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so that the reconstruction task in formulated as an estimation problem.. . -

Our main contributions are the following:

1. We introduce the use of specific error criteria for the design of
the optimal Bayesian estimators for several classes of problems,
and propose a general (Monte Carlo) procedure for approximating them.
This new approach leads to a substantial improvement over the existing
schemes, both regarding the quality of the results (particularly for
low signal to noise ratios) and the computational efficiency

. %e apply the Bayesian approach to the solution of several problems,
some of which are formulated and solved in these terms for the first
time. Specifically, these applications are: The reconstruction of
piecewise constant functions from noisy data; the reconstruction of piece-
wise continuous surfaces from sparse and noisy observations; the recon-
struction of depth from stereoscopic pairs of images and the formation
of perceptual clusters.

3. For each one of these applications, we develop fast, deterministic
algorithms that approximate the optimal estimators, and illustrate
their performance on both synthetic and real data.

4. We propose a new method, based on the analysis of the residual process,
for estimating the parameters of the probabilistic models directly

from noisy observations. This scheme leads to an algorithm, which has

no free parameters, for the restoration of piecewise uniform images.

5. We analyze the implementation of the algorithms that we develop

in nonconventional hardware, such as massively parallel digital machines,
and analog and hybrid networks.
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by
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ABSTRACT

In this thesis we study the general problem of reconstructing a function, defined
on a finite lattice, from a set of incomplete, noisy and/or ambiguous observations.
The goal of this work is to demonstrate the generalitN and practical value of a
probabilistic (in particular. Bayesian) approach to this problem. particularly in the
context of Computer Vision. In this approach, the prior knowledge about the
solution is expressed in the form of a Gibbsian probability distribution on the
space of all possible functions, so that the reconstruction task is formulated as an
estimation problem. Our main contributions are the following:
1. We introduce the use of specific error criteria for the design of the optimal
Baesian estimators for several classes of problems, and propose a general (Monte
Carlo) procedure for approximating them. This new approach leads to a substantial
improvement over the existing schemes, both regarding the quality of the results
(particularly for low signal to noise ratios) and the computational efficiency.
2. We apply the Bayesian approach to the solution of several problems, some of
vAhich are formulated and solved in these terms for the first time. Specifically,
these applications are: the reconstruction of piecewise constant functions from noisy
data: the reconstruction of piecewise continuous surfaces from sparse and noisy
observations; the reconstruction of depth from stereoscopic pairs of images and the
formation of perceptual clusters.

3. For each one of these applications, we develop fast. deterministic algorithms
that approximate the optimal estimators, and illustrate their performance on both
synthetic and real data.
4. We propose a new method, based on the analysis of the residual process,
for estimating the parameters of the probabilistic models directly from the noisy
observations. This scheme leads to an algorithm, which has no free parameters, for
the restoration of piecewise uniform images.

5. We analyze the implementation of the algorithms that we develop in non-
conventional hardware, such as massively parallel digital machines, and analog and
hybrid networks.
Thesis Supervisors:

Dr. Sanjoy K. Mitter Dr. Tomaso Poggio
Professor of Electrical Engineering Professor of Psychology
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Chapter I

INTRODUCTION

A fundamental problem in the design and analysis of systems endowed with

perceptual abilities is the construction of internal representations of the physical

structures in the external world. The precise form of these representations is not well

understood, and is the subject of much current research in Artificial Intelligence

and Psychology. It is clear, however, that these representations should integrate

prior generic knowledge about the physical properties of the external world with

measurements from a number of different sensory modalities. Furthermore, in

order to be effectively action-oriented, the representations should provide compact

descriptions of the physical structures of interest at different levels of detail.

This problem is not exclusive of biological perceptual systems; it arises
whcnever information from a set of sensors has to be processed, stored and retrieved

in an efficient way. Thus, it is of fundamental importance, for exanlple, in the

design of computer vision systems; in the reconstruction of subterranean geological

structures from geophysical data and in the design of biomedical imaging systems.

The motivation for this thesis is to increase our understanding of the principles

underlying the process of integrating prior generic constraints with the available

observations, for the construction of these representations. In particular, we will

address the problem of reconstructing, in a way that is consistent with the available

sensory data, the value of certain properties of the physical structure of interest over

a discretized region of space.

To define these early perceptual processes in a more precise way, let us model

the specific properties of the physical structure as functions f that map a (compact)

region fl C Rn into R . In the most interesting cases, f will be either a scalar

(m = 1) or a vector field (m = 2) defined on a two-dimensional region. This is

8
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the case, for example, of the problems of image restoration and segmentation, and

of the recovery of: depth from stereo, lightness: shape from shading, and the

compultation of optical flow in computer vision, as well as many problems in the

recovery of geological structure from geophysical measurements.

We will assume that the available data consists of several sets of qualitatively

different measurements {g, . gm} that in general are modeled as:

gi == Hi(f, D f, D f, ..., ni) '

where Df denotes the derivative of the property f; ni is a noise process, and Hi-

is sonic operator (for example, in vision problems, the different measurements may

correspond to: stereo disparity; brightness: color, etc.). We will also assume that

this information is collected with different sampling patterns {S1, SM}, that is,

the observations g, are defined only on the finite set Si C 1. Since most physical

phenomena consist of events that occur at a variety of scales, and in general,

events at widely different scales have little influence on one another, the numerical

descriptions of the behavior of a property over a range of scales can be used

effectively to produce a physically meaningful hierarchical decomposition of the

original structure into individual substructures ("objects") which can be subsequently

described in symbolic forms that are more compact and easy to manipulate (see

Marr, 1976 and 1982; it is not surprising that there is psychophysical evidence

suggesting the presence of a multiscale processing hierarchy in the human visual

system; see Campbell and Robson, 1977, and Marroquin, 1976).

Thus, the solutions we are looking for consist on a family {f,} of numerical

descriptions of the function f at different scales (indexed by a) at the sites of some

lattice L C fl (the finest scale representation should correspond to the best estimate

of the actual value of f at the sites of L). To illustrate this idea, in figure 1-a we

present a binary pattern, and in figures 1-b through l-e, its numerical representation

at increasingly coarser scales. This family of descriptions was generated by the

algorithm described in section 5 of chapter 4.

In general, the observation processes gi do not determine the value of f in a

unique and stable way (that is to say, these problems are ill-posed in the sense of

9
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(a) (b) (c) (d) (e)

Figure 1. Representation of the binary pattern (a) at increasingly corser scales.

Hadamard: see Poggio and Torre, 1984). Therefore, the algorithms we are looking

for should he able to regularize the problem by incorporating constraints on the
soILution generated by some prior knowledge about its general characteristics.

Finally, because of the large number of variables involved. reasonable speed
of performance will usually require that these algorithms be distributed, and thus,

efficiently implementable in parallel hardware.

1. Regularization Analysis and Cooperative Algorithms.

Among the most successful solutions to these type of problems are those
that formulate them as variational problems, where the measurement and generic
constraints are separately represented in the following way:

Let us consider the case of only one set of "perfect" measurements (i.e., with
no noisc) g defined on the set S, and suppose that the constraints that they impose
on the solution can be expressed in the form:

f A(f, g) =0

10
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%here A is a positive definite, real valued function that mcasures the incompatibility

of the %alue of the property f with the observations y. In general, the observations

%%ill not be perfect, and so, we will only require that the error f.; A(f, Y) be small.

Ho, ccr, there may be a large number of configurations that minimize the error.

To find a unique solution, in assumption about the global smoothness of f is

introduced by means of some positive definite, real valued function P(f, Df,...)

Mhich measures the "jaggedness" of f. If both A and P are convex, the desired

solution will be the unique minimizer of the "energy" functional:

U(,) = A(fg)+ X P(ff,...) ()

where X is a parameter.

lhis approach has been applied with varying degrees of success to the

problems of surface interpolation (Grimson, 1981b, 1982; Terzoupulos, 1983,

1984a); computation of visual motion (Horn and Schunk, 1981; Hildreth, 1984ab);

recovery of shape from shading information (Ikeuchi and Horn, 1981); computation

of subjective contours (Ullman, 1976; Brady et al., 1980; Horn, 1981); lightness

(Horn, 1974), and edge detection (Torre and Poggio, 1983).

In a recent paper, Poggio and Torre (1984) have shown how functionals of

the form of equation (1) can be derived in a rigorous and systematic way using

regularization methods (Tikhonov, 1963; Tikhonov and Arsenin (1977); Wahba

(1980); in this context fn P is called a stabilizing functional, and X, the regularization

parameter).

Once the functional (1) is specified, its minimization can be carried out by

standard variational methods (Courant and Hilbert, 1953). Since usually one is

interested in the value of f only at the discrete set of points L, the solution of the

resulting Euler-Lagrange partial differential equations can be obtained as the fixed

point of a relaxation (cooperative) algorithm of the form:
f(k+1) • E
-i = F(k{ ))  i E L (2)

This algorithm can be efficiently implemented in parallel hardware using a

network of' locally connected processors (one for each site i), or even by some

analog network (see Poggio and Koch, 1984).

.... . . . .. ... ... . .-....- .... .... .. - . .. . ...-. .... .. ..... .. . ...-. -... . --



It is interesting to note that it is also possible, and sometimes easier, to

embed the prior knowledge about the solution, and the constraints imposed by the

observations, directly in a cooperative network of a given form, without explicitly

defining a global variational principle. This approach has been used by Marr and ,.

Poggio (1976) for the stereo matching problem. We will have more to say about it

in chapter 6.

It is also possible, in principle, to incorporate qualitatively different measure-
ments into a single cooperative process, by a simple modification of the energy
functional:

Suppose that we have M sets of measurements. and that each set g, places some
constraints on f (and/or its derivatives) which can be expressed by the functionals:

A.(gj,f,DfI,...)=O i- 11,...,IM

The solution will now be constructed as the global minimizer of the functional:

U(f) =E,,(f, g) fA, + XfP, .. (3)

where the parameters ai measure the relative weight we wish to assign to each set

of measurements.

If all the functions A, are convex, the solution will again be unique, and

the minimization of (3) may be carried out by means of a cooperative network
(this approach has been used by Terzopoulos (1985) for the surface interpolation

problem, when the depth value f is known at some set S, of sites, and the slope
(Df) at a different set S2).

The approach we have been discussing - which we will call the "standard
regularization method" is very attractive: it provides a unified framework for the

formulation of a variety of problems, and it leads to computationally efficient

algorithms. However, it has some important limitations (some of them pointed out

by Poggio and Torre):
(i) Very often the assumption that the solution f is smooth over the whole

domain f1 is not justified. What is more commonly true is that n can be

12
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partitioned into a small set of disjoint connected regions, and that while f
is smooth in the interior of each of them, it has discontinuities along the
boundaries between regions (which in turn are piecewise smooth curves).
Fhis limitation is a serious one, because very often the discontinuities of
f, ich the reglarization methods tend to hide, arc the most important

(-parts of the Surface, in particular if one is trying to Compute a symbolic ,
irepresentation for it.

(ii) The meaning or the parameters of the energy functional is not always
clear, and they often have to be selected on a purely empirical basis.

(Ili) In many cases, the choice of the particular (often quadratic) form for the
functions A and P is arbitrary, and is determined mainly by the tractability
of the uniqueness problem for the solution, and by the simplicity of the
(linear) minimization algorithm (in some cases, of course, there may be
other theoretical or experimental considerations that justify this choice).

(iv) The interaction between qualitatively different observations is purely

additive. One would like to be able to include more realistic non-linear

modes of interaction.

2. Probabilistic Formulation.

A different approach is to model the function f, whose reconstruction solves

a perceptual problem, as a random field that has to be estimated from a set of

noisy, and possibly ambiguous measurements. Within this formulation, one can

adopt a Bayesian viewpoint (see Good, 1983), and assume that the best way of

expressing the prior knowledge about the nature of the solutionis in the form of a

(prior) probability distribution P1 . This distribution, together with a probabilistic

description of the noise that corrupts the observations, allows one to use Bayes

theory to compute the posterior distribution P 1lg, which represents the likelihod of

a solution f given the observations g. In this way, we can solve the reconstruction

problem by finding the estimate 2 which either maximizes this likelihood (the so

called Maximum a Posteriori or MAP estimate), or minimizes the expected value

(with respect to Plt) of an appropriate error function. This formulation has several

advantages over the "Standard Regularization" approach:

1. Flexibility.

13
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With simple modifications in the prior probabilistic model for f, one can

generate algorithms that reconstruct not only smooth, but piecewise constant or

piccewise continuous functions. It is also possible to include explicitly into the

model prior knowledge about the geometry of the curves that bound the smooth

patches (i.e., about the discontinuities) of f"

2. Generality.

This approach provides a general framework for the formulation of a wide

variety of perceptual problems. We will show, for instance, how it can be used

for: image segmentation; surface reconstruction from sparse data: modeling of

perceptual grouping processes; stereo matching, etc. Furthermore, the incorporation

of qualitatively different measurements into a single cooperative estimation process

can be made in a natural way: if the noise processes n1 , n2,.., n associated with

the sets of measurements , .... .gm are independent, the joint posterior distribution

P(f I 91,...gM) will be simply:

P 1  IVI_ P(gi I f)P(Y 19ot,... 9M) JIMr -:

3. Precise Interpretation.

The parameters that appear in the reconstruction algorithms that are derived

using this approach have a precise statistical interpretation (for example, the relative
weight of the evidence provided by each set of observations, will be determined

by the variance of the associated noise process); also, the plausibility of the

prior assumptions about the behavior of the solution can be explicitly verified

by generating sample functions of the random field defined by P1, by means of

an appropriate Monte Carlo procedure. Finally, one can choose the precise loss

function whose expected value will be minimized by the Bayesian estimator.

3. Computational Efficiency.

As we will see, if the random field defined by P1 is Markovian (i.e., if the

probabilistic dependencies are local), the estimation algorithms will be distributed,

so that it will be possible to implement them efficiently in parallel hardware.

14



3. Goals of this Thesis.

The objective of this work is to apply tile probabilistic approach we have just

described to the solution of a general class of perceptual problems. In particular,

we will:

1. Present a class of random fields with local probabilistic dependencies, that can

be used very effectively to model the behavior of a wide variety of functions.

2. Develop appropriate loss functions, and the corresponding optimal estimators for

different classes of problems.

3. Develop general distributed algorithms for computing these estimates.

4. Apply the above results to several specific problems, to illustrate the generality

and practical value of this approach.

5. Develop more efficient algorithms for each of these particular cases.

We now present a list of our main contributions:

3.1. Summary of our Main Contributions.

I. Optimal Bayesian Estimators.

Several researchers have used Bayes theory and Markov random field (MRF)

models for the restoration of piecewise uniform images. It has been implicitly

assumed by most of them that the maximization of the posterior probability

(which leads to the Maximum a Posterioi or MAP estimator) is the best possible

performance criterion. We introduce the use of different specific error criteria

for the design of the optimal Bayesian estimators for several classes of problems,

and propose a general procedure (which is based on some existing Monte Carlo

techniques, such as the Metropolis algorithm) for approximating them. We show,

both theoretically and experimentally (in particular for the case of the restoration of

piecewisc uniform images) that this new approach leads to a substantial improvement
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over the existing methods, both regarding the quality of the results (particularly for

low signal to noise ratios) and the computational efficiency.

2. Novel A\pplications.

Throughout this thesis we present several examples of the application of the

probabilistic approach, and of the optimal estimation procedures that we have

derived, to several problems, some of which are formulated and solved in these

terms for the first time. The results that we get show that this approach can provide

a unified framework for the integration of a variety of related perceptual tasks into a

single cooperative process. Also, these results represent, in several cases, a significant

improvement over those obtained using existing schemes. Specifically, these new

applications are the following:

a) Surface Interpolation.

The problem of reconstructing a piecewise continuous surface from sparse and

noisy data is formulated using a Bayesian approach, using two coupled MRF's

to model the behavior of the smooth patches, and of the curves (discontinuities)

that bound them. Although this type of coupled model has been used before

(in the context of the restoration of piecewise uniform, noisy images), its

adaptation to this problem requires some non-trivial modifications: the local

interactions between the elements of the fields have to be redefined in an

appropriate way, and the general estimation algorithm has to be modified to

make it computationally feasible. The practical value of the resulting algorithm

is illustrated using both synthetic and real data.

b) Signal Matching.

This problem consists in finding the corresponding points in two signals when

one is obtained from the other by shifting it by a variable amount. We study in

detail a specific instance: the reconstruction of depth from a stereoscopic pair

of images, and show how to formulate it using our general framework. The

performance of the algorithms that we construct is also illustrated by means of

synthetic and real examples.

c) Formation of Perceptual Clusters.

16
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We suggest that the process of formation of perceptual clusters of certain dot

patterns can be modeled in terms of the estimation of binary images corrupted by

multiplicative noise, and illustrate the application of our estimation algorithms

to this task.

3. Efficient Algorithms.

Although the Monte Carlo procedure that we have developed for approximating

the optimal estimates is perfectly general, for each particular application it is often

possible to design alternative (some times deterministic) algorithms that improve

significantly the computational efficiency. It has been our concern in this work to

develop such alternative fast algorithms for each one of the applications that we

present. Specifically, we have developed the following algorithms:

a) Estimation of One-Dimensional Signals.

We present a new deterministic algorithm of minimal complexity which

computes (exactly) the MAP estimate of binary, one-dimensional MRF's, and

a rigorous proof of its optimal performance. We also develop an alternative

scheme for the same purpose, based on dynamic programming principles,

which can be extended to handle more general situations (such as the MAP

estimation of piecewise constant one-dimensional signals).

h) Estimation of Two-Dimensional, Binary MRF's.

We heuristically motivate and develop a new deterministic algorithm for

approximating the optimal Bayesian estimator of two-dimensional MRF's. We

find, experimentally, that the quality of the results produced by this scheme is

equivalent to those obtained by the general Monte Carlo procedure, and the

computational efficiency (execution time) is improved at least by an order of

magnitude.

For the case of the MAP estimation of binary patterns, we develop a modification

to the "Simulated Annealing" procedure, which improves its computational

efficiency. It is based on the computation of "coarse solutions" (formed by

aggregating the elements of the field into blocks) which are then progressively

refined.

17
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c) Reconstruction of Piecewise Continuous Surfaces.

In this case, we also develop a heuristic, deterministic scheme whose experimental

performance is practically equivalent to that of the Monte Carlo procedure,

and improves significantly on its computational efficiency.

d) Stereo Matching.

We propose a new algorithm for solving the stereo matching problem in

some simple cases. This scheme is based on the direct implementation of the

local constraints (generated by the probabilistic model) in a highly distributed

cooperative network of a particular form: a "Winner-Take-All" network. We

show rigorously that, for noise-free observations, the state of this network will

converge to the correct solution, and estimate the maximum number of required

iterations (which is usually very small). The application of this technique to -c

the reconstruction of the depth of real objects from stereoscopic photographs

is discussed, and some modifications to the algorithm are introduced, which

permit us to produce results whose quality is comparable to those of other
"state of the art" algorithms.

4. Parameter Estimation.

In the context of the estimation of two-dimensional, binary fields, we study the

case where the parameters that characterize the field model and the noise are not

known, and have to be estimated from the noisy observations, a situation that, so far,

has never been treated. We present a maximum likelihood procedure, which based

on an analysis of the residual ("innovations") process, permits the simultaneous

estimation of the field and the parameters of the system. We apply this technique

to the construction of an algorithm, which does not have any free parameters,

for the reconstruction of piecewise uniform images, and perform experiments to

demonstrate its performance.

5. Parallel Implementations.

An important issue regarding the practical value of the algorithms that we

develop is their possible implementation in certain non-conventional hardware,

18
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such as massively parallel digital machines: hybrid and analog computers, etc. In

this connection, we make the Ibllowing contributions:

a) Monte Carlo Procedures.

We analyze the parallel implementation of the general Monte Carlo procedure for

approximating the optimal Bayesian estimators. We show that the convergence

of certain widely used algorithms (such as the Metropolis and Heat Bath

schemes) cannot be guaranteed in this case. We justify the selection of an

appropriate algorithm (the "Gibbs Sampler"), and present an estimate of its

computational complexity.

b) Reconstruction of Piecewise Continuous Surfaces.

The parallel implementation of both the modified Monte Carlo procedure

and the deterministic algorithm that solve this problem are analyzed, and

their computational complexity is estimated. We also propose schemes for the

construction of hybrid (digital/analog) and analog networks that implement

these procedures, and perform digital simulations to evaluate experimentally

their performance.

c) Estimation of Two-Dimensional Binary Fields.

The computational complexity of the parallel implementation of the fast

deterministic algorithm that performs this task, is estimated and compared with

that of the general Monte Carlo scheme.

We also propose the adaptation of a class of analog networks proposed by

Hopfield and Tank (1985), so that we can obtain an approximation to the

optimal estimate of the field from the equilibrium state of this system. The

performance of this scheme is assessed experimentally by means of numerical

simulations.

3.2. Thesis Overview.

This thesis is organized in the following way:
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In chapter two we will introduce the basic concept of a Markov random field;

show how to compute the corresponding probability distribution, and present Monte

Carlo procedures for generating sample functions. In chapter three, we develop

loss functionals for the image segmentation and surface reconstruction problems,

and derive the corresponding optimal Bayesian estimators. We also present general

algorithms for computing these estimates, and discuss their implementation in

parallel hardware.

These results are applied, in chapter four, to the problem of segmenting

piecewise constant images given noisy observations. For the particular case of

binary images, a very efficient distributed algorithm is developed, and we present

a procedure for the case when the model and the noise parameters are not known,

and have to be estimated from the noisy data. Also in this chapter, we show how

these principles can be applied to the problem of computing the perceptual clusters

that are formed in some dot patterns.

In chapter five, we treat the problem of reconstructing piecewise smooth surfaces

from sparse and noisy data, without blurring the boundaries between continuous

regions; we discuss the use of Markov random field models to embody the prior
knowledge about the shape and location of the discontinuities, and show how

to adapt the general reconstruction algorithr', developed in chapter three to this

problem. We also develop a special purpose efficient algorithm for this case, and

discuss its parallel implementation.

Chapter six is devoted to the problem of the reconstruction of depth from

stereoscopic images. As in the previous cases, we first present a probabilistic
formulation of the problem, and extend the general methods of chapter three for

implementing a solution. Then, we develop special purpose algorithms that improve

the computational efficiency. The performance of these algorithms is illustrated

using both synthetic and "real" images.

Finally, in chapter seven, we summarize our results, and suggest areas where

future research may be fruitful.
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Chapter 2

LOCAL SPATIAL IN'rERA(ION MODELS

I. Introduction.

The key to the success in the use of the probabilistic (and in particular, Bayesian) --

approach for the solution of the class of reconstruction problems in which we are

interested, is our ability to find a class of stochastic models (that is, random fields)

that have the following characteristics:

(i) The probabilistic dependencies between the elements of the field should
be spatially localized. This condition is necessary if the field is to be used
to model surfaces that are only piecewise smooth: besides, if it is satisfied,
the reconstruction algorithms will be distributed, and thus, efficiently
implementable in parallel hardware.

(ii) The class should be rich enough, so that a wide variety of qualitatively
different behaviors of the desired solutions can be modeled.

(ii) The relation between the parameters of the models and the characteristics
of the corresponding sample fields should be relatively transparent, so that
the models are easy to specify.

(iv) It should be possible to represent the prior probability distribution P
explicitly, so that Bayes theory can be applied.

(v) It should be possible to specify an efficient Monte Carlo procedure for

generating sample fields from the distribution, so that the ability of the

model to represent our prior knowledge can be verified.

Fortunately, there is a class of models that satisfies these characteristics: the

class of Markovian Random Fields (MRF) on lattices. We will describe them in

this chapter, and we will also show how they satisfy the required conditions. To

do this, we will need two important results: the Hammersley-Clifford theorem,

which is related to conditions (iii) and (iv), and the Metropolis and Gibbs-sampler

algorithms, which will permit us to satisfy condition (v).
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2. Markov Random Fields.

The concept of a MRF is a direct extension of the concept of a Markov process

to higher dimensions and originated in the work of Ising (1925) on the construction

of models for ferromagnetic phenomena. The definition for a two dimensional

continuous MRF was introduced by Wong (1968), following Levy (1956) (see also

Dobrushin, 1968), and in intuitive terms it says that a random field is Markovian

if for any closed curve that separates the space into two regions, the knowledge of

the value of the field along the curve, makes the field in these regions mutually

independent.

More useful for our purposes (since usually we will be interested only in

reconstructing the field at the sites of a regular lattice) is the definition of a discrete

MRF, a generalization of the concept of a Markov chain. A discrete Markov

random field on a finite lattice is defined as a collection of random variables, which

correspond to the sites of the lattice, whose probability distribution is such that

the conditional probability of a given variable having a particular value, given the

%alUes of the rest of the variables, is identical to the conditional probability given

the alues of the field in a small set of sites, which we will call the neighborhood

of the given site. In formal terms we have the following (see Geman and Geman,

1983, and also Woods, 1972 for an alternative definition):

Let S be a finite set of N sites, and G = {G, s E S} be a neighborhood

system for S, i.e., a collection of subsets of S for which:

(i) s 0 G, for all s E S.

(ii) s E G, if and only if r E G., for all r, s E S.

Let F = {F,, s E S} be any family of random variables indexed by s E S, and

suppose, for simplicity, that these variables take values on some finite sets {Q-}
(the definition can be extended, with some technical modifications, to the case of

continuous state space). We will call any possible sample realization f

(fn,,...,faN) , fI, EQ.,
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Figure 2. Sices 1. 2, 3 and 4 are the neighborhood of site j

a configuration of the field. Let fl be the set of all possible configurations (i.e.. the

sample space), and let P be a probability measure in ft. F is a MRF with respect

to G if:
(i) P(F f) > 0, for all I e fl ( (F = f) denotes the event: (F, = f' for

all s E S)).

(ii) P(F --. IF,-f, r s)=P(F, =faF, = f, .E).

for every aE S.

It is clear from this definition, that if the size of the neighborhoods is small,

a MRF will satisfy the first condition we required from our class of models. The

direct specification of a MRF from this definition (i.e., in terms of the conditional

probabilities), however, is not very convenient because of the following reasons:

Firstly, the functions defining valid conditional distributions for a MRF cannot
be chosen arbitrarily, since they have to satisfy a set of consistency conditions (that

23
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result from Bayes' rule: see Besag, 1972), and are, in general, very difficult to specify

directly. Secondly, although the joint probabilit distribution 11f can be uniquely

determined from the conditional probabilities, its computation is, in general, a

highly non-trivial task. Finally, there is no obvious intuitive relation between the

form of the conditional probability distributions and the qualitative behavior of the

sample fields.

To overcome these difficulties, we need an alternative way of defining a MRF.

This is done as follows.

2.1. Markov-Gibbs Equivalence.

First, we need the following definition:

Given a system of neighborhoods on a lattice, we define a "clique" C as either

a single site, or a set of sites of the lattice, such that all the sites that belong to C are

neighbours of each other. For example, on a 4-connected lattice (Fig. 2), the sites

1, 2, 3 and 4 form the neighborhood of site j, and the cliques are sets consisting

either of single sites, or of two (vertically or horizontally) adjacent sites (nearest

neighbours; see Fig. 3).

The result we are looking for is contained in the Hamniersley-Clifford theorem

(Hammersley and Clifford, 1971) which states that if F is a MRF on a lattice

S with respect to the neighborhood system G, the probability distribution of the

configurations (sample functions) generated by it will always have a definite form,

which is that of a Gibbs distribution:

P1(fr) __= -uf
Pf.

where Z is a normalizing constant, 6 is a parameter, and the "Energy function"

U(f) is uf the form:
U(f) = Vc(f)

C
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0

(a) (b) C)

Figure 3. Cliqucs for Lhc 4-conncctcd lauice of Fig. 2.

%%here C ranges over the cliques associated with the given neighborhood system,

and the potentials Vc(f) are functions supported on them. Thus, in our example of

a 4-connected lattice, U would be of the form:

UUf V 1(fi) + ~j Vb(fi, f,) + K V(fi, hj)
i 1JE Nm tijENy

where Nit and Nv denote the sets of all horizontal and vertical nearest neighbor

pairs of sitcs of the lattice (figure 3 (b) and (c)), respectively, and V., Vb and V. are

some functions.

A simple proof of this important result can be found in Besag (1972). We

present here a brief sketch:

Without loss of generality, we may assume that 0 (the configuration with fi, 0

D.9

for all i) belongs to 02 (otherwise, we simply perform a translation of the origin).

Since F is a MRF. we have that

P(O) > 0

25

. . . . .



so that the quantity jj
PYf
P(O)

is well defined.

The key step is to note that we can always write:
P(f) =

P(O)

with

Q(f) - fiGi(fi) + f Aj Gi,(fe, fj) + ...

+ft-ij...n~t..n

for some functions G, Gj3 , ....

