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ABSTRACT

The problem analysed is that of two-dimensional wave motion in a
heterogeneous, inviscid fluid confined between two rigid horizontal planes and
subject to gravity g. It is assumed that a fluid of constant density P,

lies above a fluid of constant density p_ > Py > 0 and that the system is
nondiffusive. Progressing solitary waves, viewed in a moving coordinate
system can be described by a pair (A,w) where the constant A = q/cz, c
being the wave speed, and where w(x,n) + n 1is the height at a horizontal
position x of the streamline which has height n at x = 3e. It is shown
that among the nontrivial solutions of a quasilinear elliptic eigenvalue
problem for (A,w) is an unbounded connected set in R x (Hg nclely,

Various properties of the solution are shown and the behavior of large
amplitude solutions is analysed leading to the alternative that internal bores

must occur or streamlines with vertical tangents must occur.

AMS (MOS) Subject Classifications: 35360, 76B25, 76C10
Key Words: Internal wave, Solitary wave, Internal bore, Bifurcation

Work Unit Number 1 (Applied Analysis)
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SIGNIFICANCE AND EXPLANATION

The notion of a solitary wave arose in the last century and provoked some

controversy as to the existence of such a phenomenon. The last few decades
have witnessed an upsurgence of scientific work on these waves owing to the i

special role they play in the evolution of general disturbances. Solitary

internal waves can be observed in the laboratory as well as in the earth's

oceans and estuaries where density stratification occurs, due to changes in

P

temperature or salinity.
The problem analysed in this report is that of two-dimensional wave

motion in a heterogeneous, inviscid fluid confined between two rigid

e x mcm

horizontal planes and subject to gravity g. It is assumed that a fluid of
constant density p, lies above a fluid of constant density po_ >p, > 0 and
that the system is nondiffusive. Progressing solitary waves, viewed in a :
moving coordinate system can be described by a pair (A,w), where the
constant A\ = g/cz, c being the wave speed, and where w(x,n) +n is the
height at a horizontal position x cf the streamline which has height n

at x = t», It is shown that among the nontrivial solutions of a quasilinear
elliptic eigenvalue problem for (A,w) is an unbounded connected set in

R x Ha n c°'1). Various properties of the solution are shown and the behavior
of large amplitude solutions is analysed leading to the alternative that

internal bores must occur or streamlines with vertical tangents must occur.

The responsibility for the wording and views expressed in this descriptive
gummary lies with MRC, and not with the authors of this report.
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A GLOBAL THEORY OF INTERNAL SOLITARY WAVES IN TWO-FLUID SYSTEMS

C. J. Amick and R. E. L. Turner

1. Introduction

The study of single-crested progressing gravity waves was initiated over a century
ago, It beqaﬁ)with the observatléns by Russell [24) 6f what he termed solitary waves,
which progressed without change of form over a considerable distance on the Glasgow-~
Edinburgh Canal. The mathematical analysis of this wave motion on the surface of water,
begun in the nineteenth century, has undergone a rapid development in the last three
decades, due to the scattering theory for the Korteweg-de Vries equation, which models the
motion of long waves and due to the'develdpment of techniques in nonlinear analysis
allowinq‘fgf_ffgﬂggglzgig_2£~fizite amplitude motions (cf. [5]}, [19] and references given
there). ‘ The work on surface uave;mhas many ‘parallels in the study of waves in fluids with

variable density. 1In the case of a heterogineous fluid with a free upper surface, gravity

waves still occur, in analogy with surface waves in a fluid of constant density, (cf. (23],

(251, [27]).‘°What is distinctive about a fluid with density stratificaﬁlsn, however, is
the presence of waves which are predominantly due to the stratification and not to the
free surface. These waves, called 1nterna1.waves, exist in a heterogeneous fluid even
when it is confined between horizontal boundaries, a configuration which precludes gravity
waves in a fluid of constant densitye

For surveys of earlier work on permanent waves in stratified fluids and for more
complete references than given here, we refer the reader to the articles by Benjamin (8],
Bona, Bose, and Turner [10], and Turner [26].

PR

Our concern in this paper is with progressing solitary gravity waves in a system

————

consisting of two fluids of differing densities confined in a channel of unit depth and ?__.
O
|

Spongored by the United States Army under Contract No. DAAG29-80-C-0041 and the National
Science Foundation under Grant Nos. DMS-8203338 and MCS-8200406.
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infinite horizontal extent. The undisturbed state consists of a fluid of constant density ¢

\;.ﬂ.ﬁ( p_ having depth h 1in contact with the lower, planar boundary and a second fluid of
w‘;; constant positive density »p . < p_, 1lying above the first and having depth 1 - h, so as . .
’?ﬁ to fill the channel. The motion studied is assumed to be two-dimensional, inviscia,
» incompressible, and nondiffusive. We shall always remove the time variable from
ﬁ‘j- consideration by taking a moving coordinate system in which the flow is steady and

‘tﬁ symmetric about the vertical axis.
The problem of finding nontrivial wave motion can be posed in terms of a pair of
- harmonic stream functions, 1;+, for the upper fluid and ¢ , for the lower fluid. At
J the interface between the two fluids, a free boundary in this setting, one must impose the
ff; continuity of pressure and of normal velocity components. A direct analysis of the
!, problem in this setting might be attempted along the lines of the work on two fluid jets
: by Alt, Caffarelli, and Friedman (([1], (2]). However, they make essential use of having a
?:j minimizer for an appropriate functional and must do a delicate analysis to show that the

:\:;; interface separating the two fluids is of class C'. In the present context the analogous

d minima would correspond to trivial parallel flows (cf. [10], [26]) and the nontrivial .

::-' flows, to what are undoubtedly saddle points. By taking a different approach we obtain a
Yy E: global picture of the solitary wave solutions and show that for each wave the interface
:\_:,: between the two fluids is analytic. ’
tl The approach taken in this paper is to approximate the discontinuous density function
.E: by a sequence of smooth density profiles and to obtain sufficiently good estimates in the
-:: smooth case to allow appropriate limits to be taken. In this way we also show that

s
Wy discontinuous densities and smooth, rapidly varying densities give rise to motions which

- are close to each other. Using methods of global bifurcation, the first author in (4)
:{3\\', gave a global theory for solitary waves in the case of an arbitrary smooth density. The
:}:ﬁ solutions are given by stream functions which are smooth everywhere in the channel. This

_ approach is not limited by the particular shape of the density profile, as was the
i;; -2-
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variational approach used in [10]. However, a limiting process to obtain solutions for
the density having a jump, from p_ to Pys would still entail a confrontation with an
unknown free boundary.

An alternative is to use semi~Lagrangian coordinates. To describe these coordinates
we first note that the stream function referred to in the last paragraph differs from the
usual one in having an intervening density factor (see formula 2.14). Using accepted
terminology we call it a pseudo-stream-function and denote it by ¢ = y(x,y), where x
is a horizontal coordinate and y 1is a vertical coordinate chosen so that gravity acts in
the negative y direction. In the semi-Lagrangian formulation one uses x and ¢ as
independent variables and y as a dependent variable. In this formulation the equation
to be considered is highly singular. However, what would be free boundaries in the
spatial domain correspond to coordinate lines, ¢ = constant, in the new variables. This
formulation was used by Ter-krikorov ([25] in combination with fixed point methods to show
the existence of small amplitude periodic and solitary waves in the case of a fixed or
free boundary at the upper surface of a fluid with smoothly varying density. Using this

° formulation, but applying a variational method, the second author in ([26] and [27] studied
the two fluid system under consideration here as well as a multiple fluid system with a
free upper surface. The existence of periodic and solitary waves was shown, the latter
waves being obtained as the limit of periodic ones with ever increasing periods. In the
present paper, to obtain large amplitude waves in the case of a discontinuous density we
work principally with the semi-Lagrangian formulation, but as a starting point use the
solutions provided by [4]. It will be shown that there is a global theory for a
discontinuous density analogous to that derived in (4] for a smooth density.

In Section 2.1 the passage from the postulated physical model to the relevant
equations is made. The equations are of two types. The first is a semi-~linear elliptic
equation for a pseudo-stream-function V(x,y). The second is a singular, quasi-linear
elliptic equation which governs the deviation of streamlines from parallel flow when gemi-

Lagrangian coordinates are used. In both equations there enters an unknown parameter

-3-
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which describes the speed c¢ of a progressive wave as seen in "“laboratory" coordinates.
In the second formulation it appears explicitly as an eigenvalue parameter )\ = g/c2
where g is the gravity constant.

In Section 2.2 the main results of the paper are stated in Theorem 2.1. It describes
a branch S of solution pairs (A,w) where w = w(x,,xz) is the deviation at the
horizontal position x4 of the streamline which has height x, at x¢ = i=. If T
denotes the domain of the pairs (x4,x;), the branch is unbounded and connected in
R x (BO(T) N C (T)). It emanates from a pair (Ad,O) where xd is a particular
function of Pye P_s and h. The speed c4 = (g/)\d)v2 is a critical speed for the
stratified configuration, the analogue of the speed /;E for long waves on the surface of
water of depth h. For all nontrivial solutions im S, 0 < X < xd and thus the
associated speeds are supercritical, a result consistent with all analyses of solitary
wave phenomena.

The sign of another parameter e, a function of Pyr P and h, predicts the sign
of streamline displacements. If e > 0, the undisturbed state will allow waves of
elevation, while for e < 0 it allows waves of depression. The phenomenon described
here, as distinct from that associated with simple eigenvalue bifurcation, is one-sided.
If e > 0 there are elevation waves but no depression waves near the bifurcation point
(Ad,O). Finally, all waves are symmetric about their crests and decay monotonically and
exponentially to zero as x + to,

The core of the proof of Theorem 2.1 is carried out in the course of Sections 3
through 6. We begin with a sequence pn, n=1,2,3,..., of smooth density profiles in
the undisturbed channel configuration which, as n + », converge to the given
discontinuous density function. It is shown in Section 3 that for each n a subset of
the pseudo-strean-functions from (4] provide an unbounded, closed connected set of
solutions (A,w) in R x H&(T) with which to work in the new coordinates. 1In Section 4
a general scheme for the limiting process is given. Then, after imposing restrictions on

the gradient of w, regularity estimates for solutions are derived, the estimates being
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independent of n. These estimates are used in Section 5 to obtain connected sets of
solutions in R x Hs(T) for the case of a discontinuous density. In Section 6 the
solution sets are examined in the stronger topology of R x (H&(T) n C°'1(i)). Here it is
shown that connectedness is preserved. The next step concerns the restrictions imposed on
the gradient of w in Section 4. It must be shown that for any solution (A,w) under
consideration, the gradient of w does not take values in a range that would make the
underlying elliptic equation singular. This is accomplished by returning to th2 original
formulation involving the pseudo-stream-functions Wt and obtaining bounds on their
gradients; that is, bounds for the velocities in the flow domain. These bounds translate
into the desired estimates for the gradient of w.

In Section 7 results constituting the proof of Theorem 2.1 are collected. Many i
properties of solutions are obtained in the course of proving the existence of the set S.
To these are added the proofs that the interface is analytic and that depression
(elevation) waves are absent near the bifurcation point (Xd,O) if e > 0 (e < 0).

Numerical studies have been made of periodic, interfacial, gravity waves for two
unbounded fluids of differing densities (cf. [17], [(28)). It is found that along a branch
of waves of fixed wavelength, the separating streamline steepens, eventually manifesting a
vertical tangent and, past that, an overhanging region in which heavier fluid lies above
the lighter one. From these studies one might conjecture that, along the branch of
solutions § found in this paper, w becomes large in c% ' 1 fact, the introduction

of the Co'1

topology apart from having a crucial role in the eatimates of Section 4, was
suggested by the numerical work. Section 7 concerns the behavior of large amplitude

solutions on the branch S. The fact of having a channel of finite depth and solitary

rather than periodic waves may change the character of large amplitude waves. We pursue

the implications of assuming that wave profiles do not steepen to the point of having

A

Sy

. e
AN

vertical profiles. A first consequence is that there must exist a solutijon (X, W) of the
flow equations for which w 1is not in L2(T). Rather, at x = t*® it asymptotically

approaches a nontrivial parallel flow, a "conjugate” flow in the terminology of Benjamin
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[9]. A further consequence is the existence of an “internal bore" of predictable size and ‘
speed. As yet, no contradiction has arisen from this train of arguments and so the large
amplitude behavior remains an open question. In a project in progress the second author
and J.~M. Vanden-Broeck are carrying out a numerical study of the solitary wave patterns

shown to exist here and hope to shed light on their behavior.
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2. Formulation of the Flow Problem and Results
2. 1. The Flow Equations

Here we describe the physical model under consideration and the passage to a boundary
value problem for a partial differential equation. The boundary-value problem, in turn,
is formulated in essentially two ways and the interplay between these is used in our
analysis. Consider an incompressible, inviscid fluid acted on by gravity and restrict
attention to a two-dimensional flow confined to and filling a region
s = {(x,y)l- <x< , ~h <y < 1-h}. The acceleration of gravity has magnitude g in
the negative y direction. Further assumed characteristics of the fluid which make
propagation of permanent waves possible and their study tractable are that it is
heterogeneous and non-diffusive. To explain the last term it is worthwhile t» first
describe a diffusive system. Consider a mixture of two components, say water and a
dissolved salt. In a mixture the molecules can trade places without having any net mean-
molar velocity. However, if the molecules have different masses, there can be a net
movement of mass. Let 'e'f denote the mean-molar velocity and 3, the mean-mags velocity
(c€. {11], Chapter 1). Let p denote the density of the fluid and suppose, to begin
with, that p 18 a smooth function of space and time. Subsequently we shall formuls:e
the problem for a discontinuous density. If v denotes the diffusion coefficient
(agsumed the same for the two types of molecules) then the Fick diffusion law (cf. [7]';

{11); p. 23; [14]) gives

- -
Q=g-v2. (2.1
The Euler momentum equation is
-l
- -y -
p 3 + @+ VD) = % - pok (2.2)

-
where p is the pressure and k is a unit vector in the y direction. Conservation of

mass takes the form

'We wish to thank the authors for a discussion of the diffusive model.
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- ! gg- + div(pQ) = 0 (2.3) |
K 3 and the volume incompressibility, the form
;\.
o aivg=0. (2.4) :
J"
-:. A set of equations for p and "qL is obtained by using (2.1) in (2.2) and (2.3). We will
» *
seek a wave motion which has a permanent form when viewed in a coordinate system moving in
:'j the x direction with constant speed and in such a coordinate system the equations will
-:' have no explicit time dependence. To avoid introducing new notation let us assume for the
b,
"y remainder of the paper that all quantities are referred to the moving system, but retain
) the notation already introduced. With no time derivatives present, the equations for o
<. and § reduce to
o BN N Y
o p(g » V)qg + O(v) = ~¥p - pgk , (2.5)
.~\' S
gV ~vap=0, (2.6)
o s
div T =0 (2.7)
l"-
‘»:: where O(v) refers to terms of order v for v small. Time scales for diffusion (e.g.
;:' in stratified salt solutions) are on the order of hours while a wave of the type sought
T
here will pass in a matter of seconds. Thus, diffusion plays an insignificant role in the o
"‘4 wave propagation phenomenon. By a nondiffusive fluid we merely mean a fluid governed by F
-2)
;.: (2.5)=(2.7) with v = 0. The resulting equations are the standard ones used for :
! ‘1. v
I nondiffusive stratified fluids, but the condition ‘q‘ » Vp = 0, attributed to
’ 4
J nondiffusivity, is hereby rationalized. Otherwise, it would seem to arise from using a
~
e single solenoidal field 'c';‘ together with mass conservation and not have any clear 9
< L
-
oS connection with diffusion (or lack of it). !
+
A f
A N The equations which result from setting v = 0 in (2.5)-(2.7) and which are the
A% basis for our analysis are: :
v ES > a N
2 pla » V)q = ~Vp - pgk , (2.8) s
%3 ;
2 TeVo=0, (2.9) ’
Fr . o
hd “
- avT=0 . (2.10) ]
" For use in the sequel we let ?;‘ = (U,V) where U and V denote the horizontal and -
k :- -8~ -
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vertical components of velocity, respectively. It will be assumed that in the original
"laboratory® coordinates the fluid is at rest at x = i» and there has a positive density
Po(Y) which is nonincreasing in y and satisfies p_(-h} > p (1 = h). Thus if a wave
under consideration is moving from right to left in the "laboratory"™ with speed c > 0, a
corresponding boundary-value problem in the new coordinates is to find T;‘(x,y) ’

p(x,y), p(x,y), and ¢ satisfying (2.8)=(2.10) and

|11m plx,y) = p (y) , (2.11)
X |+
lljl-m (u,v) = (c,0) , (2.12)
x|+
V=0 on 23S (2.13)
y

where 23S denotes the boundary of S. Note that 't';‘(x,y) = (c,0), p(x,y) = - f P, (8)ads,
and p(x,y) = p_(y) 1is a solution of (2.8)-(2.13) for any real ¢ and will beo referred
to as a trivial solution. We shall find nontrivial solutions of the boundary value
problem (2.8)-(2.13), properly interpreted, for a piecewise constant density pd(y).
given as p_(y) and shall do this by way of smooth approximating densities. 1In the
treatment of smooth or discontinuous densities it will always be assumed that each
streamline (i.e., integral curve for ?D is a simple Jordan arc connecting x = == to
x = 4o, In particular, there are to be no "internal eddies”, that is, no relatively
compact regions in S bounded by parts of streamlines.

From (2.9) and (2.10) it follows that 'é;‘ admits a stream function, as does 'a
multiplied by any function of p, since p is locally constant on streamlines for ‘q‘.
In particular, there is a "pseudo-stream-function" ¥(x,y) for which

2T = b (2.14)
the subscripts denoting partial derivatives. The total head pressure H is defined by
nmw)-mmw+%ommﬂamwﬁ+pude (2.15)
and from (2.8) it follows that
oH

W oovv, -u) +o(r|T]? ¢ 2
% x Y sz q qy) (2.16)

and

-




‘31‘ - 1-‘2
ay = PUU, - V) vtz [al® + qn) . (2.17)

Since ?f ¢« Vp = 0 the Bernoulli condition

T VH=0 (2.18)
follows. Thus, H and p may be considered as functions of the single variable ¢ and
we shall write H(x,y) or H(Y) and p(x,y) or op(¢y) when no confusion is possible.
Since all streamlines go to infinity where p and ?? are known and where p can be
assumed hydrostatic:

¥
ply) = = [ p_(s)gds , (2.19)
0

the functions H(y) and p(y), can be computed explicitly when p, and c are given
(cf. (2.21), (2.22)). The explicit examples in [10]), section 6, illustrate the
computation.

