads on the interaction is not clear, because the
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Fig 13. Measured variation in output power (A < 5§ mm) with guide
field for B, =0.63 kG. The emor bars represent the shot-to-shot
reproducibility of the experimental parameters and are based on five
or more shots.

spreads are not random. However, at some level, these macro-
scopic spreads are expected to degrade the interaction in a
manner similar to a true temperature.

IV. EXPERIMENTAL RESULTS

A plot of radiated power as a function of axial field strength
is shown in Fig. 13 for the interaction parameters used in Fig.
7. This radiated power profile represents a complex overlay of
interactive phenomena of which three are thought to dominate.
The primary issues are the quality of the injected beam (Figs:
5 and 10); the three-dimensional effects of the wiggler fields
on the electron trajectories (this effect is most pronounced
near gyroresonance, Figs. 10 and 12); and the variation of the
gain with the experimental parameters (Fig. 5). The onset of
measurable power at low guide field is related to the increase

. in transmitted current with increasing B,. The subsequent drop

in power at 10 kG is consistent with the transition to unstable
orbits and the rapid thermalization of the beam. Above
gyroresonance (8, = 11.5 kG), the wavelength of the radiation
produced by Group Il orbits will decrease as the axial velocity
is increased. The 5 mm cutoff imposed by the filter corre-
sponds to the theoretically predicted value of B, = 12.5 kG
which is in close agreement with the experimental value. The
comparatively slow rise in radiated power from 12.5 kG to
15.0 kG is consistent with the progressive improvement in
beam quality shown in Fig. 12. The decrease in power at
higher values of 8, corresponds to a loss of gain as shown in
Fig. 7. Note that the power production below gyroresonance is
not as peaked in guide field as above gyroresonance. This
result is in agreement with the flatter gain curve in Fig. 7 and
the more rapid beam thermalization shown in Fig. 12.

Data have been compiled over a range in pump field extend-
ing from 0.2 to 2.4 kG. The salient features of the observed
parametric variation can be summarized by identifying .he
pump strength at which thresholds for measurable power and
the point of maximum power occur as a function of the guide
field. The résultant plot is shown in Fig. 14.

Rewriting (5) yields the following relation between the
transverse and longitudinal electron velocities and the pump
and guide fields.




.',_.;,...' :
sh e o

v N st s dhine hnlh uih gt RY - 5 ~ - Ty e W Te e T W T W T T e

354 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. QE-19, NO. 3, MARCH 1983

8 2,
24k B eighin- Mgy

i8,) - e >

8, (kG)
e
(Y
»

0.8

0.4

Fig. 14. Signal variation with pump and guide magnetic fieids. Signal
onset, maximusm, and cutoff are plotted as triangles, circles, and
squares, respectively. The lines correspond to constant values of ;.

B, = (Bu/B:)B, - (mc?ky,/e)B, . (13)

From this equatioa, it is evident that the conditions for con-
stant transverse and axial velocities are defined by pairs of
straight lines which intersect the horizontal axis at the resonant
guide field. The free-electron laser interaction is much more
strongly dependent on these velocities than on particular values
of magnetic field. Specific experimental features should lie on
straight lines characterized by unique values of transverse
velocity. Note that the lines in Fig. 14 are not best fits to the
data, but are calculated using (13) assuming particular values
of transverse velocity. The observed agreement between
experimental results and calculations based on ideal single-
particle trajectories is another indication that the electron
beam is very cold.

The magnitude of the radiated power in the free-electron
laser interaction is related through the gain to the transverse
velocity and has only a weak dependence on the magnetic
fields which occurs though ®Y* ([see (6)]. The cyclotron
maser instability, on the other hand. is sensitive to particular
values of the guide field as well as the transverse velocity.
Previous intense beam cyclotron maser experiments [24] -[28)
have typically shown a power increase of two to three orders
of magnitude at specific axial guide fields. In light of this, it
is worth noting that the peak power observed along the
B, =0.21 lines in Fig. 14 is constant to within a factor of two
for all the guide fields tested. The differences in peak power
appear to be related to beam quality issues. The highest powers
are observed above 15 kG where the injected beam quality is
highest and the thermalization effects of the gyroresonance
are minimized.

The measure of the constancy of §; along the lines defined
by (13) is the radiated wavelength. To examine this scaling,
the wavelength of power generated at 15 and 18 kG was
measured at the power threshold conditions of g, =0.18
and 8, = 0.34. The frequency was determined by observing the
threshold for transmission through a sequence of high-pass
filters. On the high 8, threshold, the break in transmitted
power occurred between cutoff frequencies of 63 and 68
GHz at both values of B,,. The corresponding bounds for the
tow 8, threshold were between 103 and 117 GHz. An analysis
of the uncoupled dispersion curves for the pump-shifted,

negative-energy, space<harge wave and the TE,, waveguide
mode indicates that the intersections of interest occur at
60 and 117 GHz, respectively. Wavelength measurements at
the peak power points using both cutoff filters and a grating
spectrometer indicate a frequency of 80 GHz which is also in
agreement with the dispersion analysis. [ndependent measure-
ments have established that the observed radiation pattern is
consistent with that of the TE,; mode.

Calculations of spontaneous emission suggest that the
uncorrelated noise spectrum corresponds to a few ‘tens of
milliwatts of radiated power. Direct measurement of the
emission in the absence of a pump field shows less than 10 W
of total power in the range of a W-band detector (60-110
GHz). Calorimetry measurements ot the peak observed emission
detect 0.68 J, corresponding to ~35 MW in a 20 ns output
pulse and an instantaneous efficiency of 2.5 percent. This
suggests at least fifteen power e-foldings, corresponding to a
gain length of approximately 4 cm. Theory (Fig. 7) suggests
a gain length of several centimeters, in good agreement with
this value.

V. SUMMARY

Initial measurements on a new high-power, short-puise.
millimeter-wave free-electron laser experiment have been
completed. These méasurements have demonstrated high-power
superradiant emission, gorresponding to an instantaneous con-
version efficiency of electron beam energy into millimeter-wave
radiation of 2.5 percent. This efficiency is an order of magnitude
improvement over that seen in other millimeter-wave free-
electron laser devices. Computer simulations and experimental
measurements have shown that the quality of the electron beam
extracted from the apertured diode is well in excess of that re-
quired to sustain a collective beam-wave interaction. The
experiment has shown a regular parametric dependence on
guide and pump fields both above and below gyroresonance,
a dependence that had not been previously reported. Measure-
ments of radiation onsets and cutoffs agiee with predictions
based on single-particle orbits and a new cold-beam Raman
theory. The observed scaling of wavelength, emitted power.
and gain are in excellent agreement with the assumption of a
Raman free-electron laser interaction. Computer simulations
of the nonlinear effects in the experiment show good agree-
ment with the power scaling and efficiency observed in the
experiment. The simulation results taken together with the
realistic wiggler analysis indicate that thermal effects are limit-
ing the experimental efficiency. [t is not yet known whether
this limit is imposed by the injected beam quality. the wiggler
gradients, or by some other mechanism.
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APPENDIX D

-STUDY OF GAIN, BANDWIDTH, AND TUNABILITY OF A
MILLIMETER-WAVE FREE-ELECTRON LASER

OPERATING IN THE COLLECTIVE REGIME ™~
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Study of gain, bandwidth, and tunability of a millimeter-wave free-electron

laser operating in the collective regime

S. H. Gold, W. M. Black, H. P. Freund,® V. L. Granatstein, R. H. Jackson,” P.

C. Efthimion,” and A. K. Kinkead
Naval Research Laboratory, Washingion, D.C. 20375

(Received 15 March 1983; accepted 12 May 1983)

Frequency-resolved measurements of the emission of a collective free-electron laser operating at
millimeter wavelengths have shown emission spectra that agree well with theoretical predictions
for the collective free-electron laser instability. Broad tunability, moderate emission linewidths,
and high single-frequency gain have been observed. In addition, adjusting the axial field in the end
region of the interaction has been found in some cases to cause a large increase in measured power

and efficiency.

I. INTRODUCTION

The free-electron laser (FEL) uses a relativistic electron
beam traversing a periodic transverse wiggler magnetic field
to amplify radiation-at a wavelength (4 ) corresponding ap-
proximately to a double Doppler upshift of the wiggler peri-
od (4, ). The radiation and wiggler fields combine to bunch
and decelerate the electrons, and thus to produce gain at the
radiation wavelength A ~A4,, /277, where ¥ is the relativistic
mass factor. This interaction can operate at any wavelength,
and offers the potential of simple, broadly variable tuning of
the radiation frequency through variation of the axial veloc-
ity of the electron beam.

In the millimeter-wave regime, the FEL interaction, us-
ing intense relativistic electron beams of energy approxi-
mately | MeV and very low velocity spread, can proceed via
a collective process that offers the potential of high power
and high gain at moderately high intrinsic efficiency.’ These
properties of the collective FEL interaction have been pre-
viously demonstrated in a superradiant amplifier (35 MW at
~75 GHz, 2.5% efficiency, ~ 1 dB/cm gain), and were re-
ported in earlier publications.>> On other experiments at
lower powers and efficiencies, Birkett et al.* have reported
the measurement of five discrete emission wavelengths from
experiments operating at different currents and voltages on
three different machines, all using 8 mm wiggler periods;
these wavelengths, ranging from 0.4 to 1.8 mm, have shown
the expected 1/ dependence on electron energy.*

We report here on new measurements using frequency-
resolved diagnostics that have for the first time explicitly
demonstrated the predicted broadband tunability of this in-
teraction on a single device. Additionally, these measure-
ments have demonstrated both broad gain bandwidth and
high single-frequency gain, as a superradiant amplifier oper-
ating in the collective regime. We also report on measure-
ments that give evidence of an improvement in the previous-
ly reported powers and efficiencies by tapering the end
conditions of the interaction.

* Permanent address: George Mason University, Fairfax, Virginia 22030,

® Permanent address: Science Applications, Inc., McLean, Virginia 22102.

' Permanent address: Mission Research Corporation, Alexandria, Virginia
22312,
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Il. EXPERIMENTAL APPARATUS

The basic configuration for these experiments is shown
in Fig. 1. A 1.25 MeV (y~3.4), 1 kA, 6 mm diameter solid
electron beam traverses an 11 mm i.d. stainless steel drift
tube under the combined influence of an axial magnetic field
and a transverse wiggler magnetic field. The electron beam is
provided by a pulseline accelerator with 50 nsec pulse dura-
tion and ~ 10~ 2 Hz maximum repetition rate. Through use
of a special diode design, the electron beam is produced with
an extremely low velocity spread (48, /8, $0.1%). The re-
sults of a trajectory integration code,® which includes the
variation of the three-dimensional wiggler fields over the
electron beam radius, have shown that low velocity spreads
(< 1%) are preserved into the interaction region through
careful tapering of the strength of the wiggler magnetic field
over an entry region of seven wiggler periods. This statement
is valid provided that the axial guide field is not too close to
its gyroresonant value and the wiggler field is not too large.
For some of the larger transverse velocity cases discussed
later in this paper, radial wiggler gradients are expected to
produce an axial velocity shear in the range of 1% to 2%.
Such velocity shear is not the same as a true beam tempera-
ture, and its effects are not completely understood theoreti-
cally, but at some level such macroscopic spreads may be
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FIG. 1. Diagram of the free-electron laser experimental configuration,
showing the system used to make frequency-resolved measurements.
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expected to degrade the interaction.

The axial field (B,) is variable up to 20 kG and is used
both to confine the electrons and to provide gyroresonant
enhancement of the effects of the wiggler magnetic field. The
wiggler magnet provides a helically varying transverse mag-
netic field (B,) of period 4,, = 3cm and 0-2 kG amplitude
over a uniform interaction region of 63 cm, with adiabatic
transition regions at both ends. Special care was taken in the
calibration of B,, B, , and ¥ for the present paper, since com-
patibility of these values is essential to produce the correct
electron dynamics, and because of the great sensitivity of the
output frequency to these experimental parameters.

Spontaneous emission at the injection end of the inter-
action region is highly amplified by the FEL interaction. The
amplified radiation is then radiated into an anechoic
chamber by means of a large (30 cm i.d.) microwave horn.
Small fractions of this radiation are sampled by a pyroelec-
tric detector with a high-pass filter, to monitor total power in
the band of interest, and by a millimeter-wave grating spec-
trometer,’ in order to perform spectrally resolved measure-
ments. The millimeter-wave grating spectrometer is
equipped with three W-band crystal detectors, and is com-
pletely calibrated over the range 60 to 105 GHz. Its resolu-
tion is approximately 1 GHz. The use of three simultaneous
channels in the spectrometer.permits the efficient accumula-
tion of spectra with a limited number of discharges. It also
permits simultaneous observations at three discrete frequen-
cies of the effect on the emission of any variation of experi-
mental parameters. :

Il. THEORY

The operating frequency of an FEL in the collective
regime is determined from the intersection of the negative
energy electrostatic beam mode dispersion relation,

o= (k+k,, —xv,, (1
and the electromagnetic waveguide mode dispersion rela-
tion,

@* =k + o, (2)
Here o, is the cutoff frequency of the particular mode of
interest, k, (=2m/A,) is the wiggler wave vector, and «v, is
an effective plasma frequency, where®

Kg(wb/y”z’Gv: )¢ Ilzr (3)

D=1 — {2y, BL/[(1 +BLM2 — kv, ], (4)
@, is the beam plasma frequency,

75“ - vZ/CZ)—IIZ' Y: E“ - vi/CZ)— ”2-

,=eB,/yme, Bl=vl/vi.

Also note for later use that 8, ==v, /c and §, =v, /c. Compu-
tational analysis of electron orbits in the equilibrium fields’
has shown that the electrons may be assumed to be executing
steady-state helical trajectories. For such trajectories, the
parallel and perpendicular components of the velocity are
given by’™*®

v, =anx/(no_kwvz) (5)
and
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vi ol ==y el (61
where {2, =eB, /ymc. Equations (5) and {6} give rise to two
separate classes of orbits. Figure 2(a) shows the steady-state
orbits fo: typical experimental parameters for an ideal
wiggler (i.e., radial gradients neglected), as given in Egs. 15
and (6), as well as the steady-state orbits in a fully realizable,
three-dimensional wiggler.>'® Evidently, for these param-
eters, the discrepancy between the ideal and realizable
wiggler models is small for axial guide fields of the order of
12 kG or greater. However, such a conclusion breaks down
for axial fields below the 10 kG level. A one-dimensional
theory of the gain is thus expected to be adequate for suffi-
ciently large values of the axial guide field. This condition is
expected to apply to all the experimental conditions investi-
gated in this paper.

It should also be noted that the effects of the dielectric
polarization of the beam have been neglected in the electro-
magnetic dispersion relation (2). This is valid as long as w} /
(ywl, )€k, v, — 2,|/tk,v,), which is relevant to all the
cases of interest in this paper. It is clear from Eq. (1) that the
presence of the wiggler and guide fields have an effect on the
characteristics of the space-charge wave. This effect is mani-
fested through the presence of @, which reduces to unity if
either B, or B, vanish. The combination of a wiggler and
axial guide field, however, results in significant deviations of
@ from unity, which is equivalent to substantial changes in

(a)

GROUP | F\ GROUP 1t
Q< kv, / Qg > kyV,

B: 08}
REALIZABLE WIGGLER

// \
\\
/ \ T ——————

IDEAL WIGGLER

0 1 1 1 s Il L 1

{b)

GROUP (
GROUP Il

FIG. 2. Plots of (a) 8, and (b} @ versus axial guide field for B, = 630 G.
y = 3.4. The axial velocity is shown for both ideal and realizable wigglers.
The dashed lines describe unstable orbits. @ is calculated for an i1deal
wiggler.
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the effective plasma frequency. Typical variation of @ vs B,

is shown in Fig. 2(b) for constant y and B, , assuming an ideal
wiggler. Evidently, ®@>1 for group 1 trajectories (i.e.,
kv, > 12,). However, the situation is more complex for the
group II trajectories (i.e., kv, <2;), for which #<0 when-
ever (1 — Y2v?/c*M2, < kv, . This is the case for all the data
presented in this paper. In this limit the effective plasma
frequency (xv, ) is imaginary, and there is no contribution to
the real part of the frequency of the electrostatic beam mode
due to the electric polarization of the beam. Another way of
stating this is to observe that in the beam frame, the electro-
static mode is purely growing (i.e., zero real frequency). This
point is discussed in more detail by Freund eral.® Asa conse-
quence, the resonant frequency satisfies Eq. (2) and
@ = (k + kv, - This yields

w= yik,v, [1 £ B8] -l /rikic)'], (7
where w is assumed real. For the parameters discussed in this
paper, and over the emission frequencies observed, only the
upper intersection is of interest. Note that in the limit in
which the waveguide effects are negligible, this expression
reduces to w = B,(1 + B, )2k, c. '

It should be stressed that while the plasma frequency
does not appear in the resonant frequency (7) for @ <0, the
interaction may still be in the collective regime. In order to
demonstrate this we note that the spatial growth rate [Im(k ))
is given approximately by the dispersion equation®!

(6k? — NSk — k. — K, + /v, )6k —k, — K_ + w/v,)
= — (BL/Nw/cWBk — k, + 2o/v,), (8)

" where 5k =k + k, — w/v,,

=1l(2 - 0o)
£ L(axrr22t 2"
2 v o,
and 4K =[£2, — o(1 — B,))/v, . Note that Eq. (8} is obtained
in the limit in which @»w, /7', and describes the coupling
between the electrostatic beam modes (for which 8k = + «)
and the two branches of the electromagnetic dispersion
equation given by dk=k, + K, —/v,. The strong
pump regime is found when the electrostatic wave does not
make a strong contribution to the growth rate, that is, when
|6k |> |«|- In this limit, Eq. (8) simplifies to a cubic dispersion
relation,® and the strong pump condition can be shown to be
equivalent to requiring that |«| €82 72k, B,/2. The collec-
tive regime is found in the opposite limit, in which |6k | % |«|
and the interaction proceeds via induced scattering between
the beam mode and the wiggler field to produce the output
radiation. However, it is difficult to obtain an analytical so-
lution to (8) when @ < 0 and « is imaginary. In this regime the
induced scattering process involves an unstable beam mode
and numerical solution shows the collective regime to occur
for

9

x| Z}BLYik, B.. (10)
It should be remarked that the theoretical development im-
plicit in Eq. (8) is based upon a model which is one dimen-
sional (i.e., no finite radial effects are included in either the
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wiggler or the radiation fields) and describes a monoenerget-
ic electron beam executing orbits which are approximately
helical.”® However, good qualitative agreement has pre-
viously been found between this type of analysis and the ex-
perimental results,> and all cases considered in this work
correspond to operation in the collective regime.

IV. EXPERIMENTAL RESULTS

Using the experimental setup described previously,
measurements were made of the emission spectrum. Figure 3
shows three spectra. The top spectrum, for B, = 13.1 kG
and B, = 910 G, corresponds to 8, ~0.34. In this case, only
coupling to the fundamental TE,, mode of the 11 mm i.d.
drift tube is expected from Eq. (7). The predicted frequency,
67 GHz, is in good agreement with the observed radiation.
The middle spectrum, with B, lowered to 630 G, corre-

1 B, - 13.1kG
8, =90G
o -
I
TS )
sl T
I
4
1 N ] LU - S P
| . 8,=13.1kG
=l I b -0
a b
£
: o L
g 0+~ i
[ 4 [ i
o '
. .
5 ] ) i i . Lt
e
3 [ I B, ~ 6 kG
B, = 1.4kG
[
A I
.0 I
ok 1 I I I I
i I,
i 1
1 . i
[ ]
1 1 " 1 Lt
© » ® 2 100

FREQUENCY (GM2}

FIG. 3. Free-electron laser emission spectra for (top) B8, = 13.1 kG,
B, =910 G; (center) B, = 13.1 kG, 8, = 630 G; and (bottom} B, = 16.0
kG, B, = 1.4kG. Only statistical error bars are shown. The estimated syste-
matic erroris + 2dB.
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sponds to 8, ~0.27. Equation (7) predicts coupling to the
two lowest waveguide modes, the TE,, at ~96 GHz and the
TM,, at ~78 GHz. The spectrum shows two main peaks,
centered at frequencies that are in good agreement with
these predictions. Additionally, the lower-frequency emis-
sion is observed to be predominantly radially polarized, as
would be expected for a TM,,, mode pattern, while the high-
frequency peak is unpolarized, as expected for a (circularly
polarized) TE,, mode. The bottom spectrum has B, in-
creased by 20% to 16.0 kG, with B, increased to 1.4 kG in
order to keep B, approximately unchanged from the pre-
vious case. This spectrum is virtually identical, although its
amplitude is doubled. Doubling is also seen in the pyroelec-
tric detector signal. This doubling can occur because gain
and saturation are functions of B, as well as of 5, .

These results demonstrate that the emission spectrum is
strongly affected by changes in 8, at asingle B,, but is virtu-
ally unaffected by a large change in B, at constant 8, . This is
strong evidence for FEL emission rather than the cyclotron
mechanism seen in some other experiments.'*-'* In addition,
the observed emission features do not agree with calcula-
tions based on coupling to the positive energy cyclotron (gyr-
otron) modes.

Tuning of the spectrum is most easily demonstrated by
making single frequency observations of the output power as
a function of experimental parameters. This procedure fac-
tors out calibration errors for each single frequency sweep so
that the only residual errors are because of discharge-to-dis-
charge nonreproducibility of the experiment, which can be
dealt with statistically. In essence, an FEL is tuned by vary-
ing the axial velocity of the electron beam through the inter-
action region. Due to the complicated relationship of 5, on
both B, and y [see Eqs. (5) and (6}], this was most easily done
experimentally through variation of B, .

Figure 4 shows power at six frequencies between 60 and
95 GHz, as a function of B,. Each curve is plotted in the
same power units, subject to the estimated + 2 dB accuracy
of the separate single-frequency calibration factors. Typical
statistical error bars for these data are smaller than the sym-
bols used to locate the points. B, is held constant at 13.1 kG.
It is seen that for each frequency, the output power is maxi-
mized at a particular value of B, . The data display a mono-
tonic trend; that is, the lower the frequency of interest, the
higher the optimum wiggler field. Through variation of B,
by a factor of 2, superradiant emission is optimized over a
50% variation of frequencies. The pair of vertical arrows
associated with each frequency indicate the calculated
wiggler field to maximize emission for the TE,, mode (right
arrow) and the TM,;,, mode (left arrow). In most cases, the
coupling seems to be strongest for the TE,, mode, as would
be expected for a circularly polarized wiggler coupling to an
axicentered electron beam. Note that variation of B, in order
to tune the frequency will also affect the total FEL emission
through its effect on the gain and possible saturation of the
FEL interaction. The wiggler fields that optimize emission
in the range 75-80 GHz are the fields that maximize total
high-frequency (/> 60 GHz) emission, as measured by the
pyroelectric detector. That is, the larger emission seen at
75.2 and 79.5 GHz is believed real.
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FIG. 4. FEL tuning—emission at six frequencies as a function of 8,, for
B, = 13.1 kG. The predicted position of peak emission at-each frequency
for the TE,, mode (right arrow) and TM,,, mode {left arrow) are shown.

The broad single-frequency tuning peaks shown in Fig.
4 result from the amplification of broadband spontaneous
emission by the FEL interaction. For an FEL operating on
group I orbits with @ <0, theory predicts broad gain band-
widths, since the interaction is coupled to a purely growing
electrostatic beam mode.® This broad gain bandwidth, am-
plifying initially broadband spontaneous emission, results in
the moderate emission linewidths seen in Fig. 3, even after
the estimated 60 dB of amplification of the original sponta-
neous emission level has taken place.

Another presentation of the frequency tuning is shown
in Fig. 5. Here, the six frequencies of Fig. 4 are plotted versus
the calculated value of B, (1 + B,)v;c/4,, at the peak of each
curve in Fig. 4. For a coupling at the light line, the points
should lie along the top curve. The lower lines indicate the
calculated couplings to waveguide modes. The line corre-
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FIG. 5. Emission frequencies plotted against 8,(1 + 8,17 c/A, calculated
from the best measured value of 8, at each frequency. The caiculated fre-
quencies of TE,, and TM,,, modes are shown.
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sponding to the TE |, mode fits most of the points fairly well.

The only direct means to measure the gain of a superra-
diant amplifier is to vary the length of the interaction region,
and to observe the change in frequency-resolved output pow-
er as a function of interaction length. Since the wiggler mag-
net is one continuous coil, the length of wiggler magnet tra-
versed by the electron beam was varied by changing the
length of the axial magnetic field. Since £, is initially greater
than kv, for the cases discussed in this paper, the falloff in
B. associated with the end of the axial magnetic field sends
the electron beam to the drift tube walls [see Egs. (5) and (6)
and Fig. 2(a), and note that the electron orbital radius is
given by B, /( B.k,.)).

Figure 6 shows the emission at a single frequency, 66
GHz, as a function of the length of the axial field for
B. = 12.1kG and B, = 630 G. The lower axis corresponds
to the distance of the last connected axial field coil from the
end of the wiggler exit taper. As the axial magnetic field is
lengthened {last energized magnet coil changed progressive-
ly from — 40 to — 20 cm), the output power at 66 GHz is
seen to exponentiate. The rate of growth is approximately
0.5 dB/cm. This is about 10% of the maximum spatial
growth rate calculated from a numerical solution of the dis-
persion equation given in Eq. (8). The discrepancy can be due
to the fact that effects such as the fill factor, finite geometry,
finite temperature, wiggler gradients, and mode competition
have been emitted from (8). Also, note that the gain measure-
ment was not performed at the peak of the experimental
emission spectrum.

The interpretation of the experimental gain measure-
ment is complicated by a very gradual decrease in axial field
that begins tens of centimeters upstream from the end of
magnet. This results in a gradual increase in 8, and decrease
in B, that modifies the interaction parameters over this end
region, increasing the gain, but lowering its frequency. The
length of this nonuniform end region of constant B, but de-
creasing B, is constant, provided that the beam is disposed of
within the uniform portion of the wiggler magnet. This will
be true when the last energized axial magnet coil is within the

OUTPUT POWER (ARB UNITS)

100 - X X

| { I L L I |
«20 +10 0 -10 -2 -0 -4 -50
POSITION OF LAST AXIAL FIELD COIL {em)

=

—EXIT —
I~ APER™ UNIFORM WIGGLER
FIG. 6. Variation of output power at 66 GHz as a function of length of axial
magnetic field for 8, = 12.1 kG, B, = 630 G. Electron beam is traveling
right to left. The position of the wiggler magnet is indicated below the plot.

2687 Phys. Fluids, Vol. 26, No. 9, September 1983

uniform region of the wiggler. Thus, the exponential growth
seen as the system is lengthened is believed to charactenze
the gain in the uniform region of the interaction.

The data in Fig. 6 display a second interesting effect.
which is believed due to the nonuniform end region affected
by the gradual decrease in axial field. The peak power at 66
GHz appears to occur when the end of the axial field magnet
is located near the end of the uniform wiggler section ( — 10
cm), rather than when the axial field is held constant
throughout the wiggler. This increase in measured single-
frequency emission is accompanied by a comparable in-
crease in total high-frequency emission. A similar enhance-
ment in emission as the length of uniform axial field is
decreased (last axial field coil at — 10 cm) is found at several
other combinations of axial and wiggler fields. A particular-
ly interesting case is illustrated in Fig. 7, which shows a com-
parison of the emission spectrum at B, = 16.0 kG and
B, = 1.4 kG for the uniform axial field case, with a partial
spectrum for the case of B, shortened to the length produc-
ing the maximum effect in Fig. 6. For these experimental
parameters the total power in the emission spectrum appears
to have increased by a factor of 2, accompanied by a small
shift to lower frequencies. The pyroelectric detector data
agrees with this factor of 2 increase in frequency-integ-.ted
power. For this case, shortening the region of uniform B,
and creating the nonuniform end region increases the total
high-frequency emission ( /> 60 GHz) measured by the py-
roelectric detector by approximately 50% over that pro-
duced by any combination of wiggler field and uniform axial
field. Based on a comparison with pyroelectric detector mea-
surements performed at slightly higher currents and differ-
ent axial and wiggler magnetic fields, whose total powers
and efficiencies were determined calorimetrically,>* this in-
creases the estimated overall experimental power to near 50
MW at 5% efficiency. It should be noted that this results in
larger experimental efficiencies than those predicted for the
experiment, at lower axial fields and without an axial field
end taper, by a particle-in-cell computer code that includes
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FIG. 7. Emussion spectra at B, = 16.0kG, B, = 1.4 kG for the full system
{axial field constant throughout wiggleri, and for the shortened system (last
connected B8, coil at start of wiggler exit taper).
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finite electron velocity spread.*-'® However, saturation is ex-
pected to be a function of axial guide field,'* and the effects of
the axial end taper are not yet fully understood. These effects
are under study.

V. CONCLUSIONS

Initial spectral measurements have been completed on a
high-power superradiant millimeter-wave free-electron la-
ser experiment. These measurements have produced emis-
sion spectra that agree well with predictions. Coupling has
been observed to the two lowest-order modes of the over-
moded circular waveguide. Moderate linewidths in the
range of 6% to 15% have been measured, demonstrating the
broad gain bandwidth of the interaction. Additionally, in
this experiment there was observed for the first time the pre-
dicted simple broadband tuning of the FEL interaction, with
tuning demonstrated over a 50% range of frequencies
through variation of the axial electron velocity by means of
changing the strength of the wiggler field.

Direct gain measurements have demonstrated a single-
frequency gain of approximately 0.5 dB/cm, through vari-
ation in the interaction length for the super-radiant emis-
sion. Additionally, a frequency shift, accompanied in some
cases by a large increase in total power and efficiency, has
been observed through shortening the region of uniform axi-
al field and tapering the strength of the axial magnetic field
at the end of the uniform wiggler region. The highest power
produced in this way is estimated to be * 50 MW at approxi-
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Nonlinear analysis of free-electron-laser amplifiers with axial guide fields

H. P. Freund®
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The nonlinear evolution of free-clectron lasers in the presence of an axial guide field is in-
vestigated numerically. A set of coupled nonlinear differential equations is derived which
governs the self-consistent evolution of the wave fields and particle trajectories in an ampli-
fier configuration. The nonlinear currents which mediate the interaction are computed by
means of an average over particle phases, and the inclusion of fluctuating space-charge
fields in the formulation permits the investigation of both the stimulated Raman and Comp-
ton scattering regimes. The initial conditions are chosen to describe the injection of a cold,
axially propagating electron beam into the interaction region which consists of a uniform
axial guide field and a helical wiggler field which increases to a constant level adiabatically
over a distance of ten wiggler periods. After an initial transient phase, the results show a re-
gion of exponential growth of the radiation field which is in excellent agreement with linear
theory. Saturation occurs by means of particle trapping. The efficiency of the interaction
has been studied for a wide range of axial guide fields, and substantial enhancements have

been found relative to the zero-guide-field limit.

I. INTRODUCTION

The use of axial guide magnetic fields in free-
electron-laser (FEL) experiments has generally been
restricted to low-energy (~ 1 MeV) and high-current
(~1 kA) devices in which the axial field is necessary
in order to confine the electron beam. As a conse-
quence, a great deal of theoretical work has been de-
voted to the calculation of electron orbits,"? spon-
taneous radiation (i.e., noise) spectra,’ and the linear
growth rate’=? in the presence of an axial guide
field. As shown in these works, a fortuitous conse-
quence of the presence of the guide field is that both
the noise spectrum and the linear growth rate are
enhanced. Such enhancements are due to an in-
crease in the transverse electron velocities and a de-
crease in the natural response frequency of the elec-
trons. In the latter case, the natural frequency can
become comparable to the frequency of the ponder-
motive force which results t-om the beating of the
radiation and wiggler fields. When this occurs the
linear gain can become very large, and the interac-
tion is anaiogous to that of driving an oscillator at
its natural frequency In view of the possible
enhancements in the gain, the study of the nonlinear
phase of the interaction assumes an added impor-
tance with a primary focus on possible enhance-
ments in the saturation levels of the instability and
the efficiency of the interaction.
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The motivation for the present work is to investi-
gate the effects of the guide field on the nonlinear -
. regime of both the stimulated Raman and stimulat-
ed Compton scattering regimes of FEL operation.
To this end, a set of coupled nonlinear differential
equations is derived which describes the evolution of
both particle orbits and the electrostatic and elec-
tromagnetic fields. The nonlinear currents which
mediate the interaction are computed from the mi-
croscopic behavior of an ensemble of electrons by
means of an average of the electron phases relative
to the ponderomotive wave. This is equivalent to a
time average over the electron orbits which, in turn,
is equivalent to an ensemble average over the micro-
scopic electron distribution. Thus although the
macroscopic electron distribution does not explicitly
appear, the formulation is equivalent to a fully ki-
netic treatment of the interaction and is capable of
describing effects such as particle trapping in the
ponderomotive wave. This is in contrast to the non-
linear analysis described recently by Friedland and
Bernstein'® which is based on the cold-fluid model.
These equations are solved numerically for a con-
figuration in which a uniform, monoenergetic elec-
tron beam is injected with purely axial velocities into
the interaction region which consists of a uniform
axial guide field and a helical wiggler field which in-
creases adiabatically from zero in ten wiggler
periods. The analysis is performed in one spatial di-
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mension, aithough the electron trajectories are in-
tegrated for three dimensions in the velocity. In ad-
dition, since the problem of interest is that of an
FEL amplifier, only a single electromagnetic and
electrostatic wave is included corresponding to the
choice of the fastest growing mode. Thus the
analysis self-consistently describes the linear and
nonlinear phases of the imteraction of a uniform
electron beam with a helical wiggler field in one di-
mension. The results of the simulation show, after
an initial transient phase, a region of exponential
growth of the radiation and space-charge fieids
which is in excellent agreement with the linear
theory’~? over the entire range of parameters stud-
ied. The onset of the nonlinear phase of the interac-
tion appears quite suddenly, and saturation occurs
by means of particle trapping. Most significantly,
substantial enhancements in the interaction efficien-
¢y are found to occur.

The organization of the paper is as follows. The
general equations are derived in Sec. II. Since the
actual adiabatic entry of the electron beam into the
wiggier is included in the analysis, we digress in Sec.
III to describe the types of orbit which result in the
absence of a radiation field. The numerical solu-
tions to the complete set of coupled particle-field

and k . (2) and k (z) are the wave vectors. Note that
by the choice of parameters (i.e., primarily the pump
strength, beam density, and axial field) the ampli-
tudes and wave vectors will be slowly varying func-
tions of z however, no such assumption is made
a priori.

The microscopic current density can be written as
the following sum over individual particle trajec-

tories:
hi
- L & 8(t —1{z,8;0))
8J(z,t)=—eny— > V. (2,t;g) ——
*Nr 2. PENT  vgla, o) |

4)

where N7 is the total number of electrons within the
interaction region of length L, n, is the average elec-
tron density, V,;(z,t;0) is the velocity of the ith elec-
tron at position z which entered the interaction re-
gion (i.e., crossed the z =0 plane} at time ¢;5, and

v \.-._ - . o R
$ r‘._' o _.'_..‘.._,\_ ’._.' P
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equations are given in Sec. IV, and the conditions
under which efficiency enhancements occur are
described. A summary and discussion is given in
Sec. V.

II. GENERAL EQUATIONS

The physical configuration we employ is one di-
mensional in that spatial variations are restricted to
the z direction. The static magnetic field is taken to
be of the form

B(z) = Boé, + B, (2)[&,cosl k,,2) +&,sink,z2)]
i

where By and B, are the amplitudes of the axial
guide field and the wiggler field, respectively, k,
(=2m/),, where A, is the wiggler period) denotes
the wiggler wave vector, and it is assumed that
dInB, /dz <<k,. Thus we allow the wiggler ampli-
tude to vary slowly in z while holding the period
constant. In practice, we shall allow B,(z) to vary
only over 0<z < 10A,, after which it shall be held
constant, so that dInB,/dz~0.lk,. The variable
amplitudes and periods of the radiation and space-
charge fields are included by means of the vector
and scalar potentials

_
- z " : )
SA(z,0)=84 (2) {é‘,cos [ fo dz'k . (z')—wt ] —é,sin [ fo dz’k+(z’)—wt] ] ) 2r
. 2
SP(z,1) =8D(z)cos { fo dz’k(z')—wt] , (3)
f

where w is the wave frequency, 54 (z) and §&(z) are (2 L) Eleat :  d7 (5)
the amplitudes of the vector and scalar potentials, Tis ol =tio™ Jo vz’ o)

The system is assumed to be quasistatic ti.e., in a
temporal steady state) so that particles which enter
the interaction region at times #, separated by in-
tegral mulitiples of a wave penod will execute identi-
cal orbits.'! As a result V,(z,0) =7V,(2,;0), where
tig =40+ 27N /w for integer N.

Substitution of the microscopic fields and current
density into Maxwell’s equation yields

a° 2
d228a+ —k Sa
w} Vpo | VyCOSY—V,8inY
_h v nembovind)
¢ ¢ Uy
@f Vo / U SINY +vsCOSY
w2 (k'/z&)_—4ﬂ<———' : ) :
dz ¢t ¢ v;
M
.'A.-:l %E;L&_‘A L-_\"j. "L‘ A'“." . “ 4‘ .‘LA:';.“A.“::‘:A'L.' a
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d? : v IRC
Wy cosy,; —
4 se=22t <_> , (8) y=— (12)
de (,‘2 P V3 N g
) . represents a phase average where .V, denotes the
ka_d_( k'28¢)= — 29_"_,, 0<M> (9) number of electrons in a single wave period. Thus
dz e N vy /7 following Sprangle et al.'' the quasistatic assump-

where an average over a wave pcnod has been per-
formed. In Egs. (6)—(9), w} =4dme’n,/m, vy is the
initial axial velocity of the electrons, da =e 84/ me?,
do=e5/mc?,

bmdot [ dz'k, +hy—0/v3), (10)
w=tot [ dz'k —w/vy), (11

o= —wly is the initial phase, and (v,,v,,v3) are the
components of the electron velocity in the wiggler
frame defined by the |basis vectors &
=8&,co8(k,2) +&,sinl(k,2), &= —&,sin(k,2)
+8&,cos(k,2), &;=¢,. Observe that it has been im-
plicitly assumed that the electron beam is monoener-

getic and that all electrons have the same initial axi-

al velocity. In addition,

tion has permitted the reduction of the problem to
the consideration of the initial beam segments for
which steady-state orbits of the beam electrons are
described by particles which enter the wiggler region
within a wave period. The actual length of these
segments is 27v,o/w s0 that NV, =2rNrv,e/wl. For
sufficiently large N,, the discrete nature of the
phase average (12) can be replaced by an integral
over the initial phases ¥, as follows:

1 t 4
(Fy=7 f_'dd«,?'. a3

In this form the field equations are identical to those
derived by Sprangle et al.'! -

In order to complete the formulation, the electron
orbit equations in the presence of the static and fluc-
tuating fields must be specified. These equations are
of the form

d R V2] . d
ZP ( kv, -;J—+mc -k, l&a smw+cost.Sal , .(14)
——p:— lno —kyvy ’p—l—mﬂ,,+mc 2k, |ba cosw—simbiéa ' , (15
%) vy dz
where p, ,=ymu, 4, Qo = | eBou/me |, y=(1—v1/cH)™172
d Q, v, ¢ 8a V3 .
L=t £ gk 0=
dva y 5Ty + wcz v sin¥ +v,cosy)
< d 8a (v cos¥—v,siny) ¢’ k 8¢ siny; —cosy d 5¢ (16)
- < - - - ) — ,
Y3 dz 1 2 MW ! dz

and y2=(1—v?/c?)~". Both the linear and non-
linear evolution of the FEL amplifier, therefore, are
included in Egs. (6)—(9) for the field quantities and
(14)—(16) for the orbits of an ensemble of electrons
having initial phases — 7 < Yo < .

IIl. SINGLE-PARTICLE ORBITS

Since an adiabatic entry region into the wiggler is
included in the analysis, it is useful to consider the
form which the single-particle orbits take as they
emerge into the constant-B, region as a function of
By. It should be remarked here that the radially

—

homogeneous wiggler under consideration is neither
curl nor divergence free and is a reasonable approxi-
mation for a realizable wiggler field only as long as
kyr <<1 and dInB,(z)/dz <<k,, where 7 measures
the radial displacement of the electron trajectories
from the axis of symmetry. The question we exam-
ine in this section, therefore, is the effect of the adia-
batic increase in B,(2) on the trajectories of elec-
trons which enter the wiggler with purely axial
motion.

