MRC Technical Summary Report #2855

SUP-NORM ESTIMATES IN GLIMM'S METHOD

Blake Temple

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street
Madison, Wisconsin 53705

August 1985

(Received June 17, 1985)

Approved for public release
Distribution unlimited

Sponsored by

U.S. Army Research Office
P. O. Box 12211
Research Triangle Park
North Carolina 27709

National Science Foundation
Washington, D.C. 20550

851106059
ABSTRACT

We give a proof that Total Variation \(\{u_0(t)\} \ll 1 \) can be replaced by \(\text{Sup}\{u_0(t)\} \ll 1 \) in Glimm's method whenever a coordinate system of Riemann invariants is present. The argument is somewhat simpler but in the same spirit as that given by Glimm in his celebrated paper of 1965.

AMS (MOS) Subject Classifications: 65M10, 76N99, 35L65, 35L67

Key Words: Riemann problem, Random choice method, Stability, Conservation Laws, Cauchy problem

Work Unit Number 1 (Applied Analysis)
SIGNIFICANCE AND EXPLANATION

A system of two conservation laws in one dimension is a set of first order nonlinear partial differential equations of the form

\[
\begin{align*}
 u_t + f(u,v)_x &= 0, \\
 v_t + g(u,v)_x &= 0,
\end{align*}
\]

where \((u,v)\) is a vector function of \((x,t), x \in \mathbb{R}, t > 0\). The Cauchy problem asks for a solution of (1) given the "initial" values of \(u\) and \(v\) at time \(t = 0\). Equations of type (1) arise, for example, in gas dynamics where they express the conservation of quantities like mass, momentum and energy, when diffusion is neglected. Typically, smooth solutions of (1) cannot be found. This is due to the formation of shock waves. Shock waves are the mechanism by which entropy is dissipated in solutions of (1). This paper gives a proof that solutions exist even after shock waves form, so long as the amplitude of the waves are not too great initially.

Keywords: Riemann invariants; Conservation Laws.

The responsibility for the wording and views expressed in this descriptive summary lies with MRC, and not with the author of this report.
We consider the Cauchy problem
\begin{align}
\frac{\partial u}{\partial t} + F(u) &= 0, \quad \text{(1)} \\
u(x,0) &= u_0(x), \quad \text{(2)}
\end{align}
where (1) denotes a strictly hyperbolic system of two conservation laws, \(u = (u_1, u_2) \), \(F = (f, g) \). Let \(\lambda_p, R_p, p = 1,2 \) be the eigenvalues and corresponding eigenvector fields associated with the matrix \(\mathbf{V} \), \(\lambda_1 < \lambda_2 \). Assume that \(U \) is a neighborhood of a state \(\bar{u} \) in \(u \)-space in which each characteristic field is either genuinely nonlinear \(\mathbf{V} \cdot R_p > 0 \) or else linearly degenerate \(\mathbf{V} \cdot R_p = 0 \), and such that \(\lambda_1(u) < \lambda_2(v) \) for all \(u, v \in U \). Without loss of generality, assume \(\bar{u} = 0 \). In this note we give a simplified proof of the following result which is contained in the results of Glimm [2] and which is required for the proof in [12]. (A stronger result also follows from the analysis in [3] which, however, involves the theory of approximate characteristics and is much more technical.) Let \(u(x, t) \) denote a weak solution of (1), (2) which is a limit of approximate solutions generated by the random choice method of Glimm.

Theorem 1: For every \(V_0 > 0 \) there exists a small constant \(\delta > 0 \) and a large constant \(G > 0 \) such that, if
\begin{align}
TV(u_0(\cdot)) &< V_0, \quad \text{(3)} \\
\|u_0(\cdot)\|_S &< \delta, \quad \text{(4)}
\end{align}
then
\begin{align}
\|u(\cdot, t)\|_S &< G\delta, \quad \text{(5)}
\end{align}
for all \(t > 0 \). Here
\begin{align}
\|u_0(\cdot)\|_S &= \text{Sup}(u_0(\cdot)), \quad \text{(6)}
\end{align}
It suffices to verify Theorem 1 for any approximate solution \(u^h \) generated by the
random choice method. Recall that there exists a coordinate system of Riemann invariants
for (1) in a neighborhood of \(u = 0 \). (Indeed, Theorem 1 and the proof to follow apply to
any system satisfying the above assumptions and for which there exists a coordinate system
of Riemann invariants [2].) Moreover, the Riemann problem is uniquely solvable in a
neighborhood of \(u = 0 \) by the method of Lax [4]. Such a solution consists of a 1-wave
\(\gamma^1 \) followed by a 2-wave \(\gamma^2 \) each of which is either a shock wave or a rarefaction
wave. Assume that \(U \) is a neighborhood of \(u = 0 \) satisfying all of the above
conditions. Define the strength of a wave \(|\gamma^p| \) to be the absolute value of the change in
the opposite Riemann invariant between the left and right states of the wave. Finally, in
order to set notation, we briefly review the construction of the random choice method
approximate \(u^h \).

