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ABSTRACT

_~ This paper contains an analysis of the complex set of periodic solutions
which may occur in a fluid filled vessel of rectangular cross section. A
previous analysis by Verma and Keller [2] *found only simple eigenvalues for
the linearized problem. It is shown herein that at critical values of the
vessel aspect ratio double eigenvalues occur. Eight non~linear solution
branches are emitted from these double eigenvalues. The solutions along the
various branches are derived, and the results displayed graphically. It is
shown that irregular waves occur along some of these branches.

In an interesting development, Bauer, Keller, and Reiss/[4]% in their
analysis of shell buckling, showed that the splitting of multiple eigenvalues
may lead to secondary bifurcation. This theory is applied to the non-linear
standing wave problem herein, and it is shown that secondary bifurcation does
occur in the neighborhood of the double eigenvalue. A perturbation method is
used to find the secondary bifurcation points, and the solutions along the
secondary branches, in the neighborhood of their respective branch points, are
found.

The neighborhood around the critical aspect ratios is substantial,
suggesting that secondary branching may occur in a variety of vessels with
rectangular cross section. This theo:x/offers an explanation of the irregular
waves often observed in the/™sloshing”™ of fluj4 in a rectangular vessel.
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Key Words: Three-Dimensional Non-Linear Standing Waves, Multiple
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SIGNIFICANCE AND EXPLANATION

This paper contains an analysis of the complex set of periodic solutions
which may occur in a fluid filled vessel of rectangular cross section. A
previous analysis by Verma and Keller [2] found only simple eigenvalues for
the linearized problem. It is shown herein that at critical values of the
vessel aspect ratio double eigenvalues occur. Eight non-linear solution
branches are emitted from these double eigenvalues. The solutions along the
various branches are derived, and the results displayed grapahically. It is
shown that irregular waves occur along some of these branches.

In an interesting development, Bauer, Keller, and Reiss ([4], in their
analysis of shell buckling, showed that the splitting of multiple eigenvalues
may lead to secondary bifurcation. This theory is applied to the non-linear
standing wave problem herein, and it is shown that secondary bifurcation does
occur in the neighborhood of the double eigenvalue. A perturbation method is
used to find the secondary bifurcation points, and the solutions along the
secondary branches, in the neighborhood of their respective branch points, are
found.

The neighborhood around the critical aspect ratios is substantial,
suggesting that secondary branching may occur in a variety of vessels with
rectangular cross section. This theory offers an explanation of the irreqular

waves often observed in the "sloshing" of fluid in a rectangular vessel.

The respons.bility for the wording and views expresed in this descriptive
summary lies with MRC, and not with the author of this report.
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OR THE SECONDARY BIFURCATION OF THREE
DIMENSIONAL STANDING WAVES

Thomas J. Bridges

1. Introduction

In a rectangular basin with vertical sides, it is well known that, if the amplitude
is very small, the wave field in the basin will be a set of elementary cosine waves in the
two horizontal dimensions with a particular natural frequency, which is merely a function
of the basin geometry and gravity (viscosity, and surface tension, etc., being
neglected). This is the classical linear standing wave solution [1, lamb, p. 364]. As
the amplitude of the wave field is increased, the number of solutions and their type is
increased dramatically.

Considering a cuboidal container, the relevant parameters are the dimensionless
depth, §, and the aspect ratio, £, of the horizontal cross section. As the amplitude
of the wave field is increased, these two parameters govern the type and multiplicity of
solutions which arise. However, there is two distinct types of secondary branching which
take place in this problem. One is due to the parameter & and is only weakly dependent
on & (in fact, this bifurcation involves branching away from standing waves to other
types of waves (sometimes travelling waves)), and the other is due to the parameter £
and is only weakly dependent on §. 1In both cases the other parameter affects the
secondary bifurcation, and the interaction can be complex, but the two phenomena remain
when the other parameter is excluded. This enables the two secondary bifurcations to be
isolated and studied individually. The bifurcation which is due to § and remains when
the flow-field is two-dimensional will be considered in a separate study. The purpose of

this paper is to study the multiple and secondary bifurcations which arise due to the

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is
based upon work supported by the National Science Foundation under Grant No. DMS-8210950,
Mod. 1.
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effect of £, the basin aspect ratio. A rectangular vessel with vertical sides and
infinite depth is adopted to illustrate this phenomena.