Now, for any configuration f and any selected site i, we define the configuration
f(1) as being equal to f everywhere, except possibly at site i, where it is equal to 0:

f Y) - {f , . A-1 of f+t, ". ., Al

Using Bayes rule we find that:

P(f) P(f, I f", 5 i). P-f- 0 # )
p(f(t) P(O I f1,j # i). P(fi, i i)

P( j fit j i) exp[Q(f)- Qf)-

= exp[fjGj(f 1 ) + E fifiGii(f,, fi) +...1

Note that because of the Markov property, the above quotient of conditional

probabilities can depend only on the value of f at those sites which are neighbors

of site i.

Now, suppose I is not a neighbor of i, and consider a particular configuration f

which is equal to 0 everywhere, except at sites i and 1. By the above considerations,

we have that:
Q(f) - Q(f(i)) - fiGi(fi) + fiftGit(f,, fl)
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depends only on ft, which means that Gi1(fi, fl) = 0.

By a similar reasoning, one can show that Gij .,,,(f,..., f,,,) can be different

from 0 only if the sites i, j,..., rn arc neighbors of each other, i.e., if they belong to

the same clique. The proof is completed by defining:

-V(fi,..., fr) = fi,...fmC,...m(fi,.... fm)

It is important to note that whereas the functions defining valid conditional

probabilities for a MRF cannot be chosen arbitrarily, the form of the potentials

Vc is not restricted in any way, and can be used freely to specify the required

behaviour of the field f (which is what one does in practice). The relation between

these potentials and the conditional probabilities is given by the following formula

(which follows from Bayes rule):

P(F, f, I F, = fi,,j # i) = exp[-- EC:iEC VC(f) (1)-

EqEQ, exp[- EC-iEC VCVfq)I

where Qj is the set of allowable values for the state of F, and fq is the configuration
which is equal to q at site i, and coincides with f everywhere else.

There are other ways of representing certain classes of MRF's. For example,
Woods (1972) has shown that every homogeneous Gaussian MRF defined on a

finite lattice satisfies a difference equation of the form:

m _ hklfn-k,m.-. + Unm
D(P)

where f,, is the value of the field at site nm and u is a (non-white) stationary

Gaussian field whose autocorrelation function satisfies:

, m n 0
E[UnmU] = -hmnc, (m, n) E D(P)

10, elsewhere

where

D(P) {(k,1) 0 < k2 + 2 < P 2 }
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and also
Jc, if n = k and m -

E[f,,,,,k] = tO, otherwise

the numbers hkl can be interpreted as the cocfficients of the linear minimum mean

square error estimator of fn given its neighbors out to distance P, and u as the

estimation error.

This representation (called a "Conditional Markov" (CM) model by Kashyap

(1983)) can then be used to generate sample functions (Woods, 1972 also presents

an algorithm, based on the discrete Fourier transform, for the generation of sample

realizations of the field u, and for the computation of the joint distribution for f).

A field that satisfies a difference equation of the form:

fnm -- E hklfn-k,m- + Wnm
D(P)

where {Wn,} are independent random variables, is called a "Simultaneous

Autoregressive" (SAR) model by Kashyap (a similar representation can be obtained

for fields with exponential autocorrelation functions; see Habibi, 1972). Although

it is claimed that for any homogeneous SAR model it is possible to find a MRF

with the same spectral density, albeit with a different neighborhood structure, it
is in general very difficult to compute the joint distribution explicitly from the

SAR representation. On the other hand, the Gibbs representation has the following

advantages:
(i) It is perfectly general: it applies to discrete valued fields, and it can be

easily generalized to the case of continuous valued ones.
(ii) It is easy to generate sample functions from the distribution (we will discuss

algorithms for doing this in the next section).

(iii) Since the posterior distribution is also a Gibbs measure, the optimal

estimates can be obtained directly from the posterior energy function.

For these reasons, this is the representation that we will adopt.

3. Generation of Sample Configurations of MRF's.

3.1. The Metropolis and Gibbs-Sampler Algorithms.
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The earliest successful Monctcarhlo procedure for the generation of sample

functions of MRvFs was dccloped by Metropolis et al. (1953) for the numerical

Computation of thermodynamic properties of nian)-particle systems in thermal

equilibrium. To describe it, let us consider a system , ith N particles, each of which

rna, be in any one of a finite number of allowable states. Let fA denote the state of

the j"' particle (we vill refer to the N -vector f as the global configuration of the -'

sstern), and let U(f) be the corresponding energy.

The basic idea of the algorithm is to construct a Markov chain whose states

correspond to the global configurations of the system at discrete time intervals

1.... .,l. It is a well known fact, from statistical physics, that when the physical

systen is at thermal equilibrium at a given temperature T, its configurations will be

distributed according to the Gibbs measure:

7r(f) 1exp[ Uf)I (2)

T'herefore, we want 7r(f) to be the invariant measure for our chain. If the chain is

regular ( i.e.. if it is possible to go between any two states in some fixed number of

steps), 7r(f) will be the unique vector satisfying:

IrPC -r

where Pc is the transition matrix of the chain (see Kindermann and Snell, 1980).

Also, since a system in equilibrium looks the same if we reverse the time

direction, we require that the associated chain be reversible, that is,

Pr(f(n + 1) = j I f(n) = i) = Pr(f(n - 1) = i I f(n) = i)

For a regular chain, reversibility is equivalent to the "detailed balance" condition:

r(f)Pc(f , ') = ir(f')PC(f', f) (3)

where f and f' are any two global configurations. This condition means that, if

%e consider a large collection of isolated, identical systems, each one in thermal
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equilibrium at the same temperature (the so called "Canonical Ensemble"), the

number of systems going from state f to f' must equal the number of systems going

from f' to f. This condition is also sufficient for the convergence of the chain to

the desired Gibbs measure.

The algorithm proposed by Metropolis generates a regular chain that satisfies

(3). It is as follows:

Suppose that we visit the particles of the system (i.e., the sites of the lattice) in

some random sequential order (for example, we choose the next site to be visited at

random with uniform distribution). When a particle j is visited, we update its state

as follows:
(i) Choose a new state 'j randomly from the set of allowable states using a

uniformly distributed random number.
(ii) Compute the increment in energy AEj that results from moving the state

of the 3 th particle from fj to 1-.
(iii) If AEj : 0, make the move, i.e., set f, - I.

If AE > 0, generate a new random number r, uniformly distributed
between 0 and 1.
If r < e- A E I , seth = fj .

If r > e-At, leave fj unchanged.

If we denote by q(f,7) the probability of proposing the state f when the

system is at state f (i.e., the probability of visiting particle j, and selecting the state

7,. for it, note that q must be a symmetric, irreducible stochastic matrix, so that

q(f, 7) = q(7, f), by construction), we have that

Pc(f, f) = q(f, )rin(l,e - AU/T)

PC(f ,f)= q(7, f)min(1,eU/T)

where

&U= U(j)- (f)

Therefore, if AU < 0,

Pc(f, 3) = q(f, 7) and Pc(, f") = q(f, 7 )ear/-
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and if AU > 0,

Pc(f, f) = q(f, f)e - AI/T and Pc'(f, f) = q(f, f

Clearly, in both cases, (3) is satisfied.

This is not the only chain that satisfies (3). Another possibility is to set:

Pc(f, 2) = q(f, ) r) -

7r(f) + 7r2)

= q(f,f)
1 + eAUT

in which case we get the "heat bath" algorithm (see Gidas (1984) and Hastings

(1982)). -

A different construction, called the "Gibbs sampler" has been proposed by

Geman and Geman (1983) (see also Besag (1972)). In this scheme, too, at each

iteration only one site is modified; its new state, .fj is selected at random from the

conditional distribution given by equation (1). These authors show that provided

only that we keep visiting every site, (i.e., that we update its state "infinitely often")

the resulting chain is ergodic, and its invariant measure is given by (2) (note that

reversibility is not required in this case). It is not difficult to see that for binary

systems this method is equivalent to the heat bath algorithm.

3.2. Statistical Mechanics Interpretation.

To get an intuitive grasp on the way these algorithms work, it is useful to

recall some results from statistical mechanics (see, for example, Reif, 1965). When

a macroscopic system (i.e., a system with a large number of degrees of freedom)

is in thermal equilibrium at a given temperature T, its state f will be such that

the Gibbs free energy F is minimized. The relation between F(f) and the internal

energy U(f) of the system is given by:

F(f) = U(f) - TS
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where the entropy S is:

S = On(U)

and E(U) is the total number of feasible configurations of the system with energy

equal to U.

From this relation it is clear that at high temperatures, a system in equilibrium

will adopt a disordered, high energy configuration (which will have a high value of

S), while at low temperatures, the dominant tendency will be towards low energy

states. The probability distribution of the equilibrium energy is given by:

Pu(u) 1 .-. U/Tn(u)PUM z

where Z is a constant. Since fl(.) is a rapidly increasing function of U, and the

negative exponential is rapidly decreasing, Pu will be sharply peaked around a

value U(T). Using the fact that fl(U) = O(U"), where n is the number of degrees

of freedom of the system, one can show that the relative width AU of this peak will

be inversely proportional to the square root of n:

AU 1

U.

(This result holds, in fact, not only for the energy, but for other related

thermodynamical properties as well). This means that, for large n, the Metropolis

(or Gibbs sampler) chain will generate (asymptotically) configurations whose energy

is very close to U*(T), which is an increasing function of T.

To illustrate this, let us consider a binary system on a four-connected square

lattice, whose energy function is given by:

UY Cf),fj
T C

with
-1, if f- f'

otherwise
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Figure 4. Sample patterns of the two-dimensional Ising model at 0.8 (left), 1.0 (center) and
1.2 (right) times the critical temperature.

where C ranges over all the nearest neighbor cliques of the lattice (this is the two

dimensional Ising model with "free boundaries" -since the only interactions that
contribute to the energy are those between elements of the field that belong to the

lattice - which we will later discuss in detail).

In figure 4 we present typical equilibrium configurations generated at three

different temperatures using the Metropolis algorithm with random updating order.

The temperatures used correspond to 0.8. 1.0 and 1.2 times the critical temperature

for this model (the critical temperature is defined as the maximum value of the

temperature for which the effect of fixed conditions at the boundary of a square

lattice is felt at the center, no matter how large the lattice is. For the two-dimensional

Ising model it equals 2.273).

In the limit of very large lattices, the equilibrium energy per spin (which is

proportional to the total length of the boundaries between "black" and "white"

regions) is given by (see Wannier, 1959): :

UT __ 2 1 2 t1/
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Figure 5. Equilibrium values of thc energy (a) and average density (b) for an infinite lsing
net (from Wannier. 1959)

where we take the + or - sign, above and below T,, respectively. k is the Boltzmann

constant: a is given by:
2sinh(1/T)

cosh 2(1 I/T)

and K(.) is the complete elliptic integral of the first kind (see, for example,

Hildebrand, 1976).

The average density of "black" elements can be computed by the expression:

C+(T) + Csh(1/T)(sinh 2(I/T)_ l)11/8C+(T)nh = h(11T)-

The shape of these functions is illustrated in figure 5.

From a qualitative viewpoint, one can see that the temperature, which is the

only free parameter of this model, controls the granularity (average cluster size and

cluster density) of the sample patterns.

Other examples of patterns generated with these algorithms (or some variations

of them) may be found in Cross and Jain (1983) and Hassner and Sklansky (1980),

where they are used as models for texture; in Geman and Geman (1983) as models
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for piecewise constant images, and in Grenander (1983), where they are used to

produce more complex patterns.

3.3. Continuous Valued State.

Any of the two algorithms presented in section 3.1 can be generalized to the

case where the state of each particle can take any real value on a compact set
(e.g., a closed interval) at the expense of their computational efficiency. A different
approach that seems promising is based on the fact that a vector f which obeys the

stochastic differential equation:

df = -gradU(f)dt + v7Tdw (4)

%%here w is a vector Wiener process with unit variance (a collection of independent

Brownian motion processes), will be, tinder suitable smoothness conditions on
U, distributed asymptotically (as t T oc) according with the Gibbs measure (1)
(see Grenander 1984; Geman and Hwang, 1984). This means that we can use a

numerical simulation of (4) (see Wong and Zakai (1965)) to generate the desired

patterns. This approach has two interesting advantages, that result from the fact that,
in a numerical simulation, the increments dw are approximated by independent,

identically distributed Gaussian random variables:
(i) We only need to generate Gaussian random numbers, for which efficient

algorithms exist.

(ii) All sites can be updated at the same time, so that efficient parallel
implementations can be adopted.

The probability distribution of the configurations generated by the system at

any given time can, in principle, be obtained by solving an appropriate system

of partial differential equations (i.e., the Kolmogorov equations; see for example,
Karlin and Taylor, 1981); this will not be practical in most cases, however, so that
the rate of convergence of this algorithm will have to be assessed in an experimental

way.
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We will now describe how an extension of the techniques presented in this

section can be used to find the global minimum of arbitrary energy functionals.

As we will show in the next chapter, this method will be particularly useful for

minimization in the variational principles which represent the Maximum a Posteriori

estimated solution to a reconstruction problem. .-.

4. Simulated Annealing and Global Minimization.

Simulated annealing is a new technique, developed by Kirkpatrick et al (1983)

for the solution of combinatorial optimization problems. It is based on the idea

that any cost functional of N variables, each of which can take values on some

finite set, can be considered as the energy function of a physical system whose state

corresponds to a particular value of these variables. Therefore, we can use, say,

the Metropolis algorithm to generate, at any given "temperature" T (which now

becomes a parameter of the optimization process) samples from the corresponding

Gibbs measure. Since as T 0 this measure converges to an impulse (or set of

impulses) corresponding to the state (or states) of minimum energy, the state of the

system in thermal equilibrium at zero temperature will correspond to the value of

f that minimizes U(f) globally.

One serious difficulty, however, is that attaining thermal equilibrium might take

a very long time at low temperatures. Kirkpatrick's idea was to start at a relatively

high temperature (where thermal equilibrium is reached very fast), and then, to .

slowly cool the system, until "freezing" occurs and the state stops changing.

4.1. Discrete Valued State.

German & Geman (1983) were able to show that if the temperature is lowered

at the rate:

T =(5)
log(n + 1)

where n is the number of iterations, and C is a constant, this algorithm (using the

Gibbs sampler) will in fact converge (in probability) to the set of states of minimal
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energy. They also showed that this chain is asymptotically ergodic in the sense that

for any real valued function Y of the global state at time t, f(t), we have:

lira(f(t)) = j Y(w)dPf(w)

nToo n -

" here 0 is the set of allowable global states. This means that we can use time

ai erages to estimate ensemble averages. Similar results have been obtained by Gidas

(1984) for the Metropolis and heat bath algorithms.

The minimal value of the constant C in equation (5) for which convergence

can be guaranteed has not been determined in general. T1he value found by Geman
and Geman is:

C=NA

*m where N is the total number of sites in the lattice, and A is the largest absolute

difference in energies associated with pairs of global configurations that differ at
only one site. This value, however, is too large to be of any practical use in most

applications. Gidas (1984) has shown that if U has not more than two local minima,

C can be computed as:
1

where A' is the minimal energy change between a local minimizer and a neighboring

(in the sense that it differs at exactly one site) configuration. He also conjectures

that this expression holds in general, but this result has not been confirmed.

In a recent paper, White (1984) characterizes the initial annealing temperature

in terms of the standard deviation of the "density of states" (the number of possible

states of the system, per unit energy, for each value of the energy) when this function

is approximately Gaussian (which seems to be the case for a large class of systems).

In some particular cases this value can be determined analytically from the structure

of the problem, but in general, it has to be computed numerically from a simulation
of the s)stem at high temperature.

For the class of systems in which we are interested, we have found, by a trial

and error procedure, that a alue of C eqUal to 1.5 times the natural temperature of
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the system (i.e., the temperature associated with the Gibbs distribution of the prior

MRF model) produces a reasonable convergence bchaviour (of the order of 500
iterations), but clearly, more research, both theoretical and experimental is needed

in this area.

Another important factor which determines the computational efficiency of

simulated annealing is related to the difficulty in computing the increment in energy

AU, associated with a change in the state of the 3 th variable. If the energy function
comes from the probability measure of a MRF, the computation of AUj will require

only the states of the variables in the neighborhood of j. Suppose now that we color
the sites of the lattice in such a way that any two neighbors will always be of different

color. In a parallel implementation we can, in principle, update the states of all

the sites that are of the same color in a simultaneous way. The minimum number
of colors needed to satisfy this condition is called the "Chromatic Number" of the
graph that describes the neighborhood structure of the MRF, and it is bounded
below by the size of the largest clique of the system. This number, then, determines

the minimum number of steps that are needed in a parallel machine to update the

state of the whole lattice. We will analyze these implementations in more detail for
some particular examples in the next chapters.

4.2. Continuous Valued State.

All the available convergence results for the annealing algorithm hold only for
the case where the set of allowable values for the state of each variable is finite. If
this set is infinite, but compact, we can still use these results to find approximate
solutions by discretizing it. However, the computational complexity will increase

as we increase the resolution of this discretization. An attractive alternative is to
generalize the approach discussed in section 2.2 by making T in equation (4)

time dependent. A convergence proof for this modified scheme, for smooth energy
functions that satisfy appropriate boundary conditions, can be found in Geman and

Hwang, 1984.
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5. Discussion.

We have presented a class of probabilistic models with local dependencies

which can represent prior generic knowledge about the solution of a reconstruction

problem: the class of MRF's on finite lattices. We have seen how they can be

completely specified by defining arbitrary "potential functions" which are supported

on the cliques of the associated neighborhood system. It is thus easy to define

families of fie' -s with a wide range of different behaviors. For example, if the only

prior knowledge that we have is that the reconstructed surface should be piecewise

constant, we may use a 4-connected lattice with Ising potentials:

if [i -ji = l and -j .f

VC(fif) if li-il 1 and fj i7fj

O0, otherwise

In this case, the natural temperature of the system will index a one parameter

family of fields with varying degrees of granularity.

Smooth surfaces can be modeled using the same neighborhood system, but

with quadratic potentials:

(f, f,)2 if l/ji =

VO , otherwise

More complicated, non-isotropic patterns can also be modeled, using slightly

larger neighborhoods (as in Cross and Jain, 1983). Also, as we will see in chapter

5, an appropriate choice of the lattice and the neighborhood system, permits one

to use a MRF to model sets of piecewise smooth curves on the plane. Using this

construction, it is possible to model the behavior of a piecewise smooth function

defined on a two-dimensional lattice (a "piecewise smooth surface") by coupling

two MRF's: one for the smooth portions, and another for the curves that bound

them.

We showed how the probability distribution of the configurations generated by

a MRF has the same form as the one associated with a macroscopic physical system

in thermal equilibrium, so that one can use Monte Carlo procedures that simulate

39

.. . . . . .. . . . . . . . .... ..... ... .............. ........ ?....? .....
...............- - --- --. -. .-. -- - ., . . . .



the behavior of such systems to generate sample functions of arbitrary MRF's. The

Markovian property of the models imply that the computations performed by these

procedures are local in nature (the updating rule for each site depends only on

the states of its neighbors), so that, in principle, efficient parallel schemes can be

designed for their implementation. We will examine this question in detail in the

next chapter, where we discuss the use of MRF models and Bayes theory for the

optimal solution of reconstruction problems.
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Chapter 3

OPTIMAL BAYESIAN ESTIMATORS

1. Introduction.

The use of the Bayesian approach for the solution of reconstruction problems

requires the development of the following items:

(i) A prior probabilistic model for the functions to be reconstructed.

(ii) Stochastic models for the observation processes.

(iii) Appropriate loss (error) criteria.

(iv) Estimators that are optimal with respect to (i), (ii), and (iii).

(v) Efficient algorithms for the computation of these estimates.

In the previous chapter, we discussed item (i), and presented a class of

probabilistic models that can be used very effectively to encode prior generic

constraints about the solutions of reconstruction problems. In this chapter we will

develop the remaining necessary ingredients that are necessary to perform optimal

reconstructions in the general case.

First of all, let us formulate the class of problems of interest in a precise way,

and present a general stochastic model for the observation process.

2. Problem Formulation.

We mentioned in chapter 1 that there is an important class of perceptual

problems whose solution can be found by reconstructing a function f : R"

R- on a finite set of points that lie inside a compact domain f0 C R". Although

the methods that we will develop are, in principle, perfectly general, for the sake of

clarity we will confine ourselves to the important particular case when n = 2 and
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m 1. We are, therefore, interested in reconstructing the value of a function f at

each one of the N sites of a lattice L (we will denote ie value of the function at
site i E L by f).

2.1. Stochastic Model for the Observations.

Let us assume that we have a set of observations g on a subset S of the sites

of L, and that the process by which these observation are obtained can be modeled

by:

gj = *(Hi(f), j) , j s (1)

Here , II(.) is an operator with local support that represents some kind of (in

general non-invertible) degrading operation (such as blurring); %P is an operation

invertible with respect to nj (so that ni = '-'(gj,//(f))); it may represent,

for example, noise addition or multiplication followed by a memoryless non-

linear transformation. n3 represents a scalar noise process with known probability

distribution Pnj. We will assume that nj is independent of ni, for all i = j, and

also that it is independent of f.

Given f, the conditional probability distribution for the observations P91f will

be given by:

P,/ (g; f) "- I Pni -(gi, Hi(f))
iES

Assuming that Pi(ni) > 0 for all i, and all possible values of nj, we can define

the functions 4i by:

*,j(f g,) - - In Pni( '-C(g,, Hi(f)) (2)

so that we can write the conditional distribution as:

Pgl (g; f) - exp[- f $i(f, g9)] (3)

iES

As an example, consider the case of additive, zero mean white Gaussian noise. We

have:

Hi(f)- A
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%P(a, b) a+ b

202

P(g; f) = 1eXp[-(f, -g,)
2 /21

iES V-'o

=expl- Zln(-Vf2-r) + 1 -f 9,)2 1]

2.2. Posterior Probability Distribution.

Since we are using a MRF model for the field fits prior distribution will be

of the form:

P1 ()M - exp[- I UOMf) (4)

with

UO(f) = ~ f
C

where C ranges over the cliques of the neighborhood system of f

Using Bayes rule, we find that the posterior distribution is:

P 1'9(f; g)-Pj)P 1 (;)
Pg(g)

Using the expressions (3) and (4) for Pf and P91f. and recognizing that Pg(g) is

a constant for a given set of observations, we get that the posterior probability will

also follow a Gibbs distribution:

Pf1 ,9(f; g) = exp[-Up(f; g)] (5)

with

U1 '(f g) =-UOMf + OY(f g,) (6)
TO iES

Where Z1, is a constant, and the functions 0i are defined by (2).
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We can now provide a physical interpretation of the posterior distribution, by
considering that, while the prior distribution (4) describes the behavior of a free field

in thermal equilibrium1 (see section 3.2 of chapter 2), the distribution (5) describes

the behavior of the same field coupled with a fixed (but spatially varying) external

field whose value is given by g. The functions ¢b,, whose magnitude depends on the

noise variance, can then be interpreted as the coupling strengths between the two
fields. This coupled system is also Markovian, and if

HII(f) = li(fi) for all i E S

its neighborhood structure will be identical to that of the original field.

The importance of this interpretation lies in the fact, which will be proved

in the following sections, that the optimal estimate for f can be obtained simply

by observing the equilibrium behavior of this coupled field. Before considering this

question in detail, let us define the appropriate cost flnctionals for the applications
we are interested in.

3. Cost Functionals.

The Bayesian approach to the solution of reconstruction problems has been

adopted by several researchers. In most cases, the criterion for selecting the optimal

estimate has been the maximization of the posterior probability (the Maximum a
Posteriori or MAP estimate). It has been used, for example, by Geman and Geman

(1984) for the restoration of piecewise constant images; by Grenander (1984) for
pattern reconstruction, and by Elliot et. al. (1983) and Hansen and Elliot (1982) for

the segmentation of textured images (a similar criterion - the maximization of a

suitably defined likelihood function - has been used by Cohen and Cooper (1984)

for the same purposes).

Since the use of this criterion defines the optimal estimator as the global

minimizer of the posterior energy Up, (equation 6), it is closely related to the

standard regularization method that we discussed in chapter 1. Indeed, if we assume

quadratic potentials for the prior MRF model, the term Uo(f) corresponds to a
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global smoothness assumption (the "stabilizing fuinctional"), and if the observations

are corrupted by additive Gaussian noise, the term + *,(f, Yg) will also be quadratic,

so that Up will have a unique minimum. For more general prior and observation

models, the MAP estimator may be considered as an extension of the standard

regularization approach. Thus, the variational principle proposed by Blake (1983),

on a purely pragmatic basis, for the reconstruction of piecewise constant images is

very similar to the one derived by Geman and Geman (1984). Even in this case,

however, the precise probabilistic formulation in the latter case is preferable, since

it provides a precise interpretation of the parameters, and a practical means for

vcrifying the adequacy of the prior assumptions (via the experimental analysis of

sample fields).

In some other cases, a performance criterion, such as the minimization of the

mean squared error has been implicitly used for the estimation of particular classes

of fields. For example, for continuous-valued fields with exponential autocorrelation

functions, corrupted by additive white Gaussian noise, Nahi and Assefi (1972) and

Habibi (1972) have used causal linear models and optimal (Kalman) linear filters

for solving the reconstruction problem.

The minimization of the expected value of error functionals, however, has not

been used as an explicit criterion for designing optimal estimators in the general

case. We will show that this design criterion is in fact more appropriate in our case,

for the following reasons:

(i) It permits one to adapt the estimator to each particular problem.

(ii) It is in closer agreement with one's intuitive assessment of the performance
of an estimator.

(iii) It leads to attractive computational schemes.

We will now propose design criteria for two particular problems: image

segmentation and surface reconstruction.

3.1. Error Criterion ror the Segmentation Problem.

Consider a field f with N elements each of which can belong to one of a finite
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set Qj of classes. Let fi denote the class to which the ill element belongs. The

segmentation problem is to estimate f from a set of observations {gj,..., g1 }. Note

that j does not necessarily correspond to the image intensity. It may represent, for

example, the texture class for a region in the image (as in Elliot et. al, 1983), etc.

A reasonable criterion for the performance of an estimate f is the number of

elements that are not classified correctly. Therefore, we define the segmentation

error e. as:

(1 -6(f,-?,)) A, E (7)

where
1, if a 0

6(a) =(8)
0a , otherwise

3.2. Error Criterion for the Reconstruction Problem.

In this case, we also consider a field f with N elements which can take values

on finite scts {Qi}, but now we assume specifically that fi represents the intensity

of an image (or the height of a surface) at site i. This suggests that an estimate)*

should be considered "good" if it is close to f in the ordinary sense, so that the

total squared error:
N

(f7= -(f.,) (9)

will be a reasonable measure for its performance.

Let us now derive the optimal estimators for these error criteria.

4. Optimal Bayesian Estimators.

To derive the optimal estimators with respect to the criteria stated above, we

first present the general result (which can be found, for example in Abend, 1968)

which states that if the posterior marginal distributions for every element of the field

are known, the optimal Bayesian estimator with respect to any additive, positive
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definite cost functional C may be found by independently minimizing the marginal

expected cost for each element.

In more precise terms, we will consider cost functionals C(f, 2) of the form:-.

C(u, 2)= G (f,, h) (10)
iEL

with {iab) 0 if a b
>: 0. if a = b , for all i

We will assume that the value of each element fi of the field f is constrained
to belong to some finite set Q. (the generalization to the case of compact sets

is straightforward). The Optimal Bayesian estimator f with respect to the cost

functional C is defined as the global minimizer of the expected value of C over all

possible f and g:

0 = f, C(f f )dPfg(f g) =

= ij I/, C(f, 7)dP,,(f, g) (1)

We now have:

Theorem 1:

The optimal estimate of a field f with respect to the positive definite cost functional
C can be found by minimizing independently the marginal expected cost for each

element, i.e.,

f = q : C,(r, q)P,(, I g) _ C C1(r,),(, I g)-
rEQ. rEQi

for all 8 A q, and for all i E L.

P(r I g) is the posterior marginal distribution of the element i:

Pi(r l g)= E P1 1 (f;g) (12)
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Proof.j

First, we note that since C is positic definite, and since

P1,g(f, g) - P119(f; g)P(g)

where P,(g) is a constant for a given set of observations, we can write, from (11):
i _,C(f, )P11'(f ; g) == inf E" CY , h)P/j (f g)

I If

Using (10), we rewrite the right hand side as:

in.f C(fi, 7,PI,(f; g) =

i f

= if C(r, A)Pf,(/; 9)
Ss rEQ f:fi="r

From (12), we find that this expression is equal to:

iqf i Z C(, 'j)P(r I g)
f i rEQ"

which, since C is positive definite, we can rewrite as:

Z inr C C,(r, 2,)P(r I g) I
. I, rEQ,

The optimal estimators for the error criteria defined in section 3, can be easily

derived from this result:

In the case of the segmentation problem, we put

[": Oi~~~~fi, bv = i-- (f - i

and get that

_ (1 -6(r,if)Pi(r Ig) 1 1 -P1 (f, I g)
rEQ,
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and therefore,
f1 ==qEQi P(qjg) ::Pi(8j9)

for all s $4 q (13)

We will call this estimate the "Maximizer of the Posterior Marginals" ( 2 MPM).

