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ABSTRACT

The goals of the project described here are twofold: First, to turn an existing pilot al-
gorithm for the steady flow of non-Newtonian memory fluids into a robust and efficient
algorithm. Second, render enhancements of the method's current capabilities computa-
tionally feasible. Such enhancements include fully coupled thermal dependence, material
compressiblity, and free surface flows. The pilot algorithm is a finite element method whose
novelty lies in its computation of the stress field in a nonlinear iteration scheme. The stress
at a point is a non-local functional of the current velocity iterate, and the pilot method
has demonstrated the feasiblity of reliable computation with such constitutive equations.
Before the method can take its place as a reliable scientific and engineering tool, intensive
effort must be made to reduce the computational cost in the manner described here.
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A FAST ALGORITHM FOR NON-NEWTONIAN FLOW

David S. Malkus

I. VISCOELASTIC FLUIDS. The following equations are solved numerically, using the

finite element method 1 -- 4-: The equations of steady motion,

V.o f =P(u.V)u

where u is the velocity field, a the stress tensor, f a body force, and p the density. The
equation of continuity for an incompressible fluid is

V. u -0 (2)

For non-Newtonian fluids, the crucial equation is the constitutive equation,

a -pl + 2p(O)R; + (I R)o' (3)

where p is an isotropic contribution to the stress, p(O) is a zero-shear viscosity, R is a ratio
of a retardation time, A, to a retardation time, T, and o' is an extra stress tensor. The
ratio, R, and its complement determine the proportion of the stress which is Newtonian
- and usually is the result of a Newtonian solvent - and the complementary proportion

from the extra stress -- usually due to long-chain molecules (such as polymers) disolved
in the Newtonian solvent.

There are many proposed forms for the extra-stress tensor; there are two basic cat-
egories: the differential and integral models '1]. Here we shall only be concerned with the
integral form.

So (7(r)mI(r) dr

N (1 (4) -.

mj(r) =T - ! > G~1 )P~~e'rp( T "
Ekr kk~l T.~

where po is a constant determining p(0), and So ( ') is a strain measure, measuring the
deformation which carried the particle from its position at time r in the past to the stress
evaluation point at the present time. 0. The strain measures are the same kind employed
in finite elasticity. The memory functions, ml, are usually sums of exponentials, each with
amplitude determined by the modulus, Gk1 ) and decay constant, Pk, which determines the
fraction of the basic decay rate, T. -- w
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Thus a cornputat ional met hod must determine the deformat ion history of every stress eval-
uation point required to solve the equations of motion in some approximate way, compute
the required strain measure - which is almost always highly nonlinear in its dependence
on the velocity field - and then approximate the history integral over an infinite interval.
This just computes the stress. and then the stress computation must be imbedded in some
ilerative scheme to produce an approximate solution to the highly nonlinear equations of
mot ion.

I1. SOMFLOWN'S, In this section we give a brief description of some of the flows to which
the current method is being applied. The geometry of these flows is quite simple and the
results obtained do not illustrate the real power of the finite element method. It is hoped
that the reader will appreciate that the method described here is still very much in the
development stage. and that the problems so far investigated by the author and other.
researchers are intended to isolate the complexity inherent in the non-Newtonian nature
of the flow from other possible complications. Nevertheless, there seems to be a good deal
of physical interest in the problems pictured here, in spite of their geometric simplicity.

FIGURE I

How~ over a transverse slot comiputed by the pilot method on a mesh of 1008 elements.

The first flo-, is a plane flow% over a transverse slot. The streamlines plotted in Figure
I are t akeni froin a solut ion computed b\ the author. using a constitutive equation of his
own (1evising, I and the muesh of 1OON crosed-triangle niacroelements illustrated in ref. 1.

"9

Thu flowN is at a "Deborah number' of .1.7 (this can be thought of as a dimensionless shear
rate). F~low is from right to left. and undisturbed flo%% profiles have been imposed at the
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inflow and outflow. Actually. since there is fluid memory, the inlet condition is that the
flow continues forever upstream as undisturbed plane Poiseuille flow. Figure 1 illustrates a
chracteristic tilt to the vortex in the slot. which is opposite in direction to the tilt observed
in Newtonian flows with non-zero Reynolds number 3 .