The lowest natural frequency, of such a basin, and the solutions in the neighborhood
of this point have been found by Verma and Keller [2]. These solutions were found using a
perturbation procedure in the amplitude, €, and they determined the effect on the
natural frequency, of the amplitude, to 0(83)- However, by concentrating on a single
mode, this analysis missed the complex interactions which may take place between some
modes and the secondary bifurcation which also occurs on some primary branches. In
Section 2, an analysis, similar to Verma and Keller, is used to determine the complete set
of primary bifurcation points and the solutions along the simple primary branches. This
analysis shows that each of the primary bifurcation points occurs at % = X;Zi + where

1
A o= 1¥(m2 + Eznz) 2
m,n

’

(1.1)

where m and n are the mode numbers, respectively, in the x- and g-directions. For
particular combinations of E, m and n, multiple eigenvalues, of multiplicity two,
will occur. For example, if £ = 1 (a square basin), every pair (m,n), m# n is a
double eigenvalue. If £ = 95, then X1'4 = Az'z, etc. In fact, for £ equal to any
rational fraction there is a set of double eigenvalues. The physical reason for the
appearance of double eigenvalues is quite obvious. In a square vessel, for example, the
linear sinusoidal wave field with 2-wavelengths in the x-direction and 1-wavelength in the
z~direction will share the same natural frequency with a wave form which has 1-wavelength
in the x-direction and 2 wavelengths in the 2z-direction. Therefore, although the
eigenvalue is double, the eigenfunctions are linearly independent. This is, in fact, a
ramification of spatial symmetry, a subject which is discussed in a more general context
by Sattinger ([3].

In Section 3, an analysis of these double primary bifurcation points is performed.
It is found that from each of these points there extends 8 branches (4 of these branches

correspond to =€, and are reflections of the +¢ branches). Of the four +¢ branches




two correspond to the two linearly independent eigenfunctions taken geparately, and the
other two correspond to mixed modes involving both of the eigenfunctions. These mixed
modes combine to produce irregular surface wave fields which for some cases appear to be
spatially random to the uninitiated observer. Fiqures depicting solutions of this type
are given in Section 3.

In an intersting discovery, Bauer, Keller, and Reiss [4] observed that as a multiple
bifurcation point is "split" (by varying an auxiliary parameter (in this case £)) into
primary bifurcation points a secondary bifurcation may occur. At the double eigenvalue,
which arises in the standing wave problem, there are four +¢ branches. Upon splitting
this point, two of these branches become the simple primary branches. Due to continuous
dependence, the other two solutions cannot simply vanish when £ is perturbed away from

Eo, the location of the double eigenvalue, and therefore they slowly depart by creeping
up the split primary branches in a manner which differs from problem to problem. Bauer,
Keller, and Reiss developed a perturbation method which enabled them to analyze this
phenomena in the buckling of thin shells. Subsequently, this theory has been successfully
applied by Mahar and Matkowsky (5] to a model biochemical reaction problem, Matkowsky,
Putnick, and Reiss [6] to the buckling of rectangular plates, and has been extended to the
bifurcation from triple eigenvalues, which results in secondary and tertiary bifurcation,
by Reiss {7].

In Section 4 the theory of Bauer, Keller, and Reiss is used to show that secondary
bifurcation occurs in the neighborhood of the double points which arise in the problem of
three-dimensional standing waves. The secondary bifurcation points are found and the
solutions along them are derived. It is found that mode jumping occurs in the shift from
the primary to the secondary branches and the complex interaction of the two modes in the
neighborhood of the secondary bifurcation point produces irregular wave forms.