The appropriate equations of motion follow im-
mediately from (14)—(16) in the absence of fluctuat-
. ig fields,

Joun

i
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‘ d Uz (L) B
< —u=— —kyvy [—, (1n . -

_‘-: dz Uy [ w3 vy '
[ \.‘_ Q Q [T :

-i_ v :

. ivz= =2k |———2, (18) - ;

dz Y vy Y .
- Q, v - f

L R 19) - :

q= dz Y us '
: where 7 is now a constant of the motion, and {,, is : : 5

L a function of z. The steady-state (or helical) orbits'* e

S are obtained by requiring the derivatives to vanish-in FIG. 2. Plot of the single-particie trajectories vs axial

- the constant-B,, region and results in solutions position of (o/yk,c =0.0, Q,/vk,c =0.05, and y=3.5.
vy =0, =00 /(Qo—vk,vy), v2=0, and v3=vy,

. where v)| is a constant determined by conservation
- of energy, i.e., v} +vf =(1—y~)c? This equation
- is quartic in v}, and describes at most four distinct

case illustrated) at which point there is a transition
to the unstable orbits. The second class of stable
trajectory (denoted by group II) is characterized by a

38 classes of trajectory, of which one is characterized

by motion antiparallel to By and will be ignored. of
the remaining three classes of trajectory, one is un-
stable. It is, therefore, difficult to propagate a
coherent beam on these orbits, and it is of interest to
determine whether, by adiabatic tapering of B,,
these orbits can be avoided. The three types of orbit
. propagating parallel to By are shown in Fig. I, in
which we plot v, vs Qo/vk,c (i.c., the axial field
strength) for y=3.5 and Q,/yk,c=0.05. Observe
that of the two classes of stablé orbits, one is charac-
terized by high axial velocities (denoted by group )
for low B, and decreases monotonically with the ax-
ial field up to a critical By (Qq/7k,c ~0.76 for the

monotonically increasing axial velocity with By.
In the integration of the orbit equations it shall be
assumed that

TB,[1—cos(k,z/20)], 0<z< 104,
B, , z>10A, (20)

B,(z)=

which provides for a smooth, adiabatic transition to
the constant-B,, region. over ten wiggler periods.
The results of the integration of the orbits with
B, (2) characterized by (20) are shown in Figs. 2 and
3, where we plot the components of the velocity
versus k,z for y=3.5 and Q,/yk,c =0.05. Note

W T that the initial conditions on the velocity were
~ TR chosen to be v; =v,=0 and v;=(1—-y~3!"%c. Fig-
r ] ure 2 corresponds to parameters consistent with
b / | group-I steady-state orbits, and we find that the tra-
jectories in the constant-B,, region differ only slight-
s / y ly from the steady-state case. As is evident in the
/ ‘s figures, the bulk values for the magnitude of v, in-
.t . GuiThwe - 088 1 crease with the adiabatic rise in B,, after which
" i / small oscillations about mean values corresponding
i ‘
‘} ‘ o N~
1. ul ) :
J_\" <4
) G rht
Lol O L] “

FIG. 1. Graph of the axial velocities corresponding to
the steady-state :rajectories as a function of the axial
guide field.

FIG. 3. Plot of the single-particle trajectonies vs axial
position for Qo/yk,c =1.0, 0, /yk,c =0.05, and y=3.5.
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to the group-I trajectories are found in the constant-
B, region. Note that yk,v; > {1y for these orbits
and, hence, v; <0. In addition, v; =0 for the
steady-state orbits, and the electron trajectories in
the constant-B, region exhibit small oscillations
about this value. The behavior of vy, while not
shown explicitly, also exhibits small oscillations (of
less than 1% of the mean value) about the appropri-
ate value for the group-I orbit. Thus we conclude
that it is possible to adiabatically inject electrons
into the interaction region on near-steady-state or-
bits. However, it should be observed that as
o/ vk ,c increases from O to 0.76 (corresponding to
an increase in By), the magnitude of the fluctuation
relative to the steady-state bulk value increases.
This trend is characteristic of group-I-type injection
and is indicative of the fact that it becomes increas-
ingly difficult to obtain near-steady-state trajectories
as the transition to orbital instability is approached,
at which point (Qy/vk,c~0.76) the orbits differ
widely from the steady-state trajectories and exhibit

large fluctuations in the velocity. As a result, it be-

comes impossible to either inject or propagate a
coherent beamn through the system.

Injection corresponding to near-steady-state orbits
of the group-II type is illustrated in Fig. 3 for

Qo/vk,c =1.0. Observe that yk,v; <y for these °

-orbits and v, >0 in this regime. Although orbital
instability does not occur for group-II trajectories in
one dimension, the orbits are characterized by low
axial velocities for sufficiently small B,. As a
consequence, it is possible for axially injected elec-
trons with relativistic energies to be characterized by
initial axial velocities much greater than that of the
steady-state orbit. This is the case which corre-
sponds to the orbit shown in Fig. 3, which is charac-
teristic of the resulting trajectories for Qo/vk,c < 1.
The orbits in this regime may still be described as a
perturbation about the steady-state orbits, but the
perturbations are large. It is only when B, has in-
creased along with the steady-state axial velocity
that the perturbations about the helical orbits again
become small (i.e., Qp/7k,c > 1.3). As in the case
of injection into near-group-1 type of orbits in the
vicinity of the orbital stability transition, large fluc-
tuations in the equilibrium electron velocity results
in a degradation of the FEL interaction.

In view of the preceding results regarding the adi-
abatic injection of relativistic electron beams into a
combined axial guide field and helical wiggler field,
we conclude that large-scale fluctuations in the elec-
tron velocity may be expected whenever
0.76 < Ng/vk,c < 1.0 for y=3.5 and 0, /yk,c
=0.5. Within this range, the transverse components
of the electron velocity may become sufficiently
large that the radial excursions of the electron beam

make it difficult for the beam to propagate. In ad-
dition, the fluctuations in the axial velocity can
cause a breakdown in the FEL wave particle reso-
nance condition which, even if beam propagation is
possible, will result in a substantial decrease in the
gain.

IV. NUMERICAL SOLUTION

The set of coupled differential equations derived
in Sec. Il is solved numerically for an amplifier con-
figuration in which a wave (w,k . ) of arbitrary am-
plitude is injected into the system in concert with a
monoenergetic electron beam. The initial conditions
{at z =0) imposed on the electron beam are chosen
such that the particles are uniformly distributed in
phase for —m < o< in order to model the case of

.a continuous beam (i.e, the beam is not pre-

bunched). Difficulties which arise from the in-
clusion of a necessarily finite number of electrons in
the phase averages (12) were found to be overcome
by the use of a Simpson’s rule integrator for 61 par-
ticles per wave period. The use of larger numbers of
electrons was found to result in discrepancies of
considerably less than 1%. As in the integration of
single-particle orbits in Sec. III, the wiggler field is
assumed to increase adiabatically to a constant level

- over ten wiggler periods (20). The electromagnetic
. mode was chosen to correspond to the wave charac-

terized by the highest linear growth rate. Thus if
the equilibrium orbits are characterized by the
steady-state trajectories described in Sec. III in the
constant-B,, region, then the frequency and wave
vector are determined by the intersection of the elec-
trostatic beam mode

w=(k =« (20
and the transverse electromagnetic mode

mf(w—k+vl|)

2_kici- =0, (22)
@ +¢ }’{(J)—Qo/Y'—k.,.U”)
where
k=k,+k,, c=0y®'"2/v'" v, ,
Q
= OB'Z"Yﬁ (23)

- _l\+B.z,,)ﬂo—ykwv|, '

and B, =y, /vy. Finally, the initial level of fluctua-
tions in the space-charge field is assumed to be zero.

Insofar as the electron orbits approximate the
steady-state trajectories, it can be expected that the
radiation field will experience a period of exponen-
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tial growth (at a rate consistent with the linear
theory) prior to saturation. As a consequence, a
brief discussion of the linear dispersion equation is

_

((@—kvy P =Po] Jk —ky—K o Nk —ky—K _)

of interest. The linear dispersion equation can be re-
duced to the following quartic equation in k. (>0)
(Ref. 9):

=863 L 2wy 20— o/~ 4oy )= ol —kvy)/y), (24

where £=w, /}'mk,,c 1s the beam strength parame-

ter, K1=(0? -0} /v) /¢,

-/
K+silx+——"’ ol |
- 2 vy
12
+— (AKP +2£%k 2 —— T , 2%
YKo,

and AK =K —(w—Qo/7)/v). If the beam strength

parameter is sufficiently small that <<y,
X (B,/Bo?” and ¥(B,/Bo)**®'7, then (24
reduces still further to a more familiar cubic disper-
sion equation’

B

8k(6k + )8k — Ak)~——§2k,,,ﬁn lp—

o
(26)

where Sk=k —w/v)|—x, By =v,/c, and Ak=k,
+K —@/v —« is the frequency mismatch parame-
ter.

The “strong-pump” (or Compton scattering) re-
gime is obtained when |8k | >> | 2¢|. In this limit,
(26) can be approximated as

B

(8k)*(8k — Ak)~-——§zk,,B” 'o——-. 2n

xII

and peak growth occurs when Ak ~0 at which point
(8K ) max=7 (1 £iVIN TBLEBT ')k, . (28)

As a consequence, the requirement for Compton
scattering to be valid becomes

x << 5 BL Bk - (29)
The opposite (Raman scattering) regime occurs

when | 2x| >> | 8k |, and (26) can be represented in
the form

(8k)* — Ak 8k + %ﬁﬁ,,kazo . (30)

Peak growth is again found for Ak ~0, where
(8K )max= 7B Yok (Byx /ky)' /2 . (31)

r
Therefore the Raman regime is found when

K>> %B.z,}},ﬁuk,, . (32)

It should be observed that the criterion defining
the Raman and Compton scattering regimes is

Y T

dependent upon B, as well as on the beam and -

pump strengths. As a result, it is possible to make a
transition from one to the other regime as a function
solely of axial guide field. Since the principal objec-
tive of this paper is to examine the efficiency
enhancement of an FEL amplifier.in the presence of
an axial guide field, the results of the simulation will
be compared with the more complete form of the
dispersion given by Eq. (24), and not by the idealized
Raman and Compton regime approximations. It
will be shown at a later stage of the discussion that
the agreement between the linear theory as
represented by Eq. (24) and the numerical simula-
tion is excellént.

An example of the simulation results is shown in
Fig. 4 in which the radiation-field amplitude 8a(z)
and the growth rate ['(z) (=d Inda /dz) are plotted
as functions of axial position for Qq/vk,c =0.0

w-? T T T T T T
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FIG. 4. Graphs of (a) the radiation-field strength and
(b) growth rate, vs axial position for Qo/yk.c =0.0,
0y, /vkec =0.05, y=3.5, and £=0.1.
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(i.e., no axial guide field), Q, /yk,c =0.05, y=3.5,
and 8a(z =0)=10"". As such, the illustrated calcu-
lation corresponds to the orbit calculation shown in
Fig. 2. It is evident from the figure that, after an in-
itial transient phase (z/A, <29.1), an extended re-
gion of linear (or exponential) growth occurs as evi-
denced by the constancy of the growth rate. During
this phase of the interaction, the growth rate as
computed by the simulation is I'/k,=~0.0146,
which is in good agreement with the linear theory
(24) which predicts a growth rate of
[in/ky=<0.0145. Note that this corresponds to
peak growth at a frequency w/ck,~21.6.
Fluctuations in the growth rate found in the
simulation are AT /k,~*+0.0002, which is to be ex-
pected on the basis of the orbit calculation (Fig. 2)
due to the relatively small fluctuation about the
steady-state trajectory. Saturation begins to occur at
z/A,=114.1, after which the growth rate rapidly
decreases to zero at z/A,,~127.3. At saturation, the
radiation-field amplitude is (8a)y=2.56x 10~}
which corresponds to an efficiency of 3.65%. Sa-
turation occurs by means of particle trapping, and
this will be discussed in detail later in this section.
As shown in Sec. II, increases in the axial guide

field initially result in increasing fluctuations in the -

electron orbits about the steady-state trajectories. In
addition, it has been shown that the linear growth
rate also increases with B, for the group-I class of
orbits.*®> Therefore in order to determine the non-
linear effects the axial guide field and the adiabatic
increase in the wiggler field, a series of calculations
has been performed over a wide range of By,. The
results of the simulation for Q4/vk,c =0.5 show
the average growth rate during the linear phase of
the interaction to be I' /k,~0.030 with a fluctua-
tion of Al /k,=~~*0.003, which remains in good
agreement with the linear-theory result (24) of
Iin/ky=0.029. The increased growth rate leads to
a decrease in the distance to saturation, which now
occurs at z,/h,~67.5 at a field level of
(80 )==3.30%10~°, The wave frequency for this
case (at peak growth) was w/ck,=19.4, and the ef-
ficiency at saturation has increased to 4.92%. The
decrease in frequency for this case resulted from a
decrease in the axial velocity of the beam (see Fig.
1.

Increases in the axial guide field above this level
(but still corresponding to group-I orbits) lead to
larger fluctuations in both the orbits and the growth
rate in the linear regime which culminates in a
chaotic interaction at the transition to orbital insta-
bility at Qg/7vk,c=0.76. A transitional case is illus-
trated in Fig. 5 for which Qy/yk,c =0.7 and a fre-
quency corresponding to peak growth of
w/k,c=14.2, in which the magnitude of the fluc-
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FIG. 5. Graphs of (a) the radiation-field strength and
(b) growth rate, vs axial position for Qo/vk,c =0.7,
Q,/vkye =0.05, y=3.5, and §=0.1.

tuations in the growth rate is apparent. It should be
noted, though, that for 20<z/A, <30 the growth
rate is relatively constant and has an average value
of I'/k,~0.063, which is comparable to the resuit
of the linear theory of ['y,/k,~0.060. The increase
in the growth rate résults in a still further decline in
the distance to saturation which now occurs at
200 /Ay=x32.6; however, while (8a),,~4.09% 10~}
represents a continuing increase in the radiation
field, the efficiency at saturation has decreased to
4.02%. The decline in the efficiency is attributable
to the decrease in the wave frequency.
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FIG. 6. Graphs of (a) the radiation-field strength and
(b) growth rate, vs axial position for Qo/vk.c =1.1,
0, /vk,c =0.05, y=3.5,and {=0.1.

Aol et aral i b Al ki gl Ak Jth bl A B = adbet Ache el asb et el

I3 RS

P T A
ML TS W W vV

s R T T TR

B

o




F?.c_n_'? T
e tr Y e

k]

hi! - X

-
(Y

1984 H. P. FREUND 0

For levels of By such that Qq/yk,c>0.76 the
electron trajectories correspond to perturbations
about group-II-type orbits. However, as seen in Fig.
3, large divergences from the steady-state orbits
occur for Qy/vk,¢ =1.0 and are characteristic of
the low-bulk axial velocities in this regime. The im-
plication of such orbit behavior is that since (1) the
growth rate must also exhibit large-scale oscillations
and (2) the resonant frequency is relatively low, the
interaction efficiency can be expected to be small.
Such an expectation is bome out by the simulation
results as shown in Fig. 6 for Qy/yk,c=~=1.1 and a
frequency at peak growth of w/ck, =11.4. The sys-
tem evidently shows the expected large-scale fluc-
tuations in the growth rate (AT /k,~+0.036) about
a mean value of I'/k,=0.072 after the transients
have decayed (z/A,>20). Note that the linear
theory predicts a growth rate of I'j,/k,=x0.056 on
the basis of the steady-state orbits, which is well
within this range. Saturation occurs at
Zai/Ao=41.1 for (80)4=4.91X10"% however,
while the field amplitude is relatively high, the low
frequency of the mode results in an efficiency of
3.88% which is comparabie to the zero-axial-field
limit. It should be remarked here that the case in
which Q4/vk,c =1.0 (corresponding to- Fig. 3) is
not shown here since it represents a still more ex-
treme example of the results of the large oscillations
in the single-particie orbits and has a still lower effi-
ciency.

Further increases in the axial guide field corre-
spond with increases in the resonant frequency and
decreases in the departure from the steady-state
single-particle trajectories. As a consequence, the
evolution of the radiation fields becomes more regu-
lar as well. For Q4/yk,c =1.5 and a frequency at
peak growth of w/ck,=20.3, the simulation gives
I' /k,=~0.021 with a variatioca in the growth rate of
less than 1%. It should be noted here that we also
recover a growth rate of I'y;,/k,~0.021 from
the linear theory (24). Saturation occurs at
2/Ay=93.1 for a field level of (8a)y,
=3.19x 10~ and an efficiency of 5.02%.

A summary of the frequencies and growth rates
for the various simulations is given in Fig. 7 in
which we plot w/ck, and T /k, vs y/vk,c. The
curves for the frequency represent the variation in
the resonant frequency at peak growth found from
the intersection of the dispersion relations in Eqs.
(21) and (22) for the appropriate value of v from
the steady-state trajectory. These values represent
the frequencies used in the simulations. The solid
line in the plot of I" /k,, represents the results of the
linear theory (24), again, for the appropriate steady-
state trajectory while circles are used to denote the
results found from the simulation in the linear re-
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FIG. 7. Plots of (a) the peak growth raté and (b) the
corresponding resonant frequency, vs axial field strength.
Circles indicate the growth rates obtained from the nu-
merical simulation.

gime. As seen in the figure, the agreement between
the simulation and the linear theory is excellent.
For the cases shown, it is only when Q4/7k,c =1.1
that the growth rates differ by more than about 2%,
and this is due to the relatively large divergence of
the single-particle orbits from the steady state.
However, this problem no longer appears for
Qo/vkec =1.2, and we conclude that (for the
parameters under study) difficulties resulting from
nonsteady-state single-particle orbits are important
only for 0.76 < Qy/vkyc < 1.1, where both the fre-
quency and efficiency are low. Consequently, this
regime will be ignored in the discussion of the
overall radiation efficiency and saturation mecha-
nism.

The energy-conversion efficiency and the distance
to saturation are shown in Fig. 8 as functions of the
axial magnetic field. The efficiency is defined to be
the ratio of the total energy lost by the electrons
through the interaction to the initial energy and may
be shown by computation of the Poynting flux to be
2
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FIG. 8. Graphs of (a) the distance to saturation and (b}
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It is evident from the -figure that substantial
enhancements of the efficiency are possible over that
found in the absence of an axial guide field. For
parameters corresponding to the- group-I orbits, the
peak efficiency is approximately 5% and occurs at
Qo/y:o¢=0.5 for the chosen parameters and consti-
tutes a 37% enhancement over the efficiency found
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FIG. 9. Plot of the phase-space distribution for
Qo/vkec =0.5 and z/A,=47.7 in the linear regime.
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FIG. 10. Graph of the phase-space distribution for
Qy/vk,c =0.5 and 2/, =67.5 at saturation.

when no guide field is present. Note also that sa-
turation occurs over a much shorter interaction
length. However, the greatest enhancements in the
efficiency are found for the group-II class of trajec-
tories, for which a peak efficiency of approximately
8.09% is found for Qy/vk,c=1.2 and corresponds
to an efficiency enhancement of 122% relative to
the Bo—0 limit. It is important to bear in mind,
however, that these enhancements in the efficiency
occur at the expense of decreases in the resonant fre-
quency of the interaction (see Fig. 7). Finally, the
low efficiency found for Q¢/yk,c=1.25 corre-
sponds to parameters for which |®| << 1. In this
regime (which is discussed in detail in Refs. 3 and 9)
the ponderomotive potential and, hence, the linear
growth rate vanish (Fig. 7).

As mentioned previously, saturation occurs by
means of particle trapping in the ponderomotive po-

- tential which results from the beating of the wiggler

and radiation fields. An example of this is shown in
Figs. 9 and 10 in which the positions of the particles
(represented by the dots) in phase space (¢,dv¥/dz)
are plotted for Qq/vk,c=0.5 (i.e., group-I type of
orbits) and z/A, =47.7 and 67.5, respectively. The
solid lines in the figures represent the separatrix
which encloses trapped (i.e., bounded) phase-space
trajectories. It should be noted, however, that while
the positions of the particles represent the results of
the simulation, the separatrix represents an approxi-
mation as it is derived from a perturbation about the
exact steady-state orbits described in Sec. II. As
such the separatrix is strictly valid only insofar as
the particle velocities are close to those for the heli-
cal trajectories, for which'?

d? cHk +ky)* v,

2 —Sv= -y ¢6a siny . (34
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The separatrix, therefore, is given by

PRI L "’sin i],
V2@ e 2
(3%)
when v,®> 0, and
12
%w-a:zi%‘ﬂ-)i i;%«oaa cos aﬁl]
(36)

when v, P <0. Because of this, the phase-space evo-
lution of the particle distribution is dependent upon
the signs of both v, and ®. For the group-I class of
orbits (which includes the zero-guide-field limit)
v, <0 and ©> 0 and the separatrix is determined by
Eq. (36). However, the situation is more complicat-
ed for the group-II class of trajectories. In this case,
while v, >0 for ail the trajectories, ® is less than
zero for Qo/vke,c 1.25 (for the parameters
chosen), and greater than zero for axial field
strengths above this critical value. Thus one must
distinguish between -these two regimes in the
analysis of the phase-space structure of the interac-
_tion. Since the single-particle trajectories are seen to

the separatrix shown in the figures [given by Eq.
{36)] is a reasonable approximation.

The initial phase-space electron distribution (at
z=0) is uniform in that d¢/dz =k +k,~w /vy
over —r<y<m for all the particles. Figure 9
represents the phase-space distribution at a relatively
late point in the linear phase of the interaction. It is
evident, therefore, that the phase-space bunching of
the particles has begun but that the trapping of th:
electrons has not yet. occurred as the trajectories
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FIG. 11. Plot of the phase-space distribution for

No/ykye =1.1 and z/A,=31.8 in the linear regime.
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FIG. 12. Graph of the phase-space distribution for
Qo/ykec =1.1 and z/A,=139.8 at saturation.

remain unbounded. In contrast, Fig. 10 represents
the phase-space distribution at saturation, and it is
clear that while two particles remain on unbounded
orbits outside the separatrix, the bulk of the elec-
trons has been trapped. The results showa here are
in agreement with those found by Sprangle et al.!!

It was pointed out previously that the phase-space
behavior of the electron beam is somewhat different
when ®<0. This discrepancy arises from the fact
that the electron velocity is greater than the phase
velocity of the ponderomotive wave [equal to
w/lk, +k,)] at peak growth (d¥/dz>0) when
® >0, but less than the phase velocity of the pon-
deromotive wave when ¢ <0. This can be illustrat-
ed by consideration of the small-signal gain in the
single-particle regime,>'* -

gie sind
1667 6

where 8= —‘;L dy¢/dz. Therefore when © > 0 peak
gain occurs for 8~—1.3 and dy¥/dz >0. However,
in the opposite case when ® <0, the peak gain
occurs at 8=~1.3 and dv¥/dz <0. This type of
phase-space behavior is, indeed, found in the simula-
tion and is evident in Figs. 11 and 12 in which we
plot the phase-space distributions for Qy/vk,c =1.1
and z/A,=31.8 (in the linear regime) and
z/A,=39.8 (at saturation). The separatrix in these
figures was calculated from Eq. (36). Note that
while the bulk of the particles is trapped on bounded
phase-space trajectories at saturation (and that ex-
treme phase bunching has occurred), a greater pro-
portion of the particies appears to be outside the
separatrix on unbounded orbits than in the other
cases shown. However, this observation must be
made in view of the fact that the single-particle or-
bits resemble those shown in Fig. 3, and the orbits

i 2
Gy =—2-L %k} k¢— sind | 37
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are widely divergent from the steady-state case.
Thus the separatnix is difficult to determine precise-
ly, and may differ greatly from that shown.

V. SUMMARY AND DISCUSSION

The principal objective of the study described in
this paper is to examine the effect of an axial guide
field on the nonlinear stage of the FEL interaction.
Previous studies of the linear regime’=° have re-
vealed that large enhancements in the growth rate
are possible, and the primary focus of this work is
directed toward the question of whether enhance-
ments in the nonlinear efficiency are possibie as
well. To this end, a self-consistent set of field and
particle orbit equations is derived for a FEL ampli-
fier which describes the evolution of both the wave
amplitudes and trajectories for an ensemble of parti-
cles. It is important to observe that although no
particle distribution function is explicitly included
in the analysis, the source currents used in
Maxwell’s equations constitute time averages over
the microscopic electron currents, and the level of
the formulation is kinetic. The equations are then
integrated numerically as functions of axial position
subject to initial conditions which describe the in-
teraction of a uniform electron beam with the guide
and wiggler system. In fact, entry of the beam into
the interaction region is effected by means of an adi-
abatically increasing wiggler. amplitude which
reaches a constant level after ten wiggler periods.
Finally, inclusion of fluctuating space-charge fields
in the formulation permits analysis of both the
single-particle (Compton) and collective (Raman) re-
gimes of operation.

The effect of the initial adiabatic increase of the
wiggler field on the single-particle orbits was con-
sidered by numerical integration of the orbit equa-
tions in the absence of electromagnetic and electro-
static fields. The purpose of this phase of the
analysis is the determination of the types of orbit
which result; in particular, whether the electron or-
bits resemble the steady-state (helical) trajectories
upon which the linear theories of the interaction are
based. As such, the question of the relevance of the
linear theories to both the simulation and to actual
experiments'’ is addressed. On the basis of this

work it was concluded that, for the configuration
used, the electron orbits deviate only slightly from
the helical trajectories except when o~ yk,c, where
the orbits are seen to execute large-scale oscillations
about the steady state trajectories. As a result, the
linear theories are expected to be relevant over a

wide range of parameters.

In fact, the numerical integration of the coupled
particle-field equations bears out this conjecture.
The results shown in Figs. 4—6 show that (except
when Qq~ yk,¢), after an initial transient phase, an
extended region of linear (i.e., exponential) growth
occurs with growth rates which are in excellent
agreement with the linear theory (see Fig. 7). Even
in cases where substantial deviations from the
steady-state trajectories occur, the growth rate is
seen to oscillate about the predicted linear result
(Fig. 6). Saturation is found to occur by means of
particle trapping in the ponderomotive potential,
and substantial enhancements of more than 100%
are observed over the efficiency in the absence of an
axial guide field. The greatest enhancements occur
for parameters consistent with the group-II type of
orbit and relatively large axial guide fields
(Qo~ 1.27k,c) which is consistent with the results
found in the experiment at the Naval Research Lab-
oratory using the VEBA accelerator.’> It should be -
noted, however, that such enhancements in the effi-
ciency correspond to decreases in the axial velocity
of the electrons (and to increases in the transverse
velocity) due to the presence of the axial guide field

.and, therefore, also correspond to decreases in the

resonant frequency of the interaction.

Finally, it should also be remarked that these re-
sults have been obtained for a monoenergetic elec-
tron beam. Introduction of a finite energy spread
can have important consequences on the growth
rates and saturation levels. In fact, recent results'
using a full-scale particle simulation indicate that
decreases in the efficiency are to be expected when a
finite energy spread occurs.
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Unstable electrostatic beam modes in free-electron-iaser systems
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The electrostatic stability of the (ree-electron laser is studied for a configuration in which a relativistic
electron beam propagates through combined helical wiggler and axial guide fieids. [nstability is found for
certain specific parameter regimes which, in the beam frame, is shown to be purety growing and (0 require
the presence of both the wiggler and axial guide fields. The electrostatic stability s also studied for a con-
fuguration which consists of a linearly polarized wiggler and an axial guide field, for which anaiogous

results are found.

The stability properties of a free-electron-laser (FEL) con-
figuration in which a relativistic electron beam propagates
through a combined helical wiggier and axial guide field was
investigated by many authors.'~” [t was pointed out by
Freund eral’ that, in addition to the coherent radiation

process, the electrostatic beam modes are intrinsicaily un--

stable for a specific class of operating parameters. [t is our
purpose here to expand upon the discussion in Ref. | and to0
discuss the underiying physical mechanism behind such an
instability. To this end. we choose t0 analyze an idealized
model which consists of a cold refativistic fluid described by

3,49 . (aTr=0 ., )
3t

Lye-L|(T-Lon - sE+LoxB| . ()
dt ym ¢ ¢ '
4t o

at” me? € . W

where n and V describe the electron density and velocity,
respectively, y m (1~ y¥/¢l) =112

B®mBoé, +B,(é,coskyz +€,sinkas)

is the static magnetic field, 5£ is the electrostatic fieid
(which is assumed to constitute a smail perturbation), and
d/dtm3/ar+7- ¥ is a convective derivative. The equili-
brium state to zeroth order in 3£ is assumed to_be homo-
geneous (i.e., ¥V my=0), and is characterized by a veloci-
ty!%!! Tomv,é, +vyé;, where vy is a constant, v, ™ Q v,/
(Qo=kyvy), QonmleBy /ymecl, and

é,®é,C08kyz +€,5inky2 |

é;m —¢,8inkez +é,008k,2

and

é)mé,
define an orthogonal coordinate frame rotating with the
wiggler field. Observe that conservation of energy imposes
the requirement that v} +vh = (1 = y5 )¢l
Under the assumption of .plane-wave solutions of the
]

(w"’kllu)l-

wé yhB8i04( 0o = kyv)

form SE-SEexp(ikz-iwt). Eqgs. (2) and (3) can be re-
duced to the form

2

Uy A

—i(w=kvy) i +( Do~ kevy) 8y = ——8, =8 . (4)
Yom [4
(Qo—kov1) 861 +i(w=kvy) by + QoBudiy
-l B-‘ﬂ KwV i BE 05)
Yom ¢ w=—kvy
N30 +i(w—kvuy)duy=- e, SE . (6)
Yoynm

to first order in the electric fieid. where 3, =y, /vy and
yem(l =vh/c?) =2 The stability properties. therefore, are
determined by Eqs. (4)~(6) in conjunction with the follow-
ing combination of the continuity equations and Poisson’s
equation;

L5E -0y . N

m w=—K Uy

where wy = {(dmelng/m)'? is the beam plasma frequency.

It is clear from the : component of the momentum
transfer Eq. (6) that in the absence of a wiggler field there
is no coupling between the axial and transverse components
of the velocity, and the dispersion relation reduces to the
well-known positive and negative energy beam modes
w=kvy twy/yity,. However, the parallel-transverse cou-
pling in the presence of the static (ields can aiter the dielec-
tric properties of the medium. Elimination of 5v; from Eqgs.
(4) and (5) shows that

((w=kvy)d=( ﬂo-k.vu)zlbﬁz

2
Vi o A
0

= NoBulilw=kvy) by — ~E==Z5E&] . (8)
yom ¢

and 8v; is nonzero only if both the axial guide and wiggler
fields are present. Thus, the modification to the dispersion
properties of the electrostatic beam modes which s of in-
terest here is possible only through the combination of both
magnetic fields. The instabiiity can be readily demonstrated
by combination of Egs. (6)-(8) to obtain the foliowing
dispersion equation:

2

1~
yorh {1 +83) Qo= kavul{ Qo—kyvy) = (w=kvy)?

&)
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The regime considered in Ref. 1. and which is most relevant
to current FEL expenments., is that 1n which lw~kuv,l
< | Qo—=keval. As a result. the dispersion equation is of
the form

3

(w=kuy)i=—i_o (10)
Yorh
where
b .‘n
b=l YiBw o (1

T +83) Qg - koun

[t 1s evident that instability results when & < 0. Further-
more. the (nstadility 1s purely growing (i.e., the reai part of
the frequency s zero) i1n the beam frame. Additional infor-
mation on the parameters necessary for instability is given
in Ref. |. Finaily, solution of the compiete dispersion equa-
tion (Eq. (9)] does not qualitatively affect this conciusion.

In order to understand the underlying physics we consider
motion in the absence of an axial guide field. It is clear
from (6) that the modification of the dielectric properties
results from the presence of a 8v1é;xB, force in the
momentum-transfer equation. Hence, the essential point is
to determine a source for an oscillatory velocity in the direc-
tion of é;. The possible sources for such a motion are evi-
dent from the two-component of the momentum-transfer
equation [Eq. (2)) and includes a ¥ x B force

"(12)

Frag=~ n:m(s?xﬁ.) éym = Qubuy

convection (note that ¥ é, =k,é;) due to the centripetal
force arising from the rotation (ot gradient) of the wiggler
field, ‘

Fem= = (87 D ¥g)-é1m = kov vy | (13)

as well as a.relativistic contribution which arises from the
variation in the total energy. When no axial fieid is present,
ve= — 0./k, and the convection exactly baiances the ¥ x5
force with the resuit that no net velocity in the é; direction
occurs. The refativistic contribution is the sole remaining
source, but it can be shown to drive oscillatory motion only
in the é, direction. However, the axial guide field tends to
increase the transverse velocity (i.e., v,), and results in
enhanced convection as well as a net source which drives an
oscillation in the é, direction. As mentioned previously, the
finite 3vy causes a 8% x B, force in the axial direction which
affects partial bunching and modifies the dispersive proper-
ties of the medium. As long as k,vy > {1y the convection
acts to oppose the v xB force (12), in part, and causes an
effective enhancement in the plasma frequency (10). In
contrast, when k,vy < {19 the direction of the &, com-
ponent of the zeroth-order transverse velocity is reversed
(i.e., vy, > 0), and convection tends to enhance the effect of
the ¥ xB force. It is in this regime that instabliity is found.

The actual motion in the case in which instability occurs
may be summarized as foilows. The electric field drives a
fluctuation in the axial velocity which, in turn, causes a net
vejocity fluctuation in the ¢, direction by the combined ac-
tion of the Lorentz force and convention. This velocity
then feeds back upon the axial velocity via the Lorentz
force (Bu;é;xB.). The feedback provides the dominant
contribution to the axial vefocity when

(1 —'ﬂ.ui/c’) ﬂo < k.llu < ﬂ.o . (l‘)

- . Coe _.-'4'. T e e ....... .

8
oo

(i.e.. ® <0) and the net effect of the electric field 15 (0
drive axial veiocity fluctuations counter to that produced by
the “*direct’’ action of the electric field. The combined ac-
tion of the axial guide and wiggler fields results in a phase
shift in the axial motion which causes electron bunching to
occur in such a way that the electric field is enhanced.
Thus, although this is a nonrelativistic effect, the system
acts as though the electrons had a negative mass.

It is aiso of interest to determine whether an anaiogous
instability exists for a configuration in which the static mag-
netic fields consist of a linearly polarized wiggier in com-
bination with an axial guide ﬁek_i_. [n this case we represent
the magnetic field in the form B = 8yé, -~ B.sink,zé,. The
equilibrium orbits in this (leld geometry are

Ve = quy COSK,Z

u,-aﬂo(k.un)"'u“sink.: .
and

V™= vy ,

where a= ) k,vy/( Q3 —kivh) and oscillatory terms in
2ke.z (and higher) have been neglected. Conservation of
energy, therefore, imposes the constraint (1 -~p%)v7
= (1 =93¢, where Bi--‘z-az(l*-n&/k}v%.) Perturba-
tion analysis of Egs. (1)-(3) about this equilibrium state to
first order in 3£, and combination of the resuit with Eq.
(7), therefore, yields the following dispersion equation: -

(w - kllu )2
T A 1 ¥h83 Q3 Qd +3kivh)
york | (1 +80) 08— ki (kdvh ~ 381 05)

(%

in the limit in which {w—=kvy| << [Qg=kevy|. This is
analogous to the dispersion equation for the helical wiggler
field (10), and instability is found when

Q3-8 (¥~ QA +3kdvi) < kdvh < QF . (16)

. As in the case of the helical wiggler, the instability s purely

growing in the beam frame, and arises from the same pnysi-
cal mechanism.

The central question raised by this analysis is how the ins-
tability will affect the performance of the FEL. On the basis
of a linearized theory it has been shown that the growth
rates for the amplification of radiation are large fand exceed
those found in the limit as 89— 0), and the bandwidth s
enhanced for the range of parameters leading to the electro-
static beam instability. However, since it might be expected
that the electrostatic instability will lead o degradation of
beam quality in the nonlinear regime, the effects of this in-
stability on the saturation of the FEL are of prime impor-
tance. This question has been addressed by means of a par-
ticle simulation of a cold beam in an FEL amplifier.'? and it
was found that (for the parameters considered), the satura-
tion efficiency is greatest when the electrostatic instability is
present. It should be remarked that this conclusion is rein-
forced by experimental results'*' in which maximum
power was observed for parameters corresponding to the
electrostatic instability. Thus, while the question of the ef-
fects of the electrostatic beam instability on the FEL has not
been conclusively answered (i.e., 2 more compiete parame-
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ter study of the nonlinear saturation efficiency is required,
as in a knowledge of the effects of a finite veiocity spread),
it should not be concluded that these effects are necessarily
deieterious.
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Three-Dimensional Theory of Free Electron
Lasers with an Axial Guide Field

HENRY P. FREUND, SHAYNE JOHNSTON, ano PHILLIP SPRANGLE

Abstract-The collective interaction in a free electron laser with a
combined helical wiggler and uniform axial guide field is presented in
the low-gain regime. The wiggler model we employ is fuily seif-coasis-
tent and includes all transverse inhomogeneitics. The analysis is per-
formed for a free electron lases (FEL) amplifier in which the radial
dependence of the radiation is treated using both the TE and TM wave
guide modes. Substantial discrepancies are found (o exist between the
resuits for the realizable and ideal wigglers, and a selection rule relating
the TEy, and TM;, modes with resonant ampiification at the [th har-
monic of the FEL Doppler upshift.

GREAT deal of activity has been directed toward the
A analysis of free electron laser (FEL) configurations which
consist of an axial guide field as well as a transverse, axially
periodic wiggler field [1]-[5]. The principal (but by no
means only) application of such analyses is to millimeter wave
FEL experiments which make use of relatively high current
(1 kA) and low-energy (1 MeV) electron beams, in which the
guide field is required in order to confine the beam [6]. How-
ever, it is of particular significance that one effect of the guide
field is to strengthen the FEL interaction, and large enhance-
ments in the gain are found to result when the Larmor period
associated with the axial fieid is close to the wiggler period.

The fundamental difficulty with each of these analyses, how-
ever, has been the assumption that radial inhomogeneities in
the wiggler field can be neglected when k,,r, << | (where &,,
is the wiggler wavenumber, and 7, is the beam radius). In such
a case, the radial variations in the wiggler are of the order of
(kwry)?, and were ignored. As pointed out by Diament [7],
however, when radial inhomogeneities are included in a self-
consistent analysis of the equilibrium orbits, the transverse
velocity associated with the wiggler field (which we denoted
by v,,) scales as (v, /v, |~k 7p. Since v, /v, measures the
strength of the oscillatory current which mediates the FEL
interaction and the gain is found to scale approximately as
(v, /v:)?, the assumption of such an ideal radially homoge-
neous wiggler constitutes a basic inconsistency.

It is our purpose in this work to develop a self-consistent
theory of the FEL interaction in the low-gain regime in which
the effects of radial inhomogeneities are included. Our results
indicate that while the radial variations in a self-consistent

Manuscript received July 29, 1982; revised September 24, 1982. This
work was supported in part by NAVSEA under Contract SF68-342-602.
H. P. Freund is with Science Applications, Inc., McLean, VA 22102.