The interest in flows over transverse slots ars,. from the fact that there seems to be
an important relation between the difference between the pressures at top and bottom of
the slot and the first normal-stress difference of the fluid in the undisturbed flow I - 3 .
There seems to be a discrepancy between what the numerical models predict and laboratory
experiments measure in such flows, and it is one of the author's highest priorities to resolve
this. The results could have important ramifications for devices designed to measure the
first normal-stress difference using "hole-pressure" measurements.

FIGURE 2

Abrupt -contraction flow computed by the pilot method with 940 elements.

The next flow is that of flow through an abrupt. planar contraction. Figure 2 pictures
such a flow: flow is from left to right so that the fluid is being forced form the larger to

* the smaller channel. Because symmetry is assumed, the computational domian is only the
top half of a channel cross-section. The flow pictured here uses the same fluid model as
that of Figure 1. at a slightly lower Deborah number. 3.7. Inflow and outflow conditions
are imposed as before; extreme care is taken to match the flux at inflow and outflom

* boundaries.

The interest in this flow stems from the fact that some fluids seem to behave quite
differently than others in contraction flow. Some fluids. such as polystyrene or high-density
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polvethelvne melts. seem to have relative smaller "dead-spaces" or recirculation regions
at high Deborah number than at low Deborah number. while some branched polymers,
such as low-density polvethelyne. seem to do quite the opposite. developing recirculation
regions emanating from entry which dominate the whole flow-field. The flow pictured in
Figure 2 has about the same size recirculation region as a flow of the same fluid at low
shear rate. The author is interested in further study of this flow in order to find out what
property of the constitutive model is associated with entry vortex behavior. The abilit r

to predict recirculation size is of practical import because fluid trapped inside dead-spaces
tends to degrade. It would be useful to able to determine how much polymer degradation
could be expected in a given die as a function of measurable material properties.

FIGU'RE 3

Newtonian flo%% in a plane cross-section of a journal-bearing.

'Ih final flo"~ is, one, for which the author has as yet no results; that is the flow in

a JOUrnial-bearing. F'igure :1 pictures the cross-section of two eccentrically placed cylinders
'% t h fluid bet~~een t bern to lubricate and prevent solid-to-solid contact. There are two
irni;Mrtatit aspects to this flow which differ from the previous two flows: First, there are
11() iriflow!- and outflows,. and second, there are no domain corners t~o generate singularities
in the si ress-field.

Theli auithor's irnterest in this problem is. firs~t. just that it is quite different from the
other t%o. It will be interesting to observe the behavior of the numerical method here
because it omnits two puzzling aspects of mnemor\-fluid problems: history-dependence at
inilets,. and stress-singularities of unrknow&n chara lt. T'here is also physical interest in this,
problemn because the effects of fluid elast icitv on the load-bearing capacity of the bearing
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may be beneficial. It would be able to predict load bearing-capacity from measurable
material properties, and numerical modelling may help to do so.

I11. COMPUTATIONAL METHOD. The strain measure in the integrand of eq. (1) is
assumed to be determined by a deformation gradient. Eo(r). just as in nonlinear elasticity.
Only in the present case, the deformation gradient is assumed to be computable from a
system of linear, non-constant coefficient ordinary differential equations along the path
followed by each particle at which the stress is to be evaluated. The usual deformation
gradients of large-strain elasticity can also be obtained from special cases of the following
evolution equations:

i(7) = V x(T)

x(0) = xo

Eo(r) F(Tx(). Vv x(r),)Eo(r) (5)

Eo(O) I

The first two sets of equations determine the pathline (streamline) followed by a particle
to bring it from its position. x. at time r in the past to its present position at the stress
evaluation point, x0 . To evaluate the integrand of eq. (4), these equations are solved as
an initial value problem in reverse time. This determines the non-constant coefficient in
the evolution equation for the gradient, which is assumed to be a traceless matrix, F. The
common deformation gradient. ax is obtained when F is Vv itself.3x0

The fundamental strategy of the current. numerical method is to choose constant
strain-rate finite elements: then the evolution equation is a constant-coefficient equation
on each element. This strategy is enabled by a basic property of linear ODEs: If we define
a deformation gradient. E71,. relative to time by

FE, (6)
E ,'( i

then the strain relative to the present time, evaluated at any earlier time is give by matrix
multiplication:

Eo(r) - Eo(rI)Er, (1 (7)

This provides interface conditions between finite elements, so that only constant-coefficient
equations need be solved on each element: it turns out that such solutions are known
analytically. as is the pathline and transit time along it I - 3 .