For the reconstruction problem, we set:

C3(f,,) (f, Y,)2

now,

rEQi rEQi

imnplies that
-2qf + q 2 < -20; + o

or equivalently,
-q)

2 < 3)2

where
= rP(r g)

so that the optimal estimate is:

for all 8 34q (14)

We will call this estimate the "Thresholded Posterior Mean" (2 Tpm).

Note that these results still hold if the sets Qj of allowable values for each

element, or the individual cost criteria C, are not the same for all i. In particular,

we may assume that the index i varies over the union of two lattices:

i ELi UL2
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and let the field at the sites of L, represent the height of a piecewise smooth Surface,

and at the sites of L,2, take an integer Valuie to indicate the presence (and possibly

the direction) of a boundary between two adjacent continuous patches (see Geman

and Geman, 1984; we will explain this construction in detail in chapter 5). If we

now define a mixed error functional:

e, f) (f, j,2 + >X (1 g6f, fi)
iEL1  iELi

for any positive value of X, the optimal estimate will be:

SEL,

The main obstacle for the practical application of these results, lies in the

formidable computational cost associated with the exact Computation of the marginals

and the mean of the posterior distribution given by (5), even for lattices of moderate

size. In the next section we will present a general distributed procedure that will

permit us to approximate these quantities as precisely as we may want.

5. Algorithms.

The algorithms that we will propose are based on the use of the Metropolis or

Gibbs Sampler schemes that we presented in chapter 2, to simulate the equilibrium

behavior of the Coupled MRF described by equation (5). We recall that the Markov

chain generated by these algorithms is regular, and their invariant measure is the
posterior distribution d The law of large numbers for regular chains (see, for

example, Kemeny and Snell, 1960) establishes that the fraction of time that the

chain will spend on a given state f will tend to P- (f; g) as the number of steps

gets large, independently of the initial state. This means that we can approximate

by:

n f (15)

and the posterior marginals by:

Pi(q g)~ 1 6f~ q) (16)

tt."

V'.:

Thealgritms hatwe illproos ar bae nte -kfte erpls r,._

GibsSaplr chme tatw pesntd n hate 2 o imlae heeqilbru

* - .~ * . - . - - * . . '. ~ ~ *,'". -j



where f(t) is the configuration generated by the Metropolis algorithm at time t,

and k is the time required for tile system to be in thermal equilibrium. From these

alues, fMI'M and fTlM can be easily computed using (13) and (14).

This procedure is related to the use of simulated annealing (see section 4 of

chapter 2) for finding the global minimum of Up (i.e., the MAP estimate: see

Geman and Geman, 1984). In our case, however, we are interested in gathering

statistics about the equilibrium behavior of the coupled field at afixed emperature

T = 1, rather than in finding the ground state of the system. This fact gives our

procedure some distinct advantages:

1. It is difficult to determine in general the descent rate of the temperature

(annealing schedule) that will guarantee the convergence of the annealing

process in a reasonable time (it usually involves a trial and error procedure).

Since we are running the Metropolis algorithm at a fixed temperature, this

issue becomes irrelevant.

2. Since in our case we are using a Monte Carlo procedure to approximate

the values of some integrals, we should expect a nice convergence behavior, in

the sense that coarse approximations can be computed very rapidly, and then

refined to an arbitrary precision (in fact, it can be proved (see Feller, 1950)

that the expected value of the squared error of the estimates (15) and (16) is

inversely proportional to n).

The main disadvantage of this procedure is that in the case of the segmentation

problem, a large amount of memory might be required if the number of classes

per element m is large (we need to store the N(m - 1) numbers that define the

posterior marginals).

With respect to the relative performance, we point out that in many cases,

particularly for high signal to noise ratios, the MAP estimate is usually close to the

optimal one. If the noise level is high, however, the difference in the performances

of the two estimators may be dramatic. This is illustrated in the example portrayed

in figure 6: panel (c) represents the MAP estimate of the binary MRF (a) from the

noisy observations (b); it is clear that the approximations to the MPM estimates
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shown iii panels (d) and (e) are better than the MAP from almost any, viewpoint. AnI

intuitive explanation for this behavior comes from the fact that the MAP estimator

is implicitly minimizing the expected value of a cost functional CMAI'(f, f) which is

equal to zero only if fi - f'Jbr alli, and is equal to, say, M otherwise. If the signal

to noise ratio is sufficiently high, the expected value of the optimal segmentation
error will be very close to zero, so that MI'M and 2 MAI' will coincide. In a high

-" noise situation, however, the MAP estimator will tend to be too conservative, since

- from its viewpoint it is equally costly to make one or one thousand mistakes. The

MPM estimator, in contrast, can make a better (although more risky) guess, since

making a few mistakes has only a marginal effect on the expected cost. We will

return to this example, and analyze in detail the relative performance of both

estimates in the next chapter.

6. Computational Complexity and Parallel Implementations.

We have seen how the optimal solutions of reconstruction problems , for a

large class of cost criteria, can be obtained from the observation of the evolution

of the Markov chain generated by the algorithms presented in chapter 2. In this

section, we will discuss the following questions:
(i) Which of these algorithms is the best one to use on a serial machine, from

the viewpoint of the computational efficiency.

(ii) Which one is best suited for an implementation in parallel hardware.

We will also describe a parallel machine that is currently under construction at

Thinking Machines Corporation and at the MIT Artificial Intelligence Laboratory:

the "Connection Machine" (Hillis, 1985), and present estimates for the execution

time of these algorithms in that particular piece of hardware.

6.1. Serial Complexity.

Suppose we are running our algorithms on a serial machine. In the three cases

*. (Metropolis, Heat Bath and Gibbs Sampler), we first have to select the next site
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(d) (e)

Figure 6. (a) Sample fu~nction of a binary MRF. (b) Output of a binary symmetic channel
(error rate: 0.4) (c) MAP estimate. (d) Monte Carlo approximation to the %MPM estimate. (e)
Deterministic approximation to the MPM estimate.

whose state has to be updated. Assume it is site i. Let AU, denote the increment

in the posterior energy associated with replacing the value of the state of the jfk

element by the value q. Using (6) and the expression for U0 of (4), we get:

AUq = ~ (Vc(f(g)) - Vc(f)) + s,(f(), g,) - fe, g,) (15)

where

Let C(AU) denote the computational cost of evaluating (15).
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The necessary steps for updating the state ofsite i are, in the Metropolis scheme

(see section 3.1 of chapter 2):

(i) Select the candidate state q from the set Qj (generate a uniform pseudo-
random number in the range (0, IQjj], with cost C(prn), and load q from
a table, with cost C(load)).

(ii) Compute AUq.

(iii) Check if AUq > 0 (cost: C(comp)). If not, set fi -q. Otherwise, go to
(iv):

(iv) Compute exp[-AUq] (cost: C(ezp)).

(v) Generate a new uniform pseudo-random number in the range (0, 1).

(vi) Compare it with exp[-AU].

Therefore, we have that the total updating cost for the Metropolis scheme, Cm,

satifies:

CM > C(AU) + C(prn) + C(comp) + C(load)

CM < C(zAU) + 2C(prn) + C(ezp) + 2C(comp) + C(Ioad) (17)

For the Heat Bath scheme, steps (i), (ii) and (iv) are identical, and step (iii) is

deleted. The remaining steps are in this case:

(v) Generate a new uniform pseudo-random number r in the range (0, 1 +

exp[-AUqJ]

(vi) If r > 1, set f = q; otherwise, leave fi unchanged.

The updating cost for the Heat Bath scheme, CHB is then:

C1B = C(AU) + 2C(prn) + C(ezp) +

C(comp) + C(add) + C(load) (18)

and in general, it will be higher than CM, since

C(exp) > > c(comp)

For the Gibbs Sampler, we select the new state by generating a pseudo-random

number which takes values on Qj, with probabilities given by the conditional

distribution (equation (1) of chapter 2). To do this efficiently, we rewrite this
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equation as:
P(q f) = exp[-AUq]

Pit •

E>EQ. exp[-AUt]

(Note that AU, = 0).

Let Q= {qj,...,qM}. We now generate an array a, by putting:

a=O

aj=aj1 +exp[-AUq ] , j=1,...,M

The new state )' is now computed by generating a uniform pseudo-random number

r in the range (0, aM], and putting:

f,=qj ; rE (a"-,a aj

The computational cost will be:

CGS - (M - 1)[C(AU) + C(exp) + 2C(add) + 4C(load) + C(comp) +

+C(prn)(9)

note that we are including the overhead cost incurred by the use of the auxiliary

array a.

If N is the size of the lattice, and we perform n iterations to compute our
estimate, the total cost will be:

CT - N . n . (C(update) + C(select) + C(overhead)) (20)

where C(select) is the cost associated with the selection of the next site whose
state is going to be updated. This selection involves the generation of 2 uniform
pseudo-random numbers in the first two cases, whereas for the Gibbs sampler it
requires only a couple of additions, since in this case we can select the next site
using a deterministic rule, such as lexicographic order (see section 6.3 below).
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Since C(update) is the dominant cost, apparently one should conclude that the

Metropolis algorithm is the most efficient. It must be considered, however, that
as the size of the state space (i.e., M = JQ i) increases, the number of iterations
needed to get an estimate with an equivalent degree of precision will increase much
faster in the Metropolis or Heat Bath cases, than in the Gibbs sampler, since in the . -

latter case we are using an "importance sampling" procedure, versus the uniform
sampling of the former (see Hammersley and Handscomb, 1965).

A rigorous analysis of the tradeoffs involved is not easy, and is highly dependent
on the nature of the particular problem, so that an experimental analysis might be __-

needed to clarify these questions in each case. In the more interesting case of a
parallel implementation, however, the Gibbs sampler becomes the obvious choice.
We will justify this assertion in the following sections.

6.2. Parallel Updating.

A necessary condition for the convergence of the probability measures of the
Markov chains defined by the Metropolis, Heat Bath or Gibbs Sampler algorithms
to the Gibbs measure is that if two sites belong to the same clique, they are never
updated at the same time. As we will show in the next section, this condition is
also sufficient only for the case of the Gibbs sampler. In this case it is possible to
update simultaneously the states of all non-neighboring sites, by implementing the
algorithm in a parallel architecture in which a processor is assigned to each site.
The total execution time will then be reduced by a factor of

N

where K is the so called "chromatic number" of the graph that describes the
neighborhood structure, and it is equal to the minimum number of colors needed

to color the sites of the lattice in such a way that no two neighbors are the same).
Note that if the state of every site is allowed to take real (continuous) values, we

* may use a numerical simulation of the stochastic differential equation:

df = -gradU(f)dt + v2-Tdw
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to generate sample configurations from the desired distribution (see section 3.3 of
chapter 2). In this case, all sites can be updated at the same time, so that a parallel
implementation can reduce the complexity by a factor of N.

6.2.1. Convergence of the Gibbs Sampler.

Geman and Geman (1984) established that the measure of the Markov chain
defined by the Gibbs sampler will converge to the Gibbs measure independently of
the initial state, independently of the order in which the sites are updated (provided
only that we keep visiting every site, i.e., that we update its state infinitely often).
The convergence of the parallel implementation, therefore, follows from this general
result for which we present here a simple alternative proof:

First, we note that from the definition of a MRF, it follows that for every site
i, every value q E Qi, and every configuration f, the conditional probability,

Pr(fi=qlf3  , j j i) > 0 7

Since by hypothesis every site is visited infinitely often, this implies that any
two states of the chain will be mutually accessible (with positive probability) in a
finite number of steps, which means that the Gibbs sampler defines a regular chain.

On the other hand, the Gibbs measure 7r(f) is an invariant probability vector
of the chain. To see this, suppose that at time t, just before updating site i, the

possible configurations of the field F(t) are distributed according with the Gibbs
measure:

Pr(F(t) - f) = 7r(f)

After the update we have:

Pr(F(t + 1) =f) =Pr(Fi(t + 1) fi F(t)-f , j 3 i)

.Pr(F(t)-f. , 34i)
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= I ,j J #). , J -7 =•i)• -(f)

because, by the definition of the algorithm, the new state of the ill element is

selected randomly according with the conditional Gibbs distribution. The proof is

now completed by remembering a well known theorem for finite Markov chains

(see Kemeny and Snell, 1960) that establishes that every regular Markov chain:

(i) Has a unique invariant probability measure.

(ii) The measure of the chain will converge (with probability 1) to this invariant

measure independently of the initial probability distribution of the states.

Note that, unlike the Metropolis and Heat Bath algorithms, the convergence of

the Gibbs sampler does not depend on the reversibility of the chain (or equivalently,

on the satisfaction of the "detailed balance" condition given by equation (3) of

chapter 2), although this condition will hold if we use it with a random updating

order. We will now see that the reversibility will not hold in general if we use a

parallel updating scheme, which will make the first two algorithms unsuitable for

parallel implementations.

6.2.2. Breakdown of Reversibility for Parallel Updating.

To show why this condition is violated (by the three algorithms) when a parallel

updating scheme is used, we will consider a first order, binary MRF on a lattice L

with Ising potentials, that is,

f E {, 1} for all i E L

-1, if i -ijl = I and , f

VC(f, fi)-{ 1, if Ii- = 1 and fi 3 f.

0, otherwise

To implement a parallel updating scheme, we divide the sites of the lattice into

two non-overlapping sets, which we will call B and W (the sets of "black" and

"white" sites, respectively) as illutrated in figure 7.

Let fw, fl denote the state of the elements belonging to W and B, respectivelyso

that f {fw, fid}. The parallel updating scheme consists in updating first, say, all
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Figure 7. Nun-ovcrlapping sets for parallc updating (see text)

the white sites, and then all the black ones. Note that the random variables associated

with an two sites of the same color are conditionally independent (given the state

of "he elements of the other color), which means that the order in which their state

is updated is immaterial, so that, in fact, they can be updated simultaneously.

Let Pw, Pu, denote the transition probabilities corresponding to an update

of all the white and black sites, respectively. Note that botn Markov chains with

transition probabilities Pw and P8 satisfy the detailed balance condition (although

they are clearly not regular), so that for a fixed fB, we have: ...

Pw({fw, fB}, {fw, fB}) = " )W , !BI w, M)

7 -(fw, fM

and similarly, for a fixed 1w,

Pn({fw, fn}, {fw, fB})= (f ")P w, Bp r , f "ir(fw, f.-)J.

where 7r is the Gibbs measure of the complete configuration f {fw, fR}.

Now, let Pwn(f, 2) be the transition probability associated with a complete

"white-black" update (where the white elements are updated first). We have:

Pw(, ) = Pw({fw, A}, {fw, fB})PB({,}, fw, ) =
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= Pw({w,.f.}, {fw,fJ ( w,-

7r(fW, f)

7rrf, In
I(n W"",f)

where Pow is the transition probability of the converse "black-white" update (black

sites visited first).

Now, consider the particular configuration:

09 JEW

1l iEB

and let

,=l for all i E L

Clearly,

Puw(f f) > Pw,(f, f)

and so,

7r(f)PwB(f, if) > 7r(f)PwB(f, f)

so that the detailed balance condition does not hold.

The above argument can be easily generalized to show that if we use any

prescribed updating order (such as lexicographic order), the Markov chain generated

by any of the three algorithms will also become irreversible. These chains, however,

will remain regular, which means that in each case, the probability distribution of

the configurations generated by the chain will converge towards a unique invariant

distribution. In general, however, it will not be possible to guarantee the coincidence

of this invariant measure with the desired Gibbs distribution, except in the case of

the Gibbs sampler.

An example of a situation in which the invariant distribution is not the

Gibbsian measure, can be obtained by running the Metropolis algorithm, either
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with lexicographic or "black-white" updating order for the Ising modcl discussed in

section 2 of chapter 2. If the natural temperature is below the critical temperature

of the infinite lattice, the algorithm will produce equilibrium configurations that

are almost completely uniform, and therefore, inconsistent with the theoretical

predictions (and with the behavior of the same algorithm when random updating ...

order is used). The Gibbs Sampler (which in this case is equivalent to the Heat

Bath scheme), on the other hand, produces consistent results, as expected.

6.3. Discussion.

The previous results mean that the expected computational cost (execution

time) for the solution of a reconstruction problem on a large parallel machine, using

our general Monte Carlo procedure, will be given by:

Cp = n K -CGS (21)

where n is the number of (global) iterations; K is the chromatic number of the

graph of the underlying Markov model, and CGs is the updating cost of the Gibbs

Sampler, given by equation (19).

An example of such a massively parallel architecture is the "Connection

Machine" (Hillis, 1985). This machine was originally designed for the parallel

processing of structured symbolic expressions, such as frames and semantic networks.

It is a "Single Instruction Multiple Data" (SIMD) array processor consisting of

256,000 processing units (each with a single bit Arithmetic/Logical unit, and about

4K bits of storage) organized in a four-connected lattice that is 512 elements

square. Besides this nearest-neighbor connectivity, it will also be possible (although

computationally more expensive), to connect any two processors in the array using

a "Cross Omega" router network (Knight, in Winston, 1984).

At each cycle of the machine, for which we will assume a duration of

one microsecond, an instruction is executed by each processor, and a single

bit is transmitted to its neighbors. This means that the updating scheme can

be implemented most efficiently if the field is first order Markov, but higher
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order processes can also be implemented without using the router by successively

propagating the transmitcd state (the execution time, therefore, will grow linearly

with the order of the field).

To make these results more concrete, consider, as an example, the problem of

finding the optimal estimate for an M-ary, first order MRF with Ising potentials

(i.e., the segmentation of a piecewise constant image) from noisy observations (we

will analyze this problem in detail in the next chapter). Let us assume that the

estimator is to be implemented in the "Connection Machine", and suppose that by

the use of appropriate scaling factors, all the numbers can be represented as 16-bit --

integers. We will use the following conservative assumptions: We assume that 16

cycles of a single 1-bit processor are needed to perform 16-bit addition, sUbstraction

or comparison; 162 cycles to perform multiplication or division; 2 X 162 cycles for

generating a pseudo-random number with uniform distribution on a given interval;

16 cycles for memory transfer operations, and 6 X 162 cycles for computing an

exponential.

Assuming that we run 250 iterations of the system, and ignoring the overhead

time we get, from (19) and (21),

OF 1.4 (M - 1) seconds (22)

Although this execution time may be reasonable in many cases, it is clear that

this approach becomes impractical as M becomes large. In this case, it might be

more convenient to approximate the field by one in which the state at each site takes

continuous values in a compact set and, provided that Up satisfies the appropriate

smoothness conditions, use the stochastic differential equation:

df = -gradUp dt + ViTdw (23)

where w is a Wiener process, to simulate the behavior of the system (see chapter 2,

section 2.2).

This scheme will not work, however, if some of the variables are intrinsically

discrete (e.g., binary variables indicating the presence or absence of a boundary). In
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this case, it might still be possible to use a mixed scheme in which the state of the

discrete variables is updated using the Gibbs Sampler, and that of the continuous

ones using equation (23), but the precise form of such mixed schemes has not been

determined, nor their convergence properties established.

These considerations provide us with a strong motivation for finding alternative

ways of solving these problems. In particular, much more research is needed in the

following directions:
(i) Design of more efficient (possibly deterministic) algorithms for approximat-

ing the optimal estimators for particular classes of problems.

(ii) Design of analog and hybrid networks for implementing these kinds of

algorithms.

We will study these possibilities in detail, in the context of specific problems

in the following chapters.
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Chapter 4

RECONSTRUCTION OF PIECEWISE CONSTANT FUNCTIONS

I. Introduction.

In this chapter we will apply the optimal Bayesian estimators that we have
developed, to the problem of reconstructing piecewise constant functions from noisy
observations. The efficient solution of this problem is relevant for several reasons:

(i) Binary images (or images consisting of only a few grey levels) are directly
useful in many interesting applications (for example, object recognition
and manipulation in restricted (industrial) environments).

(ii) Several perceptual problems, such as the segmentation of textured images
(Elliot, et. al. (1983); Hansen and Elliot (1982); Cohen and Cooper (1984)),
or the formation of perceptual clusters (O'Cailahan (1974); Marroquin
(1976)), can be reduced to the problem of reconstructing a piecewise
constant surface.

(iii) As we will see in the next chapter, where we treat the reconstruction of
piecewise smooth surfaces, the boundaries between continuous patches can
be adequately modeled by binary fields coupled with continuous valued
processes. These coupled systems are very difficult to analyze in a rigorous
way. We hope to increase our understanding of them by studying first the

estimation of binary fields.

2. Problem Formulation.

Following Geman and Geman (1984), we will model the behavior of piecewise

constant functions using first order MRF models on a finite lattice with generalized
Ising potentials:
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-= , if li-Il: land f= fj
Vc (f i,fj) , if" 12jl= and fi 4 fj ().

O0, otherwise

fi E Q i q,.. qM} for all i

We will use a free boundary model, so that the neighborhood size for a given

site will be: 4, if it is in the interior of the lattice; 3, if it lies at a boundary, but not

at a corner, and 2 for the corners.

The Gibbs distribution:

P(f) = exp[-ToU(f)]

Uo(f) = I V(f,, 1,) (2)

defines a one parameter family of models (indexed by TO) describing piecewise
constant patterns with varying degrees of granularity.

Using the general stochastic model for the observation process presented in
section 2.1 of chapter 3, we get the posterior distribution given by equation (6) of

that chapter:

Pfj,(f; g) = exp[-Up(f; g)]

with

UPf; g) = -Uo(f) + E 0(f, gi) (3)
TO iES

Of particular interest will be the case of binary fields (M = 2) with the observations
taken as the output of a binary symmetric channel (BSC) with error rate E (Gallager,

1975), so that:
P(gi Ii) -"{ -), for gi =fi

for gi 3 i-

In this case, the posterior energy reduces to:

U,(f; g) = To x V(fi, fj) + a '(I - 5(fi - gi)) (4)
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where fi E {qi,q2};
f1, if a =-0

6(a) lO, otherwise (5)

and

= n('In (6)

Note that in this case (and also in the case of additive white Gaussian noise), by

modifying the constant Zp, and applying a suitable linear transformation to the
variables {fi}, so that Qj = {-1,1}, we can write the posterior energy in the form:

1 g) fifj + c figi (7)
. Up~f 9) =TO ij jIi I i

which corresponds to the Hamiltonian of an [sing ferromagnet coupled with a

spatially varying external magnetic field (whose magnitude is proportional to g).

The importance of this connection is twofold: on the one hand, it means that the

tools developed for the equilibrium behavior of these systems - which is what

the estimation process is about - may be relevant for the physicists. On the other

hand, it is conceivable that one could use physical ferromagnets to construct special

purpose "quantum" computers that could solve estimation problems at atomic

speeds.

In the following sections, we will study the relative performance of different

Bayesian estimators, and design efficient algorithms for approximating them in some

important particular cases.

3. Relative Performance of Bayesian Estimators for Binary Fields.

Once the posterior energy has been determined, one can solve the reconstruction

problem by finding the optimal Bayesian estimate of the field f. As we discussed

in chapter 3, however, we have several possible choices for the optimality criterion.

To understand the differences in their performance, we will now analyze in detail

the estimation of binary fields, when the observations are the output of a BSC with

error rate c.
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Since the field is binary, the MPM and TPM estimators (defined by equations

(13) and (14) of chapter 3, respectively) coincide. The question is: how do the

performances of the MAP, and say, 1PM estimates compare with respect to the

error criterion:

= E[e,(fi):

with
N

es ~( &(]i -,

where N is the size of the lattice, and the expectation is taken over all possible

configurations f and g.

In particular we are interested in the ratio:

CMAP -
= - -

eTPM

__ Ef,g exp[-Up(f; g)]e.,(f, JMAP(g))
Ef~,,e,,p[-U,,(U;g ?eVJ ,M~g)) ;

The numerical evaluation of this expression is feasible only for small values of N.

In figure 8 we show a plot of the ratio r for a 2 X 2 lattice, for different values

of the error rate E and the natural temperature To. As expected, r is never less than
1. In the worst case (for E = 0.1 and To = 0.2) the error of the MAP estimate

is 1.17 times that of the MPM estimate; if To is not too small and f is not too

large, both estimates coincide, and as E approaches 0.5 (low signal to noise ratio),

the MPM estimate is consistently better than the MAP. An experimental analysis

of larger lattices reveals a similar qualitative behavior, but the values of r are much

larger in this case (see table 1).

3.1. Example.

We now return to the example presented in figure 6 of chapter 3, and examine

it in more detail. Panel (a) represents a typical realization of a 64 X 64 Ising net
with free boundaries, using a value of To 1.74 (0.75 times the critical temperature
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1.17

e MAP

e MPM

Figure 8. Ratio of the average errors of the MAP and MPM csfimnators for a 2 x 2 [sing neL

of the lattice); panel (b), the output of a binary symmetric channel with error
rate c= 0.4; panel (c) the MAP estimate, and panel (d) an approximation to the

MPM estimate (which we will label "MPM (M.C.)") obtained using the Metropolis
* algorithm and equation (10) to estimate the posterior density. The corresponding

* values of the posterior energy Up (equation (13)) and the relative segmentation--

error (e,/64) are shown on table 1.
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Table I

f 9-fMAI' fMI'M(M.C.) fMI'M(Det.)

Energy -5594.8 -226.0 -6660.9 -6460.0 -6427.0 -'-

Seg. Error - 0.4 0.33 0.128 0.124

4. Exact Algorithms for tie MAP Estimator.

From the discussion of the previous section, it is clear that if the signal to

noise ratio is not too low, the MAP criterion may be an appropriate choice, if

one can design efficient algorithms for computing it. As we will now show, in

the case of one-dimcnsional binary fields, one can in fact construct an algorithm

which computes (exactly) the MAP estimate with computational complexity which

is O(N) (the length of the lattice) in a serial machine: at most 22N operations are

needed, and the storage requirements are also O(N). The algorithm can also be

distributed in a parallel architecture, making its execution time independent of the

lattice length.

To simplify the notation, we will assume that f, E {-1, 1} for all i (there is no

loss of generality in this asumption, since any binary process can be brought into

this form by a reversible linear transformation). Also, assuming the noise process is

stationary, we introduce the notation:

where To is the natural temperature of the field.

From equations (1) and (3), it is clear that the MAP estimation problem is

Up(f) =n + *fI',(g,)4
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where n is the number of places where fi 3 fi+ 1 (the number of odd bonds of the

configuration). From this expression, it follows that the MAP estimation process can
be reduced to the problem of finding the optimal value for n, and the best locations

for the odd bonds ( which we will also call "boundaries" between constant-valued

blocks). We will now present a procedure for performing this task.

Description of the Algorithm.

The idea in which this method is based is the following:

We start scanning the sequence {g,}, say, from the left, with some initial
estimate k E {-1, 1) for the value of f in the block that starts at Io (a pointer that
is initially set to 1).

Whenever we process a new observation gi, we ask if we can get a lower energy
by putting a boundary in j and in the best possible location I within the interval
[o,j], that is, we ask if:

Ub +1 < UP

where

UP= , I+k(g,),-
i=10

1 3

Ub 1+ '+k(gi) + '-(g)

As we will see below, the optimal boundary location I (which is initially set equal

to 10) needs to be updated only if the conditions:

YA L fYAIL

37 I r-.

*+k(gi) - - (gi) < * ',+k(gi) - '_k(g 1 )
i=0 i=16

hold simultaneously, in which case I is set equal to j - 1. Here, f Mt denotes the
maximum likelihood estimate: since we are using a white noise model, it is given
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by:
ff < * ,g).

1, otherwise

If we get a lower energy by putting a boundary at 1, we set 'i = k for i E [to, 1];

update the value of the pointer to by setting it equal to I + 1, and set the new

estimate for the value of f, in the block that starts at 1, equal to -k.

Otherwise, we just set f1 = k, and continue to process the next observation.

When we reach 9N, we take fN as the initial estimate and run the same

process backwards to get the final solution (in fact, one can show that it is possible

to make this backward run as soon as we get the second boundary). This means

that we can implement the algorithm in a distributed fashion, by processing in

parallel overlaping subsequences of {gi}, provided that the length of each of these

subsequences is greater than twice the length of the largest constant-valued block

in f. The final solution is then obtained by pasting together these partial estimates.

Formally, the algorithm is as follows:

Definition of Variables.

i: Current position.

to: Pointer to the beginning of the current region.

1: Current optimal location of the boundary in the interval [10, iJ.

k: Current estimate for f(1o, 1]).

Up: Energy increment associated with the assignment f-[o, i]) k.

Un: Energy increment associated with the assignment f([lo, i]) -k.

Ub: Energy increment associated with the assignment f([o, ]) = k((I,zf) k

sz: Best local (maximum likelihood) estimate for.-

siml: Best local (maximum likelihood) estimate for fi-.
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Up: nrg ncemn ascite it heasinmn (10 1) k
U .: Energy increment associated with the assignment f([lo, 1]) -k.

Utemp: Temnporary storage register.

M: A very large positive number.

KO: Switch indicating the method for estimating fl.

Algorithm AI(Ko):

1: Initialization.

Set lo 1=1; Up=U,. UnL ; Ub 1; up, M.

Set k 1, if K = o and *I+1(g) <4*%P AM)

K0 , if Ko#3 0.

Set siml = k

2: Main Loop: For i from 1 to N do:

Begin

Set si =1, if %P, +1(gi) < 'P-dci)

-1, otherwise.