Let \(h \) be a mesh length in \(x \), and let

\[k = Ch \]

be the corresponding mesh length in \(t \), \(C > \sup \{ |\lambda_p(u)| \} \). For \(i, j \in \mathbb{Z}, j > 0 \), let

\(x_i = ih, t_j = jk \). Let \(\mathbb{A} \) be a sample sequence, \(\mathbb{A} = \{a_j\}_{j=1}^\infty \), \(0 < a_j < 1 \). For given
initial data \(u_0(\cdot) \subset U \), define the random choice method approximate solution
\(u^h(x,t) \equiv u^h(x,t;\mathbb{A}) \) by induction on \(j \) as follows: First, for \(x_1 < x < x_1+1 \), define

\[u^h(x,0) \equiv u_0^h(x) = u_0(x_1 + \frac{h}{2}) \]

Next, assume for induction that \(u^h(x,t) \) has been defined for \(t < t_j \). Define

\[u^h(x,t_j) \equiv u^h(x_1 + a_jh,t_j^-) \]

and for \(t_j < t < t_{j+1} \), define \(u^h(x,t) \) to be the solution of the Riemann problem posed
in (3.3) at time \(t_j \). By (3.1), \(u^h \) is well defined so long as \(u^h(x,t_j) \subset U \) for all
\(t_j \). Let \(\gamma^p_{i,j} \) denote the p-wave that appears in the solution of the Riemann problem that
is posed at \((x_i,t_j) \) in the approximate solution \(u^h \). Recall that the quadratic
functional associated with \(u^h \) is defined by

\[Q(t) \equiv \sum |\gamma^p_{i,j}|^2 \]

where the sum is over all waves that approach at time \(t_j \), \(t_j < t < t_{j+1} \). Let \(A_{i,j} \) denote
the interaction diamond centered at \((x_i,t_j) \), and let \(D_{i,j} \) denote the products of
approaching waves that enter \(\Lambda \). We use the following notation:

\[
\begin{align*}
V_j &= \sum_{P,i} |\gamma^P|, \\
Q_j &= Q(t_j) = Q(t_j^+), \\
D_j &= \sum_i D_{ij}, \\
F_j &= V_j + Q_j, \\
S_j &= u^h(\cdot,t_j)_{|B}.
\end{align*}
\]

Note that \(V_j \) estimates the total variation of \(u^h(\cdot,t_j) \) and that (7), (9) give immediately that

\[Q_j < V_j^2. \]

We show that Theorem 1 is a consequence of the following lemma which is a restatement of results in [2]:

Lemma 1: There exists a constant \(G_0 > 1 \) depending only on \(F \) such that, if \(u^h(x,t) \in U \) for all \(t \leq t_j \), then

\[
\begin{align*}
V_{j+1} - V_j &< G_0 S_j D_j, \\
S_{j+1} - S_j &< G_0 S_j D_j, \\
Q_{j+1} - Q_j &< (G_0 S_j V_j - 1)D_j.
\end{align*}
\]

Proof of Theorem 1: Fix \(V_0 > 1 \). Choose

\[S_0 < \left(G_0 V_0^2 \right) = \delta, \]

where \(G_0 \) is large enough so that

\[\{ u : |u| < G_0^{-1} \} \subseteq U. \]

We show by induction that (17) implies

\[S_j < e^{2G_0 V_0^2 S_0}, \]

and

\[G_0 S_j V_j < \frac{1}{4}. \]
for all \(j > 0 \). Note that (19) gives (5) with \(G = e^{2G_0 t^2} \). Also note that (10) and (11) imply

\[
G_0 S_j < \frac{1}{4}.
\]

(21)

Thus, since (8) gives

\[
Q_{j+1} - Q_j < (G_0 S_j V_j - 1)D_j,
\]

(22)

\[
F_{j+1} - F_j < (G_0 S_j + G_0 S_j V_j - 1)D_j,
\]

(23)

estimates (19) and (20) also imply that

\[
Q_{j+1} - Q_j < -\frac{1}{2}D_j,
\]

(24)

\[
F_{j+1} - F_j < -\frac{1}{2}D_j.
\]

(25)

We now verify (19) and (20) by induction. The idea here is that (20) guarantees that both \(\{Q_j\} \) and \(\{F_j\} \) are decreasing. The decreasing of \(Q_j \) controls \(S_j \) at the induction step, while the decreasing of \(\{F_j\} \) maintains (20) at the induction step, since then

\[V_j < F_j < F_0. \]

First, when \(j = 0 \), (10) and (11) follow from (17). So assume (10), (11) hold for \(j' < j \). We verify (10), (11) for \(j' = j + 1 \). By (24) and (15),

\[
S_{k+1} - S_k < 2G_0 S_k [Q_k - Q_{k+1}],
\]

or

\[
S_{k+1} < (1 + 2G_0 [Q_k - Q_{k+1}])S_k,
\]

(26)

for \(k < j + 1 \). Thus by (26)

\[
\frac{1}{j} \prod_{k=0}^{j} \left(1 + a_k\right).
\]

(27)

But one can easily verify that the maximum of

\[
\frac{1}{j} \prod_{k=0}^{j} (1 + a_k)
\]

over all nonnegative sequences \(\{a_k\}_{k=0}^{j} \) satisfying \(\frac{1}{j} \sum_{k=0}^{j} a_k < M \) is attained when

\[
a_k = \frac{M}{j+1} \quad \text{for all } k. \]

Thus by (13) and (24),
Therefore by (27),

\[
S_{j+1} < e \left(\frac{2G_0v^2}{3} \right) S_0,
\]

which verifies (19) at \(j + 1 \). Moreover, (25) implies

\[
V_{j+1} < \frac{2G_0v^2}{2G_0v^2} < 2v_0^2.
\]

Thus by (17),

\[
G_0S_{j+1}V_{j+1} < 2G_0v_0^2 < \frac{1}{4},
\]

which verifies (20) at \(j + 1 \). This completes the proof of Theorem 1.
REFERENCES

We give a proof that Total Variation $\{u_0(\cdot)\} \ll 1$ can be replaced by $\text{Sup}\{u_0(\cdot)\} \ll 1$ in Glimm's method whenever a coordinate system of Riemann invariants is present. The argument is somewhat simpler but in the same spirit as that given by Glimm in his celebrated paper of 1965.