Thus. given an estimate of the solution to the problem it terms of a velocity field.
the integrand of eq. (4) can straight-forwardly be computed at each historical time. In the
current method. this is used in conjunction with a specially devised Gaussian quadrature
formulas to approximate a':

NJ So(-,jm(,-)d,-z \>-'kSO(7Ik)()
k I "
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With what we have thus far. the stress can be computed in any trial velocity field; to
approximate the solution to eqs. (1) and (2). the usual Galerkin procedure can be followed
in which the residual of eq. (1) is dotted into a test function. vh, drawn from the same
space as the trial solutions, and the result is integrated over the problem domain. After
integration by parts and replacement of the spatial integral by a numerical integral with
points , and weights 0,. we get something which looks like

o o. Vvh - 2z(V. uh)(7v) p(u V)u' • v- vh'• f r0 (9)

The pressure term of eq. (3) has been replaced by a penalty term 13 with penalty parameter
z. thus there are no explicit pressure unknowns. and te continuity equation (2) is satisfied
to O(Z -1). Eq. (9) illustrates the R =-- 0 case; for nonzero R. the obvious modification of
adding a Newtonian viscous term is made.

The important point to observe about eq. (9) is that to evaluate its residual, it is
required to evaluate the stress at the points C, by means already discussed. To complete the
method, what is needed is a means of correcting estimates of the discrete solution, based on
evaluation of the residual: Newton's method might an example of such a procedure, but, as
we shall see. this is not entirely straight-forward. The current algorithm employs the inverse
Broyden method 1.2 to solve the discrete nonlinear equations. An important point to be
made her , is that. regardless of the choice of iterative scheme. the method outlined here is
enormously costl% in practice. because for a reasonably fine mesh, each evaluation of the
stress-field values at the spatial integration points is a potentially formidable computation.

IV. FAST A LGORITHMIS. The method outlined in the previous section applies to isother-
mal. incompressible flows in a fixed spatial domain. These restrictions are not essential;
material compressibility and temperature dependence can be handled in very similar fash-
ion if "artificial (historical) time" is introduced, in which either density or temperature
are used to change the time variable along the pathlines in such a way that a traceless
matrix in the evolution equation is obtained 5 . The transformation to artificial time does
not in itself seem to be computationally costly, but these problems involve added levels of
cornplexity to an already complicated solution procedure with additional fields and corre-
sponding equations. The resulting phenomena are likely to be more intricate in detail and
more nonlinear in character. A similar observation can be made about free-surface flows:
a well-developed methodology exists ;6 to solve such problems. which can be directly in-.'
terfaced with the method outlined here. but this also certain to render the computations
more formidable than they now are. With the current algorithm, computations on a mesh
which is refined only to the extent which seems to be required to obtain acceptable accu-
rac. at a shear rate normally. occuring in polymer processing. the computation of a steady -.I
solution can lake as long a 40 minutes on a Crav I-A. This must be reduced drastically if
the algorithm is to used routinely in scientific and engineering research, particularly if the
more physically realistic enhancements mentioned above are to be added. The remainder
of this paper will discuss several approaches to the reduction in computational cost which
are currently being implemented or investigated by the author.