S. Johnston is with the Plasma Physics Laboratory, Columbia Univer-
sity, New York, NY 10027.

P. Sprangle is with the Plasma Theory Branch, Naval Research Labo-
ratory, Washington, DC 20375.

wiggler are generally unimportant in the absence of an axial
field as long as k., r, << |, this is not the case when a guide
field is present. [n this case radial inhomogeneities introduce
fundamental differences, and the problem must be treated in
full generality. To this end we employ a realizable wiggler
field which is generated by a bifilar helix {7}, [8] and write
the static magnetic field as

o) [ ~ l . ~
B=B4e,+28, (!, (A) cos xe, - X I,(\) sin xeg

+ 1, (M) sin x?,) M

in cylindrical coordinates, where B, and B,, are the amplitudes
of the axial and wiggler magnetic fields, \ = k. r, k,, S 2-/A,,
(where A, denotes the wiggler period), x =8 - k,,z, and /,
and /{ are the modified Bessel function of the first kind and
its derivative, respectively. Since our intention is to treat radial
inhomogeneities in a self-consistent manner, these effects must
also be included on the coherently amplified radiation fields.
As a result, the radiation fields are modeled by the well-known
TE and TM modes in a cylindrical waveguide of radius R. The
vector potentials for these modes are of the form

= ! P oA L
8A4,(x,1)= 3 84\, [p—',-l,(p,n) e, sina;(z,8.1)
n

n=\
+J{(01n) €9 cOs a;(z, B,r)] )

for the TE mode, and

SA;(x.t)= Z 84, [J,'(p,,.,) &, cos,(z,0,1)

n=i

I~ xm A) , ] .
“|—es -— e, )i (pa)sina;(z, 8. 13|
(Pxn 0~ %R )N in) !

for the TM mode. In (2) and (3) /, and J; are the regula: Bevse
function of the first kind and its derivative, k is the waveny -
ber ot the modes, pyy = xaF/R, Py SX)ar'R. Xy and 1 .
the nth zeros of the J; and J;, respectively and 2.« =

the phase of the wave. Observe that the sum vor ~ -,

the complete radial mode structure Coheren: .-

included by allowing both §.4,, and & 1o ne . .

z (such that 3, in 84y, << k and A, na -

a(z, 8, )= [Fd2'k+18 - wr v acr vl

result, it is important to note thy ~

0018-9197/83/0300-0322501.00 © 1983 IEEE
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Fig. 1. Graph of the axial velocity versus axial guide for both the ideal
and unrealizable wigglers.

modes will predominantly couple to resonant amplification at
frequencies w = (k + k. )u; (i.e., to the Ith harmonic of the
FEL Doppier upshift). It should also be remarked that this
choice of the radiation field allows for the self-consistent
inclusion of the filling factor in the calculation of the gain.

In addition to these field structures, the physical configura-
tion is assumed to consist of an electron beam in which the

individual electrons are initially characterized by helical orbits -

with constant radius and constant axial velocity. Since the
stability analysis for the gain involves a calculation of the per-
turbations of these orbits due to the radiation fields, it will
prove useful to review the properties of this class of orbit [7].
The basic equations governing the single-particle trajectones in
the static magnertic fields given by (1) are

0 =-(0 - YA +2Q,, 1, (M) sin x)v;
+ Q.03 (\) sin 2,

¥ = (o - ThWvs + 2R, 1, (V) sin X)v,
- 2y, v3(la(N) + 13(2) cos 2,

03 =R, 02(lo(N) + I, (N) cos 2x) - Q,, v, [2(N) sin 2x,

A=k, (v, cosx+ vy siny),

X = kA (v, sin x + vy cos X~ Auy) 4)
where Q2 ,, =leB, ,/mcl,y=(1 - v*/c?)™V/? and (v,,0,,05)
denote the components of the velocity in a frame rotating with
the wiggler and specified by the basis vectors €, = ¢, cos x -
€y sin x, &; = €, sin x + & cos x, and &; = &,. Within the con-
text of (4), v and the total energy are constants of the motion.

The helical orbits are obtained by requiring steady-state solu-
tions in which vy, vy, v;, A, and x are constants. As a resuit,

we must have vy =u,,,0; = 0,0y =vy,x=£n/2,and A=Fv,, /v,
where vy (>0) is a constant, and

ZQwU" 11(7\)/)\ 5
Qo - Thwty 2 20,1, (N)' ®)

Vo =

Equation (5) reduces to the result for an ideal wiggler in the
limit as A = 0; however, since consistency requires that A} =
|0y, /uy | this limit is not strictly valid. Final specification of
the orbit requires knowledge of either v,,, vy, or A.(a value for
any one of which is sufficient to calculate the remaining two).
We choose to determine A, and write

A (1= 7)1 #2372 = 8002 £28,,(1+A2),(N)
" ©)

on the basis of the energy constraint, where 8, ,, =9, /7kwC.
Evidently, (6) determines two distinct branches which may
be obtained numerically. The solution for vy /c corresponding
to the two classes of orbit implied by (6) are plotted versus
Bo (for B, =0.05 and y=3.5) in Fig. 1. Also, shown in the
figure are the corresponding solutions in the case of an ideal
wiggler.

There are two principal differences between the orbits for
the real and ideal wigglers. The first is that the discrepancies
in the velocities increase as vy approaches foc (=820 /7k,,), and
the second is that an additional class of unstable orbits exists
for the real wiggler. The unstable orbits are denoted in the
figure by the dotted lines, and the points 4, B, and C represent
the ortital stability boundaries for the real and idealized wig-
glers. The case of the ideal wiggler model has been amply
treated in the literature and will not be discussed here; how-
ever, a brief analysis of the stability of the helical orbits in a
realizable wiggler is necessary. A linear perturbation analysis
of (4) about the helical trajectories shows that §v, , dvs, and
8\ can be expressed in terms of 8x and Suy (where the “5§”
denotes the perturbed quantities), which satisfy the equation

(G~ (G =) ()0 ®

where

Q=1 rwd Vel - wi) +44,8, ®)
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‘ and we implicitly assume here that all electrons located a distance
' Q. (1+2 r from the axis have the same initial axial velocity, and that
! wl =k, [kw vy F2—= ( Y ) [,()\)] , the initial beara profile is fixed. Equation (11) represents an
o 7 extension of a model current used previously by Sprangle er al.
2 o[ Q0 Q, Q. [9] to include a nonuniform radial profile and radial inhomog-
] “i=\y K vy 5 ko oy * 2—.'7"[ 1) eneities in the orbits. Under the assumptions that the beam
3 5 electrons enter the interaction region on the helical orbits, and
g 9 Q. . (l +\ ) LY that the beam density is sufficiently low that operation is in
Ty N\ A [ the lowgain regime, the current may be written to lowest
o order as
ookt (S8 200m).
v % Q2 §J(x,t) =-eny(r) f dto [y () (cos x&, - sin x&y)
B, 5-2—“’—-3-[(1 +2?) (——-2 2-—“'—[,(7\)) L(A) -
Y LA - 0y (r) &1 8t - 7(2.7, o). (13)
. l )
® * N2k, oy (10(7\) - '{1 1(7‘))] . ()  Before proceding with the derivation, it should be pointed out
1 that for given values of By, B,,, A,,, and 7 there is a unique
E Evidently % , must be computed separately for each class of stable hel.ical orbit.- More sp'ecxﬁcally, if the parameters whxf:h
orbit (denoted by group I for o < k., 5y, and II for 2o > c.:lmactem:e the axial .anc'l wngg_ler ﬁe.lcl.s are fixed, then a shift
~k,, vy in Fig. 1), and ofbital instability occurs whenever either N Energy implies a shxft in r.adxal posmOn.(and vice versa), and
¢ & or Qi are less than zeco. The orbital stability boundaries, & f_'lm‘be spread in radial levlzwsftro is associated with 2
therefore, occur when either of these characteristic frequencies finite beam energy spread (i.c., dy/ )-
vanishes. Evaluation of Q2 ; for the group I and I orbitsre-  For the sake of simplicity, we shall now assume that kR >> 1,
veals the stability behavior shown in Fig. 1. Sinceitisexpected Which is equivalent to the requirement that resonance occurs
to be difficult to propagate an electron beam on the unstable far from the waveguide cutoffs. Thus, the principal character-
orbits, we shall restrict the radiation analysis to cases in which  istic of the waveguide structure included is the radial localiza-
the unperturbed electron trajectories are the stable solutions tion of the modes. A more complete analysis valid for arbitrary
L] to (6). values of kR is currently in preparation: As a consequence,
In order to determine the gain, we make use of Maxwell’s for the low gain, tenuous beam regime the dispersion relation
equations under-the assumption that the beam density is suffi- for both the TE and TM modes is given approximately by the
ciently low that space-charge effects can be ignored. It should free space limit
be remarked here that our initial use of the waveguide modes w =ck (14)
in (2) and (3) implicitly assumed that the invariant beam
° plasma frequency was much lower than the waveguide cutoff, where variations in the wavenumber can be neglected. In addi-
otherwise the model must be extended to include the normal  tjon, the diagonalization of the radial mode structure can be
modes in a dielectric-filled waveguide Under these assump-  accomplished in (10) by use of the orthogonality properties
tions, the vector potential satisfies of the Bessel functions, and we can show that
(V’ -+ _b?_) 5A,(x, )----SJ(x, 1) (10) i“ ~ Xin
& * dz " kRE (x1n)
where the source current is given as R
. f drP? w} () v (1) Ji(in) Ccos W) (15)
: n(e, 7. ta) °
8J(x, 1) = -eny () v (r) | dtog ———=6(t - 7(to,r, 1)),
e (1,7, 20) for the TE mode, and
* ay  d 22,
— bapp =
where n, (r) is the beam density profile, n(t, 7, to) is the mo- dz " T I+ D) kSRYA (xia)
mentum of a particle at radius 7 and time ¢ which crossed the R :
z =0 plane at time to, f d,,.lwg @) v, () J;(Pln) {sin ¥;), (16)
°

DTN T T O W OV Vo W T Wy WIr W T W T W T d T ey AT s e = _1

3
H o T(to.r,2) 2t 4"[ dz' -, (12) for the TM mode. In (15) and (16), w} =4ne?ny/m, bayy =
[ Uy (tOv" z ) e6A|,,/mc
v:(fo, 7, 2) is the axial velocity of a particle at (r, z) which z
entered the interaction region at time fo, and vy (r) is the ViZyp + f (k+1k w) an
mitial yxial velocity of the beam as a function ». Observe that ° v
®
' G-5 :
k__ -
N T PR e T e T e e T e o L e I AR ORI O et
IR SRS R e B SR T A e
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is the relative phass of the electrons in the ponderomotive
frame, and ((- - -)) = (2#)™* 7, dWyo (- - *) represents an average
over the initial phase ¥y, .

In order to compute the gains for the waveguide modes, we
must now derive an expression for the phase, v,, to first order
in the amplitudes 5a),. Because d?y,/dz* = wu;? dv,/dz, this
may be accomplished by means of a linear perturbation theory
of the orbit equations in the presence of the radiation fieids.
The unperturbed trajectories in this analysis are assumed to
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For operation in the linear regime prior to electron trapping
in the ponderomotive potential, we write i; = ¢ + AK;z + 5§
and expand (18) and (19) to first order in 8¢, where Ak, =
k + lk,, - wfvg. Using the solutions which result, we find the
small-signal gain for a system of length L to be

1 L 4
GL-m.}; dz —=b8ayq )

Equations (18) and ( 19) describe the effect of the pondero-
motive potential which results from the beating of the radial
and wiggler fields. The presence of the axial guide field acts to
enhance the ponderomotive potential. Examination of (20)
clearly shows that since Aw; =0 near resonance, ®;(\) be-
comes large whenever Q} ; vanishes. This occurs for Qo ~
Yk, vy and denotes the transition to orbital instability (7).
As a consequence, both the ponderomotive potential and the
33in are expected to be significantly enhanced for orbits in
this regime.

....... SRR\ D TR
t.‘a\‘:‘n\‘: LA l\x‘.ﬁ ‘i‘-llr-:!.._!.}At"n

...‘

be the helical orbits discussed ptfviously. However, it is evi- (k+ P AN o wi v 1
dent that the phase will depend linearly upon the amplitudes = 8kciR? ” ',T'_"? w2
of each of the TM and TE modes present in the system. Hence, ° o
all of the radial modes will be coupled through (15) and (16), d (sin8,\? -
and the strength of the coupling will depend upon the ampli- “Fia® (D) 751— (T) (23)
tudes as well zs the overlap of the each specific radial eigen- ‘
mode with the current. In ocder to simplify the analysis, we Where ;S AKkL/2,
restrict consideration to the treatment of an FEL amplifier in J3(04a)
which the initial conditions can be tailored by means of the ~ Fin =~/ i) (24)
injection of radiation which results in the presence of a specific 11 Xin
TE,, or TMy, radial eigenmode. Within the context of these for the TE), mode, and
approximations it can be shown that Foaln Ji(P1a) J1 (Pra) @5) q
.d? (k + 1k, ) cv,, l , L T T W7
e T v el 0 = Ji(P1n) 8a1a cos Yy fe1¥7n
(] Pin for the TMy, mode. Observe that the radial integral in (23)
(18) describes the overlap between the electron current and the
for the TE mode, and - radial profile of the waveguide eigenmode and, hence, includes
R . the effects modeled in the past by a filling factor in a seif-
da (k + Ikw) COw o ()‘)__ Ji(P1a) a1g sin Yy consistent way. It also follows that the radial mode structure ¢
azz = rrivi AP1n) 5C1a I imposes a selection rule in that the TE, or TM,, modes undergo
19) resonant amplification at frequencies w == (k + lk,,)vy. This
result becomes clear when we consider that to lowest order
for the TM mode. In addition, 0 ~k, o (ie., x =2n/2), so that a,(z, 8, ) ~ Ak;z to within
1
oy bk gy (el S0DA tBIH0) rellel- uB s ABITEO) \
A TY RS TTI R T @ - ) (3 - b))
where Aw, = w - (k + Ik,,)vy denotes the frequency mismatch, a-multiple of x/2. In addition, since each radial eigenmode
ke obeys this selection rule, inclusion of a multiplicity of such
Ay === L (o- koy(1 +2?)], (21) modes in the formulation would not alter this property. (
T Uw Finally, the gain exhibits large enhancements for frequencies
and near resonance as the single-particle orbits approach the transi-
tion to orbital instability (2} ; = 0). The essential differences
B, = 1 ((u - k,,03) (A - ky oy) between this aspect of (23) and the resuits of the theories [2],
[3] based on an ideal wiggler are that 1) for group I orbits
Qo , ., D (o <7k, uy) the value of By at which orbital instability i
(—7— $2—= l.(k)) (- Koy (1 + 7\’)])- (22) occurs is shifted downward, and 2) a new class of unstable ‘

orbits has appeared for trajectories in group II (29 > 7k, v).

It is illustrative to consider the gain for the case of a thin
annular beam in which the electron density is assumed to be
constant (n9) within Ry - AR Kr<R,. As a result, in the
limit in which AR <K R, the beam density is given approxi-
mately by np(r)=neAR8(r- Ry) and the maximum gain
becomes

AR

GP™ = S4w N}, —
Ro

e\ Mo
oy kf,R’Im llr-Ro

(26)
q
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Fig. 2. Graph of the maximum gain versus the axial guide field for both
group 1 and Il ocbits and the TE;; and T™M;; modes.

where £ = wpo/1/*ck, is the beam strength parameter,

N,, =L/}, is the number of wiggler periods within the inter-
action region, Ao =k, Ry, and the frequency is given by
w =I(1 +vy/c)} ky, vy. As mentioned previously, specifica-
tion of By, B,,, A, and v defines a unique beam radius for
orbits in groups 1 or 1l. Hence, if the magnetic field param-
eters are fixed then finite AR implies a finite beam energy
spread Ay; and we estimate from (6) that AR ~ k,, R3Av/8,,
for Ao <1. Since our analysis is based upon the assumption
of a nearly monoenergetic beam which is valid only for Ay <
(49N,,)™!, we must also require that

AR Ao
48, 7°N,, @n

It should be noted that this requirement is quite stringent;
hence this example is meant for illustrative purposes only.
The description of an actual experiment requires a numerical
integration of (23) over a beam profile. Within the context
of (27), we plot the peak gain (26) versus axial magnetic field
Bo in Fig. 2 for both the TE,; and TM,; modes and g, = .05,
7=35,A,=3 cm, and R=] cm. As expected, the gain of
both the TE and TM modes is singular as the transition to
orbital instability is approached for both the group I and
group II orbits and substantial enhancements are found in
comparison with the gain in the absence of an axial guide field
(Bo =0). In addition, it is evident that amplification of the
TM,; mode is favored over that for the TE,; mode over the
range of parameters studied. It should be remarked at this
point that the gain for the TE mode becomes dominant only
in the limit as the singularity is approached; however, as the
linearized low-gain theory breaks down in this regime it has
been excluded from consideration here. Finally, it should not
be concluded that such a relationship should hold between
arbitrary TE,, and TM;, modes. Each case must be examined
individually, and will be discussed in more detail in a forth-
coming work.

The gain bandwidth described by (23) arises from two ef-
fects. The first is the well-known frequency mismatch arising
from the form function d(sin 8,/6,)? /d8,, which for a thin
annulus yields a frequency spread

By 1
Wy —2 :Ww

(28)

where w; =k, 8;c/(1 - B;) is the resonant frequency .of the

ith FEL Doppler resonance. The second source of spectral.

broadening stems from the variations of the axial velocity with
radial position which resuits in a radial variation in w; of the
form

A&wy 28, AR
wy B} ARy

for a thin annulus. Further, in order for the former spectral
broadening effect to be dominant, condition (27) must be
satisfied. Since this condition is stringent, it is expected that
the latter broadening process will be dominant (i.e., Au, >
Aw, ) in most cases of practical interest.

In conclusion, we find that the analysis of the FEL gain with
a realizable wiggler introduces fundamental differences in
comparison with the usual one-dimensional analyses with an
ideal wiggler, such as in [2]-[5]. The three-dimensional
analysis presented here describes the effects of 1) the orbital
instability for both classes of equilibrium trajectory, 2) the
overlap of the radiation and electron beams. usually. included
by means of a phenomenological filling factor, and 3) the
selection rule that requires the resonant amplification of the
TE;, and TM;, modes at the /th FEL Doppler upshift.

(29)
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A fully seif-consistent theory of the free-electron laser is derived in the collective regime which in-
cludes all transverse variations in the wiggler field as well as the effects of a finite waveguide
geometry. A general orbit theory is derived by perturbation about the steady-state trajectories in a
configuration which consists of an axial guide field in addition to the helical wiggler field, and used
to obtain the source current and charge density for the Maxwell-Poisson equations. By this means,
a set of coupled differential equations is found which describes an arbitrary radial beam profile. A
dispersion equation is obtsined under the assumption of a thin monoenergetic beam, and soived nu-
merically for the growth rates of the TE,, and TM;; modes in a cylindrical waveguide. A selection
rule is found by which the TE;. or TM,, modes are resonant at the /th free-electron-laser Doppler

upshift.

I. INTRODUCTION °

Interest in the free-electron laser (FEL) as a source of
coherent radiation with wavelengths in the millimeter
range and below has been maintained by both experimen-
tal'~* and theoretical®~* studies. Experiments designed
to operate in the infrared have, of late, concentrated on

the use of a linearly rohrized wiggler field composed of
In

permanent magnets.* contrast, experiments at longer
wavelengths (~1—-5 mm) generally make use of helical
wiggler fields in concert with an axial guide field. The in-
clusion of an axial-guide field is necessitated by the high
currents ( ~ 1 kA) employed, and such experiments can be
made to operate in the collective regime.””* Theoretical
analyses of the helical wiggler FEL experiments have,
hitherto, been able to treat the collective regime only in
the limit of an idealized one-dimensional wiggler field
which is valid only as long as the electron-beam radius is
much shorter than the wiggler period.”'3-1417=2L.233 4
fully self-consistent, three-dimensional theory which in-
cludes all transverse variations of the wiggler field as well
as the effects of a finite waveguide geometry has recently
appeared?®; however, it is restricted to the low-gain,
single-particle regime. It is our purpose in this work to
extend the three-dimensional theory to the collective re-
gime. In contrast, a nonlinear theory has been developed
by Coison and Richardson® for a helical wiggler/pulsed
electron-beam configuration. The radiation mode struc-
ture is assumed to be that of an optical resonator and is
described in a three-dimensional manner; however, the
wiggler field and single-particie orbits are described in the
idealized limit in which transverse gradients are ignored.
In addition, no axial guide field is included in the treat-
ment.

To this end, we first derive the single-particle trajec-
tories of electrons in the seif-consistent static magnetic
fields by genurb-tion about the steady-state, helical or-
bits.2*26=" These orbits are then used to obtain expres-
sions for the source current and charge density which

2

..........

drive the FEL interaction by solution of the Viasov equa-
tion. The source current and charge density are then used
to obtain Maxwell's equations subject to boundary condi-
tions suitable to describe a loss-free cylindrical waveguide.
In this manner, a set of differential equations resuit which
model the presence of an arbitrary radial beam profiie of
electrons which to lowest order execute the steady-state
trajectories. In order to obtain analytic solutions to these
differential equations, the approximation of a thin beam

.(i.e., small radial profile) is imposed which is consistent

with the assumption of a nearly monoenergetic beam.

The organization of the paper is as follows. The orbit
theory is preseated in Sec. II, and applied to obtain the
source current and charge density in Sec. III. The coupied
field equations are derived in Sec. IV for an arbitrary radi-
al profile. The assumption of a thin, mohoenergetic beam
is imposed in Sec. V and used to obtain and solve the
dispersion equation. A summary and discussion is
presented in Sec. VL

IL SINGLE-PARTICLE ORBITS

The physical configuration we employ is that of a rela-
tivistic electron beam propagating through an ambient
magnetic field composed of a periodic helical wiggler field
and a uniform guide field

B(R)=B84¢, +B,(%), (n

where By denotes the magnitude of the guide field, and
the wiggler field is taken to be that generated by a bifilar

-helix?”:

B (R)=2B,[I}(A)cosX & —A~ I (A)sinX & -
+1(A)sinX &,] . 7))

In Eq. (2), B, is the amplitude of the wiggler field,
Azk,r, X=0-k,z, k,=2m/A, (where A, defines the
wiggler period), and [, and I, are the modified Bessel
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function of the first kind of order n and its derivative,
respectively. ‘

The basic equations governing the single-particle orbits
in the static magnetic field are

YU = = [Qo—rk,u; +20,0  (A)sinX Jv,
+ Q030 (A)sin2X ,
YUy ={Qo—vkyvy +2Q,1 ) (A)sinX ],
— 0,05 TolA)+15(A)cos2X] ,
¥93 = Q[ ol M) +15(A)cos2X ] = Ay, Jo(Asin2X ,  (3)
A=k (v conX +upsinX) , '
X =k A~ —vysinX +vyc08X —Auy) ,

where Qg .= |eBgo/mc|, y=(1=v2/c>)"'?, and -

(v, w3,03) denote the components of the velocity in 2
frame rotating with the wiggler and specified by the basis
vectors $| -?,ood-?gsmx, ?1'?,”"';'“, and
€3 =&,. It is clear that ¥ (i.e, the total energy) is a con-
stant of the motion. The class of helical orbits is found by
roquiring steady-state solutions in which vy, v3, v, A, and
X are constants.*?” In this work, the orbits we employ
are obtained by expansion about the steady-state trajec-
tories, and a review of the properties of the helical orbits
is useful.

The steady-state requirement in (3) results in trajectories
in which vy=v,, v;=0, vy=p;, X=%7/2, and
A =Ty, /vy, where v;(>0) is a constant and

20,uy 1 (M/A
= ﬂo-—rkwll” tZﬂ,I,(A) )

Uy 4

Observe that (4) reduces to the result for an ideal
wiggler™?7 in the limit as A—~0. Final determination of
the orbit requires knowledge of cither v,, v}, or A (specifi-
cation of any one of these is sufficient to determine the
other two) which, in turn, requires an additional equation
relating these quantities:

A1 =y=H1+A)""]" 2= BA2+28,(1+AN(A), (5)

where 8o , E g, /Ykyc. Solution of these equations pro-
duces two distinct classes of trajectory as shown in Fig. 1
in which we plot v, /¢ vs B, (for B, =0.05 and y=3.5).
Also shown in the figure are the corresponding solutions
in the limit of an ideal wiggler. .

We.now consider the characteristics of particle trajec-
tories which are close to these steady-state trajectories. To
this end we write n -v.+80|, vy -802, vy =y +803,
X=tm/2 + 08X, and A=Fv, /v, +8A. To first order in

the perturbed quantities, therefore, we find that Eq. (3)
implies
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olrck,,

FIG. 1. Graph of the axial velocity of the steady-state orbits
vs guide-field strength for ideal and realizable wiggler models.

750 = —[Qo—ryk,v) £2Q,1,(Ag) 180y = 20, v, [2(X6)X ,
7863 =[ Qo= Yy £201,(Ap)Jb0, | |
- =lrkev, +20,1)(A9)]80;
— 20,0 A5 'SA[T2(Ag)+A3lo(Ag) = Aol 1 (Ag)] ,
Y803 =20,0,1(A0)8X +2A5'Q, I, (Ag)bvs , ()
K =~k (803 £A5" 80, FAG 10 50) ,
8A= +k, (50 —v,5X) ,

where we denote A= Fv, /v). The system of first-order
differential equations represented by (6) can be simplified

to a pair of fourth-order equations

dz 2 dz 2 501

ad T |27 v gy =0, ™
where

0w i@l+allt (0l —wd?+44,8,1'2, @)
and
i mkZo] F2r ™ Ny kyoAg (142 (A0)
ol my = Qo—rkyvy {2201, (Ag) = Yhpuy ]
22y koo As (14202 ,
Arm ek A5 'y~ (Qo—2vk,uy) ,
By= —2y 20,8 {(14+A3)[ Q1 20,7, (Ag) U2 (Ag)
+Rrkauy[Io(Ao)—Ag ' 120N}

and By =my;;/c. Observe that 3 and 02 must be comput-
ed separately for each class of steady-state orbit, and that
an orbital instability occurs whenever cither 07 or 03 be-
comes negative. These frequencies are plotted in Fig. 2
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10

0.6

02, Jlctkw?

0.4

GROUP 1} ORBITS

1
Q,/vek,,

2

FIG. 2. Graphs of }/c’k] (dashed line) and 0}/c k3 (solid line) vs Q0/7 .k, for group I and group II orbits.

versus f, (for B,=0.05 and y =3.5) for stable trajectories
(e, 03,03>0). Note that the unstable trajectories are
represented in Fig. 1 by the dashed lines, It is evident
from Fig. 2 that 03>>0% and O, ~ V|, except for a nar-
row range of axial fields corresponding to group II orbits
in the neighborhood of Qo~yk,v). Also, 2} varies wide-
ly and the orbital instability occurs when 03 <0.
The solutions to Eq. (7) are of the form

Suy= —asin(Qt —dy ) —asin({Qyt —y)
and
5X = —P|$iﬂ(0|‘ —9|)—-pzsin(01t —91) ’

where a,, @y, g1, P2, $1, 62, &), and O, are the integration
constants. Using these solutions we can derive the ap-
propriate forms for 8v; and Sv; from Egs. (6). However,
we note that since 0, <k, v, such terms will provide for
interactions at higher harmonics of the free-electron-laser
Doppier upshift. Thus, since we confine ourselves to
treatment of the interaction at the fundamental Doppler
upshift, we are justified in neglecting oscillatory terms in
); (which is equivalent to the requirement that
a,=p;=0). Within this context, the other components of

J

the velocity are

80y = — == FAg I 1 (Ag)aycos( Ryt —41)
2
+P20||11(M)Wﬂﬂzt —ﬁ)] (9)
and .
.20, .,
603 ‘—'Ao [Ao I|(Ao)¢12008(ﬂ2f —¢2)

q,

;szHIz(Ao)COS(ﬂzt —-¢z)] . (10)
Observe that v, FAq8v) =const. The further constraint
imposed by energy conservation implies that 9, =43, and

403 a 2
ad= (1 +A3) | F 1, (Ag)+1ypalaiAg)

2
2= (1)
a3 Ao

As a consequence, the orbits can be written in the follow-
ing form in rectangular coordinates:

Pz =Pgc0sk,z +(14+A2)~" g [P, cos(k,z — Q1) — P,sin(k,z —2,t)]
+(14+A)~2a_(P,costk,z +Q;0) +P,sin(k,z +Q;0)] ,
Py =pusink,z +(1+A3)~'2q [P,sin(kyz — Q1)+ P,cos(k,z —,1)]

+(14+A)=12q_[P,sin(k,z + Q1) =P, coslk,z +Q,1)] ,

Pr=py ~ Z—'I'I-( 1+AD) =12 P,cosyt +P,siny0) ,

T (12

where a,. &[1 (1 + AH12172, p,mYMU,, py=ymuy, Pymyma,cosé,, and P, iymaz.sinéz are analogs of the canoni-
cal momenta. Observe that lim, _.o Q;=k,v —Q4y/7, limy o2, =1, and limy _ya_=0; hence, (12) reduces to the or-
bit equations used by Freund et al.'® in the one-dimensional limit and (P,,P,) are the usual canonical momenta in the

limit Bg—0.

has Sl Tatil o Sl




28 THREE-DIMENSIONAL THEORY OF THE FREE-ELECTRON . .. 344

Before closing this section, some discussion is in order in regard to the transition to orbital instability at 2,=0. The
gain exhibits large enhancements in this region since the natural response frequency of electron motion (2, in the
wiggler frame) is small and can be comparabie to the frequency of the ponderomonve wave which dnva the stimulated
radiation process in free-electron lasers. For simplicity, we consider the product Q302; rather than 0?2 }; independently
(since 0y ~k,,vy this cannot affect the orbital msltabxllty criterion), and find that

(1 +A)[Qo220,1,(Ag)] = Yhyuy ) Z (Ag) = Y AdKuty Y(Ag) =0 (13)
at the transition to orbital instability, where
1 ZA) =143, (}o)-%mxo) ' (14)
and .
Y(Ao)a(l-i-l%)l',(/\o)——;zll(lo) . ' (1s)

In the limit in which Ay << 1 and B, << By, Eq. (13) reduces to (1 + Ao)ﬂo—-yk,,v"=0 which is the orbital instability
threshold found using an idealized one-dimensional wiggler field.'%2°

III. THE SOURCE CURRENT AND CHARGE DENSITY

The source current and charge density are obtained from the moments of the perturbed distribution function

8/y(AD BN =e [ #"')—,)- SE(2)a', 2+ T (72,2 X 8B, 2',i2) :F' (16)
v(T12’),2 P

where F) is the equilibrium distribution, 5E and 5B are the fluctuating electromagnenc fields, T(z’) is the position of the
electron relative to the axis of symmetry at z’, {2’')=tg+ f dz’ /v,(T(2°),2') is the sum of the time required for an elec-
tron to travel from (T(z =0),z =0) at the start of the iuteraction region to (¥1z =2"),c =2’} and the entry time 7,. The
equilibrium distribution must be a function of the constants of the motion (2, ,P,,p), where small P, and P, are required.

As a consequence, we choose a distribution of the form

Fy(Py,P,,p)=n,8(P,)8(P,)Gy(p) , . ' Y

where n, is the average beam density, and G,(p) is an arbitrary function of the total momentum. {(n addition, we work
with vector and scalar potentials of the form

(5A(T,2),58(F, 1)) = +(84(7),68(F)Jexpl —iwt) +c.c. . s
With respect to the basis &, = +(&, 7i¢, ), integration of (16) yields
2 a3 .3 a i ) 4
8fp(T12),2)= [D,,, tan ap +D. + o, +Q,ap Fy(P.,P,.p), (19)
where
e : g'“d) ' 1 -~ -~ -~ -~
Dym=— [ dr' e {—c(p,V,+ 1PV + +p+ V)88 +iwlp. 54, +p_84, +p B4 )], . (20)

2p 70y (R2"),2')

iorizs’)
D. =< ‘dz’———-—-'
2 f v, (T12),2')

i A ~ A v A P
la,,e"’- [— %v;5¢+(m-u,v,)54; + %u,V;aA,:—-z‘—(v-aA +=V,84_) ,

2

~ ~ ~ u¢ ~ ~
+ —£V:8¢+(iw—v,7,)8.4t+%U,V:64,$-2—'(V_5A+—V*SA_)]], Qn

where n(z,2')=r(2)-r2'), p, =p, Fip,, 54 + =54, +:5A,, V.=0,%i3,, V,=9,, and 8. =k, 2+ ,r(2).
The current and charge density are found by computation of the appropriate moments of (19} as

8.m—= [dPaPdp(1+00)-12ELsf 67 = £ [ 4p dpdp(1 42012 L5] (22)
m YPe: m Y

and
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&§p=—e [ dP.dP,dp(1 +Az)-'”fsf‘ ) (23)
3
By application of Floquet's theorem, we express the axial and azimuthal structure of the fields and sources in the form
Sfifai= 3 8fia(rlexplilk +nk,)z +il6], 24)
nm—a

in cylindrical coordinates. As might be expected, substitution of (19) into (22) and (23) results in source currents &I,,.
and charge densities 55, ,, cach of which depends upon a comphcated superposition of many harmonics of 8A,,, and
86:,. However, in the limit in which the frequency @ >>Qy, 3 | SA,,.(r) I /ar <<k, and 3| 8¢, ,(r)| /3r <<k we find the
comparatively simple forms .

. 2
P iwp 1 5 ; s 4, —pe__ 123
& == [, do=— (leutB L +E fxz..:z"lpu‘Ckut!&*l‘v'uﬂ‘“’M’*""““)lm—ku+l°| pdp
zaz
[ TRk LT A REL DRI |Gl 29
Sy —Rp 1Y)
F ‘and |
. 2
- 1wy - 1 (=) £ (+1 2 _—_m 138
~——— —_— qg a=-tl= 299l — 2 ap
) 591.»-. Bre Jo P, Po(H i Zin s +H S0 1) —ipylcky3d, “’M""’)]m—kul”n?ap
® £ 3
A’(H—k‘)“’zﬂﬂ( TlasRT =Lk RET ’+%v..K4.n$:.~)]Go‘P" 26)
i
E. Where 8 (2 =(8],,),Fi(8T, e 84 (B2 L1(84),), Fi(BA; 0 )e), wb—""“'e ‘ny/m is the average plasma frequency,
p i —a/ar+1/’.
i. . L' E=i(w—k V)| 184 {% P -svi* )(C“I-—"IIMLM) ‘
9 AY =084 - $cVi* 88y, K1.=V( BAy-vitisly, . -oen
3 R(;’E + + — -_— ’
BT 0t Qy—ky vy | @F Q=Ko 0—ky o)
® and
Sin= l : : o

@=Dy—ky v @+ Qa—ky vy _w—ku-l"u )

Observe that &IL, ; has been omitted because the spectﬁcanon of a gauge condition allows us to eliminate one of the
components (84, 8¢), and we choose to deal with 84 + and 5¢
It should also be remarked that our choice of distribution (17) is equivalent to the requ:rement that the unperturbed
& orbits are of the steady-state type (P, =P, =0). Such orbits are axicentered, and there is a unique mapping between the
radius of the orbit and the particle energy (for given B, By, and A,,). As a consequence, a small spread in the energy of
the beamn will imply a narrow radial profile. )

[~ IV. THE MAXWELL-POISSON EQUATIONS
The starting point for the development in this section is the Maxwell-Poisson equations ’

1d,.d » (1:1)2 218 Fi)

rdr dr - 8 |3 =~ 5""‘ ! (29)

1d d
* Tar T ]“'F‘s”&!’ln (30)

as well as the Lorentz gauge condition
k,a,q‘,,',_,-_-%ss,,,.q»-uv B T4, 30 ;

d H=7
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where p; mw?/ct—k2. In order to carry the analysis further, a distribution function must be specified in order to evalu-
ate the sources. We choose G,(p)= N (p)5[p —p(r)], where p(r) is the mapping between the energy and the radius of the

steady-state trajectory ‘ .
p(N=me(14+A) {yBo22yB,A~H1+AN (M), (32) :
:'Qf‘.‘ N(p) is an arbitrary function of p which is chosen such that N(p(r)) models the density profile, and ,
Ve .o (rym4me3noN(p(r))/m is the local plasma frequency. As a consequence, by retaining only the dominant couplmg :

terms, we find <

- P Al2) "
' &I-(LT-)‘::CT'(A(rﬁ) "+ T::l 2218812121+ Vigrasdd F2as) (33) E
. R
and A i
5ﬁl,.=#u’u&;t,. F Wit i+ W84 1 a ) (34) B
where .
2 2 2
() @) i T+ 2= v, (35)
Az s = yel @—kqvy) ‘H' 23,2 @0~k 10y + PET I +Vittaz1
201 @l —c2kl k
Lni_b)b(:) 0). C Ky - 2n+luﬂ - l-{-le(A) , (36)
re ke YHI+AN@—=ky 4 g0) H_,u"
2(r) 2 e} (1-ANw—k '
el B2 A o . [I-Q(M a7l ] (37)
27C Py Ckn yH1+A )(w—k,+,u|l) ] - '
w}(r) wky 1€ o—(1+A%k, v
Wistpg1 = — e 2 20 -Q() S L (38)
ve! Py ri14A )(m-k,+,v||) Kn 410
2 2
wy(r) 202 Aw—ky 0y )—A%k, ~
Vishnst = — e e o2 1—Q(A) ==+ LI (39)
= 2ye? yH1+a )(m—k,,_,,,u") @
In Egs. (35)=(39) (7,v),0, ) are implicit functions of 7 and
S oy 11 (A)/A
Q)= Y Zel) (40)

{1 +AD[ Qo220 1 (M) ~vkyvy } Z(A)=A2yk, v YIA)

which contains a singularity at the transition to orbital instability for the group I and group II orbits. In the vicinity of
these points, therefore, we expect the interaction strength to be greatly enhanced. Analogous results were found in the

idealized one-dimensional theory.'%%

As a consequence, we obtain the following set of coupled differential equations:

2
14 i-#-p.;. L T |84f3 ] ez = = Al asi8 1101~ T3 5"1,—”1:1”15‘1:1.”1» “n
r dr dr
1d.d i L eg x50, -W 84 W, 84z (42)
rdr ar Pn— La 120918 [+1,a=1 l+ln—| I=1,a 41 lln+l

In order to solve this set of differential equations, we
mus’ specify the boundary conditions appropriate to a
cylindrical waveguide of radius R,. We assume the walls
to be grounded and at zero potennal hence,

581a(Rg)=84 2 (R,)

=—[r(8A ""+6A"')]|,_, =0. (43

t should be observed that Eqs. (41)~(43) describe a cou-
plmg between ﬁve harmonic components: 5, ,,
84 ‘11’1 n -1 and 84 1% = 1.4.1 Finally, we also assume that
the potentials are continuous within the waveguide (i.e.,

Lo e ey e e e e e

—

across the boundary of the electron beam). The problem,
therefore, has been specified with the essential physics of
the interaction contained within the radial dependence of
the coupling coefficients in (41) and (42). It is important
to observe that with the above choice of indices, the az-
imuthal mode number for the electromagnetic waveguide
modes is given by /+1, and not simply by /. Thus. 1( we
wish to study the TE,,, or TM,,, modes for the 5.4,»1 o
ecigenvector, then we must set /=0,

V. THE LIMIT OF A THIN BEAM

A solution to Eqgs. (41)—(43) is found for the case of a
thin beam in which the density profile is assumed to be

H=R
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constant (ng) within the range Rg—AR <r < Rp. Asare-
sult, in the limit in which AR <<R, the beam densuy is
given approximately by

ry(r)=nqARSr —R,) . (44)

It should be remarked that we have assumed the unper-
turbed orbits to be the stable steady-state trajectories.
These orbits are axicentered and, for orbits of either group
I or group II, there is a unique mapping between ¥ and A
(i.e., the orbit radius) for given By, B,,, and A,,. Thus,itis
sufficient to specify the class of orbit and Rq(y,) in order
10 obtain yo{Ry). In addition, a spread in radius AR of
the beam is equivalent to an energy spread Ay given by

Ay __vi=l AR
vo (1+A3)Q(Ay) Ro

where Ag=k,Ro. Observe that within the context of éur
analysis, a thin beam is equivalent to a relatively small en-

, 45)

l=

8810 =812Ji(par)+C; o Ni(pyr) ,
’ (47

84,2 =B D121 par) + Cla Niz1(par)

for 7 > Ry. In (46) and (47) Jy(x) and N,(x) are the regu-
lar Bessel functions of the first and second kind of order /.
Observe that each field quanuty (i 8Bpny OA E1n—1s
SA{Z) nitr 841 T ta+10and 84{ 7| . _;) requires three coef-
ficients to characterize the solution throughout the
waveguide. Two of these coefficients may be determined
from the boundary conditions at r =R,, and R,. The
third coefficient is found by muitiplying the ﬁeld equa-
tions by r and integrating over Ro—e<r <Rg+€ in the
limit e—=0*. This procedure determines the “jump condi-
tion" across the thin beam, and allows us to obtain a 5X 5
matrix equation in, for example, the coefficients A,,,
Affin-tr AiZastr AiSynprs and Ajiia=t ObSCfVc
that the coupling to the field components in 8A[F] 4z

ergy spread. occurs not through the source terms in the field equations
The solutions are of the form but rather through the boundary condition at the
=A, Jyip.r), SAE'=AtT = (pr), (46) waveguide wall.
861n=Arrdips La L1711 The matrix equation obtained in this manner can be
for0<r<Ry, and written as
J
€t —%ROARWH-L.--I —%RoARWl—I.n-I
. A(,n
ﬂ — —
?ROARTI.A e;:)l,n-l %ROARVI—I.JI-Q-I AI(II).A-I =0, ’ (48}
Y [t
T = = - LR
?ROMTIJ %RoM Vietn=t Lk

where the equations for 4{¥|, ., and 4/7],_, have al-
ready been eliminated,

€2 =Dia = T RoARX,, , (49)
il =DiE a5
(+2)
+ 7R0M(A Elasi+ AL aniMiFine) )
(50

where Wl*l aZly r;ltl aFlr X(l"l AFl flm and flm denote
those quantma specxﬁed in Egs. (35)—(39) in which the
substitution wj(r)=4me’ny/m has been made. In addi-
tion,

where £, =p,Ro, {y =p,R,, and Jj is the derivative of the
Bessel function. In (52) and (53,

Tim = Ni(m) dg Ze— TR

~Ji(Em) g —~———([Np(Em Nilbm)] » (54)

siE=rd +2R°ARA,,,,.J,4.2(§,, WWED (55)

and

WiV = Ny e T

=J
D JI(C. 51) ltl‘gm) Nl(gm d;m [Nk(gm)"k(gm)]
J,(§,)[J,(§. INUSA) =TS, INHED] d
DIEl im UHI‘Q.:!)-’{’:JZ();-:I) (52) = Jilgm) dtn ——Nilem) | . (56)
Jil&nz1)S15T 050 ,
and Tbe dispersion cquation is found by setting the deter-
J JpUED minant of this interaction matrix to zero.
(£ 1228310110 20 Substantial simplification occurs in the limit in which
Miziaz = el ’ (53
Jilaz51)S15T 031 |@=Ky 10y | <<a|ky v | and we obtain
H=-9
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2 1_ .22 1 Vo —
Xp=~— @oz < vk 3 3 = g 71::..:1‘3?7“"’1:1..;1 ’ : (59)
voe? vy ke voll+AgU@ =k yqvy)
(57 10
- v =
Uy m% C 01 T’.Il:'-;Txl.l » (w)
Wisrazi=—— 7@
o roe? oy a1 +A3 N0 =Ky 0y
(58) and
_J
NEP AL C 0
TizLazl 2y yé(l+l%)(w—k,+‘u||)z
2 2. 2 ]
- =k zopy |1+ + 61)
.y$2 @=Kez19)) 2[‘.2 IRS [0"’02—".4,‘0" (D;Qz—k..,.w“

where ®=1 + AJQ(1g). Observe that for all cases of practical interest v, <<c and | Va1, ,;ll << | Wsyaz1|. As a
consequencs, the terms in V‘,, L%1 can be ignored. This is equivalent to the neglect of any direct coupling between the
electromagnetic modes 5.4,“ »51- In addition, we shall neglect the couphng to the M,;,’_.zl modes, so that

pa )
. l:l@.:l”{:l(gnsl 2R ARKE 2. 2
BTN o
Within the context of this approximation, the dispersion equation is of the form
2
=2 — o % _|7p AR C L P S— (63)
L 0 = .
"TUeA e |2 Yolw—ky oo " | @3t €@Tam
Finally, if the solution is restricted to the ﬁrst quadrant in (0,k,) space, then | €= Last] > le,,,, a—1} and (63) can be
approximated by S
. 2 2 2 2 . . .
() A'O ot ) s @ ]
€161 tnj=——P—— | =R —F—— X - (64}
PR A 2yt |2 ] roiw—=kppaoy "

The complete dispersion equanon (48) has been solved
numerically for y=3.5, wy/y'/ck,=0.1, Q,/rck,
=0.05, AR/Ry=0.1, k,R; =1.5, and a wide range of axi-
al guide fields for both the TE,; and TM,,; waveguide
modes. It should be remarked before we proceed further
with a description of the numerical analysis that each of
the off-diagonal elements of the dispersion tensor in Eq.
(48) is directly proportional to ® and, hence, the coupling
coefficient also depends upon this function. The variation
of ® with the axial guide field, therefore, provides valu-
able insight into the effect of By on the radiation growth
rate. To this end, we plot ® versus Qy/yck, in Fig. 3, in
which the distinction between the value of the function
for group I and group 11 orbits is clearly made. As dis-
cussed in Sec. II, ® is characterized by singularities for
both groups of orbits at the transitions to orbital instabili-
ty (13), which occur at Qo/yck,=0.75 (group [ orbits)
and Ny/vck,=0.62 (group II orbits) for the parameters
considered. While the growth rates at these points are
also singular, it should be recognized that the linear
theory itself breaks down in the vicinity of the singulari-
ties and a fully nonlinear treatment is required. The
difference between ® in the presemt three-dimensional
theory and the one-dimensional analog™ lies, principally,
in the fact that no orbital instability (hence, no singulari-

ty) occurs for the group II orbits in one dimension. In ad-
dition, P vanishes at Qy/yck, ==1.25 (group II orbits) and
the growth rate may be expected to vanish at this point as
well.