2.1: See if the optimal boundary location needs to be updated:

If (si#4 k and si~ 34 iml anid Up -Up,-Um + Umi <0) do:

Update boundary location:

Set:

UP UP
MI= Urn
b= up + 1
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2.2: Update energy increments:

Set

Up =Up + ' +k(gi)
U.. Urn + %P -( 1

Ub =Ub +* -kP i

2.3: See if a new boundary has to be introduced:

If (Ub+1I < UP)do

Introduce a new boundary:

For j from 10 to I do: Set fj= k

Set:

k =-kc
to 1 + I

Utemp = UP - UP,
up =UMn - UrnI
Urn = Utemp

Ub UM +lI

2.4 Set siml 8 i

End

3: See if the last boundary has to be introduced:

If (Ub < Up) do:

3.1: For j from to to I set 4 = k.

3.2: Set to =I + 1.

3.3: Set k =-k.

4: Fill the last region:

For jfrom 10 to N set f, k I.

End.
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The proof of the fact that this algorithm will in fact find the global minimizer of

(7) is presented in appendix 4.A.

In appendix 4.B we present an alternative approach to this minimization, which

is based on dynamic programming ideas. The resulting algorithm is less efficient than

the one we have just presented for the case of binary fields, but it has the advantage

of being extensible to handle more general situations. Also in this appendix, we

compute the probability distribution for the number of odd bonds, and discuss the

relationship between the dynamic programming procedure, and the use of linear

filters to produce multi-scale descriptions of piecewise constant signals.

5. Estimation of Two-Dimensional Binary Fields.

The techiques developed in the last section for the exact computation of the

MAP estimate cannot be extended to the two-dimensional case; the main difficulty

here is that the geometry of the boundaries between uniform regions (which in the

one dimensional case are simply points), causes a combinatorial explosion of the

number of possible configurations compatible with a given total boundary length.

The question, then, is whether it is possible to find algorithms that approximate

the optimal estimates (with respect to the selected error criterion), that are more

efficient than the general Monte Carlo procedures presented in chapter 3.

5.1. MAP Estimator.

In the case of the MAP estimator, the efficiency of the Simulated Annealing

algorithm for the minimization of Up can be improved by defining large "blocks"

of sites (in a manner that is reminiscent of the "block-spin" strategy used by

Wilson (1975) in connection with the renormalization group approach to the study

of critical phenomena); the optimal estimate for the average value of the field in

each of these blocks is found, and then progressively refined by subdividing the

blocks in successive annealing stages. We will now show that, if we use a maximum

entropy assumption, the structure of the MAP estimation process for Ising models
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is invariant under the "blocking" transformation: this means that the ground state

(i.e., the MAP estimator) of the aggregated process (with blocks of size L) also

corresponds to that of an Ising model with a coupled external field, in which the

natural temperature is scaled by a factor of 11L, and the noise (coupling) parameter

by a factor of L2 . As a consequence of this scaling, the final temperature for the

simulated annealing of this smaller network will be approximately L times larger

than for the original problem.

Let Is consider a binary Ising net f with the observations taken as the output

of a binary symmetric channel with error rate c. From section 2, we know that the

posterior energy will be:

Up - V(fj, fj) + Zq(fi, g,) (8)
ot~i i

with I'02 if gi fi -
q(fi,g) = I, i '0

and

Notice that equation (8) can also be written in the form:

UP -- C To _ (fi, fi) + i q_, q(fi, gi) ('
0d I

where Vc, q¢ are continuous functions satisfying:

vcc, y) = V(x,y) and

qc(z, ) = q(x, yr) for x, y E {0, 1}

* We will now derive an expression for the energy in the "block spin" case. Let us

partition the original lattice L into square blocks of side L. The "block observations"

g will now be the density of I's on each block, i.e.,

gL(i) = f- E ,
jEAJ
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A

where Bi is the iZ" block. The "block field" fl. is defined in a similar way. •

For a given fl., we compute the energy by assuming a maximum entropy

configuration, which occurs when the I's that correspond to the given density fL(i)

are randomly distributed within the block. The energy will have three terms:

1. Interactions between adjacent blocks:

The interaction between two adjacent blocks i and j will be:

I, -- [-1. (P,, + Poo) + 1 (Po + Po,)] • L

where Pk, is the probability of having an element with state k on block i adjacent

to an element with state I on block j:

P1 I fL(i)fL(i)

Pol = f()(l - fL(t))

P0 - fL(i)(1 - fL())

POO = (1 - fL(i))(1 - fL(i))

Substituting these values we get:

Ii= L[2(fL(i) + fi(j)) - 4fL(i)fL(j) - 11

2. Interactions within each block:

This term depends on the relative frequencies of the clique configurations

11,10,01 and 00 (pli,po,poj and po, respectively) on each block (note that there

are 2L(L - 1) different cliques). Since the l's are randomly distributed we get:

[.;'tZ=---IL(S) 2

P01 = fL(i)(l - fL(i))
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so that the internal interaction I, is:

Ii = 2L(L - 1)(-4f,(1- 4f/,(i) - 1)

3. Interaction with the observations:

Assuming that the l's in the observations and in the field are independently

distributed we get:

Ioba(i) aL 2 [fj,(i)(1 -9 ,W(i)) + (1 - fL(i))gL(i)] -

= aL2 2(f(i) + gj,(i)- 2fi)9,(i)J

Finally, the energy takes the form:

UL(fU) = Z Ii + + Ib,(W))=

- L{T° -[2(fL(i) + fL(j)) - 4fL(i)fL(J) - 1] +

+ 2o(L - 1) -:(-4fL(i)2 + 4f,,(i) - 1) +
i

+QL Z(fL(i) + gL(i) - 2fL(i)gL(i)}

note that the sums are taken over pairs -' adjacent blocks, and over all the blocks,

respectively. For L 1, this expression reduces to (8') with

VC(f, fi)= 2(fi + fi)-4fifi- I

qc(a,b)= a + b- 2ab

For L > 1, the quadratic terms of UL are:

L [-4 Z fL(i)fLi) - 8(L - 1) Z fLt) 21

and since

-2 fL(i)fL,(j) + 2 fL(i)' = Z(f(i) - fl(j))2 > 0
iij
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it follows that

fj,(i)2 >- f,(i)f,(")

and

-4 I .U(f1,(j)- 8(L - 1) ft,(i)2 <

< -(4 + 8(L - 1)) fL,(i) 2 < 0

which implies that U1, is negative definite for L > 1, and therefore, its minima,

constrained to the hypercube [0, 11N, (N, is the total number of blocks) will always
lie in a corner of such hypercube, which means that we can use simulated annealing

to find the global minimum of U1,, constraining the search to {0, 1 }N '-. In this case,

the energy to be minimized takes the simpler equivalent form (up to an additive

constant):

UL E 1 Z V(fl,(i), fL(j)) + aL2 Z q(fL(i), gL(i))
To/L 

-S
The minimum energy solutions for each L can be interpreted as "coarse scale"

reprcsentations of the original pattern f. Once a solution is obtained, the next

refinemcnt (for blocks of size L/2) can be efficiently obtained using the previous
solution as a starting point, and initiating the annealing process at a lower temperature

(the MAP estimates presented in this chapter were obtained using this technique).
At present, however, we do not have a good method (other than trial and error) for

determining the optimal values for these initial temperatures.

Also in this connection, the work of Blake (1983, 1985) should be mentioned.

This author proposed the minimization of an energy function similar to Up as a

pragmatic criterion for restoring piecewise constant images. He also proposed an

algorithm, based on the successive approximation of Up by a family of convex

envelopes to find an approximation to the global minimizer.

The relative performance and computational efficiency of these various schemes

should be assessed experimentally.
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5.2. MVPM Estimator.

In the case of the MPM estimate, it is possible to construict a Fast deterministic

algorithm whose experimental performance (in terms of the average segmentation

error) is equlivalentL to the Monte Carlo mcthod discussed above. It is based on the

foiiowing ideas:

First, we recall that for a binary pattern, the MPM and TPM estimates coincide.

We will approximate the posterior mean of (3) by that of a Gaussian distribution

P)(; with the property:

PG,(h) e1-Urh for all h E {O, 11.
zP

In particular, we use:

P(;,(h) =±exp[~!~~> (hi - h3)2  (h-g 1
2

ZG n0ijENi

where

For this distribution, h is the (uinique) minimizer of the convex function:

UG(h) = - j (hi - hj)2 + a1( - g
TU ijENi

which corresponds to the unique fixed point of the system:

-~ 0 + aTog, (
INI + ceT 0

We could now approximate our estimate by putting:

i E)(h 1)

where

( 0) otherwise (0
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There is an additional consistency condition that f must satisfy, however. It can

be shown that when the posterior distribution has the form given by (3) and (4),

the MPM estimate 7, which by definition satisfies:

Pil(f,; g) > Pi1((1 - M,1; g)

also satisfies:

P,,g(f,; 7) > Pilgo - M,); 7) (11)

which means that if we replace the observations by the MPM estimate, and compute

a new MPM estimate for this modified problem, we should get the same result (the

proof is included in appendix 4.C). Translating this condition to the case of f , we

get that it must satisfy:
fiON () (12) .,

where h ° satisfies:
* =_ XEN,, h; + aToe(h)

S Nil + aTo

In practice, we get h- as the fixed point of the system:

h(k+l) - EjEN, h;(k) + aToe(h(k))h - INjj + aTo (13) :-

with

0 = .

Note that the function:
Uh(h)= h )2  (hi ))2

i jE N , i -.

* acts as a Lyapunov function for the system (13), which is therefore (locally) stable

*" (Vidyasagar, 1978).

This algorithm can be visualized as operating in two steps: In the first one,
we extract all the information that we need from the observations and encode it in
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h (which is continuous-valuncd), and in the second one, we find the closest binary

pattern that satisfies the consistency condition (11).

To illustrate the performance of this approximation, we show f, for the
example discussed above, in panel (e) of figure 1, and its corresponding energy and
segmentation error in the last column of table 1 (labeled "MPM det.").

5.2.1. Parallel Implementation.

The dynamical systems defined by equations (9) and (13) can be implemented
directly in a parallel architecture, such as the "Connection Machine", by assigning
a processor to each site, and updating the state of all sites at the same time.
Each update will require, for both systems, at most 10 (16-bit) additions and two

multiplications, that is, a total of 672 cycles of a I-bit processor. We have found
experimentally that in most cases, less than 50 iterations of (9), and 100 of (13) are
needed for convergence, so that, using the figures of chapter 3, we estimate the

total execution time as approximately 0.1 seconds, an improvement of one order of
magnitude over the general Monte Carlo procedure described in that chapter.

5.3. Analog Networks.

Hopfield and Tank (1985) (see also Hopfield, 1982 and 1984) have studied the

behavior of "neural" analog networks of non-linear amplifiers interconnected by
resistors, whose dynamics can be described by the differential equations:

dui _

--t - -- +Ii (14)

Here, Ni is the neighborhood of node i; ui and f, denote the input and output
voltage of the i2 h amplifier; T . is the conductance of the link between the nodes
i and j; Ii is a fixed current injected at node i, and r, a constant depending on

the internal resistance and capacitance of each amplifier. The gain function of the
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amplifiers, E(.) is chosen as a sigmoid function that restricts the output to the

interval (0, 1), and has a form similar to the observed response of biological neurons

(hence the term "neural"). In particular, one can put:

eCu) 51 + exp[-/ 3 u] (1)

where/3 is called the "gain parameter".

These researchers have proved that the system (14) is always stable, provided

we have T,, = T for all i,j, and in the high gain limit (for /3 > > 1), the stable

fixed points will be local minima of the "energy" function:
E(f) j - (16)

Note that we can write (14) as:
dui c9 u i  ,- '

d u _ E & ( 1 8 )dt 81, r -7:

fA ((ui) :::-..

They have also pointed out that if one uses the gain function (15), the fixed

points of (18) will satisfy:

I + exp[-flrH(f)] (19)

with

aEEN
OE f) Ti + Ii (20)""

Hi~f)'-- A fi EN,"""

These equations will also be satisfied by the mean field approximation (see Reif,

1965) to the ensemble averages of a binary process f (fi E {0, 1}) with respect to

the Gibbs measure generated by the energy (16) at a temperature T = 1//3r. This

can be shown as follows:

The mean field approximation is obtained by assuming that the local energy at

node i, which is:

E,(f) - -f,[ T Tfj + I]- -fiHi(f)
:EN4
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m"

can be approximated by:

E -f[ Tij j + Il = -fiHi()
jE Ni

where f. denotes the ensemble average of f* Since {f'1 are constants for a given

temperature, we can compute fi as:

E- I=d',, fi exp[-Hi(j)/T]
xE,=ol exp[-11 1(7)/Tj

1

I + exp(-H 1(f)/T]

This means that there is a fixed point of equation (18) that can be interpreted as an

approximation of the ensemble average of a corresponding binary MRF (note that

in general this fixed point will not be unique, and will depend on the selection of

the initial conditions; the lack of an adequate criterion for making this selection in

the general case represents, at this point, a serious limitation of this approach).

In the case of the posterior energy (4), if we require that fi E {0, 1}, we can

write it in the equivalent form (up to an additive constant):

Up(f)- To E E fifj  {.21N__/:--
i fif, " To + a(2g- 1)fi.

TO ijENi To

so that
allp 4 2jNIHi, fi + a(29i 1) 21 "
-fi TO jE TO

In this form, one can construct directly the system (18), and defining the initial state

as f(O) = u!O) = 0.5 for all i, find the stable fixed point that will approximate 7.

Since for a binary system the MPM and TPM estimators are equivalent, we can

approximate the optimal estimate by:

10, if 7< 0.5

1, otherwise

We have performed digital simulations of the system (18), and have found very

good performances for relatively high signal to noise ratios. For high error rates,
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the behaior of this approximation is similar to that of the MAP estimator. We will

ha'e to say more about this approach at the end of the next chapter.

6. Simultaneous Estimation of [he Field and the Parameters.

To apply the estimation procedures described in the previous sections, the

parameters that characterize, both the prior model of the field (the natural temperature

TO), and the noise process, (the error rate c, or the variance a) have to be known.

In most practical cases, however, we are only given the noisy observations 9 and

general qualitative information about the structure of the field and the noise, so that
a (which stands for either log[(1 - c)/E] or a) and To have to be simultaneously

estimated.

In principle, one could use again a Bayesian approach, and assuming prior

independent uniform distributions for a and To (in the ranges [a°, a'I and [To, To1,0

respectively), find those &, To and J which jointly maximize the posterior distribution:

PYf,,ToIg) exp[-VU,(a, To, fA

S(a _ a)(TO, - T)Z(To)P 9 (g)

The main difficulty here is the extraordinary computational complexity of the

partition function:

Z(To) - exp[--Uo(f)'

f TO

which makes this approach impractical, except for very small lattices.

An alternative approach is based on the following considerations (we will study

in detail the case of a BSC; other noise models can be analyzed in a similar way):

Equations (9) and (13), which describe the deterministic approximations to

fMpM depend on the parameters of the system,,E and To, only through the product:

.- aTo= To log(L-) (21)

which means that the behaviour of the algorithm is completely characterized by the

single parameter -1. In the case of the Monte Carlo approximation, if we fix the
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value of -, the value of To cannot be chosen arbitrarily, since it has to satisfy the

consistency condition:

T -

with

log (1M

A N
= Z (22)

where z is the residual process defined as:

z ,ii,#g (23)
O, otherwise (23)

This means that, given -y, the correct value of To can, in principle, be determined

in an adaptive way, so that in this case too, the behaviour of the approximation

depends effectively only on -y.

For a given value of -1, we can approximate the corresponding MPM estimate

" using the methods developed in the previous section, and compute the residual

process z and the conditional (on -y) Maximum Likelihood Estimate of the error

rate c using equations (22) and (23). The corresponding conditional estimate for To

will be:

S-J (24)

To measure the "likelihood" of the estimate ,, we use the degree of uniformity

(or "whiteness") of the residual process z. This property can be quantified by the
variance of the local noise density, which we estimate as follows:

We cover the lattice with a set {S,} of m non-overlapping squares (say, 8

pixels wide). For each square Si, the relative variance of the noise density is:

=i  - ^)2(25)
(25)"
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with

S- ISil icsi .-

where ISjI is the area of the jih square.

The desired likelihood function is:

L -M (26)
j=1

which is equivalent to a X2 criterion (Cramer, 1946) normalized to take into account

the sample size.

Alternatively, one can use directly the likelihood that the residuals come from

a uniform distribution. To compLite it, we note that the quantities:

vi = >-2; .--

iESi

are distributed according to the multinomial law:

n! )n
P(,...V,.).= V. ! M

with

n = Ni -- + ..

Using the Stirling approximation we get the log-likelihood:

(v,,., u,,) =log P(v, ., v,.) Pt - i l ,og Vi +

+n log( ) )+K (27)lo2 L. -,, -V
where K is a constant. We have found experimentally that both likelihood measures

(26) and (27) have a similar behavior when n is large. When n is relatively small,

or when for some i, vi = 0, however, (26) is preferable, and so, it is the one we

adopt.
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Note that a more conventional likelihood function, such as the conditional

likelihood proposed by Bcsag (1972), will not work in this case; this function is

defined as: )=.1
L(f' f? )) with":?.

2

Lkf)= II P(jI/ j E Ni,TO)-
iECh

exp[- EM 'iEN V('f, 1
iE exp- YEN.V(2',fj)] + expf-- EjENV(1fifi)IJ

to t.

=flI (I + exp[-i- V(Yi,.f)]) - , k = 1,2
iEC, To EN,-

where the "codings" C and C2 are the sets:

C - {i: (xi is odd and yj is even) or (xi is even and yj is odd)}

C2 = (xi is odd and yjis odd) or (xi is even and y, is even)}

with (xi, yi) denoting the row and column indices of site i (notice that, given the

value of the field at the sites of C1, the random variables associated with any pair

of sites of C2 become independent, and viceversa). In our case, we find that as --

decreases, " becomes more and more uniform, while To remains almost constant.
It is not difficult to see that as a result, the conditional likelihood L will decrease

monotonically with 3., which renders it useless for our purpose.

The range of values [-yo, "ym] of the parameter -y that corresponds to the class
of systems of interest can be determined as follows:

One can show that for -y > 8 we will always have fMpM - gi for all i, so that

we can use yVM = 8. The value of 'yo can be obtained from an upper bound for e

and a lower bound for To. For example, assuming that e < .45 and To > .5T,, we

get -yo = .23. (Note that when the natural temperature To of a first order, isotropic
MRF is below 0.5 times T, (the critical temperature of the lattice; see Kindermann

and Snell, 1980), the patterns become practically uniform (i.e., f, =constant for all

i), while for values of To greater than 1.5T,, we get patterns that are practically
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indistinguishable from white noise. Therefore, the assumption To > .5T, covers

practically all the interesting cases).

The complete estimation procedure is as follows:

Maximum Likelihood Estimation Algorithm: -. .

1: Sample the interval [-yo, -1m] at the points

2: For each-" E Q={ 1 ,."t,}•

2.1: Find "(-y) using (9) and (13).

2.2: Compute z using (23).

2.3: Compute using (22). If - 0, set L(.f=l -- and proceed with the

next value of -. Otherwise, compute a and go to 2.4.

2.4: Compute 110 using (24).

2.5: Compute L(2 ()) using (25) and (26).

3: Compute the optimal estimate " using:

f f f(y" ) £(.?Qy)) sup L(y)) (28)

The corresponding i, To will be the optimal estimates for E and T0, respectively.

Remarks:

1. This estimation algorithm allows us to reconstruct a binary pattern f from
the noisy observations g without having to adjust any free parameters. The only

prior assumptions correspond to the qualitative structure of the field f (first order,

isotropic MRF) and to the nature of the noise process, but neither the natural
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(d) -"-

Figure 9. (a) Synthctic imagc. (b) Noisy obscrvations• (c) Maximum Likelihood Estimate. (d) A

complete scrics of estimates• Thc optimal estdmate (for -y --- 2.9) is indicated by an arrow.

temperature To nor the error rate E have to be known in advance. In practice, this•.i i

means that we can apply it to restore any binary image with uniform granularity,.-""

even if it has not been generated by a Markov random process. We have used this_."

algorithm to reconstruct a variety of binary images with excellent results. In figure 9
we show such a restoration. The observations (b) were generated from the synthetic ()

image (a) with an actual error rate of .35 (assumed unknown). The MLE for f is .
shown in (c). A complete series of estimates j'(,y), with -y varying from .5 to 3.5 is-"

shown in panel (d).--

2. This procedure can be easily extended to handle any one--parameter noise -

corruption process (such as zero mean, additive white Gaussian noise). The extension --.

to the case of N-ary fields, i.e., to the restoration of piecewise constant images,..

is also straightforward (using the general algorithm described in chapter 3 instead"

of (9) and (13) in step 2.1). As an example, we present in figure 10 the optimal ...--
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5,
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(a) (b) (c)

Figure 10. (a) Original tcrnary MRF. (b) Noisy observations (additive Gaussian noise). (c)
Optimal (Maximum likclihood) estimate.

restoration of a ternary pattern corrupted by additive white Gaussian noise.

3. We have found that the likelihood function (26) is reasonably well behaved as

a function of 7. This permits us to perform the one-dimensional search for its

supremum in an economical way, by first determining its approximate location using

a coarse sampling pattern, and then refining its position by a fine sampling of a

reduced interval. In practice, it is possible to get very good results using on the

order of 15 samples.

4. The whole procedure is highly distributed, so that it is possible to implement it

in parallel hardware in a very efficient way.

7. Formation of Perceptual Clusters.

At the heart of a general purpose perceptual system, one must have a mechanism

for deciding which parts of an image should be considered to "belong" together

(Marroquin, 1976). A simple instance of this problem is the grouping of dot, in an :-

image into perceptual clusters. Some heuristic schemes have been proposed to model

this phenomenon (see for example, O'Callahan, 1974). We will show, however, how
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this problem can be formulated in an elegant way that is also biologically motivated,

as a particular case of the reconstruction of binary patterns from noisy observations.

The conceptual model for this formulation is as follows:

Let us consider the dots that form the original pattern as patches belonging to

some objects of uniform color that are partially hidden, say, by some foliage. In

this way, the formation of clusters is equivalent to the problem of reconstructing

these objects (whose cohesive nature is modeled by a first order MRF with Ising

potentials) from observations that are formed according with the following model:

Suppose that fi = 1 only if an object overlaps the ill site of the lattice. We

assume that the "foliage" will hide this point (i.e., make gi = 0) with probability

,, and that spurious values of gi = 1 can appear in sites where fi = 0 with a very

small probability p:

1, with prob. (1 -e), iff=1,
0, with prob. e, if fi 1

-0, with prob. (1 -p), if fi 0

1, with prob. p, if f- 0

with p < < 1. The posterior energy is:

UP f;g)= Uo(f)+, a:f,, 1

+M (1 - (g,)) (29)
s:f4=O

where Uo(f) is given by (1) and (2):

-1, if Ji- I=l and fi = i

Vc(f, fh) , if Ji-i=l and fi 34 f,

10, otherwise
Uo(f) = VCf', 4'); -

6 and a are defined in (5) and (6):

6 () =I , i f a =0
o, otherwise
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a= In '/)

and M is a very large number.

The clustering task is now equivalent to the problem of estimating f and the

parameters a and To from the noisy observations g. To accomplish this, we can use

the method described in the previous section, except that in this case, only those

sites for which ) = 1 will be useful for the estimation of the residual density and

its local variance. This means that equation (22) has to be modified to:

JAlEA

where

A={i A,=1.

and zi is defined in (23). Also, the sets Si used to compute the relative variance of

the residual density in (25) should now be taken as the intersection of the squares

that cover the lattice with the set A.

With these modifications, the Maximum Likelihood algorithm can be used

for clustering. Its performance is illustrated in figure (11) where we show: the

original dot pattern (upper left) and the recontructed objects for decreasing values

of -y = ,To. The maximizer of the likelihood is marked with an arrow. We believe

that these preliminary results are encouraging, although, clearly, more numerical

and psychophysical experiments are needed to assess the plausibility of this scheme

to model human perceptual processes.

8. Discussion

In this chapter we have addressed the problem of reconstructing piecewise

constant functions from noisy observations. We showed that the optimal solution

to this problem can be obtained from the observation of the equilibrium behavior

of a generalized [sing net coupled with a spatially varying (but fixed in time)
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and ic rcconnzctcd bjeccs for decreasing valucs of -1 al'0 . Thc maximum likelihood estimate
(i.e., thc optimal clustering) is marked with an arrow.

external field. If we use the minimization of the expected segmentation error as
a criterion, the optimal estimate is the maximizer of the posterior marginals (pthe
MPM estimator which was described in chapter 3).

We compared the relative performance of the MAP and MPM estimators, and

found that for moderate signal to noise ratios, they are practically equivalent, but

as the noise level increases, the MPM estimate is (sometimes dramatically) superior.

A consequence of this analysis is that, if the noise level is not too high, the MAP

estimator may be a reasonable choice in those cases where it is computationally

advantageous. This is the case, for example, of the reconstruction of one-dimensional

binary signals, where we derived a very efficient algorithm for its exact computation.

In the two-dimensional case, however, the situation is different: the general

Monte Carlo procedure for the approximation of the MPM estimator is in fact more

efficient, from a computational viewpoint, than the corresponding one for the MAP

(Simulated Annealing), and in the case of binary fields, we derived a much faster
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deterministic scheme with excellent experimental performance.

We also showed how these estimation procedures can be extended to the more

interesting case where the parameters of the system are not known in advance. In

this case, a maximum likelihood estimation algorithm can be derived, which, using a

likelihood function that is computed from the residuals, allows for the simultaneous

estimation of the field and the parameters.

We point out that although, for the sake of simplicity, we have concentrated

on the case of binary fields sent through binary symmetric channels, the results that

we have presented can be generalized to N-ary fields and other noise models (see

figure 10).

The constructions that we have presented can be applied not only to image

segmentation and restoration, but to other problems as well. As an illustration,
we presented a novel application to the modeling of the process of formation of

perceptual clusters. Another important problem that can be formulated in this way

is the recontruction of surfaces from stereoscopic pairs of images; we will discuss it

in detail in chapter 6.
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Appendix 4.A

OPTIM1ALITY OF ALGORITHM At

p'..

In this appendix we present a proof of the fact that the algorithm presented in

section 4 of chapter 4, effectively computes the MAP estimate for a one-dimensional,

binary MRF.

The optimality of the algorithm follows from the following propositions:

Proposition 1: Let S" {It,.. .t,} be the optimal boundary configuration, and

suppose that 1,, for k < n was detected by Al. Then, tk+1 will be the next boundary

detected by Al.

Proof:

Suppose 'k was detected by Al, and let L be the next boundary detected. We will

assume that L # 'k+ and arrive at a contradiction. We will consider three cases:

Case 1: Suppose Al detects L at < lk+1.

Then, we must have that

Up(j) > U,(L) + U,(j) - U,(L) + 2

and therefore,

U({111 ..,1k, L,j, lk+I ,...}) < U(S')

which is a contradiction.

Case 2: Suppose Al detects L at E (Lk+ 1,lk+21.

This means that at j we had that L was the optimal location for the boundary. In

particular,

Up(lk+1) + Um(j)- U,(Ik+I1) > Up(L) + Um(j) - U,,(L)
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which implies that

Up(L) + Ufl(Ik+2) -U. 1(L) < Up(lk+1) + Um(Ik+ 2 ) -U,,,(Ik+1)

and therefore,

U({il,1,k, L, k+2,...}< U(S)

which is a contradiction.

Case 3: Suppose that Al has not detected any new boundary at j 1k+2 + 1.

Then, we must have:

Up(lk+ 2 + 1) < Ub(lk+2 + 1) + 1

which means that

which is again a contradiction. j

Proposition 2: If Al runs from left to right starting at a point 10, and generates

the boundaries {11, 12, .},then, 1i E S* (the set of boundaries of the optimal

configuration) fort > 2.

Proof:

Let f, fj be the optimal configuration, and the one generated by Al, respectively.

Let

Lo supj E S j <L

L inf{j ES i j>1i)

If Lrj 10, we apply proposition 1 and finish the proof, so, let us assume that

L, $ 10, and that 11 was detected at i. We have two cases:

Case 1: LO > to. We claim that in this case, 4i E S%, and therefore, by proposition

1, 1i E S* fort j 1. To prove this claim, we consider two subcases:

Case 1- a: f ((10, LO)) 3# fA 1((10,LIO)).
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In this case, we have:

2 + U,.(i) - U.,A(11) + Up(1,) < U(t)

and therefore.

2 + Um(i) - Um(I,) + U,(L 1 )- U,(Lo) < U,(i) - UP(4O)

which implies that It E S'.

Case 1-b: f ((lo, Lo))= fAI((Lo, Lo)).

Suppose I 1 S. We have that, at location i,

U,(, 1 ) + Um(i) - U.Li) + 2 < U(Lo) + Um(i) -U,,(L) + 2

since otherwise, Lo would have been a better location for the boundary. However,

this implies that

UP() + U (L) - Um() < U(hj) + Um(L) - UM()

which means that we can improve S° by moving Lo to 1I, which is a contradiction.