(i
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Vectorization of Linear Equation Solving. A variety of new computers have the capability
of carrying out hardware vector operations: rearranging the computer code in such a way
that the compiler can take advantage of this capability can result in substantial savings in
computational cost. One part of a typical code where such savings have a good chance of
being realized is in the solution of linear equations. Unfortunately. in the current algorithm.
it is not expected that this can dramatically reduce the run time. Linear equations are
solved in the nonlinear iteration scheme. but this appears to account for a small portion of
the computational cost. The major portion of the calculation is carried out at the element
level with small arrays or scalar quantities involved in resolving element boundary crossings
and accumulating the deformation gradient by small matrix multiplication. Vectorization
offers little hope of speeding up these calculations. On the the other hand. it is expected
that linear equation solving will begin to play a more and more important role with the
planned enhancements to the code discussed earlier. The Jacobian terms corresponding to
the thermal energy equation are easy to form; likewise the part of the Jacobian associated
with inertial terms and the unknown free-surface transformation are easy to deduce. Also,
active research is under way aimed at producing the Jacobian terms associated with the
non-Newtonian viscous terms (see below).

In short. the future development of the code seems to point in the direction of an
algorithm which has a large. unsymmetric. and possibly not banded matrix to factor at
each one of dozens of possible iterates. The current iteration method has only one, banded.
symmetric, positive-definite matrix to factor at the outset, and a back-substitution at each
iteration (the unsvmmetric Jacobian contribution of the inertial terms is left to the inverse
updating scheme). It therefore seems appropriate to modify the code at the present time
to take full advantage of vectorization. in order to make sure the linear equation solving
phase remains in the bacground, as it should.

Adaptive Memorv Quadrature. The area which seems to show most promise in reduction of
the the computational cost is that of the stress calculation at an individual stress evaluation
point. There seem to be several possible approaches. the underlying strategy of all of them
is to take advantage of the fact that the stresses are being evaluated in what is hoped will
he a conergeni sequence of velocity iterates. Particuarly further along in the sequence.
the previous iterate should be able to provide a guide to estimate how much computation
i, absoltitel1 necessar\ at the next iteration.

Perhaps the most obvious way to do this is to use the previous iterate to determine
\,ha V, of eq. (4) should he in the next iterate. It is observed that in some flows. verN
Man\ fe~er quadrature points are needed to accurately compute a' than in other flows.
The strategy A ill be to begin the iterations with a nominal number of points for each stress
evaluation point and increase or decrease that number in succeeding iterations, based on
ddaptive criterea determined from previous iterations.

.Jacobian Approximation. The reason that the present algorithm employs an updating
scheme rather than a direct calculation of the Jacobian is that it is not a trivial mat-
ler to construct the Jacobian. or even write down a closed form expression for it. It is
clear that the stress at a point can depend on velocities far from that point, and therefore

7"7.,"- '"-" '"."--' "-- "''-..' .. ' ...-'-.-- ..-"- . .'.-.-' --.'.. .- '. ....-. .. -. . .. -. . .... . .''' . ...'.''...'-'...'''. ,"-, ,,".'
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the Jacobian of the residual of eq. (9) cannot have the usual finite element band andor.
sparsity structure. In ref. 7. an approximation scheme for the Jacobian is proposed. It is
not clear at present whether this approximation. some other. or even an exact computation
of the Jacobian is best (the latter may be possible to undertake - it is not clear at this
time). But the work of ref. 7 shows clearl. the complexity involved. The terms of the
Jacobian contribution from the extra stress are computed by tracking along streamlines.
The resulting Jacobian element matrices are not square: Their column dimension depends
on the number of different elements the particle path passes through before the final in-
tegration point of eq. (8) is located. It appears that a frontal solution technique is called
for in order to handle the resulting global matrix 7.

l'seudo-)ynarnic Relaxation. The hope in computing the Jacobian is that the computa-
tional (ot will be more than returned in improved convergence rate over the inverse Broy-
duen algorithm afforded b. Newton's method or modified Newton's method with Broyden
updates. 1ut the coriplexit% of the Jacobian calculation is such that this may never be real-
ized. and it is well worth the investigation of other improvements to the iterative solution of
thfe nonlinear equations. One avenue currently being explored is that of "pseudo-dynamic
relaxlion." The problem is cast as a time-dependent problem and steady solutions are
obtained b. heiting the transient phenomena die out. In the algorithm presented here,
thef tran,.iet ,ehax or does not represent the true dynamic.: of the non-Newtonian fluid; .

the struns is computed in the current velocity field as if it had been a steady field for
all timt. hence the name "pseudo-dynamic." To do otherwise would involve complexities ' "

bx orid what seems manageable at present. though implementation of the pseudo-dynamic
algorithri does opern the door for future exploration of true dynamic behavior.