The growth rate Imk, /k,, is plotted versus w/ck, in
Fig. 4 for the TE; mode and Qy/yck, =0.0 and 0.5. The
waveguide cutoff occurs at w/ck,=1.23 and the two
peaks shown for each value of the axial guide field corre-
spond to the upper and lower intersections between the
space-charge wave and the waveguide mode. This figure
represents the cases corresponding to group I orbits, and
we observe that the unstable spectrum is quite narrow but
tends to broaden slightly with increasing By correspond-
ing to decreases in v)| as the transition to orbital instability
is approached. In addition, the resonant frequency de-
creases relatively fast with increasing By for the upper in-
tersection, but is not very sensitive to the value of the
guide field for the lower intersection. Finally, we observe
that the two peaks are well separated and that the growth
rate corresponding to the upper intersection is the larger
of the two. The peak growth rates and corrssponding fre-
quency at peak growth are plotted in Fig. 5 versus
Ny /yck,. in which the singuladty at 4/yck,~=0.75 is
evident and that the growth rate for the upper intersection
exceeds that of the lower intersection over the entire range

H=-10
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for [ orbits. Both the upper and lower intersections are
both group I and group 11 steady-state trajectories. sh ofno ue ppe

s ' TE,, MODE

s " GROUP1ORMITS . of group I orbits. It is also clear that while the frequency
" yu3s at the upper intersection decreases with decreasing v, the
: 0.0041~ ayrhcky = 8.1 . frequency at the lower intersections increases. As a result,
[ ] N/yck,, = 0.08 the interactions tend to coalesce with decreasing v); how-
ARIR, = 0.1 \ ever, the cutoff of the TE,,; mode for the parameters con-
K Ry = 15 sidered is sufficiently low that coalescence does not occur
for the group I orbits and the two lines remain well
0.003 . separated. .

The growth rate for group II orbits is plotted versus fre-
quency for Qo/vck,=1.0 and 1.5 in Fig. 6 for the TE,,
mode. It is again clear that two peaks are found which
correspond to the upper and lower intersections. Howev-
er, in the case of Qo/yk,c=1.0 the axial velocity
(v))/c=0.87) is sufficiently low that the two peaks are not
well separated and overlap. This results in a substantially
v | ek 0 broadened spectrum gf unstable waves. As the guide field
L~ is increased the axial velocity also increases and the
separation between the peaks becomes more distinct. This
0.001~ auirek = 00 1 is illustrated for Q¢/yck,=1.5 (v);=0.95) in which the

two peaks are seen to be well separated. The peak growth

rates and frequencies corresponding to the group I1 orbits
- are shown in Fig. 7 versus (}y/yck,. As in the case of

6 group I orbits, the growth rates for the upper intersection
A TS § T | everywhere exceed those of the lower intersection. In ad-
10 2 dition, it is clear that the growth rates vanish for

wick,, 04/yck,==1.25 corresponding to the zero of ®. Finally,

FIG. 4. Plot of the growth rate Imk, /k,, vs frequency for the it is seen that as (y/yck, decreases below unity the
TE; mode and group [ orbits at y/yck, =0.0 and 0.5. coalescence continues rapidly and the resonance is lost for
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Qq/yck, <0.89 by which point the double peak in the un-
stable spectrum has merged to form a single line. As a re-
sult, the interaction is lost at a value of the axial guide
field greater than that corresponding to the singularity in

& at Qy/yck,=0.62 and no difficulties arising from the .

singularity occur.
One characteristic of the resonant nature of the interac-
tion which must be emphasized is that the /th Doppler up-

shift describes interactions for all radial eigenmodes TE,,, -

and TM,,, (m=1,22,3,...). This constitutes a selection
rule*® which stems from the azimuthal variation of the
steady-state orbits; specifically, that §=k_z and the phase
of the waveguide modes varies as

explik,z +il8—iwt) ~explikyz + ith,, —wt) .

The behavior of the growth spectrum for the TM,
mode as a function of the axial guide field is qualitatively
similar to that shown for the TE,, mode. However, the
TM,; mode is characterized by a higher cutoff frequency
{at w/ck,=2.55 for the parameters chosen); therefore, the
upper (lower) intersection frequency is lower (higher) for
the TM,, mode than for the TE,, at a given axial velocity.
The maximum growth rate and corresponding frequency
of the TM,; modes are plotted versus (y/vck, in Figs. 8
and 9 for the group I and group II orbits, respectively.
The growth rates are found to be comparable to those
found for the TE,, mode. It is evident, however, that the
upper aad lower intersections coalesce for the TM;; before
the singularity in ® occurs on both the group I and group
II orbits. Such coalescence was found only on the group
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o
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F1G. 8. Graph of the maximum growth rate and correspond-

ing frequency for the TM,, mode vs axial guide field for groun [
orbits.
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T™,, MODE The principal difference between the orbits in the ideal
2 " — {(one-dimensional) and realizable (three-dimensional)
‘ wigglers is that in three dimensions unstable trajectories
‘. are found for both group I (f<yk,vy) and group II
E v=18 (Qo>yky,yy) orbits, while in one dimension only the
arten, =0 group [ trajectories can become unstable. Because of this
2 Oiyete ;‘“' - feature, singularities are found in the linear growth rates
3 AR for both types of trajectory. in the realizable wiggler,
~ | iy which coatrasts with the one-dimensional theory in which
© . such a singularity occurs only for the group I class of or-
bit.
‘ R Y WY ST An additional feature of the three-dimensional theory
GROUP i ORBITS arises from the fact that for g:ven B,, BOv )\-, and Y at
o.a2 most ooe stable, steady-state orbit of each type exists.
Thus for a specific guide and wiggler-field combination
x ! ] there is 2 unique mapping between y and the orbit radius
*. _£ which implies that a nearly monoenergetic beam will be
o characterized by a small spread in the radii of the orbits
;c .0k described by the constituent electrons. As a resuit, we
E have solved the coupled Maxwell-Poisson equations in a
.= | “thin-beam" limit, and obtained the growth rates for the
TE,, and TM,, modes. Wave amplification is found, in
general, at both the upper and lower intersections of the
13 14 18 18 waveguide and spacecharge modes, although for suffi-
,/yck,, ciently low axial velocities these two unstable regions of
. the spectrum are found to coalesce just prior to the point
FI1G. 9. Graph of the maximum growth rate and correspond- 3¢ which the intersections are lost.
ing frequency for the TMy, mode vs axial guide field for group It should also be reiterated that amplification of the
II orbits. TEm or TM,, modes (m=1,2,3,...) occurs only for the
resonance corresponding to the /th Doppler upshift. This
' _ constitutes a selection rule, and occurs because the azimu-
IT orbits for the TE,, mode due to the lower value of the  thal variation of the steady-state orbits varies as §=k,z
cutoff frequency. and the phase of the waveguide modes vary as
. explik,z +-il@—iwr). It is important 10 recognize, howev-
V1. SUMMARY AND DISCUSSION er, that not all beam electrons in an experimental device
. can be expected to ute the s - traj i
In this paper we have flcvdoped a collective theory .Of and, as a cg:csequmcefx::hc:;a:eg::‘:yn:oud: (iTe?;:los
the free-electron laser which includes the effects of finite or TEq..) may be excited as well ’ m
waveguide geometry and transverse gradients in the y :
wiggler field. To this end, a Viasov-Maxwell formulation ACKNOWLEDGMENT
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RAPID ELECTRON BEAM ACCELERATORS
(REBA-TRONS)

® I. TIntroduction
Ultra-high current accelerators are rapidly becoming an active area

1,2

of research. The development of these devices is mainly motivated by

1,3,4 that are extended over several

o a variety of potential applicatioans
areas, including environment, food processing, radiation sources, x-ray
radiography and national defense.

® Among the various accelerating schemes that have the potential to
produce ultra-high power electron beams, induction axc::elet:a!:orsl-’2
appear to be the most promising. Induction accelerators are inherently

® low impedance devices and thus are ideally suited to drive high current
beams. The accelefation process isl based on the inductive electric
field produced by a time varying magnetic field.

PY ’ . Quite naturally, induction accelerators are divided into linear> 13

14-19 devices. In linear devices the accelerating field is

and cyclic

localized in the gap, while in their cyclic counterparts the electric

field is continuous along the orbit of the accelerated particles. Both

cyclic and linear devices require the same total magnetic flux change ﬁo

achieve a given energy increment. However, in linear accelerators the 1

‘G total change of flux occurs in one transit time, typically in less than

100 nsec, while in c¢yclic accelerators the same change occurs over

several thousand revolutions in a typical time of one msec. ]
As a consequence of the slow acceleration, the accelerated beam S

must be confined by the focusing magnetic field over Jlong periods of

time and thus field errors, instabilities and radiation losses impose

limitations on the <c¢yclic accelerators. These 1limitations can be

substantially relaxed {f the acceleration could occur rapidly as in

Manuscript approved February 7, 1985.
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linear accelerators. Therefore, a device that combines the rapid

acceleration of linear accelerators and the compact size of cyclic
accelerators is highly desirable. In this paper, we propose such a
hybrid scheme that combines most of the advantages of linear and cyclic
accelerators. This device has been named REBA-TRON (Rapid Electron Beam
Accelerator). The rebatron .1s similar to the racetrack induction
accelerator.?0

A rebatron i{s shown schematically in Fig. 1. The high gradient
localized field that 1is responsible for the rapid acceleration is
produced by convoluted parallel transmission 1lines, although, other
transmission lines may be more apﬁropriace in an actual system. Since
the acceleration occurs over a few usec, the constraints imposed on the
vetticai field are very stringent. In an actual device the vertical
field is generated by two coaxial, cylindrical plates that carry curfenﬁ‘
in the oppoéica direction. The axes of these lines coincide with the
major axis of the toroidal vessél and they are located symmetrically
around the minor axis of the torus. These transmission lines change
mainly cthe local, vertical magnetic field, while the magnetic flux
through the beam orbit remains approximately constant. The mismatch
between the beam energy and the vertical field is alleviated by a strong
focusing field. This field is generated by a set of ¢ = 2 torsatron
windings, i.e., two twisted wires that carry current in the same
direction. 1In addition to the transverse compounents of the field, the
torsatron windings provide a zero order toroidal magnetic field. The
purpose of the resistive chamber wall 1is to facilitata the bean

trapping21

in the applied magnetic field. Beam capture in the reba-
trons 1is very difficult, because the strong focusing field makes the

particle orbit insensitive to the energy mismatch and thus small changes
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in the betatron (vertical) magnetic field are not sufficient to move the
beam from the injection position near the wall to the minor axis of the
torus.

The superior confining properties of twisted quadruple fields have

22 Recently, 1t has been reported19

been recognized for several years.
that the 2=2 Stellarator configuration has an energy bandwidth of
~50% .

In this report, we are presenting results from our studies of the
beam dynamics in a rebatron accelerator when the magnetic fields are not
a function of time. In addition, the local vertical magnetic field has
been replaced by a betatron magﬁecic field. Our results indicate that
both the bandwidth and the maxi@um electron Curreﬁt that can be confined

by a rebatron are very high. Results with the local, fast varying

vertical field will be reported in a forthcoming publication.

IT. The Applied Fields
a. Magnetic Fields

In the local c¢yclindrical coordinate system e » e, e shown 1in

Fig. 2, the magnetic field components of the ¢ = 2 torsatron are given

by

5 = 59 4 g1 4 g (D

ila
0 o) o+ o) ’ )

B = ai°) 3 (D 3(1) , (ib)

» A+
= 1 ra(0) L (1) (1),
Bs 1 + (n /l’o) cos 4 B s + Bs+ + Bs_ ’ (1le)
3
I-11




where
B(o) = B ? al0) o T (mx) sinfl2m (4 = as)! (2a)
) O pm; @ o 2m ! a
(o) _ T (o) X - 1
B¢ B, i A" 2m = Lo (mx) cos2m(4 = as)? , (2b)
(@) 2 (4.5 40 - as) !
B, B, [1 . Ay m I (mx) cos 2m (4 = as)!l , (2¢)
and25
(M 1 %, F o, (o) .
By =32 ) B, ﬁ-lr AT 2mtgmx) A, T2(1 ¢ m)mx I, (mx)

+ "(ax)? + 2 (2mtl) + 17 L (mx)} sin [(2m + 1) 4 - 2mas! , (3a)

DT P T ¢ A1) 1 -
Bét % z Bo (2m + 1) Am = Izwtl.(mx)
0 o=l :

- A;°)rmx I;m(mx) + (1 % Zm)Im'(mx)11cosr(2m + 1)4 = 2mas’, (sp)

(1 1 % oy (1)
ast -7 T B Y I a IZm:l (mx)
o} o=
(o)

- A ol I;m(mx) + (1 £ )1, (ax)'lcos'(2m ¢ 1)s-2mas’.  (3c)

€)) (D

The coefficients Am ’ A.rll and Cm are given by the expressions

-

K m (mxo) Cm . (4a)

A0 .
m

......
............

................




(1) 2
Ay ' r('_nxo) Kom (2%5) = Kome1 (mx,,)

@ + (1 %4m) mx K (m )V C o\ (4b)

2m+1

2 8in 2md
m 2m4 *

The remaining parameters are defined as follows:

81
v I (s)
x, = 200, (6a)
¢ .
X = 2a0 , (6b)
. a= 2, 7
where I is the current flowing in the windings, 280o is the width of the
current carrying conductor, L is the radius and L is the period of the
® S
windings, r, is the major radius of the torus, B:x is the external
toroidal magnetic field and 1 (x) , K, (x) , I (x) and K (%) are
the Bessel functions and their derivatives. 1In a toroidal device, the
®
period should satisfy the relation
Z-rr°
L J
where N is an integer. The zero order fields Bio) s Bio) and Bi°) are

the field components produced by the helical windings in a straight

L 23,24

(eylindrical) configuration and the terms proportional to oO/ro are
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the first order toroidal corrections. These corrections, as given in

Eqs. (3), have been obtained for the surface current density

T aoo 1 I
( ) and J_ = —— .
2600 1 + (oo/ro) cos 4 s 2&0o

Jo = 0, J¢ =

The three magnetic field components for s = 0 are plotted in Figs.
3a and 3b for 4 = 0 and » = n/2 respectively. The various parameters
for these plots are listed in Table I. At 4 = 0, the radial component
of the field is- zero. The B¢ component increases linearly with ¢ near
the minor axis and considerably faster near the wires. The toroidal
correction at o = 0 is approiimately =36 G. In the results shown in
Fig. 3, in addition to the toroidal field produced by the torsatron
windings, there is a - 6 kG field produced by ; set of toroidal coils.
At o0 =0, By _'ﬁ:x* Bo'- -6 + 2.5 = = 3.5 kG. It-is apparent from
these results that the toroidal field B, does not vary as 1/r. The
reason is that Bs is a function of s or the toroidal angle. Figure 3¢
gives the magnetic field lines in the v , z and o , s planeé. ‘Because
of the toroidal corrections, the magnetic axis does not coincide with
the minor axis of the torus, which is located at r = 100 cm. The
magnetic axis 1is always shifted toward the major axis of the torus,
because the field on the minor axis generated by the axial current
flowing on the section of the torus to the left of the major axis
reinforces the field generated by the axial current flowing in the
outside edge of the torus that is located to the right of the major
axis.

Equations (1) to (7) are used to compute the magnetic field

A e e e e e T T U e et e et
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.:: components in the numerical integration of the orbit equations. It has

® been determined that the first two non zero terms in the expansion are
3 sufficient to describe the field in the region o/a < 0.5 with an
':: accuracy better than 95%.

) In the analytical work described in Section IV, the toroidal
A corrections have been neglected as well as all the terms with
1( m > 2., Furthermore, it has been assumed that %<<{l. Under these
i [ ) simplifications the torsatron magnetic field becomes
o ex ‘

2 B, ¥ 2B ¢ I, (x) sin (2(s - as)], (9)
- 43X
. G B = S- ¢ I, (x) cos (2(4 - as)] , (10

v ) X t72
- B = B -28"%¢_ I (x) cos [2(4 - as)] (11)
g " Vs o “Ts t2 ! .

@

S ex - ‘
\ where B e, = B x_ K, (xo) .

:" For x << 1, Egs. (9), (10) aund (11) become

3

« B:xetx

: B, = 3 sin [2(4=ns)], - (12)

¢ B%%e x
3 B, = —5—— cos [2(4-as)], (13)
- 1
- ) B * B . (14)

- ] o
- In addition to the torsatron field, the rebatron accelerator
: includes a Dbetatron or vertical magnetic field and a toroidal
)

N _ fleld, Bix, that is produced by a set of toroidal coils. The two
o
.
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components of the betatron field are described by the linearized

equations
B, =B, [1-n x/rol, (15)
B, = =3B, ny/ro, (16)

where Bzo is the betatron field at the reference orbit, i.e., at
x = y=0 and n is the external field index.

The toroidal field produced by a set of toroidal coils is
independent of toroidal angle and therefore varies as 1l/r. This
toroidal field can be chosen to have either the same or opposite

polarity to the torsatron toroidal field.

b. The Electric Field'iﬁ ﬁhe Gap

Consider two'cylinders with their axes lying along the same line
and separated by a distance d as shown in Fig. 4a. Since the cylinder
on the left is charged to = Yo and the cylinder to the right is charged
to + V, the average electric field in the gap is <E = 2 Vo/d « The
local electric field is given by the solution of Laplace equation, i.e.,
72 & =0 . For |s| > d/2 , the exact components of the electric field
are:

-2 |s
AVO - sinh(\nd/Z)Jo(Ano) e nl '

E, =~ v , 17)
s d =l XnaJl(xna)

-0l
avo . sinh ()nd/Z)JI(\nn) e 'n

g = - . (18)
o . [s] d . SEVAENEY)
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Similarly, for |s| < d/2 , the two components of the electric field

L
are:
4v = J (A o)e-xnd/zcosh (A_3)
) B, = - —3— Y- " T o —, (19)
o ] d =l a nJl na
and
@ 4V = J. (2 o)e-xnd/zsinh (\_s)
E == do Y 1 = x ) = » (20)
o n=] Anajl( na

where Jo(\na) = 0, a is the radius of the cylinders and Jo and J1 are
the Bessel functioms.

The electric field lines that correspond to the field components
given by Eq;. (17) to (20) are plotted in Fig. 4b. These electric
fields are a good repfesentation of the fields produced'inside the torus
by a transmission line, since in this region the inductive magnetic

field is zero and therefore the potential is described by 72@ =0 .

III. Numerical Results

¢ To investigate the confining properties of the torsatron magnetic
field, we have i{ntegrated the relativistic equations of motion using
Eqs. (1) to (7) for the torsatron magnetic field and Eqs. (15) and (16)
& for the betatron field. The accelerating gap is 2 cm wide and as shown
in Fig. 5, the electric field is limited to a 0.60 radian wide toroidal
sector. For reasons that are discussed later on, the self fields have
. . been omitted in these runs.

In the first run, the current in the torsatron windihgs is chosen

: 9
&
I-17
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:o_be zero. Figure 6a shows the normalized particle energy (y) as a
function of time and Fig. 6b the projection of the particle orbit in the
trangverse plane. The various parameters for this run are listed in
Table II. Since € is zero, the magnetic field configuration is that of
the modified betatron. As a consequence of the curvature drift, the
gyrating particle drifts out of the sySCem.in about 26 nsec, i.e., in
about a revolution around the major axis. As expected, the guiding
center of the particle moves mainly in the vertical direction, while the
particle gyrates around 1its guiding center with a frequency
corresponding to the local toroidal field.

Figures.7a and 7b show the normalized energy of the particle and
its orbit when approximately -124.7 kA of current flows through the
torsatron windings. The rest of the parameters for this run are lis:éd
in Table TIII. The particle remains .confined for eight revolutionms.
Fiéures 8a and 8b show similar results when the current in the windings
is increase& to approximately =250 kA. The éotrespoﬁding torsatron
field strength factor €, is -0.8. The remainder of the parameters are
listed in Table IV. In all three runs the betatron magnetic field was
held constant at 118 G. These results clearly demonstrate that the
confining properties of the system are substantially improved by the
addition of the torsatron field. The particle strikes the chamber wall
when its gamma approaches approximately 65. The total time the particle
remains in the system 1s about 320 nsec, i.e., more than an order of
magnitude longer than when the torsatron field is absent.

Further improvement in the particle confinement is observed when

the period of the windings 1is reduced or the current in the windings

increased. An additional modest improvement in the confinement of the

e, -
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system 1s observed when the betatron field 1is increased above its
matching value. This is shown in Fig. 9. The betatron field for this
run {8 236 G and the remainder of the parameters are identical to those
in Fig. 8. The confinement time increased by 20 nsec, i.e., from 320 to
340 nsec. However, when the betatron field increased to 472 G the

confinement time was reduced to 290 nsec.

IV. Theoretical Model
To gain a better understanding of the focusing properties of the
torsatron fields, we have developed a theoretical model that is based on
linear external fields. Obviously, these fields are appropriate only
near the minor axis of the torus, i.e., when 2ao0 << [,
The components of the torsatron field Iin the coordinate system

- - -

e &5 €, shown in Fig. 2 are

- - - ex r - ]
Brt Bocoso Bﬁ sins Bs €, zcosZaroﬂ + (r ro) sin 2:r°° , (21)
- - ex r - - 1
Bz: Basinm + Bb coss Bs £, o (r ro)cosZaroq z sinZuroq , (22)
39: - - Bo, (23)

LYY
e

where - r°° =3 .,

In addition, the betatron magnetic field is given by

At LAt a

n(r-r )
B "1 - —2—7 (26)

v
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and

B, =~ 0B _ z/ro, (25)

where n is the external field index. The total field components are

B,=B_. +B,, (26)
B,=B, +B,, (27)
: B, = By, - BY , (28)

where 859x indicates any additional toroidal field that may be applied.

The acceleracing electric field components are approximated by

(r-ro) w 2 r

I':r: * 2r v ! :C 2° i (29)
v
9
2 o
E, — (= 7, (30)
v
A
2
me .
Ee = - eva Y’ (31)

where Y = dv/dt , v = dZY/dCZ and v, is the toroidal velocity, which is

assumed constant. 1
Using Eqs. (26) to (31) for the fields, the equations of motion in

the laboratory frame become

L

" 2 W w, .
R + 0w R+ —— (Reosw t=- Zsiny ¢t ) ~ (2 =
2 w ) 2

0
P Y
R - 2 - \°(e), (32)



w W . . a
7+ plz - —2W¥ ¢ Yo (R oo Y ) .
zZ+ w, Z > Z coswwc + Rsinwwt + 'R 7 R ” 0, (33)
where
1
R = sz(r-ro), z=y2z,
0, = eBQ/mc . %o ® eBzo/mc ,
w, = n:x st/Y s w, = Zavq ,
2 v v 2]
2 - /o 8 (3 o _zo_
A7 () Yé— < = ,
o
2
. - 2 v_ 0 v
“;'I/AF_QLXZ'VZ(L\* Y (& __y__f%z _a ; ,
Y Y Y 2v Y T, "
A o]
and

v n
9 20

. ) . 2
m2.1/4(_Lw2-1/2rJ A A A - S R
z Y Y Y

2 YT
2v9 o

Equations (32) and (33) become more tractable when transformed to a

frame rotating with angular frequency ww/Z . Using the transformation

- mwc -~ wwt
R=R cos f Y+ Z sin f——z—\, (34)
w € w €
Z=-Rsin f ; Y1+ 2 cos ; 1, (35)

equations (32) and (33) become
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4 Q9 ~ Y ° 2 5 2 Wyt
- Mg = Z + f - dn°sinw t) Z = A°cos ! > Y, (36)
) W Y v 2
< 2
;: 5 2 2 Yo Yy Ry Dy s ~ -
- Z+ T w + ducos w t - - f 1€ ¢ (=) VZ - d
w 2 Y
< Q . . N w t
g (o = =221 § = (=Y fwl Y § = 32gin (—¥
- W, - 3y + Sw”sinw t! R = A"sin > ) (37)
' 1
- v where
. - - 2 v2 . 2
" 2 \2 1 Y Y ¢ \ L] I Y 2 q
o ws =l (LN - fg (——) + f + =l Yo+ ,
h L Y Y Y 2v§ op? Y ar® 1
= o 0
-
55 and
2 v.n ozo Vg <
. fw~ = ( - )
r Y 2nr
- o o
- Since at the start of the acceleration momw/z |>> ,8m2| and 4
a
. )
" (v/2v) l( - )| > Iszl , the two coupled equations (36) and (37) can
;% be combined into a single equation by introducing the complex variable
:3 W= R+1i2Z. Multiplying Eq. (37) by i and adding it to Eq. (36), it
1
o is obtained q
<
.\. ; ~ % 2 2 iwwt/Z
5: b o+ flw + f3w - 1f2w = \"e R (38)
0 :
where
(
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. 2] . 0 Q
- 2 - f nw \2 ww "A - iv 3 . = [ - 8 \
f1 w, 3 + 3 - Yy , f2 o, - and
momw
f3 - 2 .

Equations (36) and (37) have been solved numerically. After integration
the orbit is transferred back to the laboratory frame. The results are
shown in Fig. 10. The projection of the orbit in the r,z plane is showm
in Fig. 10a, . the particle radial distance from the minor axis as a
function of time is shown 1in Fig. 10b and v as a function of time in

Fig. 10¢. The various parameters for this run are identical to those

listed in Table IV. The particle strikes the wall at about 325 nsec,
when 1its gamma 1s approximately 68. These resulzs_are in good agreement
with those qf Fig. 8 th;t have been obtéiqed using the more accurate
expressions for the torsatron fields. As will bé discussed later, the

particle was lost because at vy = 65 it entered the unstable region that

extends from vy = 65 to vy = 121 .

When vy =0 , the homogeneous part of Eq. (38) becomes
G YY) .
Voet2e, + 21 T w12 - 21 T m 0, (39)
. i.e., a fourth order equation with coastant coefficients. The solutions
hd ~ o~ {wt 2
of Eq. (39) are of the type t = by @ , where w“ , is given by
2 ex 1
L ! a o 0 Q /
- 2 1 fy - 832 3 A rr 832 22, s 242
oy ey s T e =t ey, - T e T 40

4y ‘a
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when |w?’ <K lmocuw/Zl

The particle orbits are stable when <« is real, i.e., when

w Y 2
u(v) = fa, = ——12- 2 o5 0, (41)

The two roots of (40) are given by

20, nex
s .
Y:t = mw ! 1t e: Qe ) * (42)

The function u(y) is plotted in Fig. 11 for three values of B, and

ex ex )
Bs + In Fig. lla Bs 4 -6kG, B° = 5KG and thus Bq = -(Bs

ex

For this value of toroi&ﬁl magnetic field and for €. 0.4 and
mw/Z = 3x109 sec-l, Eq. (42) gives 19.96 and -8.2 for the two roots of
Eq. (41). Therefore, at .Y = 7 the particle orbit should be unstable.
Results from the numerical integration of nonlinear orbit equations for
Y =0 ,and Y = 7 and using the same values for the rest of the
parameters as in Fig lla are shown in Fig. 12. As expected, the orbit
is indeed unstable and the particle is lost in less than one nsec.

By reversing the direction of the current in the torsatron wires
Bo and €, change sign and the two roots of Eq. (4]) become 50.5 and
78.7. Therefore, for vy = 7 the orbit is stable. This is in agreement
with the results from the numerical integration of nonlinear orbit

equations shown in Fig. 13.

When Y, <1 , the orbits are stable for all values of Y . For

16

- b-'- ‘-l Tt e
SR A AN

-«."' '*.."l. ﬂ. '...._‘.

+ BO) = 1KG.




Bsex = 6KG , BO = 5KG and £ = -0.4 the two roots of Eq. (41) are

-50.5 and =78.7. For this case the orbits were found stable for all the

values of v considered.

The numerical and theoretical results are 1in excellent agreement

when the linearized theoretical model is valid. However, when BSex and

b o S s e amm g

Bo have opposite signs and IBsex’ > IBol y the toroidal field vanishes
® at some radial distance and the field lines form magnetic cusps. 1In

this case the linear theory does not properly describe the fields and

R A Soan

the predictions of the theory are not in agreement with the numerical

ie results.

i
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Equation (40) gives
2
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2
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2 2 2
e - u + % - " - Po u (fast mode)
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Q+ = w+ - —2 = Qe 06 . (43)
4(l1 = —)(=)
me Y

The particular solution of Eq. (38) in the rotating frame,

for Y = 0 and w 2 small, is ¥ _ = R_+ iZ

L P p p
where
I S S TR WY} 3 o, t
R = cos( ), (44)
P 2 2
w o
o w
and
- /*Az(mw - Qq/Y - mo/Z) w t
7 = sin ( ) . (45)
p 2 2
w ny
o w

Transforming back to the laboratory frame using the transformation
-1 n t/2
b= ¥ e , we find that the particle orbit is displaced along the

horizontal axis by

2
4

Ar = W_ (1 - ”-q/vmw) . (46)
o

Figure 14 shows the projection of the particle orbit in the

tranverse plane for

y =11, e " -0.4. B, = 11KG , w, = 6 x 109 sec-l. r, = 100¢cm,

B .= 118 G and v, = ¢. For these parameters Eq. (43) gives a slow

z0 4
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period o= 21r/°+ = §2 asec, For the same parameters the code gives
L 60nsec.
In addition, Eq. (46) gives a displacement Ar = .74 cm , which is
identical to the orbit displacement of Fig. 1l4.
Let's now return to discuss briefly the results of Fig. 10. For

the parameters of the run, Eq. (42) gives vy_ =~ 121 and Y_ = 65 . When

+
the vy of the particle reaches 65 i.e., at about 300 nsec, it becomes
unstable and strikes the wall in one revolution.

In addition, at t=0 the ratio Qq/me = §.67 and according to Eq.
(46) thF orbit displacement is negative. As Y 1increases Qq/vmw is

reduced and when Oq/me < 1 the orbit dispacement becomes positive. At

Y = 46.6 , OQ/me = 1] and Ar = 0 . According to Fig. 10b this occurs

.at  t = 210 nsec , which corresponds to vy » 47 (see Fig. 10c).

V. Self Fields

An accurate self consistent determination of self fields of a high
current electron ring confined in a rebatron 1s difficult, because the
minor cross section of the ring has, in general, a complex shapé that
varies along the toroidal directionm.

Since we are interested in the macroscopic motion of the ring and
therefore on the self fields that act on the ring centroid, we assume
that the ring has a circular cross section and its particle density is
uniform. Neglecting toroidal corrections, the fields at the center of
the beam, which {s located at the distance (r - ro) and z from the

minor axis are18’26
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2
t (v - )
E: = - Zv'e' nr b2 9 (47)
oo T,
. 5
Ez = -2w|e| R . (48)
a o
2
r .
s b z
Br = 21r| 'no o O - T (49)
a o :
and
2
r (r-r)
s b 0
Bz = ZWIe noqoro 5 = , (50)
. a o
where n, is chevpar:icle density,

Ty the beam radius and a the minor
radius of the perfectly conducting torus.

When Y = 0, n -1/2 and the beam energy 1s matched to the vertical
field, the equation describing the beam centroid motion in the tranverse

rotating plane is given by

THE T £ b - if ﬁ-xzeim"t/z (51)
1 3 2 '
where f2 and f3 have been defined under Eq. (38) and
0
: ~2 Yo 2 % e
== (=P v =, (52)
where ., qu “§ rb )
L - - 3 (;- ’ (53)
2r 2y
2 2
and wy 4me no/m .
20
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The solution of Eq. (51) when A~ = 0 is v = ¥ byy © ,
i
where
%z, Tt
w 'lﬁjww ST (5 )
4y
2 2 2
Q 0 w. w. Y
3 9 - 2
(o -2 (e al ) + 200 (54
4
Y
The orbits are stable provided
a2 -
3 +m'>0 . (55)
4y )
and
w w a wz mz
fo2_ (M2 W 892 _ o w .
W, ( 2‘) + - 2 >Q (56)
Equation (56) can be written as
” o] w w
seat e 22 )(—3-—>+< )2r< -5 10, (57)
13 2 2 o
and its roots are given by
;2
I+ 4 W
—eee— 3 = [(— - = + 1,
(“w/Z) (Y 3 ) ¢+ w, (58)
(o]
When l(;— - -—0' > lwol , the two roots of inequality (57) are both
either positive or negative depending upon the sign of
i w
A

(;— - -;) and w  « The results are summarized in Table V.

For ¥>>1, Eq. (58) becomes

RN CWEILS

(59)
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i.e. the orbits are always stable provided inequality (55) is satisfied.
The maximum amount of space charge that can be confined by a

rebatron can be determined from Eq. (55). When

2
r
uf,/zr.-2 < (=Roy(=d)? ,
o 5 3’ ta
Y
Eq. (55) gives
Qazaz
Lo ——. (60)
8c

For a = 10 cm, B,= 10 KG, v = 7, Eq. (60) gives v = 3,000 or I = 50 MA.

-

When the .current of the beam is large, m2

| <<0. However, as

Y increases m? approaches it asymptotic value u§/2r§ « Similarly, the

-~

two roots m{+ approach their asymptotic value given by Eq. (59).

Y

Q
5
Figure 15 shows the stability diagram at t = 0, when (;— - —;\ <0

and wg < 0. For this case the stability condition
2
w 2] 0 0w . Q
- 2y ow 2, _ A&
is 2 ( » 2) + 2 > w, > 472 .

2

During acceleration <y increases and therefore both -02/47 and w? move

to the right of the diagram. Therefore, it may be argued that

before m{ crosses the vertical axis, -Qg /4Y2 catches up with it and the

a

a

ring becomes unstable. A similar situation would occurs when m? becomes

-

equal to w . However, we have shown that when the system is stable at

L+

t = 0 it will remain stable for any vy that exceeds the initial v .
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VI. Conclusions

We have carried out an extensive nqaumerical and analytical
investigation of the beam dynamics in a rebatron accelerator. Although
the analytical work is based on simple, linear approximations for the
various filelds, the two approaches give very similar results when these
approximations are valid.

OQur studies indicate that when self field effects can be ignored,
the particle normalized energy can be increased from v = 7 to v ~ 70, at
constant betatron field, before confinement is lost. This implies that
the device has a bandwidth that approaches 1000%Z. This bandwidth can be
further increased by increasing the current in the torsatron wires.

Even in the absence of Ehe space charge, there i3 a range of
parameters [see Eq. (42)] for which the rebatron is unstable. However,
this orbit instability can'be easiily avoided by a judicious choice of
the various paramecer;. |

As far as orbit stability is concernéd, the maximum electron beam
current that can be confined in a rebatron accelerator is given by Eq.
(60) and 1is impressively high. Therefore, 1t 1s expected that the
limiting beam current in a rebatron would be determined from collective
instabilities and not from the macroscopic Qcability of beam orbits.