These mixed-mode solutions offer an explanation of some of the irreqularities that

are often observed in experiments. For example, in the experiments of Taylor (8], on the

highest two dimensional standing waves, irregular three-dimensional “"crown waves" were
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observed forming on top of the two-dimensional standing waves. His experimental basin had

an aspect ratio of £ ~ 2.0, and the crown waves look like mixed-mode solutions discussed .

herein.
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2. Primary Bifurcation from Simple Eigenvalues

The fluid in the basin is taken to be inviscid, irrotational, and absent of surface
tension. The problem can then be expressed in terms of a potential function and the wave
height. Length scales are rendered dimensionless by 2a, the tank length (see Figure 1),
with the exception of the z-direction where 2b, the tank width is used, and g, the
acceleration of gravity, and the frequency arc used for the time scales. The governing

equations and boundary conditions are

L ] L ] *
%4 . 62L+ 2 %e _ o
w? ayl 222
for ~V, < x<V -l<z<1 -» <n.(xzt) (2.1)
2 2 ¢ 2 2! Y 2, .
a.
-0 at x=2 (2.2a)

2 (2.2b)
33— =0 at z=1,
at
—L + 0 as y + - @ (2.2c)
3y

Yt 1 2, 42, 2, %2  w .

R R (TN + )7+ (47 4 n =0 on y=n (2.3)

*an. . +an . 2% an 3¢ .

w n

3t * °x Ix +E °z 3z oy =0 on y=n (2.4

*
¢ =n =0 is a solution for all values of £. This is the basic state. Periodic
L ]
solutions, of period w , which bifurcate from this state are sought. The potential

function and the wave height are assumed to have an expansion of the following form,

" 2
¢ (x,y,2,8185¢) = e@,(x.y.z.trE) + ¢ ¢2(x.y.z.t:E) + 0. (2.5a)




@0

Figure 1. Definitional figure showing coordinate system and
vessel geametry.
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" 2
n (x,z,t;E;€) = €n1(X.z,tt€) + € nz(x.z.tli) + o0 (2.5b)
. 2
w (§se) = oo(E) + sa1(£) + € cz(E) + .. (2.5¢)

and €, a measure of the wave amplitude, is chosen to be proportional to the first term
in (2.5b). Before substitution of (2.5) into the boundary value problem, the free surface

boundary conditions (2.3) and (2.4) are expanded in a Taylor series about y = 0,

: 2 2

- IF| _* 1 *

= F(x,y,:,t:£;€)| = F‘ + W' n o+ -ia—; no+... (2.6)
k y=n* y=0 y=0 dy ' y=0
L - Substitution of (2.5) into (2.1) - (2.4), the use of (2.6), and the setting to zero of the

terms proportional to each power of € results in the following sequence of boundary

value problems,

2 2 2
3 ] ?
Oj . ?j . 52 fi .o
ax? 3y2 az2
1 1 1 1
in - 3-< x € ik - 7 <z« 3 w<cy<€0 (2.7)
3¢
—8_1 =0 at x=31p (2.22)
] X
36,
a—zl =0 at z=31% (2.8b)
34
73"1’° as y *-=® (2.8¢c)
Y
3
% T + "j = Rj at y=20 (2.9)
n 3¢j
ao}_t—'--ay_’ SJ at yso (2.10)

for j =1, 2, «es, Ry =84 =0, and Rj and sj for 3 > 1 are functions of terms of
previous order only, and are given in Appendix I. Since (2.7) - (2.10) for J > 1 are
inhomogeneous eigenvalue problems, they are soluable if and only it they satisfy the
Fredholm alternative. The alternative necessary for this and the later developments is

. given in Appendix II.
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The solution of (2.7) = (2.10) for j = 1 is

o e
.
v et

ny = cos a x cos an sin t

-1 y
¢, =0, e ™" cos axcos B zcos t
1 0 m n

B
PR

where o =mv, B8 =n%, X=x+%, Z=z+Y, ana

- (a2, 222
°o xn,n (ﬁm + & en )