One may easily verifv that the steady-states of the pseudo-dynamic algorithm are
the saine as the steady states of the true dynamic algorithm. The reason for taki!.g the
pseuto-d. namic approach is to produce a different kind of steady-state iteration scheme.
in which the damping of the high frequency modes in the pseudo-dynamic response can
be controlled by choice of time-stepping method and pseudo-time step. The reason that
this seems to be a worthwhile avenue to explore is suggested by recent work of Y. Renardy
and .M. Renard" 8 . They found that with a certain spatial discretization of the linearized
operator associated with the equations of motion of a Maxwell fluid in a shearing flow.
there were apparently spurious eigenvalues extremely close to the right half-plane. evi-
derilly introduced by the discretization. If this were also a consequence of finite element
discretization. there could be severe consequences for iterative methods which behave like
temporal iteration schemes. It is hoped that by controlling the time step and parameters
of the pseudo-dynamic time-stepping method. the damping of the high frequency modes
associated with any spurious eigenvalues can be damped to produce nearer monotonic.
more rapid convergence of the resulting iterative method. There is no worry here of damp-
ing out interesting transient behavior -- the transient behavior is not correct. and all that
it is required is that it be damped out as rapidly as possible.

U.

The following algorithm is based on Hughes. Liu. and Brooks pedictor-corrector
algorithm for the Navier-Stokes equations 9 . but with the possibility of more fully implicit
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inner iterations at each time step:

Q j B TodV - Cv

N nonlinear inertial term, excl. time deriv.
v(0)Vn- I Vn (1 ^I)Alan "

-v( -1) 0 0) 0) (10)

xn-1 ZV xj) - {-.V'M -t -AtCvy - "tAtQ(v  1),"

+ -,AtN(vn) - Mv~n°)1 -t -AtF+,} 

-c (v.,l ""

r M - °Q aN
J -M -(- t )Pt- (J~t ~- ),

M is the finite element "mass matrix," C the Newtonian viscous and penalty-pressure
matrix, and Fn-1 the applied force vector at time step n + 1. B is the usual finite(i+1)
element matrix of shape function derivatives and o is the stress, computed in vn+ 1 as
described in previous sections: vn-, I without the superscript of inner iteration is the "fully
converged" result of inner iteration at time-level n -- 1. Choice of the number of inner
iterations is open, so that Vn-1 could result from just one correction cycle, or many. An
important aspect of eq. (10) is found in those terms labelled by (')opt; a fully implicit
treatment would employ exact Jacobian terms here. At the other extreme is Hughes, Liu,
and Brooks method: they use C to approximate both of these terms and do only one inner
iteration. The present non-Newtonian implementation uses C initially, updated by the
inverse Broyden method during a number of inner iterations. If it proves to be effective,
Newton or modified Newton iBroyden iterations could be employed in the inner iterations.
It is instructive to note that the direct steady-state Broyden algorithm mentioned earlier
is obtained as a special case of eq. (10) with -y = I and an infinite time step.

V. SUMMARY. A pilot numerical method for the computation of solution to memory
fluid flow problems has been described. This method has shown that such computations
are feasible but extremely costly. More reasonable physical assumptions than those of
isothermal, incompressible flow in a fixed domain are on the near horizon but are bound
to increase the computational cost. A number of ways of improving the computational
performance of the algorithm have been proposed here and are in the implementation
stage. These improvements will go together to make what the author refers to as "a fast ,.
algorithm for non-Newtonian flow." It is hoped that this fast algorithm can transform the
method described here from pilot code to useful computational tool for the investigation
of problems in viscoelasticity and rheology.

Acknowledgements: The numerical techniques for integral constitutive equations described
here were developed jointly by the author and B. Bernstein (Dept. Mathematics. I. I. T.).
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