Define

¥Uy) = ¢ {)y Yo (8) ds , (2.20)
the pseudo-stream-function "at infinity". Let Y(y) denote the function inverse to ¥
so that Y(¥(y)) =y for -h <y < 1 - h. Then all along the streamline with value ¢,
the density has the value

p(Y) = p (Y(P)) (2.21)
and for a flow with a pseudo-stream-function ¢¥(x,y) the density at (x,y) is
p(x,y)) = p(Y(¥(x,y))). That is, the streamline through (x,y) must be followed to =
to ascertain its associated density. Similarly, from the data at infinity we have
2
H(Y) = pY(W)) + p(¥) (5 + g¥(¥)} (2.22)

and each of (2.21) and (2.22) is defined for Y¥(-h) < ¢ < ¥(1 - h).

-10-
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To obtain a partial differential equation for ¢, suppose U » 0 (as we shall).
Using the chain rule to express the derivatives of H and p in (2.17) one obtains
aH dp a2
— - + =3
@~ 7P, -V d*( lal* + gy)
3 il
after cancelling a factor vYp U = T If Uy - V, is evaluated using (2. 14), the last
equation becomes the semilinear elliptic equation
d &
AY + gy 3 " @y (2.23)
which is Yih's version of long's equation (cf. [10] for references). The associated

boundary conditions are

¥(x,~h) = ¥(-h), Y(x,1 - h) =¥(1-h); x¢eR (2.24)
and
ULm $(x,y) = ¥(y) . (2.25)
x|+

The formulation at this stage, given p_(y), is to find ¢ and a function y(x,y)
satisfying (2.23)-(2.25). If p_, 1is smooth, one seeks a smooth . If p_ 1is the
plecewise constant function

] -h<y< 0

Paly) = (2.26)
[} 0<y<1=-h,

+
then the meaning of (2.23) must be clarified. The dividing streamline between the
portions of fluid with different densities is that on which ¢ = 0. Suppose it is the
graph of a function T = {(x,Y(x))|- < x < ®»}. In each of the regions

™ = {(x,y)-h ¢y < y(x)} and s* = {(x,y)|y(x) <y < 1~-h}, p is constant, taking the
values p  and p+, respectively. From (2.19) and {(2.22) H is constant in each region
and by calculating its values at x =« and y = 0, on either side of [, one sees the
values to be H™ = p_cz/z ana HY = p+c2/2. respectively. Equation (2.23) requires ¢
to be harmonic in St. as expected. As V is a measure of flux we require it to be

continuous. Thus

$=0 on T (2.27)
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and since it should also satisfy (2.24), by the maximum principle it will be positive in
s* and negative in S§”, Let *t denote the restrictions to St, respectively. An
additional requirement ou the free boundary I is that the pressure
p=1-3|%?%-oq
be continuous. Thus
1 +,2 -2 c2
(907]% = 197"} = (o, = p){7- - av} on T (2.28)

using the values H* from above. To summerize, the boundary value problem for the given
discontinuous density (2.26) is to find I, ¢, and #(x,y) such that § is harmonic in
s* and satisfies .2.24), (2.25), (2.27), and (2.28). There will be no problem
interpreting the conditicus as it will be seen that T is smooth as are the extensions of
0: to the closures ;;.
Next we give alternate formulations of the boundary-value problems corresponding to
the smooth and discontinuous densities, respectively. We shall work only with flows in
which no reversal occurs; that is, for which U(x,y) > 0 in §. From (2.14) this
corresponds to *y > 0 and for such functions one can solve for y as a function of the
spatial coordinate x and the "material coordinate” ¢. The utility of this semi~
Lagrangian description is that for the density (2.26) the unknown intcrface function vy
+«is merely the unknown function y(x,¥) evaluated on ¢ = 0; i.e.

Y{x) = y(x,0) . (2.29)
A disadvantage of using y as a Aependent variable is that the semi-linear equation
{2.23) is replaced by a singular quasi~linear equation for y(x,¢). Since

y(x,¥(x,y)) = y one has the relations

Yo * Y, ¥
o Tex (2.30)
Yy * *y
from which one derives the equation
2
1+y
x 1 x dp dH
... —— — (2.31)
3x Y =)+ 3 5 ( Y, )+ gy £ "5
-l2=
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in Rx (¥(=h),¥(1 =h)) from (2.23). The associated auxiliary conditions are

y(x,¥(=h)) = =h, y(x,¥(1 = h)) = 1 = h, X ¢ R (2.32)
and
lim y(x,¢) = Y(¢) . (2.33)
| oo

One final change of variables will bring the equation to the form used by the second
author in [26]). let x, = x, X, = ¥(9) and

wixg,x5) = y(x,,¥(x;)) - x; (2.34)
80 that w represents the deviation at a horizontal position x; of the streamline which
has height X, at e, It should be emphasized that X5 is a rescaled stream
coordinate. In describing an equation for w we set

2, 2
Py * Py

577-:-;;7 H (2.35)

f(P"Pg) -

£y - -g;— 1i=1,2) A = g/czg T=Rx (~h,1 = h); and use the summation convention. A

calculation produces an eigenvalue problem for the pair (A,w):

- -5-:-; o.(xz)li(Vv) - -Ap.'.(xz)v in T, (2.36)

v(x,,-h) - v(x'n =h) =0, xy € R, (2.37)
lim v(x,,xz) =0, (2.38)
[x|+e

The case for the discontinuous density (2.26) requires a separate formulation. While T
and 8 coincide, the domain T' = {(xy0%y) € T|x; > 0} is what corresponds to s*. One
defines T similarly. By a solution of (2.36)-(2.38) for the density (2.26) wer
understand a function w ¢ ¢’ '(#) N c'(1%) satistying (2.37), (2.38), and the weak
equation

2 .. - -
£ Dty (VW) ey A £ pave = Ap_=p,) {. wix,,0)e(x, ,0)ax, (2.39)

=13~

NERE T O AT RPN
AN -.' ” w_{ . §_ TR0, N *\\\C ‘
b ~- “( § ' :‘. -, A 'lqll:\i'(-.&-{';.- o ;'- .?J ”.
: ?3“-.);:)%5‘-3. LI SERTON Ay "-f:-\.'-%:. A



>
5 e 8 o 8

»
x©
Cata

R '}-.
B

b2t Y kg bl d T———

for all ¢ ¢ C;(‘l‘)- To keep both (2.36) and (2.39) in mind we shall simply refer to a
solution of (2.36)-(2.39). Throughout the paper standard notation for function spaces

will be used (cf. [13]). We shall write C for a space c® of continuous functions.

2.2. Results

Theorem 2.1. Let . be the discontinuous density given in (2.26), let
—— s d

1 P L
T 5 G+ == (2.40)
and let
p_ )
e=—- X . (2.41)
h (1 - h)

Then if e > 0,
(a) There exists an unbounded, closed, connected set SC R x (Ho('l') (a] C ('r)) of
solutions (A,w) of (2.36)-(2.39) with (xd,O) € S.

(b) There is a positive constant ) = }_(p_.p‘_) such that if (A,w) ES\{(Ad,O)},

then ) < ) < Ad, w>0 on T, v(-x,,xz) - w(x.l,xz) on T, and :%‘ <0 on
(0,») x (=h,1 = h).
(c) The function w has real analytic extensions to ;F and '-1‘:, :L € @ ('r), and
1
u —
pd(xz){fz(Vw) -Aw} e C(T) (2.42)

for some HSlder exponent a > a, > 0, uniformly for w in bounded sets of

0
Y%,

¢d) There exists a constant K = K(p_,p,,h) such that for all (A,w) € S,

——— i
°<1+“'x K in T
2
and
w
*4
X .
'*"x < in T
' 2

-l4=-
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(e) Por each (A,w) € S\{(A,,0)}
Jw(xgrx)| + |9w(x ,x.)] < C .-czlx‘[
1%2 1'%2 1
where C; and C, are positive constants depending on (A,w).
(£) 1f A -2 | |w] " + |w] o 4 _ 1is sufficiently small, the only solution
Ho(T) c T
of (2.36)-(2.39) !or which w is even in x4 and for which both w and
-3w/3x have signs opposite to that of e for xy > 0 1is the trivial
solution.

If e < 0, the results (a)-(f) hold with the change w < 0 4in T and :—}— >0

1
for x4 > 0 in part b).

We shall restrict attention to proving parts (a)=(f) for e > 0 since the case
e < 0 is analogous.

The implications of the assertions in the theorem for the fluid flow are not all
transparent and some discussion is in order. The value ) a at which bifurcation takes
place and the sign of e as an indicator of the direction of streamline displacements
both arise in the small amplitude calculations of long [16] and Benjamin (8] as well as in
the variational approach of the second author in [26]. In the passage from the physical
flow model to the problem (2.36)-(2.39) we did not address the question of which solutions
(A,w) give rise to physically reasonable flows. In the approaches using the equation
(1.23) for ¥(x,y) further restrictions intervene (cf. (4], [10]). BHere, however, each
pair (A,w) € S corresponds to a physical flow. The main point is to verify that all
streamlines connect x = -» to x = 4@ or, equivalently, that -h < xy + w(x,,xz) < 1-h
for ~h < xy < 1 -h. Since w=10 for x; =-h and x; = 1 -h and since 1+vx2 >0
by part 4), it follows that x; + w lies in the desired range. The bounds in part 4)

are, in reality, bounds on velocities, for the use of the relations (2.30) together with

(2.14) and (2.34) yiela

-15-
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1 3y . [-] .
“',—-75 Trw
(4 x,
cw . (2.43)
x,
Vs -——! -
Ve Ix 1+ 'x
p 2
The velocity c sat.sfies
(a2 "2 < c ¢ (/02 (2.44)

using part b) and thus U and V have bounds depending only on p_, L) and h. The

velocity (g/\d)1/2

is the so-called "critical velocity"™ associated with the fluid system
and (2.44) shows that all solitary waves found here have supercritical velocities. The
remaining parts of b) describing the shape of w are self-explanatory and are in accord
with observed phenomena (cf. [30)). The smoothness of w is more than sufficient to give
a sense to (2.36)-(2.39). The condition (2.42) corresponds to the pressure condition

(2.28). To see this one uses (2.43) to obtain

2 2
(1+vx) c

PelE (VW) - Aw} = p.{
o2 2
1 c v
- L e e - 30 (2.5

On the dividing streamline w(x,,0) = y(x;,0) and the continuity of the expression in
(2.45) yields the continuity of pressure expressed by (2.28). Having w with the
reqgularity stated in part c) it is a simple matter to verify that (2.36) holds in *tur
and that the weak equation (2.39) holds. The exponential decay described in part e) shows
that the wave is of essentially finite extent. Of course, the proof makes it evident that
the constant Cy approaches (0 as A approaches Xd and this is to be expected in
solitary wave phenomena (cf. (6], (8], [12), [25]). The nonexistence result in f)
exhibits the delicate nature of the bifurcation at (Ad,O), a behavior quite different

from that at a simple eigenvalue wherein the bifurcating branch crosses the line of

trivial solutions.
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3. Solutions for Smooth Densities
let p., B = 1,2... be a sequence of nonincreasing functions in c"(-h,1 - n]

which converge as n + » ¢o the discontinuous density o a given in (2.26). Por
definiteness suppose that P, = P for =h ¢ y < 0 and that by = P, for
i/m<y<1=h. 1Let pn play the role of the smooth density P in (2.20) and consider
solutions (A,¥), A = g/t:2 of the corresponding problem (2.23)=(2.25). et u = u(x,y)
be defined by the relation

/o (y) ulx,y) = ¥(y) - #(x,¥) « (3.1)
To avoid introducing more notation we will refer to the pairs ()A,u) as solutions of
(2.23)=(2.25). In an earlier paper (4] the first author obtained global solution branches
for the flow problem with a smooth density and those results will be used here. The
description involves a parameter Yo defined as follows. Hereafter let I denote the
interval (-h,' - h) and define

2

- I p'v

1 ®

- max 2 .
n vdl(’,u) £on(v')

For the smooth density P the quantity ¥, plays the same role that ) a in (2.1) plays
for the discontinuous density. That is, (un,O) is the bifurcation point of a branch of
solutions. It will be shown in Lesma 5.5 (c) that

limp =1, .

nee D da
Corresponding to e defined in (2.2) is a parameter A, (cf. [4], formula (7.25)) which
satisfies

lim An = @ .

nese
For A, > 0 one obtains waves of elevation for the smooth density Pn and that is the
case discussed here. 1In Section 7.2 of (4] it is shown that there is a maximal, connected

set Dn CRx (n;(S) nco(E)) of solutions (A,u) containing (un,O). Furthermore, for

7=
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t
o ‘
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oo

: (A,u) ¢ Dn\“”n'o” the parameter ) satisfies 0 <y <) <y, where y, isa *
\ constant, and the function u satisfies u > 0 in §, u(-x,y) = u(x,y) in §, and
,:\' du/3x < 0 for x > 0. -

RS
*-z'f For our purposes the nonlinearity in the basic equation (1.1) of (4] can be assumed
"

smooth and bounded for a fixed smooth density Pn (cf. the discussion following 7.14 in

:“ (4] ). Standard elliptic theory applied to such an equation gives local H2 bounds from {
‘A local H' (or 12) bounds and by embedding theorems, local HSlder estimates (cf.

P
13N [22]). Hence, if a sequence of solutions converges in H;(s), it will converge uniformly

on bounded subsets of S, according to the Arzela-Ascoli theorem. Since u varies

LX)

q". monotonically for x > 0 the argument given in lLemma 4.6 of this paper shows that u

-

* e
:-:' converges to zero as x + +», uniformly on bounded subsets of HJ(S). As a conseguence

.-\.‘

o the topology of R x Hs(s) is stronger than, and hence equal to, that of

yigel R x (Hg(s) N Co(§)) when restricted to the set of solutions 0,. We conclude that we may
¥
L0 replace H;(S) n C0(§) by HS(S) in the preceding paragraph.

:Z' A solution (A,¥) of (2.23) gives rise to a solution (A,w) of (2.36) provided the
-

- strict inequality *y >0 holds in S. If u = 0, then JY(x,y) = ¥(y), whence .
"0 M. y(y) >0 in 5. 1et i
‘ 2 y
2 2 3 ‘
- C, = {maximal connected subset of D | 3y > 0 in s} (3.5) :
o} o

X and
B
" Ey, = {O,w|(a,u) eC ) . (3.6)

A §
.\ This defines a one to one correspondence between Cn and E,, a set of solutions of :
:{ (2.36)-(2.39). For nontrivial solutions (A,u) we have 3u/3x < 0 for x > 0 whence 3
: dw/3x, < 0 for x, > 0 by (2.30), (2.34), and (3.1). Since w is even in x, and .
e vanishes at infinity, it follows that w > 0 in T if (A,w) € E \{(u,,0)}. A
2
9 c
=L /
2 lemma 3.1. The map from (, to E, taking (A,u) to (A,w) is one to one and g

continuous from R X Hg(S) to R x n(‘,('r). For any rectangle B = J x I, J open (and

,-.: possibly unbounded) in R
L .
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where X, and X, depend on n and K,; also depends on a lower bound for *y' v being

associated with u. The constants K4 and K, are independent of the horizontal

interval J.
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Proof. The agsertions of the lemma are valid for any smooth density and in the proof

4 E

we write p for P’ supposing we have fixed n. For any pair (A,u) € Cn the

corresponding wy > 0 and hence the correspondence between u and w, via y(x,¢) is 'E':
well defined and one-to-one. A further consequence of "y > 0 is the bound :’:;
¥(~h) < < ¥(1 - h) in view of the boundary conditions (2.24). This bound, together ﬁ\ﬂ
with standard elliptic estimates applied to the semi-linear equation (2.23) yield _:
estimates for derivatives of ¢ of all orders, depending only on p (that is, on n). }::E%f

L
In particular \luy < X, where K depends on n. }‘i

’ In comparing the B! norms of u and w we first note that since p 1is smooth and
positive and the speed c¢ = (g/}) V2 is bounded above and below on (,, it suffices to
prove inequalities (3.7) and (3.8) with u replaced by

olx,y) = c/p(y) ulx,y) = ¥(y) = p(x,¥) - (3.9)
From (2.20) and the coordinate relation (2.34) one obtains

- -1 (x,¥(x, )) (xg) -1

axz
. c/p(xz) s
%3; (xey(x,¥(x,)))
- c/ (! (xl ) - 1 (3. 10)
'a% (x,y)
and
-19-
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;! 1 S'Y' (x,y)
§ -
o d
®y
X;i It follows that for each fixed x = xq,
Lht
2 1 2 2
[ |Ww|%ax, = [ ————— (¥ + (c/p(X(¥)) - ¥ ) }ay . (3.12)
1 2 1eehmam ¥

For a wave of elevation w > 0 and ¥(x,y) < ¥(y), and so

p(Y(P(x,y)) > p(Y(¥(y))) = p(y). Thus

N y
- c [ Yo(¥(¥(x,8)))ds + ¥(=h) = ¥(x,¥)
o) ™
il y -n
Aty >c[ V/o(slas + [ co/p(s)ds - v(x,y)
-h 0
04 y
=c [ Jols)as - ¢(x,y)
-:_. ” 0
3
= ¥(y) = ¥(x,y) (3.13) N
il
% ,
:t* in view of the definition (2.20). Since ¢ f Yo(Y($)) + ¥(~h) - ¥(x,y) vanishes at
. =h '
'{\ y = =h, (3.13) can be combined with the Poincaré inequality to yield
[ Fxpay = [ (1y) - wix,y)?
:‘1“1 I I
3'.“
:~“ Yy 2
:::v < [ (] ofp(¥(¥(x,8)))ds + ¥(=h) - )
I -h
o
; 3 7 2
il <x [ (35 U TN + ¥-n) - )
o oo
o
'-.'l". TITTES 2
=x [ (c/pl¥(p)) - vy) . (3.14)
..". I
S

E

Since 'y € K it follows from (3.12) and (3.14) that for any rectangle B = [a,8] x I

C

=20~-
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S T TR =T R TR T T T @ T e T ] e e Tw e
i T T T W T Vi T VoS P Sy > vy =y Wy Wy

[ cx [ lw?axlwl? (3015
B B H (B)

where one uses the bounds on ty and ¢ in the denominator in (3.12). 8ince ¥, = »,,
(3.12) also yields
k[ Iw]? > [ (o2 + (c/o¥(W) - o/pT(D) + o/pT(T) - vy)z}
B B

2 1.2 2
>£ oy 30, -9} (3.16)

where the mean value theorem is used to obtain
|/BTTe - /T2 < xo v - ¥]2 .
From (3.15) and (3.16) it is clear that
lol < K,lw| (3.17)
a‘(s o u'(n)
and hence (3.8) holds.