Case 2: L < to..v

Again, we consider two subcases:

Case 2-a: f ((Lo, 'o))- fAI((LO, to)).

Let U+, U_ be the energy increments with respect to L,:
mS

U+(i) = *+k()

b U_(i) = L (g,.

Note that

U,() =U+(i) - U+(to) and

Um() U(i) - U (to)

97

- -. • ' l



Since 11 was detected at i, we have:

2 + U,,(i) - Um(Ii) + Up(11) < Up(i)

and therefore,

2 + U-(i) - U_(L1) + U+(!1) < U+(i)

which means that 11 E S*.

Case 2-b: f ((Lo, lo)) 34 fAl((LO, to)).

Using the same definitions for U+, U_, we have that, by the optimality of S% for

some j> L,

u-(j) - U_(L) + U+(L) + 2 < U+(j)

and therefore,

U_(j) - U_(L) + U+(L) - U+(L1 ) + 2 < U+(L) - U+(1 1)

which means that if Al detects i, it must detect L too, unless it detected 12 first,

but in this case we have that, for some p < j,

U_(p)- U_(12) + U+(1 2 ) - U+(1 1) + 2 < U+(p) - U+(11)

which implies that 12 E S*. This completes the proof. n

It should be clear that these results can be easily extended to the case where

Al runs backwards (from right to left). With this extension, we get the following

complete optimal procedure:

Algorithm A2:

1: Run Al from left to fight. Detect {it •., 1}.

2: Run Al backwards (starting from 12). Get either

{2, .. .,,} or {1i',12 ,...,L,}
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L

In either case, this is the optimal solution.

The only thing that remains to be proved is that the determination of the

optimal location for a boundary is in ract performed by step 2.1 of Al. We have

the following:

Proposition 3: Suppose that Al detected a boundary at (or started from) 10. Then,

the optimal location I of the next boundary has to be updated only at places where

si = -k and siml = k (note that in si we have stored the value of the maximum

likelihood estimate f "', while siml - f M',). Suppose i is one such place. The

optimal location will be:

i- 1, ifUp(i1)Um(i-1) < Upi-UmjI{, (the current value) otherwise

Proof:

First, we note that a necessary and sufficient condition for I to be the optimal

location of the boundary at the point i is that, for j E [lo, i - 1]:

up(') + U ,() - U,(C) _ Up(j) + U-) - UM()-

or equivalently,
U() - Um(L) _ Up,) - U( )

Suppose I was the optimal location at i - 1, and we process observation i. We

consider several cases:

Case 1: siml = -k

In this case, we show that I remains the optimal location:

By construction, we have that:

Up,(i - 1)= Up(i- 2) + *+k(gi_,) :

Um(i - 1) = Um(i - 2) + sk-(gi-i)
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Since ='i -k we have that,

and therefore,

Up(t. - 1) - Um(i - 1) =Up(i - 2) - Um.(i - 2) + %P+k(gi-.1) - '-(Q-)>

> Up(i - 2) - Um(i - 2) Up(1) - Um(L)

so that I remains the optimal location.

Case 2: siml k

In this case we have that

Up(i - 1) - Um(i - 1) < Up(i - 2) - Um(i -2)

This means that the minimal value for Up(i) - Um(i) on a block for which 3i k

will be obtained at the extremal point where si = -k and siml = k, and since,

by theorem 1 of appendix 4.13, this is the only point where a boundary might

be placed, it is sufficient to update the optimal location only at these points. So,

suppose siml =k and si =-kc.

if

UP, -U.L < Up(ii ) UM(i -1),

then,
Upt - U., < Up(j) - Um(j) for j E [1o, i - 1]

because I was the optimal location outside the last block where si =k. By the same

token, it is clear that if

*the new optimal location will be i - g
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Appendix 4.13

DYNAMIC PRIOGRAMM4ING FORMLATION OF THlE

ONE-DINIENSIONAL MAP ESTIMIATION 111OBLEM

In this appendix we present an algorithm for finding the global minimum of:.

N-1 NV-I

U1,= Vvf1 , L-+ 1) + ak Z f ~(gi)(1

%hich, based on dynamic programming principles, reduces the problem to asequence

of one dimensional optimizations.

As we will see, this algorithm generates, as a byproduct, a family of solutions

which can be considered as descriptions of the field f at different scales, so that the

coarse descriptions, which are computed very fast, are progressively refined until

the optimal (finest scale) configuration is found.

This approach is based on the following idea:

A configuration f is completely characterized by the value of fand the set

L,, defined by:

Ln~~~~ ~ ~ ~ , L f 7 '.1Jn n 2

We will call the n elements of Ln~ the "boundaries" of the configuration f. Since

these boundaries correspond to odd bonds between neighboring cells, we can define

an equivalent energy function as:

U(f) =n + -Uf) (3)
2

with U(f) = F,0.j f, E ko,ki} (4)

.........
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us define the functions

G(L) = (4Pk0 (gj) - 4Pk,(g,)) (5)

Let U0 and U, denote the energy functions corresponding to the configurations with

A=k, and ko, respectively, for a given set of boundaries

Ln=(Lip-.~} L < ... <4 (8)

We have that, for n even,

UO(n, L n) =n + Z k(j)+ k1 (g3 ) +.. + Z*~Q)
2 L1+1 L+

N
n + - [G(Ll) - G(I-2) + -G(Ln) + F,4. 9)

2 =

aLi LI N
U1 (n Ll)n + FZk,(93 ) + Z, $Okg) +.+ F,

2 j=1 ~L 1+1 L+

N
n + -[-G(LI) + .. + G(L4, - G(N) + ' 4'k0 (g3 )j (7)

23=

and for n odd,

a N
Uo(n, L n) =n + - [G(LI) - G(L 2) +..+ G(Ln) - G(N) + '0j k 4

0(9j)]

N

UI(n, L.) =n + 0'[-G(LI) +.. G(4) + -Ok.~(g3 )J 8
2 j=1

(Note that EA (bko(gj) does not depend onf)

Let S() S(' be the sets of boundaries that minimize UO and U1, respectively.

Then, the optimal energy for a given n is:

=,* minjU0 (n, S() U, (n, S('))] 9
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We will define S,, to be the corresponding optimal set of boundaries.

The determination of S!nk is an n-dimensional optimization problem. However,

as we will show below, it is possible to decompose it into a sequence of one

dimensional optimizations using a dynamic programming formulation. With this

approach we also get, as a bonus, the solutions SMk), *,n) k E {0, 1}, and

the corresponding optimal energies. If we set n = N, the solution to the original

problem (3), U*(n*,S,.) can then be found by a one dimensional search. This

strategy, however, can be dramatically improved by the use of the following facts:
(i) We can reduce substantially the search space for the location of the optimal

boundaries Lj E Sn..

(ii) The sequences {U, U.j, .. . and {U,, U*,.. .} are unimodal. This, together
ith the fact that the dynamic programming algorithm uses Sy-, to compute

S, provides us with an efficient stopping criterion for the computation of
the sequence {S,. .. ,S,,.}.

(iii) The expected value of n* is usually small.

We will now describe the algorithm, and analyze each one of these facts.

1. Search Space for the Optimal Boundaries.

Let

PM {M, M 2 ,...} = "

= {j: G(J - 1) < G(J) > G(j + 1), with G(j - 1) -4 G(j + 1)} (10)

P. = IM1,M,..=...

= {j: G(j'- 1) G(j) <5 G(j + 1), with Gj- 1) 7 G(j + 1)} (11)

(Conventionally we include j = 1 in PM, if 0 < G(1) G(2), and include it in P,

if 0 > G(1) < G(2)). We define the set P as

P =PM UP. {P,. P,}

(Note that P corresponds to the set of places where the sequence {6ko(g,) - k1 (gj)}

changes sign).
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In what follows, we will call the elements of PM, P,, and P, the "maxima",

minima". and "critical points" of G, respectively.

Let S,., (S.) denote the subsets of SI. formed by those boundaries Lj
whose corresponding term G(L,) has positive (negative) coefficient in U,., i.e., if

Sn= ={L,.. .L,

then,
S,+= {LI+k, L3)+,..

s.._=sn.-s..+ (12)

With these definitions, we have:

Theorem 1: Suppose that 4tko(gj) - 4 )k,(gj) -= 0, for all j (a situation that will occur
with probability 1 for most observation models). Then, Sn.+ P, and S.. CPM.

To see why this is true, let fAi. denote the maximum likelihood estimate for

f obtained by:

fML = i' ir (gj) > Pkog)O0, otherwise

and let f be the optimal estimate. Suppose that for some j we have, say, Li E

Sn.+ - Pm. Suppose Lj E (Pk, Pk+1), for some Pk, Pk+j E P. Clearly, either Pk E P,
or Pk+1 E Pm. Suppose, for definiteness that Pk E Pn.

If Pk 0 S,., the configuration {Lt, ... Lj_ , Pk, Lj+,...Ln.} has lower energy
than S,. (we decrease 0' without altering n), which is a contradiction. If Pk E S,

then either

f'((Pk,L,)) #_ fML((pk,L,))

or f ((Lj,Pk+ )) #4 fM ((Lj, p+1))

and so, w~e get a lower energy configuration by deleting L, and either Pk or Pk~j (we
decrease simultaneously n and U). A similar argument can be used if Lj E [1, P1 )

or Lj E (P,, N1.1

104



This result means that we can use P to constrain the search space for the

boundaries of' each subproblcm (i.e., for each fixed n), \,khich now becomes:

Porn < IPI fixed findS, {L,...L,} wiih

S, C P, and S C PM (13)

such that U(n, S,) < U(n, L,,) for all L. C P.

Note that theorem 1 guarantees that the constrained and unconstrained solutions

kill coincide only for n n*, so that for n $,4 n*, S', may, in general, be suboptimal.

2. Dynamic Programming (DP) Algorithm.

From equations (7) and (8), it is clear that, for any fixed n, the determination

of the optimal (constrained) configurations SP1, I ') is equivalent to the solution of

the optimization problems:

For S ():

Minimize [G(LI) - G(L-2 ) +...]

with LI,,L 3 ... E Pm, and 1. 2, L4 ,... E PM.

For SPn:'-

Maximize [G(LI) - G(L-) +....

with L, L 3 ,... E PM, and L 2 , L4 ,... E Pm.

Let us consider the maximization problems. Assume, for definiteness that the

first critical point of G is a maximum, i.e., M, < m, and define the sequences:

DI(k) = sup G(M,)
i>k

L,(k) = {minL G(ML)= DI(k)}, k 1... IPMI (14)

Clearly, M,( 1 ) is the optimal location of the boundary for n = 1 (i.e.,

S(I) M.,}), and from D1(l) we can easily compute the corresponding energy.
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We now define, for j> t:

D2j(I) =sup{D 2 j(% + 1) - C(m,)}

D2 j+ 1(kc) =su P{D 23 (i) + O(Afi)}
i>k

and

L,,23(k)= {min L D21(k) =D~~...(L+ 1) -G(m,j}

Ljlk= (mm L D22~l(k) =D23 (L) +G(M,j}15

for k =1,., 1 PmI - j. One can check that, for n odd,

and the optimal energy is:

t.J(n) =n + [-Dn(i) + Z k(,J(17)
2

For ni even, we define:

D1 (k) =sup{-G(mj)} k c 1.. ,1m

LI(k) = (miL DI(k) =-G(ML)}

D2 3(k)=sup{D~,...(i) +G(Mj)} k=1, ... .1 - j+1

L3 k) ={minL D'2 ,(k) =D~jpj(L) +G(ML)}

D~ ~sup(D~j(i +1) -G(mj)} ,k= .... IR ..I - j

Ijjk={min L D3j+1 (k) =D -G(mL)} (18)

and get:

-M {ML.(I), .. ML(L'(L.1)}(9

UI(n) n + ~[D()-G(N) + FOk(gj)] (20)
2
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For the minimization problems, that is, for the computation of S!, assuming again

that MI < mI, we have, '-r n even:

di(k) inf {-G(m )}i>k :-

II(k)= (minL di(k) -G(m)}

and forj > 1,

d2j(k) -- inf {d2jtIW + G(Mi)}

12j (k)___ {min1 : d2j(k) = d2j.(l) + G(M)}

d 2j tI(k) = inf {d2j(i + 1) - G(mi)}
i>k

12j+I(k)- {min/ : d2j+,(k) d2j(l + 1)- G(mL)} (21)

with k varying in the appropriate range. The solutions are:

Uo(n) = n + [d[(1) + A4 (9j)l (22)
2

For n odd:
d',(k)- inf {G(Mi)}

s>k

dj(k) = inf {d=:-, (i + 1) - G(mi))i>k "

d =+(k)  inf {d2j(i) + G(M)} (23)i>k -"-

with the corresponding definitions for I(k). The solutions are:

Sin IM.. -- m m . .()

Uo(n) n + - [d.(1) - G(N) + Ok&.(j)] (24)

2

The case for which mI < MI is treated in a similar way.

The recursions (15), (18), (21) and (23), together with equations (9) and (10),

allow us to compute the sequences {S1 , S 2 ... } and {U', U2,...} using only one
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dimensional optimizations. We now turn to the problem of determining the optimal

value n" for the number of boundaries.

3. Stopping Criterion.

In this section we prove the following:

Theorem 2. Suppose that every (constrained) optimal configuration in the sequence

{S1, S2 ,... } is unique (i.e., for every n, if S', p S,,, and S', C P, then U(n, Sn) >

U:,) and that for some n, U- 2 > Un*. Then, U,+ 2k > Un,, for all k > 1.

This result will provide us with an efficient stopping criterion for the dynamic

programming recursions described in the previous section; since the first local

minima for the subsequences {U1, U,,.. .} and {U2, U4,...} are the global ones,

we can terminate the computations once we have found them.

To prove the theorem, we will need the following lemmas:

Lemnma 1. Let Sk = {L1,. L } and Sk+2 = {Lt,...L'k+ 2 } be the optimal

boundaries (with corresponding configurations fk and fk+2) for n - k and n =

k + 2, respectively. Suppose that k + 2 < JPI. Then, Sk C Sk+2 (i.e., Sk+2 is a :2 ,

refinement of Sk), provided Sk is unique.

Proof:

We will assume that for some , i E Sk - Sk+ 2, and arrive at a contradiction.

We consider three cases:

Case 1: Suppose that for some i,

[L,, L,+i]flsk - 0

In this case, we claim that we can find some index p such that

[L',LG+iflS& =L0
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and

Ak 2 ((LP, L' ) $ fk((L',J1)

Suppose that this is not the case. Then, L', L, are the only elements of Sk+2

in some interval (Lj, L, I) (or in one of the extreme intervals [1, LI), (Lk, NI) and

A + 2((L', L'+,I]) 3;l fk((L. i+]I -

Suppose

[L,, Li+u] ( (Li, Lj+1)

By condition (13), we have that L3 $ L'- (otherwise, L, would be a local maximum

and minimum of G at the same time). But then, since Sk is optimal, we can find

a configuration with k + 2 boundaries whose energy is lower than that of Sk+2,

by moving L, to L, (or L,+, to L3+l), which contradicts the optimality of Sk+ 2. A

similar argument holds if

[L',L'+11 C [1, Lt) or (Lk,N]

This proves our claim.

So, suppose that

[LP, Lp+,l s, -

and
fk+2{(L', L'+ I )4 fk ((L', L'+]. I':

Form

S I Lp 'p+2,. k+2}

and let fk be the corresponding configuration, chosen in such a way that f'(1) -

fk(1) (and therefore, f' ([L>',LP+i]) = fk([LP, LP+ I).

Let A& be the change in & (see eq. (4)) associated with setting:

f([Lp, Lp+)"- fk+2(I-p, Lp+ID).
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We have that =-+ '

AU.(J(sk-+) Ocs'I) + O '"

Now, we put:

Since Sk is optimal, we have that:

C(Sk+ 2 ) = (s') + A& > U(Sk) + A(C = s'+2),

which contradicts the optimality of Sk+ 2 .

Case 2:

([1, L;I U[Lj+ 2, NJ)fl s, = 0..

Suppose that L, E [1, L). We must have

/k+2([l, L'I)) 7- ftk([l, L',)) ::i

Otherwise, if LI L, condition (13) generates a contradiction; if LI > -, we
are in case 1, and if LI < 4, Sk+2 is not optimal, since we get a lower energy

configuration by moving LI to LI.

So,

fA+2([1, L'i]) 3 fk([1, Li).

By a similar argument, we get that

fk+2([L+2, NJ) 76 fk([ +2, NJ).'

Now, proceeding as in case 1, we form:

si= {z41... ;+-"

and let f' be the corresponding configuration, chosen in such a way that f j(1) =

fk( 1)
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Let AU be the change in U associated with setting:

f([L,L]) =fk+2([L',L]) and

f [LU+ 1 , L+2])-= fk+2(14+l, 4+2)

so that
6r(Sk+2) = 6r(S') + A0.

Now, we form:

Si+2 -- {L; , L,..., Lk, L+2},

Since Sk is optimal, we have that:

(CSk+ 2) = Ocs'k) + A& > O(Sk) + A&! = (s.),

which again contradicts the optimality of S+ 2 .

Case 3:
For all i, [L,,L.+tjfSt -# 3o

and ([1, L; I U[L'+2, NJ) -S - 0 (*) 

To make (*) hold, we must be able to place k boundaries in k + 3 (ovelapping)

closed intervals, without omitting any interval. Moreover, since condition (13) must

hold, we cannot put Li = L, and L+ - L+ 2 for any i,j. But this is impossible;

so, our proof is finished. i

Lemma 2. Let = -(Sk)-&(S+ 2). Then, Ak < A&k- 2, for all k E [3, IPI-2].

Proof:

Consider the optimal configurations Sk, S+ 2, Sk+4, and suppose that AU&+ 2 >

Abk. Using lemma 1, let

Sk =

Sk+2-



By condition (13) and lemma 1, there are only two valid forms for Sk1 4. We
consider each case separately:

Case 1: S1, 4 is or the form:

Sk+4 {L,. L, , L I L, L2

(i.e., the refinements corresponding to Sk+2 and Sk+ 4 are disjoint).

Then, for

Sk+2 ={LI,..., Lp Lp,.., L', L2,. ..}.

we have

(J(Si+2) NTSO) Atk+2 < U(Sk) -AN/ = C(Sk+ 2),

which is a contradiction.

Case 2: Sk+4 is of the form:

Sk+ 4 -{LI,..L, L1 , L",L L,.}

(i.e., Sk14 is a subrefinement of the refinement introduced by Sk+2).

Let

We have that

AC/k =a + c - I;

Atrk+2  b.

By assumption,

b > a+c-b
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and therefore,

Ak =a+ c-b < -k- < max (a, c).

Now, let Si+2 be formed from Sk by the rcfinement:

{L"L1 , if a =max(a, c)

L , if c= max(a, c)

Then,

(&(SI+ 2 ) = C(Sk) - max(a, c) < CT(Sk) -tr = (k+

which is a contradiction..

Now we prove theorem 2:

Suppose U;+2 > U;. Then,

k + 2+ - U(Sk+ 2) > kc+ - J(Sk)
2 2

now, by lemma 2 we have:

= + + J(Sk+4 ) =k + 4 + O(CT(Sk) -tk22 2

> k +2 + -(J(Sk)-AJk+ 2 ) > k + 2 + c(C(Sk) - Ak)=

=k+ 2+U(Sk+2)=Uk+ 2 I
2

4. Expected Value of n*.

First, we compute the (prior) probability density function p(n) for the number

nof odd bonds in the original fieldf

Let N6  N - I be the total number of bonds. We can rewrite equation (1)

as:
P~w = ) - !C(Nb-2n) (5
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The total number of configurations compatible with a given n is 2Cb, and so,

2C,, expa(N6 - 2n)] _-
p(n) N_ Ctb cxpi(Nb 2k)]

Ek0 kCXpI Nb - 2k)) \

() (e ) (26)
+ e-n/, .1/a + e-l/-.

which is a binomial distribution. Therefore,

E(n] Nb( e--a '"

e1~+

Var[] = Nb (27)
(eI/a + ei :.

We note that as a I oo, E[n] I Nb/2, and as a 40, E[n] 4, 0 (and var[n] 4,0)

exponentially fast. This means that if the natural temperature of the system is not

too high, we can expect that n*, the MAP estimate for n, to be relatively small.

5. Relation to Multiscale Filtering.

An interesting characteristic of the DP formulation is that the solutions to

each of the subproblems (which in fact correspond to a minimization of & (eq.

(4)) are independent of the value of the parameter a. The role of this parameter

is to determine the number of regions (n) that will be present in the optimal

configuration. In this sense, it can be regarded as a "scale" parameter that controls

the aggregation of the subregions into larger units, and the algorithm can be used to

produce multiscale descriptions (in the style of the "fingerprints" treated in Witkin

(1983) and Yuille and Poggio (1983)) of the input signals. (Several other heuristic

solutions to this problem have been proposed. See, for example, Blumenthal et al.,

1977; Prazdny, 1982 and Pavlidis, 1973)

If we interpret the algorithm in this way, it becomes natural to ask whether

a family of linear operators can do the same job in a much efficient way. Let us

formulate this question in more precise form (in what follows, we will consider a

"continuous time" problem obtained from the original one as a limit when N oo

114

"- - --- . - . - . . .. " . . - .



(provided that the observations are different from 0 only in a finite interval), since

it simplifies the notation. It should be clear that the same arguments apply to the

discrete case).

Consider a family of filters {FJ} with the following properties:

(i) Each Fl,(x) is a symmetric and non-negative funct;un of z.

(ii) For each L, F1.(z) is a decreasing function of jxI, and FL(x) 4 0 as lxI T o
fast enough, so that FL can be approximated by a function with finite
Support.

(iii) All the filters are normalized:

f_ Fg(x)dz 1 , for all L.

(iv) The filters become sharper as L 1 0:

fF,,(x)dx <JFL, ()dz

implies that L2 > L,

Particular examples of acceptable families are:

(i) The family of rectangular boxes BL:

BL~z)= " if _<I L0, otherwise

(ii) The family of Gaussian Kernels:

G(X)= exp- I1

Suppose we convolve the function g(z) - (g(z) is a continuous time
approximation to the observations) with a set of filters from the family {FL}.

If we start with L large enough, the function

hL (- FL
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i

Sill he practicall\ constant, and therefore, it will hae no zeroes. As we decrease L,

zero crossings of h/, will begin to appear. To each of these zero crossings, we will

associate a boundar), and form the configurations S1, S2 ,• %k ith 1, 2,... boundaries

respectively, that correspond to the first, first two, etc. zero crossings of h], (we are

ignoring, at this point, the question of the precise localization of these boundaries.

With additional contraints on the family {Fj}, it is possible, in principle, to localize

them by decreasing L in a continuous fashion, and then tracing the position of

each zero crossing to the finest (L = 0) level; see Yiiille and Poggio (1983). For

the moment, let us assume that we can identify the zero crossings of g - 1 that2

correspond to those of hL, for all L).

The question that we ask is the following:

If S1, S2,.. are the optimal boundary configurations produced by the DP

algorithm,is it true that

Sk. Sk

for all k?

As we now show, this is not the case.

Consider the signal g(z) defined by:

g(z)==

for z E [11,11 + 2a]U[12,12 + 2b] U[12 + 4b,1 2 + 6b]U

U[12 + 8b,12 + 10b] U[12 + 12b,12 + 14b] U[12 + 16b,12 + 18b

and g(x) = 0, otherwise. Here, L, 12, a and b are some positive numbers chosen in

such a way that, if L4 is the starting L, we take 12 - 11 - a > > L, so that, by

property (ii), there is no interaction between [11, 11 + al and [12,12 + 18b] (see figure

4.B.1).

Suppose that the zero crossings corresponding to [I, 1i + a] appear first (as a
single double zero) at L = LI, and those corresponding to [12,12 + 18b] at L = 2.
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Figure 4.B.1 (See text).

Then,

J FL, (x)dx =LFL, (xdz (28)

J 5 b gb

SFL(x)dx + F112 ()d +f Fl,,(x)dz

f3b 
7b 0

= bFL,( 2 d ki LJb 2(x)dx FL2(x)dx (29)

Now, for a > b, we have:

6V(13,1~4)) 8 b +2a > Off{ib 12)

and therefore, S2 ={11, 12).

We claim that we can find some a, b with a > b such that

jFL()dx <JfFL,()dx

If this is true, we find, using (28) and conditions (iii) and (iv), that it implies that

L2 > L1, and therefore, 52 ={13,14}.
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We now prove our claim:

Let a = b + ,, where we choose c so that

f b~/25b
l~b F,.(x)dx =/] F,,(x)dx (30)Ib ~f b "'

(property (ii) guarantees that we can find such c). From (29),

bo 5b 9.b

0FL,(dx f FL,2(x)dx + I ~ F,(x)dx + 2! Fbr,,xlb L 2 Z, o +2.b f 7b

and from (30),

.FL,(x)dx fbf2FL,(x)dz =b Fl,, (x)dx - fb FL,(x)dx

F L,( )d E =/2 gbFL,( ) = fL ( ) 2 r9b /2(. g
= FL(z)dx+bb+/ FL(z)dz+2]b FL(od = L(iz+ 7 L"xd

fb )d+ FI(~d+ bFL,(,(dx x f

> 1 b FL,(x)dx = FL(x)dx *7>b fo

This result does not mean, of course, that families of linear filters cannot be

used for producing useful multiscale descriptions of signals; it only means that these

descriptions cannot, in general, be considered as MAP estimates of MRF models.

6. Continuous Valued Fields.

In this section we present a related problem which can, in principle, be solved

using the DP approach, although, as we will see, in a less efficient way.

Let us consider the problem of estimating a piecewise constant signal corrupted

by additive white Gaussian noise. We model the signal {fj} as a MRF with potential

(-1, if fi = fi+1 (31)
V(f'i, fi+1 ) = 1, otherwise (31)
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and global states distributed according to:

N-I
P(F exp[-f) V(f 1 , f..

i=.

The observations are given by:

gi =i + ni

where n is a white Gaussian process. The Bayesian (MAP) estimate for f is again

found by minimizing eq.(4):

U(f) = n +
2

NU = Zf
i+1

where n is the number of places where fi - fi+, and - = Note that in this

case, f, is not restricted to {0, 1}, but can take any real value.

Proceeding as we did in section 2. we consider the sequence of subproblems

obtained by putting n = 0, 1, 2,....

For any fixed n, 0 will depend only on the n integer variables that correspond

to the location of the boundaries between regions of constant f, since given these
boundaries L {Lt,...Ln}, the optimal estimate for f on any interval (Li, 4+]

(we put Lo 1 and L,+, = N) is:

1 /+

f((Li,i]) 1 L - '

If we define Gk, (for k < 1) as:

Gkjt-- (1 - 2(1/- k)) I - i (32)

We get that:
N n+1

C(L.) g ? + Z GI.,,L. (33)
i=1 j=1
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(note that 2g? is a constant for a given set of observations). Using dynamic

programming principles, we can now write the rccursions:

SFO(k) =Gk,N ,k 0 ,...N -1 .

Fj+I(k) inf {Gki + Fj(i)} , k O,...N -j-,

L + {L : Gk,L + F(L)-- F'+I(k)) (34)

The optimal solution, for each given n is:

s= {L,(O), L,_.(L (O)),..., L(L 2(.. .(L(O))...

and the corresponding energy,

N
U(n, S) = n + g? + F.(O)] (35)

The solution to our problem will be S.-, where:

U(n*,Sn.) - inf{U(n, Sn)} (36)

Unfortunately, in this case we cannot guarantee the unimodality of any subsequence

of {U(Sn)} (although we believe that the sequence will be unimodal in many cases)

and so, (36) has to be computed, in principle, by an exhaustive one dimensional

search. Another unpleasantness is that, unlike the binary case, the search space for

the variables L cannot be reduced in any obvious way.
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Appendix 4.C

CONSISTENCY CONDITION FOR T11W MPNI ESTIMATOR

In this appendix we present a proof for the consistency condition (given

by equation (11) of chapter 4) satisfied by the MPM estimator of a binary,

two-dimensional Ising net:

Theorem: Let P(f, g) be the posterior distribution corresponding to the estimation

of the first order, binary MRF f from the observations g which are obtained as the

ouput of a binary symmetric channel:

Pyf g) = exp[- V(f,, fj) - 7 - (f, - j]
z S i

Let Ibe the MPM estimator for f.Then, for every site i.