At the next order, the solvability condition requires that o, = 0,

nz = (521 + C21 cos 2t) cos 2amx

+ (822 + sz cos 2t) cos Zﬂnz

- + (823 + C23 cos 2t) cos Zamx cos 2an

and

2a - 288y -
02 = [A2° + A21e cos 20mx + A22° cos 28nz] sin 2t

where

A = - 00/8

then

Ll R A A e L Al A N

(2.11) ‘

(2.12)

(2.13)

(2.14)

(2.15)

(2.16a) '
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2
a
- 17
B,, = 20 /8 (2.17¢)
(o, + e%8 %)
Cpy = = 20y, = ———2 (2.17d)
80
o
(ao + umz)
-- 0 _m .17
€22 200R5, 2 (2-17e)
8¢
0
c..=-0a2/8 (2.17£)
23 0 :

After some manipulation, the solvability condition at the next order results in an

expression for 02, the amplitude correction to the natural frequency,

o> Hat+gls? gdp ot
m n n m
o, = -4 - 3 + 3 + > (2.18)
3200 400(200 - am) 400(200 - EBn)

By choosing am = Bn =1 and £ = 1/L, this result is in agreement with that found by
Verma and Keller for the first mode when the depth is infinite. The expression (2.18) is

negative definite and this can be shown by recasting (2.18) as

10 8 4 2 4
-400 + 2gsnoo + Zum ao + 3£8nam

4 2
3200 (200 - EBn)

o, = gy [

]

-40010 + 2am008 + 2548n4002 + 3amE4Bn4
ol 2 (2.19)

2
3200 (200 um)

With no loss of generality, choose EBn = ram where r ¢ (0,«]. Then (2.19) can be

expressed as

320, 0 o200+ 5H?) v r3 201+ £2H2)

2
%n %o 1+ 221 + 22 - 1)

JI2h e et - 20 0 2P v et 4 200+ 62

y (e iy s -1

(2.19a)

NN
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For subcritical bifurcation it is required that

2/1 + r2(1 - 2(1 + r2)2) +r(3 + 201 + rz)z) <0 {2.20a)
and

2/1 + r2(r4 - 2(1 + r2)2) + (3r4 + 2(1 + rz)z) <0 (2.20Db)
for any r € [0,w]. After some algebraic manipulation (2.20a) can be recast as

- [a+ 3 + gort 4 92e% 4 6ar® + 121'10] <0 (2.21a)
and (2.20b} can be recast as

- [2+ 12p +ep? + ap> + 5p* + 2p°]) <0 (2.21b)

where p = /1 + r2 - 1, which satisfies p ¢ [0,«] when r ¢ [0,»). The pair (2.21a,b)

proves the conjecture: the bifurcation from all the simple eigenvalues is subcritical.
The natural frequency of the standing wave decreases as the amplitude increases. There is

also the interesting feature that |a increases with increasing m and n. Therefore

I
2
the magnitude of the slope in the m.-e plane decreases with increasing mode number
resulting in an intersection of the higher mode branches with the lower mode branches.

Figure 2 is a plot of the natural frequency as a function of amplitude for £ = .25
and m, n ranging over 1, 2, and 3. The dashed lines correspond to modes with equal
indices (m = n). This is an almost two dimensional field and the 9 modes are coalescing
around the 3 two-dimensional values. In Figure 3, for the same range of m and n, and

£ = 1.1, the modes are plotted. Here they are more spread out with the mode intersections
being quite obvious. In Figure 4, a typical non-linear wave on a branch bifurcating from a
simple eigenvalue, is plotted. The vessel 1is square in cross-section (£ = 1), ¢ = 0.15,
and m=n = 1. This is often referred to as the "slosh" mode. Figure 5 shows a time
series for the wave height in the left front corner (x =z = 0), of the tank depicted in

Figure 4. Figure 4 is a "snapshot" corresponding to 5% = % t k, k=0,1,2, ceos
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0.0

Bifurcation diagram for simple eigenvalues at £ = 1.1,

and mode numbers (m,n) ranging over 1, 2, and 3.