For a fixed (A,y) € C,, there holds "y > X' > 0 and one readily derives

|"| 1

< K (3.18)
H'(B) 1|'|n1 B

(B)
from (3.12) using a mean value estimate as in (3.16). Hence (3.7) holds.

To see continuity of the map from C'n to En consider a sequence of solutions
(xn,un), m=1,2,... converging in R x 53(8) to (Au) ¢ C,c let w, and w be the
respective counterparts of Yp and u. If A= ¥, then u = 0 according to the
description of Dn' Then since u, converges to zero in us(S), elliptic estimates show
Vun to be small uniformly on S for all large m. The y derivatives of the
corxesponding *m are bounded below by a positive constant, uniformly for m large and
hence (3.7) implies the convergence of w, to zero in “(1)(8)’

If A < Moo then An < -21 (A + un) < for all large m and the function ¥

corresponding to u satisfies -:-5 >0 in 8. In fact, there is a constant X > 0 8o

1)
that %> K on 8 and T}-’E> XK on B for all sufficient large m. To see this,

-21=
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ol consider first the behavior for large x. The method of proof of Theorem 2.3(b) of [4] is ‘
easily used to show that lum| < K'e-lel and Juf ¢ K'e-lel vwhere B8 > l("(un = A).

Elliptic estimates show that Vum and Vu have the same type of decay for large x.

Let By denote the subset of S (or T) where |x| < N. It follows from (3.1) and the

exponential decay that for some N > 0 and all m sufficiently large the y derivatives

] of ¢ and wm are bounded below by a constant K''' > 0. As noted at the outset of the

[ proof, the second derivatives of the function wm have a bound on §, independent of
L W
) m

} m. By the Arzela-Ascoli theorem it can be assumed that the functions 5;- converge

uniformly to k)] on Bye Since %% >0 on B it is clear that for all sufficiently

ay

large m there is a positive K which serves on EN and on its compliment as a lower

Nl

bound for the y derivatives of ¢ and wm.

LT 5

b To see that w, converges to w first note that, according to the lower bound just
established, (3.7) holds for the pair (u,w) and for the pairs (um,wm) with K,

independent of m, provided m is sufficiently large. For any given € > 0 the norm

R A ¢

of u in H‘(s - By) will be less than ¢ for N sufficiently large and the norm of

w, in H’(S - By) will be less than 2¢ for m sufficiently large. Then the norm of

»,

wn in H1(T - By) will be at most 2x1e and so it suffices to show that w, converges

to w in H1(8N) for each N. Since the y derivatives of the tm have a positive

lower bound K for all large m, one readily sees that the inverse functions ym(x,ﬁ)

Pt S

converge uniformly to y(x,¢) on BN as do the functions w, to w on By.

Derivatives of the formulas (3.10) and (3.11) provide c? bounds for the functions L

uniformly in m for all sufficiently large m and hence another use of the Arzela-Ascoli

S Ao

theorem gives convergence of w, to w in C1(BN) and hence in H‘(BN). g.e.d.

Theorem 3.2. For each n, E is an unbounded, closed, connected subset of R x H&(T)

n

PO ] —-‘ -J LA

containing (un’O)'

Proof. The continuity of the map from C_, to E implies that E, is connected.

o

To see that En is closed let (Am,wm) ek m=1,2,..., converge to (A,w) in

nl
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R x H&(T). The inequality (3.8) shows that the corresponding functions u, are uniformly
bounded in ug(s). From section 5 of [4] it follows that the sequence (A.,un) converges
in R x HJ(S) to a solution (A,u). The function u will be smooth as will the
corresponding 1§, again from elliptic estimates. In order to show that En is closed it
suffices to show that 3y/3y > 0 in s.

If u 0, then Y =Y and its y derivative is positive in 8. If w7 0 then

A< ¥, and Vu decays exponentially to zero as |x| + » as was indicated in the
previous proof. This decay means that %% is positive for (x,¥), E\BN' for some N.
Since p 1is constant near y = -h and near y = 1 - h, ¢ is harmonic near those
lines. Moreover, | is nonconstant near those lines for otherwise it could not approach

Y as |x| + », From the maximum principle it follows that %% is positive on the
boundary 95 and so if it vanishes, it must occur at a point (;,;) € S. Suppose this
occurs. Then since %% 20 in S, the gradient of g% must vanish at (;,;) with the
result that

o exix-0tr iy -Pd (3. 19)
in a neighborhood of (x,¥). But then (wy)-' has a nonintegrable singularity at

{(%,¥). Now apply (3.12) to ¥, and *m and integrate the result over an x interval

containing X. Since w, is bounded in H1 uniformly in m, one can conclude that the

integral of (awm/ay)" over a neighborhood of (;.;) is bounded, uniformly in m.

Fatou's lemma would then show (M/By)-1 to be integrable near (X,¥), a contradiction.
The contradiction just reached also arises if one assumes En bounded. For then

(3.8) shows that C(,, is bounded and hence there is a sequence (Xm,um) converging to

{(A,u) € Dn\Cn for which the corresponding wy must vanish somewhere. qee.d.
For later use we include the following result.

Lemma 3.3. For each n, the identity map on En is continuous from R x HJ(T) to

R x (HN(T) N c .
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Proof. The proof is similar to the proof of continuity in lemma 3.1 and we use
notation from that proof. In fact the continuity on bounded subsets of T follows from

the arguments in the last paragraph of that proof and so only the "tail® behavior need be

examined. Suppose ( '\m"

m) converges to (A,w) in R x Hs('r). Then from (3.8) the

corresponding |up| can be made arbitrarily small for large N, uniformly in

n(s-8y)
m. Elliptic estimates then show |um|c1(s B to be small, uniformly in m. Since the
"N - W
function ¢ corresponding to w satisfies g—g K>0 in 8, one has sy_m ? K/2 in

§ for the corresponding “‘n when m is sufficiently large. Then the formulas (3.9)-

(3.11) show |wm| to be small uniformly in m, 8o the identity map is

clis-ay)

continuous. qg.e.qd.
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4. Sets of Solutions with Restricted Gradients

In Section 3 it was shown that for each n the problem

- 52—1 (p, (%02, (VW) = =Apl(x)v 4n T, (4. 1)
w(x',-h) = w(xq,1-h) =0, xq e R, (4.2)
lim '(81'X2) =0 (4'3)

I,

1
has an unbounded, closed, connected set of solutions [, emanating from the pair

(un,O). As stated sarlier, the existence of solutions for the problea with discontinuous
density will be obtained by allowing n to approach infinity. The intricacies of the
limiting process will be described in Bection 5. Here we dascribe a general setting for

obtaining connected sets of solutions by letting parameters approach limits and also prove

e o e A e .

some estimates which will be used in the limiting process.

Consider a metric space X and a collection of sets A = {An}, n=12,¢e. with
A, C X for each n. By definition lim inf A consists of points p ¢ X such that every :
neighborhood of p contains points of all but a finite number of the sets A, while ;
lim sup A consists of those p ¢ X such that every neighborhood of p contains points
from infinitely many of the sets A,. The following result from Whyburn ({31], p. 15)

provides a tool for demonstrating the permanence of connected sets.

Lemma 4.1. Iet {An}, n= 1,2,... be a sequence of connected sets in a metric space such
that

(a) U A, is precompact
n=1
and
(b) lim 1nf{An} re .
Then lim -up{hn} is a compact, connected set.
While our eventual goal is an unbounded, connected set S in R x (no('r) a] c (T))
a first step will be the application of Lemma 4.1 to bounded sets in X = R x Ho('l'). The

bounded sets to be considered are defined as follows. For § ¢ (0,1) and R > 0 1let

“-2S-
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L
% B(R) = {(A,w) € R X HJ(T)||W| PSR and 0< A< 21} (4.4) :
. Hy
,\“ and
L ,(-1 -1 _1 -
B Qs = {tppy) € Rzlp., e [=8 46 )i pye [=1+ 8,8 . (4.5) \
‘\: Starting with [, from the previous section let
R}
. Fn,G,R = {(A,w) € En|(l,w) € B(R); Vwix,,x,) € Qe (X40%,) € T}
h and
-""H = F
X Fn,G,R {maximal connected subset of Fn,G,R containing (un,O)} . (4.6)
" Here E, and Fn,G,R are regarded as subsets of R x Hg('l‘). For (A,w) € E,, VW is

smooth and approaches zero as |x4| + = so the condition W ¢ Qs is unambiguous. It

. will be shown in Lemma 5.5(c) that u + i, as n > ® so that for each pair (§,R)

‘ "-

¢ 3,.: 1im j.nf.{i‘n P R) contains (A d,0). It may also be assumed that the values of n under
Khes, o

C?, consideration are large enough so that v, < ZAd. making (un,O) lie in B(R).

. From Theorem 3.2, En is an unbounded, connected set containing (un,O). In Section
-:'; S5 it will be shown that for each § ¢ (0,1) and each R > 0 the collection U {Fn s R}
\'.'. *ve
:‘:j is precompact. Thus from Lemma 4.1

.:)-ﬂ

oz

GG,R = lim sup{Fn,S,R} (4.7) .

. :;'\ is a compact, connected set containing (A d,O). In Section 6 it is shown that G6 R is
.*? - ’

f(_,; still connected as a subset of R x (l-lg('r) s} Co’ 1('1‘)). Moreover, it is shown that G6 R

¢ ’

i .g [
}‘ must contain a pair (A,w) for which |w|H.I = R or for which

hi ) .

; max{lwx | ,wa | } =6 ' The set
By 1, o 2

() L (T) L (T)

-‘.-'\-:- ®

R S = U G,
- ‘\>y N=2 I N
o

will then be seen to fulfill the requirements of Theorem 2. 1.

\h

:: The restrictions embodied in the definition of Fn 6.R reflect an intimate link

) Vs

L

J::' between the topologies in which there are unbounded solution branches and those in which
i \-

"‘f one can do analysis. The solution pairs (A,w) € S will not be unbounded in R x C(T)
_\i nor could we hope to analyze equation (4.1) adequately for w having less than cf 1
k) Y .
i:,':-

-,
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regularity. The singularity of f(p1,p2) for Py = -1 and the lack of uniform convexity
for large values of (p1.pz) make elliptic estimates elusive. The behavior of Pn

compounds the difficulty. For solutions in however, one can obtain the

Fh,&,n'
estimates needed for the delicate compactness arguments carried out in the next section
and ultimately used in Lemma 4.1.

For the remainder of this section it is assumed that n, §, and R are fixed and
estimates are derived for solutions (A,w) ¢ FH,G,R' We suppress n, writing p for
Pne The constants in the estimates may depend on one or more of the parameters n, §,
and R and this will be indicated. Dependence on Pyr P_v and h is still suppressed.
Recall that for large n, the number ) is bounded above by 2Ad for solutions under

consideration. Thus while the size of )\ enters in the estimates it can be absorbed into

constants depending only on p_, p_, and h.

Lemma 4.2. If (A,w) ¢ Fn,s,R and m ¢ R

m+1 2 m+2 2 m+3 5
J v 1f<x, [ [Iw|®<x, [ [w (4.9)
n I 1 B-11 »-2 I

where K; and K, depend on §. For ¢ > 0 let I = (xz € I||x2| > €}. Then

m+1 2 m+
[ fw %<k [
m Ie 2 m-

2 2
[ || (4.10)
11

where K3 depends on § and €.
Proof. let I ¢ C;(R) be a function which has range in [0,1}, has support in

(m~2m+ 3], and is 1 for xy ¢ (m -~ 1,m + 2). Multiply equation (4.1) by Czw and

integrate over T to obtain

2+ wx wwx1 )
[ og? 2 wwl? = =2 ff [oget ] *+ 22 [f ot (4.11)
T (1 + wx ) T x2 T 2
2

N

-27-
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; after an integration by parts. PFor Vw ¢ Qs the expression (2 + vxz)/ (1 + sz)z is

?{ bounded below by a positive constant depending on §. Thus if Young's inequality is used :
N on the right-hand side of (4.11) and a small multiple of JJ pt2|Ww|? is subtracted from .
'i the left side, the second inequality in (4.9) follows. ;
i 2
- L4 . . ]
" Now let v = "x, and fij = 3P1393 for i,j = 1,2. The result of applying W‘r ’
) to both sides of (4.1) is v
A '
3 - 3:— pfij(Vw) g:— = =Ap'v . (4.12)
] i j t
Let { denote a new cutoff function which is 1t on (m,m + 1] and has support in ’
e o L
' !
:: [m - 1,m + 2). If (4.12) is multiplied by tzv and an integration by parts is used the ;'
?:s equation ,‘
\ v_3v v 2 !
jj ozt = -2 [[ prg've, . =—+ 22 [[ ot wv (4.13)
ij ax axj x 13 axj T x,
= \
-; |
31 is obtained. A simple calculation shows that the quadratic form determined by tij(p1 ,pz) /
-l
3t 1
b satisfies :
2 2 -
e f aa = 1 {n2_2"1 1%2 “2“""1’l :
e s ] 1 .
‘\. 37473 (O +py) 1 1+92 ”+p2)2 )
P 2 .
o > 1—+—'E— {ain -n) + 5 (1 - p";(% - m} (4.14) '
i 2 1+ Pz)
o, 2, -2 -1
"3 for all (a,,a,) ¢ ® andany n > 0. In Qz0 Py < 8 and § < (1+p,)<1+8 . t
j The choice n~! = 1 + §2/2 in (4.14) yields L
E 3
6 2
4 f;j“;“j > — (a +a, ) . (4.15)
3,_': Furthermore, for (p4,p,) € QG'
2 X
- |‘1j| < ;5 (4.16)
and so the use of Young's inequality, as before, yields the first inequality in (4.9).
i '\-
'
2 -28-
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One cannot hope to obtain an inequality just like (4.9) for "‘2' independently of n, :;
for the discontinuity in the limiting dengity produces a discontinuity in "‘2 along &
xy = 0. However, for <h < x5 < - €/2, p is constant and w satisfies :::
—f,() = 0. (4.17)

b S "

If w is extended to =-2h + €¢/2 < X, € ~h 80 as to be odd with respect to x, = -h, it
will satisfy (4.17) in the extended region. Suppose now that [ is a cutoff function .
which is 1on [(m,m + 1] x {-2h + ¢,~¢] and which has support on K
{m - 1,m + 2] x [=2h + €/2,~€/2]. Let =x(xy,x;) = "xz"‘v"z" Differentiation of (4.17) ‘

with respect to x, produces

] dz
n—; fij(Vv) E- 0. (4.18)

If equation (4.18) is multiplied by tzz and the pattern of the previous estimates
repeated, there results an inequality similar to (4.10) but with the left-hand member
integrated over <-h < x; € =¢. The constant Ky depends on § and on ¢ (through the
derivative g-f‘;)- The estimate for x; > €, valid for all n such that p = P, 1is

constant for x5 > ¢/2 (i.e. n > 1/2¢), is done similarly. q.e.d.

The next lemma can be obtained using standard elliptic theory as in [26], Lemma 3.2.
However, in the case of two independent variables, HSlder estimates follow from the
readily accessible results of Meyers (18] and we choose to use those here.

Lemma 4.3. Suppose (A,w) ¢ !'n s.R" Then there is an a > 0, depending on 6§, such
’

R
that for any m ¢ R
2 n+3
|w| . < K / | w?, (4.19) :
C((m,m+1]xI) m=2 I >
2 m+3 ) :
|w_ | <K, f [ (4.20) .

* c"( (m,m+1)xI)

-29-
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and for n > 1/2¢
2 m+3 2
lv, 1%, <K, [ [ (4.21)
2c¢C ([n.m+1]xlc) m-2 I
where K;, X, and K, depend on § and K, depends on ¢ as well.

Proof. The function w satisfies the equation

}:— p?ij -g:— = Ap'w (4.22)
i 3
where
- 1
fij(x1,x2) -{’ fij(ti(x1,x2))dt . (4.23)

Since QG is convex, Eij satisfies the inequalities (4.15) and (4.16) obtained for

fij' Let X be the matrix with components o?ij (i,3 = 1,2) and let u = w wvhere

is a function of x4 which has support in m - 1 < Xy <m + 2 and vhich is 1 for

m<xy<m+ 1. Let O Dbe a domain with a boundary 30 of class c® satisfying
m=-1m+2] xI1CQC[m~-2,m+ 3] x1I.

From (4.22) it follows that

4iv(A grad u) = div £ + g in @ (4.24)
us=20 on 3R (4.25)
where
£f = wk grad { + (0,Azpw)
and

g = -X;pwx + grad g - ( grad w) .
2
From Lemma 4.2 and the Sobolev embe ding theorem it follows that
|£] + |g| < k_|v| (4.26)
P )y P L((m-2,me3)x1)
for any p ¢ [(2,%). Since X satisfies a uniform ellipticity condition (cf. (4.15),

(4.16)), Theorem 1 of Meyers [18] yields

=30~
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|grad u| < K|w| (4.27)
Pa) 13([m-2,m43)x1)

for some p =p(8) > 2 and a K dependingon & and p(§). Now from embedding theory
(cf. [13], (22)) the inequality (4.19) follows.

Inequality (4.20) follows in a similar manner by using equation (4.12). One uses A
with entries pfij(VV) in place of X, lets £ = wa grad T + (0,AZpv), and lets
g= -chvxz + grad § * A grad v. The Socbolev smbedding theorem together with lLemma 4.2
(with a cutoff function equal to 1 on Q) yield

vl

p. ¢ lw| , (4.28)
L (Q) L ((m=2,m+3]xI)

.
N Bttt N 8 K B A . P tSEe A

and Meyer's result gives

|grad v| < kvl , . @ .29)
P(a) Lé((m=2,m+3]x1)

This last inequality implies (4.20) and will also be used in what follows. The proof of !
(4.21) is done similarly but with a cutoff function { which vanishes for Ile < €/2.

To complete the proof we merely note that while the values of a occurring in the three

estimates may differ, we may let a stand for the smallest one. Likewise we let

p = p(8) stand for the smallest one occurring. q.e.d.