Although the bandwidth of rebatron accelerators is very high, the
maximum energy that can be obtained by these devices, with time
independent magnetic fields, is rather limited. To achieve very high
energies (v > 1000) the betatron magnetic field should be replaced by a
local vertical magnetic field cthat varies rapidly with time and
approximately in synchronism with the beam energy. Such a fast vertical

field can be generated by two coaxial, cylindrical lines that carry
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current in the opposite direction. The axes of these lines coincide
with the major axis of the toroidal vessel and they are located
symmetrically around the minor axis of the torus. These transmission
lines change mainly the local vertical magnetic field, while the
magnetic flux through the beam orbit remains approximately constant.
The wmismatch between the beam energy and the vertical fileld 1is
alleviated by the strong focusing field. The effect of the rapidly
varying vertical magnetic field on the beam dynamics will be reported in

a forthcoming publication.
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Table II

Parameters of the run shown in Fig. 6
Torus Major Radius r (cm) = 100
Winding Minor Radius o  (cm) = 12
Toroidal Chamber Minor Radius a(cm) = 10
a= 21/L (en™ ) = 0.1
Field Strength Factor <, = 0
Winding Current I (kA) = 0
2 = 2
Additional Toroidal Field B:x(kcj = -6
Betatron Field Bzo ( 6) = 118
Ext. Field Index n = 0.5
Initial Y - 7.0
Initial Positions o= 4 =3 = 0

v = v E ]
o ™ Va 0, ¢




oy Table I

- Parameters relevant to the torsatron fields shown in Fig. 3. Only two

terms retained in the series of Eqs. (1) to (3).

Torus major radius r_ (cm) = 100

o Windings minor radius o, (cm) = 12

Toroidél chamber minor radius a (cm) - }0 (
a = 21/L ('cm-.l) © = 0.1

Field Strength Factor £ = 0.2

Winding Current I(kA) = 62,37
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Additional Toroidal Field B:x (kG) = - 6
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Table IV

Parameters of the run shown in Fig. 8.

PUPST VNS T WA

Torus Major Radius ro(cm) = 100 N
i

Winding Minor Radius o (cm) = 12 b
Torodial Chamber Minor Radius a(cm) = 10 %
3

a= 27/l (eml) : = 0.1 ;

Field Strength Factor e = =0.,8 g
Winding Current I (kA) = =250 3
] = 2 )

ex g

Additional Torodial Field Bs (kG) ) -
o4

Betatron Field B (G) = 118 2
zo !

Ext. Field Index n = 0.5 3
Inicial v = 7.0 5
Initial Positions 0= =g = 0 d
o

Initial Velocities vV smv =(Q v = ¢ -
[} é s o

-

-

-
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Table III

Parameters of the run shown in Fig. 7.

Torus Major Radius ro(cm) = 100 .
Winding Minor Radius o (cm) = 12
Toroidal Chamber Minor Radius a(cm) l= 10

a = 2n/L (cal) = 0.1
Field Strength Factor’ . = -0.4
Winding Current I (kA) 1 a=124.7

) = 2
Additional Toroidal Field BS (kG) - -6
Betatron Field B, (G) | = 118
Ext. Field Index n = 0.5
Initial v = 7.0
Initial Positions o= d=g =0
Initial Velocities vo v, " o, ve ® c
27
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Table V

J Roots of inequality (57) as given by Eq. (58), when
o a W

- 2.

r':. '( Y Z)I ? ,wo,

if N w

(—7 - —% w /m 1

+ . + both negative

- - both positive

- + 1 both positive ) - 4

+ - both negative

rrvr
a4, 8
Caa

(s
.

v

o

L 2l o o0 ge v | '—" -
S « )
o L

- . S I . * L o - . ST T . " - ..
N A TR R LR . _.,'A -t e .' . P R ]

- - . - . . .
'.‘,""J' #,\.( 4 .'.."_._.',-'_-,;__«.\..—.-._-.-'.- - o et \' .-»._-.-‘-~~.-‘~ - A
)'__.LA.‘.-’SA.J .c-._.l‘!_.u“.__ [ ! _n_L_ f.su w&mwwm&immmﬁt_ R -\.MA—.A_-




4

vy

R P N T W T TN T T T T T W W W WY U T TN WY A W W N t—-\-~‘_~-:--‘-~-.-v-7-—‘-~—g-._1

Zael - LN

Y
e e

DT T
¢

» <@

re

<L

Torus

Fig. 2 — Systems of coordinates

e,
_Major Axis

'S

6

- S R
oV Y e
- - . AR
> o .

el T PR . RN . e IR IR

pACT T o - »~ " gt ) - . - . -~ - - . . . . . - - . R . . . . i
AT AR T S LT PR L N KRS . - B I PR L

‘a\ﬂs‘:h_{.\xkaﬂ.ﬁ \\.\.‘bﬁ'ﬂnﬂ XS N R Y NG T Vi Uy U WA YR I WA VAN IO PR ¢ o e aitonts e Srsecbon e




(
.0 -600 ‘
0.50
- — —1800
0} o \
' o) "
Q
o) m
-2600
-0Q.5p
-1.0 A -3600 (
0 [ 10 e}
p (cm)
o Toroidal Correction
Torsatron Field Components
8 -800} $2s20
m-e-
(
- 1600
-2200 1
o s 10
p (cm) (

(a)

Fig. 3 = Torsatron magnetic field components (a) at ¢ = s = Q and (b) at s = 0, ¢ = #/2. In
addition to the torsatron field there is toroidai field 8% = —6 kG that is produced by a set of toroidal
coils. (c) magnetic field lines in r, z and p, s planes.
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Poloidal Stream Lines of B Field
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Stream Lines of B Down The Tube
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v Fig. 3 (Cont’d) — Torsatron magnetic field components (a) at ® = s = QO and (b) ats = 0, ¢ = /2.

In addition to the torsatron field there is toroidal field B = —6 kG that is produced by a set of
toroidal coils. (c) magnetic fieid lines in r, z and p, s planes.
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Fig. 3 (Cont’d) — Torsatron magnetic field components (a) at® = s = Q and (b) ats = 0, ¢ = #/2.
In addition to the torsatron field there is toroidal field B = —6 kG that is produced by a set of
toroidal coils. (¢) magnetic field lines in r, z and p, s planes.
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Fig. § — Top view of the torus. The accelerating field is limited to
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Fig. 7 = (a) y of particle as a function of time and (b) particle orbit in the r, z plane for moderate
(¢, = ~0.4) torsatron field. The various parameters for this run are listed in Table [II.
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Fig. 6 — (a) y of particle as a function of time and (b) particie orbit in the r, z plane in the absence
(e, = 0) of torsatron field. The various parameters for this run are listed in Tabie II.
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Fig. 9 = (a) y of particle as a function of time and (b) particle orbit in the r, z plane for
the same parameters as Figure 8 except at a higher betatron field.
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Fig. 8 = (a) y of particle as a function of time and (b) particle orbit in the r, z plane for high
(¢, = —0.8) torsatron field. The various parameters for this run are listed in Table IV.




Particle Orbit in The Transverse Plane
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Fig. 10 — (a) Particle orbit in the r, z plane; (b) particle radius as a function of time and (c) y of
particle as a function of time. These results have been obtained from the linear equations (36) and
. (37). The results shown are in the Lab. frame. The various parameters for this run are the same with
L J those of Figure 8.
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Fig. 10 (Cont'd) — (a) Particle orbit in the r, z plane; (b) particle radius as a function of time and (c)
¥ of particie as a function of time. These results have been obtained from the linear equations (36) and
(37). The results shown are in the Lab. frame. The various parameters for this run are the same with
- those of Figure 8.

'y« 4 L ] .
AR | yalyeiod
L]
o
8
o




P i ol e

T

T

_ °g puw ,Jg jo SuoneuIquiod
WY NP 22141 30) (1§) uonenbyg ur udAIB () jJo ropg — §| My

os-/~ \oz-

oONg="2
_ S
M9 = -

@ o

~
R

2
n

(2)

04 G-=1°g
o4 9- =28

\2'8-

(q)

o~
@)
N

oy G =°
_'S
o4 9-=°

m o

(D)

43

I-51

>

. - - e e e el A e
PO [ T L O I T O - >
MR B T e I e K
¥ LI o e ‘. ™ P A -~ - - -
E R I NN VNS DI S DR S I St Sy .

. -_“\':_ AT T et

e

-"1’.. s
VR IR

-
®
e
@
v
, . |
®
<
&
®
L




Particle Orbit in The Transverse Plane
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R" Fig. 12 — Particle orbit in the r, z plane for the same parameters {
- as those in Figure lla.




Particle Orbit in The Transverse Plane

-------------

RS 1 L T i 3 1 1 \ J \ 11 1 i T 4 H i
-
od

L]

ITT

_LIIILL#IgL_lgll;L_L!Lll

R Y N SN SN U U S S

90 95 100 105
r(cm)

Fig. 13 — Particle orbit in the r, 2 piane for the same parameters
as those in Figure 11b.

45
I-53

T T T S .. e gt e B S TP T S
T e ® e "ot et e . . - - » - -~ . - . . R . » . . .
........... N AL ot - T IR T
. = v ~ e = R S S Y T S
EOPIF B O PP PP PR PR L e e s e et . PR RARAS PN

SN SN T IDNUNNY SN SEUNNY SN SN T SN W SR U




- hdhiial i) - e

Particle Orbit in The Transverse Plane
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Excitation of the plasma waves in the laser beat wave accelerator

C. M. Tang and P. Sprangie
Plasma Theory Branch. Plasma Physics Division, Naval Research Laboratory, Washington, D.C. 20375
: R. N. Sudan

o Laboratory for Plasma Studies, Cornell University, Ithaca, New York 14853

{Received S March 1984; accepted for publication 30 May 1984)

The excitation of plasma waves by two laser beams, whose frequency difference is approximately
the plasma frequency, is analyzed. Our nonlinear analysis is fully relativistic and includes
mismatching of the laser beat frequency to the plasma frequency, time dependent laser
amplitudes, and an applied transverse magnetic field (surfatron). For a given beat frequency, laser
o power, and plasma density, we find the peak accelerating electric field and its phase velocity. The
mnsvenemgneucﬂeldufoundtomcxwetheeﬂ'ecuvephsmafreqmcy but has little effect
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on the plasma dynamics.

The laser beat wave accelerator concept is a promising
collective acceleration scheme which utilizes a large ampli-

field, which is represented by the vector potential
Ao = Byzé,. In this configuration, the electric field of the

o tude plasma wave generated by the nonlinear coupling of  lasers is parallel to the imposed transverse magnetic field,
two intense laser beams to accelerate electrons.'”” We ana-  E_||B,.
lyzed the formation and saturation of the plasma waves by In our one-dimensional model, the tranverse electron
two laser beams, whose frequencies are separated by approx-  dynamics possess two conmstants of motion, i.e.,
! imately the plasma frequency. — |eje™ (AL + Ag) + p, = constant. Assuming thatp, =0
! Our model consists of a spatially one-dimensional plas-  prior to the arrival of the laser puises, it follows that the
® ma containing infinitely massive jons. Initially the plasmais  electron’s transverse momentum is given by p,
assumed to be cold, uniform in density, and stationary. The =lelc'A, - &,, and p, = je|c™'Byiz — z,), where z, is the
temporal evolution of the plasma wave over a single spatial  initial axial position of the electron.
period is studied at a fixed axial position. This analysis treats It proves convenient to transform to Langrangian var-
; the following topics: (1) nonlinear behavior of plasma waves,  iables,*® such thatt = 7, and z = 2, + £ (z7), Wwherezoand 7
. (2) relativistic effects, (3) effect of finite duration laser pulses,  are the new independent variables, and £ (z,,7) is the axial
® (4) mismatching of the laser beat frequency to the plasma  displacement at time 7 relative to the electron’s iriitial posi-
frequency, and (5) the effect of an applied transverse magnet-  tion z,. Using Lagrangian variabies, the axial electric field
ic field (surfatron).” takes on a simple form, E, (2,,7) = 47|ejn (ZnT).
- The vector potential associated with the linearly polar- We normalize the parameters in the following manner,
) ized laser pulses within the plasma is T=Awr, Z,= 4kzo, E = (Ak /a})|e|/m)E, = AkE isthe
‘ T normalized electric field amplitude, f= dw/w, is the fre-
@ Ant)= A:(Z—U.')OOSU‘:Z—@:’ + @8, quency mismatch parameter, and G = (2 /75wl /7,0)~"
= is the transverse magnetic field parameter, where
where o, >w,, @, is the laser frequency, o = 2 172
= (41r|¢|’n°/m°f"2 is the ambient plasma frequency, n, is Vio = [1 4101, mae + ai_,)z/Z] o 2
the ambient electron density, and v, = (&, — w,)/(k, — k,)is a, = leld,/mo, @, = [@}/7.0) + W2°/¥})]
the group velocity. In our model. we assume &, to be con- is the effective plasma frequency, {2 = |e|B,/mq,
G stant and A4, specified, i.c., the imposed laser fields are as- Ak =k, - k,, and do = @, — w, is the laser beat wave fre-
sumed unaffected by the plasma density fluctuations. Thisis  quency.
: a good approximation if », » w,, |e|4,/(m«?) < 1, and 6n/ Using the axial component of the Lorentz force equa-
, ny € 1, where 8n is the plasma density fluctuation. Also in- tion, the evolution of the plasma oscillation is found to be
; cluded in our model is an applied transverse static magnetic  given by
' []
G
1 —arienof _p2 pain Yo
NI e Ul "
(1-B2E)1-B2E
- ‘w;( = (™ +aycon 4928 4 0, 4 0, con a9) 8. _ 5,5, 5m 29), (1)
& where
B G 11
V= (1*“/—.,"Wﬂo E’+§(af+a§)+a,a,cos4¢) )
378 Appl. Phys. Lett. 45 (4), 15 August 1984  0003-8951/84/160375-03801.00 © 1984 American Institute of Physics 37s
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Ay =E—-T+2Z,+4¢, E =9E(Z,T)/dT,
a =2, + E — T,and B, = dw/cAk. Our model is valid pri-
or to clectron trapping, i.c., trajectory crossing, which oc-
curs when the amplitude | £ | is approximately unity.

The equation of motion described by Eq. (1) is fully rela-
tivistic in both the axial and transverse directions. Equation
(1) permits us to analyze the plasma dynamics for laser pulses
having a beat frequency approximately equal to the plasma
frequency. By varying the parameter associated with the
transverse magnetic field G, we can also model the surfatron

_ configuration.

Using Eq. (1), analytical results in the saturated regime
for weak laser fields, i.e., mildly relativistic electron motion,
can be obtained. First, we consider the case where the two
laser powers are constant in time and define the laser power

parameter
e=aa,/[1 + (@ +a3)/2]. 2
Assuming E to be a slowly varying function of time, it can be
represented in the form
E(Z,T)=A4E(Thin[Z, - T+ 6(T) + 441, 3)
where AE (T') and 9 (T') are slowly varying functions of time

o

- Analytical

o
0

- /-——7

€+0.16

Yoh /v' At Moximum Of Electric Field

0.8 L L
08 09 10 1

Normalized Laser Beat Frequency (f)

FIG. 3. Plots of the phase velocity associated with the peak electric field for
€ = 0.01, 0.04, and 0.16.

compared to the plasma oscillation period. Furthermore, we
assume that ,,0, » @,, do/cdk>=1,and 1 >4E » ¢.
With these assumptions, we obtain
dAE /dT = (e/4)sin 6, (4)
d6/dT = (4f3)~\(f* -~ | + 94E ¥/16), (5)
where the initial conditions are 4E = 0 and 8 = /2. A con-
stant of motion associated with Eqgs. {4) and (5) is
AE[AE* + ¥ f* - l)4£+1§f’ecose] =C,
where C = 0 since initially 4E = 0. ,
We obtain anaiytical results for 4£ and for d in the
saturated regimes by solving Eq. (6). The maximum 4E at
saturation occurs at cos 8 = — |, giving
AEM = 4(‘/””’»
and the maximum field in cgs units is
E, i = Y} /0, ) B,/f Nmec/ |e|Ne/3)' .
As the laser power is increased, reiativistic effects on
the electron motion become significant. These relativistic ef-

fects cause the accelerating field to maximize at a laser beat
frequency which is less than the effective plasma frequency,

Jop =1 —=2""(9¢/8227. (8)
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During the acceleration process the injected electrons
must be nearly synchronized with the phase velocity of the
plasma wave. To obtain the phase velocity v,,, we follow a
null of the electric field and find that

vpn = 6B, (1 — d6 /dT). 9)

The phase velocity of the plasma wave at the maximum elec-
tric field amplitude is at a local minimum and given by

Vb, mun = B, (1 — 1.89€27). (10)

Figure 1 shows the amplitude of £ as a function of time
obtained from Eq. (1), with € = 0.01, G = 0, and three differ-
ent beat frequencies: /= 0.96, 0.98, and 1.0. In Fig. ! the
laser power was increased gradually over three periods of the
laser beat frequency. In this case the amplitudes of the elec-
tric fields are almost identical to those obtained using Egs. (4)
and (5).

Plots of the normalized peak amplitudes of the acceler-
ating electric field for € = 0.01, 0.04, and 0.16 in the frequen-
cy range 0.8</< 1.1 is given in Fig. 2. The phase velocities
associated with the peak amplitudes are plotted in Fig. 3.
The dashed curves are the numerical resuits obtained from
Eq. (1), while the solid curves are the analytical results ob-
tained from solving the cubic polynomial in 4 £, Eq. (6). We
note that both the amplitudes and phase velocities undergo
discontinuities at /., . For /> £, , AE has one real root and
the phase velocity associated with the peak electric field is
less than the speed of light. For f<f,, 4E has three real
roots and the root closest to the numerical result is the small-
est. The phase velocity associated with the peak electric field
is generally greater than the speed of light.

In the region marked by { = = =)in Fig. 2, the large
amplitude plasma oscillations cause the electrons to become
highly relativistic and the electric field steepens until wave
breaking.***° Since the electric field produced by turbulent
plasma is unlikely to be desirable for acceleration, the upper
limit for 4E is 1.1. The laser power parameter required to
achieve this value is € ~0.06.

- The saturated oscillatory electric field amplitudes and

377 Appl. Phys. Left., VoI. 45, No. 4, 15 August 1984
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the phase velocities are not desirable for accelerating elec-
trons. Thus, the laser pulse duration should be chosen to
equal the plasma build up time. After the laser pulses pass
through the plasma, the plasma wave will continue to oscil-
late until disrupted by various instabilities.® Figure 4 shows
the temporal profiles of the normalized stimulated electric
field amplitude, a short laser beat wave pulse ¢, and the cor-
responding phase velocity v, /v, at the normalized frequen-
cy /= 0.925.

For the purpose of accelerating electrons, it is desirable
to have large accelerating electric fields with a phase velocity
v, very close to c. As the laser power increases, we find that
as the maximum amplitude of the plasma wave increases
(scaling as €'/*), and the corresponding phase velocity de-
creases (v, — v,, Scales as €/%). The final electron energy is
limited by desynchronization of the accelerated electrons
and the plasma wave. An imposed transverse magnetic field’
can increase the total kinetic energy by maintaining synchro-
nism while accelerating the electron in the transverse direc-
tion. The imposed transverse magnetic field increases the
effective plasma frequency, but has little effect on the dy-
namics of the plasma wave.

We have enjoyed stimulating discussions with I. B.
Bernstein. This work is sponsored by DOE, under Contract
No. DE-AI05-83ER40117.

'T. Tajima and J. M. Dawson, IEEE Trans. Nucl. Sci. NS-28, 3416 (1981).

2Laser Accelergtion of Particles, edited by Paul J. Channell (AIP, New York,
1982}, AIP Conf. Proc. No. 91.

*]. D. Lawson, Rutherford Appleton Laboratory, Report No. RL-83-057,
1983.

“D. J. Sullivan and B. B. Godfrey, in The Challenge of Ultra High Energies,
edited by J. Mulvey (ECFA 83/68, Rutherford Appieton Laboratory, Ox-
ford, United Kingdom, 1983), p. 209.

3R. J. Noble, Presented at Proceedings of the 12th International Conference
on High Energy Accelerators, Fermi National Laboratory, 1983.

°R. Bingham (private communication, 1983).

’T. Katsouleas and J. M. Dawson, Phys. Rev. Lett. 81, 392 (1983).

*R. C. Davidson, Methods in Nonlinear Plasma Theory (Academic, New
York, 1972).

*M. N. Rosenbluth and C. S. Liu, Phys. Rev. Lett. 29, 701 (1972},

Tang, Sprangle, and Sudan an




APPENDIX K

}

i. | | DYNAMICS OF SPACE-CHARGE WAVES IN THE

i : | LASER BEAT WAVE ACCELERATOR L7
’ _

:




- TRy TN TR TG e T I

me a4 s ek o an Jul Sun SaF 4
¢

T

T Y WO

Dynamics of spaca-charge waves in the laser beat wave accelerator

C. M. Tang and P. Sprangle
Plusma Theory Branch. Plasma Physics Division, U. S. Naval Research Laboratory, Wushington, D. C. 20375-
5000

R. N. Sudan
Laboratory for Plasma Studies, Cornell University, Ithaca, New York 14853

{Received 7 June 1984; accepted 17 January 1985)

The excitation of plasma waves by two laser beams, whose frequency difference is approximataly
the plasma frequency, is analyzed. Our nonlinear analysis is fully relativistic in the axial and
transverse directions and includes mismatching of the laser beat frequency to the plasma
frequency, time dependent laser amplitudes, and an applied transverse magnetic field (surfatron
configuration). Our analytical results for the large amplitude plasma waves include an axial
constant of motion, accelerating electric field, and its phase velocity. The analy:ical results in the
weak laser power limit are in good agreement with numerical results obtained from the complete
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equations. The imposed transverse magnetic field is found to increase the effective plasma
frequency, but has little effect on the plasma dynamics.

1. INTRODUCTION

The laser beat wave accelerator is one of a number of

laser driven particle accelerating schemes,'* which is cur-

rently receiving considerable attention. Existing types of
synchrotron and linear accelerators are nearing their eco-
nomic limits in going much beyond a few TeV in energies.
The availability of high power laser beams (> 10'* W) with
electric fields as high as {0° V/cm brings about the possibil-
ity of using these high fields to accelerate particles. Direct
use of ihese fields for continuous particle acceleration is not
possible because of the transverse polarization and rapid os-
cillation of the fields. A number of laser driven acceleration
schemes have been suggested over the past two dozen years.

Before describing the laser bzat wave accelerator con-
cept, a brief description of some of the other generic laser
acceleration concepts is mentioned. These include the in-
verse (ree-electron laser accelerator, the grating accelerator,
the inverse Cerenkov accelerator, the cyclotron resonance
accelerator, and the use of high gradient short wavelength
structures.

In the inverse free-electron laser accelerator scheme,>*
an electron beam together with an intense laser pulse is pro-
pagated through a spatially periodic magnetic field known as
a wiggler field. The wiggler period and laser wavelength are
such that the transverse particle velocity caused by the
wiggler field is in phase with the transverse electric field of
the laser radiation. By appropriately contouring both the
wiggler ampiitude and period, the injected particles can be
continually accelerated. The inverse of this process has been
used to generate radiation and is the well-known free-elec.
tron laser mechanism.

The grating accelerator mechanism® relies on the fact
that when electromagnetic radiation propagates along a dif-
fraction grating a slow electroma:znetic surface wave is excit-
ed along the grating's surface. This scheme utilizes the slow,
phase velocity less than the speed-of-light, electromagnetic
wave to trap aad accelerate a beam of injected electrons.

The inverse Ccrenkov acceleratoe™ approach takes ad-
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vantage of the fact that the index of refraction of a neurral
gas is slightly greater than unity. The laser radiation witkin
the gas has a phase velocity less than the speed of iight mak-
ing it possible to trap and accelerate an injected beam of
particles.

In the cyclotron resonance accelerator mechanism®
an electron beam is injected along 2 uniform magnetic feld
together with a parallel propagating laser beam. Because of 2
self-resonance effect, the phase of the electron’s transverse
velocity can be synchronized with the radiation clec:ri¢ field.
This synchronism is maintained throughout the acceiecation
length. ‘

The high gradient short wavelength structure concept’
is basically a scaled down version of a conventional slow
wave accelerator structure. Radiation power sourcss in the
centimeter wavelength range appear approprate for his ap-
proach. The potential advantage of this scheme is that be-
cause of the short wavelength employed, relatively low radi-
ation energy per unit length is needed to fill the small
structure, and breakdown field limits appear 10 be higher.

The laser beat wave accelerator concept is a collective
acceleration scheme which utilizes a large amplitude plasma
wave with phase velocity slightly less than the velocity of
light to accelerate charged particles. The large amplitude
plasma wave is generated by the nonlinear coupling of tvo
intense laser beams propagating through the plasma. '3~
In this process the two laser beams with frequencies .. @,
and corresponding wavenumbers X, k, couple through the
plasma to produce a ponderomotive wave with frequancy
@, — w, and wavenumber &, — k,. See Fig. 1. If v, — w:
=w,, the plasma wave will initially grow linzarly in time. If
the laser frequencies are much greater than the ambient plas-
ma frequency @, , then the phase velocity of the ponderomo-
tive wave is nearly equal to the group velocity of the laser
wave. [n this scheme a beam of injected electrons with axial
velouity close to the plasma wave phase velocity can be aceel-
erated until synchronism 1s lost.

A potentially attractive variation of the plasma beat
wave accelerator is the surfatron scheme.* [n the surfatron
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‘—‘ Sw ru uw W,
Aty Py
Lasers {:’ :: w\wm : e-_1 High Enerqy
T o -« p——
Low Energy ee Electrons

Electrons

P11 sl ‘

Applied Transverse Magnetic Field

F1G. 1. The schematic of electron acceleration by plasma waves excited by
two lasers with a beat frequency approximately equal to the plasma {requen-
cy.

configuration a transverse magnetic field is externally ap-
plied permitting the accelerated particles to effectively EXB
drift in a direction transverse to the laser propagation direc-
tion. In this configuration the electrons can remain in phase
with the plasma wave ajlowing, in principle, higher electron
energies to be achieved.

In this paper we analyze the buildup of the plasma
waves, extending the analysis of Rosenbiuth and Liu.2¢
Our nonlinear, fully relativistic treatment of the plasma
wave includes mismatching of the laser beat frequencies to
the plasma frequency, applied transverse magnetic field as
well as time-dependent laser pulses. The resultant equations
in Sec. II describe the growth of the excited plasma waves up
until saturation. We find that the effective plasma frequency
is increased from the ambient plasma frequency when a
transverse magnetic field is applied. On the other hand, the
effective piasma frequency can be decreased as the trans-
verse motion, induced by intense laser pow ers, becomes rela-
tivistic.

Making the weak laser power approximation in Sec. I11,
we obtain analytical results for the initial growth rate for the
large-amplitude plasma wave, the maximum accelerating
electric field, the laser beat frequency requirement, and the
corresponding phase velocity. As the combined laser powers
(measured by ¢) increase, the maximum amplitude of the
plasma electric field increases as a¢'/>. The variable z is 2
function of frequency mismatch between the laser beat fre-
_ quency and the effective plasma frequency. The relativistic
effect associated with the transverse motion is incorporated
in the parameter €. In the limit of exact resonance and nonre-
lativistic motion in the transverse direction, we confirm the
results of Rosenbluth and Liu.* For the purpose of acceler-
ating electrons, it is desirable not only to have the largest
accelerating electric field but also the phase velocity v, less
than but close to the speed of light. We find, however, that as
the amplitude of the plasma wave gets larger, the corre-
sponding phase velocities become slower, i.e., v, — vy,
scales as €/°, where v, is the group velocity of the lasers in
the plasma. The maximum accelerating field for a given laser
power parameter ¢ is achieved when the laser beat frequency
is less than the effective plasma frequency. The difference
between the effective plasma frequency and the optimali laser
beat frequency is proportional to /3. The plasma buildup
time is proportional to €~%/2. The analytical results also
show that the transverse magnetic field has little effect on the
plasma dynamics to the lowest order.
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In Sec. [V we obtained numerical results from thc full
Treaintien! oG conbarsd tem with e anaivocnl resel, o
tire weak laser pewer hinut, thie resuiis are mn excellent coree-
ment. We observe the wave steepening phenomenon caused
by relativistic etfects. As the laser power increases, the waves
eventually break and become turbulent. We show that for
laser pulse lengths much longer than the plasma wave build-
up time, the amplitude and the phase velocity of the plusma
waves are oscillatory. By applying lasers with pulse lengths
approximately equal to the plasma wave butldup time, both
the amplitude and phase velocity can be approximatel
maintained at a constant value.

Il. PLASMA BEAT WAVE ACCELERATOR

Our model consists of a spatially one-dimensional plas-
ma containing infinitely massive ions. Iniually the plasma s
assumed to be cold, uniform in density, and stauonary.
Large amplitude plasma waves are excited by the pondero-
motive force associated with the two laser pulses. Using a
Lagrangian formulation, the temporal evolution of the plas-
ma wave over a single spatial period is studied at a fixed axial
position.

This analysis treats the following topics: (1) nonlinear
behavior of plasma waves, (2} relativistic effects, 3} effect of
finite duration laser pulses, (4} mismatching of the laser beat
frequency to the plasma frequency, and (5} the effect of an
applied transverse magnetic field.

A. Nonlinear, relativistic plasma dynamics

The vector potential associated with the linearly polar-
ized laser pulses within the plasma is

A lzt) = Z Az =v ticosik,z —wt + ,¢,, 1
tm 1.2

where 4, (z — v, 1) denotes the pulse amplitude of the ith la-
ser, w, »w,, @, is the laser frequency, w, = dmie n,/m,' *
is the ambient plasma frequency, n, is the ambient clectron
density, and v, = (@; — w,)/(k, — k,j is the group velouity
of the laser radiation. In our model we assume &, to be con-
stant and A, specified, i.e., the imposed laser fields are as-
sumed to be unatfected by the plasma density moduiations.
This is a good approximation if w, dw,, 'e1d, /imyc”) < 1 and
én/ny < 1, where n is the plasma density modulation. Also
included in our model is an applied transverse static magnet-
ic field which is represented by the vector potential

Ay = B2, 2)
The electric and magnetic fields in terms of the vector poten-
tial are E= —(1/¢)(@/dt) A, and B = VX{A, + A, re-

spectively. In our configuration the electric field vector is
parallel to the transverse magnetic field, E, !|B,.

In our one dimensional model, the transverse particle
dynamics possesses two constants of motion, i.e., the canoni-
cal momenctum in the x and y direction,

C. = —{lel/efAL + Ay) + py- (3)

Assuming that p, = O prior to the arrival of the laser pulses,
it follows that the electron’s transverse momenta are given
by

ettt g maem % o .- . - - : -
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.= “el/c)AL ’ é(' (4’

and
P, = llel/c)Byiz — z,). (3)

where z, is the imtial axial position of the electron.
The momentum equation in the axial direction can now

be written as
dp, lef [ d4, aA,)
— = ~|elE, - . 6
dr -]el ! moc\p‘ oz Y oz l

where E, is the self-consistent plasma induced electric field,
-A. = A, -é,,andA, = By The particle energy equation is

dr__ld ([, 94

aAy ) ief
x + - : P .‘Et' (7
dt  ymic P & Py at mgc* ? )

Combining {6) and {7), we obtain the equation governing the
axial motion of the electrons,

g, _  lel  (1-B81P"
Ldt mee 1+ UL+ U T
R
C LB (2,8 9Ny,
A1+ UL+ UY\8z ¢ o
(8)

where B, =v./c, U, =(lel/myc?)A, ¢, and U,
= — (lel/myc?\By(z — 2z,). Neglecting nonresonant terms
we find that . .

UL+ U =(2%/cNz — 297 + Ua? +al)

+ a,a, cos(dkz - dwt + dd), 9)
where 2 = |e| B,/mc is the cyclotron frequency, a, = je{A,
(z=vgtmet Ak =k, — kpdow =0, = 0,40 =&, ~ by,
and B, = Aw/cAk. The difference in the laser frequencies is

assumed to be close to the plasma frequency, dw zw,. Sub-
stituting (9} into (8) yields

g, le] (l—Bf)”’E 1-8) n*
= - s — (2 =z
dat mec % "i
(l—ﬁi)(a B. a)
T &t T a
X [{{a} + a}) + a,a, cosldkz — dwt + 44)),
(10)
where

rn=(1+0UI+ U
= [1+ 2%z — 2 + ila} + ai)
+ a,a; cosldkz — dwt + 46 )]'? {11

is a measure of the magnitude of the transverse oscillations
induced by the laser beams.

B. Transformation to Lagrangian variables

Equation (10} is expressed in terms of Eulerian indepen-
dent variables z and +. It proves convenient at this point to
perform a transformation to Lagrangian variables,*>** be-
cause the plasma induced field £, takes on a particularly
simpie form. In the Lagrangian variables, the independent
vartinies are o nd =, such that
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Z2=2Zy + g(zouf),

where z, is the initial position of the electrons at = = 0 and
£ (zoo7} is the axial displacement at time ~ relative 10 its 1nitial
position 2,. The axial electric field written in terms of the new
variables (z,,7) is

-

E, (zo7) = dmi€|ny5 (24, 7). {13

The equation governing the plasma oscillations can now be
written completely in terms of 5 (z,,71, i.e.,

- ) EINE DAL —E |
s+ ol =) +—|—=——
c 7. 7.

_n —5 =/c”) [c:(l _E‘_S)(m‘ +a,ces A
4

27

X dala) + (@, +a,cosd w)____aa:(ax )
Jda da

- (B,‘ = i)cz.\a;a,:z: sin Acﬁ], 14
c

where & =0€(2,,7)/37, @ =124+ §—v,7, and Jdiz,
=4k [2q + £(2,,7)] — dwT + 46.
The imposed laser field and the applied transverse mag-
netic field modify the plasma frequency and hence we define
an effective plasma frequency

2 2.2 yild
(0,=(¢L)’/}’w ’Ln /(‘.0) .
where
710 = [ 1 + !‘aimu\ + agmt_l_)] “:' “6’
The effective plasma frequency o, is the relativistic upper-
hybnd frequency. An increase in the transverse oscillations
results in a decrease in the velocity of the axial oscillation.
which in turn leads to an effective reduction in the plasma

frequency. On the other hand, the transverse magnetic Seld
resuits in an increase in the effective plasma frequency

(13

C. Normalized plasma wave equation

To further study the dynamics of the plasma oscilla-
tions, we normalize the parameters in the following manner,

T =dorT, (17)
E = (4k /ol )llel/mo)E, = AK€,
Zy = 4dkz,,
[=Adw/w,,
and
G=(RY7r,)wi/ve) ™"
The evolutivn of the plasma oscillation is now given by

A 1 I 47 4 pmny, 7.0
E4+—o———1 -~ ’E-)—‘((l —-BIEHN T 4+ G-‘—)E
[ +G) 5 5 a

_ N =BiEM =B

IS

da.at

= - ~a,¢08 JYb———"
Bl \ da
da,(a) .
+(a,+a.cosdd-)—a—-—a,a:s.n.!z!z . 118
a
where
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-'r-T(a;-‘r-ag)—a,a:cos.Ju') . 19y

-

de=E~-T+Z,+ Jd4. (20)

a=2,+E—T,andE = EZ,T)/3T. The total relativis-
tic mass factor associated with the plasma motion becomes

MZeT) =7 {1 =B EN'R 21

Since the plasma oscillation amplitude is single valued,
our model is valid prior to electron trapping, i.e., trajectory
crossing. Trajectory crossing occurs when the amplitude | £ |
is approximately unity.

The equation of motion described by Eq. (18) is fully
relacivistic in both the axial and transverse directions and
permits us to model laser pulses with a beat frequency other
than the plasma frequency. Also, by varying the parameter
G associated with the transverse magnetic field we can also
model the surfatron configuration.

lil. ANALYTICAL THEORY IN THE WEAK LASER FIELD

In this section we derive the scaling laws appropriate
for weak laser fields, i.e., electron transverse motion is mild-
ly relativistic. Here we consider the case where the two laser
powers are constant in time and define the small parameter

e=awy/[1+1lal +4})]. {22)
where the denominator of ¢ is associated with the relativistic
motion in the transverse-direction, Yo- Whena, =a,, €is
proportional to the laser powers.

Assuming E to be a slowly varying function of time, it
can be represented in the form

E\ZoT)=dE(T)ksin{Z, -~ T+ 6(T)+dd ], (23)

where AE(T)and (T ) are slowly varying {unctions of time
compared to the plasma oscillation period. Furthermore, we
assume that w, w,»@,, 50 that dw/cdk=~1.

A. Small parameter expansion

Expanding Eq. {18) in terms of the small parameters ¢
and £, we obtain the following ¢quation for £:

E 4 (I/fYE = (€/2sin Ay + F, (24)
where
FIZoT)={1/f = (1 = GV/f* I} —}EY
X {1 = {e/2)cos dv]
—(G/f¥(1 = €cos AW E
~ (€/24E + € cos Asin A,

AY=JE(T)sin®(Z,T) - T+ 2, + dp,and® =Z,— T
+ 4¢ + 9(T). Using the identities

I LTT R LT R T ST v . kW

and keeping only terms that are proportional to sin P and
Cuy S W GhLm

(I —%—Zﬂ).lé‘sinfp —-Z"—écovb
s/t dT aT
= — (/2 dE sin(@P — 8) - F, 26i
where
3 . R
F= [_3_“_":__ ihu_-‘(&‘,_’ib X)J,JAE‘,CO\ 2
8 f° 4 f?
€ .
+TJ|(2AE)cos 20 ]sm Leo)
€4E((1 = 3G e
[___4 (__—fz ) -+ 1)./1(..15;5111 g

- %J,('.’.AE)sin 28 ]cos ®.

Using the small parameter expansions for the Bessel func-
tions, i.e., Jolx}=1 — x*/4 and J,{x) = x/2, Eq. (26) becomes

299 arsine-2%E o
a7 aT

=AE(l —i,)simp +f—(1 --‘__E’)
f- 2 4
X(sin @ cos & —cos Psinf) + F, 127)

where

}
F= (3i€--i9i<z_9cwcose
8 f 8. /*
+ - AE cos(28 ))sin e ]

( € if‘i(z ~3Gsin 6 — TJE:m 28 l)cos ?
Separating the terms proportional to sin ® and cos @. we
obtain two simultaneous coupled equations for the ampii-
tude and phase variation of the excited plasma wave,

d_"‘£=5[_1__9_€<1 .»i_;(z)} ind + ';E sin 6.

dT 4 16 o
PANTY]
aE 0 _SEL -1 3 aE
dT ~ 2 f¢ 16 f2
2
P LofEY2 L 30))s
4 16 \s?
+ % AE cos 26. 28b)

B. Constant of mation

Analytical expressions for 4 £ and phase velocity v, of
the plasma wave can be obtained by assuming 1>3E%¢€. It
will be shown later that this assumption is well founded

sindy = z JUAE sin{{(l + )@ ~ 8], (25a) Neglecting terms proportional 10 €3£ * and €3£ in Eq. :28)
(= -w we obtain,
3 dAE ¢ .
cosdd= 5 J{dE)cos[(l+ )@ -], (25b) L2 sing, (393)
o - = dT 4
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: )
..\Eia—zﬁf : ! +<cos 8 +—3—"1—E-— {29b}
aTr 2 f= 4 16 f°
® Multiplying Eq. (29a) by cos & and Eq. (29b) by sin § and
adding the two equations yield
d dE (1 =1 3 AE").
dE cos 8 =(———————-—,— sin 8
ardecesf) 2 S 16 7*

(30)

‘ Using (292} and (30), the following constant of the motion is
l ® obtained:

JE[AE? + (16/3)f* - NAE +(16/3)f*ccos 9| = C,.

(31)
where C = 0, since initially 1£ = Q.
Employing (30), Eqs. {29a) and {29b} become
[ ]
dak _ e sin 6, (32a)
aT 4
and .
49 _ -1+ 2 agY), C (2m)
dT 4+~ 16
L) where the initial conditions are £ =0 and 8 = 7/2. An

alternate way to solve 4E and 9 in time is outlined in the
Appendix. At exact resonance f = | and nonrelativistic mo-
tion in the transverse direction, i.e., ¥7, =1 and €==a,a,, the
expressions (32a) and (32b) agree with that of Rosenbluth
and Liu.**

C. Analytical resuits

We obtain analytical results for the startup as weil as
the saturated regimes of the plasma wave. The plasma wave
initially grows linearly in time, i.e., the initial amplitude of
E, in cgs units is proportional to [z, where

@ =B, 4)my/ e} €. (33)

The most interesting results are associated with the satu-
rated regime. [n the remainder of this section, we obtain
maximum accelerating electric fields, the appropriate laser
beat frequencies, the corresponding phase velocities, and the
plasma wave profiles.