Figure 3.

The

dashed lines correspond t) branches with equal indices

(m = n).

-12-

% %
.

AN .-a .-

-t e e o 0 " G g .




et . A v e oo s e e Ty

- Pl N - - e T A T N W Y . T TV TN Y

Figure 4. Spatial variation of the solution for & =1, m

fl
=]
L}

1,
0, 1, 2, ...,

- i i .3,
and € = 0.15 at a fixed time: 2"—4-k, k

This is often referred to as the "slosh" mode.

' 0.25 ' T 1

n 0.00

-0.25 - . .
0 1 2 3 4

: t/2n

Figure 5. Time series of the wave height, in the left front corner

.
S

L lB iR A8
> .

o (x = z = 0) of the vessel in Figure 4. The parameters are
b £=1,0, m=n=1, and ¢ = 0.15,
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2 221
In summary, the primary bifurcation points are at op = /ro(m” o+ En) /a with .

m=1,2, ... and n =1, 2, ... and the solutions on the primary branches, for values of

£, m, and n such that the eigenvalues are simple, as € + 0, are R
* 2 3
¢ = e¢1 + € ¢2 + 0(e”) (2.22)
* 2 3
n = t-:n1 + € "2 + 0(€”) (2.23)
w = oy * 6202 + o(ed) (2.24)

-14-
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3. Primary Bifurcation From the Double Eigenvalues

At critical values of the aspect ratio of the vessel cross-section, a set of double
eigenvalues will occur. When £ = 1 there is a double eigenvalue for any pair (m,n)
such that m # n, and when £ = b@ (m,n) = (1,4) and (m,n) = (2,2) is a double
eigenvalue, ad infinitum. For £ equal to any rational fraction there is a set of double
eigenvalues. It is expected that the nature of the solutions will be similar for the
various critical values of E. To elaborate this phenomena, an analysis of the solutions
emitted from the set of double eigenvalues for a square vessel, £ = 1, is performed. In

this case the bifurcation points are given by

2 2. Y
% (um + Bn ) (3.1)

The potential function and wave height are again expanded in a perturbation series

in g,
0.(x.y,z.t;E:e) = €d, (x,y,2,t38) + ez¢2(x.y.z.t:E) + ... (3.2a)
n'(x,z,t1E,€) = en,(x,z,t:8) + eznz(x,z,tzE) + .. (3.2b)
. w*(E,e) = 00(5) + 5201(5) + ezoz(i) + ... (3.3)

However, the symbols here should not be confused with those in Section 2. Outside of the
obvious similarities, the results in Section 2 are distinct from the results contained
herein. In fact they are the complement of each other.

Substituting (3.2) and (3.3) into the governing equations and boundary conditions
(2.1) - (2.4) and equating terms proportional to like powers of € to zero results in the
sequence of boundary value problems given in (2.7) = (2.10) but with the Rj and sj
differing upon substitution.

With Ry = §y = 0, and the fact that there is a double eigenvalue with a two-

dimensional null space, the first order solution is

= [A1‘cos a x cos an + A,zcos an cos qnz] sin t (3.4)

and

-]5=

E
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-1 - - - -
01 =0, (A, ,cos a x cos an + A __cos an cos amz] cos t (3.5)

1" 12

where % is given by (3.1) and € is chosen to be proportional to the first order wave
height. This results in a relationship between Ay and A4y,
WL WER (3.6)
The relative magnitudes of A4y, and Ay, are, however, undertermined at this order.
The problems for 3j > 1 are inhomogeneous eigenvalue problems and must satisfy the
solvability condition given in Appendix II. As the nullspace at the eigenvalue is of
dimension two, there will be two solvability conditions at each order. Substituting