The estimates obtained so far can be combined with equation (4.1) to produce improved

estimates for W .
2

Theorem 4.4. Suppose (A,w) ¢ Fn and m ¢ R. Then

+8,R

m+d

m
(a) ([ lgradtoce, (90 - 2w }HPP < x [ [ W (4.30)
m-1 I m=3 I

where p = p(§) from Lemma 4.3 and K, depend on §.

3=
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2 n+d
(b) lote (tw) = 2w |5 <x, [ [ v (4.31) ¢
C ([(m,m+1]xI) =3 I
where o (as in Lemma 4.3) and K, depend on §. N
2 mtd
(c) |w <k, [ [w (4.32)

xz C({m,m+1}xI) 3 =3

where K, depends on 8.

{(d) If p' = 0 onaconvex subset 1 of [(m,m + 1} x I, <then

2 n+s
| <k [ [ (4.33)
2 @) =3 I

where a is the exponent from part b) and K, depends on S.
Proof. For part (a) let !(x,,xz) = p(xz){fz(Vv) - Aw}. Recalling the notation

v = "x1 one has

F
5; p{fn(Vw)\v,t1 + fzz(Vw)vxz - Av}

and from equation (4.1)

F

)
o - T (pf1(Vv)) + Apvx
2 1 2 )

= p{f"(Vv)vx‘ + fu(Vw)vx2 + Avxz} .

since |w, |P < 6‘“"2’|wx2|2 it follows from inequalities (4.9), (4.28), and (4.29) that
(4.30) holds with p and K, depending on §.

Part (b) follows from the embedding of W'/P in ¢c® for p > 2.

For parts (c) and (d) let N denote the L2 norm of w on the set
{m=-3m+ 4] x I. Since p is bounded below by Per it follows from part (b) that

[£,09w) - Aw| < KN

C(([(m,m+1)xI)
for a K depending on §. Since w is bounded by KN from Lemma 4.3, it follows that

|£,(Twix,x,)| € K'N

-32~
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on (m,m + 1] x I with K' depending on §. From the same lemma "x1 is likewise

bounded. Now

P, * Pg - Pf
|12(P11P2)| -
201 + p))
I, e,

- - 2
200+ 67 263

r
v
ALt KNl St S f T 4R s _mmra '>,!

and so the estimate

|w < KyN

x,|
C( (m,m+1] xI1)
follows.
Por part (d) let p; = vxi(x"xz) and Si = 'xj(;ﬁ;z) for i = 1,2 where (x4,x3)

and ‘;1';2’ are in 0. Prom (4.19) and part (b) the C* nomm of £,(%) on Q is

el e acenl G AN R i o” A

bounded by K¢N where K, depends on 4. Thus

e e

~ ~ -~ ~ c
[£2(p4spa) = £,(R4B,) * £,(p /B,) = £,(B,.B,)] < KN (4.34)

where A denotes the distance between (x,,x,) and (;1,;2)- Prom Lemma 4.3 the C°
norm of "x1 on Q is bounded by N. wNow for (pqep2) € Qc. f34 is bounded above
and f,, is bounded below by positive constants depending on §. If these estimates are
used in (4.34), the result is

lpz - B,] < xpma®,
that is, "‘2 satisfies the desired HSlder condition. This last inequality, combined

with part (c) yields the €% bound in (4.33). q.e.d.

Ismma 4.5. let Q1 be any relatively open subset of T on which the density p is
constant. Then for any solution (),w) ¢ r L8, R’ w is real analytic on Q.

Proof. Extend p tobe p_ for x; < -h and tobe o,  for x, > 1 ~ h. Extend

w to-m<x2<-h to be odd about xz--h and to 1-h<x2<2(1-h) to be odd

about x5 * 1 -~ h. Then w satisfies (4.17) in each region where p is constant.

l"‘l
’ 5
LI ¥
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Lemma 4.6. For (A,w) ¢ Fh,G,R'

Since w ¢ C"a in @, the Schauder theory (([13], Chapter 6) shows that w ¢ c2'°(n).

Then the results of Morrey (([20]; (21]), Chapter 6) show w is analytic.

change of variables back to 9(x,y) which is harmonic where p

Alternatively a

is constant, yields

analyticity for ¢ and, since %% >0, for y(x,$) and wix,,x;) (cf. (2.34)). q.e.d.

The estimates up to this point, regarding the restriction of w to

have been independent of m. Estimates which reflect the decay in w as

[m,m + 1] x I,

|xq] + ® will

also be needed. Before giving these estimates we make the simple observation that since

wxz » -1 for any solution (A,w) € Fn,G,R

0 < w(x1,x2) €1 in T .

Recall that we are treating the case e > 0 (cf. (2.41)) and hence w > 0

case e < 0 one would have ~1 < w € 0 in place of (4.35). For e > 0,

(0,2) x I and this is used in obtaining the following bound.

2 1/2
max w(s,x,) € R(;) .
xz €l

Proof. For any s € (0,*) there exists an X(s) € (s8/2,8)

w? (X,x_)ax
x2 2

Nijn

2
{ wx = 2

2

I
by the intermediate value theorem. Since w is decreasing for

2 %

R 2 0~ 2,~
-— > f f w o x f wi(x,x,)dx, .
2 0 I I 2 2

Combining these last two inequalities one has

-34~

Iw
ax

such that

X4 >0

and since w = 0 for X =1 ~-h,

we have

(4.35)

in T. In the

1

<0 on

(4.36)

(4.37)

(4.38)
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max |w(x,x2)| <2/ wiX,x )V, (X,x,)dx,

el s Ar o

X, €l 1 2
2
< 2R o
b1 ,
Since 2x » s, inequality (4.36) follows. q.e.d. i
d

Now we combine lemma 4.3, Theorem 4.4, and Lemma 4.6 to obtain the following

PR Y

estimates, wherein a is the HSlder exponent from the earlier results.

Corollary 4.7. Let d(m) = min(1,R/Ym). Then for (A,w) ¢ LI

fw] < Kqd(m) (4.39) X
¢ V((m,=)x1) ! ' !
[
Iw, | < K,d(m) (4.40)
*1 ey 2
fw, | < Kyd(m) (4.41)

* a
C ({(m,=)x1}Q)

and

lp(£, (VW) - Aw | < Kgd(m) (4.42)

c?((m,=)x1)

where §1 is any relatively open subset of T on which p is constant and K

i=1,2,3, depend on §, Dbut are independent of m, n, R and (. The constant K,

depends only on § and 4.
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: S. Precompactness of Approximating Plows :
_-.‘ In this section it will be shown that U Fn,ﬁ R is precompact in R x Hg('r). The
L .
n
j‘_ . use of lLemma 4.1 will then enable us to obtain certain connected sets of solutions of N
'. problem (4.1)~(4.3) as a step toward obtaining the set S in the stronger topology d
£ F
. R x (H:,('!') n Co"('E)) given in Theorem 2.1. Throughout this section § ¢ (0,1) and i
.-_' °
"‘,: R > 0 will be fixed. It will be shown below in Corollary 5.3 that for each fixed :‘
ag n, F, s g is precompact. The heart of the compactness question concerns a sequence of by
. ’ ’ -
S8 3
Y solutions (xn,wn) €F s n where n = 1,2,3,... . The estimates of the previous section :
’ ’
- allow one to extract a subsequence of these pairs which converges to a pair (A,w), the
w
. convergence being weak convergence in HS(T); norm convergence in C, uniformly on
" bounded sets; and norm convergence in c°", uniformly on compact subsets of
! T~ {x2 = 0}. Moreover, from Lemma 4.2 it can be assumed that Vn = a—i— v, has
- 1
. v = % w as its weak H‘(T) limit. Henceforth it will be assumed that a subsequence
1
- has been chosen and renumbered so that (An,wn) has the aforementioned properties.
B Moreover, it can be assumed that w, ¥ 0 for all n; otherwise there would be a
subsequence with second components all zero and thus convergent. The notation .
]
M F 4 : .
6?? I° = (xz € I|txz > 0}; 1 = Rx 1¥ (from section 1); Ty = [m,=) x I; 'r:- [m,») x It;
;lfs and d(m) from Corollary 4.7 will be used.
ofd N
ik
A
J
e Theorem 5.1. Suppose (Xn,vn) € Fn,G,R for n= 1,2,..., that xn + ), and that
'
. w, *+ w weakly in H&(T). Then
LY
»
o (a) X <2 a and
>
" (b) w, +w strongly in u'(B) for any bounded B C T.
" (c) The function w is real analytic in T - {x, = 0}, even in x,, and satisfies
g Iw| < Kd(m) , (5.1)
c% ()
) m
o
“o]
1 Jw_ | < Kd(m) . (5.2)
< X1 a “
[of ('I'm) »
X 1
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The function wx2 has extensions to T, differing on {x2 = 0} in general, and
fw_ | < Kd(m) (5.3)

X2 a, -z

cH(T)

m

while

lp {€,(Ww) = Aw}| < Kd(m) . (5.4)
a2 Cu(Tm)

Here K and a depend on §, but are independent of m and R.
(d) The function w is a solution of (2.36)-(2.39) for the density Pa*

Proof. (a) From Theorem 2.3 of [4], we have Xn < L It will be shown in Lemma

5.5 below that B, converges to A3 a8 n + «, whence A < A4

(b) The convergence of W, in c% ' on compact subsets of T ~ {x2 = 0} together

h
3
]

with the gradient bounds (4.20) and (4.32) show that w, converges to w in H‘(n),

e

“ a0

2,0 estimates on compact

yielding part (b). In fact, the Schauder theory provides C
subsets of T = {x, = 0} and thus w;, will converge to w in ¢2 on such sets.
(c) The analyticity of w follows as in the proof of Lemma 4.5. Since the

estimates in Corollary 4.7 are independent of n, the function w = lim w, inherits

properties (4.39)-(4.42) and the estimate on “kz extends to the closures r*.

: 8o equation

(d) Recall that w, converges to w in ¢2 on compact subsets of T
(2.35) holds on those sets. The conditions (2.37) and (2.38) are also preserved in the
limit. For ¢ ¢ C;(T) one obtains

9w _o)
9 n
ot (W )ar [[p ———
r 0 1" 'n axi n . o 3x2

from (4.1). Since the vectors grad w, are uniformly bounded and converge to grad w on

1%, it follows that

3 ) ]
[[of, (W) S—mn [ [p =— (vg) +A [ [p, o wo
p 91 axi T a 3x, rt d 9x

= AP = p,) [ wixy0)elxy0)ax, , (5.5)
-t

showing that w satisfies (2.39). q.e.d.
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lLemma 5.2. Suppose (A,w) ¢ Fo 5 and that 8 = 1 = (A/un) > 0. Then for m > 0

+R
. <X (5.6)
Ho(Ty)
where KX depends on 6, R, and 6.
Proof. Since leH‘(T) < R by assumption, the inequality (5.6) need be demonstrated
0
only for m larger than some my. If equation {(4.1) is multiplied by w and integrated

over T, it yields

2 +w

L 2 |l% = - [ b wimix )E (Trax, - 2 [ [ piw?
2 T n (1 +w )2 I n 1 2 T n
m X m
2
A 2
< - £ P W(m,x,) € (Vw)dx, + F;{- f pn|Vv| (5.7)

from the characterization (3.2) of uy. For m > my, my depending on § and R,
(2 + Wy Y/2(1 + Wy )2 > 1 - (9/2) and -wf1(Vw) < 2wwx for x4 > m. Hence, from (5.7}
2 2 1
1 2
3 90, £ [ |2 < p_£ |wimoxp) | [y (moxp) axy |

which, with Corollary 4.7 and the Poincar& inequality, provides (5.6). q.e.d.

Corollary 5.3. For each fixed n, F is precompact in R x HS(T).

n,§,R
Proof. lLet (A ,w. ), k= 1,2,3,..., be a sequence in F « If a subsequence
A k’"k n,§,R
converges to (u_,0), we are done. If not, then f|x_~p | + jw, | >n >0 for all
n k n k H'(T)

large k. Suppose a subsequence, still denoted (Xk,wk) is such that xk converges to

u, as k + @, Since w, lies in the ball of radius R in H1(T). uy lies in the ball

n
of radius KyR in H'(S) by (3.8). According to [4], section 5, the collection
{(\,,u)}, k = 1,2,... is precompact in R x (LZ(5) N C (5)) (the expoment o in 1.4 of
[4) is 1 as established in the discussion following (7.14) of that paper). It follows

that a subsequence, still denoted (Xk,uk), converges to ("n'u) in

R x (Lz(s) N C°(§))- From local elliptic estimates one sees that (un,u) is a solution
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and that the uy, converge to u in 03(5)- Then Theorems 2.3 and 2.4 of [4] show that
u = 0. From this information one can conclude that the y derivatives of the
corresponding "k are bounded below by K > 0, uniformly on § and uniformly in m
for m large. Elliptic estimates, used once more, show that the 12 convergence of
uy to zero implies convergence to zero in H‘(s), and (3.7) implies convergence of w,
to zero in H1(T)- However, from an earlier inequality it follows that
"kllﬂ('r) > n/2 > 0 for all large k, a contradiction.

From the last paragraph it is clear that Ak/un €86 <1 for all k and thus (5.6)
holds for all wy. uniformly in k. The precompactness of {'k}' k= 1,2,eee, in
B&(B) for each bounded set B Z T follows as in the proof of Theorem 5. 1. These two

properties combine to yield precompactness in R x Hg('.l'). qee.d.

To show precompactness of U l?n' 8,R it will now suffice to show that the sequence
{(An,wn)}, n= 1,2,..., ulecte: at the outset of this section, converges in R x HJ(T).
We next show this together with some of the properties of the branch S required for
Theorem 2. 1. For the case lim An =X <A a v need merely guote results already
established to see the convergence of w,. For A = Ad' a delicate analysis must be
carried out using the nonlinearity in equation (4.1).

The case \ < Xd

Theorem 5.4. Suppose (An,vn) € Fn,G,R satisfy xn + A< xd and w, + w weakly in
HJ(T) ag n *+ * Then

(a) w converges to w strongly in HJ(T).

n

(b) w>0 in T and =<0 for xy>0 and x; € I.
3x1 1
Proof. (a) It will be shown in Lemma 5.5(c) that | approaches Ad ag n + o
Hence inequality (5.6) holds for w,, uniformly in n for all large n. This decay in

the tail together with Theorem 5.1 (b) yield strong convergence in H;('r).
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{(b) Prom (5.5) it follows that

[ oaty BB o

for all nonnegative ¢ ¢ c;('r), where f is defined by (4.23). Hence from the strong

i3
maximum principle ({13], Theorem 8.19), either w = 0 or w > 0 in T. The function
v 1 -
v W‘ is in uo('l') by Lemma 4.2, and is the weak H 1limit of Va 3x1 v The
equation (4.12) is satisfied by (A, ,w,,v,) and since v, < 0 for xy> 0 one obtains
j

for all nonnegative ¢ ¢ C;((O.") x I). From the strong maximum principle v = 0 or

v<0 on (0,) x I, corresponding to the case w =0 or w > 0, respectively. If

w 0, then the functions w, which are even in x, and decreasing in x, on

(0,») x I, must converge uniformly to zero on T. The gradient estimates {4.20) and
(4.32) show that W n Converges uniformly to zero on T and thus w, converges to zero

in c% %(T). The analogue of (5.7) taken over all of T yields

2+ (\v ) .
ff Dn-————flv" |2 <—H9 |vw (5.8)
2(1 + (v )
xn A '
Since T converges to ~ < 1 and |an| + 0 uniformly on T as n + », (5.8) leads
n d

to a contradiction for large n. Thus w >0 on T and 3_\'_ <0 for x4>0. q.e.d.

x4
The case A = ) a
As stated earlier, it is assumed that we are working with a sequence
(A\pewy) € Fn,8,R for which xn A= xd and w, converges to w in the weak topology
of Hg('r) as n + », In addition, the conclusions of Theorem 5.1 hold. The plan here is
to show in Theorem 5.6 that the weak limit is w = 0 and then to show in Theorem 5.7 that

v, * 0 strongly in HJ(T) so that the limiting point is the bifurcation point (Ad,O).
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To begin recall that u, is defined by

- f p.“Z

1 B

_—=  max 7 (5.9)
Un ucl-lg(]:) £ p,lut)

Let 0 n " Gn(xz) be the associated positive maximizer normalized by f pnei = 1. The
1
function en satisfies the Euler equation
[ ’
(p e ) unpnen (5. 10)
An associated quantity L is defined by
A [ e - [ p (u)?
S
un(X) =  max 2 (5. 11)
uelg(I) [ o
I

for each ) ¢ R. let Yy = Yn(xz) be the positive maximizer in (5.11) when ) = xn;

2

again suppose that f L 1. The function Yn satisfies the Euler equation
1

(o )" = an;‘v un(xn)pny (5. 12)

Of course, en and Yn both vanish at the endpoints of I = (<h,1 - h).

Lemma 5.5. Let (ln,vn) be in Fn'c'n. Then
(a) cn(xn) <0
(b) Assume An > xd as n + o, Then the functions (en) and {yn}, ne= 1,2,.c0
are bounded in C‘(f) uniformly in n and for each ¢ > 0 converge in

o(d) n c‘(ie), I, = 1N {Ix,| > €}, to the function

o{x, +h) x; €0
Yy (5.13)
¢ Ry - 1en om0
vhere o = 3/h2(9_h +p,(1=1n)). Ilet
2
- [}
i (o~ 6,020
Qu) = 7" 2 (5. 14)
’ [ ]
{ pqfu’) £ pau’)

Then Ya is the positive maximizer of Q(u) for u ¢ HJ(I) and

-41-

R S AT A I
AN ~. -. w.u.'\-\. \.\.I‘~‘\’ o
BASLAX \.“ 2 )
5

3

.
«
~° N,

TR ¢

Y

SNt R




i - TN nad S w3 s B B A iE 8k A 2 B A il RS cs A Sgic et g B RS e A b A B ~ j
.