® The amplitude of the electric field is proportional to a
real root of the cubic polynomial {31). The roots are

A+8B A-8B
__—+—_
2 2 Y

- 2 2
whered=(—=b6/2+h)",B=(=b/2-h)" h=(b%/
4+ 227, a=16/3(f* = 1),and b = 16/3f %€ cos 8. For
h >0, there is one real root given by 4£ = 4 -~ B. When
h <0, there are three real roots, and numerical results show
that the relevant 4 £ corresponds to the smallest real root. At
h =0, dE undergoes a discontinuity.

4E =4+ 8, - -3,

(34)

. For a given laser power parameter ¢, the maximum 4 £
occursat h =Qand cos # = — |, giving
4E,,, =43, (35)
where ¢ is defined in Eq. (22). The actual maximum field in
cgs units is
e
T Pys, FLLGS, 731 23, M0 9, .une ' U335 Ke7

' 2 3
E:.mn = 4(:';)/};' 'T“ﬂ‘C (%)I - 1361
3] ‘e

As the laser power is increased, relativistic sffects on
the electron motion become significant. These relacivistic 2=
fects cause the accelerating fieid to maximize at a laser beat
frequency which is less than the effective plasma frequency.
For example, when the beat frequency is exactly equal to the
effective plasma frequency, i.e., f= 1, the maximum nor-
malized field is

AE = [(16/3)€]'? < AE,,,. (37

It can be shown that the electric field maximizes to the

valuein Eq. (35), when the normalized laser beat frequency is

Som =1 =123, ;

which corresponds to a laser beat frequency in cgs units ziv-
en by

‘Bwog =w,(1 —0.546*). {39

During the acceleration process in injected zlectrons
must be nearly synchronized with the phase velccity of the
plasma wave. To obtain the phase velocity, we follow a nuli
in the plasma wave. We find that the phase velocity of the
plasma wave and the associated refativistic mass factor ar

3l

(Y

d8 ,
vph = U‘(l -_ E), . {402}
and
i AN

where d8 /dT is given by (32b) and j, = (1 — v, /ci] ™"
As the amplitude of the plasma-avave becomes larger, the
phase velocity of the plasma wave decreases. The phase ve-
locity of the plasma wave at the maximum electric field um-
plitude is a minimum and given by

Vphmin = Ug(1 — 1.89€%). (41)

- The time it takes the amplitude of the plasma wave to reach

the first peak is called the plusma buildup time and in nor-
malized units is given by

= ol de
Tel=4 -, 4
Vel sz‘ 1+ 9/16aE" 42

where 4 £ is expressed in terms of § in Eq. (34). The equation
above can be integrated at exact resonance, i.e., /= 1. Using
the fact that A€ = [ —(16/3)ecos §]"? at f=1, we can
write

- 3
T(1_5)=%(_3_)v e-mf ___d&__ (43)

16 s [ —cos )

Evaluating the integral in (43), we obtain

- 3
T(le = E(i)'/ TW/arNz2) -

9\16 r2/3)

= 8.48e~ 23, )

Taking € = 0.01 as an example, the plasma butldup time a.
exact resonance is 9.1 plasma periods, ie., 7(1,0.01)
= 29.1(27). For e = 0.1, the plasma buildup time is reduced
to only 6.3 plasma periods. The plasma buildup time short-
ens as laser power parameter € increases.
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FIG. 4. Normalized amplitude of the acceleraung electnc field £ as a func-
9, tion of the number of laser beat wave periods obiatned with the fuily relauv-
FIG. 2. Plot of & + a? as a function of u, for € = 0.1. istic equations for laser powers buiit up over three laser periods.
Finally, we discuss the effect of unequal applied laser Equations (32a) and (32b) were numerically solved in

pulse powers on the plasma wave dynamics. Supposea given  grder tg verify our approximation |4 E | »€ used in deriving
value of ¢ is desired, the total power required for the laseris  1he constant of motion. Figure 3 is a plot of i4£ | as a func-
at a minimum when a, =a, =a where a = [¢/(1 — €)% (ion of time for the parameters € = 0.01, G = 0, and three
The expression for a, given a, and € is : different normalized frequencies: f= 0.96, f=0.98, and
ay=ay/€— [ai/e =2 +a})]"2 (45) /= 1.0. Thecurvesshow that theapproximation, {4 £ ;p¢. is q
indeed well satisfied. The curves for |4 £ | in Fig. 3 are peri-
g : odic in time and show that the plasma wave periodically
P ( 2e )V2<a <o = ( 2 )"1 . (46)  cxchangesits energy with the laser field. The plasma buildup

e 1-é R me 2 time is longest when the frequency is £, , and is 29 plasina

A plot of @ + a? is given in Fig. 2 for e =0.1. The use of  periods with /=1 and € = 0.01, agreeing with the calcula-

The range for a, given € is

unequal laser powers can be advantageous in controlling the tions in Sec. II‘I C ’ ‘
value of the parameter ¢. Figure 4 is a plot of the amplitude of E as a function of

' time for the complete equations {18)—20), with the same pa-
IV. NUMERICAL RESULTS . rameters as used in Fig. 3. The laser power was built up

gradually over three periods of the laser beat frequency. We

Numerical examples are given for the complete nonlin- used 8, = 0.9999 for the purpose of comparing with analyti-

ear and fully relativistic equations obtained in Sec. II, and

. : cal results. In this case, the amplitudes of the plasma elcctri
these results are compared to the analytical results obtained . P S0 plasma elestne d
in Sec. III in the weak laser field limit, i.e., €< .
1 - T T T T
-~ 0.6 a2 T T r "o Analytical
/- w t+0.98 I
- £ 1.00
2 T > {
o E f=1.0 |
. 4 )
- Q.4 F > P I {
>, 2 ~ 1 N \
. - > i \ , 4
s L - = \ !
T ] 9 | N | J
o w S o0.95h ~~ |
Y“.f a o 2 - - g ' v
@ o ’ t:0.96 ° ! Numerical i i
! 14
¥ 2t g 8 N i
a a ! i
-~ £ ! I
_-.' L-¢ 0 Il 1 g 090 | 1 1 L J
- (¢} 20 40 60 80 100 o] 20 40 60 80 100
N Number Of Laser Beat wave Periods Number Of Laser Beat Wave Periods {
< FIG. 3. Plot of |4 E | as a function of the number of laser beat wave periods F1G. 5. Phase velacities obtained from the simpiified equations (solid curve)
*: for ¢ = 0.01, G = 0 and three different beat frequency parameters / = .96, and numenically obtained from the fully relativistic nonlinear equetions
"J.-_ 098, and 1.0 (dashed curve) for ¢ = 0.01, G = 0 and /= 0.98.
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FIG. 6. Comparison of £, based on the 2nalytical result {solid cucvel,
and the peak amplitude of £ numerically obtained from the fully relativisuc
nanlinear equations (dashed curves).

fields are only slightly changed, showing that the analytical
equations are excellent in the small € limit.

In Fig. 5, the phase velocities given by the analytical
results (solid curve} are compared to the numerical values
{dashed curvej for € = 0.01 and / = 0.98. Theshift of the two
curves is caused by the three periods of laser buildup time in
the numerical caiculation. The phase velocity v,, is at a local
minimum when |4 £ { is maximum and decgeases as £ in-
creases. : '

The plots of the numerically calculated peak amplitude
of E {dashed curve] and the analytical expression
4E,,, = 4e/3)'" (solid curve) are plotted as a function of
€'/* in Fig. 6. The plots of the normalized laser beat frequen-
¢y / (dashed curve), at which the largest accelerating electric
field is numerically obtained, and the analytical expression
for £, {solid curve) are shown in Fig. 7 as a function of &/°.
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Eg. (34} and the dashed curves are numerical resuits of peak ampistude of £
obtained {rom the complete analysis of Egs. (18}~20).

The nocmalized peak amplitudes of the acceierating
electric field for ¢ = 0.01, 0.04, and 0.16 in the fraquency
range 0.8</< 1.1 are given in Fig. 8. The phase velocities
associated with the peak amplitude are plotted in Fig. 9. The
dashed curves are the numerical results obtained from the
complete nonlinear and fuily relativistic equations : 1 8)—201,
while solid curves are the analytical resuits cbtained from
Egq. (34). The agreement for smal} € is excellent.

We note that the analytical sofutioas for the amplituds
of the plasma wave and the phasé velocity have discontinui-
ties at f,,,. For /> £, 4 has one real root and the phase

o

=== Numerical

~=— Anglytical

o
0

-

oh /v° Al Moximum Of Eleciric Fleld

Q8 .
08 09

Normatized L3ser B8eat

1.0
Frequency (f)

FIG. 9. Plots of the phase »efocity associated with the peak electric feld far
€ =001, 0.04, and 0.16 within the normalized beat irequency range
0.3</<1 1. The solid curves are obtained from the analy tical equations and
the dashed curves are obtained from the complete equations at the maxi-
mum of £.
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FIG. 10. Normalized electric field for one period of the laser beat wave at
two different amplitudes obtained at two different instants in time with
€ =0.16, f= 0.925, and G = 0. The point is marked by (*} in Fig. 8.

velocity associated with-the peak electric field is less than the
speed of light. For f<f,, AE has three real roots. The
smallest value of the root is closest to the numerical resuit.
For f< f.4., the phase velocity associated with'the peak elec-
tric field is generally greater than the speed of light.

In the region marked by (= = =) in Fig. 8, the analysis
is not applicable because of particle mixing. Here, the large
amplitude oscillations cause the electrons to become relativ-
20.2% which phenomenon is illustrat-
ed in Fig. 10. Two curves of the normalized electric field at
two instants of time are plotted for one wavelength of the
laser beat wave with parameters € = 0.16 and £ = 0.925; the
point is marked by (*) on Fig. 8. The curve with the circuiar
dots showing wave steepening is the normalized electric field
just before wave breaking. On the other hand, the wave pro-
file is almost sinusoidal when the amplitude of the electric
field is small, i.e., |AE | €1, as illustrated by the curve with
the crosses in Fig. 10. As [dE | becomes larger than 1.1, the

‘ 11
L.7S 20/ -
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.25 -
| 5 3 -]
1.0 — 2 \Y _—
- (¢} r
Z, (Akzy)

FIG. 11. Plots of the relativistic gamma associated with the axial motion y,
for one period of the plasma oscillation for the same parameters and at the
same instants in time as in Fig. 10.
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electric field in our representation becomes multivalued and
the Lagrangian model breaks down. Since the electric field
produced by a turbulent plasima is unlikely to be desirable for
acceleration of electrons, the upper limit for |dE! i
4E ., = 1.1. The minimum ¢ necessary to obtain 4L is
approximately €, = 0.06. :

To illustrate the relativistic phenomenon, Fig. 1 | shows
a plot of y, =[1 — [v,/¢)*]~"/? for one wavelength of the
laser beat wave for the same parameters and at the same
instants in time as Fig. 10.

Numerically calculated time evolution of the electric
field and the corresponding phase velocity for f = 0.925 are
plotted in Figs. 12 and 13, respectively, where € is adiabati-
cally increased from O to 0.16 in three plasma periods.

Since the saturated oscillatory electric field amplitudes
and phase velocities are not desirable for acceleraung elec-
trons, the laser pulse duration should be chosen to equal the
plasma buildup time. After the laser pulses pass through the
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FIG. 13. The temporal dependence of the phase velocity associated with
Fig. 12
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plasma, the plasma wave will continue to osciilate until dis-
rupted by various instabilities. Figure 14 plots the temporal
profiles of the normalized stimulated electric field amplitude
(solid curve} for f= 0.925 and a short laser beat wave pulse
€lt) (dashed curve). The corresponding phase velocity is
shown in Fig. 5. After the laser pulse passed, the amplitude
and the phase velocity of the piasma oscillation remained
roughly constant.

Next, we examined the effect of the perpendicular mag-
netic field on the plasma ascillation in the sucfatron configu-
ration. An imposed transverse magnetic field can increase
the total electron energy by maintaining synchronism while

_ accelerating the electron in the transverse direction.** The

analytical calculation shows that the transverse magnetic
field has a higher order effect on the plusma dynamics. The
numerical result of the peak electric field and the corre-
sponding phase velocity are plotted as a function of G for
€ =0.16 and = 0.925 in Fig. 16, and results changed little
for 0K G< 1. The imposed transverse magnetic field increases
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FIG. 15. The phase velocity ussuciated with the pulsed liser beam shown in
Fig. 14.
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FIG. 16. Plot of the maximum amplitude of the normalized electric deid £
(sotid curve) and the corresponding phase velocity vanation Usn /b, -dasded
curve) as a function of G for € = 0.16 and / = 0.925.

the effective plasma frequency, but has little efect cn the
dynamics of the plasma wave.

V. SUMMARY AND DISCUSSION

We have obtained nonlinear, fully relativistic results for
the plasma waves excited by the beating of two laser beums.
We found that the effective plasma frequency is a function of
the laser power as well as the imposed transverse magnetic

. field in the sucfatron configucation. [a the ideal situation

analyzed here, the amplitude of plasma waves becomes oscil-
latory. Since it is desirable to maintain the accslerating elec-
tric field at the largest value, the laser pulse duration should
be approximately equal to the plasma wave buildup time.

In the weak laser power limit, we obtained analyticai
results for the scturated plasma wave for a range of frequen-
cies around the effective plasma frequency. As the laser pow-
er increases, the maximum amplitude of the plasma electric
field increases as €'/%, confirming the previous work of Ro-
senbluth and Liu®* at exact resonance when the transverse
motion is nonrelativistic, i.e., 7,0 =1, and the corresponding
phase velocity decreases, i.e., v, — v, Scales as €/°. The
maximum accelerating field is achieved when the laser beat
frequency is less than the effective plasma frequency. The
difference between the effective plasma frequency and the
optimal laser beat frequency is proportional to &', The
plasma buildup time is proportionai to € ~%/°.

Given a plasma density, the desirable range of normal-
ized laser beat frequency for growth of large amplitude plas-
ma waves is small, i.e, 1.05%f2f,,. If the laser beat fre-
quency is given, this condition can be translated to plasma
density requirements. Defining n, =42 +n,_,, where
n,., is the ambient plasma density that will provide exact
resonance at f= 1, i.e., w, (1,0, ) = (W /Vio + 2/15,)'?

= dw, where w,, = (47je|*n, | /m,)" *. The density crite-
ria for stimulating large amplitude plasma waves is _

=0.1{1 + Gy San/n, ., <L1E + Gy, (47

where Gy = (2%/v3, @5 /7,0)~". We now consider two ex-
amples of plasma density vanation requirements without
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= 0.01. The application of transverse magnetic field B, in
the surtatron contiguration can increasc the allowable den-
sity fluctuation limit by a factor |1 + G,). In an experimental
situation, 8, not unly overcomes the problem of desynchron-
ization, but allows more flexibility in the tuning of plasma
density.

A comparison of the numerical results from the com-
plete equations with the simple analytical results for the
weak laser power limit is excellent for €<€0.1, and is in fair
agreement tor larger €. Numerical results show that the lar-
gest amplitude for the accelerating electric field in cgs units
without electrons overtaking e¢ach other is

|E, [=(w}/de\B (myc/e]).

The laser power required to reach this value without wave
breaking is € ~0.06.

For the purpose of accelerating electrons, it is desirable
notonly to have the largest accelerating electric field but also

. to have v, /c less than but close to unity. Instead, we find
that as the amplitude of piasma waves gets larger, the corre-
sponding phasg velocities become smaller. An applied trans-
verse magnetic field can overcome the problem of desynch-
ronization of the accelerating electrons in the accelerative
electric field. Since the transverse magnetic field only modi-
fies the =fective plasma frequency, but has little effect on the
plasma dynamics, the surfatron configuration may be the
desirable way to operate the laser beat wave accelerator.

Finally, we would like to point out that the laser plasma
interaction contains a rich souree of instabilities, many of
which may be detrimental for the formation of the large am-
plitude plasma waves studied in this paper for the laser beat
wave accelerating scheme. Some of the processes'” that have
large growth rates are thres-wave forward Raman scatter-
ing, four-wave forward Raman scattering, and processes as-

‘sociated with background ions. Qther areas requiring inves-
tigations are the effects of the transverse Weibel instability
induced by energy anisotropy, the influence of kinetic ef-
fects, self-focusing of laser radiation, and filamentation. De-
tailed studies of them are necessary to evaluate feasibility of

the long term goals of the laser beat wave accelerating
scheme.
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APPENDIX: ALTERNATIVE VIEW OF EQUATIONS (32a)
AND (32b)

The simplified equations in (32a) and (32b) can be writ-
ten in the form

Fol-r )2

ar = 7 -fi- —(x + 5 (Al)

e

= 1 -

aT =T T / -(x + ) Jx (A2)
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FIG. 17. Plot of 3£ sin @ vs 3£ cos 8 for € = 0.01 and three different nor-
malized laser beat (requencies.

wherex = 4E cos 6, y = 4E sin 8 and the initial conditions
arex =y = 0at I = 0. The amplitude and thc phase of the
electron displacement are

E=(x*+y)'"?, (A3a)
8 = tan~'(y/x). {A3b)

Figure 17 is a plot of x and y for € = 0.01 and three different
normalized laser beat frequencies: £ = 0.96; 0.98, and 1.0.
Forf> fop, the enclosed areais to the left of x = 0, and tothe
right of x = 0 for /. </:,,..
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Finite Larmor radius diocotron instability
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The diocotron instability of an electron layer in which the electron Larmor radius is of the order of
the layer thickness is studied. Remarkably, exact analytical solutions are obtainable in a

nontrivial special case. These results allow an examination of the effects of finite Larmor radius
for arbitrary ratios of Larmor radius to wavelength and of Larmor radius to layer thickness. In
addition, an energy principle which yields a necessary and sufficient condition for instability for

general distribution functions is derived.

I. INTRODUCTION

The physics of unneutralized, single species plasmas is
of great basic interest, as well as being inherently related to a
number of applications. These applications include collec-
tive electromagnetic wave generators (e.g., gyrotrons and
free-electron lasers), particle accelerators (e.g., the modified
betatron), diode devices, etc. In all of these situations stabil-
ity of the plasma is a key consideration. Perhaps the most
basic instability of an unneutralized plasma is the diocotron
instability.! The mechanism driving this instability is the
shear in the E X B velocity resulting from spatial dependence
of the self-electric field E, created by the equilibrium charge
density.

In this paper we consider the diocotron instability of an
electron layer in whichrthe typical electron is allowed to have a
Larmor radius of the order of the layer width. The results of
our analysis are as follows:

(I) An integral equation eigenvalue problem for the
Fourier transform of the electrostatic potential is formulated
(Sec. ITI).

{2) An exact analytical solution to the full problem is
given for a special case which, however, is general enough to
encompass the full range of ratios of Larmor radius to layer
thickness and of Larmor radius to wavelength (Sec. IV). We

1.0
=2
Y
2p/8 =1
oo‘
ki3
5
25
(o)
- l k. e
00 2 4 6 8 0
ky 3

FI1G. 1. The k,5 dependence of the normalized growth rate 7. Each curve
is parameterized by 2p/6.
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believe that the results obtained for this special case are rep-
resentative of what happens in general.

(3) Using the results of the analytical solution we find
the following:

(a) Finite Larmor radius does not stabilize a beam
wherein the guiding centers are localized (i.e., 4 = 0, where
4 is the half-thickness of the guiding center spread), and
instability persists at all wavelengths, although the growth
rates are reduced (cf. Figs. | and 2.

(b} Beams of fixed thickness § = 2(4 + p)(wherepisthe
Larmor radius) are destabilized by increasing the relative
fraction 20/5 of beam thickness due to gyroradius (cf. Figs. 1
and 2).

{c) For a beam of fixed guiding center spread 4, increas-
ing p is stabilizing, in that the growth rates are reduced and
the range of unstable wavenumber becomes smaller (cf. Fig.
3).

(4) A necessary and sufficient condition for instability in
the form of an energy principle is derived for the case of a
general symmetric distribution.of guiding centers that de-
creases monotonically away from the center of the layer (Sec.
V).

{S) As in the case of zero Larmor radius, the diocotron
instability occurs only if the component of the propagation
direction along the magnetic field is less than a certain small
critical value (Sec. VI).

Finally we note that the techniques and resuits of this
study may be useful in the context of other problems with
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FIG. 2. Stability diagram in the (k, 5,20/3) plane.
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FIG. 3. The k,4 dependence of ¥. Each curve is parameterized by p/4.

large self-electric fields, such as resistive wall and ion reso-
nance instabilities? of azimuthal mode number m>2.

Il. EQUILIBRIUM

Consider a nonrelativistic, single species, low 8 (=ratio
of plasma pressure to magnetic field pressure) plasma im-
mersed in a uniform magnetic field B = B2, where 2 is a unit
vector in the z direction of a Cartesian coordinate system
(x, », 2). Suppose that the piasma is in an equilibrium Wwhich
is uniform and unbounded in y and z, and localized in x with
a particle density r(x). By Gauss's law there is an accompa-
nying electric field E = Ey(x)x,

dEx)

dx

E(x) is odd about x = 0 if n(x) is even.

The single particle equations of motion in this equilibri-
um are

= 4mgn(x); ' (1

= _, (2a)
dt

& _ 9z 0vxs, (2b)
dt m

where £2 =¢B,/mc is the gyrofrequency. Assume that the
density and, hence, the electric field are sufficiently small so
that the dominant motion in x is the gyromotion

v (t)=v, cosif2t + &)
x(t)=(v,/0)sin(2t + &) + X.

Then, the velocity in the y direction,
v, =g + VX)),

is the sum of the velocities due to the gyromotionv,, = — v,
X sin(£2t 4 £ ) and the finite Larmor radius E X B drift. The
latter quantity is just — cEy[x(¢)}/B,=V,[x(t)] averaged
over a gyro-orbit,

T
ViXp,)=T"" f dlfdy fdx
0

XV, xplx, y,t.X, p), (3)
where the gyroperiod T=27/f2 and
Pxy,tXp)=68[(x — X —psin(f2r + §}]
X8(y—pcosifdt +§)]
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is the probability that a particle with guiding center position
X and Larmor radius p=v, /12 is at {x, y} at time ¢. After
integration over y and ¢, expression (3) becomes

VXw )= f dx V', (x)p(x;X, p), (4)
where the probability densit;’ in x
pix:X, p) = plx — X; p)

1 1

={r [pz_‘x_x)z]uz’

0, otherwise.
The essential approximation used above is that, in a frame
moving at the velocity ¥ (X,v, ), the equilibrium electric field,
E /(x), makes a perturbation on the lowest-order fast circular
gyromotion which is small. In this frame the electric field is
E§ = Ey + VBy/c, and the maximum E | seen by a particle
is of the order of p dE,/dx. Thus we can estimate the size of
the perturbation in velocity due to E ; to be of the order of

dEyx) 1
dx mQ

Requiring that this be small compared to v, and making use
of Gauss’s law (1), we find that our drift approximation is
valid provided that

w2 <2?, (6)
wherew, = (47ngq*/m)'/? is the plasma frequency. This con-
dition is also sufficient to neglect the modification of the
equilibrium magnetic field caused by the diamagnetic cur-
rents of the gyrating electrons.

Direct integration of Egs. (2) shows that the x coordi-
nate of the guiding center position X =x + v, /f2is an invar-
iant of the motion. When the limitation (6) on the plasma
density is satisfied, the invariant X reduces to x + v,, /2.
The equilibrium particle distribution function fo(X,v, v, ) isa
function of the invariants of the motion: the guiding center
position X and the speeds v, and v, , parallel and perpendicu-
lar to the magnetic field. '

1. KINETIC THEORY—INTEGRAL EQUATION

The evolution of the particle distribution function
fix,v,2) is described by the collisionless Boitzmann equation

Xl g

af q( v ) af
— cv —— E - B ’—-"—'0.
at ty f+m +cx adv

For electrostatic perturbations of the equilibrium, the per-
turbed distribution function f satisfies the equation

F i (L Es K4
y +vVf+ (m Eo(x).x+.0vx2) pe

- _4238% (7
m 1]

where E = — V4. Equation (7) can be solved in the usual
manner by means of the method of characteristics. In terms
of the equations of motion for the unperturbed orbit,

@

=v, 8
” v (8a)
& L ExR+ YRS (8b)
dt m
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with the initial conditions x'(t'=t)=xand v'(t' =t) =,
the solution of Eq. (7) is

- __i_ t - .,
» flxvt)= mf_,dt Véi(x',t')

'%A(X’.v;,vi ) )

In this section, as well as Secs. IV and V, we shall take
the wavenumber parallel to B to be zero, k, = 0. The case

_ k. #0 will be considered in Sec. V1. For perturbations of the_

form f{x,v,¢) = f(x,vjexplilk,y — wt )}, Eq. (9) becomes
Fow = L 22 +ik5)éw
em=£[._ar (e +ms)are)

a ’ , ’
- — WL
L v ﬂ)(X 1)
xexpli[k, iy’ —y) — it —t)]}. (10)
The Fourier transform in x of Eq. (10} is
Fikw) = ij dz'f E’f-.f dx
mJ_ . —w 2T J-w
P Xilk'% + ky K F 50
Xexpli[k'x’ —kx + k,(y' —y)—wlt’ —1)]},
(11)
where & is the transform variable. It is useful to transform
the integral over x in Eq. (11) into an integral over the guid-
P ing center constant of the motion X;, the result of this trans-

formation is
Fhy = L O L P P
Flkw) = mf_-"‘ f i f_ndmm

Xk + k, ) % FolXw.0,)

|
Xexp(if (k' — k)X + 02 ~'[kug (t'=1)
— kv, (t) + k(Y -y —olt’ = t).]).
(12)
P The unperturbed particle orbits are obtained from the
equations of motion (8). As discussed in Sec. II, with the

density limitation (6} the particle orbit consists of the gyro-
motion together with a mean E X B drift motion

Y =y=(v/2)cos(2(t'—t)+{] —cos{}

L + V‘X,Ul)(t'—t),
Vg(t'y= —v, sin[2(t’' —t)+¢ ],

(13a)
(13b)
where( is the gyroangle and the mean drift ¥ (X,v, ) is defined

in Eq. (4). It is useful to transform to polar coordinates in
wavenumber space,

P k=k cosf, k, =k, sinb,
and
k'=ki{cos8', k,=k;sing"
Then, inserting the orbit (13) into Eq. (12) and using the Bes-
sel function identity
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expliz sin ¢) = i J, (2)expliny),

A= - xp

we find that the perturbed distribution function fis

TR

. a ka3
k'’ - —9'] — 2 =
x:( tcos[2(t' —t)+£—0 ]avl + 7 ax)
X folX.w,,v, Jexplif (k' — kX
- [@-kyV(X'UL)]("-I)H

= - kiv, ko,
IOERAC DAY
Xexpli{n[2(t' —t)+ £+ 0'] + m(§ + 6 + m)),
{14)

wherek, =(k?+k})'and k| =(k2 + k2)"%
The perturbed density 7(k ) is defined in terms of f(k,v)
by

- o © 27 .
nik)= f—- dy, L v, dv, A a¢ fik,v),

and the potential & (k) is self-consistently determined
through Poisson’s equation
k2 (k)= 4dmqilk).
Integrating f in Eq. (14) over the gyroangle ¢ and keeping
only the term of lowest order in {& — &, V_|/_ﬂ <1, we find
that the self-consistent integral equation for ¢ (k | is
4k, qc

—_— dk' @ (k'
> [" asuy
- kv kv
<[ w0 (%5) 1 (55)
_f (X.U )‘ .
o—kV(Xvy) oX o -
Previous work has dealt only with the laminar, zero Larmor N
radius diocotron instability. To recover this limit, set f,{(X,v, }

kig k)= —

)

st
s
LIS

XJ’" dxexp[i(k'—k)X] J
- (15)

()
ey

= X )8{v,)/(2mv,) in Eq. (15), where ¥{X) is the particle o
density. After integration over v, the inverse Fourier trans- oy
form of Eq. (15) becomes the known differential equation -
eigenvalue problem for the zero Larmor radius diocotron
instability,’ <
) _ o dThae ) dvix 2

dx? y B, w-—kV,x) dx --

(16) ‘1

IV. DIOCOTRON STABILITY- ‘A SOLUBLE MODEL

Consider a plasma in which all the particles have the
same v, and the guiding centers of the particles are uniform-
ly distributed in a slab |.X' | < 4. The equilibrium distribution
function f, can be written in the form

SolXw,) = HX ylv,),

where

{17a)
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WX)=(N/24)HX+A4)-H(X-4)],
Yl )= Sy, — Uw)/zm’xo'

(17¢)

and H (X)) is the Heaviside step function,

1, X>0,

0, X<0.

_ Insertion of Egs. (17) into the integral equation (15) for
¢ (k )and subsequent integration over the guiding center posi-
tion X and the velocity v, yields the integral eigenmode
equation

HX)=

kV, =
22 i’z"—mk Wolk, pNolk ; p)

% (ew[ —ik'—k)4]
w+k,V(4,p)

_ exp[i(k'-k)A]) (18)

w—k,V(4,p '
where V,=2wNgc/B,, the Larmor radius p = v,,/f2, and
we have noted that the ExB drift V(—4,p)= — V|4, p)
since E, (x) is odd about x = 0. The right-hand side of this
integral equation is the sum of two terms, each of which
has a kemmal K(k,k') which is separable: Kikk')
= K,(k )K,(k ). As a consequence, Eq. (18) can be written in
the form

é (k) = [Jolk, pV/k} ](ae™ + e~ *4), (19)
where .

kik)= —

(k,Vo/d) = dk’ -
= — k 'Wolk a
w+k,V(A,pf . ¢( Wolk | ple

and

_ (kyVO/A) ® dkl k4
B= iy | G Bk VK ple

are numbers which are independent of k. Substitution of
expression (19) for ¢ (k) into Eq. (18) yields a pair of. linear
homogeneous equations for @ and 8:

{k,Vo/4)
w+k,V(4,p)
XJ” dk’ I3 (ktp)

_e 2T ki

(k,Vo/4)
w—k,Vi4,p)
XJ"’ dk’ J5ik; p)

—w 2 kP

The numbers a and £ in Eqs. (20) can be nonzero only if the
determinant of the system (20} is zero. Thus the frequency
= jy satisfies the dispersion relation

( + Be - 2k'a )‘ (208)
g =

(ae*™* 4 + B). {20b)

= dk J?,(klp))’
= —k2|[{va, Vf gk
,[( 4,p)+ ¥, _.2ma K
o Zk 2
J' dk -’o( Lp)e_nu . (2”
- ® 2rd ki

To proceed further with {21) we need to evaluate

—-V?
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V(4, p). The mean E X B drift velocity V' (X, p)is given in Eq.
(4),

ViX,pl= — ;f—J‘dx E, (xjpix — X, p), (22)
0

where the probability density p is given in Eq. (5). An expres-
sion for Vin terms of the guiding center distribution function
¥ X ) is obtained as follows. Let us take the derivative of Eq.
(22) with respect to X and then integrate by parts; the result is

__‘W‘X'P’=__C_fd —xp)-LE
T ax B, % plx — X p) —— Exlx)

Using Gauss’s law (1) and noting that the particle density
n(x) is related to the guiding center distribution ¥{X'} by the
equation

nlx) = f X’ WX plx — X' p),

we find that
dvV (X, p) 41rqr:J’
= - d. - X
X B, ) - %A

x de'Mx — X', pWAX) 123)

By the convolution theorem, the Fourier transform of Eq.
(23)is

ikV(k, p) = — (4mgc/Boylplk; plp| — k; plik ), (24)
where the Fourier transform of the probability pix; p) given
in Eq. (5) is p(k; p) = Jo(kp). For the uniform guiding center
distribution (17b), the transform ¥{k ) = N sin{kd )/(k4 }and
Eq. (24) becomes

Vik, p) = 2iVJ i (kp)sin(kd )/k 4. (25)
The inverse Fourier transform of (25) yields the final result
V(X.p) —2v, J' dk sm(:A) sm(:X) . (26)

With expression (26) for V, the dispersion relation (21)
for the growth rate y can be written in the form

7 _ (f“ dk J§ (klpl)
4 Cw 27 k2
= dk _ kK sin}(k4 )
X [J.-u; 2 O(kp) 1 JO( l ))

(k4
+ (f’” ik_lé(h p) sinz(kA))z

2r k! 4
@ JZ : 2 2
([ atmemy

where y=y/k,V, is the normalized growth rate. When
p = 0 we recover the guiding center result

7 =[e ™% —1+2k,6 —(k,6)7)/k,b6),
where § =24 is the plasma width in x. A guiding center
plasma slab is unstable to long wavelength perturbations
with k,6 < 1.28.

For a sheet distribution of guiding centers (4 = 0}, the

dispersion relation (27) reduces to
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s = dk Jé(klp))
=4 =
r (J‘-Q.Zn' ki
= 2 :
x[f %(Jé(kp)—f-;-’élklp))]- (28)
—® 1

Transforming the integration variable in — fdk(k?/
kW ik, p)fromk to k,, we can rewrite expression (28) for
7 as

s = dk J3lk, pl) [ » dk
=16 = —J:lk
r (o i k2 b 27 olko)

dk (kz—ki)‘“)]
+ A —Z—'Jo(kp)( % ’

which is manifestly positive. Hence a sheet distribution of
particle guiding centers is always unstable to perturbations
of any wavelength no matter how large the Larmor radii of
the particles are.

In general, the width 6 of the plasma slab is
8 =2(4 + p). Figure 1is a plot of the k, 5 dependence of .
Each curve is parameterized by the quantity 2p/6 which
measures the fraction of the plasma width which is due to the
particle Larmor radius. A diagram of the region of stability
inthe (k,8,2p/8) plane is shown in Fig. 2. The range of unsta-
ble wavenumbers increases as the Larmor radius becomes a
larger fraction of the total plasma width.

For a plasma with fixed guiding center width 4, an in-
crease in the particle Larmor radius is stabilizing. Figure 3 is
a plot of the k, 4 dependence of 7 for several values of the
ratio p/A. Typically, the growth rate-is reducéd as p in-
creases.

¥

V. ENERGY PRINCIPLE
A. Sufficient condition for instability

Multiplying Eq. (15) through by the conjugate of  (k ),
and integrating over all k, we have the quadratic form,

[Rtibierzan = ~ 7o [0, do,

y f o IXw, k)
X w—k,ViXy)’
(29)

where (X, k,)=|5dk ik Vyk, v, /02)exp{ikX)|* and
Yo = 4wk, qc/ By, In all of what follows we shall take f,(X,v, )
to be symmetric and monotonically decreasing away from
X =0: flXv,)=fil — X,v,), and dfo/dX20 for Xs0. We
now derive a condition for Eq. (15) to have an unstable solu-
tion for which the corresponding eigenfunction @ (k ) is real.
Since unstable solutions may also conceivably exist for
which ¢ {k) is not purely real, the condition so derived will
only be sufficient for instability. Subsequently we shall prove
that it is also necessary.

Assume that there exists an unstable solution with é
real. Because ¢ (k) is real, 7 (X,v, ,k ) is seen to be even in X.
Since dfy/dX is odd, we may replace (w — k, V)~ " in (29) by
its odd part in X. Then, taking the imaginary part of the
quadratic form, Eq. (29}, we obtain
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ff , Ik, V 3y/3X
“J) Tw, =k VE+ 7] [0, + 5,V + 1]

X2, dv, dX =0,
where w, = Re(w), ¥ = lIin(w) > 0, and we have utilized the
odd symmetryof V[V (X,v, )= — V(— X, )]. Since V dfy/
dX > 0for X #0 (assuming ¢ > 0), and since / > 0, we see that
the integral above is always positive. Thus w, = 0, and we
conclude that if ¢ (k) is real, then the instability is purely
growing.

With this information we can rewrite the quadratic
form Eq. (29) as

/7o =A (7], (30)
where the functional A [¢;y] is given by
Aldy] = JSv, dv dX [k, Vfy/dX /(¥ + k2V? )]1

' Skig2dk

31

and the function 4 is real. It is easy to verify that the equa-
tion, 1/¥, = A [#;y], is variational (that is, setting 8y,/
86 = 0 yields the original integral equation).
We now wish to show that A [@;¥] is bounded from
above. To do this we make use of Schwartz’s inequality,
(1.6 P<m.7E4),
applied to the quantity 7,

I = Udk [kla-S(k)] (M :kx)

(fdkk é )Udkj ilks ”‘/m).

0<A [&7] <Amus(?) (32)
where

A ly) = ffj‘zn'vl dv, dX dk

k,V afy/dX Ji(k v, /02)
rP+kiv:  k? '
Say we find a trial function é, and a trial growth rate
¥« such that

(33)

A [(Z,. :7’. ] > 1/1’0,

then we claim that this is a sufficient condition for an insta-
bility with growth rate greater than y . To see that this is so,
we represent the situation schematically as in Fig. 4. Since
A [:},7,,] is bounded from above by A, (¥, ), we see that
A [&,r‘ } must have a maximum (as shown). From {31) we see
that A [#;7] is monotonically decreasing with y and tends to
zero as y—oo. Thus as y increases past y,, the “curve”
A [#,7) lowers until, eventually, at some value of ¥ (here de-
noted v, ,), the maximum of A is 1/¥, occurring at
é = @, .- Since (30) is variational, ¢ = é..,w Y, o Sat-
isfies the original integral equation, Eq. (15), with a growth
rate in excess of the original trial growth rate, y, , > 7, . In
particular, a sufficient condition for instability is
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FIG. 4. Schematic illustration of the argument for sufficiency. Note that the
horizontal axis is meant to represent an infinite dimensional function space
[the space of all & (& )].

S Sv, dv dX(1/k,V)afy/0v, N 1
fkigi dk Yo
(34)

A(9,.0] =

for some real trial function &, .

B. Necessity of (34) for instability

We now wish to demonstrate that (34) is also necessary
for instability. That is, if there is no trial function which
satisfies (34), then the plasma is stable. The technique for
showing necessity is based on the Nyquist criterion and is
similar to one used by Antonsen and Lee for a different prob-
lem.? To utilize the Nyquist criterion, we introduce a disper-
sion relation D (w,k, ) = O for Eq. (15) as follows:

k? (ri-—D(w,k,))a(k)

9

= = [ar g

i ku‘ kv
XJ; v, dv, Jo -7 Jo 7

explitk’ — kWX df,
J;’dX o~k ViXv) ax’

For given (w,k,) we regard (35) as an eigenvalue problem and
D as the eigenvalue. This defines D (w,k, ). The solutions of
D (w,k,) = O represent solutions of (15). Again making (35)
into a quadratic form by multiplying through by & *(k ) and
integrating over all k, we obtain an equation of the form

(33)

Diwk,) = 1/y,— Alwk,), (36)
where
Z(w,k,): _ ffv, dv dX [z(a{o/axz)/(w —k, V)]I,
kil k)| dk
(37)

and we emphasize that the § appearing in (37) is the solution
of the eigenvalue problem (35).