¢1,n1,etc. into R, and S, and applying the solvability condition results in

g, = 0, and
nz(x,z,t) - (B21 + Cz1col 2t) cos Zam;
+ (322 + C,,cos 2t) cos 2°m;
+ (323 + C,4cos 2t) cos ZBn;
+ (324 + CZ‘COI 2t) cos ZBn;
+ (Byg + Cycos 2t) cos (a, + B )X cos (a + 8 )z
+ (B, + Cpcco8 2t)[cosla + sn)§ cos(a, - en); +
co-(an - Bn); co.(u- + Bn);]
+ (B,, + C , cos 2t) <:o.(a,n - Bn); cos(a = Bn);
+ (B28 + c2e cos 2t) cos 2um; cos 28“;
+ (B,g + Cpg cos 2t) cos 28 X cos 2a X (3.7)
and

oz(x,y,z,t) = [Azo + A21cos 2an; exp (2any)

+ 522 cos 2amz exp (2umy)

+ Azscos 2an exp (ZBny)

=16~




ey
e

A

+ Az‘cos 26nz exp (ZBny)

+ Azscos (ull + Bn); cot(an + Bn); exp (V2 (an + Bn)y]
A26[con (a + Bn); cos(a - Bn); +
+ cos (a_ - Bn); cos (a + Bn);)exp (/Ecozy]
+ A,,cos(a - Bn)§ cos (a - Bn)E exp [/3|cm - Bnly]]sin 2t (3.8)

The coefficients Azj, sz, and C2j are given in Appendix III.

The most obvious effect of the double eigenvalue is the explosion of higher harmonics
at the second order. This is to be contrasted with the solutions at simple eigenvalues
where simple harmonics appear at higher order and only weakly affect the linear solution.
In the case of the double eigenvalue the mixed mode solutions algo result in an increasing

complexity in the spatial structure, on a finer and finer scale, as the amplitude is

increased.

Substituting the known terms into R3 and S3 and applying the two solvability
conditions results in the bifurcation equations,

2 2 -
a1A11 4+ a A + 202] A 0

[ PLIPY 1 (3.9)

2, a A 2

[azl\" Pt 202] 312 =0 (3.10)

which, along with the normalization

Ay +A12 = 1 (3.11)

form a set of three equations for the three unknowns Aqqr RAqy, and Oy The

coefficients a; and a, are given by

4
-] 5 3a 4 + 8 4) a 4 B
0 n m n
31 = .—4— + 3 - 2 - 2 (3-12)
1600 200(200 - Bn) 200(200 - um)

-17-
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a 10 = 3/3) °o - 3(um * sn ) - ‘cn Bm)
- 2 = 4 3 2
: 4 -2 160, 40,(d0," - V2(a_+ 8.)) .
(a_+8)*
G = 2 (3.13)
" 40, (40" - lilam - Bnl)
;; The three equations (3.9) = (3.11) has the following set of solutions

Case I: Agy = 0, AO1 = $1, 02 = -a1/2

Case II: Agqy = 0, Aoz = $1, = -51/2

%

Case III: Ay = 31- ¢ A = tl— r @ “

7 02 75 2 = -(a1 + '2)/4

Case I and II are pure modes corresponding to the modes of the simple eigenvalues that

coalesce to form the double point. They share the same natural frequency and are spatially

vy
R A

symmetric. When the relevant parameters are substituted the amplitude correction to the

(RTINS B |
R

natural frequency, 02 = - -;- a,, agrees with the correction found for the simple
eigenvalues (Egn. (2.18)). In Section 2 it was found that this expression is negative
:; definite, therefore a, > 0 for all positive integers m and n. Case III involves mixed
. modes. The leading terms are proportional to the sum and difference of the two
eigenfunctions. The amplitude correction to the mixed mode solutions, d; . differs from
the pure mode case by an amount (a; - aj)/4. It has not been proved that this expression
is negative for all parameter values, but it appears, from numerical evaluation, that this
is in fact the case. It is therefore conjectured that the bifurcation of the mixed modes
is always subcritical.

Figures 6 and 7 display the bifurcation from double eigenvalues for a vessel with a
square cross-section. In Figure 6 the dashed lines correspond to the simple eigenvalues

A

1.1 and A
’

2,27 and the solid lines are emitted by the double point A1'2. There are
’

two pure modes corresponding to the upper branch (labelled p) and two mixed modes which

; -18-
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supports two pure modes (labelled p), and the lower branch
e supports two mided modes (labelled m),
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Figure 7.