Ny
A
0}
4
C6%
"4
' !
5% ,
1 0
o4 Qlyy) = 31— 4
d
.:;ﬂ‘r where A, is defined by (2.40).
Kl (e) limuy =1, .
g ne
;: Proof. (a) From the characterization (5.11) a, is a strictly increasing function
‘ini
of A and from (5.9), an(un) = 0. As noted in the proof of Corollary 5.3, for
o
‘3 (Xn.wn) € Fn,&,n\((“n'O)}' A, <u,, and so an(Xn) < 0.
g : (b)=(c) Since evaluation at x, = 0 is a compact mapping for functions in HJ(I),
?:? the maximum of Q(u) is attained, and the form of Q ensures that this maximizer must be
- linear on I* and I™. A calculation shows that Ya is the positive maximizer which has
<, the normalization f de: = 1 and that Q(Yd) - X;‘.
~ I
t}: Suppose the maximizer Gn for (5.9) is renormalized to have max en = 1 on I and
s ~ ~ ~
"% that its maximum occurs at X,y Since 0;(x2) = 0, an integration of (5.10) from xz
ii. to x, ylelds
.7
a3
. x
it 2 .
‘“ ] =
. PO (x,) { pa0,
.. X,
S‘ -
)
!‘:-J
;;{ and so |o;(x2)| < (p_ - p,)/p,. This bound easily implies that the eigenfunction
LA .
] \1 normalized by f pnei = 1 must also satisfy IO;I < Ky where K,; depends only on p:t
. 1
; and h. On I_, that is, where Ixz| > €, the derivative p! =0 for n > Ve and
Wy hence 6" = 0. It follows from the Arzela-Ascoll theorem that a subsequence of {0 }
): n n
‘ﬁﬂ converges as asserted to a function 6, which must be linear on 1* and 1°. Since
)
¥ ﬁ” f pdei = 1, a calculation shows that 0, mst be Ya and the uniqueness of the limit
I
.¥ shows that the whole sequence converges. The maximum value in (5.9) converges to
S
o (b_ = p,)v,(0)
AN —_ 4
S '
o { PalYy

and thus y, * A ag n + o,

7
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All values of ) under consideration for a fixed n 1lie in the interval lo,un]
and since L is increasing, an(O) <o, ()< an(un) = 0. Morecver, the quantity an(o)
is readily seen to be bounded below by a negative constant K, depending on »p + and h,
but not on n. By integrating the equation (5.12) for Y n a8 vas done with (S.10) one
finds that |y!| < K; on I and lal € Rela (a )| on I for n > Ve. To see that
Yn' like en, converges to Y., it suffices to show that |an(xn)| + 0 as n+ =,
Since An + xd, v, * Ad' and an(un) = 0, the desired convergence will follow if it is
shown that e, has a modulus of continuity independent of n. To see this let u, be a
maximizer associated with an(t) in (5.11) and suppose f pnu: = 1. Then for r > s,

a (r) = -r | o;ui - £ on(u;,)2

I

- 2 _ 2 _ 2
=-(r-s8)f Ppu_ - s :{ pyu fpn(u;,)

1 r
< (r = 8)Kglp_=-p)) *+als) (S.15)
since u, is an admissible function in the definition of an(l). Since a, is an
increasing function, it follows from (5.15) that
la () - a (s)] < Xg|x - 8]

with K¢ independent of n. qee.d.

Theorem 5.6. Let § ¢ (0,1) and R > 0 be fixed and suppose (A ,¥ ) € P .8.R for

n=1,2,... . If xn + Ad and w, converges weakly to w ¢ H;(T) as n + », then

0 4in T.

tn

(a) w

(b) |w,| ana |%W_| converge to zero uniformly in T as n + =

nl

Proof. (a) The argument revolves about the behavior of w, for large x, and that

behavior, as we shall see, is reflected in the projection of w, along the eigenfunction

Yn of (5.12). Let
W o(X4,Xy) = F (x.)y (x,) + R (X49,%5) (5. 16)
n'X X2 n'"1Tp' "2 172

where
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Faixy) = { PplXIW (X4, x5y, (x,) (5.17)
4
¥ with y_  normalized by
2
H { P¥a =1 (5. 18)
§
. It follows that Yn and R, are orthogonal with respect to Pn for each fixed xq:
{ PRY8Xy = 0, Xy eR. (5. 19)
»]
Let
'ﬁ
3 (w )
4 n'x
5] G (xq) =[Yop —— . (5.20)
o n'™1 1 °n 1+ (w)
o nx,
If the principal equation (4.1) is multiplied by Yn and the result integrated over I
, there emerges
‘ _l- - L (]
. ax, G, xn £ Ynfn¥ * { anntz(v'n) (5.21)

after an integration by parts in the integral containing f£,. A simple calculation shows

that

fatalaTa Al

3

£2(Py/P2) = Py = 5 P2 + Mpypy) (5.22)
where

A= (3p + a3 - p2i/2(1 + py?. (5.23)

i From equation (5. 12) for Y, one has

] - [ ]

s { Ynon('n)x2 = { Y (PYn)!
3 id

. - - - L]
1 { an(xn)'npnvn xn { ¥nPnTn
. +

.: and the use of this last identity with the expression (5.22) in (5.21) yields

.
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Gp = s, (1) f oV Ty = r{y"‘pn[(vn)le + { Yo Mw ) . (S.24)
. With the use of (5.16) the second integral in (5.24) can be written
3y qry 2,3, '3
2 { Yn"n('nyn * (nn)xz) 2 ’n { pn(vn)
+ 3 Ip(y')(n) +3 v (R )2 (5.25)
n 2 1 x,

where here and in what follows the convention "\‘)’2‘2 is used for “’h’xz]z' Now use

the definition of Yd in (S.13) to compute

43/2 o. o,

~ 3 3 3 3 3

o=y [p () wx [p,(yi) = - ) . (5.26)
w2z omon CTpfalal T A - W (1 -m?

8ince the expression (a_/hz) - (a‘_/(‘l - h)z) = q (cf. 2.2) is positive by assumption,

@ > 0. Only the positivity of & is important in what follows so to simplify notation

we omit the tilda. We conclude that for any ¢ > 0 and all n > N(¢)

ly',,f"”" -.!'2|<c!'2. Xy eR.

The use of this last inequality in (5.25) together with Young’'s inequality gives
|'! I ann('n)x - .':l < 2": + K, {: pn(nn):z (5.27)
where K, depends on ¢, but is independent of n and x,. From the form of A given
in (5.23) and from the decay of w, and Wn a8 xy + » given by (4.39), it follows
that
Iatwv )| € Rycz? + 22 4 R |2 (5.28)

for x4 larger than some value X. The use of the last two estimates in (5.24) yields
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2 2 0.2 3 2
Gy +a (AP + eF | ¢ 2¢F + K(e) i o, (F)" + B+ |WR|G) (5.29)

for n » N{eg) and x1>x where ¥(e) is independent of n and x4

Note that the term G, approximates Fp(x4) for w, small and thus (5.29) is akin

x2

to a differential inequality for Fn' The aim is to show that in the limit as n + » and

an(xn) + 0, (S5.29) is inconsistent with having a positive function w(x.‘,xz) which
decreases in x, for x4 > 0. To arrive at this contradiction we first estimate the
integral in (5.29).

If the principal equation (4.1) is multiplied by v, and the two sides are
integrated over 1 there results

2 3
{ °n"n’x2‘z‘v'n’ = { plw + £ P ¥n T £1(M,)

n 3x1
(5.30)
2,4
= - { Pavn +—d-x—1f P ¥nf 1 (VW) 3{ pn(vn)x1£1(vun) .
Let
Uplxq) = { Pt 1TV, - (5.31)

Then since f5(p4y,py) = Py = (2pg + 3p§ + p%)/Z(‘l + pz)z, equation (5.30) yields

2
“n)x 2 4
2 1 - - . _4a
{ pn(wn)xz * £ a1+ (w ) xn £ Pn'n + dx‘ Upnlxy)
('n)x
1 2 3 2 2
+3/0p {2(w )" +3(w )s + (w) } . (5.32)
Z{n(1+(v)x)2 n'x, n'x, n'x,
2

Now from the representation w, = !’nyn + R, the equation (5.12) for Yne and the

orthogonality (5. 19)

2 2 2 2
[otw): =F [p(y) -2 F [p'yR +[p (R) . (5.33)
1 P nxy ny'nn nni nnn 1 M onox,
A second use of the representation for w yields
2 2 _ 2 52 2
£ on(wn)xz A { vy = =a (A IF 4 A { IR+ { p(Rn)xz . (5.34)
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Now define 1n by

2
- f o'u
1 S
T—- ux —2.
1 ]
n ueHJ(I) { Py lu’) (5.35)
{ up,Y,=0

Since an extra condition on u has been added to the characterization of L in (5.9) it
is natural that T, >, and this is shown in ({4]), Lemma 3.1). An argument similar to
that given in Lemma 5.5 shows that as n + =« the numbers T, approaches a limit 7, >

Aq so that xn/rn + xd/r. < % Thus 1 - xn/rn > 6 >0 for all large n. Since

£ R (X 30x,)0 (x,)Y, (x;)dx, = 0

for each x4,
A
2 n 2 2
a [pR<—[p (R)° < (1-08)[p (R) .
nInn tnInnxz Innxz

The use of this last inequality in (5.34) gives

2, -, (A )!' +0 [ pn(nn): (5.36)

[ o (w ) + A, f PAv,
I I 2

nnxz
for all large n. The inequality (5.36) will be used in (5.32). First, however, note
that because of the decay given by Corollary 4.7, for any € > 0 there is an X(¢),

independent of n, such that

2

(n)x

! P 1_4-_(w—)_ >(1=¢) ! pn(wn)i (5.37)
1

provided x4 > X(¢). This same decay coupled with the decomposition (5.16) of v, and

Young's inequality gives
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(v, )

1 2 3 2 2
=[0» {2(w )7 +3(w ). + (w) )}
2 1 0 (1+ (w) )2 n'x, n'x, n'x,
nx
2
3 2 2
<K+ K £ pn(nn)x2 +¢€ { p“(«n),‘1 (5.38)

for x4 > X(e) (taking X{(e) larger if necessary). The last three inequalities, with
€ chosen so that Kze < 8/2, combined with equation (5.32), produce the inequality

g-{ "n“n’:z - a O+ (1 - 2¢) ! o“(v“);1 < U(xy) + KgE (5.39)
valid for n > N(e) and x4 > X(¢). To further decompose terms using F, and R, note
that
[ "n“'..’i, -’ I b Y2+ 2r | ot ®y), + ] o8 )2

T nn nx1 nnx1

- 2 2

(F)° + [ (R ) (5.40)
1 1

using (5. 18) and (5.19). It can be assumed that € is chosen so that 6/2 < 1 -~ 2.

Then since an(xn) < 0 it follows from (5.39) and (5.40) that

2 2
(r)2 + £ polvR 1% < £ Uy + xel . (5.41)

For these same parameter ranges, the use of (5.41) in (5.29) yields

2

2
' +
lep + s 0 R ernl < 2F_

3
+ KU& + KFn (5.42)
where e is positive and K depends on €, but not on n or x4 Since Fn(x1) + 0
as xq * =, uniformly in n, we may assume that X(e) is chosen so that KF_ (x4) < ¢
for x4 > X(e), leading to
2 2
’ 1]

leg + a (A IF + e!’nl < 3eF, + XU} . (5.43)
Now one can integrate the inequality (5.43) (without the absolute value taken on the left
side) over the interval [x1.x1] where X(€) < x, < x, < ® Next let n + = using the

results of Section 4 and the fact that un(xn) + 0. Finally let Xy*® to obtain
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v
- [ o,y 1——,‘1 < =(e = 3¢) f. !2(-)dl-lf pwE (VW) . (5.44)
da’'a + v a [ .
I x, x I
2 1
Here w is the weak limit in HJ(T) of the sequence {vn} and F is defined in analogy

with . in (5.7). Inequality (5.44) can be written as

'x' lh(xi,xz) -

[ g Tou— Yo' -t 2 (e - 300/ ri(e)as . (5.45)
1 x a2 x
2 1

Now from the mean valus theorem

wix 1;‘)

Y il;

- < Klw (x| (5.46)

L (1)

-
L (1)

and from Theorem 5. 1{c) the right-hand side of (5.46) approaches zerc as x¢ + ». It

follows from the last two inequalities that for all large x4

-
2
2 Pa¥y Yq 2 (e - 3¢) [ ré(s)as . (5.47)
I ? x
1
As in the proof of Theorem 3.4 one concludes from the strong maximum principle that
'x1 €0 in (0,») x I or that w = 0 on T. The inequality (5.47) insures that only
the latter can occur completing the proof of part (a) of Theorem 5. 1.

For part (b) recall that w, was taken to converge to W uniformly on compact

sets. Since w

n has its maximum on the line x4 = 0, the convergence to w = 0 is

uniform on T. Lemma 4.3 and Theorem 4.4 show that |an| + 0 uniformly in T as

n+ e, qea.de

Theorem 5.7. let § ¢ (0,1 and R > 0 Dbe fixed and suppose (xn,wn) e F for
——————— n,8,R

n= 1,2,... . Assume An + Ad and w, converges weakly to zero in HJ(T) a8 N + =,

Then w, converges strongly to gero in HJ(T).
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Proof. In the previous proof it was shown that the inequality (5.43) holds for .

n > N(e) and x4 > X(¢), the latter restriction being made solely to insure that w, is
0,1 -
sufficiently small in C ' ([x1:') x I). From the previous theorem we know that w, .
approaches zero in C0'1(§) and thus inequality (5.43) can be shown to hold for all
xq 2 0. This will enable us to relate the HJ norm of w, to the quantity Fn(O) in
such a way as to show that wn approaches zero strongly in HJ(T) as Fn(O) + 0.
From (5.43) one obtains the two differential inequalities
d 2
3, {Gn KUn} < -un(xn)Fn (e 3e)Fn (5.47a)
and
2 (e +KU)} > -a (A" - (e + 3g)F° (5.47b)
dx1 n n n n'n n
valid for n > N(g) and for all xq 2 0. As noted earlier, we have
("n)x1 n
Gt K0, = [0, T Yalt 2 5} - (5.48)
I nx, n
Since
W (X .q0°) -
1
_2__777_ < xlvwn| - (5.49)
Y ® L7(1) .
L (1)
and Ian] - + 0 as n + », N(e¢) may be increased, if necessary, so that for all
L (T)
n > N(g)

(1 +e)F) = (1+5¢) { pnyn(wn)x1 < G, t KU
<-e) [y (w)
I

= (1=~ e)F; . (5.50)

Recall that F is negative.
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The expression an(kn) + (e + 3£)Fn(x1) is monotone decreasing on 0 < x, <« and
approaches un(xn) <0 as x4 * = Let [zn,w) be the subset of [0,») on which the
expression is nonpositive. Suppose first that Z, = 0. If the inequality (5.47b) is
multiplied by the positive quantity -(Gn + Kun), the result integrated from x4 to =,

and use is made of (5.50), then

25 -1 - )@ 0 F + 2 (e + 300F)) . (5.51)

2 t
(1+E) (Fn) n n n

Since Fé(o) = 0, it follows from (5.51) that
2 2
Pn(o)(an(kn) +-§ (e + 3e)Pn(0)) >0 . (5.52)
However, the assumption that Z, = 0 or that an(xn) + (e + 3e)Fn(0) <0 is in
contradiction to (5.52), given that an(xn) < 0.
We now know that zZ, > 0 and that
2
an(xn) + 3-(e + 3e)Fn(2n) < an(xn) + (e + 3e)Fn(zn) < 0. (5.53)
Using this inequality in (5.51) one finds
2 2 2 2
(1 +¢€) (F;(x1)) >3 (1 =e)le + 3e)F (x )(F (Z ) - F (x4q)) (5.54)

on [zn,w). This last inequality yields

’ S 2 F%) 2
fF(x)dx-f TTdt
4 n ! 0 E.n
n
F (2 )
n''n 2
<l<f t dt

3/2
< K/ %z,
< kgF/2(0) . (5.55)
On the interval [0,Z]
-an(kn) < (e + 3e)Fn(x’)

and the use of this in (5.47a) yields

2

2 2
- - - F
ax, (Gn KUn) < ((e + 3e)Fn (e -~ 3¢) n)

2
Gan . (5.56)

We now carry out a process similar to the one above of multiplying (5.56) by --(Gn - KUn),
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w.:
A integrating from 0 to x4, and using (5.50) to obtain !
L
'S0 2 3
ey (G - XU ) x F x

1

a8 - ‘ceettrer 3| xye 0.3, - (5.57) .
& :
45}

X%

Now (5.50) can be used to show that G, - KU, = 0 at x4 = 0 and to bound
(Gh(xq) - KUn(x1))2 above by (1 + e)z(r;(x1))2. Hence from (5.57) one has
2 2 3 )
(1 + ¢) (F;(x1)) > 4e(1 + s)(Fn(O) Fn(x1)) . (5.58)

valid for x4 € [O,Zn]. We use this estimate as follows:

F zn Fh(O) 2
“ 2 t dat
A [ F(x))ax f ]

o 0 (z ) n
-"‘_ n

aﬁ, F (0)

{ t2ae
g <K' [ —_—

FalZy) fp3(0) - ¢3
n
< Xp3/2(0)
and combining this with (5.55) yields .

': @ 2 3/2
.

- £ F(x )ax, < KgF /€(0) . (5.59) ’

i Now we use inequality (5.41) which, like the inequality (5.43) used at the outset of

tg the proof, will hold on 0 < x, ¢ » provided n is sufficiently large thereby
"4
-: guaranteeing that v is sufficiently small in C (T). From (5.41) it follows that
e
‘

) 2 L) 2 ) 3

2 [ EDax + [ [o | |% <Ky [ Flax, (5.60)

0 01 0

e
.t
h © .

“ since [ Uldxq = 0. The Poincaré inequality yields
0

< ° 2 ° 2

[[oR <Kk, [ [o |WR[|". (5.61)
or °® 45y .
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Now, since w_, is even in x; and has the form v, = 'nYn + R, {cf. (5.16)=(5.19)) it

n

follows from the last three inequalities that
2 3/2 S5/2
L/ < K(P (0) + F {(0)) . (5.62)
l nlaJ(T) n n
By Theorem 5.6 F,(0) + 0 as n + » and hence v, converges strongly to zero in

B (). q.e.d.
The result just completed, together with Corollary 5.3 and Theorem 5.4, yields

Theorem 5.8. For each 8§ ¢ (0,1) and each R > 0 the set U rn,G,R is precompact in
n

R x ng('r).