Now consider the Nyquist contour in the complex @
plane shown in Fig. 5(a) and follow the corresponding con-
tour in the complex D plane. Using the Schwartz inequality,
we see that (37) has no poles in the upper haif w plane. Thus
the net counterclockwise encirclement of the origin of the D
plane by the contour is the number of unstable solutions of
the dispersion relation. To show that Eq. (34) is necessary for
instability, we need to demonstrate that if there is no ¢ which
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FIG. 5. Nyquist contour in {a) the complex w plane and (b) the compiex D
plane.

satisfies (34), then there is no counterclockwise encirclement
of the origin. )

Now consider the part of the w plane contour that is
along the real » axis. From (37), where Im(w) =

SSv dv, dX I8lw, — k,V)3f/IX

Skl k) dk '
For x—+ o, we have E,—+ E,,, where E,,,
= 2mq § fo2mv, dv, dX. Thus there are no particles with
[V | > Vpax =CEpax /B, Furthermore, the resonant X value

is positive for w, in (38) positive, and it is negauve for w,
negative. Thus (38) shows that

ImD)=n~ (38)

Im(D)=0, for |w,|>k,Vnu, (39a)
Im(D)>0, for 0>w,> — K, V.., (39b)
Im(D)=0, for w,=0, (39¢)
ImD)<0, for k, V., >, >0, (39d)

where we have utilized df,/dX20 for Xs0, and df,/3X =0
atX=0.
Now say we start our circuit in the w plane at
= + o0, Im{w) = 0. We then travel around the semicir-
cle in the upper-half w plane shown in Fig. 5(a). In the D
plane Eq. (37} shows that this semicircle maps to the point
D = 1/, [cf. Fig. 5(b)]. We then travel along the real w axis
from v, = - o to , = —k,V,,,. From (39a) the D
plane contour remains on the real axis. Assume, in addition,
that there are no roots of the dispersion relation for w purely
real and in the range [ — w, — &, V.., ] (this will be verified
later). With this assumption the D contour corresponding to
w, traveling from — o to — &, ¥,,,, does not cross the
origin of the D plane. As w, increases from — k&, V,,,, the
contour remains in Im(D ) > O [cf. Fig. 5(a) and Eq (39b)). At
w, =0, the contour crosses the real D axis. The situation,
which is symmetric about the real D axis, is shown schemati-
cally in Fig. 5(b). It is seen that if A [#,0] < 1/¥,, then there is
no unstable mode. Furthermore, when w = 0,

f“ explitk' — k)X 3 45 -
- = a)—k V(X,Ul) 3X

L[ el k) 3
- k,V ax
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FIG. 6. Nyquist contour in (a) the complex w plane and {b) the complex D
plane when the dispersion function D has a zeroon the real waxis at w = .

and the solution to (35) has a purely real eigenfunction. Thus,
wesee that A [¢_ ,0] > 1/, for some real 05. , is necessary for
instability. QED

It remains to verify that D (w,k,) = O has no solutions
on the real o axis for w, in [— e, —k,¥,,,] and
[k, Venax » 0 ). For illustrative purposes, assume that there is
one such solution (similar consid=rations apply if there are
any number), and denote this solution w = w,,. Figures 6(a)
and 6(b) show the situation for this case corresponding to
Figs. 5(a) and 5(b} for the case where the = w, root does not
exist. As seen from Fig. 6(b) there are two clockwise encircle-
ments of D = 0, implying two poles of D in the upper half (‘j

(ki +kdik)= -

Ltan S tas Sem i Jaas ek Zats St - hub

plane. Since there are no such poles, there canbenow = w,
root.

Finally, we note that our proof of necessity implies that
Amax (0) < 1/7, is a sufficient condition for stability.

VL. FINITE WAVENUMBER PARALLEL TOB

In Secs. III-V we have taken £, = 0. We now return to
a discussion of the effect of finite k,. First we recall the
known zero Larmor radius dispersion relation for a sheet
beam with finite k, (cf. Pierce'),

- k: 0

72 =1 2 2 a2y
ky (k ¥y + k z) VO
where 7 is the growth rate normalized to &, ¥, and
V,=2mNgc/B, (cf. Sec. IV). From (40) we see that the mode
is purely growing for waves with

(kz)z (k; +k2)'"2V,
k) < 2 '

Since our analysis is in the guiding center limit 2>, the
right-hand side of (41) is small, indicating that instability
occurs only for nearly perpendicular propagation. When (41)
is violated, {40) indicates that the modes become purely oscil-
latory. We wish to see what effect finite Larmor radius has
on this result. We find that the situation is qualitatively un-
changed, although there are, of course, quantitative changes.

Inclusion of finite k, in the integration over unper-
turbed particle orbits is a straightforward extension of the
treatment of Sec. III. The integral equation eigenvalue prob-
lem Eq. (15} then generalizes to

(40)

(41)

drk,gc (v - (77 kv kiv
B_:f_” dk é(k)J; vldvl.l(,( }2*)10( 5‘)

(42)

J-* o f* » 1y LD, 0 1/0X | + /) (X0, 0./00] i
). w—k,V(Xv)— kv,

To solve (42) we take the case of a beam with all gyrocenters located at X = 0, neglect thermal spread along B, and again

assume a delta function in v,
SolXw, v,) = NS(X)6(v,)6lv, — v,0)/(27v,6).

Performing the v, and X integrations by parts and using our assumed form of £, we find that Eq. {42) yields

4wk, qcN
B,

(k? +k2ik)=

where V'=dV (X,v,,)/dX evaluated at X =0, and p = v,/
2. Examining the k dependence of the right side of (43) we
see that ¢ (k) has the form

dlk)=1(k? + k)~ Uolk, p)@ + ikB .

Substituting this expression for é back into (43) and proceed-
ing as in Sec. I[II we obtain the dispersion relation

72:40”” dk Jo(klp))“J‘*’ dk
- 2m k? +k?

k? 1 k2 n]
x(J2ko) = —X—_ y2k ) _1x a2
(o(P) kf-{-kf o'lp)] 2kﬁ v,
(44)
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f ‘;"' &k "Wolk, pvo(klp)[ (k =

(43)

k; ) i(k’—k)]
+ ———.
ky w
r

Note that (28) is recovered for k, —0, while (40} is recovered
for p—0. As in (41; instability will occur only if k] is suffi-
ciently small compared to k 2. The condition for instability,
generalizing (41) to finite gyroradius is

Fls)

5

k = 2
ikl +kN) . u + 1+ (k,/k)

2 2 1/2 k 5 n
xJ3lst +11"1) > S TTET I
where s=|k, o| and F(0) = 1 in agreement with (41). Here
F (s} can be ev.luated asymptotically for s» | and is found to
decrease slowly with increasing s, thus narrowing the unsta-
ble range of propagation angles,

(45)
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Thus we see from (45) that, as in the zero p case, the dioco-
tron mode is stabilized by a small parallel component of the
wavenumber.

The dispersion relation for a relativistic beam in which
all the particles have the same parallel velocity v, close to the
speed of light can be easily obtained from the nonrelativistic
result assuming v} /c*<1. In the rest frame of the beam, let
be the eigenfrequency determined by solution of Eq. (42).
Then, the frequency o’ and wavenumber & | in the laborato-
ry frame are related to w and k, by the Lorentz transforma-
tions

o ="ne+v.k) o=nHo' —v,k)),

ki=vlk. +0,/Pw], k. =y[k; -/ ],

where the relativistic factor y=[1 — (v, /¢)*]~"'/2. For exam-
ple, say we have a dispersion relation calculated in the beam
frame, D (@,k,} = 0. Then the dispersion relation in the labo-
ratory frame, D '(w’,k ;) = 0, is simply obtained via the Lor-
entz transformations,

D'w'k;) =D [ya' — vk v, vk} ~ Hvi/cHo').
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M~1

J.'i N P CR U R A LR N R TS A '. ARSI R TR ST PSS
Tt

- . e e L - R T
-;f -~ "‘_.Z:,, o ' L Lo g “a‘i t-,\-. _--\ *-,,;-1- -L'{\ W s N ~. -~ xv.-‘,:\ '{ 3% " ~ w W) A'o\.;v.

b h N )

T T R WY TR W T WY T TTWET RN T W W -T




®
° One Dimensional Models for Relativistic
Electron Beam Diode Design
JOHN M. FINN
e Lab.amtory for Fusion Energy Studies
T University of Maryland
College Park, Maryand
ARNE FLIFLET AND WALLACE MANHEIMER
® , Code 4740
Naval Research Laboratory
Washington, D.C. 20875-5000
®
\
L
®
@
o
L
i




Abatract

Several one dimensional models are derived which approximate the relativistic flow of high
current beams in diodes. Using these models as a starting point. a diode for a 1 GW beam for a 35

Gliz gyrotron oxcillator is easily designed.
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1. Introduction

The design of a diode, or clectron gun. for a microwave tube is a complicated two dimensional

spatial and three dimensional velocity space problem. It involves a calculation of nonlinear particle

() orbits and self consistent electric and magnetic fields. In virwally all diode design work, the basic wol
ix the electron trapctory { Herrmannsfeldt) code, which solves for the electron orbits and the self con-

sistent efectric and magnetic ficlds in an arbitrary two dimnensional configuration. Since this problem is

T so complex and the parameter space so vast. a diode design using only this procedure can be very long
and expensive. For this reasons, one dimensional approximations to the physics are extremely useful.
This is particularly true for space charge limited diodes, which are used for intense pulsed electron
beams. Since the clectron trajectory code begins with vacuum ficlds as their first approximations, it is

often difTicult to converge on a space charge limited flow solution.
.

The basis of this paper. and many other works in this arca. is that there are vseful one dimen-
‘ sional approximations to the orbit in infinite media Then- the infinite media approximation |s rcla{;ed
by taking only a spatiaily limited part of the infinite low pat.w}n, and using focusing electrodes w create
the fields set up by the remainder of the beam which was excluded. (Harker; Dryden; Kirstein, Kino
® and Waters: Tsimiring, Manuilov and Fliflet et al.). The shapes' of the focusing electrodes are deter-
mined by the particle orbit. Along the orbit which is an open curve, both the potential and its normal
dcri\':;tj\'e are known. Laplace’s equations must then be solved exteriot: to this orbit to determine the
€ equipotentials (that is, the shape of the focusing electrodes). However, the solution, subject 1o this
open surface boundary condition, is unstable. To determine the solution, a scheme based on conformal
mapping is used. The orbit equation is rewritten as an equation valid in the complex plane. Then the
potential is calculated by for real r and imaginary z at some fixed value of real z. This involves the
solution of a wave equation, which has stable solutions for Cauchy boundary conditions on an open sur-
face. Evaluating the solution at the imaginary part of 2=0 gives the potential as a function of r at the
fixed value of the real part of z chosen. Thus, a stable solution is built up by taking a two dimensional

projection of a solution in three dimensions. The cquipotentials are then appropriate places for the
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location of focusing electrodes.

The only trouble with this method is that once the beam becomes relativistic, and/or sell mag-
netic fields become important, as is the case with intense puised beams, there is no one dimensional
model which describes the flow. This paper derives a variety of approximate one dimensional models
for space charge limited flow in a diode. While no model is exact (the electron flow is inherenuy two
dimensional). they provide important insight and allow for approximate synthesis of the electrodes.

The actual electrodes can then be quickly perfected with the Herrmannsfeldt code.

Finally, we note other attempts at one dimensional models. A model simiiar to one of those in
the next section, but with the magnetic field parallel to the cat-hoc.ie piane has been derived by Gold-
stein. Another approximate model. valid in planar. cylindriéal on spherical geometry is the Brilloun
model of Creedon. Here the sell magnetic fields are assumed so strong that electrons flow on equipo-
wn‘ual surfaces. so that the model does not describe the emission from an electrode. Another model
(O:(‘et al) describes the electr-ostau;c field in two dimensions. but the t.;lect.ron fiow in one dimension.
Finally we note an approximate two dimensional analytic model of focused electron flow in diodes

{Goldstein et al).

Section 1 .describes four one dimensional modeis for electron flow in diodes. The first two are
planar, relativistic but either with or without seif magnetic fields. The second two are spherical, with no
self magnetic fields, and either non-relativistic on supcrreiativistic. We rely.most.l_v on the planar
modeis since they are valid over the full energy range. However there are stiil important geometric
eflects, and the second two models shed light on them. Principally it is shown in Section Il that the
space charge limited current is larger in realistic geometry than in the analogous planar configuration.
Section IV reviews the electrode synthesis technique and derives electrodes for a relativistic beam in a
planar configuration. Finally, Section V derives a final electrode configuration using the
Herrmannsfeldt code. The goal is to achieve a high quality beam for use in a gyrotron oscillator at 35

GHz and with power in the hundred megawatt range. Accordingly, the diode has a magnetic field of

1.8 - 2.0 kG and produces a 600 kV, 2 kA beam with a = v, /v; =0.2. In the diode region and
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subsequent drift space, the beam has virtually no variation in a. To achieve the higher values of a. the
®
magnetic field must be compressed o about 25 kG. In doing so, some variation in o across the becam
is induced, although the beam quality is more than sufficient for eflicient oscillator operation.
e Another important consideration is the use of focusing electrodes and emitting regions for high
power operation. If the electro field is too high, everything will ultimately emit, including the focusing
electrodes. The key is w keep the field sufficiently low and the emissivity of the emitter sufficiently
® high. For instance, it has been determined (Kirkpatrick et al., 1984) that with focusing elecirodes of
anodized aluminium and emitting surfaces of reactor/graphite, kilo amp current could be generated for
30 nsec and that the focusing electrodes do not emit [or fields as high as 600 kV /cm.
o |
.
° +
1
9
®
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I1. One Dimensional Madels

In this section we describe three separate one dimensional models which should be of use in the
design of a wide class of diodes. These models are, respectivelv, a relativistic slab model, a conical
nonrelativistic model. and a conical superrelativistic model. No fully relativistic one dimensional coni- -
cal model was found. We have used the slab relatvistic modei to t.;xplore a large area of parameter
space for interesting design candidates. This model is used in the electrode synthesis described in Sec-
tion IV. The conical models were used Lo estimate geometric corrections W the slab designs.

specifically the current required to obtain space charge limited flow.
A. Slab Relativistic Model _ .

The siab diode is completely described by three constants of motion for every particle, nameiy
LN
energy and the conical momenta P, and P;. Here. the cathode is the plane z =0 and the anode is at
z =L. Here z corresponds length along the cathode face in the r,6 plane. The magnetic ﬁeid‘B is in.
the z- z plane. so y co-rresponds to the azimuthal angle ¢ in the more conventional cylindrically syvm-
metric diode. For any particle which leaves the cathode z =0, thesc constants of moﬁo;l are

AE =(v - 1)mc* + ¢ & (2), (1

Bn B-u
B f oy - B

P’ =% mV, - Ay(z) (2)

z0

q
Po=qmv. + —=(y- y) + L 4, (2). (3)
where y,. 2y give the initial position of the particle. Constants have been added so that these are zero
on the cathode z =0 if ®,4,A. are also zero there. Because of y,z symmetry only one orbit needs to

be considered; without loss of generality it can bave yo =z, =0. From Eqs. (1)-(3) and the definition

of 4 we find
] 2 2
vV, (Z.yrt) =cll - v’ :;v‘ - ‘7(:)2] (4)
vy(zvz)sﬂ'z‘ g A,(Z), (5)
v(z)  mey(z)
a,
vi(z,y) = - 4 4 A (z), (6)

z)  meq(z)




[ 39

where (1, =¢B, mc and 3(z) =1- ¢& mc’. from (1). Since v, is chosen o be positive in (4.
these equations will apply only up to the first turning point in z. This is exactly the condition that no

orbits cross.

If a stcady source of current j, is supplied at the cathode, an equilibrium state wiil be set up with

Jr =Jo(by ¥ - j =0) with density

Jo

d*® 47 Jo (%)
dz® v, !
d-A, 4T jo v
a T ' (8)
dz* v, ¢
dony - 47 jo v, (9)
dz~ v,e ’
dy/dz =v, /v, ' ' (10)
dz/dz =v./v,. {1

The equations (7)-{11) can be integrated using z as the independent variable as an initial value prob-

lem from z =0. The initial conditions imposed are y =0. z =0. ¢ =0,4, =A. =0. (all by conven-
. dd - ' , . .
tion), ' =0 (space charge limited Row), dA./dz =0 (B, =0, corresponding to B, =0 in the

actual diode) and d4,/dz =B.;. The current j, can be adjusted to provide any positive potential at a
given anode — cathode gap spacing, ®(L) =V. For B, =0, these equations give
y =z =A, =A. =0, and the Langmuir-Child solution ¢ ~ ;32 z*3. A typical numerical solution of
the equation for nonzero B, is shown in Fig. 1. Time does not occur explicitly in the equations we
integrate. Nevertheless, the best results are obtained by using a uniform time step, i.e., with

d, =v,dt. This gives the best resolution of the gyro-motion in the magnetic field and the singular

behavior near the cathode, where the solution approximates Langmuir-Child, even with B, #0.

An equilibrium fully symmetric with respect to y and z is obtained if j; is a constant. The syn-
thesis discussed in section IV provides electrode shapes external to the electron beam such that the

beam will remain symmetric with respect o y and z il j, is uniform in a finite emitting region in

M-11
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. 00 < 22 L, (but x <y < . corresponding to 0 < ¢ < 2r.} However. it is not possivic o

- obtain the correct A. by such a method, because B, is proportional to the current [, within the orbit

e s
LR IR |

(=ce Fig. 1.) For v, > 0 this is zero for the bottom orbit (from the right end of the emitting region)

and increases for orbits emitted further to the left, but can never be equal to the value obtained in the

‘.
s e

pure slab linﬁt. becauyse some current is thrown out. Alternatively, we could note that with a finite
- emitting region. B, becomes a function of z and z. In order to bracket the exact solution for a planar
diode with a finite emitting region, we integrated the equations (7)-(11} with the full A.(z} and again
with A.{z) =0. The first mode! is appropriate when the emitting region of length L, is very long or
for orbits near the top of the beam before they have traveled a distance Az equal w L, The second
:f: model is appropriafe for L, — 0 or for orbits near the bottom of the beam. Results obtained from
these models w.ill be discussed in Sec. IIl. The effect of a finite emitting regior. on A,. B.. and. for that
matter, the effect of j, upon B, for the L, — 20 casc. is negligible for the designs we study because of

a strong applied B..
B. Conical Nonrelativistic Model

A scaling that reduces the nonrelativistic conical diode problem to one dimension is well known,
but we include a brief presentation for completeness. We use spherical coordinates (r,0.0) to describe
a diode with cathode at 8§ =60, anode at 8 =40,, and ¢ syvmmetry. The rclevant equations for

" B. =B, =const. and B, =0 (i.e.. ignoring sell j, and ;.) are conservation of energy

%mv"’-&-q¢(r,9)=0. (12)

conservation of P,

g 3 vy 3 . 980 , ., —
[v, 3 T 7 aa][mrsm&v,+ 3¢ 7 s 0]—0. (13)

and the r component of the equation of motion

' Bosine] (14)

(V'Vv)v=‘q—[- ﬁ*’
m ar ¢

Poisson’s equation and ¢ - j =0 give

L L A
Q<
h]

= - 47 nq, (15)

>’ o 2 9% 1 13} sinoég-
: r ¢ 06
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These equations can be reduced to a one-dimensional form, with @ the independent variable, by assum-

ing the scaling

b =r" &,(6), (17a)
v=rv,(8), (17b)
n =n,(§). (17¢)

Equations {13}, (14) then reduce to

L m viy (8) ~ ¢ ®,(8) =0, (18)
Voo d4Q/d 6 + 2 v,, Q(8) =0, (19)

where
Q(8) =sin 8 v o + N g sin® 6,2 (20)

and 14 =¢ By/mec. Equation (14) gives

d'V,o "

: 2 2 2
vao (6] 70 + V7o~ Vio - V3o

Voo (6) By sin 8 }
- '

From (13) and (16) we obtain

1 d |. ddo | _ a9
-s—,m—e-za-[smo—zo—]f6¢o(9)—— 47 g ng (09), {22)
1 .
= = [em 9 ng (8) v,o(G)]+ 3 ng(8) v,o (8) =0. (23)

We integrate (19), (21), and {22) with respect to & o obtain v o(0), v, and ®,, respectively, in addi-

tion to finding r(8), #(8) by

d v
-d—i(lnr) =ﬁ' (24)
40 __ Veo (25)

d0  sinfve

Finally, ng and v, are obtained from (23) and (18).

Note that sell magnetic fields cannot be incorporated into these similarity solutions since the
dynamical equations (13), (14) require B =B, (8), j =ng v =r j, (#) [i.e., {17b) and (17c}|, which

cannot satisfy ¢ X B =4r j/ec.




C. Conical Superrelativistic Limit

In the limit of superrelativistic electron energies, v >> 1, Egs. (12)-(14) are replaced by

yme* + ¢ ¢ =0, (26)

. 8 .V_' i H E_ pr— (254

[\, o T ao][r sin 8 p, + crA,..,]—O, (27)
- o veB,- v, B

(V‘Vp)r=%[ - '} (28)

where p=+ m v and 7 =(1 + p*,m" ¢*)' * becomes v = |pi'mc. i.e.. [v|==c. Equations (15). (16)

are unchanged. One dimensional equations in 8 are obtained in this limit by the following scaling

& =r &, (0) (29a)
P=rp(9) (29b)
v=v,(8) {29c)
2 =r 70k (299)
. B =8, (0) (29e)
» LA =rA;(0) (290
n =ng (8)/r. , ' (29g)

Note that nv and 7 X B both scale as 1,r, so that self fields can be included in these solutions. Equa-

tions {26), (27) give

70(8) mc* + g &, (8) =0, (30)

.. a@Q _, =
Progg * 2p,0Q =0, (31)
with
» Q(8) = sin 6 poo + ¢ Ao (8)/e. (32)
- Equations (28), (15) and (16) give
dpro
Voo 5 + Vr0 Pro = YeoPso — Veo Peo
@
.- Voo Boo- B
=q[_ &, + 20 eoc"oo 00] (33)
1 d . dd,
m W[smo W]+2¢o— - 47 ¢n,, (34)
| d (.
— |sin 8 L) v'o] -+ Ng Ve =0. (35)

sin 0 do

. The @ component of Ampere's law gives B, = - ngq vy, and the r component




9 (.
s a0 U B°°) ~ Mg o

is consistent by (353). The @ component of Ampere's law gives

By = - 2 A0 (363a)

d {1 d .
0 [sin 9 d_ao (sin 6 A°°)]* 2400 = - 109 Voo (36b)

Equations (30)-(36). together with (24) and (23) can be integrated as initial value equations from

6 =@, as in the planar and nonrelativistic conical diode cases. When the sell magnetic fields are negli-

gible, B,o =0, By = - 2 A,o = - By sin @ and (36b) is not used
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N 111. Applications of One Dimensional Modela
(L%
b In this section we describe how the one dimensional models of Sec. Il are used in diode design.
‘.
Rt The slab relativistic model has been used primarily to scan the parameter space [or reasonable design
A
{
o\ . .. . .
candidates. Electrode synthesis has been applied to the promising designs, with further electrode shap-
] -\“ ing required both for final tuning of the design and for other practical considerations. This model has
3 .
_3 been used to shed light on certain aspects of the design. for example, the dependence of the results on
v the self B.. The conical models have been used to clarily the geometric effects, specifically the varia-
2 tion of the space charge limited current obtained by the Hermansleldt code from the value predicted by
i:: the slab model. Let us :msumé that we want to produce a beam with @ = jp,/p:{ =1 in an interaction
x region of radius r; =1.4cm, with a field B,;, =24 kg. Assuming that the beam is adiabatic in the drift
_L region between the diode and the interaction region. i.e.,
N ) '
': B, 1 - l/aj ()
‘ - B, | - lie’
and -
- ) Con = ( B, /B! 7, (38)
. and taking @, =0.2, we obtain B, =1.85kg, r, =5.05 cm.
) We have used the siab relativistic model to compute a at the anode as a function of the angle y,
g
:— between the normal to the cathode and the externally imposed magnetic fieid, i.e., y, =tan '
“'1
Tu (B.o/B,o). The gap voliage was & =600 kV, and the current density j, was 70 A/cm®. The results,
A with and without sell B,(z), are shown in Fig. 3. Without B,, xo =30 ‘gives a, =0.2, whereas with
:: By, xo =40 "is correct. This indicates that self B, plays an important role in determining a, although it
g has litde influence on the gap spacing d. Since B, (or B,) is zero for the bottom orbit, and since B,
:" (B,) can be near its limiting one dimensional value [or orbits near the top, this indicates that electrode
ol synthesis may not by itself produce a uniform a across the beam. We will return to this issue in Sec.
; V. We also show, in Fig. 4, the dependence of a and d upon jo, for xo =40 ; & =600 kV, including
o

sell B,(z). Itis clear that both of these quantities depend critically upon j.




L™

As we shall discuss further, the Hermannsfeldi code in this parameter range shows space charge
limited flow at 20-507c higher current than that indicated by the slab model. In order to understand this

discrepancy and have more confidence in our results, we have investigated this effect with the nonrela-

tivistic and superrelativistic conical models. We use these models in the following manner: we fix the
cathode angle 8, {see Fig. 2), a potential &, a gap spacing d, a field B.,, and a radius R. where a ra.y is
o be limited. We adjust j; until the polential equals & when the gap .spz;cing is d. Then we vary R.
' The results for different R values are not obtainable from the scalings (17) or {29) because we do not
® allow ¢ and ¢ to scale appropriately with R;® ~ R*,d ~ R from (17) or & ~ R. d ~ R from (29)..

For a case with & =1.07 MV, B, =2.4kg, d =3cm, 8, =158 | we obtain the resul;s shown in Fig. 5.

For both the nonrelativistic and superrelativistic models, the results fit curves of the form j, -.--jo { o0)
4 ~A/R. and the limiting value j,(co) agrees with slab nonrelativistic or slab superrelativistic models.

For the cases considered. j, for R =3 cm is 20 o 507¢ higher than for the siab model. in agreement

with the results obtained using the Hermannsfeldt code.

® M=17
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IV Synthesis Techniques for Determining Electrode Shapes

The electrode synthesis technique is a method of calculating electrode shapes which provide lam-
inar flow for a beam with self electric ficlds. The method was initially formulated by Harker for planar
and axially symmetric cases of space-charge limited non-relativistic low. The method was extended to
temperature-limited MIG type guns by Manuilov and Tsimring: The general approach involves finding
a set of ordinary differential equations to represent the beam flow. These equations are used to obtain
the boundary conditions for inwgrating Laplace’s equations in the region outsides the beam. A
difficulty in the .direct i.nplcmenlation of this procedure is that the present problem involves Cauchy
boundary conditions on an open surface and the solution of Laplace’s equation are unstable for these
conditions. An élegant. method has been~ developed by Harker which reformulates the mathematcal
problem in a way which vields stable numerical solutions. This section outlines the synthesis technique

LS
for planar geometry and discusses an application l'or' the casc of planar relativistic flow.

. The svnthesis problem consists of finding the electrc.;st.'u.ic poteritial distribution in a region exter-

nal to a finite laminar flow beam. The. potenual satisfies Laplace's equation outside the beam or

equivalently, the electrostatic field satisfies the Maxwell divergence and curl equation

oE, OE.
2 T o O (39)
9E, OE,
37 " E =0 (40}
with the boundary conditions
E. =E,,E, =E,, (41)

on the outermost trajectory of the beam.

Equations (39) and (40) form a system of elliptic partial diferential equations whose solutions are
unstable for the present case of an open surface and Cauchy boundary conditions. However, a stable

solution can be obtained by the following approach due to Harker.

First, the beam edge trajectory (2, =1z,(t), 2, =¢,(t)), is converted into the straight line u =0

of the (t,u) plane by means of the conformal transformation

M-18
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2 -z =t = ip) - ir(t + i) (42)

® This can be done because the equations for the beam trajctory can be expressed in the complex plane
by analvtic continuation. Since coordinates related by a conformal transformation satisfy the Cauchy-

Riemana conditions,

' 2 =2 (43)
du ot
9z dz
3u  at’ (44)
\ Equations (39] and (40) can be expressed in the form
[
ok, OE. (45)
) 9 At
. OE. OE, (46
: du at )
L
These equations. together with
4
¢ a: Jz -
EPRmR i TR o
. . enable calculation of the potenual ¢ in the transformed pldane (t,u).
The second step is the transformation of the elliptic system, Eqs. (43) and (46) in the (t.u)
X plane, by means of the analytic continuation
| ®
t—=p-+4u (48)
For fixed p this leads o the hyperbolic svstem in the { ¢.u) plane:
oE, JE. .
oy g (49)
OE. 1+ OE, 50
| 9q (50)
Oz 1 9z
Eria aq (51)
- dz 19z
(™) Ju -a—q (52)

Equations (49) and (52) have a stable solution for the present boundary conditions.

The procedure for obtaining the equipotentials is illustrated in Fig. 6. It involves solving the sys-
tem (49) and (52) in triangular regions such as ABC in Fig. 6. To obtain the solution for this region it

18 suflicient o specify Cauchy boundary conditions on the line AB. These conditions are the analytic

M-19
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)
~ conunuation of Eq. (11} and are formed by integraung the flow equations along the real axis from
5 t =0 to t = Pp and then along the line AB by means of the substitution *
- il (53)
K Solving Eqs. (49)-(52) in the region ABC by a finite difference method allows the potential o be ,q
- obwined on the line CD. the only region of physical significance. By translating the triangle ABC w0
" other values of p. the potental distribution over the entire single valued region of the plane
3 {p.u) =(t.u) can be found. Applying the transformation (42) yields the equipotential surfaces as a 1
K . function of z and 2.
, - Elecirodes shapes calculated by the synthesis technique are shown in Fig. 7 for the planar rela-
. tivistic low model discussed in section Il A. The synthesis calculation was based on a current density i
of 70 A,;em® an angle of 40° between the cathode normal and the external magnetic field. and an
external magnetic field by 1.85 kG. The anode-cathode gap voltage is 600 kV. Upper beam edge tra-
jeclories ar(; shown with and without the approximation sell magnetic field effect included. As shown i
‘ the effect is quite small for the present parameters and there is negligible eflect on the calculated clec-
trodes. |

a .
.

* a

= res 4
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V. Final Diode Design

The final design for the diode, in several configurations, was achieved by means of the electron
trajectory (Hermannsfeldt) code. The electrodes found by synthesis generally provide a beam in which
a varies by = 507¢ from top o bottom. This variation, which is not present in the slab model, is due
1o geometric effects. One of these effects is the fact that the bottom orbit has 8, =0, whereas the top
orbit has a value of B. which can be nearly cqua.l o the one-dimensional value (for fat beamsi. This

effect has been studied in Sec. 11l and found to provide just such a variation in a.

Our first design is l;or 2 600 kV. 2 kA gun which can use a minimal amount of locussing. depend-
ing upon intercepting the outer two thirds of'fhe beam at the anode. This extra charge (and current)
takes the place of some of the focussing. A successful design of this type is shown in Fig. 8. The
cathode face is at 10 ", which we found in Sec. Il givesa =0.2 with B.; =1.85 kg. The current den-
sity jo =70\ ‘em® in the slab model gives. for a cathode surface of radius 5 cm and emitting length 2.1
cm, 4.6 kA. Because of geometric effects as discussed in Sec. IIl. we used 6.0 kA. corresponding to a
perveance k=13 micropervs. This is near the space charge limit: for k >15. the results begin w
show serious signs of lack of. convergence usually associated with approaching the space charge limit at
some point on the cathode face. The results show a very flat a = 0.2, + 10% and very little evidence
of orbit crossing. It is possible o reshape the electrodes to have less focussing in order to decrease the
electric fieids on the parts of the cathode where we wish to inhibit emission. In that case a would not
be as flat across the whole 6 kA beam, but that is of no consequence. However, it appears that the
electric fields in the design in Fig. 6 are below 300 kV/cm, and the surfaces of anodized aluminium on

the focusing electrodes should inhibit emission for at least 50 ps.

In Fig. 9 we show a design with an aperture in the anode allowing roughly the middle third of the
beam, and a short drift region bounded by anode surfaces. There is very little orbit crossing still, and a
is quite flat in the central third of the beam. (For rays intercepted by the anode, the value shown for a
is th.e value at interception.) However, a is considerably higher now, in the range 0.36 < a < 0.41.

This is apparently due to a combination of eflects, including the space charge of the beam and the finite



T

l.armor rwlius of the orbits

Abp alternate design for a 600 kV, 2 kA diode is shown in Fig. 10. Here, uniformity of the beam
is achieved by focussing electrodes alone: all of the beam is allowed to pass through the aperture in the
anode. The electrode shapes are nearly identical to those of the design in Figs. 8 and 9, except that the
emitting region is one third the length, or Tmm; the perveance is. correspondingly, k¥ =4.34 micro-
perus and the magnetic field is a nearly uniform 1.85 kg. Again. the electrode shapes are somewhat
different from those obtained by svnthesis, for geometric reasons, and the maximum electric field is of
order 300 kV,em. Figure 10 shows essentially no orbit crossing in the diode region and a very uniform
a =0.19+ 5 across the beam at the anode and at the end of the drift region. A combination of coils
produce a quite uniform 2.2 kg magnetic field in the diode region that increases to 20 kg at the far ead ‘
of the compression region. The average value of a at the far end of the compression region agrees well
with the adiabatic value a, =1.2 based on a, =0.22, B, =2.2 kg at the beginning of the compression
region and B, =28kg at the end. However. there is much more vanation in e across the beam than

adiabatic theory predicts: from {37} one can show

dln a
L2 (39)
dln a; 1 +a’
which shows that ‘the relative .variation in a; should only be twice the reiative variation in a, for [ |

a, < <1. This is a common eflect in this type of simulation and is apparently due to space charge
effects that become more pronounced as the beam slows up. The resuits shown in Fig. 10 are with 25

rays; results with 15 rays give very similar results, including the variation of a across the beam. ﬂ

Tests have been made to determine the sensitivity of the diode performance to variations in B,
and the potential. For these tests, a 600 kV, 2 kA diode with B, =1.85 kg was used. These tests are
important in order o be able to tune an actual device. In addition, it is important to know whether {
variation of the voltage during the pulse will have deleterious eflects. The nominal diode design here
has @ =0.25 across the beam. Dropping the potential to 450 kV causes the beam to enter the aperture
in the anode less than a centimeter below the point where a 600 kV beam cnters, so that it appears that ‘

a pulse with 450 kV < ¢ < 600 kV will produce a beam that can still fit through the anode aperture.
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Furthermore, o is nearly unchanged. These results are nol sensitive to the perveance. For B, ten per-
cent below the nominal value, i.e., 1.67 kg, the beam begins to scrape the top of the drift cavity, and a
is larger, in the range 0.32 < a < 0.38. For B, twenty percent above, i.e., B, =2.22 kg has a = .20.
Thus it appears that a scales as 1/B., so that varying B. may be an eflective way to oblain a desired a

in this type of diode.

abuadhs

T T

- .
P o

-

e

cas)

IR
B E BT N




Acknowledgment

This work was supported by the Office of Naval Research, by the Department of Energy through a

contract with the Lawrence Livermore Laboratory, and by the Defense Nuclear Agency.

-L“ »: '. [

s 2
Fl

. .
LM )




Reference

Creedon J.M. 1975, Relativistic Brillouin Flow in the High v/gamma Diode J Appl. Phys 48 2916

Drvden, V.W. 1962, Exact solutions for space-charge flow in spherical coordinates with application

to magnetron injection guns. J Appl. Phys, 33, 3118-3124.

_Fliflet. AW.. A.J. Dudas. M.E. Read and J.M. Baind 1982, Use of Electrode Synthesis Tech-

niques to Design MIG-Type Guns for High Power Gyrotrons. Int J. Electronics, 53, 743

Goldstein, S., R.C. Davidson. J.G. Siambi and R. Lee 1974, Focused Flow Model of Relativistic

Diodes. Phys Rev Lett, 33, 1471

Goldstein: S.A. 1976. Magnetic Field Effects on the Emission Law of Electron Current from

Cathodes. J. Appi Phys., 47, 894

Harker. K.J. 1960 a. Determination of electrode shapes for axially symmetfic electron- guns. J
Appl. Phys., 31, 2165-2170; 1960 b, Electrode design for analytical design of axially symmetrical
ion guns. Internal Memorandum, Microwave Laboratory, Stanford University, RepoArt, No. 1013,

NASA CR-54052.

Herrmannsfeldt. W.B., 1979, Electron trajectory program. SLAC-Report-226, Stanford Linear

Accelerator Center, Stanford, California.

Kirkpatrick, D.A., R.E. Shefer and G. Bekefi, 1984, High Brightness Electrostatically Focused
Emission Electron Gun for Free Electron Laser Applications. MIT Plasma Fusion Center preprint

PFC/JA-84-40.
Kirstein, P.T., G.S. Kino, W.E. Water 1967 Space Charge Flow, McGraw-Hill, New York

Ouw, E. T.M. Antonsen, R.V. Lovelace 1977 Theory of Foilless Diode Generation of Intense Rela-

tivistic Electron Beams. Phys. Fluids, 20, 1180

. . P CRR
b et R N T PR
LN NIRRT N Tl W S0 U TESAKTOAT I W AR W W S A AL - RO, N L




LAl Ak Ml nd aul il A ool 20l Aol alh Shall e

Figure Captions
Fig. 1 — Geometry for the slab relativistic diode model. For the bottom orbit. B, is zerc. For the top #
orbit, B, is the value obtained by the siab model for electrons to the left of the dashed line. To the
right, B, is less than the slab model value. b
Fig. 2 — Geometry of conical diode. For a finite emitting region. the same comments hold for self B,.
The angle z,, of Fig. 1 corresponds o 6, - 7 /2.
Fig. 3 — Dependence of @ = {p;/p | and the gap spacing d upon z, for the siab relativistic model.
L
Fig. 4 — Dependence of a and d upon j, for the slab model.
' =
Fig. 3 — Current density j, as a function of R for two conical models.
.
Fig. 6 — Schematic of the solution of Laplare’s equation in the complex plane-
=
Fig. 7 — Electrode shapes calculated by svnthesis technique.
Fig. 8 — A 600 kV. 2 kA diode design with the outer two thirds of a 6 kA beam to be intercepted by
the anode. In (a) are equipotentials and actual trajectories integrated by the code: in (b) is shown a vs : -
ray number, from the bottom of the beam to the top, for the electrons when they hit the anode.
Fig. 9 — Same diode as in Fig. 6 but with an aperture in the anode and a drift region.
Fig. 10 — (a) Diode design with 600 kV. 2 kA, where the beam uniformity is provided by focussing
electrodes alone: (b) a at the aperture in the anode: (¢} a at the end of the drift region; (d) orbits in
the compression region, (e) a at the end of the compression region.
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COLLECTIVE INSTABILITIES AND HIGH-GAIN REGIME IN A FREE ELECTRON LASER

R. BONIFACIO *, C. PELLEGRINI

National Synchroron L ight Source, Brookhaven Narional Laboratory, Upton, NY 11973, USA

and
LM. NARDUCCI

Physics Department, Drexel University, Philadelphia, P4 19104, USA

Recsived 5 April 1984 .

We study the behavior of a fres electron laser in the high gain rexime, and the conditions for the emergence of a col-
lective instability in the electron beam-undulator-field system. Our equadons, in the appropriate limit, yield the raditonal
small gain (ormula. [n the aonlinear regime, numerical solutions of the coupled equations of motion support the correct-
ness of our proposed empirical estimator for the build-up ume of the pulses, and indicate the existence of optimum parame-

ters for the production of high peak-power radiadon.

Studies of the free electron laser (FEL) in the high
gain regime have shown that with an appropriate se-
iection of the electron density, detuning and undu-
lator length, the radiation field and the electron
hunching can undergo exponential growth as a result
of a collective instability of the electron beam-
undulator-radiation field system [1—8]. In this pa-

{ per. we study the conditions for the onset of this in-

stability using a new secular equation for the charac-
teristic complex frequencies of the FEL system. On
the basis of these results, we show how one can re-
derive the small-signal gain formula and establish the
conditions for its validity. We also consider the prob-
lem of the initiation of laser action and of the growth
of the radiation field from noise, and propose a for-
mula to evaluate the lethargy (build-up) time of the
first pulse. Finally, we study the nonlinear regime of
the FEL by numerical methods and obtain resuits
that suggest the existence of an optimum efﬁciency
of the device.

In the derivation of our working equatxons we se-
lect the phase and the energy as the basic electron
variables, and assume the slowly varying phase and

* On leave from the University of Milano, via Celoria 16,
Milano, [taly.

0 0304018/84/503.00 © Elsevier Science Publishers B.V.