PY g) > PU g

implies that:

P~f, > I v I )

Proof'

Let:

fi. j

. . . . . . .4 . . . . . . . . . . . . . . ..V). . *. .* t



1) We first prove that for all i:

I f

implies that:

f f

Suppose that g 34 9(0) (otherwise, the above is obviously true). For any fixed f, we

have that:
p(f(), ) - P(h(), g) "

K.exp[- F Vp( , fi) - -y - exp[ r V(I -)) , f.)}
jENd jE N.

and

K K{exp[ V(f,f) exp[ V(1 - j, fi) - -y]}
jENi jENi

Where K is a constant. Since -y > 0, this implies that:

P(f 0), g) - P(h('), g) :5 P(f('), g()) - P(h('), g(i))

so that
P(f"), g() - P(h(, g(i)) p(f(i), g) - P(h('), g) > 0

f f

2) Let g[ 1 -,i-. We now prove that if:

then,

for a Ej.
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For i = ,part (1) applies, and for goj) =g, the assertion is obviously true, so

suppose i # 4 and g(j) 34 g. We have:

P(f() g) - P(h('), g)=

K, {exp[- E V(2j, fi)J - exp[ V(i - )',f,) - -y)}
jENi jENi

P(f ('), g()) - P(h('), g(J)) = K, {exp[- 1: V~f,, f,)] -

exp[ E V(1 - j, f3) - -y]) exp[-y(1 - 2(f, gy)) 2 1 >
jE Ni

> e-7(P(f1 ) g) - P(h('), g)

for some constant KI, so that

ZP(f(, g(i)) - P(h('), g(j)) C-71  P(fi, g) - P(O(), g) > 0

The theorem is now proved by assuming that

and succesively replacing gi by ,, for i= 1, 2, .. and using (1) and (2) to show that

the corresponding inequalities hold at each step.
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Chapter 5

RECONSTRUCTION OF PIECEWISE CONTINUOUS FUNCTIONS

1. Introduction.

In this chapter we will illustrate the application of local spatial interaction

models and estimation techniques that we have described to the solution of the

general reconstruction problem that we introduced in chapter 1. To make this

discussion more specific, we will consider a particular instance of this problem: the
reconstruction of piecewise continuous functions from noisy observations taken at

sparse locations.

In this reconstruction, it will be important not only to interpolate smooth

patches over uniform regions, but to locate and preserve the discontinuities that

bound these regions, since very often they are the most important parts of the
function. They may represent object boundaries in vision problems (such as image a

segmentation; depth from stereo: shape from shading: structure from motion, etc.);

geological faults in geophysical information processing, etc.

The most successful approaches to this problem (see Terzopoulos (1984)) consist

of, first, i: 1,rpolating an everywhere smooth function over the whole domain; then,

applying some kind of discontinuity detector (followed by a thresholding operation)

to try to find the significant boundaries, and finally, to re-interpolate smooth patches

over the continuous subregions.

The results that have been obtained with this technique, however, are not
completely satisfactory. The main problem is that the task ofthe discontinuity detector

is hindered by the previous smooth interpolation operation. This becomes critical
.when the observation- are sparsely located, since in this case, the discontinuities
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may be smeared in the interpolation phase to such a degree that it may become

impossible to recover them in the detection phase.

One way around this difficulty is to perform the boundary detection and

interpolation tasks at the same time. In the method we will present, this is done .

by using a Bayesian approach, and including in the posterior distribution our prior

knowledge about the smoothness of the function and about the geometry of the

discontinuities, as well as the information provided by the observations. Before

describing how this is done, let us formulate the problem in a more precise way.

Consider a region Q of the plane which is formed by a number of subregions

separated by boundaries which are known to be piecewise smooth curves. Suppose

that within each of these subregions, some property f (in what follows, we will refer

to f as "depth") varies in a smooth fashion, presenting, at the same time, abrupt

jumps across most of th. boundaries. Suppose also that we have measurements for

the values of f at some discrete set of sites S; these measurements will, in general,

be corrupted by some form of noise.

Our problem is then to estimate the values of f on some finite lattice of points

L C fl, and to find the position of the boundaries, using all the available information

in an optimal way.

2. Posterior Distribution.

To apply the general recontruction algorithms developed in chapter 3 to this

problem, we need to cast it in probabilistic terms. The main issue here is the

representation of the concept of"piecewisc continuity" in the form of a prior Gibbs

distribution in a meaningful way.

This could be done, for example, by modeling the function as a first order,

continuous valued MRF with nearest neighbor potentials given by:

(fi - fi)' if Ifi - fl < a and i - j1 = 1

h)i =A b, if Ifi -f > a and ji - jj = I
10, otherwise
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where a and b are positive constants such that b > a2 , and for every pair of

neighboring sites i,j, Ifi - fjl < a if both i and j lie in the same smooth patch,

and IfL - i- > a, otherwise.

This scheme, however, has the disadvantage of not allowing for the explicit

modeling of prior knowledge about the geometry of the curves that bound the

smooth patches (the fact that they should be piecewise smooth curves, for example).

A more flexible construction involves the use of two coupled MRF models: one to

represent the function (the "surface") itself, and another to model the curves where

the field is discontinuous. A coupled model of this kind was first used by Geman

and Geman (1984) in the context of the restoration of piecewise constant images.
We will now describe their work in detail, and define a related model that can be

used for our problem.

2.1. Coupled Line and Depth Models.

In Geman and Geman's work, the intensity of the images is modeled using a

first order MRF with generalized Ising potentials (see chapter 4). The boundaries

between constant regions are modeled using a "line process" 1, which is a MRF
whose associated random variables are located at the sites of the du.al lattice of

lines that connect the sites of the original intensity lattice (see figure 12). These
%ariables may be binary (indicating the presence or absence of a boundary between -

two pixels), or may take more values to indicate the orientation of the boundary as

Aell. In both cases, their function is to decouple adjacent pixels, reducing the total

energy if the intensities of these pixels are different.

This is done by modifying the prior energy function; the new expression is:

UoUf 1) = Vi, fj, q~)+ E VG(I(1) -::.

i jENi C"

where r0, if 14. is "on"
V1(f1 ,fjlij) jV(fi, f'), otherwise
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XX X x X X

Ox~xOx(0xOXOXO
X )( x x x x x

Figure 12. Dual lattice of line elements (sites denoted by x)

x
x 0 X

X x

OxO

(a) (b)

Figure 13. (a) Cliques for the line proces used by Geman and Gcman. (b) Additional cliques
used to prevent sharp turns.

V is defined in equation (1) of chapter 4:
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-1, if i-.i=tandf,=fj

V(fi fj) 1 if i I and fi fj

0, otherwise

li4 is the line element between sites i and j, and the line potcntials Vc., have as

supports cliques of size 4, such as the one shown in Fig. 13-a. Every line element

(except at the boundaries of the lattice) belongs to 2 such cliques. The values of

the potentials associated with each possible configuration of lines within a clique

must be specified. Thus, for example, if straight horizontal and vertical boundaries

are likely to be present, a binary process, with potential values as those of Fig.

14 is used (rotational invariance is assumed). In more general situations (such as

piecewise smooth boundaries), we may use different values for the potentials, or we

may allow more states for the line elements, corresponding to different orientations,

augmenting consequently the table of values for the potentials.

2.2. Models for Piecewise Continuous Functions.

The model we have described can be adapted to our probIlvn by modifying

the choice of the potentials and the neighborhood structure of the coupled MRF's.

Specifically, the following modifications are needed:

I. Since in our case the observations are sparse, it becomes necessary to expand

the size of the neighborhood- of the line field, to prevent the formation of "thick"

boundaries between the smooth patches (i.e., adjacent, parallel segments of active

lines in these regions). In particular, we propose that the dual lattice be 8-connected,

with non-zero potentials for the cliques of the form illustrated in figure 13 (a)

and (b). The inclusion of the cliques of figure 13-b has the additional advantage

of penalizing the occurance of sharp turns, permitting us to model the formation

of piecevise smooth boundaries (a more general case) using a binary line process

instead of the 4-valued process proposed by Geman and Geman. The potentials

for these cliques are computed in the following way:

Let V., V denote the potentials associated with the cliques Ca, Cb of figure 13

(a) and (b), respectively, and let Sk (k E (a, b}) denote the number of line elements
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0000 0- 0'

0 0 olo01

V 0 =0.0 V=0.25 V2  0.8

01l0 0 10 0 0

000 10 0 10

V3 1.2 V4 =2.0 V5  2.0

Figure 14. Potcntials for thc different configurations of a line process

belonging to Ck that are "on" at a given time, i.e.,

Sk,. Ii k /=ab
iEC6

The potentials Vk are given by:

Vk 134k(Sk) , k a, b (2)

where 3 is a constant, and the functions Ok are defined by the following tables:
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S0  0 1 2 3 4

40. 0 0.4 0.25 1.2 2.0

Sb 0 1 2

'kb 0 0 10

It is not difficult to see that this choice of potentials (notice that V will be

slightly different from the definition of figure 14) will effectively discourage both

the formation of thick boundaries (Sb = 2) and the presence of sharp turns (S. = 3

and/or Sb = 2).

2. The potentials of the depth process, which is now continuous-valued, have to be

modified to express the more relaxed condition of piecewise continuity (instead of
piecewise constancy). Specifically, we propose:

,(f, -f )2(1 -1i,), for li- jJ = 1
tO f, i 10, otherwise (3)

(note that 1i, E {0, 1)

3. Unlike the case of piecewise constant surfaces, we now have to worry about the

maximum absolute difference in the values of two adjacent depth sites that we are

willing to consider as a "smooth" gradient (and not a discontinuity). This value,

which in general is problem-dependent, determines the magnitude of the constant

3 in equation (2), which can be interpreted as the coupling strength between the

two processes.

2.3. Model for the Observations.

We will adopt the general model described in section 2.1 of chapter 3 to

represent the observation process. In particular, to make the discussion more

specific, we will assume that the observations 9 correspond to samples of the surface
f taken at a set S C L of sparse locations, corrupted by a zero mean, white, additive
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Gaussian noise process:

9, = fi + ni

so that the conditional distribution is:

p190; f) e= II 1 exp( _)/2f2

iES V/S C

our results, however, can be extended to handle other noise models as well.

Using Bayes' rule, we can finally write the posterior distribution as:

Pf,'1g(f, 1; g) = exp[-Ui,(f, ,; 01

with

Up(f, I; g) = o V(fi' fj, lij) +

I~ ,(.)

+- (f _,) 2 +ZVcl)2+a vb() (4)
iE S C. Ci,

V and Vb are the potentials corresponding to the "a" and "b" type cliques of the

line process, and are defined by equation (2). It is convenient to introduce a function
q which is equal to 1 only at those sites where there is an observation, and is equal

to zero elsewhere (i.e., q is an indicator function of the set S):

i 1, if i E S (5)

= , otherwise (5)

Using this function, and the definition of V from equation (3) we get:

Up(f, 1; g) =--- Z(fi-. j)2(1 -L,,) +
TO

1 + ( )q, + Vo()+ v(1) () ..

iEL C. C6-
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3. Optimality Criterion.

We can now apply the general principles developed in chapter 3 to derive the

optimal Bayesian estimators lbr the depth and line fields. As a performance criterion

we will use a mixed cost functional of the form:

em(f,1, 1,) = 2 (f, - f)2 + (1- (j- ?j)) (7)
iELf jELt

where Lf, L, denote the depth and line lattices, respectively. This error criterion

means that the reconstructed surface should be as close as possible to the true

(unknown) surface, and that we should commit as few errors as possible in the

assertions about the presence or absence of discontinuities.

Appilying the results of section 5 of chapter 3, we find that the optimal

estimators will be the posterior mean for f and the maximizer of the posterior

marginals for 1. Note that these estimates must be computed by averaging over all

possible values of both f and 1:

-i fPit 1g(f, 1; g)
f I

Pli(q) = 2 2 Pf,Lj,(fI ; g)

4. Monte Carlo Algorithm.

There is one serious difficulty that prevents us from applying directly the

general Monte Carlo procedure that was derived in chapter 3 to the computation

of these optimal estimates: since the depth variables are continuous-valued, if we

discretize them finely enough to guarantee sufficient precision of the results, the

computational complexity of either the Metropolis ar Gibbs Sampler algorithms

will be very large. One way around this difficulty is to note that for any fixed

configuration of the line field, the posterior energy becomes a non-negative definite

quadratic form:

U(f1l,g)= 2 (f, ( f) 2 + a (f, -gi) 2 + K (8)
i,j:L., =0 ES
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where a and K are constants (note that the first sum is taken only over those pairs of

sites whose connecting line element is "off', and tile second one over the set S). This

means that the posterior distribution of the depth field is conditionally Gaussian,

so that we can find the optimal conditional estimator f"(1) as the minimizer of (8)
(for a Gaussian distribution, the posterior mean and the MAP estimate coincide).

If [ is identically zero (no lines), this function is strictly conex, and therefore it has

a unique minimum. Let f* be the corresponding global minimizer. For any fixed

configuration 1, the gradient of (8) is given by:

Uf 11) 2 _ (f - fj)ti + 2aqi(fi-gi) (9)
afi jEN,

where

N --- {j Ii- = 1}

Lii = 1 - i ]

Setting this gradient equal to 0, we find that any minimizer of U will be a fixed

point of the system:

( _)CN, i if I 4,+aq 3  O $0,
E- iEN, tij + aqj iE N.

and fk+1) - f~k) otherwise (10)

We note that the updating scheme (10) will produce a decrease in the value of

U(f 11), regardless of the sweeping strategy. In a synchronous scheme (where all

the sites are updated at the same time), the energy increment will be:

AU(f 11) - U(fyk+i 1) - U(f(k) 1 1) _

-2 Z( E 4, + aq-)(f ) I (k))2 .
iEL iEN-

- a 2 U(f 1)f - f(k + I))(f(k) 1 ))k+ i) _ 0

ij 
•f "i "fi
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F

because U is non-negative definite. For an asynchronous strategy, where f(k+l) is

obtained from f(k) by updating only the site i, wc get:

AU(f [1) - - f + aqs)(f-k+) f(k))2 < 0
,EN,

Therefore, if we set

f(O) f (11)

the dynamical system defined by (10) and (11) (with a given sweeping strategy) will

be stable and have a unique fixed point f;.

Note that, since U(f I 1) is always convex, f, will be a global minimizer (see

Luenberger (1973)), but in general it will not be the only one; there may be cases
in which some region Q within which there are no observations is isolated from the

rest of the lattice by the line process. In this case, any solution for which

f -constant, jEQ

will also minimize U(f 11). However, for a fixed initial state f(O) the deterministic

dynamical system (10) will always converge to the same solution, so that the

configuration f*(I) is well defined.

Let us define the set F" as:

F= (,1) f f=1;)

It is clear that, if .,1 are the optimal estimates for our problem, we have that:

(.,2E F"

which suggests that we can constrain the search for the optimal estimators to this set.

This can be done, in principle, by replacing the posterior energy with the function:

U'() = U(f ,1)
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" _ _ ~~~~. .- .. _ . . . , J..

(which depends only on 1), and use the standard Monte Carlo procedures to find

the optimal estimator 2. To illustrate this idea, let us consider the following physical

model:

It is a 'i1 known fact the the steady state of an electrical network that contains

only (current or voltage) sources and linear resistors will be the global minimizer of

a quadratic functional that corresponds to the total power dissipated as heat (Oster

et a], 1971). It is therefore possible to contruct an analog network that will find

the equilibrium state of the depth field for a given, fixed configuration of the line

process, i.e., that will minimize the conditional energy (8) (see Poggio and Koch,

1984). This suggests a hybrid computational scheme in which the line field (whose

state is updated digitally, using, say, the Metropolis or Gibbs Sampler algorithms)

acts as a set of switches on the connections between the nodes of the analog network

whose voltages represent the depth process. In particular, if fi represents the voltage

at node i, the hybrid network can be represented as a 4-connected lattice of nodes

(see figure 15) in which:
(i) A resistance (of unit magnitude) and a switch (controlled by the line

element ly) is present in every link between pairs i, j of adjacent nodes.

(ii) If an observation gi is present at site i, a current of magnitude equal to

cxgg is injected to the corresponding node, which must also be connected

to a common ground via a resistance of magnitude 1/a (see equation 8).

A direct application of Kirchoff current law shows that at each node of this

network we will have:

S(fA - f,)(i - i) + aqifi = qjg,
jENt

which corresponds to a fixed point of the system (10). In practice, there will always

be parasitic capacitances which will prevent the instantaneous establishment of the

equilibrium conditions. However, the time constant of the analog portion of the

network may be made very fast, so that in fact, the probability distribution of the

equilibrium states of this network will be Gibbsian with energy U°.

This scheme can be used, in principle, to construct a special purpose hybrid

computer for the fast solution of problems of this type. In a digital machine, however,
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Figure 15. Hybrid network implementing the surface reconstruction algorithm of section 4.
The voltage at every node represents the height of the surface. Inside every rectangular box there
is a resistance of unit magnitude and a switch whose state is controlled by the corresponding line
elcmcnL (see text).

the exact implementation of this strategy :in general be computationally very
expensive, since f; must be computed every time a line site is updated. We will
now present an approximation which has an excellent experimental performance,

and leads to an efficient iniplementation.

First, let us examine one iteration of the, say, Metropolis algorithm at a given

136

. .•... .



temperature T > 0 for the function U. When a line site is visited and its state is

updated, the corresponding increment in energy AU, is computed as follows:

Suppose the line site ii is visited (the line between depth sites i and j). Let lij

be its current state, and l? the candidate state:

Suppose that the current state of the depth process is

f =f;

and let f* be the fixed point of (10) obtained when we replace 4, by L. let us

define:

and
i Avj =.I E v - v.(I) + E vb() - v(o -,

C.:Iq#ECo C&:JayECa

where Ca, Cb are the "a" and "b" type cliques defined in figure 13, and V., V&, the

corresponding potentials.

Since the depth process is at equilibrium, and we are changing only the element

Iij, we may assume that

? f for p3 i,j (12)

so that

A U; AVj +

+ m~j[i~-f2IE (I - Ikm) + aqm] - (f .) M- I'k~ & km) + a..,~ j kEN. kEN. (3 --

(13)

Now, if the absolute difference If1 - fiJ is small, f and f will be practically

identical; on the other hand, if Ifi - fj is large, the changes in f at locations i and

- will be relatively small with respect to this absolute difference. Therefore, we may

137

. . .. . . . . . . , . .. .-. . . "



approximate AU; by the simple expression:

AU; A + (f - .,(i - ) (14)

which depends only on the potentials of the cliques to which the updated line

element belongs, and on the current state of the depth sites adjacent to it. If this

approximation is to remain valid, the equilibrium condition on f must be mantained.

This is done by performing M global deterministic iterations using (10) after every

global stochastic update of the line process. We have found experimentally that the

use of the approximate expression (14), and only three restoring iterations (M = 3)

are sufficient to get a good convergence behavior.

It is also possible to use assumption (12) and the fixed point condition of the

system (10) to compute a more precise approximation to AU (the corresponding -- '

formulae are derived in appendix 5.A). Our experiments indicate, however, that

the simpler approximation (14) gives sufficiently good results, so that the increased

complexity incurred by the use of this, more precise scheme does not seem to be

justified.

An important issue in the practical implementation of this procedure is the

determination of the optimal temperature for observing the equilibrium behavior

of the system. We have found that this can be done effectively in an adaptive way

by starting the simulation at a relatively large temperature (say, T - 5) and slowly

decreasing it until the network shows an adequate level of activity (measured, by the

fraction of sites whose state is modified in one global iteration). We have found that

a level on the order of 0.1 is adequate in most cases. This technique is similar to the

Simulated Annealing method for finding the global minimizer of the energy, but

in that case, the cooling of the system must proceed at a slower rate, and it should

be continued until the level of activity is reduced practically to 0; if we proceed in

this way, the final state of the system will correspond (approximately) to the MAP

estimate. Note that ( 2 MAP,WMAP) E F* too, so that the mixed strategy described

above will also work in this case (see Marroquin, 1984). As we pointed out in the last

chapter, if the signal to noise ratio is not too low, the configuration corresponding

to the MAP estimate will be very similar to the optimal one (2 'pM,IMpM). From
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a computational viewpoint, however, the optimal estimator is preferable, since it

exhibits a faster and more consistent convergence behavior.

5. Experimental Results.

We will now present some experimental results that illustrate the performance of

the optimal Bayesian estimators for surface reconstruction tasks. In these examples,

we assume that we have the following prior knowledge about the nature of the

surfaces we are trying to reconstruct:
(i) The region under consideration can be segmented into a small number of

subregions.
(ii) Within each subregion the surface is smooth (the gradient is less than 0.5).

(iii) The boundaries between regions are piecewise smooth. There are relatively
few corners.

(iv) The average height of the discontinuities across boundaries is greater than
0.8.

(v) The observations are corrupted by an additive white Gaussian noise process,

and we have some estimate of its intensity.

This knowledge is embodied in the model for the line process, and in the

numerical value of the parameters. For our experiments, we have used a binary

process with potentials given by equation (2).

In the first set of experiments, we generated sparse observation points at 200

random locations of a 30 X 30 rectangular grid. Figures 16, 17, 18 and 19 show

(with height coded by grey level) the observations (a); the configuration obtained

by interpolation with no boundaries (b); the final reconstructed surface (c), and the

boundaries found by the algorithm (d), for:
(i) A square at height 2.0 over a background at constant height = 1.0 (Fig.

16).
(ii) A triangle, with the same characteristics (Fig. 17).

(iii) A tilted square plane (slope = 0.1) over a constant height background
with white Gaussian added noise (or = 0.1) (Fig. 18).

(iv) Three rectangles at different (constant) heights over a uniform background
(Fig. 19).
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Figure 1. (a) Observations of a squarge at height 20 over a backgund at height 1.0. (aht
wipixel means that th observation is absnt at that point). (b) Interpolation with no boundaries.
(c) Reconstructed surfacc.(d) Boundaries found by the Algorithm.

btrter ten tob'lsee.ln5erancre.Ti sth ae o xmlo

140



. 4 1. 1 UU

at tha poit) (bUncpldnwt obudre.()Mudr on yteAgrtm d

.4U.

%*64666988

(a ) (b) (c) ( d)
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(C) (d)

Figure 21. (a) Disparity data for a stcrco pair of aerial photographs (data kindly provided by
W.E.I.. Grimson). (b) Interpolation with no boundaries. (c) Bloundaries found by the Algorithm
(d) Reconstructed surface.

143



for the reconstruction of surfaces from stereoscopic pairs of images, when the stereo

matching is done only at the "edges" (places where the intensity gradient is large)

detected in the images. The synthetic example of figure 20 illustrates this situation

(here we include also a perspective representation of the recontructed surfaces, so

that the difference between the smooth reconstruction and the optimal estimate can

be fully appreciated). In figure 21 we illustrate a real example of this situation. it

represents the interpolation of data obtained along the zero-crossing contours of

the convolution of a stereo pair of aerial photographs (depicting the campus of

the University of British Columbia) with a "Difference of Gaussians" operator, by

Grimson's implementation of the Marr-Poggio stereo algorithm [G4,M2]. We will

come back to this example when we discuss the stereo matching problem in detail

in the next chapter.

We have also used a modified Simulated annealing scheme to get the MAP

estimator for the same examples presented above (see Marroquin, 1984). The final

configurations are very similar to the optimal ones, so we do not reproduce them

here. With respect to the computational efficiency, it took, on the average, around

450 global iterations (in a global iteration the state of the complete line field is

updated, and the equilibrium of the depth field is restored) for the Simulated

Annealing algorithm to converge, while for the (,pM, IMpM) estimator, only 250

were needed. Also, in the latter, the behavior of the algorithm was more consistent

in the sense that the difference in the results from successive runs with the same

data were smaller than in the former case.

6. A Fast Algorithm.

The ergodicity of the "Gibbs chain" (the Markov chain generated by the

Gibbs Sampler or the Metropolis algorithm at a fixed temperature) means that its

time behavior mirrors the ensemble probabilistic structure. Since the probability of

turning "on" a given line element depends on the difference in the values of the

associated depth elements (i.e., on the current value of the gradient of the field f at

that location), the configurations with active lines at points of high gradient will be

generated first. These lines, in turn, will decouple the adjacent depth sites, increasing
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the gradient even more, generating thus a positive feedback that stabilizes these

configurations (the opposite happens in regions of low gradient, which prevents the

form'ation of stable clusters of lines at those points).

We can see, therefore, that the behavior of the Gibbs chain can be thought

of, qualitatively, as performing in time a scale separation of the discontinuities

of the image. This suggests the use of a deterministic scheme that performs the

same separation, but compressing the time of the Gibbs chain. A simple way of

implementing this idea, is to introduce a time varying coupling between the depth

and line fields, and to allow only "downhill" moves (i.e., those with negative AU')

in the updating rles for the line process. Specifically, we compute the increment

in energy associated with the update of the line element Iij at time t using:

AU = AVij + K(t)(f, - f -)2(1--ii) (15) -

instead of equation (14), and accept the candidate state only if AU' < 0. The

coupling strength K(t) is computed using:

K(t) = Ko + ht

(where K0 and h are positive constants) until it reaches a given value KT, and it is

held constant at this value thereafter. The state of the depth process is updated, as

before, using equation (10). Ko must be chosen in such a way that with f -- f; and

ii = 0 for all i, no lines will be turned "on" in the first iteration. This means that

if we use equation (2) (with 8 = 1, and the values of 4, given in the corresponding " . -

tables) to compute the potentials, we must have:

0.4
a

where

a = sup(fA - fj)2

• ..,'

On the other hand, the final value of K(t) (i.e., KI.), must be such that no lines are

introduced in the smooth regions. Let

b/inf(f,-f,)
2
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C sup(f, - f) 2 -
SM

"here D is the set of neighboring pairs of sites such that each site belongs to a

different smooth patch (i.e., pairs that lie across a discontinuity), and Sm is the

complementary set of pairs of adjacent sites such that both sites belong to the same

continuous patch. K7, must satisfy:

0.25 0.25
b -

Note that even if we do not know the precise values of a, b and c for a given
problem, usually we can estimate them accurately enough to determine "safe" values

for Ko and KT. The value of h controls the number of iterations needed for the

algorithm to reach a fixed point; if h is too large and the observations are relatively
sparse, we might get suboptimal solutions where regions with no observations are

completely surrounded by lines, and therefore, adopt spurious constant values. We

have found experimentally that usually 50 iterations, i.e., setting

KT - Koh--
50

are enough to produce results that are indistinguishable from those produced by

the Monte Carlo approximation.

This scheme has an additional advantage: the optimal value of the coupling

between the depth and line fields (the constant in equation (2)) depends on the

height of the discontinuities relative to the gradient in the smooth patches. It is,
therefore, a free parameter of the Monte Carlo algorithm that must be adapted to

each particular problem. Since in the deterministic scheme it is varied dinamically,
its adaptation to each problem is automatic, provided that we choose KT and Ko
sufficiently large and small, respectively, so that the procedure has practically no

free parameters.
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Figure 22. (a) Coloring of the coupled line-depth lattice. (b) and (c) Elcments whose state
is stored in each ot the two types of processors of a 4-connccted parallel architecture.

7. Parallel Implementations.

Both the general Monte Carlo procedure of section 5 and the deterministic

algorithm of the last section can be efficiently implemented in a parallel architecture.

To study this implementation, we first note that the chromatic numbers (see section

6.2 of chapter 3) of the graphs associated with the line and depth neighborhood

systems are 4 and 2, respectively, which means that the coupled process has a

chromatic number of 6. In figure 22 (a) we illustrate one possible "coloring".

The colors of the line process are represented by the numbers 1,2,3,4, and

those of the depth process by white and black circles. The updating process can
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be implemented in a 4-connected architecture such as the "Connection Machine",

by assigning one processor to each depth site and its four adjacent line elements.

We will thus have two different populations of processors, whose configurations are

shown in figures 22 (b) and (c), respectively.

Each complete iteration consist on 6 major cycles: in the first two, the state of

the white and black depth variables is respectively updated, and in the next four,

the new states of the binary line variables stored in (say) the white processors are - -

*- successively computed and transmitted to the corresponding memory locations of the

neighboring black processors. Note that in this scheme we have some redundancy - -

in the use of memory (each binary variable is stored twice), but the state of all

the elements needed for each updating operation is always available from adjacent

*i processors.

7.1. Connection Machine Execution Time.

The update of each depth site requires 2 (16-bit) multiplications; 5 additions

*and 10 1-bit comparisons, that is, about 600 cycles of a i-bit processor. The

- computation of the increment in energy for the line process (equation 14) requires

1 multiplication: 5 additions and 13 1-bit operations, that is 350 cycles. For the

deterministic algorithm, we require 256 additional cycles for the multiplication

*l by the variable coupling constant, while the exponentiation and random number

' - generation needed for the Monte Carlo updating use about 2300 additional cycles

(we assume that the updating of the coupling constant is done once every complete

iteration in the host computer, and the new value broadcast to the whole network).

Considering that the Monte Carlo algorithm requires about 200 iterations to

converge, while only 50 are needed in the deterministic case, we get the following

approximate estimates for the total execution time in the "Connection Machine"

*i (using the same assumptions as in section 6.3 of chapter 3): 2.4 seconds for the

* Monte Carlo procedure, and 0.18 seconds for the deterministic algorithm.

- i  7.2. Analog Networks.
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In chapter 4 we discussed the use of the "neural" networks introduced by
Hopfield (1984) (see also Hopfield and Tank, 1985) for constructing analog systems

that approximate the optimal estimators of binary fields. Since for a binary system,

the TPM and MPM estimates are equivalent (see chapter 3), we can, in principle,
replace the digital computation of the I field in the hybrid scheme discussed above

(see figure 15) by a "neural" network that approximates the optimal estimate coupled
with the analog "f" network (note that the switches must be replaced by analog

devices that implement a multiplication). The time constant of the "neural" network
has to be adjusted so that the "f" network remains in equilibrium and the search

space is effectively restricted to the set F° (see section 4).