The concluding result of this section, in which the a! topology still plays the

major role, is

Theorem 5.9. et & ¢ (0,1) and R > 1 be fixed. Then
(a) The set
Gs,r " lmn'“" B8 R
is a compact, connected subset of B(R) (defined in 4.4) with (xd,O) € GG R’
[
(b) EBach (A,w) in G6 R satisfies parts (a), (c), and (d) of Theorem 5.1 and
1]
Vw(x 1ox5) € Q for all (xq,Xx3) € T crt.
(c) If (A,w) ¢ GG R\{(Ad,O)}' then A < Xd, w> >0 4in T, and 3v/3x1 <0 on
’
(0,») x I.
Proof. (a) From Lemma 4.1 and Theorem 5.8 one can conclude that GG,R is a
compact, connected set in B(R). It was shown in Lemma 5.5(c) that Uy * xd as n+ e
and thus (Ad,O) € GG,R'

Parts (b) and (c) follow from Theorems 5.1, 5.4, 5.6, and 5.7. q.e.d.
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6. The Set G as a Subget of R x (!! (T) nc ('1‘))

§,R
To show the existence of the unbounded, connected set of solutions S described in
part (a) of Theorem 2.1 two issues must be confronted. The first is the connectedness of
GG g “hen the stronger topology of Ho('r) n C ('1') is used in place of the HJ
topology for w. The second is roughly to show that in the set GG,R there are solutions
for which w has size R in Hg or size 6-1 in cO, '. If this can be done for any
R>0 and any § € (0,1), then the unboundedness of S will follow. It will be shown

that in G there is a pair (A,w) for which I\vlu1 = R or for which

§,R
Vw(;1,;2) € BQG for some (;1,;2)- This almost resolves the second issue. The final
step is to show that for sufficiently small §, Vw cannot take values on that part of

EQG where p; = -1 + §.

Theorem 6.1. For each § ¢ (0,1) and each R > 0, the set GG,R is connected in
R x (Hg (T)ﬁC ('l‘))-

Proof. Since GG,R is connected in the original topology of R x Hg('l‘), it will
suffice to show that on GG,R the stronger topology coincides with the original one.
That is, if solutions (Ak,wk) of the problem with discontinuous density »p g converge to
(A,w) in R x HJ, then w, converges to w in C ('1') The HSlder estimates in
Theorem 5.1 are satisfied by each w,, uniformly in k. The compactness of the

0,1

collection {wk} in ¢ ('I') is then assured and the desired convergence follows

immediately. q.e.d.

Recall that for the density Ph the set of solutions n emanating from (un,O) is

unbounded in R x HJ(T) and that F is the maximal connected subset of

nlsln
{Ouw) € E |Wix0xy) € Qg (xqs%)) € T}
which contains (un,O) and is contained in B(R). We can assume n is large enough so

that un < zxd and hence for each n there is a pair “‘n'"n) € Fn,s,n for which either
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A) w = R
l n]ag

or

(n)
1

If alternative A) holds for an infinite sequence of values for n, a subsequence,

B) Vv (x .x;“)) € 3Q, for some (xgn):xén)) e®.

still denoted by (An,vn) may be chosen so that xn 4+ A and w, converges weakly to

w in HJ(T) as n + =, Theorems 5.4 and 5.7 show the convergence to be strong in a;

and hence there is a pair (A,w) 1in G, . with lwln, = R.
’
0

If alternative B) occurs infinitely often it can be assumed that a subsequence is

chosen so that the following result is applicable.

Theorem 6.2. Suppose (xn,wn) € Fn,G,R' n=1,2,... and that for each n there exists a

point (xﬂ"’,xsn)) in T for which
w x4 xiM) e ag, . (6. 1)
Then there is a pair (A,w) ¢ G, . and a point (?61,;2) such that
’
WX /X,) € 30 . (6.2)
, = 0 the limic from above or below ?':2 = 0 is intended.
Proof. The proof is divided into three cases according to which part of the boundary

vhere, if x

395 is in question. Once again a subsequence can be chosen and renumbered so that w,

converges to w in BJ(T), Vv ¢ 96 on i. and one of the following three cases is
relevant.
Case 1. |%¥: (xg"),x;n))l - 6-11 n= 1,2,000 o

First note that Corollary 4.7 quarantees that an decays to zero at infinity,
uniformly in n, so that (xg“),xs“)) remains bounded. Without loss of generality
assume that these points converge to (X, ,X,). From the HSlder estimate (4.20) it ia
clear that avnlax1 converges uniformly to 3w/3dx, and thus

|,};--1 (%%, = 67"

implying (6.2), since Vw ¢ 96'
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Case 2. a—x:' (xsn).xﬁn)) - 6-11 n= 1,2,s00 & '
As with Case 1 it can be assumed that (x‘“).xén)) * (;1.;2)- 1t ;2 £0,

the Hlder estimate (4.21) applies to give .
W~ o~ =t
sx;’(xioxz) 8
and hence (6.2).

Suppose ;2 = 0. From Lemma 4.3 it can be assumed that both w, and auh/3x1
converge uniformly in a neighborhood N of (;1.0)- The functions 3vn/3x2 cannot, in
general, converge uniformly since 3v/3x2 is discontinuous along (xz = 0}. However,
from (5.3), the limits of the x, derivatives of w from above and below {x2 = 0}

exist and we define

+ . ~
w lim w (x,.xz)

X
2 >0+
xzo

and

wo = lim w_ (X.x)) .
x: xz’*O' 1 2

The link among these various limits is provided by the combination

Pp (Xx) (£ (Tw ) = A w )

which, according to Theorem 4.4b), has a HSlder exponent a > 0, uniformly in n. This

information combines to give

I:n pn(x;"’){fz(vx’,s") - aw} (6.3)
=-p {f.w ') - 2w} (6.4)

9‘_ 2 x'l xz .
- "-{12(",:1",‘2) = aw} (6.5)

where the terms other than 'xz are evaluated at (§1,0)-
Now one considers cases. If

fz(vx1.6-1) - =0,
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then the bracketed terms in (6.4) and (6.5) must aleo vanish, yielding

- + -1
22('31"82) - 22('8"'1:2) - 22('31'6 ) .

Since f,5, > 0, it follows that

- ot
"‘2 'xz-s ’
and thus (6.2) holds.
Next, suppose
-1
tz(v‘ 8 ) AW >0 . (6.6)

1

Since P, € pn(xz) for all Xqr it follows from (6.3) and (6.4) that

-1 +
94{!2(\1,‘1.6 ) = Aw} € n+{!2(vx1.wx2) = Aw}

and so

-1 +
£ (w_ ,8 )< ¢ w. ) .
2 x1' 2('x1' X2

Again using f,5 > 0 one concludes that
w
x2
and since any limiting values of the gradient of w must lie in 96' (6.2) follows.

If the inequality in (6.6) is reversed an argument similar to that just given, but

using the equality of (6.3) and (6.5), leads to (6.2).

w
n (x(n)‘x(n)

Ix 1 2
2
The argument here is similar to that given in Case 2, but with 6-1 replaced by

Case 3. Y= =1+ 81n= 1,2,¢0¢ &

-1+ §. q..odc

Our next task is to show that vx2 cannot assume the value =~1 +§ if § is

sufficlently small. Since =1+ § ¢ 'x < 6-1. the value -1 + § would be a minimum
2

for w_ .
x2
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lemma 6.3. The minimum of w is assumed on the line {x2 = 0} as a limit from above

x2
or below.
Proof. Since w satisfies the equation .
? + -
}x—ifi(Vv) 0 in T UT (6.7)

it follows from differentiation that

3—a-£1 (Vv)sa—%"—-o in tvurT (6.8)
xy 3j xj Xy
+ for k= 1 or 2. By the maximum principle, w_ , which is continuous in ‘;: and in

x
2
T, must take its minimum value on the boundary of ™ UT". Since w is positive in

T and vanishes for x, = -h and for x; = 1~ h, the strong maximum principle implies

that wxz > 0 for X3 = =h and wxz <0 for x; = 1 - h. Consequently the minimum is

negative and must occur where x, =0 or x5, = 1-h.

The function W is negative in (0,») x 1t (cf. Theorem 5.4) and is zero on the

x4
half line (0,#) x {1 - h}. Since w is even in x,, "x, is zero on {0} x I' and the
strong maximum principle implies .
'x1x2 >0 on (0,#) x {1 - h} (6.9)
and
Yy xg € 0 on {0} x1I'. (6. 10) )

The inequality (6.9) implies that the minimum of "‘2 on the line xy = 1= h must occur
at x, = 0. Suppose the equation (6.7) is written out in nondivergence form. Since
"x,xz =0 on ({0} x I¥, it follows from (6.10) and the ellipticity of (6.7) that

+
"‘2"2 >0 on {0} x I . (6. 11)

Hence the minimum of "‘2 on {0} x 1* aust occur at (0,0), showing that the minimum

must occur on (xz = 0},
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The next result establishes a lower bound for A which serves in Theorem 2.1 part

| S

(b) and which will also be used in obtaining a lower bound for "‘2' The proof of this

lemma will be given in connection with related computations at the end of Section 8.

Lemma 6.4. For any § € (0,1) and R> 0 1let ()A,v) belong to GG.R' Then

) Vo + /5,02
A g—— (6. 12)

.= P,

Recall that the switch from spatial to semi-Lagrangian independent coordinates was
made to circumvent the difficulties inherent in a direct approach to a free boundary. For
each solution (\A,w) ¢ GG,R the free boundary is merely the graph T = {x,w(x,0)} of the
function w(x,0). Recall from Theorem 5.9 that w(e¢,0) ¢ C"“(l)- In Section 7 {t will
be shown that it is real-analytic. Having obtained the boundary separating the two fluid
components we now revert to the pseudo-stream-function ¥(x,y)} where (x,y) are spatial

coordinates in the strip 8 (cf. Section 1). Recall from (3.10) that

w C/E

(6.13)

Q
o
gl

in 8%, the upper fluid region, and in S~, the lower one, respectively. Since

2 9/Agqs (6.13) will give a lower bound for v, if an upper bound for vy is

established. The next lemma is a first step towards bounding *y'
Lemma 6.5. Let ()A,w) belong to GG,R and let ¢ be the corresponding pseudo-stream=-
function. Then for any real m

m+1

[ |vel2axay < <k, (6. 14)
p=-1 I

where K, depends only on pt and h.
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Remark. From Lemma 6.4 it is clear that czx, = oK /A is bounded in terms of Py

and h.

Proof of lemma 6.5. Let the integral in (6. 14) be denoted by E. From the relations

(2.20), (2.30), (3.10), and (3.11) there results

m+1 ¥(1-h) 1 + y:

pef [ e
m=-1 ¥(-h) ¥
a+l  1=h 1+ 'x ay
- [ e ofhg(xp) axy g ax;
m=1 =h 2 2
2
2 m+?! 1=h e vx1
= c f f pdT+—'—dx1dx2 . (6. 15)
m-1 ~h x,

Let u(x;) be a smooth cutoff function which equals 1on (m - T,m + 1] and has
support on [m - 2,m + 2]. Consider the fundamental equation (4.1) for a pair
2
(A V) € F +8,R converging to (A,w) € G&.R' Multiplying (4.1) by u v integrating

by parts, and letting n + =, one obtains (cf. 4.11)

2+vx
1 2 2 2
= [ o (———=5 ) ||
210 % (14w )?
X2
" -
[f oauu® o+ Ao, = 5,0 [ 42 0x WP (x,,0)ax
RO L A S I e
2 -
'2
2 x, P m+2 2
<e [l o st/ '+ ap_-o (6. 16)
T (1*\',‘) n-2
2

where |w| ¢ 1 (cf. 4.35) has been used. If ¢ is set equal to 1/2 in (6.16) the

resulting inequality implies
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2
1 o (2 2) 2 w1 x,
'2-I f pd wx +-—f I pdT:-w—G X' (6.17)
m=1 I (1 +w ) 2 11 x
x, 2

where K' depends only on p* and h. The last integrand in (6. 15) contains a sum of

-1
)

2

of (6.17) and so is estimable.

(1 + vxz)'1 and v§1(1 + v, « The second of these also occurs in the second integral

-1

1
Now consider pd(1 + wxz) . Where 'xz > = 3 this integrand is at most 204

while on the complementary set

2 + vx
2 2

w
)2 %2

3
2 (+ 'x

1+w
2

Use of these estimates with the first integral in (6.17) gives a bound for the integral of

p.(1 +w.)"1 and the combined estimates yield an estimate for (6.15). g.e.d.
d xz

To make use of the bound (6. 14) it will be necessary to show that the distance from
the streamline I to the boundary 238, denoted dist(l,3S), is bounded below.

Lemma 6.6. Suppose (A,wv) € G Then

§,R’
dist(r,38) > K> 0 (6. 18)
where K depends only on pt and h.
Proof. In the case of elevation waves (e > 0) being treated. w > 0 8o the
distance from I to the lower boundary is at least h. Since w is even in x4 and
decreasing on 0 < x4 < », the distance to the upper boundary is d = 1 -h - w(0,0).

Consider polar coordinates centered at (x,y) = (0,1 - h) so that pointe within the

strip § have angular coordinates in (0,%]. From Lemma 6.5

1 = 2 t=h 1t 2
rdr < y € ¢c“K (6.19)
[ ] 1v\%rarae < [ [ vl %axay < o,
a4 0 -h -1
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'~ with K, depending only on Py and h. From (6.19) .
P,
‘?{ » 1 ar . | 2
L I =1 a—g' a0 < %k, . (6.20) .
L) d 0
};-F.:
For each fixed r € (0,1), ¥(r,8) = ¥(1) when 6 = 0 or «, while for each r ¢ (4,1)
-.t'\., the semi-circle of radius r (0 € 8 < n) must intersect I; that is there must be an
.-..'(- angle ¥ =8(x) in (0,%) for which w(r,¥) = 0. Since
b
W 0
2 3y 2
1) =
(1 |£ 5 (r.,0)as|
.-:': e
o ¥ 2
<% |91| a0
« " 26
n“..n"‘ 0
' \
" 2
<nf ﬂ’-' ae (6.21)
g EL)
LN 0
043
P
" l') it follows from (6.20) that
33 1 ) . 2
(log E) e < c“Kyq . (6.22) .
e From (1.20), ¥(1) = c/p_ (1= h) and so
n
-‘:"1‘: K%
Nl 1 1 .
-_... log _d_ < —__2
WY p (1 - h)
p]
T" from which (6.18) follows. gq.e.d.
Ly
g
x‘\g
4 L)
'-(\W The following lemma of Alt, Caffarelli, and Friedman [1] will be used.
Lemma 6.7. Let u be a function in C(Bg) N W"Z(BR) where B, C R is a ball of
radius r centered at (;,;), where u(;,;) = 0. Suppose u is harmonic in
BR\{u = 0} and set
1 -
otr) =L [ [ |va*|%axay « 5 [ [ |vu|2axay (6.23)
r B r B .
r
-2~
e
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vhere u' = sup(u,0) and u” = inf(u,0). Then ¢(r) is an increasing function of r

for 0 <r < R.

Theorem 6.8. Suppose (A,w) ¢ G5 R Then
’

1
T < X, (6.24)
%] w
L (T)
and
w
X4
S KX <K, (6.25)
x
2™
where the constants depend only on p* and h.
Proof. In lemma 6.3 it was shown that the minimum of 1 + wxz is agsumed on the

line {x2 = 0}, from above or below. From the discussion surrounding (6.13) an upper
bound for 3Y/9y on the upper and lower sides of T will yield (6.24). The estimate
(6.25) follows similarly from a bound on 23y/3x which is harmonic in St and must assume
its maximum and minimum on 38' U 35", Since ¥ 1s constant on the lines {y = -h} ana
{y = 1 - h}, it suffices to bound [¢ | on T.
Let 3% denote the restriction of ¢ to S* and ¢, the restriction to S8~.

Since w+ >0 in s* ana w- <0 in 87, this notation is consistent with that in the
previous lemma. According to Theorem 5.1 the function w(x,0) describing T' is of class

o and Yw 1is of class c® 1in T+- Since 9Yw 1lies in 95, the relations (3.10) and

c

(3.11) show that th is of class ¢ in s*, respectively. Let (%,¥) be a point on

s
LA

I' and let of = fvvt(;:;)f- If B, denotes the ball of radius r centered at (X9,

-
.

A O

o

then from the previous lemma

[

T T Ty,
5

wey =2 L wtEedy iR (6.26)
r Bgﬁs r Bths

o |

' 'r;l
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:3:
Y is increasing in r for 0 < r < R where R = min(h, dist(l',35)). From the regularity !
\‘ just cited it follows that ¢(r) has a limit, denoted ¢(0), as r + 0 and
" + - -
T~ 20hH? . 2 0)? = 000) < pm) ¢ (r7%K,)2 (6.27) X
"_'n
- by Lemma 6.5.
N :
Recall that the continuity of pd(fz(Vv) - Aw) (cf. 4.31) is a translation of the
M
B pressure condition (2.28) which becomes
X 1 +.2 -2 2 ~
.:: 2 [te) =(c)] = o, - p_){—z' ay} (6.28)
T +
.1' in the current notation. The two relations (6.27) and (6.28) easily imply that o and
w 0~ are bounded in terms of Dt and h. q.e.d.
I
~:':' It follows from the last result that there is a 60 >0 80 that for 0 < § < 60 and
o
. R > 0 there is a pair ()i,w) ¢ G6 R for which
’
;” |v| R
i _‘\,' 1 -
S Ho (T)
:.:-. or
= -1
W max(|w_ | dw_ | ) =8 .
" ok Y X2 -
L (T) L (T)
o Hence S C R x (HJ(T) N c% (T)) defined by
I
" $=ugG,
o n = ,n I
b\ n
‘ Y i8 an unbounded, connected set of solutions of problem (2.36)-(2.39). :
1 .4': t
:::': o
4,'1 ;
.‘) '
4 ‘ i
\? :
L4 o
L%, %
J P‘ o
k) 3
' B
o N
" M
> N
]
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7. Proof of Theorem 2.1
7. 1. Existence and Basic Properties

The major part of the work involved in proving Theorem 2.1 has been done. In this
section we summarize those results already obtained and add proofs for the remaining parts

of the theorem, with one exception. As already noted, the lower bound A for 1, given

AEEL BTN 0t 8 mmusoy 4

by (6.12), is derived in Section 8.

Part (a). The basic existence result in Theorem 2.1 was the culmination of the
analysis in Sections 3 through 6 and was asserted at the end of the previous section.

That elements of S are solutions of (2.36)-(2.39) follows from Theorem 5. 1(d). The
inclusion of (X;,0) 1in S follows from Lemma 5.5(c).

Part (b) The inequality A < xd was given in Theorem 5.1. From Theorem 5.6 it
follows that (Ad,v) ¢ S implies w = 0. All functions w under consideration have been
even in x4, and hence their limits are even in x4. The remaining parts of b) were shown
in Theorem 5.4.

Part (c¢) The analyticity of w in the closed strips ;; will be shown in Theorem
7.6 below. As for the other assertions of regularity, they follow from Theorem 5. 1.