( North-Holland Physics Publishing Division)

_ amplitude approximation for the radiation field as

done also in earlier developments {9,10]. La the re-
mainder of the paper we shall adoot the following
notations: 2 represents the direction of propagation
of the electron beam and of the electromagnetic
wave; it ajso represents the undulator axis; x and »
are the transverse coordinates; 8y denotes the strength
of the helical magnetic field and A and .V, the period
length and the number of periods of the undulator,
respectively; the undulator parameter is x = e8y) o/
(2mmc2), where mc? is the electron rest energy; \ is
the wavelength of the radiation field, ¥ is the elec-
tron epergy in units-of mc2, 3, = 1 is the longitudinal
electron velocity and 8, = x/y the amplirude of the
transverse velocity; the electron phase, ¢, relative to
that of the electromagnetic wave, is connected to 2
and ¢ by the relation ¢ = 2mz/Ag + 22(z - cO/A; t.he
resonant energy g is related to Ay, \ and x by v® =
Ao(1 +x2)/2), and, finally, the undulator frequency
wq s given by wq = 2cf, g

With these notations, the FEL working equations

. can be written as [9,10]

¢y = wo(l - 7%_/7,2) , 1
" Gty )5 ®
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Vikume 30, aumber 6

(,; -l—az)a= Zme% (e-io/y), 3)

wharej labels the jth electron in the beam (= 1, 2, ...,
... with &V, the total aumber of electrons); the aver-
age () is carried out over all electrons in a beam

dice of length A at the position z - (8,)¢t, where

3. is the average longitudinal velocity. The remain-
ing parameters have the following meaning: n, is the’
dectron beam longitudinal density at positionz -
(.)er, T is an effective beam transverse cross section
describing the overlap of the beam with the radiation
£eld whoss amplitude £ and phase 9y have been
combined in the complex amplitude a = £y exp(idy).
k is mportant to stress that in this discussion ¥ is not
restricted to be approximatsly equal to the resonant
vajue g, ualike earlier treatments of this problem.
For the purpose of our subsequent analysis, it is con-
venient to rewrite eqgs. (13) using the variables

T~(Blet, r=t, O]
with the result:
G-y = wo(l —1%/%), ®)
Gy o e recl, O
. /i

[ <3.>)- +_a_] =2m,(z')-;-(e‘-"°/7)z..(7)

ca

T'ae propagation temm (1 —(8,)3/3z’ in eq. (7) is im-
cortmnt to describe the evolution of the pulse in the
FEL, 2speciaily when the accumulated path differ-
exce AL 2L,y - Lgy = (c — )tjy, between the pho-
1ons and the electrons during an intefaction time is
comparable to the leagth of the electron bunch itseif.
Note that the path difference AL can aiso be ex-
sresed in the form ety (1 —(B,)) =2 AgV(14B,)) =
VoA In this paper, we only consider situations where
e length of the eleéctron bunch is sufficiently larger
tham .VA; thus, we neglect the propagation term and
assume the local electron density n,(z") to be con-
The linear stability analysis of eqs. (5)—(7) is great-
ly adad by the introduction of a suitable set of col-
lective variables [8]. For this purpose, we first intro-
duce the relativistic plasma frequency

Qp = (4a7,n0c27Y)1/2, (®)

374 -
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where v is the initial energy, and 7, the classical
electron radius, and the so<alled Pierce parameter

= (;K(‘Yo/“lk)zﬂp/uo)z” . ©)

Furthermore, we introduce the quantity

b9 = wolt =72/, (10y
and rescale the time variable as follows:

™= 2woa(TR/70)% . (1)
In terms of the new scaled variables

Ui=e;-dgt, Tj=vi(ero), (12,

A=a exp(iéot)/(4mcz7o"opz)” 2,

the nonlinear equations of motion (5)—(7) take the
form

(d/dr)y; = (1/20)(1 = 1/p2TP), (13)
(d/dn)0; = ~(Up)(A/T) exp(iv) tcc] . (19)

dd/dr = i54 + (1/p)le=i¥ /D). (15)

Note that in terms of eqs. (13)~(15), the dynamics
of the FEL is controlled by only two parameters, the
Pierce parameter o (eq.(9)) and 5 = A/p, where A is
the usual detuning (v5 - 1R)/(21R) Because we ne-
glect space-charge forces, we shall assume in the fol-
lowing that o is sufficiently smaller than unity. It is
also worth noting that egs. (13)—(15) are consistent
with the conservation law

L=1A4[2 +(I=constant, (16)
“or also
L =mc2ny(y) + E3/4n = constant , 16"

which can be readily recognized as the conservation
of energy for the electron beam-radiation field sys-
tem. The method devised to analyze the stability of
the system is based on the procedure suggested in ref.
[8]. The equations are linearized around the equilib-
rium state A =0, ['p; = 1/p, (exp(~indy) = 0 and
perturbed by letting 4 =a, I; = (1/0)(1 *17;) and
V= Yoy + 8¢ The lmearhzed equations form the
basis for a closed form linear system of equations for
the collective variables

x = {5y exp(=ivg), amn

I
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5 == (1/p)n exp(=ivg) (18)
@  1nd for the field perturbation a. These take the form i
Ix/dr=y (19) uL
lyldr=—-a, (20)
'_. lajdr = ~ifa - ix - py . @n . L—J
[ ]
Nontrivial solutions with a time dependence of type
2xp(i\r) exist if and only if X is a solution of the .
chanacteristic equation “l
AN —5AZ+pA+120. - (22)
@ The results of earlier analyses 18] can be recovered -
Sy secting formally o = 0 in eq. (22). Clearly, expo- . T, N
nential growths, and thus, unstable behavior, results » o 3, 3 1w
if the cubic equation (22) has one real and two com-
plex conjugate roots. In this case, the imaginary part Fig. 2. The behavior of three eigenvalues of the secular equa-
of the eigenvaiue measured the rate of growth of the ton as a function o_f the detuning pamems' a.nd‘ forp=
@ unstable solution. The instability condition can be ghl. :‘; p' m’"d“;:“;‘:‘:ﬂnmw‘h:;:::;‘gw;:m
zasily derived from eq. (2?.): in terms of the param- display. For a sufficiendy positive value of 3 (i.e., & > 8,
eters p and & it takes the form (fig. 1) ‘the eigenvalues are real (curves c. 4, e). At threshcld, two of
- the real eigenvalues dagenerate into one, while, for the same
03 — 30252 + 306 -5+ ¥>o0. (23) value of 5, the imaginary parts (curves b, b') become differ-

ent from zero. The real part of the complex conjugate eigen-

The typical behavior of the eigenvalues of eq. (22) as values for & < 8 g is labetled by 3

°° function of detuning is shown in fig. 2. The eigen-
values are real when 5 exceeds a certain threshold

vajue that depends on p according to eq. (23), while ficiently large values of |5[. In this limit, the eigen-
two of the eigenvalues form a complex conjugate values take the approximate form
pm when § <8""~ - + 172
The small signal gain formula emerges in a natural A =81~ 1/8), Agy=zlfelic. 63>0,
° way fm@ our analysis in the limit p =0, and for suf- A =5(1-18), Apy:l/BINE, 5<0, (29)
P as one can confirm qualitatively from fig. 2. The out-
; put field 4(7) in the linear regime can be calculated as
a linear syperposition of elementary exponential func -
tions whose coefficients are to be fixed from the ini-
tial conditions. A iengthy, but straightforward caicu-
¢ lation yields the following expressions for the small
signal gain:
G = [M)2 —14gl2] /Mgl

[y 3 -]
. Fig. 1. lastability boundary in the (p, §) plane. For§ < §°,
& the soludons of eqs. (13)—(15) are unsuable for all vaiues of 1232 o .
o. For siected valuss of o (e.5., 7 in the (igure) unstable be-- —183/2dnsrant/\/B), §>0,
havior occurs for § <&y

= (4/53)(1 = cos 57 cos r/\/B
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G = (4;87)(1 — cos 87 cosh /v/181

~ 1513/ 2 sin &7 sinh 7/A/B1) . 6 <0. (25)

In order to make contact with the usual small-signal
in fommula, it is aot enougn to require that |5} be

sutficiendy larger than unity, but one also must im-
pose the conditioa er&l < 1. In this case, eq. (25)
becomes

G =(4/53)(1 — cos 57 — 157 sin §7) (26)

which, in fact, agrees with the standard expression
forG.

In spite of the fact that the equations of motion
of the FEL are nonlinear, some aspects of this prob-
lem can be handled accurately by analytic means. The
evoludon beiow threshold (5 >5,y,,) is governed by
the linear approximation. In this regime, the eigen-
values are real (see fig. 2) and the output field dis-
play's small amplitude oscillations when piotted as a
function of time. On varying §, beat patterns or more
complicated-looking modulation effects can be ob-
served, whose origin can be understood eatirely in
teems of the eigenvalues of the linearized problem.

_ A rspresentative example is shown in fig. 3. It may be

worth mentioning that while the trace in fig. 3 has
been cbrained by the appropriate superposition of
sxponential functions, the exact solution of egs.
(13)=(15) is indistinguishable on the scale of this
gaph.

" The system evolution above threshold (5 <5,y,,)

2x16°4

0 20 T 40

Fig 3. Ougput inmasicy L41? for o = 0.01 and s = 4.0. The
cigenvalues of the Linearized equadions are -0.519, 0.628,

3.066. The moduladon is dus to the beat of the different ex-

ponental mms in the solution.
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Fig. 4. Output inmnsity 141? versus time above threshold.
The parametsrs used m this ssnulaton are o = 0.0021,5 =
1.86. Ll 16.

is entirely different, and is shown in fig. 4 for the
case of zero inidial (ield and an initial bunching pa-
rameter [(exp(—i¥ ), small, but different from zero.
Under unstable conditions, fluctuations in the eiec-
trons injection veloesties, or the lack of uniformity
in the initial distrbution of the electron phase vari-
ables, or the presence of an initiai field will trigger
the growth of a signal. The signal will then grow to a
peak value after which it oscillates. This behavior 1s
very general and is independent of the initial trigger-
ing mechanisn as [ong as this perturbation is smail.
This nonlinear regime requires numerical integration
of the full equations of motion. This we have done
for a number of values of p and 5.

Because of the nature of the triggering mechanism,
intuitively, one would expect that the time required
for the initial pulse to build up (lethargy time) shouid
be a fairly sensitive functioa of the magnitude of the
initial fluctuation. We have examined the dependence
of the build up time of the first pulse on the initial
value of the bunching parameter, and verified that (a)
a significant fraction of the build up process is well
described by the linearized equations; and (b) the ar-
rival time of the first peak is well described by the
formula:

Tpeak = ~(1/Im A) ln Kexp(=igg + 1 . @n

A test of this equation is provided in fig. 5, where we
have plotted the arrival time of the first pulse calcu-
lated from the nonlinear equations of motion (13)~
(15), as a function of the initial bunching parameter
Kexp(—i¥ o »l. One aspect of considerable interest for
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o Fig. 5. The urival dme oi the first peak (lethargy time) is
rtotted as 2 funcdon ot the lomrithm of the initial bunch-
g parameter (dow). The solid curve corresponds to eq.
126). The pasamemrs used in this scan arg ng = 8, 0 = 0.4,
5= 1.25.
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© Fig. 6. Dependence of the peak output intensity pul,?,,“
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avenags of the points.
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the purpose of optimizing the systam’s parameters is
the existence of a maximum peak power output as a
function of p and 6. We have verified that while the
maximum growth rate is obrained for$ = 0, the
maximum peak amplitude of the first pulse occurs
for 8 2§, .. Thus, we have scanned the (p, §) plane

in the neighborhood of, but above, the threshold line
and foer =0, and recorded the peak output intensity

plAI max 35 a function of p (fig. 6). Notice that it follows

from eq. (16) that pld|2 = ((v¢ — 79)/7¢), 50 that
plA|2 gives the energy transfer from the electrons to
the radiation. The scatter of the points is almost cer-
tainly due to the slight variations of the conditions
from run to run. The solid line, which is only a quali-
tative average through the points, suggests the exis-
tence of an optimum gain-detuning condition such
that the efficiency of the system is maximum for
operation just above threshold. It is clear that in the
presence of efficiencies as large as, in principle, 40%,
the old approximate treatments [ —8] in which the
electron momentum is assumed to vary only by small
amounts cannot be adequate to describe situations
where such Jarge energy exchanges take place between
the electron beam and field. On the other hand, it is
intuitively obvious that for sufficiendy small values
of the Pierce parameter, the ¢lectron energy will suf-
fer only a limited depletion so that earlier treatments
should be sufficiently accurate.
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The zenzration of Righ intznsity cohersat rolicioa ia th2 soit Xeras r2z0n from 2 ¢ R,
operaie in the high gain or collecuive instablity regime. 0 thus mode of operation. which dres not T2quire 4 wa. o8

radiation field grows exponenually along the undulator unul noalinear effects bning on saturazon. We Giscuss the condiiiens tha
zlectron beam and the undulator must satsty for iae coilective wsiability to develop. We present 23 example ¢f 2n 2i#ciron storage

ring with an undulator in a bypass section wiuch \dtisfies these conditions. We present estimazas of the output 20+

expect from such systems.

1. lonucﬁon

The interest sparked by the operation of the first free
eleciron laser (FEL) by Madey and tus collaporators in
1975 has led to some exciting results {1-6]. In the last
two vears remarkable progress has been made toward
the realization of the FEL as a source of high power.
wnable. cohérent radiation. FEL oscillators and ampli-
liers have been operated at wavelengths varving from
the centimeter to the near ultraviolet and at peak power
levels up to a hundred megawatts. This wealth of experi-
mental results is due to researchers at numercus labora-
tones: MSNW, TRW-Swuanford. LASL. LBL-LLNL,
MIT. NRL. Columbia-NRL. UC.Santa Barbara. Orsay
and Frascau.

The theory of FELs has at the same time reached a
high level of completeness and is in good agresment
with the experimental results. As a result of the experi-
mental and theoretical progress we now hase a good
understanding of the physics and technology of FELs.
which can be used to design systems operating in new
wavelength regions, like the XUV spectral region.

The possibility of building a FEL operating at wave-
lengths shorter than 1000 A is a result of the progress
made in producing high density relativistic electron
beams using electron storage rings. Storage rings spe-
cially designed for FEL applications and capable of
accommodating undulators magnets 5§ to 15 m long.
should offer the possibility of producing coherent radia-
tion down to a few hundred Angstrom with average
powers of the order of watts and peak powers up to
hundreds of megawatts. One such ring is being built at
Stanford University (7). while similar rings are also
being studied at other laboratories (8.9]. In this paper
we want to bnefly review the different operation modes
of an FEL in the XUV region (sects. 2-4). we wiil then
discuss in more detail, the self amplified spontaneous
cmission mode (sects. 5-9),

N163-9002 /85 /803.30 D Elsevier Science Publishers B\

tNorth-Holland Physics Publishing Division,
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2. Principle of operation

In a FEL a rafarisue electron heam and an slec-
Uromagnenc wave traverse an anduisior. Taz ccupiing
of the wave and ths trznsverse electron carrent. .nduced
by the undulator. caz produce an enzrgy transfer be-
tween the beam kins:iic enery and the radiation feld
energy if a synchronism condition is satisfied. Th,
condition relates the radiatioa field watelzaziz \. the
undulator period N.. :he undulater $2d 3. und
strength parametar K =e\ . 8., Izmc” ..r.d the heam
energy y measured in rest 2nerzy units -!

Ag -
N=—(1+K"). ()

27-

Notice that this watzlengeth 1s also the waseiength
which the spontanscus radiation from an  zlectron
traversing an undulator is emitted {11},

An important progerty of the FEL is thai the anargy
transfer between the beam and the rodiation can be
enhanced by a collective instabilits producing an ex.
ponential growth of the radiation (12} When this insta-
bility becomes important the FEL is said to operate in
the high gain regime. The existence of this regime is
very important for FEL cperation 1a the XUV region
where we do not have optical components with suffi-
ciently high reflectivity and small absorption [13].

Three modes of ogerationt of an FEL can be consid-
ered. In the first mode. self amplified spontaneous
emussion (SASE). (e iniual spontigecus radiation
emitted by the electrons is amplified: this svsiem does
not require any opiicai compenents but needs a high
density electron beam and a rather long undulator {8.12].

The second mode :5 e FEL oxillator: an opucal
cavity is used to reflect back and forth the radiauon for
further amphfication oy another elzctron bunch: thus
system can get by with 2 smalier electron beam densuy
and a shorter undulator but needs murrors for the cav-
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G st savelzagths smaller 22 D A these nurrors
R Latte pe Jaratoped and ther retlectivity s en-
soctsd o he on ..\g order of o
In itz third mode. or tramsserse < ﬁuul klsstron [14].
oo aternal laser heam st the spontaneous radistion
wavaienzth s used w moadulate the beam energy and
wnztedinal demsity distazunen leading to the emission
of coaerent radiauon at the ntigher harmonics of the
wput laser. Of the three modes thus 15 the one requiring
tae l2ast stnngent ziectron Feam parameters. In ad-
\.u.cn 1t Joes not aeed optical ei¢ments but on-the other
0 pagaires an cadulator wiih razher stnct magnetic
field oierznees and producss the smallest coherent radi-

210N Dova

. FEL zrowth rute

In al thrze modes the FEL can be approximately
characterized by one parameter. the FEL e-folding
‘engit 4=p. mexsured in nimber of undulator periods
AR
AN 5T

8

4:3-4':?[

(2)

abers 2. is the electron beam plasma frequency. de-
ined ia terms of the electron deasity n,. and ¢nergy .
v

2 ={2mreing sy’ ) . (3)

r, zeng the classical electron radius.
For an oscillator to operate at short wavelength.

whers the optical caviry losses can be on the order of

".u * per round trip. one needs a value of 4=p.V, on the
Jer of 1. i.e. a number of uadulator penods

.\__ -1 {3=p).

In the case of S\SE f12] the value of 47p.V, must be on
ire order of 10.

In the case of SASE and oscillator modes the encrg\
transfer from the beam to the radiation field is on the
order of p. while in the TOK case the transfer from the
i=zut luser to the harmonics ts rather small.

te expression (2) for the FEL growth rate applies
only if tvo other conditions on the electron beam are
sausiied. One is a condition on e beam energy spread.
a4ich must be less than o. the second is a condition on
the beamn smittance. which must be smaller than the
radiation wavelength. Ii these conditions are not satis~
{ied 1=¢ radiation growth rate decreases and the output
laser mower is reduced {S].

For aavelengths 1n the millimeter region and elec-
17an ¢ecevgy of a few MeV the value of p can be on the
c=ézr of 1. In the VUV region with electron energies of

r, .-e

w272l hundred MeV. p is on the order of 10™? and
cne 23 expect an energy transfer from the beam to the
rzd:aton on the order of a few pasts in a thousand.
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4. The SASE maode

[n the waveizngeh region below 1000 A, the hest
accelerators av2ilable to produce the hign density elec-
trons beams reguired to operate in the SASE mode are
electron sorags rings. Existing storage rings. such as the
VUV rng of the National Synchrotron Light Source at
Brookhasen. can provide an average emuttance on the
order of 10~% mrad. an energy spread of about 107°
and a peak current of 60 A at an energy of 730 MeV
[15). A nng bke thus. with <traizht sections capable of
accommoddating sadulators of £t 6 m. would allow us
to produce coherent radiation in the 1000 A region.

We beiizve that it is now possible to design u storage
ring with an energy of 700 1o 10CO MeV. the same
energy spread anod an emittance smaller by an order of
magnitude than that of the VUV ring. and peak cur-
rents in the range of 100 to 200 A. Such a ring would
enable us to produce radiation in the wavelength range
of 100 to 3¢0 A using uadulators about 10 m long {7-9].

Using this ring. the peak radiation power that one
can ontain in the SASE mode is on the order or 107°
times the beam peak power, or 100 MW. This pulse
would have a duration of about 100 ps and a repetition
rate of 10 Hz. for an average radiation power of 0.1 W.-

With the same system operating in the oscillator
mode, ¢ne can obtuin an average output power of the
order of 1 W, 2 pulse duration of about 100 p> and a
repetition rate detarmined by the ring revolution time to
be on the order of 2 few MHz. and a peak power of
about 10 kW For this oscillator it is also possible. by
modulating the system gain. to reduce the repetition
rate and increase the peak power.”

For the TOK mode one can expect consersion ef-
ficiencies on the order of 107% around the tenth
harmonic. so that starting with a 100 MW peak power
laser at 2000 A one should be able to produce about 100
W at around 200 AL

In all of these cases the angular distribution of the
radiation is determined by the electron beam radius. a.
and the radiation waselength; the charactenstic angle is
on the order of \/a. i.e. of a few tenth of muiliradians.
The line width is on the order of the waveleagtit divided
by the electron bunch length. i.e. 107%-10"%, for the
osciliator and the TOK mode. For the SASE mode it
depends on the details of the system and is intermediate
between the oscillator limit and the wnverse of the
number of pericds in the undulator. i.¢. betwgen 1077
and 10°°%

5. FEL equations

In the remaiader of this paper we will discuss the
high gain reume and the SASE mode of operation of an
FEL. Following the work of other uuthors [16.17] we
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write the FEL equations usnz the phase and energy s
clectron vanables and use the stowis varanz amphitude
and phase approvimanon for the radiation field. These
cquattons cdan be watten in a very zeneral {om includ-
ing the effects of space-charze fields and  higher
harmonies of the radiation field [1R]. To ~implify our
discussion we neglect these terms and use the results of
ref. (18] to evaluate their effects. Qur potations are the
foilowing: = iy the electron beam and electromagnatic
wave direction of propagauon: x and v are the trans-
verse coordinates: A, iy the undulator maznetic fizld
wwe use 4 acheal undulator for simphicitys aad A, N
are its penod and length in number of p2ruds respec-
uvels: \ s the wavelength of the radiation field: v is
the electron energy in units of My B.=1 1> the
longitudinal 2lectron velocity and 8. = K.’y the ampli-
tude of the transverse velocity: the electron phase rela-
tive to the electromagnetic wave. o. is related to = and ¢
by 0 = 25:/0g = 2=(2 = cr)/\. the resonant 2nergy vy
ts related 0 \,. A and K by va = \o(l = K*)/2\: the
undulator frequency wa is wy=2=c8./\,: the ampli-
tude. £y, and phase. 0,. of the radiauen ficid are
combined 10 vield a complex amplitude e =i E;e? .
To wnte the FEL equations it is convenient to use a
set of normalized vanables and introduce some quanti-
ties to characterize the beam properties (12.18]. We will
use the relauvistic beam plasma frequency already in-
troduced in sect. 3. which for a beam with energy
dispersion s given by
1

e

tor n.c:
3 2 .
2= ] : (4)
NGV
where 7, is the average value of the iniual electron

energy: we introduce also the quantities

. o n 13
IRCT ] 2
={— - 5
e A4 SR ' wy ( )
and
‘ L ,
Qn’“:-_»“-f—:) B ‘6)
"7

and a normalized ume

r-2u0p‘%) IR (7

Using these definttions we cun construct a set of
dimensionless varables

v =Q =9yl (8)

r-i-r. 9)
P s

g a explimgt) (10)

[47.-mc:<-,0‘,n°p] e

-<Y'<‘Io>\

FEL por the N rezrn 6l

and write the FEL eguations as {12}

;,:}(1—% =L, (11a)
M AU M

. 1 de's

== —T:——L.c.). (11b)
I YRLE "
. 10. > T <)
with

8§=21/p. (11d)
and J the detunung parameter

3= (v =)/ 2k (11e)

The dot indicates differentiation with respect 1o . The
angular brackets indicate an average over the particle
initial phases. i.¢. () = (1,/V)L, where V' is the num-
ber of particles.

From these equations we can show that the quantity:

H=(Iy+id)° (12)

is an invanant. In terms of laboratory variables this can
be written as

B

— s E;
H=mcny{y)+ :t-:— = constant. (13)

which is seen to be the conservation of energy relation
for the electron beam-radiation field system. It is also
convenient. using q. (9). to rewrite eq. (12) as

o) el i), (19)

which relates directly the change in the field amplitude
A 10 the average change in electron energy. One can see
from eq. (14) that. assuming | 4y < 4]. the quantity
p|A|* measures the efficiency of energy transfer from
the electron beam to the radiation field.

In integrating the FEL equations the maximum time
is defined by the undulator length ¢, = NV, \./¢c. In
terms of the scaled time + this becomes

TR ). :
fm-4ﬂp(m) A (15)

6. The FEL collective instability and coherent radiation
generation

The system of egs. (11a)-(11¢) has been discussed in
ref. [12] where it has been shown that for § <§,, =19
the system is unstable and the field amplitude .4 grows
exponentially. Both the radiation field and the beam
bunching grow exponentially. We can characterize the
bunching by the parameter b = (e ') | The nonlinear

I. THEORY
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regime and saturation that follew the minal exponential
2rowth have also been studied in these pupers.

Ia this paper we want 1o discuss a collectin2iv unsta-
die svstem using the parameters that appiyv to an elec-
tren peam obtained from a storage nng.

We assume that the niual field amplitude v 2ero
and we introduce aa imaal noise in the electron phase
distnibution >0 that the imual value of b=iset=)!is
1.,N,. N, being the number of ¢lectrons in one
radiation wavelenzth. In fig. 1 we show the evolution of
e fald amphitede 1.4 versus = for diffzrent values of
e 1nitial electron beam ms enerzy spread. o,,,. and for
3 = 0. One can se¢e that for g,, < o the field amplitude
‘4| reaches a value of the order of unmty. so that. from
ey. (14). we have an energv transter efficiency of the
order of p. i.e.. at the peak of | A1 we have transierred a
fracuon p of the beam energy to the radiation field.

Fiz. 2 shows the evolution of the rms beam energy
spread for the same values of o, as in fig. 1. One can
see that when the field peaks the energyv spread becomes
on e order of o provided o, < p.

The time needed to reach the peak can be seen {rom
fizs. 1 and 2 to be = =10. Assuming 7, = v, we can see
from eq. (13) that to reach the peak we need an undula-
wr with a number of periods N, = 1,/p.

Let us summarize the results of this section:

1) the electron beam. undulator magnet. radiation
fizld system 1s unstabie. if 6 <3,. and both the field
ampiitude. | Al and the beam bunching. b, will grow
axponentially up to a saturation level where | 4|~ | and
o~ 1 .

=) if the system initial conditions are | A4,i=0. b,
determined by noise. 6,, < p. the electron beam will
iransfer a fraction p of its energy in a number of
undulator periods of the order of 1,/p.
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Fi2. 1. Plot of |A| versus = for 6=9.1x10"%, p=3x 10~}
and several values of the initial rms energy spread, a,=0.1p.
.75 p and p. labeled a. b and c. respectively.
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Fig. 2. Plot of o, versus r for 5=9.1107° p =3x 10"} and
several values of the ininal rms energy spread. o, = 0.1 p. 0.75
o and p, labeled a. b and c. respectively.

3) after traversing the undulator we have (4= 1,
b=1and o ~p. :

7. The electron beam-undulator system

As we wish to discuss the operaton of an FEL over
a large wavelength range (30-2000 A) we will consider
operating the storage ning at energies ranging from
300~300 MeV. In addition we will consider 3 undulator
designs. 2 5 mm period undulator for A in the range of
30-108 A, a L em period undulator for A in the range of
100-250 A ard one with \, = 2.5 cm for X in the range
of 500-2000 A.

To calculate the undulator properties we assume it to
be of the hybnd (permanent magnet and iron) tvpe and
calculate the magnetic field from [19)

By=33ep| -547E s135 ) T. (16)
SRR PR

where Ay and g are the period and the zap. respec-
tively. A complete listing of the undulator data can be
found in table 1. The output radiation wavelengths for
the 3 undulators are signified by O's in figs. 5a-5c.
The electron beam described in table 2 can be ob-
tained in a storage ring. as we discussed in sect. 5.
However, if we tried to iastail the undulators descnibed

Table 1

Undulator magnets

Period. A, (cm) 0.3 1.0 25
Guap. g (cm) 01 2 .5
Pump strength. 8, (T) 1.2 2 1.2
Undulator parameter. K 0.56 112 2.80
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Tuhic 2
Eleciron beam parameters m the bypass section
Eneray € (MeV) 060 ELEKE Hay (o
Beta honzontal, 8, (m) 3.00 REFR 300
Beta verucal, 8, (m) 1.00 Lies Laey
Coupiang. ¢ 001 DA wat
rms horzontal beam radius. 2, (m) 101E-04 NGB =R & GTE—u3
rmy henizontal angular spread. o, (rad) I3TE-05 LULE-E 2OE-03
rms vertcal angular spread. o (rad) SSIE-06 2E3E-- 5 I49E-(n
rms verncal beam radius. o, (m) SSLE-06 S4LEE~1 A II9E - 06

in table 1 directly in the ring such that the electron
beam would pass through the small aperture of the
undulater on each revolution. it would become impossi-
ble :0 vperate the ring. The small aperature (gap) of the
undulator would result in vanishing small beam life-
times Jdue to collisions with undulator walls. The mim-
mum allowable gap depends on both the ring and
undulator parameters and must be determined expen-
mzatally.

For this reason we propose to install the undulator
in 2 ring bypass. as shown in fig. 3. The electron beam
would normally circulate in the nng, where the effect of
svachrotron radiauon damping would produce the beam
properues of table 1. About once per damping time. of
the order of 50 ms for the storage ring illustrated in
table 3, the beam is taken into the bypass and focused
in the undulator by -a special quadrupole triplet. In
going through the undulator the electron beam produces
the radiation. its energy is decreased by &5 and us
energy spread increases from its initial value to about p.

AN
\

R

T SvsTIM

Fig. 3. Sketaa = «iorage ring and bypass recton

left there for 2 time long enough for syvnchrotron radia-
nuon dampingz io bnng its characteristics back to their
starting viiue. A more detailed discussion of the storage
ring and buypass svstem 1s 2iv2n in the next section.

As the 2iectron beam circulates in the nng it per-
forms boid .eruizal and honzontal escillations. the so-

The beam is then taken back into the storage nng and
Tabie 3
Storaze nng parameters

) Energy. £ (MeV) 500
Gamma. 7 978
Bending radius, R, (m) 4
Average radius, R, (m) 15
Number of achromatic bends. A/ 6
RF voltage. ¥V (MV) 1
Harmonic number, A 100

- Number of bunches 1

¢ Average current. /, (A) 0.10
Electron number, .V 197+11
Sy achronous phase. o, 1.38E-03
Momentum compaction, a 1.22E-02
Heonzontal emittance. ¢, (mrad) 341E-09
Verucal emittance, ¢, (mrad) 3.18E-11
Zero current bunch length. o, (m) 1.99E-03

[ ™ Zero current energy spread. o, 2.14E-04
Synchrotron tune. », 197E-02
Synchrotron radiation loss. L,, (MeV) 1.38E~-03
RF acceptance. ¢qp 3.23e-02

£ 1) 300
AN 387
- k)
13 13
¢ 6
l !
100 100
! 1
0.1) 0.10
197g~11 1.97E + 1}
SeTE~-u= 1398 - 04
1.2JE~42 1.22E-02
LINE~T9 1.23JE~-09
LisE-1 1.22E-11
1.42E-13 9.24E-04
1.°iE- 1.J9E~- 04
2.I0E-02 253E-02
SETE~3 1.79E - 04
J61E ~ 417E-02
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5. The Petatron fuactions. iy
(o ampittude and pened of
the Fetatron ol ar2 2 mzasure of the fovunng
progerues of the tene iatiice. Together with the
emullanc2, €. WLl s the area n the positton-angular
deviation o2~ :pacz 11 waieh the beam 1, contained.
the beta funclicns detzruas ihe beam suze, i.e.. the rms
deam herght. gy =, eH,S., The chowe of the beta
functions 1 tae b\*.x» 1> detarmuned by the reguire-
ment of Ae2png 0 > larze as possible. whuch requires
smai? 2.0 3. wuhout volating the energy spread con-
dion a4, < . la eliact for 2 beum with nonzero trans-
LA QTLUIANGSS €y, €4 . 10 o necessary to add w the
real energ. spr2ad an 2ffecuve spread given by {20]

1. 1= &X-
3 Sflr".—.&’:hi"
- Cy €.,
-—— - (17
1=K P4 B‘.'

nownat ilows we will maace sure ihat the conditton
5, . < 0, i> always sisfiad
In the casay tzat ~vz will consider in the next section
the undulator lengta vanias berneen wo and three me-
t2rs and i determused oy ke condition NV = 1.p. This
2t i3 280 comsizignt sith our assumpticn on the
eta-functions.

8. The electron storage ring and by pass sectivn

_.‘

The st consider o similar to those

cx2d 23 smeirotron rodiztion sources. for instance the

Nauonal Svnchrotrea Lighe Source VUV nng [15]. Its
MalR CRAracrenasucs ars zhv2nin tadle 3

Sinca we waat @ maxvmize the eiectron d2nsity o
oblan a4 large vaiv2 of o the uadulator. we have
chosen o mag desizn which mumimuzss the team emut-
txnce and the bunch lengiy. When the beam enters the
byvplss sevtion 1t undergees additional focusing to in-
Credse p. as shoam in (:m'.e 2.

The naz b
used for ¢ svstem and one for the
bvpass witciun -.:.«;:. ts. T"nc ares joining wie two long
straights each Rave three scual penods. Each period has
2 dipole magnets wia a focusinz quadrupole between
(Nzm 204 LA Suadmizoe doutiets on e extzmal
sides. The ring enerz dispersion s contrelled by the
central quadrupoie zad is nonzero only in the dipoles
and n the rezion Serween them.

The momentum compacuon.
rzlates the chanyz a otbit length
deviation from the Ssiyn energy E, of the ring. For a
nng with this mazneuc siructure the momentum com-
paciion a. and tae honzontal emuttance.

Orage g iTat w2

a=dE/EV/(dl/).
to the relative energy

¢y. are ap-

A '~..‘-.-‘-‘~"‘ v

Pep oo

FEL  rthe AU rogom
provimatels gnen by {21]
el 7l % Foe (1%)
=7.7x10""'%l:—_‘(mrad)‘ (19)
where Ry. R, are the bending and average ring radii

and M is the number of achromauc bends. An
achromatic bend. typically consists of two dipole mag-
nets with a honzonially focusing quadrupole in be-
raeen. and 1+ designed to focus aii the entenng clec-
troas, regardless of energy, to the same point on excit-
ing the bend. The vertical emuttance is determined by
the coupling betweea honzontal and vertical osallauon
‘due to magnet musalignment. €, = x¢,.

At zero or small current the rms energy >pread and
the bunch iength are determined bv svnchrotron radia-

uon and are given by {22]
=-433><10"Rl32 (0)
aR
0= T, )

s

where v = ‘wy s the ring svnchrotron oscillation
tune. At larzz currents the microwave iastability {23}
caused by the beam interaction with the broad-band
high frequency storage ring impedance can ncrease the
energy spread. o,. and the bunch length, g,. An increase
of ¢, reduces lhe value of p while at the same ume o,
increases and the condition o, € p can be viglated.

To evaluate this effect we use the approximate condi-
tion [23)

V4 ! \ '
elpl (")IS'lrana,' for (22)

PN o,
where [, 13 the peah current. related to the average
bunch current. /. by

- R
o2 .

f,=(27) 7:-10 (23)

and | Z(m)sn- 15 the effecuve longitudinal coupling
impedance of the nng.

From egs. (21)-(23) an expression for the microwave
instability liruted bunch length and energy spread can
be obtained

) .z, .

o Ru| ) (24
14

g = aR, a,. (25)

The storage ring coupling impedance 13 determined
by the vacuum chamber geometrs and by the bending
radius in the curved section {23.24] and 15 a4 quantty
difficult to calculate ~a paort ... 7. Howeser in modern
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3unoh length and peal curren:
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storage rings values of the order of 1 2 have been
ohtaingd. Since this guantits is verv imporiant in da

PO A

ternuning the periormance of our svsizm we pave cho- -

sen to use in our caleulations three values of Ziny n .
ie. 0.1 1 and 10 2. Let us notice that a 10 2 coupling
impedance is larze. and is 2 pessimistic assumption.
ahiie 2 1 2 value 15 realistic and bas been aiready
obtained. On the other hand. 2 0.1 2 siJue would
require a breakthrough n storage nng design.

The microwave instabilicy imited bunch fengths and
peak currents. which depend on the value of the cou-
pling impedance but not the enerzy. are given in table 4.
The tunch lengths are tpcally @ few cenumetars and
the peak currents are in the (C0-<00 A range.

To test the beam for siability azgainst transverse
coherent osciilations we have used the condiiions that

A A aan s ang sag Ao Aol adel R

FEL fur tite XUV recum 163

the coherent betatron tene <hairt be smaller
synchrotron tuns {23]

el
8”ﬁ=;EZT<|!<"v (:b‘
with the transverse coupling impedance Zr s ¢t aluated
from the longitudinaf impedance us {23]

,(R ):; Z(n)i

thun the

b

The ring described n tuble 5 will be frez irom
tcansverse wnstability problems provided the effecine
impedance can be kept on the order 1 Q or less.

As a final measure of the ring's feasbility we com-
pute the Touschek lifeume {25] r,. The Touschek life-
time is the ume in which losses due to Coulumb colili-
sions between electrons in the same bunch have reduced
the beam current to half of its initial value. For the
range of ring parameters given in table 3 7 > 1 h.

Zrar=2 (=7

A R

9. Resuilts

In figs. 4a-4c we plot the FEL parameter, p. and the
microwave instability limited energy spread. g,. versus

7»':-“' A T T ~T v T O, Y T 7f— T T
(e} ' v o) (e}
6.0~ \ . <! 6.0p . - .
N, ) i
“a. :
5 Q- \, 5.C- . 25k m
\° '
S 40L - & 450 —
2" 12 3T
CO 1z 2
¥ ! “ s s
< 30k Cae- 4% 8
| |
1
! 1 .
2.C 2.Cr~ C~
I— . 1 i +
i i
t ]
! vi- < :'— il—
Cl o L — o — 1 ! *_", L L : |
aco 400 $00 X0 400 500 300 400 5CO

ENERGY (MeV)

ErERGY (Mgv)

ENERGY (Me¥)

Fig. 3 Plots of the FEL parameter. p. and the mucrowave instability limited rms energy spread. o,. versus energy for1ay Ay = < mm.
thy X\, =1 cmand (v) Ar, = 1.5 cm. The p values are viznified by a J and the o, values are given bv a T Each figure displays the o
and o, values for 3 values of Z, = 0.1, 1.0 and 10 2. A solid line corresponds 10 Z = 0.1 2. a dashed lineto Z=1 2 aad(----)10
Z =10 2. The lines are not fitted o the points. they are drawn simply to indicate trends.

- -

N
S AR

-

e

I. THEORY




ARy s

-l_.‘

RO ragte)

«n
. .

-t
-

——

,y ey

Ny
A

-

e

1

(e

S Q01 dnhed e

t2¢ beam energy for the 3 mm. 1 cm and 2.5 cm
saduiators, respecively. Recalling that the limit on the
allcaable energy spread is o, £ p it can be seen from

ow 3.1 2 one can 2xpect to obtaia high intensity
srent >or't-\' rays in the rangz of 30-85 A. From
4¢ it can be seen that the energy spread in
22 nag will not pose aay problems for the genemtwn
of 1.‘:*'“ radiation in 'he range of 85-2000 A.

725, 5a-3c are plots of the peak power versus en-
2z 721 the three uadulator designs. The peak power is
aculatad assuming that the radiation pulse length is
2¢.a] 10 the electron ouach length.

10. Conclusions

!, sing the system dascribed. an electron storage ring
4127 an uaduiator :n 2 special bypass section. we can
: 2 hizh intensity conerent radiation by sending the

.h:oug.h the undulator and using the FEL collec-
e :ns:abi_lity to produce radiation. Compared to other
tem1s. such as an FEL oscillator or a transverse
cpueal Wvstron, chis swstem has the advantage tha it
Jues 101 require misvors to form an optical cavity or an
127Ut high power laser 1o bunch the electron beam. On
the other hand. by its verv nature. this system can only
produce hugh intensity. short radiation pulses with a
rezedition rate of the order of 10 Hz

The storage ring needed 10 operate the system is
charactenzed by a small transverse emittance. The other
imoortaat fing parametar 15 the longudinal coupling

:, v
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impedance. For a value of the order of 1 2 one can
obtain peak powers on the order of 500 MW down 1o
wavelengths of about 500 A and 50 MW to 8O A: the
power decreases sharply at lower wavelength. {7 it should
become possibie to reduce | Z{#)/n| 0 0.1 2 onre could
get peak powers on the order-of 20 MW down 10 30 A.

One should also remember that in this paper we have
concentrated our attention on the first harmonic pro-
duction only: however, from the results of ref. (18). we
know that the svstem will also produce higher harmon-
ics and this can shift down the lower limit for soft X-ray
production.

We want 10 emghasize that the results preseated here
are preliminary. and that one might improve the system
performance by optimizing other ring purameters such
as the momentum compaction or the radiofrsquency
voltage and {requency. To obtain a more complete
understanding of the sysiem one should investigate dif-
fraction effects on the radiation due to the finite beam
radius and consider a three dimensional calculation
taking into account the electron density vanation in
both the transverse and longitudinal direction.

This work is supportad by the US Department of En-
ergy.
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