To implement this idea, we must define a new energy function that depends

continuously on 1, and whose behavior is similar to Up for 1i E (0, 1} (Hopfield.

1985). One such function is:

E(f ,1) K E] E] (fi - fj)'(1 -11i) + aK ](-g,)2 + (

i iJEv iE$S

+i E : E , E 1h-1)2 + C2 E -,+
i C=:iEC. kEC.-(i} i

+C3 4,i (23)
C.:EC&, jEC&,-{s}

where K, a, c1, c 2, c3 are constants.

Following the construction discussed in section 5 of chapter 4, we can now use

an analog network that implements the dynamical system:

dt4 8E
81'

1i = O(u,)

Where the function E, which corresponds to the gain of the non-linear amplifiers

that are at the nodes of the network, is as defined in equation (15) of chapter 4 (note
that in this case the network also contains non-linear elements that act as analog

Multipliers).
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We have performed numerical simulations of this mcthod, and the results are

similar to the optimal ones if the parameters of the system are selected appropriately.

The system can be made practically data-independent by making the coupling K

between the two networks (see equation (23)) time-varying, in thc manner that

was described in section 6. We have found that a reasonable set of values for the

remaining parameters is: cl = .15; c2 = .05, c3 = 1.5.

8. Discussion.

In this chapter we have studied the problem of reconstructing piecewise

continuous surfaces from sparse and noisy data. We showed that such surfaces

can be adequately modeled by two coupled MRF's: A depth field with quadratic

potentials and a binary "line" field with sites in the dual lattice, and with potentials

that represent our prior knowledge about the geometry of the curves that bound

the smooth patches.

We pointed out that a straightforward extension of the general estimation -

procedures derived in chapter 3 to this problem is computationally unfeasible, due

to the continuous nature of the depth field. Therefore, we proposed a modified

computational strategy that is based on the fact that the search space for the optimal

estimates can be restricted to those configurations in which the depth field minimizes

the (quadratic) conditional posterior energy for each given line configuration. The

plausibility of this scheme was demonstrated by experimental results showing the

reconstruction of both synthetic and "real" surfaces.

We also derived, based on heuristic arguments, a fast deterministic algorithm

with excelent experimental performance, and whose parameters can be made

problem-independent, and discussed the implementation of all these procedures in

parallel digital machines, and in hybrid and analog networks.

It is interesting to compare the techniques we have presented with other surface

reconstruction methods that handle discontinuities. The most successful of these

(see Terzopoulos, 1984) are based on the idea of interpolating a smooth surface

first and then, detecting the discontinuities by a threshold mechanism. We believe
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that the method that we are proposing has some advantages over this scheme which

justify its use in spite of the increased computational cost:
(i) From a conceptual viewpoint, it is better to perform the interpolation and

boundary detection tasks at the samie time, rather than approximating
an everywhere smooth surface first, since this operation hides the
discontinuities that one then tries to find in the second phase.

(ii) In our method, the values of the parameters depend only on the average
height of the jumps that one wants to consider as boundaries in the
reconstrucied surface, and thus, they are independent of the location of the
observations. If these are sparsely located, even when the discontinuity is
relatively large, the threshold method may fail.

(iii) A priori knowledge about the shape, orientation and position of the
discontinuities can be easily incorporated by choice of the potentials of
the line process. This fact makes our method particularly promising for
integrating information from qualitatively different sources into a single
unified estimation procedure. --

(iv) The same algorithm can be used for surface interpolation, noise elimination
(smoothing) and boundary detection.

We will now study a related problem: the reconstruction of surfaces from

stereoscopic images.
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Appendix 5.A

IIIGI IER ORDER APPROXUIATION TO AU*

In this appendix we describe a higher order approximation to the energy

increment AU* (see section 4 of chapter 5). We will compute AU* using:

[r-f)[Z -1k..) + crqm] - 2 f .~f)[ E M fk1kin) + ceqmgmj
Mi .kENm kE N.

Using the assumption:

fP f for p 34 ,j

the new equilibrium configuration.7 can be estimated by the follov~ing formlaI-s,

which correspond to the fixed point of-:

f Y+ iEN, 4 3 j ± (2)g3
f~kI) >ZENj li + ctqi 2

when fr,, p -4 i, j is held fixed:

Let:
j km, forkm i

4m=
1i 1 k.n, otherwise

kE Nm

The new equilibrium configuration will be a fixed point of (10), and therefore, it

will satisfy:

fm 'lkEN,, kinfn + crqmgr] for m =i,j
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If lij and 1-y~, we get

f -Y M fkk + cqigx] + Z fkijk + ceqjgj}

if Iij 0 and 'Y~j=1, it means that there are no observations, neither at i nor at

~and that these two sites are isolated from the rest of the lattice by line elements.

Finally, if Ij 1, ,we put

fm = r~n+Qmq~ if Ym #0

fo r 7n -

Besides, If Lhe Move from 1 to 2is accepted by Metropolis criterion, we replace

fmfin form =i'j

As descrihed in chapter 5, after all I sites have been updated, M restoring

iterations Using equation (10) of that chapter should be applied.
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Chapter 6

SIGNAL MATIIING

I. Introduction.

In all the estimation problems we have studied so far, the posterior energy

function had the form:

U,(f; g) = Uo(f) + O $i(fi, g,) (1)

where Uo(f) corresponded to the MRF model for the field f. The functions 0j,

whose precise form depended on the particular noise model, were non-decreasing

functions of the distance between f, and gi (see equation (2) of chapter 3):

i~f ,9j)= -In Pi(,P-t1 (gi, Hi(f))

There are some cases, however, when the conditional probability distribution

of the observations Pg1 (g; f) is multimodal (as a function of f) which causes the
functions 4,i to be non-monotonic, so that the solution to the problem remains
ambiguous, even if the observations are dense, and the signal to noise ratio arbitrarily

high. To illustrate this situation, we will study an important instance of it: the
"signal matching" problem, whose one-dimensional version is as follows:

Consider two one-dimensional, real valued sequences hL, hR, where hL is
obtained from hj by shifting some subintervals according to the "disparity sequence"

hL(i) = hR(i + d.)

with

di E Q -- m,=-m + 1,...,-1, ,...,m}
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The signal matching problem is to find d given hi,, hi. (In a more realistic

situation, we do not observe hi, hit directly, but rather some noise-corrupted

versions gl, guj). Some interesting instances of this problem are the matching of

stereoscopic images along epipolar lines (Marr and Poggio, 1976); the computation

of the dip angle of geological structures from electrical resistivity measurements

taken along a bore hole, and the matching of DNA sequences.

To make the discussion more specific, we will consider a simple example, in

which the sequences hl, hit are binary Bernoulli sequences; we will assume that the

noise corruption process can be modeled as a binary symmetric channel with known

error rate, and that d is known to be a piecewise constant function. A well known

instance of this problem is the matching of a row of a random dot stereogram with

density p (Julesz (1960)), when the components of the stereo pair are corrupted by

noise.

The stochastic model for the observations is then constructed by assuming that

the right image is a sample function of a Bernoulli process A with parameter p

gl?(i) = A(i)

The left image is assumed to be formed from the right one by shifting it by a

variable amount given by the disparity function d, except at some points where an

error is commited with probability c. Note that some regions that appear in the right

image will be occluded in the left one (see figure 23). The "occlusion indicator" 4.d-

can be computed deterministically from d in the following way:

1, If di-k > di + k, for some integer k E (0, m] (
o, otherwise

The occluded areas are assumed to be "filled in" by an independent Bernoulli

process B. The final model is then:

[r(i + d.), with prob. 1 - e, if O'd(i) = 0

gL(i) = 1- gr(i + di), with prob. c, if d(i) = 0 (3)

with prob. 1, if Od(i)-- 1

155

-4
. .. . ,.. . .. ...... ........ .. . -. . - . •...-..-. .-.. . -+



Lines Of Constant
Disparity

i-t- +d

9LL

Figure 23. Occluded Regions: Thc horizontal and vertical axis rcprcscnt points in one row
or die left and right irnagcs. respectively. Matching points are rcpresented by black circles. Any
match in the shaded region will occludc the point i

Note that in the two-dimensional case, the index i denotes a site of a lattice, and

therefore it can be represented as a two-vector (i I, i2 ) whose components denote
the column and row of the site, respectively. To simplify the notation, we will adopt

the following convention throughout this chapter: when a scalar is added to this
vector index (as in gj(i + di) and di+D), it will be implicitly assumed that it is

multiplied by the vector (1, 0) (so that the above expressions Should be understood

as gjl(i + (di, 0)) and di+(ko). respectively). Using this convention, the observation

model of equation (3) can be applied either to the one or to the two-dimensional

cases.

Notice that even if the observations are noise-free (c= 0) the solution of' the

problem remains ambiguous, and it cannot be uniquely determined unless some
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prior kno% ldge abOut d ( bOr exam l)c, inl the form of a MR F model) is Introduced.
[he Use ot'a \1 R F rnodci i n thc Stl'c0 match ing case, corresponds to aI quLanltilication

of the assumption of the c\Islcncc of "dense SOILIUtIoS (this ternm %as introduced

by Julcst (1900). and essentially corresponds to the aIssuMptioln that the disparity d

%'I[aneS Smooth]% in Most paits Jr the image, see also Marr and Poggio (1979)), and

the uise of the occlusion indicator coi responds to the "ordering constraint" (i.e., the

requilrement that if z> j, then t-d, > + d3, see Baker (1981); we Put Od I

,Ahenc~er this constraint is iolated).

2. Bayesiai F'ormulation.

To forMlate thc ostimation problem, we will consider the sequence 9r, as
"obscr~ations", while gjl \&Ill play the role of a set of parameters. Thus, from (3), -

we have (assuming, for simplicity that p I)

P(gj,(i) =k Id, gR) =Pgld(k)

r1-, if Od(i)=0OandgJR(i + d)=k
= ,if 10k) 0 and90 + d,) 34k

The posterior distribution Pdj, will then be:

Pdlg(d)=PdP 1
Pt

1 1 V(d1 , dE I& )b(gL(i) - g~i + di)) +

+4 09~L(i) - gf(i + di))J( 10k)) + 2

where
1, if x =0

(X)lo , otherwise
As a prior model for the disparity field, we may use a first order MRF with

generalized Ising potentials, such as the one presented in chapter 4. Other models
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may also be used, including the coupled depth and line fields that we discussed in

the previous chapters. For the present, let us assume that the simpler Ising model is

adequate. Note that even when the matching problem is one-dimensional (we are

asuming that there is no vertical disparity between the images, so that the matching

can be done on a row-by-row basis), the two-dimensional nature of the prior MRF

model for the disparity introduces a coupling between matches at adjacent rows.

The posterior energy is:

Up(d; 9) --" T V(d, id) - n In{[(1 - E)
6 (gL(i)- 911(i +di)) +

id

+4(1 - 6 (gL(i) - gjj(i + d))I(I - Odi)) + 2o

Using the fact that for any a, b # 0

Infab(z) + b(1 -,6(x)] 6(x) In a + (I - 6(x)) In 6

we can write an equivalent expression for Up (modulo an additive constant):

Up(d;g) = - 2V(did,) + - Z d(i) In2 +
Oi,3 ,22

+ "(1 - d(i))6(gL(i) - 9R(i + di)) (4)
2

where
-- In "

3. Optimal Estimator.

It is possible to apply the general Monte Carlo algorithms developed in chapter

3 to approximate the optimal estimate a with respect to a given performance measure

(such as the mean squared error). Their use in this case, however, is complicated by - -

the introduction of the occlusion function 4,d in the posterior energy: the size of the

support for this function equals the total number of allowed values for the disparity

(see equation (2)). If this number is large, the computation of the increment in
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energy, or of the conditional distributions (if the Gibbs Sampler is used) may be

quite expensive. In many cases, howcer, the size of the regions oflconstant disparity
is relatively large compared with the size of the occluded areas. In these cases, one
can approximate the posterior energy by:

Up (d) = "- . V(d 1 , dj) + a .(gL(i)- qlt(i + di)) (5)
1 , .i2 i

and increase significantly the computational elficiency (we have successfully used
this approach to reconstruct the disparity of random dot stereograms).

In the one-dimensional case, it is also possible to extend the dynamic
programming methods described in appendix 4.B to compute the MAP estimate;
this extension is described in appendix 6.A.

An alternative approach to the solution of this problem is to implement the

local constraints, generated by the prior MRF model, directly in a deterministic
"cooperative network" of a given form (a "Winner-Takes-All" network) whose

fixed point ll correspond to the optimal solution. This will be done in section
6. First we present, in section 4 he dcfinition of a "Cooperative Algorithm", and

describe and analyze, in section 5, the previous work that has been done in this

connection.

4. Cooperative Algorithms.

Consider the two-dimensional signal matching problem defined in section 2,
and suppose that to each site i of the lattice Q we associate a set of binary variables:

{fi,d, d E Q} (we will call this set the "11h column" of the network f, and the set:

{f~Ei, i l}, the "disparity layer d" of the same network).

If a particular variable f,d 1, it means that we assign to site i the disparity
d (note that more than one disparity may be assigned to a node at a given time).

A "Cooperative Algorithm" (Mar and Poggio, 1976; it is also known as a

"Cellular automata"; see Wolfram, 1983) is a rule for updating the state of the
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network f. It can be represented formally as:

f,(t + 1) = Fja(f(t), t)

with the additional requirement that the interactions should be local, that is:

FjFd(f(t), t) = F,,I({fj,.,(t):J E Ni, s C Q}, t)

where Ni is the (two-dimensional) neighborhood of site i 0 0. The idea is to define

the Functions F (i.e., the connections of the cooperative network) in such a way that

the following local constraints are implemented:

(i) Compatibility with the observations: Each element fh,. should receive
an "excitatory" external input proportional to the conditional probability
Pr(gL,(i) = gle(i + r) Idi = r).

(ii) Smoo .hl.css: This corresponds to an implementation of the MRF prior
model for the disparity: the likelihood that an element fi,d is turned "on"
(i.e., is set equal to 1) should increase if the elements {fjdji E Nj} are
"on" (N, is the neighborhood of in the Markov model), so that excitatory
connections should exist between these elements.

(iii) Uniqueness: Since in the final configuration f* one and only one element

of each column {f ,,j, d E Q} should be equal to 1, each element should

have "inhibitory" connections with the other elements of the same column.

The operaion of the network will be Synchronous if all its elements are updated

in parallel at the same time, and Asynchronous if they are updated sequentially,

one at a time. Note that one synchronous iteration is equivalent to Ill (the number

of elements of the network f) asynchronous ones (we will refer to If I succesive

iterations as a Global Iteration), and that the evolution of the asynchronous network

will depend, in general, on the order in which its elements are updated.

5. "Linear Threshold" Networks.

The first successful application of this approach (although not formulated in

. probabilistic terms) is the algorithm developed by Marr and Poggio (1976) for the
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stereo disparity computation. They proposed a binary netwofk of the form:

M t + 1) U(Pj)

with pi == + 7 Q; (6)

1, if p>0 -
a 0, otherwise

w i satisfying wii=wji, for all i,JE X×Q

and fi E {O, 1}, for all i

The parameters wli, 7i and 0 must be chosen in such a way that the constraints

to the solution of our problem are implemented locally. In particular, the smoothness

constraint is implemented by defining:

Wdy,d ==l, for yEN. ; x,y E n

where Nr is an excitatory neighbourhood of z. The uniqueness constraint, by:

Wd,', = -E, for (y, d') E M,,d

wi'.h Md an inhibitory neighboUrhood corresponding to multiple matches at x (see

Marr and Poggio (1976) for a precise definition of these neighbourhoods), and

W,d,y, ,' = 0 elsewhere.

The compatibility with the observations is enforced by putting
1f,' if gj(z + d) = 9L(x) (7)

?7x,d = f = 0, otherwise (7)
6

Although it has not been possible to this date to find a rigorous proof for the
convergence of this algorithm, numerical experiments and a probabilistic analysis
(Marr ct. a., 1978) show that the synchronous network defined above will converge to

reasonably good solutions for random dot stereograms portraying piecewise constant

surfaces. Hok ever, this schcme has several problems (although some modifications
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to get around them are suggested in Mair and Poggio, 1976 and in Marr et. al.,

1978):

In tile first place, the quality of the reslIts degrades very fast as the density of

the tokens in the stereograrn decreases. Besides, it is not clear how to extend this

* formulation to the more interesting cases of slowly varying disparities, and different

types of tokens placed in points that do not correspond to a regular lattice.

5.1. Asynchronous Algorithms.

We now consider algorithms of the form (6) that operate asynchronously. In

this case, it has been shown (Hopfield, 1982) that if we choose the parameters in

such a way that pi is never 0 (this can be done, for example, if wij and 77i are

integers, by giving 0 a non-integer value), the "Energy" function:

E(f) = -' .., ff - E fi(,77 - 0) (8)
Sj i"

will decrease monotonically at every global iteration of the asynchronous algorithm

in which the state of every element is updated, unless the network is at a fixed

* point.

It is interesting to note that with the parameter definitions given above for the

stereo problem, the term

yEN.

in (8) will be negative only if all the spatial neighbors of the cell z on the same

disparity layer are "on", and therefore corresponds to a smoothness constraint.The

* term

-f.,dfo

corresponds to the compatibility with the observations, and the remaining terms:
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f 1 40 + E M.,,L J

may be considered as an implementation of the uniqueness constraint, since their

11minimization requires that we have as few "on" cells as possible, and it penalizes

explicitly the local non-uniqueness of the solution.

5.2. Experimental Performance.

To study the performance of these algorithms, we implemented a simulator

of both the synchronous and asynchronous networks. The "stimulus" used for the

set of experiments performed, was a random dot stereogram portraying a square of

21 X 21 elements floating at disparity -2 in front of a flat background at disparity 0.

Figure 24 shows this stereogram and the fixed points obtained by the synchronous

and asynchronous algorithms.

In both cases, the behaviour of the algorithm shows two distinct phases: In the

first iteration, most of the elements that are "on" on the wrong layers (and some on

the correct ones) are turned "off" (see figure 24-b). As a result of this, at succeding

itc;ations, the probability of having a cluster capable of growing is relatively high

for the correct regions, which begin to fill in, and very small for the wrong ones,

for which the remaining "on" cells are turned "off'.

This form of operation causes that the precise shape of the boundaries between

regions will depend on the exact shape and location of the random clusters that are

formed after the first iteration on the correct layers. Also, it is easy to see that the

form of the inhibitory neighbourhood (see Marr and Poggio (1976)) causes the cells

lying on wrong layers along a narrow band near the edges of the background to be on

the average less inhibited by the "on" elements in the correct layers (which in turn

are less stimulated) than the interior points, making thus more likely the formation

of wrong stable clusters in these regions. This effect is more pronounced in the

asynchronous case, since a wrong cell that is left "on", can increase the excitation

of a neighbouring one on the same global iteration, increasing the likelihood of a
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(a)

(b)

(d)

Figure 24. (a) Random dot stereogram portraying a 21 X 21 square at disparity -2. (b)

* State of the network after one iteration of thc synchronous algorithm. (c) Fixed point for the

* Synchronous Algorithm. (d) Fixed point for thc Asynchronous Algorithm.
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stable cluster, whereas on tile synchronous case, all tile cells or the cluster must be

left "on" at the same time.

For the valuCs used for the parameters (f = 2, 0 = 3.5 • see Marr and Poggio,

1976) the energy defined in (8) decreases monotonically at each global iteration

of the asynchronous network, and thus, it converges to a configuration that is a

local minimizer of this function. The correct solution will also correspond to a

(different) local minimum; it is interesting to note, however, that in general it will

not be the global one. It is easy to show, Ibr example, that if the random dot

stereogram portrays a region that has a ratio of area/perimeter less than a critical

value (for the current value of the parameters this critical ratio is ; 13), this region

will not be distinguished from the background in the configuration that globally

minimizes the energy. This means that the use of simulated annealing to minimize

(8) will not necessarily improve the solution; however, we have found that after the

deterministic algorithm has converged, a few iterations of Metropolis algorithm at

a moderate temperature ( 1) may be very effective for removing the clusters at

wrong layers. This is illustrated in figure 25.

I"

6. Winner-Takes-All (WTA) Networks.

Linear threshold networks are not the only form of local implementation of the

constraints generated by the probabilistic formulation of our problem. A different

possibility is to associate with each column {f,d, d E Q} a binary "Winner-take-all"

synchronous network:

The input u(z, d) to each cell corresponds to the excitatory input in the linear

threshold case, that is, to the local implementation of the smoothness constraints

and the compatibility with the observations.

The inhibitory terms (the uniqueness constraint) are implemented in the form

of a WTA mechanism. The output (the new value of f,d) is given by:

f ,d = {1, if u(x, d) = maxd'EQ u(x, d') ()
0, otherwise
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(a)

a.1.
(b)

(C)

Figure 25. (a) Fixed point at T =0. (b) State after 4 iterations at T =1. (c) Fixcd point at

*T 0 with (b) as initial state.

This means that f,,d will be "o" at time t+ 1 only if it is maximally stimulated

with respect to all the other elements in the same column at time t, and if it is

"compatible enoug-h" with the observations (see figure 26).r-
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External Input: P

Excitatory
Connections

(MRF Model)

Column ."-

(WTA Mechanism)

Figure 26. Winncr-Takes-All nctwork (se text).

This design has several advantages•

1. For dense stereograms, we will show that it converges to the correct solution

in a small number of iterations.

2. For sparse stercograms, the algorithm will give, with high probability, the

correct disparity at every location in which a matching token is present.

3. It exhibits a good performance with natural images portraying piecewise

constant surfaces.

4. It is not necessary to process the whole domain fl at the same time; a

complete representation may be built up by defining local networks corresponding
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to ovelrlapping subregions that Cover Q. This feature enables the algorithm to process

arbitrarily large images.

5. It can be extended in such a way that it can handle more complex situations,

such as transparent and piecewise smooth surfaces.

Qualitatively, this improved performance can be explained as follows:

Unlike the linear threshold design, in the first iteration the WTA algorithm will
only turn "off" cells that do not lie in the correct disparity layers. This will cause
the cells that lie at the boundaries of clusters at the wrong layers to lose, in the
subsequent iterations, against the corresponding strongly stimulated cells that lie in
the interior of the "correct" regions. This will result in a progressive shrinking of
the wrong clusters, and will end up with their disappearance.

This results in a faster convergence, since the size of the clusters that have to
be killed is in general smaller than the size of the regions that the linear threshold
algorithm has to fill in. Also, the boundaries between constant disparity regions will
be more accurately localized.

The only situation in which this behavior will not take place, is when there is
a significant overlap (due to accidental correlations in the images) between regions
lying at different depths. In this case, the algorithm will not be able to solve the
ambiguity correctly based only on smoothness considerations, and it will locate the
boundary at a position, within the region of overlap, which will depend on the

detailed shape of this region. Also, the solution will not be so clean in this case; a
few cells, corresponding to different disparities at the same spatial position, may be

left "on" in the final state (limit cycles involving some of these few cells are also
possible).

This type of ambiguity (accidental overlap) is relatively frequent in sparse
stereograms. However, the regions of overlap are typically "blank" regions (i.e.,
without tokens), and the algorithm will give the correct disparity at all token
locations.

We will now make these considerations more precise. First, we will need some

definitions.
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Q fl will be defined as the set of points lying on a finite square lattice.

2. We will use a second order MRF with Ising potentials as the prior model or the --

disparity field. Therefore, for each x c Q, we define its neighborhood as:

N:,= n n < -yj < 2} (10)

3. Given a region R C f, we define the set of its interior points (with respect to

N,) I(R) as the set of points in R such that all its neighbors also belong to R

1(R)= {x E R:IN, nfRI = IN,}.

In a similar way we define:

2(R) = I(f(R))

and so on. We call the points in R that are not interior: x E R - I(R), Boundary

points of R. We will say that a region R is connected if, given any two sites i, E R,

we can find a sequence of sites { i , 0 ,i ., i j}, with ik E R fork 1,..

such that ik E Ni,, for k = 0, . .. , p- 1.'

4. Given a region R C ft, we define its Diameter D(R) (with respect to N.) as the

smallest integer such that:
I R )+ (R)- 0

Alternatively, if we define an algorithm that deletes all the boundary points of a

region at every step, the diameter of the region is the minimum number of steps

necessary to completely delete the region.

5. The initial state of the network will be given by:

1{, if g(x + d) 9,(z)

f , otherwise

6. The WTA algorithm for this problem will have the particular form:
f ,d(t + 1) {1, if uz,(t) maxd'EQ U,,d'(t)

10, otherwise ,-.

U~,d(t) afox,d + E f~d(t) (12)
YE N.
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7. We will assume that the set fQ can be covered by M + 1 non-overlapping regions:

n= ,U...URmUO

and that the correct soltion (i.e., the way the stereogram was generated) consists in

assigning to every point in Ri the depth di:

f.,d, I if f z ER

The set 0 corresponds to the union of all the regions that are occluded in the left

image (see figure 23), and therefore, for every x E 0, any depth assignment will be

considered "correct".

8. Since we are assuming that the observations are perfect, the loading rules

guarantee that
o,-,.=I for every x E R.

However, in many cases we will also have:

fa= 1 for some z E Ri and di 3 di,

duc to accidental correlations in the images. A connected set WI defined as:

Wi =z : f,d i = and z E Ri for some dj di}

will be called a wrong cluster on layer j of Ri.

9. We will say that a stereogram has well defined boundaries if there are no large

wrong clusters overlapping the boundaries between adjacent regions. This means

that every non-occluded point must have at least as many "on" neighbors at time 0

on the correct layer as in any other layer, i.e., for every region Rk and every point
: x E Rk,

fo,d, > E fo,d for all d 34 d (13)
YEN. YEN.

10. A stereogram will be said to be unambiguous if for every region Ri and every

wrong cluster W, there is at least one point x E Wi n R which has less "on"
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neighbors at time 0 on the wrong layer di than in the correct one di, i.e.,

z fy,,, < E 4 (14)
YE N. yE N.

We can now establish the following result:

Convergence Theorem: Given an unambiguous random dot stereogram with perfect
observations (0 error rate) portraying M non-overlapping regions of constant depth

with well defined boundaries, the WTA algorithm (12) with a > 8 will converge to

the correct solution in K iterations, where K is the diameter of the largest wrong

cluster in Q.

Proof:

1) First, we note that condition (13) guarantees that all the cells on the correct layers
(which, by (11), are "on" at time 0) will remain "on" at time 1.

2) Condition (14) and the definition (12) guarantee that for every wi'ong cluster Wj

on every region RI there will be at least one point x that will be turned "off' in the
first iteration. Then, for all points y E N, fl Wi fl 1i we will have:

Z (1 < E '-' ""
zEN, zEN,

which implies that f(1 = O.

A recursive application of this reasoning establishes the theorem. 1

Remarks:

1. For occluded regions, there will be no large clusters of "on" cells in any layer of
jo, and since the form of (12) precludes the growth over regions with fO = 0, if

there are any isolated points for which f =,d = 1, they will remain "on" in f (the

fixed point of (12)); otherwise, f = 0 uniformly over these regions.
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2. If the algorithm has ambiguous boundaries, we can still use this theorem to

guaIrantee the convergence of the W'TA algorithm to the correct solution outside the

overlap regions. It is clear that if we define new non-overlapping regions R'i, . . A.q

with non amnbiguous boundaries, and include the overlap areas in the set 0, the

theorem will guarantee that we get the correct solution in the new regions. In the

overlap areas, the stable state of the network may include some leftover ambiguity

(.,, = 1 for more than one d), and even limit cycles involving a few cells. However,

these problematic areas will be confined to layers of unit width along the portions

of the (final) boundaries that lie inside the overlap regions.

3. The probability of finding wrong clusters in a binary stereogram is related to the

probability of finding a repeated subsequence on a Bernoulli sequence of length

equal to the total number of disparity layers, and decreases exponentially with the

number of cells belonging to each of these clusters. For dense sterograms (generated

by a Bernoulli process with parameter p = ), the probability of finding a wrong

cluster that contains a square of m cells per side can be bounded by

Pr(cluster) < £{'?J

where ND is the number of disparity layers, and 1f21 is the total number of cells in

the lattice. On the other hand, a cluster of diameter k must contain at least a square , '

of side 2k + 1. Thus, if ND = 7 and Jil =642, for example, we can guarantee that,
for dense stereograms, the algorithm will converge to the correct solution in less

than 3 iterations with probability > 0.99.

4. For sparse stereograms, wrong clusters involving only "blank" areas will be very

common, but those containing active tokens will be rare. This fact, together with

remark 2, mean that, with high probability, tha WTA algorithm will find the correct

disparity at all the sites that have active tokens. This has been confirmed by our

experiments.