Part (4) These bounds, which translate into bounds on velocities, were obtained in
Theorem 6.8.

Part (e) In lemma 7.4 of (26] the exponential decay of solutions was shown both for
periodic waves over a half period and for solitary waves. The proof in (26] can be
simplified if only solitary waves are considered.

Part (f) This nonexistence result is shown in Theorem 7.7 below.

In the event e < 0, one can use (5.43) to arrive at the reversal of inequality
(5.47) and so prove Theorem S.6. Similar small changes are required for the proof of

Theorem 5.7.

-65-

g

~aa v,




A
<4
%:Qﬁ 7.2. Analyticity of the Interface s
‘,2& _ As was observed by Kinderlehrer, Nirenberg and Spruck [15] the analyticity of w in
s :; rt will follow from results of Morxey (([20); [21], Chap. 6) once it is shown that w is .
® —_
; :2 of class C2 in Tt- In [15]) solutions of free boundary problems are examined under a
oy typical assumption that the solution is known to be Cz. Then a partial hodograph or
i:%: Legendre transformation together with suitable combinations and reflections of solutions
6&55 in abutting domains produce an elliptic system adapted to Morrey's results. Here we have
t:f: worked in a semi-lagrangian (partial hodograph) setting for most of the analysis and hence
need only do a reflection once the c2 character of w in ;; is established. The c?
:;2 estimates could be carried out using the techniques from [3], but a relatively short
gf? direct proof can be given and we do that in Corollary 7.5. A lemma is required (and could
b
f:{ﬁ be given in a local version).
P
.};: Lemma 7.1. Let (A,w) be an element of GG,R (cf. 4.7). Then there is a p = p(§) > 2
j?kj and a constant K depending on § and R such that
L [ v < x(1+ (f |w, |2 (R/2) (7. 1)
T i T 1 .

for i = 1,2, where v =w_ .

x
1
Proof. It will suffice to work with an element ()A,W) ¢ Fn §.R (see Section 4) and "
—_— 0

) obtain an estimate which is independent of n. The subscript n will be suppressed.

<
ﬁf: The function v satisfies
,::..,:\' -2 (pg, (o) 2y = <rp'v in T (7.2)

1 ax, Priy X, .
e 4 3
m
e and

3 v=0 on 2T . (7.3)
;}: From inequalities (4.9) and (4.29) it follows that there is a p = p(§) > 2 such that

L R4
gt
iy fovl o <klwl , <x®R (7.4)
'Q:‘ L(T) L (T)
A%
i
ACP for all s in the interval [2,p(§)], where K and K' depend on 6&. A version of the
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Gagliardo~Nirenberg inequality will be needed for a function u ¢ H‘(T). By extending

u as an even function across the lines {x2 = =h} and {x2 = 1 - h} and using a cutoff

.
«

function in the x, direction one easily derives

ful < K fu] 17 B/ |4 |p/8 (7.5)

() (T tP(T)

from the main theorem in lecture II of {22). Here p can take any value in the interval

[1,4]. We can, without loss of generality, assume p(§) < 4 and let p = p(§).

Bquation (7.2) can be written as

] v ] ) v v
— (pf —— p P, APV) ® = = (pf —_—) = A ——
ax, | 219, 223 e ax, P 1y ax, ? ax,
v v 3 v _
-p (£ CAZSNCA SREPR JNCA A Y 7.6
PLf 14k ax, o, | 1 ? o, (7.6)
where
] 32\1
Yy = : = —-—2 ’ (7.7)
1 ax1

fijk denotes a third derivative, and the summation convention is used. Without using the

equation one has

] v av
ax, Pfa1ax, TP ax, Aev)
dv_ 3v a av_ v -
Pl 7o B * f21 B * oo B B * Taa g < M (7-8)
:
With pfzjvx - Apv denoted by u, it follows from (7.6) and (7.8) that
J
2 2 2 ‘ .
Vu|® <€ (|v Vv 7.9
£| I 5[£ o ® ¢ Jovl® + w2+ g 0 (7.9)

P
N

.

AP

»

where K, depends on § and R. Since the t? norm of |Vv| and, by embedding, any

..

IP norm of v are bounded in terms of R (cf. (4.9)) such terms can be accommodated by

o
e

including additive or multiplicative congtants. Since f,, is bounded below by a

positive constant depending on §, the use of (7.5) yields

-6 7=
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4 4 av 4
[ v <x [ w®+ (pf - dpv)"]
r X 3 T 21 5x1

4 4 a4
oo <k, ful+RUS Vv + [v])
. 4 Tr r *

4 4
<k [|v|*P |ulP +1+ [V, (7. 10)
. 73 1Pem) T %1

Using (7.4) to estimate u in LP and (7.9) to estimate Vu in L2, we have

2 4 2-
/ V: <SK 1+ ] V: +{f dwyl® + v: +v, 3R/
T *2 T %1 1 1 2

]l . (7. 11)

(%
Pt

Since 2 - (p/2) < 1, equation (7.11) provides a bound

s
A“l. -
LN

Dl
" e
-*

2,2-(p/2)
[V <+« W% ] (7.12)
T X2 S T *1 T

F

where K, depends only on § and R.

I ¢
.ﬁ;bﬁﬁ.

The embedding inequality (7.5) applied to v, € BN(T) gives

1, 4 A
*ats

l“

[v <x {j |vy|2)2=(p/2) [ lv, |p <K {[ |9y|2)2"(B/2) (7.13)
T

x,

'
.

P A

[ ity

again using p = p(§) and (7.4). The use of (7.13) alone, and in (7. 12) produces the

T, 48,

result (7.1). q.e.d.

-\ ]

Theorem 7.2. Suppose (A,w) € G « Then

§,R

D 'l‘.A
KHh

f Iwa ?<x (7.14)
T 11

A.-}.
% hN

where K depends on § and R.

3{ Proof. Continuing the analysis in the previous proof for a solution in F

n,G,R one

ol differentiates (7.2) to obtain

! - 5__ (pF (V) 31—) - (pf1jk §§ %ﬁ;) - Ap'Y 4n T (7. 15)
o

f.‘ b 4]

Y
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and, since Yy = 32w/3x“;

Y=0 on 3T. (7.16)

. The ellipticity of the equation (7.15) yields

v lwl?<for, 22
! [ oty 5 B,

CLq.2 W av |
[oag s ot 2 [ oy, ‘

<y limliPax fod o9 o4h . (7.17)
T T 1 2
The bound (7. 14) now follows from the previous lemma and Lemma 4.2. We note again that

the estimates are all uniform in n and so hold in GG,R' q.e.d.

Corollary 7.3. If (A,w) ¢ G ¢+ then
$,R
fow | <K (7.18)
VP
for all p ¢ {2,»), where K depends only on p, §, and R.
Proof. PFrom the previous theorem the integral of |Vy|2 over T is bounded and
4 4

from Lemma 7.1, so are the integrals of vx1 and vxz. rrom (7.9)

v v 2
[ 1Vtot, 5=+ Pty 35 wv | <K,
T 1 2
where K, depends upon § and R. Hence pf, v = lpv is in IP(T) for all
i
P € [2,»), according to embedding theory. The same embedding result, used with (4.9) and
Theorem 7.2, shows that v and v"1 are in IP(T) for all p e [2,»). Since 222 has

a positive lower bound depending only on §, it follows that vx2 is in the same LP

apaces. qe.e.de

It is now possible to return to the elliptic equation for y to obtain

) 5
-“:‘I- A

[ o
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Theorem 7.4. Let (A,w) Dbe in G6 R Then there is a q =gq(§) > 2 sgo that y = w
’

X1%q
satisfies
[ lw|¥<x (7.19)
T
where K depends on 8 and R.
Proof. For (A,w) ¢ ?n,G,R the equation (7.15) for y = "x,x, can be written
axi (pfij —Lax ) =div F + h
3
where
dv_3v
17 Pk o B
- v dv_ _
P2 = PEau x) B, Aoy
and

By the previous corollary F,; and F, are in IP(T) for p ¢ [2,) while from Theorem
7.2, he I-z(’!)- As for equation (4.24) Theorem 1 of Meyers [18] yields (7.19) for some
q > 2. All estimates are independent of n 8o the inequality (7.19) follows for all

(A,w) € G q.e.d.

s,R’

Corollary 7.5. Let (A,v) be in Gy .. Then W ¢ c®%r®) for some a > 0 and hence
1

the fluid interface y = w(x,0) is of class c?e,

Proof. The cz,a character of the interface follows from (7. 19) and embedding

theory. The Schauder theory ((13], Lemma 6.18) provides the same regularity in

Ttn q-.e 4.
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Theorem 7.6. Suppose (A,w) 1is a solution of (2.36)=(2.39) belonging to S. Then w is

real analytic in F and '1?.

Proof. Since w is of class Cz'“ in '1':' the techniques of [15) can now be
used. In fact, if we revert to the formulation in which ¢(x,y) is harmonic in st

and S° and satisfies (2.27), (2.28), then Theorem 3.2 of [15) yields analyticity.

7.3. Nonexistence of Small Solutions with e ¢ w < 0

We now prove part (f) of Theorem 2.1.

Theorem 7.7. Suppose

> o .
2 (1-n)?
There is a positive n such that if (A,w) ¢ R x (u;('r) N co' 1(i)) is a sclution of
(2.39) with w < 0, %5: >0 for xy> 0, and
(A =2, + |w + |w| <n (7.20)
al +1 Iug(w) e 1) ’
then w = 0.

Proof. Repeating estimates already used, in conjunction with difference quotients in
the x, direction, one can show w is smooth in each of T and 3 and we shall
assume the smoothness necessary for the calculations to follow. First it will be shown
that if the hypotheses of the theorem are met and A > )\ a’ then w =2 0. The steps
involved in the proof of Theorem 5.6 up to (5.40) can be duplicated for the case of a
discontinuous density, that is, for o a The equation (5. 12) which formally becomes

LI . (] -
(pgY") Apay = ap,Y
is replaced by the weak form

- £ paY'e’ + A £ Palve)' = a { PaYe (7.21)

-l l=




wvhere Y and ¢ are in HJ(I). Equation (7.21) arises from the variational problem

2 2
o - p Ju%(0) - { Patut)} ;
a = max 2 .
ueH)(1) [ogn §

which corresponds to (5.11). The maximizer y is normalized by f pdyz = 1 and, as in
the proof of Lemma 5.5, we have a > 0 since A > A a° In following the proof of Theorem

5.6 one need only let the derivative of a density in an integral be interpreted as !

{ D&q(x,.xz)dxz = =-(p_ - p*)g(x',O)

in the case of the discontinuous p a from (2.26). As regards (5.35), let Tt correspond ;
to the density p a The extra condition of orthogonality yields t > A a and it can be
assumed that )\ 1is sufficiently close to Ad to make 1 -2/t =86 > 0.

As regards the steps in the proof of Theorem 5.6 past (5.40) the only change is in !
the discussion following (5.40), for now a is positive rather than negative. Inequality
(5.41) is replaced by »

2,2, 20, gopd

2
(!")2+£pd|VR| «<2rrezo .

and in place of (5.42) one has

G +ar+ er? > 2er - k(B ¥+ 2o 4 xird)

B O oy e gy 7 e

It follows from this inequality that

G' - KU' + (a -K,|F| r>o0
L

for constants K and K4q (we may assume |P| w € 1) If this last inequality is
L

integrated from x to =, where x > 0, and the result rewritten in the vein of (5.45) ]
the result is
I vx1(x.x2) Xv | | I.
= J Py e {1 - —}ax, + (a = K,|F| ) F(s)ax » 0 .
I a’ 1 + vxz(x,xz) Y 2 1 L. x |
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If w is small in c ('1'). the expression 1 - Kw/y will be positive as will

a - K,|r| .. Since ¢, &nd T are both negative, a contradiction arises unless
L
w 0.
Now we may assume A\ < xd. If ¢ is set equal to w in the equation (2.39), the

result is

|vw)? (2 +w ) -
[ _'—_i_ fpt (Wwiw, = Alp_ =p,) [ wi(xy0)ax
T4 214w a Xy V- b
2

or, rewritten,

'x(3+2'x)

2 2 2 "2 2
£ palm™® = Ao, -0 L wix0ax, = [ p, |W|® ————— . (7.22)
T 2(1 +w_ )
X
2
In analogy with (5. 16)~(5.18), we decompose w as
w(xq,xz) = F(x,)Y,(x;) + R(xq,x2) (7.23)

where v a is the function described in (5. 13) and

!‘(x1) = I pd'(x1'xz)Yddle X1 e R,
I

Note that vy a satisfies the weak equation

[ ograe’ = Aglp_ = p,)7,(0)9(0) (7.24)
I

for any ¢ € u‘}(x). A further relation, the analogue of (5.19), is

| pqRiX gixy)y 8%, = 0,  xy€R. (7.25)
b4

The decomposition (7.23) and the relations (7.24)-(7.25), used in the left-hand side of

(7.22), result in

«]3=




SO

st
et
o
k)
"!’5'. -
d [ o 0w = ato_ - p,) [ wlxq,0)ax
.| - + 1 1
R -
v:-s._z‘
.'l o« o
. 2 2
o =[ () ax, + [ o VRI® = Ao_ -0, [ R3xy,0)ax,
Tt e - T Ed
X5
Al 5 -, -
. * ol = (0 Ay = ) [ Flaxy + 200y = Mlp_ = p 0,(0) [ FR(xq,0)dxy . (7.26)
A -0 -
e
-:Si In analogy with the discussion following (5.35), the orthogonality (7.25) ensures that
)
| 2 ® 2 2
" [ o l9RI" = Atp_~p,) [ R (x,,0)ax, > K [ |VR| (7.27)
',,-',.'79 T - T
Ty
A
".‘F.'h\
:?;-?: for some K > 0 whenever IA - Adl is sufficiently small. For the last term in (7.26)
‘S
rat we use the Schwarz and Poincaré inequalities to obtain
i -
o 2004 = M (p_ = p IV,4(0) [ F(xq)R(xq,0)dx
- -0
K 2 2 2 =
<z [ IR% +x0ay =al%g0) [ PRax, . (7.28)
e T -
.("_'4
’;-.,'\-.v
V.
h~"s If (7.27) and (7.28) are used in (7.26) and if Ad = A 1is made still smaller if
e
o necessary, there results

L] ] x

2 2
[ oglmel® = ato_ - 0,0 [ wixpoax, > [ erxgiax, + X1 2. (7020
-ce - T

J
4

L 3

A
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Now consider the right~hand side of (7.22). First, for any ¢ > 0

e,

X2
AR

LT g at

v, (3 + 2wx ) -
. [ o2 2 i cef[|wRZ+ef (F')%ax, (7.30)
o T 1 2(1+w ) T -

oy -

s

provided w is sufficiently small in c® (T)- Next, with the use of (7.23) one obtains

N
Ny =74~
3 ‘
2% )

“ R

. .
.
.vL\T. YL AR

p e By, LN SR DRy ST N
gk {ict J SEATATE LT AN S PR PRI AT IR




S TR TWATARLY W v W W W

bk il AR e Al NS A= il N k- ke it e~ 8 U b e & inarul A 9 PR T A S i o BN e i e N e it e s e hai Restt Ryt St fhoie ettt Min® isna g

1Y

wx(3+2wx)

[ ow? —2 2
T 4% 21w )2
X,

-»
3 3 4 3 2
< '{. Pg * 3 (Flxdy'(xy))” + k' [ Fax + 7£ |vR| (7.31)

for w sufficiently small in 00'1('5)' where K is the constant appearing in (7.29).
The first term on the right-hand side of (7.31) is the integral over R of ';Fa(x.,)

where o is defined by (5.26) and is positive, being a positive multiple of e in

D X helllin, R V¥ 0 _ e LB .

(2.41). If the inequalities (7.29), (7.30) and (7.31) are used with equation (7.22) and

the integrand P4 is estimated above by -|!'| _r’, there results
L

X 2 * 2 ~ * 3
G- [IWwT+ - [ (r)ax, - @-x'|F| ) [ Fax,c0. (7.32)
T

- L - 1

Since F = f p dw a € 0, it is clear from the estimates just. completed that if w has a
I

sufficiently small norm in ng(-r) Ac% Y T) ana if Ix =2 al is sufficiently small,

P = |[VR| 2 0 and hence w = 0. q.e.d.
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8. Waves of large Amplitude

Since the branch of solutions S from Theorem 2.1 is unbounded in
R x (H;(T) nc® %)) ana the range of )\ is bounded, the norms of w in HJ(T) and in

0,1

(o} (T) cannot both remain bounded on S.

In Section 6 it was established that there is a 60 > 0 so that vxz > -1+ 60 for
all (A,w) € S. If the gradient of w were uniformly bounded for (A,w) ¢ S, there
would be a positive 61 < 60 such that for all solution in S, Vw ¢ 961' But then the
coefficients fij would satisfy the bounds (4.15) and (4.16) with § = 61, uniformly for

(A,w) € S. This, in turn, would imply that in S there would be solutions having
IV'LZ(T) arbitrarily large. For, if not, then the local estimates (4.20) and (4.33),
summed over m, would lead to a bound for VYw in Lz(T) and hence to a bound for w
in HJ(T)- To go one step further, since 0 < w < 1, a large norm for w in L2 can
arise only by having a wave which is very "broad™. The alternatives, then, are to have
waves which are arbitrarily broad or ones with arbitrarily large gradients. Of course,
waves may exhibit both properties.

Numerical computations in the related problem of the interface between two unbounded
fluids of differing densities (cf. [17], [28)) show that there are branches of periodic

waves along which the gradients approach infinity. The condition (6.25) necessitates

wxz being large if the vector Vw is large. However, in the computations cited wx1
goecs to infinity and thus both components of Vw must grow unboundedly along the
branch. In fact, the streamlines steepen to the point of having vertical tangents and
continue past this configuration to one of "overhanging™ waves, in which the separating
streamline is no longer a graph over the horizontal axis. Computations are underway on
the solitary wave problem studied here (cf. [29])), but it is premature to predict the
large norm behavior. We will show that if waves broaden indefinitely, maintaining

uniformly bounded gradients, then a solution representing an “internal bore" with

specified amplitude and speed (determined by (8.23) and (8.24)) must exist. If, on
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the other hand, there were a sequence uk"k) ¢eS,x=1,2,... with -up|Vvk| + o as

k + », one could expect these to converge to a limiting wave with a vertical tangent on

the interface.

8. 1. Internal Bores

Let (), ,v.) € S, k = 1,2, be a sequence of solutions of (2.36)-(2.39) for the
k' k

density p,. Suppose that for some § > 0, Vw, € Q; for all k and that "“Ix.z('r) P

as k + ». As already noted, the HSlder estimates (4.20) and (4.33) for the gradients
will hold uniformly in k. Consequently one can use the diagonal method to select a

subsequence, still denoted (Xk,\vk) for which Ak + 2 <A a and w, converges in

*). The

c% Y(B), for all bounded sets B, to a function ;(x1,x2) € C°'1('I‘) a)] C"“(
limiting function :l will satisfy all of the estimates derived in Lemma 4.3 and Theorea
4.4) namely, the local estimates which are independent of R. Naturally, ; inherits the
evenness in x4 and satisfies 3;/3::1 €0 for x4q2 0. Since ; is also nonnegative,

lim wixy,x,)) = v, (%)) (8.1

81“

exists. To examine further the implications of this convergence, we shift it to

La

B= [=1,1 x I Dby letting wn(xi.xz) = vl(x1 + m,x3). Now vo is bounded in C (B)

uniformly in m, according to the HSlder estimates (4.20) and (4.33). Since Yo
converges in C(B) to w_, it must also converge in ¢ Y A T*) according to the
1'“(1*)

Arzela-Ascoli theorem and the limit ¥,  must be in C as a function of x,

alone.

Now let B(x,) be an arbitrary element of C;(-‘l' 1) and 1, an arbitrary element
of c‘;(x). Using the product BT as a test function in (4.39) with w = ;n and
P, =P a’ and letting = + = one obtains

aw - -
[ Patxx)2,00, =) $E= = A(p_ = 0,Iv_(0)1(0) (8.2)
1 2 ¥
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K which is the weak form of

-

dw A
4 = \
EE; pdfz(o, 3;;) = Apjw, - (8.3)

;-@-
N
Ly A A A

-
¥

As a consequence the nonnegative, continuous function v, will be linear where pa = 0,

that is, on I~ and on I'.

s

Ay A
YV

Suppose w_ = 0. That is, suppose that W + 0 as X4 * ®. Then as x4 + » the

e

functions w, defined at the outset of this discussion must converge to zero uniformly

in k as elements of L (I) depending on x;. Their gradients must converge to zero in
x:4 the same sense, according to the local estimates (4.20) and (4.33). Suppose Ak from the
N pair (Xk,wk) converges to ; < xd as k + o, In Lemma 5.2 an estimate was made of the

v,
k‘ﬂ "tail"” of w; that is, the restriction of w to Ty = {m,») x I. There a bound for w

in HJ(T) was used to show that the Co"(im) norm of w went to zero with m,

;&1. yielding the estimate (5.6). Since the functions w) under discussion have their norms
:?ﬁ in C°'1(5m) converging to zero with increasing m, uniformly in k, the estimate (5.6)
L can be seen to hold for w = w, with the constant K in (5.6) depending only on i and
~:} on the § which serves for all k. A bound for w, in HJ([-m,m] x I) follows easily

;% from the estimates in Section 4 and thus the w, are uniformly bounded in HJ(T),

“p
fgﬂ contradicting the initial hypothesis that Iwklﬂ’(T) + = ag k + =,

{ In the case that Ak »> ; = Ad as k » @ aosinllar situation prevails as regards the
;:Si behavior of w and W for large x4. It suffices in the proofs of Theorems 5.6 and 5.7
;iﬁg to have the norm of w 1in Co"(in) approach zero as m + » and this we have for
{Gﬂ W=, uniformly in k. A consequence of those theorems is that ; = 0 and that Wy
'J?; converges to ; = 0 in HJ(T), again contradicting the initial assumption. Consequently
ﬂi: ;' and ; are both positive. We summarize what has been proven in
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Theorem 8. 1. Suppose that (A ,w ) € S, k= 1,2,..., satisfy

(a) |Vw <€ K, for all k

|
L%

and

(b) > i and |w, | +® ag k + o,
% *alm)

Then W, converges to w(x1,x2) in c(® n C1(§ n ) for each bounded set B. The

function w is positive on T, nonincreasing for x4 ? 0, real-analytic in

T - {x, = 0}, and satisfies

Un  wixg,e) =w, (8.4) S

Xy &tgi

DANY

= 0,1,7%) - N

in C(Iy)ncec™’ (1 where w_ is positive on I; linear on ¥ and I7, and satisfies A
N

(8.2). Both w and w_ satisfy (2.36), (2.37), and (2.39). f:.}:.}«:
ey

f i

Note that w_ 1is a solution of the flow equations {just enumerated) which is

.
"
('f_-f"f )

independent of x. Using the nomenclature of Benjamin {9] we shall call v, a conjugate }E'E
(..

flow. According to Theorem 8.1 the function w_ must have the form '_Qf*

a A(XZ + h)' xz € I- .

w, = . (8.5) \.':\'LJ

B(x, = 1+ h), x; €1 Y

S

(Y

for some value of A where, by continuity Ah = B(-1 + h). Equation 8.2 gives

-" 7, l’.f
¥ _r

P
Ly A4

A = A(A), where
1 1

1 1
A(A) = —— p 1 - ) -p (1 - ) . (8.6)
(o=, 248 le.( (1 + A2 + (1+8)° ]

Since aw’/axz =B > ~1 on I*, we have 0 ¢ A < (1 - h)/h 1in (8.6). The amplitude

A and the speed
¢ = ¢y = (g/h(A)) /2 (8.7)

are as yet unknown. To determine A we show that as a consequence of Theorem 8.1 there
is a flow in the strip which connects a trivial flow to a conjugate flow. That is, there

is a solution of (2.36), (2.37), and (2.39) which has the following asymptotic behavior.
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As x + == it approaches a flow with velocity vector (c,,0) in a fluid which has
density p_ for =-h <y < 0 and density p, for 0 <y < 1=-h. As x + +o the
conditions approached are

1
(T-'l'_A Cpe0) for <h < y < Ah

velocity = (8.8)

(t-n)
(1= h - Ah)

according to the relations (2.43).

( cpe0) for Ah <y <1-h

Theorem 8.2. Suppose the hypotheses of Theorem 8.1 are satisfied. Then there is a

solution (A, j(x1,x }) of (2.36), (2.37), and (2.39) with the following properties:
(a) 3 is real analytic in T - {x, = 0} and is in C '“('r*) nc® YF) for some
a > 0.

(b) Bj/ax1 >0 4in T.

The element j(x,,+) of co'1(f) satisfies

) lm [3(x4,e)] Oetgy T O

L ($3)

(@ Um [j(x,0) = w,] 0,1 =0

X e c ' (I

where w_ 18 a conjugate flow corresponding to some value of A > 0 and X = A(A).

Proof. It can be readily verified that

3he

- o—3he 2 .
a " T At owd (8.9)

A(A) = )
for A near zero, where Xd and e are defined by (2.40) and (2.41), respectively.

Since e > 0, by assumption, A(A) < A for small positive A. Since A(A) + +o as

4
A+ (1-h)/h, it is clear that A(A) is not one to one on the preimage of the interval
[o,xd], the set of interest to us. Let the conjugate flow w_ in Theorem 8.1 correspond

to a value A > 0 in (8.5). From the form of A(A) it is clear that there is a smallest
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positive value A for which .{A) = A(i)- Let w_ in the statement of the theorem
correspond to this smallest value.

Return now to the sequence w, from Theorem 8.1. The functions w, converge in
c% 1 on bounded sets to ; and ;(x1,0) approaches ;h >0 as x4q* —=. For each k,

wy(x4,0) + 0 as x4, + -», Hence for each large ‘k there is a value §, < 0 (precisely
x'%1 1 k

cne since aw/ax1 >0 for x4 < 0) for which

1 1
vk(ek.O) Ehh < EAh . (8.10)
Define jk' k= 1,2,.¢., by
jk(x1,x2) = wk(x1 + Ek,xz) . (8.11)

As with the functions wy, one finds that a subsequence of the j,, denoted by the same
symbols, converges in C°'1(B). for each bounded B C T, to a function J(xq,%3) in
C"“(;;) n Co"(i)- Since for each fixed x4, wy(x4y0) converges to

C(x1,0) > w_(0) = Ah, the points E, at vhich (8.10) holds must approach - as

k + ». Again fix a value of x4 For all sufficiently large «, x, + Ek < 0 and so
ajk/ X, > 0 at that x4 for all x, € I. Thus 3j/3x1 (x1.x2) > 0 for all

(xg.%x3) € T. Since 3 1is monotone, bounded, and in cV9at) A c% YF), the limits

j*(x2 = lim J(xq,%x3) (8. 12)

x riw

exist. As in the proof of Theorem 8.1 one shows that the limits can be taken in the
1(f) topology and that j* are conjugate flows satisfying (8.2) for
; = A(A) = A(;).

Since j (+=,0) > 3(0,0) "l Ah > 0, the function Jj, is a nontrivial conjugate
flow. Since j_(-=,0) < j(0,0) = — Ah and since Ah is the smallest height at x, = 0
for a nontrivial conjugate flow with A = X - A(A), j_ must be zero. As claimed the
function j then represents an internal "hydraulic jump"™ connecting a trivial flow at
x = ~» with speed ¢ given by (8.7) to a positive conjugate flow at x = +» with the
structure (8.8). The remaining reqularity in i) and the positivity in ii) are shown as in

Theorem 8. 1. q.a.d.
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Implicit in the form of the conjugate flow (8.5) is the conservation of mass in the
c

lower fluid, connecting a flow of height (1 + A)h and speed at x = 4o with a

1+A
flow at -» of height h and speed cp. A similar situation prevaile in the upper
fluid. This same conservation can be obtained starting with
a
div(pq) = 0 (8.13)
from Section 2 (cf. (2.9)~(2.10)) since streamlines are integral curves for the field ‘é\.

Another conserved quantity can be derived from the momentum equation (2.8). It can

be expressed by the exactness of the form

szudw +pdy, (8. 14)
assuming now that we are working with a smooth density p. To see the exactness express
(8.14) as

pvzu%z-dx + 91/20%3_dy +p dy = -puv dx + (pu2 + pldy .
By using div =0 and Vp :- 0 one may show that
(-puv)y - (pu? + P) = -p(u u +uyv) -p, =0

using the horizontal component of the momentum equation (2.8).

Now ¢ and y are constant on the "walls"™ at y = -h and y=1-h, and if
(8.14) is integrated around the boundary of the rectangle (a,b) x [~h,1 - h] there
results

/7 6% 3+ 0| et 6Vadem| oy (8. 15)
-h x=a =h x=b
That is, each integral appearing in (8.15) is independent of the x coordinate (cf.
[8]). If the expression (2.15) for the total head H is used to replace p 1in (8.15)
and the relation (2. 14) is used, the x~invariant quantity in (8. 15) can be expressed as
1-h

1
) H+s (v: - wi) - goyldy . (8. 16)
-h

Given the regularity and the convergence properties of the flows considered up to this
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point it is easy to verify that the expression (8. 16) will be invariant for the flow
associated with J(x,,%;). By equating the values of (8.16) at xq = —= and x4 = 4=,
d one obtains another condition on A in the conjugate flow J,, from which A can be
determined.

Normalize the pressure so that it is 0 at x4 = ==, x; = 0. Then H has the

values

H =opc? (8. 17)

t 27t
in the upper and lower fluids, respectively. As xq = x + iw, "x + 0 for the flow

corresponding to 3§ and the temm v; is merely the density times the square of the

ok BEREE R ¢ s n g 0. & T R A A R A A A s & " & .

horizontal velocity. At x = -» the expression (8.16) is

2 2
1 1 h 1 2 1 2 . - (1 - h)
E-p_czhﬁ'-ip_c?h-igp_—z +Ep+c(1 h)+-i-p‘_c(1 h) @, 2 (8. 18)

where c = ¢, in (8.7). ‘The value of (8.16) at x = 4» is computed using the velocities

and heights in (8.8). The result is

2 .2
1 2 1 e a%? - n?)
-— 4+ - —— ———————
. 2P SV +Mh 30 TR W F;
2 2 2 2.2
12 1 Fa-m? (1« ny? - afn?,
+3p,c(1-h-an) +35p S go, [ 3 ] . {8.19)

Considering the expression (8.19) as a power series in A there is a constant term which

is, of course, (8.18). The linear term in A vanishes and vhat remains is

2 22 2

2
1 A An’ 1 2 1 a’h 2
- — - —_—t + A .
e g w A g T-h G ._ A » A% (8.20)
T-h

which must be zero. If an A2 ig cancelled and c;/<:2 set equal to A the result is

1 f. Py
Ve GO TR

(8.21)

If this is equated to the expression (B8.6) and terms of zeroth order in A are eliminated
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W oA P AR

el = - ==0. (8.22) .
\ Zh(t + A) 2(1 - h - Ah)

' If an A is cancelled and the result solved, one finds

L
i o_ Yo,
134 - P_ (4 -
3.' "'—-:—I‘-)—-'T'1-+h)' ta-n_, — (8.23)
g Yo_ + /o, oo+ o o,

%3 (& Tﬂ)

’*z where e is the parameter defined in (2.41).

ALY

‘;3 If the expression for A in (8.23) is used in (8.21), the result is

%
B _ 2

L, - Wo_ + /o)

- A = R (8.24)
Lgx P- Ps

s
{i{ This last expression is strictly less than xd vhen e # 0 and is equal to xd wvhen
4_'\\
e = 0.

i -
"; Next we give the

-",.:-

;t; 8.2. Proof of Lemma 6.4 <.
() - .+
! For a smooth density p approximating Pa and a solution (\A,w) of (2.36)-(2.38),
) ) the equation (2.36) can be written

4

N

N Yx ~

- 1 ) 1

3 11 o' -Ap 'w .
L™y -pix )(1 + w + 'x Ix, (1 + w )) axz pf (V) = =xp’w
™) x, 1% x
s For each xj, w(x4,Xx3) has its maximums at x4 = 0 and hence vx1(0,x2) =0 and
i\
:%F 'x,x1(°'*2) < 0. If the last equation is restricted to the line {x, = 0}, then
s = 3 plxy)E, (0 (0,x,)) € =Ap' (xy)w(0,x,) (8.25)
L',‘b“ 2 2

results. If (8.25) is multiplied by g(xy) = w(0,x;) and the result integrated over
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I, it yields

[ p£,00,9"1g" < =1 [ p'g? . (8.26)
I I
Consider now a pair (X,¥) ¢ GG.R' There is a seguence (xn,wn) € rn,G,R with xn LY
and w, *¥ in % '([-1,1 x I) as n + = and (8.26) holds with p =p ,

g=g, ™ w,(0,x;), and ) = Xn. If F = F(p) is any real function defined for p > ~1
satisfying
F(p) < £5(0,p)p (8.27)

for =1+ 8 <p <8, then it follows that

[ o rtg")
1
A = ing 5
ch;(I) (b_ = p,)g (0) (8.28)
-148¢g¢s” !
0¢g(0)< (1=h) ( 1-8)

is a lower bound for 1. Note that g(0) = ;(0,0) > 0 for any nontrivial element of
GG,R' for the maximum principle applied in T and in T" shows w has its maximum
at (0,0).

The function F(p) = £(0,p) is easily seen to satisfy (8.27) and moreover, is convex
for p > -1, having a second derivative equal to (1t + p)'3. Let fs(p) be strictly
convex for all p ¢ R, coincide with £(0,p) for =-1+8 < p < 6'1, and have guadratic
growth near p = i». One can, for example, extend f£,,(0,p) continuously outside of
[-1 + 6,6-11 to be constant for p < -1 + § and for p > 6-1. Two integrations will
then yield a suitable t&' The infimum in (8.28) will be unaffected by replacing
F(g') = £(0,g') by £6(q'). After replacement the infimum can only be made lower by

removing the condition on g'. Thus
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h Ag = ing —— (8.29)
. 1 -
- geHy (1) (o = p)g(0)
- 4
‘o 0€g(0)<(1=h) (1=§)
N
W ~
is a lower bound for A.
et
at For each constant Yy > 0 the set
X 1
} Q = {g € Hy(I)|g(0) = v}
\' is an affine subspace of Hg (I) and the convex functional
- []
. I(g) = [ pyfela’)
& I
o
} is therefore weakly lower semi-continuous on Q. Since J is nonnegative, there is a
'8 -
NN gg € Q@ at which J assumes its minimum. For n ¢ C;(I Y, 9o * th € 0 and a standard
= variational argument shows
'." f pEL(giin' =0 .
: I a-é6‘7o
3
o\
! From the classical theorem of DuBois-Reymond it follows that g(', is constant on I™.
<
.~ Likewise it is constant on I¥, Thus go has the form (8.5) of a conjugate flow with
Ry
,.“; gp(0) = Ah < (1 = h)(1 - §). For such a function the quotient in (8.29) takes the form
$ 1S
- 2P-T+a 2+1-h-Ah
2 (8.30)
- (o, - D_)Azh
':‘z which is precisely half the expression in (8.21). At a minimum A satisfies (8.22) and
‘|‘ the corresponding minimum value is half of that in (8.24), giving the bound (6.12).
. q.e-dc
i\
B
st ~
1% A better lower bound for X could be found. The function
9]
1%
' p2(2 + p)
i f2(0,p)p = 2 (8.31)
) 2(t + p)
1
8}
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is convex on -1+ 6 < p < 2 for each & > 0 and can be extended outside that range, as

S SR 0

TN

[ S B

befora, to a globally defined convex function ?6(9) wvhich grows quadratically at =.

One can now use an argument like that just given. The expression in (8.31) can be used

« v .
FRARY

for F(p) in (8.28) with the restriction -1+ § < g' € 2. 1In (8.29) one replaces f6

r

by ?6 and finds a piece-wise linear minimizer E having a derivative

B 4

- A>0, xq < 0 b
1] i
g'(x,) = _ _ o (8.32)
T-n %20
Note that A ¢ (0, 1 ; h) since 3' >=1. If h> 1/3, so that (1 - h)/h € 2, then
' 1lies in the range for which the integrand in (8.29) is the expression in (8.31).

1=
Corresponding to (8.30) one obtains an expression to minimize for A ¢ (0, s h)-

Unfortunately, the minimizing value of A satisfies a fourth order equation. Without

giving the detalls we merely note that if P, = 2, p_= 1 and h = 1/2, so that
(1= h)/h < 2, the following numerical values are obtained. The bifurcation point is

Xd = 6 and lemma 6.4 gives the lower bound 2.91, whence 2.91 < A < 6. The minimization

using (8.31) yields the better estimate: 5.B1 < A < 6.
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