5. Algorithm (12) will not grow regions into occluded (uncorrelated) areas.

Psychophysical experiments show that these areas should be included with the

adjacent region that is at the greatest depth. It can be verified that an algorithm
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such as the following:

fL,,(t + 1) , if ZyEN, fy,d(t) > 2fxd'(t) E lEN. fy,&(t), d' 7 d

10, otherwise

with fl,,,(O) f:,,i (the fixed point of (12)), will converge to a solution in which

these regions are correctly filled in, provided there are no wrong clusters in the

occluded regions, and that each layer of constant d is allowed to converge separately,

starting with d dmin = nin(d E Q).

6. Note that cven when (XI, X2) E R1, (xi + d, Z2) may lie outside 0 and so, if we load
the network using (11), some cells near the boundaries of Q may remain undefined,

and (12) may give incorrect results. Therefore, we implicitly assume the existence

of a larger region 00 - Q such that for all x E Q, f, is defined for y E Nx U{x}-

and d E Q. Also, the operation of (12) should be understood in a modified sense,

so that fh,d(t) fo,d for all z E f2o - f2, all d E Q, and all t.

A useful corollary establishes that it is not necessary to process all [2 at the same

time, but that a complete representatien can be built up by defining local net .orks

corresponding to windows S C [2, provided that there is enough overlap between

them. In particular, we will show that if we load the local network S in such a way

that its initial state coincides with the initial state of the complete network at those

cells, and if the algorithm operates only on the interior points of S, keeping the

state of the boundary points fixed, then the final state of the local network at these

interior points will correspond to the optimal solution:

Let f (x, d) and f'(x, d) be the state of the (x, d) cell at time t in the complete

and local network respectively. We have:

Corollary 1: Suppose the conditions of the convergence theorem hold in fl, and

consider a set S C [2 such that the stereogram is not completely ambiguous in

S, = I(S) (i.e., condition (14) holds for every x E S). Suppose that we load the
local network fs in such a way that for every x E S, f()(x, d) = f(x, d), for all

dc Q.
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Then, algorithm (12), modified in such a way that f'.(x, d) f .(x, d) Ior all

t, all x E S - SI, and all d E Q, 'ill converge to a fixed point f. Ior which
f.(z, d) = fI(x, d) for all x belonging to unoccluded regions inside SI.

Proof:

Consider a region R of constant disparity d such that R' nI fl 3V 0, and let

B, be the intersection of R with the boundary of S1. For every point x G R' - B,

f.(x, d) 1, by the same arguments as in the convergence theorem. For x E B1,

fI(z,d) I too, since fs(y,d) = f?(y,d) for y E N, and (13) holds in A.

Therefore, for every x E R', f . (z, d) 1

0 On the other hand, for any wrong cluster Wd, C R' in layer d' $ d, since the

stereogram is not completely ambiguous inside SI, there will be at least one point

x E Wd' such that f (x, d') 0. Reasoning as we did before, we have that for all

points y E N. n Wd, R' we will have:

f zd, < z,
zEN, zEN,

which implies that .,a; = 0.

Applying this reasoning recursively, we get, for every x E R', that fs(x, d) 1, and

fs(z, d') 0, d' 4 d, which, together with the convergence theorem, completes the

proof.o

Note that S - 5i defines the overlap that should exist among local windows, so that

the complete representation, defined by

-us,

is correctly formed.

6.1. Numerical Results.
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To test the performance of algorithm (12) with random dot stcrcograms, a

simulator was implemented in a Symbolics 3600 computer. Figure 27 shows the

fixed points corresponding to dense and sparse stereograms portraying a p)ramid.

As predicted by the theory, the convergence to the correct solution is Fast (less than

4 itelations) in both cases. In the case of the sparse stereogram, the boundaries are

slightly misplaced, but, as can be verified by direct inspection of the stereogram,

all the dots are correctly located. The fixed point corresponding to the synchronous

operation of (6) (obtained after 11 iterations) is also presented, for comparison. As
we can see, the WI'A algorithm (12) converges much faster to a much more precise

result.

7. Recontruction of Real Images.
I

To apply this algorithm to the processing of real images, there are some

modifications and extensions that should be made.

7.1. Neighborhood size.

It is possible to increase the robustness of algorithm (12) with respect to the
presence of noise in the images by increasing the size of the excitatory neighborhood

(i.e., by postulating a more global MRF prior model) and decreasing the value of

the parameter a. This increased robustness is traded off by a decrease in resolution:

small correct regions may be trated as "noise", and theretbre disappear from the

solution. Also, the shape of the piecewise constant regions may be altered (comers

may be rounded and small concavities "filled in").

7.2. Token Selection.

The simple rule (11) is adequate for measuring the compatibility with the

observations in the case of a synthetic image (such as a random dot stereogram).

Ho,ever, it will not work in the case of continuous-toned images of real objects.

The rcasons for this failure are manirold: the distribution of the reflected light
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(a)

(b)

(C)

(d)

rT1 W7
(e)

Figure 27. (a) Dense Stcrcogrim (density =0.4) portraying a pyramid. (h) Fixed point f'or
algorithm (12) (c) Sparse stcrcogriam (density =0.1) portraying a pyramid. (d) Fixed point for
algorithm (12). (c) Fixci point for die Synchronous algorithm (6).
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varies as the viewpoint is changed (particulkirly the specular component), and the

two retinas (cameras) ma have difl'rerct point spread functions, and be affected

by independent sources of noise. This means that the model for the observation

process given by equation (3) should be replaced by another that reflects the process .-

of formation of natural images in a more realistic way. The use of a better model

will cause the term f, in equation (12) to be replaced by a different compatibility -"

measure 17,, which is obtained by first preprocessing the right and left images using
an operator 7' whose output should be, ideally, invariant under the changes in

viewpoint, optics, etc., and then computing a suitable defined distance D between

the two processed images:

7 .,d = D(Tgjl(x + d), TgL(-)) (15)

(note that r may be continuous-valued).
The new WTA algorithm will be:

f,d(t -+ 1, if Uz,d(t)-- maXd'EQ Ux,d,(t)

1o, otherwise

Uxd(t) = Wlzd + PN (f(W, z, d) (16)

The operator PN is generated by the enlarged MRF model, and in general it will
represent a weighted average of the values of the field in the enlarged neighborhood:

PN(f,x,d)= C, clj-Yj)fd (17)
YE N.

where N., is the extended neighborhood of x and c(.) denotes a set of parameters

that depend only on the distance Iz - yl, and are related to the prior MRF model

for the disparity. fO may be chosen as:

f,d 1if ?7z,d = maxrEQ '7z,.

0,: otherwise

The convergence of this modified algorithm to the correct solution can still be
guaranteed ifcondition (13) is replaced by the requirement that the cell corresponding
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F.-,

to the correct layer of every non-occluded point should be maximally stimulated at

time 0, with respect to the other cells in the same column, by neighbors belonging

to the same constant disparity region:

anhd + P(xx, di) _ .,+ PN(fO, z, d) (18)

for every region Rj; every x E R, and every d E Q. P(') is the operator PN restricted

to Ri:

yE N fl Ri

(this modification is necessary to cover the case in which a point near the boundary

of a constant disparity region is partially stimulated by a wrong cluster outside this

region which may disappear in succeeding iterations).

Condition (14), i.e., the requirement that every wrong cluster has less "on"

neighbors at time 0 on the wrong layer than in the correct one, can now be expressed

by requiring that for every region Ri and every wrong cluster Wy on layer j of Rj,

there is at least one point z eRi n Wj such that:

PN(fo, z, d3 ) < PN(fo, x, di) (19)

Under these conditions, it is easy to use the same arguments of the proof of
the convergence theorem to verify the convergence of algorithm (16). It should be

remarked that conditions (18) and (19) are sufficient, but by no means necessary;

(16) may converge to the correct solution even if they are violated by a particular

stereogram.

The determination of the optimal operators D and T in equation (15) is a

difficult - and as yet unsolved problem. One scheme that has often been used is

to define T as a convolution operator whose kernel is the Laplacian of a Gaussian
function and T as:

{1, if ab > 0
T(a, b) =otews10, otherwise .')
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(sec Marr and Poggio, 1979). The ratinale for this choice is that the zero crossings

of the convolution with the L.aplacian operator should pick the places where large

intcnsit\ changes occur in both images (i.e., it acts as an "edge detector"), while the

Gaussian kernel has the effect of smoothing out the "irrelevant" edges and filtering

0.1t the noise. One dilficulty. however, is that if the Gaussian mask is large enough

to produce the desired effect, it will also introduce errors in the localization of the -

,ero crossings of the comoked images, which will translate into errors in the depth

of the reconstructed surface (see Clark and Lawrence, 1985).

We have found that the normalized absolute value of the Laplacian of the

difference between left and right images:

-v(x, d) + maxEQ V(X, r)
'7=,d MaxTEQ v(x, r) - minrEQ v(z, r)

with

v(x, d) - IV2(gn( + d) - gL(z))I (20)

has relatively good experimental behavior, but clearly, much more research is

needed in this area.

It is important to note that the definition of7 will affect the performance of the

WTA algorithm, since it will determine the extent to which conditions (18) and (19)

hold in the initial state; the structure of the WTA network, however, is independent

of the choice of 7, so that the experimentation with different definitions can be

done very efficiently.

7.3. Uniqueness Constraint.

The definitions (12) and (16) imply the enforcement of the constraint:

"Each point in the left image should be matched by only one point in the right

image".

That is to say, we are enforcing the uniqueness constraint along the left eye

line of sight. It is also possible to include explicitly the corresponding constraint for
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the right eye (as in Marr and Poggio, 1976). This is done by replacing (16) (or (12))

w i t h : • u ,
j1, if ux,d(t) = max'EQ Ux,d'(t)

fh,d(t + 1)= and u,d if axk:d+kEQ uz-.k,d+k

10, otherwise

For perfect observations, this additional constraint is redundant. If noise or other

distortions are present, however, this scheme will have better performance, since the

disparity of "doubtful" points will be left unassigned (the corresponding values of

the disparity in these locations may be determined after convergence by the robust

surface reconstruction techniques described in chapter 5).

As an example of the application of this technique, the processing of a stereo

pair of aerial photographs is illustrated in figure 28 (this stereo pair is the same that

was used in chapter 5; see figure 19). Although it is difficult to assess objectively

the performance of an algorithm on this type of images, the quality of these results

seems at least equivalent to that obtained by state-of-the-art systems (see Grimson,

1984).

7.4. Piecewi;,c Smooth :'.urfaces.

The WTA scheme can also be applied to reconstruct disparity surfaces that

are piecewise smooth. To do this, it is only necessary to modify the definition of

the operator PN (equation (16)), so that cells at nearby depths are also taken into

account. Notice that, in order to be consistent with the WTA mechanism, only the

maximum contribution for any given column should be considered. The modified

operator is:

PN(f, x,d) = max{c(Iz - yl, Id - rl)fy,,} (21)
YEN. rN"

where c(.,.) is some fixed decreasing function of its arguments, and Nd is a disparity
neighborhood defined as the intersection of a closed interval with the set of allowable
disparities:

Nd = [d - p, d + P] fl Q
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(b) (C)

Figuire 28. (a) Stereo plir of acrial photographs. (b) Final state of the WTA network (disparity
is coded by grcy level, white arcas have no assigned disparity). (c) Reconstructed sufacc. obtained
using dic algorithm described in sccLIof 6 of chapter 5.
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where p is a positive constant.

The sufficient conditions for the convergence ofthe mnodified algorithm, namely,

that the stercogram should be unambiguous and have well defined boundaries with

respect to the the modified operator PN, can also be expressed in the form given

by equations (18) and (19), but now a wrong clusier Wj should be defined as a

connected region on the disparity layer di Such that f,d = 1, and dj 3 d*(x) for

all x E Wj, where d'(z) is the true disparity at point x. The proof of the convergence

theorem is straightforward, but the interpretation of these conditions is not obvious,

and in practice, they are very difficult to verify, so that at this point, the performance

of this algorithm should be assessed experimentally.

Pradzny (1984) (see also Pollard et. al., (1984)) has obtained good results for

the reconstruction of piecewise smooth and "transparent" surfaces (i.e., stereograms -

portraying sets of small interspersed patches that belong to two smooth surfaces,

one in front of the other) using an operator of the form:

PN(f, x, d) {c(Ix - Il, Id - rl)fy,,}
YEN. rENa

We believe that the use of (21) should improve the performance in these cases.

8. Discussion

In this chapter we have studied a class of recontniction problems that arise
when the conditional distribution of the observations is a multimodal function,

which causes the solution to remain ambiguous, even for arbitrarily high signal to

noise ratio. We identified the signal matching problem as one of the most important

instances of this class, and gave a probabilistic formulation for it using a MRF

model to model the disparity surface, so that the optimal estimation algorithms

derived in chapter 3 could be applied.

We then presented a different approach to the solution of the problem in

which the constraints derived both from the prior MRF model for the disparity

field and from the observations are implemented directly as excitatory connections
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on a three-dimensional cooperative network of processors (or "cells") with binary

state space. The steady state of this network can be unambiguously interpreted as a

disparity surface only if there is exactly one processor in each column whose state

is equal to 1. This imposes a uniqueness constraint which can be enforced either

by introducing inhibitory linear connections, or by a "Winner-take-all" mechanism

tiat operates within each column. We showed that, lor high signal to noise ratio, it
is possible to define precise sufficient conditions (which are usually met in the case

of synthetic images) for the convergence of the state of this "WTA" network to the

correct solution in a small number of iterations.

The experimental performance of this algorithm with random dot stereograms
is excellent; it produces accurate reconstructions in a very short time (in less than 5
iterations). In the case of the reconstruction of real objects from stereoscopic

photographs, this algorithm - with some modifications - produces results

comparable with those obtained by more complicated schemes that are considered
"state of the at", and it has the advantage of being directly implementable in

parallel hardware.

It should be noted that the performance of the stereoscopic vision of human

beings on similar data is still dramatically superior to that of this, or any other
existing artificial system. Some issues that should be addressed for the development

of more effective algorithms are the following:

(i) More realistic models for the observation process that take into account
the nature of the relative distortions of the left and right images should be
constructed. This should lead to the definition of optimal combinations of
tokens for the matching process. The precise nature of the optical system
used (which may cause problems like non-horizontal epipolar lines; vertical
disparities, etc.) should also be taken into account.

(ii) The use of more sophisticated prior models for the disparity field-
including a coupled line field as described in chapter 5 - should be

* investigated.

(iii) Since the intensity edges and the regions of uniform intensity (or uniform

texture) of the images are natural candidates for becoming stereo matching

tokens, and the location of depth and intensity (or texture) edges is likely

to be correlated in a natural scene, the integration of edge detection;
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image segmentation; stereo matching and surface reconstruction into a

single estimation process should produce very good results. The Bayesian

approach, and the use of coupled MRF models for describing surfaces

and edges that we have presented in this thesis should provide a unified

framework for performing this integration. We discuss this point further

in the next chapter.
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Appendix 6.A

DYNAMIC PROGRAMMN'ING APRIOACII TO SIGNAL MATCHING

Consider the one-dimensional version of the signal matching problem described

in section 2. To com1pute the MAP estimate, we need to find the global minimum

of.

U1'(d; g) = -V(dj, dj)+ - d(i)In 2 +
0 id

+- -~ 0d(i))6(L(i) - g,(i + di))()
2,

(i.e., equation (4)) The use of the dynamic programming algorithm described in

appendix 4.13 is complicated by the fact that, given the boundaries f-,. between

regions of constant disparity, the optimal estimate for d in the interval (Li, 4+11
depends on the estimate on (Li- 1, Li], since this last choice determines the extent

of the occluded region.

However, if we assume that the size of the regions of constant disparity is

relatively large compared with the size of the occluded areas (as it normally happens

in most practical cases), we can estimate d given L,, Using the formula:

a((L" Li+J ID

Li+ 1  
L~

{k: F, 49(L(i) - gli(i + k)) < 096
(L(i) - gf(i + 1)), for all I E Q}(2)

Defining:

Gk~l = 11gI(i + a((k, 1]))) (3)

and

Ai max(O, ai- - di
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(note that Ai corresponds to the length of the occluded region when a change in

the estimated disparity occurs). we get that

Up(d;g) = + U(L)

with

U(L) = GI,L + Ai n2 + GLt+A 1 +I,L, +

+A2 In 2 + ... + G,+A.+t,N

We can now perform the global minimization of U using the dynamic programming

scheme of appendix 4.B. In this case, however, it is better to use "forward"

recursions, (in the sense that now F(k) will represent the cost associated with

putting j boundaries, in the best possible locations, in the interval [1, k]), because

occlusion, as we have defined it, always takes place from left to right. We have

then:

Fo(k) =G,

_(k) -I1

Fi+ (k) = inf {G,+I,+.. + Fi(i) + Ai In 2}

Lj +j(k)-- {L:GL,,+I. + F3(L)+ AIln 2 F+t(k)"

The optimal location of the boundaries, for any given n is:

s= {L,(Nv), Ln._(Ln(N)),..., L(L 2 ... (L(N))...

The optimal configuration is computed using (2), and the corresponding energy,

using (1).

Note that as the size of the regions of constant disparity decreases, k2) may not
be well defined (the optimal estimate d may not be unique) and a more complex

optimization procedure may be required.
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Chapter 7

CONCLUSIONS

In this thesis we have presented a probabilistic approach to the solution of

a class of perceptual problems. We showed that these problems can be reduced

to the recontruction of a function on a finite lattice from a set of degraded

observations, and derived the Bayesian estimators that provide an optimal solution.
We have also developed efficient distributed algorithms for the computation of these

estimates, and discussed their implementation in different kinds of hardware. To

demonstrate the generality and practical value of this approach, we studied in detail

several applications: the segmentation of noise-corrupted images; the formation of

perceptual clusters: the recontruction of piecewise smooth surfaces from sparse data

and the reconstruction of depth from stereoscopic measurements.

This methodology also permits, in principle, the incorporation of more than one

modality of observations into a single estimation process, as well as the simultaneous

estimatica of several related functions from the same data set. This makes one hope

that this framework could be useful in the solution of difficult problems that require

such an integrated approach. We mention two examples:

I. We mentioned in chapter 6 that the stereo matching problem in real situations

has not been solved yet in a satisfactory way. The same can be said of other related

perceptual problems such as: edge detection; image segmentation; the recovery

of the shape of an object from a single two-dimensional image (the "shape form

shading" problem), and the segmentation of a scene into distinct objects, as well

as the recovery of their three-dimensional structure from the analysis of images

formed at successive instants of time (the "structure from motion" problem). All

these problems are obviously related, and it is intuitively clear that the individual

solutions that can be obtained should improve if the mutual constraints that the
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solution of each individual problem imposes on the others were taken into account.

Thus, the presence of a brightness edge should increase the likelihood of a depth

edge, and viceversa; the depth estimated from stereo should be compatible with

the shape derived from shading: points belonging to the same region in an image

should move together, etc. We believe that these constraints can be incorporated

in the potential functions of the corresponding MRF models (in particular, of the -'

coupled fields that represent the "lines" or edges in each case; see chapter 5).

2. The processing and interpretation of geophysical information (as is done, for

example in oil prospecting) attempts to reconstruct subterranean geological structures

from information provided by a set of qualitatively different measurements, such as

those obtained by: gravimetric and magnetometric surveying; reflexion seismology;

measurements of physical properties taken vertically along bore holes ("well logs"),

etc. Since all these measurements are obtained independently, their joint conditional

probabilities can be easily determined, and since all of them refer to the same

physical structures, their processing can, in principle, be integrated into a single

estimation process, which should greatly increase the reliability of the results.

The above considerations may be taken one step further. Ultimately, the results

one is interested in are not only the quantitative reconstruction of some surfaces, but

the symbolic description of the scene in terms of functional structures or "objects".

On the other hand, the prior knowledge about the occurance of a particular object

or class of objects might greatly simplify the tasks of the "low level" processors

(for example, a letter recognition algorithm should greatly benefit from the use

of context, given the probabilities of occurance of certain letter combinations or

words). The Bayesian approach provides a common "language" that may allow

these low-level and high-level (or symbolic) processes to communicate and mutually

enhance their performance.

As a simple example of this situation, suppose that we are interested in finding

a symbolic description of a binary pattern f in terms of a set of geometric objects

(such as squares, triangles, etc.) that are characterized by some parameters (such

as position, orientation, size, etc.) for whose values we have some prior probability
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knowledge.

Given a description D, i.e., a list of objects with a set of particular values for

their parameters, we can find a binary field q which corresponds to the boolean sum

of the indicator functions of the objects included in D:

{1, if an object in D covers pixel i

= , otherwise

We can now write the joint prior distribution for the field f (which represents the

actual intensity of the noise-free image) and its description as:

P(f, D)= P(f D)P(D)

To compute P(f D), we assume that f is a first order MRF whose configuration

is biased by D:

P(f D) = exp[- o j V(fi, f,) + X Y qifi]

P(D) can be computed from the prior probabilities for the occurance of each type

of object, and from the prior distributions for the values of the corresponding

parameters. Since the conditional distribution of the observations depends directly

only on f, the posterior distribution will be:

P(f, g) --P(g I f)P(f D)
P(a)

where P(g) is a constant. From this expression we can compute the optimal estimates

for f and D using methods similar to the ones developed here.

We will now present a summary of our main results and a list of some interesting

open technical questions.

1. Summary of our Main Results.

I.1. Optimal Bayesian Estimators.
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Several researchers have used Bayes theory and MR F models for the restoration

of piecewise uniform images. It has been implicitly assumed by all of them that the

maximization of the posterior probability is the best possible pcrformance criterion.

We have shown that it is possible to choose other criteria that are better adapted

to each particular problem, and have derived the corresponding optimal estimators,
which not only improve substantially the quality of the results (particularly for

low signal to noise ratios), but also lead to more efficient and better behaved

computational schemes.

12. General Monte Carlo Algorithms.

We have shown that the optimal Bayesian estimators can be obtained from

the observation of the equilibrium behavior of a MRF (which in physical terms

correspond to a ferromagnet subject to a spatially varying external magnetic field).

This behavior can be effectively simulated by Monte Carlo procedures which

generate a regular Markov chain with an invariant Gibbs measure.

This method differs from "simulated annealing" (which has been used to

approximate the MAP estimator) in that it is based on the collection of statistics of

the evolution of the chain at a fixed temperature, while the latter attempts to find the

ground state of the coupled system by slowly decreasing it. From a computational
viewpoint, our method exhibits a faster and more consistent convergence behavior.

1.3. Parallel Implementations.

The implementation of this general Monte Carlo procedure in parallel hardware

was discussed. We proved that the Gibbs sampler (but not the Metropolis or Heat

Bath algorithms) will produce consistent results in this case.

1.4. Reconstruction of Piecewise Constant Funcions.

The problem of reconstructing a piecewise constant function from noisy

(but dense) observations was formulated in probabilistic terms, and the form of

the optimal estimators derived. For the one-dimensional case, we presented a

deterministic algorithm with minimal complexity which computes (exactly) the

MAP estimate of binary fields. For the two-dimensional case, we presented a

190

. .. .........-..-.-..- ......-...-...........-.......-................ ....................-............ ...... ::
,-.-.-. " . . . .. ..... ... . . ... .D .; . .... , ... .. ... .. . ,.... ., .. , .. .. ....... ..... ....... .. .....



. - - -'-,---------

method for improving the computational efficiency of the "Simulated Annealing"

scheme for approximating the MAP estimator, and derived a fast algorithm for

approximating the optimal (MPM) Bayesian estimator.

We also presented a maximum likelihood procedure, which based on an analysis

of the residual ("innovations") process permits the simultaneous estimation of the

field and the parameters of the system. We applied this technique to the construction

of a parameter-free algorithm for the reconstruction of arbitrary binary patterns.

1.5. Formation of Perceptual Clusters.

We suggested that the process of formation of perceptual clusters of certain

dot patterns can be modeled in terms of the estimation of binary images corrupted

by multiplicative noise, and illustrated the application of our estimation algorithm

to this task.

1.6. Reconstruction of Piecewise Continuous Surfaces.

The problem of simultaneously detecting the discontinuities and recontructing

a piecewise smooth surface from sparse observations was cast in the Bayesian -_

framework. A model consisting of two coupled MRF's: one representing the

depth and the other the boundaries between continuous regions, was adapted to

our problem. Since the straightforward use of the general Monte Carlo algorithm

for finding the optimal estimate is computationally unfeasible in this case, an

approximation (which showed an excellent experimental performance with both

synthetic and "real" data) was derived and implemented. We also developed, and

heuristically justified a fast algorithm that produces results that are practically

indistinguishable from the optimal ones. The implementation of these procedures

in digital parallel hardware, as well as in hybrid and analog networks was also

discussed.

1.7. Signal Matching.

We presented a class of problems that is characterized by the fact that the

conditional probability distribution of the observations P(g I f) is multimodal (as a

function off), which means that the solution remains ambiguous, even for arbitratily

191

..- ... ....... , ., .... ..... .. - ......... .... ........ ......... .... .... .... ..... ,r....... .......- ... . ...... .- ,.. ., ,*.* -. *- *....



high signal to noise ratios. We studied a prototype problem of this class: the signal

matching problem (in particular, the reconstruction of depth from stereoscopic pairs

of images), and showed that it is possible, in principle, to find the solution using the

general cstimation procedures that we have developed (although the computational

cost will be high in the general case). We also presented a different scheme, which

is based on the direct implementation of the local constraints (generated by the
probabilistic model) in a highly distributed cooperative network of a particular

form: a "Winner-Take-All" network, and showed that the state of this network

will converge to the correct solution in a few iterations (in the high SNR case). The

application of this technique to the reconstruction of the depth of real objects from

stereoscopic photographs was discussed, and some modifications to the algorithm

were introduced, which permitted us to produce results which compare favourably

with those of other "state of the art" algorithms.

2. Open Technical Questions.

2.1. Stochastic Models.

We have shown throughout this work the richness and versatility of simple (first

and second order) MRF models. It is clear,however, that there are classes of physical

structures whose behavior cannot be adequately modeled by these processes (as a

simple example, consider images formed by clusters of blobs of certain average size).

There have been some attempts to model these and other "textured" patterns via a

hierarchy of independent MRF's: one that represents the structure of the image, in

terms of regions of uniform texture, and individual models for each textured regions.

This representation, however, is not very convenient for estimation purposes. A
more rigorous approach has been suggested by Grenander (1984), who has proposed

the use of generalized Markovian fields to model complex patterns; these fields

.. consist of several layers of "generators", which in the first layer correspond to
-; grey levels, and in the succeeding ones, to features of increased complexity (lines,

corners, etc.). It is not clear, however, how to use this approach to construct models

of textured images; objects of different shapes, etc.
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These considerations suggest the need for much more research in this area,

which should include, perhaps, the use of probabilistic models that are not based

on the Gibbs distribution.

2.2. Multiple Scale Representations.

It is the current view that the production of high-level (symbolic) descriptions

of a scene should be mediated by the construction of numerical descriptions of

the surfaces involved at different "scales". The parameters that describe a MRF

play in some sense the role of scale parameters (see figure 1 of chapter 1; section

5 of appendix 4.B and section 6 of chapter 5); this identification, however, is not

completely satisfactory. A good multiscale representation should feature not only a

progressive blurring of detail, but the aggregation of substructures into larger units

in a way that is not accomplished by the current algorithms. -

2.3. Parameter Estimation.

Intimately liked with the previous questions, is the determination of the optimal

set of parameters of a given model from noisy samples. The maximum likelihood

method that we have presented here (see chapter 5) becomes computationally

unfeasible as the complexity of the model (the dimensionality of the parameter

space) increases; therefore, alternative procedures need to be derived (for instance,

the use of time-varying algorithms, such as the one presented in section 6 of chapter

5 should be more rigorously investigated).

A related (and more difficult) question is the selection of the optimal model

from a certain class given only the noisy observations. It is possible that the ideas of

Rissanen (1978, 1981, 1983) about "minimum description length" schemes, and also

of Akaike (1977) about generalized maximum likelihood methods could be useful in

this connection, although the high computational complexity of the present problem

might limit the applicability of these techniques.

2.4. Fast Algorithms.

The practical use of the general Monte Carlo estimation algorithms of chapter

3 is limited by the relatively large number of iterations needed for the convergence
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of these systems. A very important question, then, is how to improve on the

convergence Lime without sacrificing the power of these methods. The use of

"multigrid" type strategies (Brandt, 1973; Terzopoulos, 1984), which in the present

case may take the form of "block-spin"" algorithms, such as the one presented in

chapter 4 (see also White, 1983) should be investigated.

Also in this connection, it should be interesting to find more rigorous justifications

for the performance of the fast deterministic schemes that we have developed, based

on heuristic considerations, in chapters 4 and 5, to see if it is possible to find some

general principles that may guide the extension of these schemes to other, more

general cases.

2.5. Analog Computers.

It would be interesting to actually construct prototypes of the hybrid and analog

networks described in chapter 4 and 5, to assess the practicality and performance of

such schemes. A more intriguing possibility is to exploit the isomorphism between

the estimation process of a MRF from noisy data, and the equilibrium behavior

of a ferromagnet with a coupled, spatially varying external field (see chapter 3), to

construct very fast, special purpose "quantum" computers to perform the former

task.
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