Bifurcation of simple and double eigenvalues for § = 1.0
and (m,n) ranging over 1 and 3, The dashed lines cor-
respond to the )\1 1 and )\3 3 branches. The upper

’ ’

branch emitted by the double eigenvalue supports two pure
modes (labelled p), and the lower branch supports two mixed
modes (labelled m).
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share the natural frequency on the lower branch (labelled m). Figure 7 shows a similar
result with m and n ranging over 1 and 3. The dashed lines correspond to A1 1 and
,

A and the solid lines correspond to the four branches emitted by the double point.

3,3’
In Figures 8, 9, and 10 the wave fields corresponding to Figure 7 are plotted. 1In
Figure 8, for m =1, n =3, and € = .1, the pure mode, with Aqy = 1.0 and A4, = 0

is plotted. This corresponds to the upper branch emitted from the double eigenvalue in
Figure 7. In Figqures 9 and 10, the results along the lower (mixed mode) branch emitted
from the double eigenvalue are plotted for € = .1. In Figure 9 A4y = 5; and

A12 = 55 + whereas in Figure 10 A11 = 5% and A12 = - 55 » The mixing of the modes
produces quite irregular solutions. Figures 11a, b, ¢ show the time series for the left
front corner (X = z = 0) of the vessels dapicted in Figures 8, 9, and 10. The snapshots
in Figures 8, 9, and 10 correspond to the times %; = % + k, x =20,1,2, .... Figure 11a

corresponds to the pure mode in Figure 8 (A11 =1, A,, = 0). Figure 11b corresponds to

12
the mixed mode in Figure 9 (A.'1 = 1,72, A12 = 1/V/2). Figure 11c corresponds to the mixed
mode in Figure 10 (A = 1732, A, = -1/Y¥2). Reference to eqn. (3.4) shows that n, =0
when X =z =0 and Aqq = -Rqp- Hence the linear effects in Figure 11c are of 0(:2)
and proportional to cos 2t, with the nonlinear effects coming in at 0(63)- Although the
results in Fiqures 11a, b, and c¢ differ markedly, all three correspond to the same set
of basic parameters.

Examples for other mixed mode solutiong in a square vessel are given in Figures 12 and

13. Figure 12 is of a mixed mode with m = 2, n = 4, and Figure 13 is of a mixed mode

with m=1, n = 5.

=21~
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Figure 8. spatial variation of one of the solutions along the p
B branch in Figure 7 at t/2m = 3/4 % k, k=0,1. 2, cen,
g The parameters are g=1.,m=1,1n= 3, € = 0.1,

- All =1,, and A12 = 0.

Figure 9. spatial variation of one of the solutions along the m
branch in Figure 7 at ty2m = 3/4 % k, k=0, 1, 2, .-,
The parameters are g=1,m=1,n= 3, e = 0.1,

Ay = 1//2, and By, = 1/v2.
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Figure 10. Spatial variation of the other solution along the m
branch in Figure ? at t/27 = 3/4 % k, k=20,1, 2,
The parameters are E=1,m=1, n=3, €= 0.1,

A, = 1/v/2, and A, = -1/v2.
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Figure lla. Time series of the wave height in the left front corner
{x = Z = 0) of the vessel in Figure 8. The parameters
'_:' :re=€0=l.,m=1,n=3 € = 0.1, All-l.. and
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Figure 11b., Time series of the wave height in the left front corner
N (x = ¢z = 0) of the vessel in Figure 9. The parameters

are £=1.,m=1,n=3,€=0.1, 4, = 1/V¥2, and

A12 = 1/v2.
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Figure llc. Time series of the wave height in the left front corner
(x = z = 0) of the vessel in Figure 10. The parameters

- are g=1.,m=1,n=3,s=o.1,au=1//2', and
= -1//2.
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An example of the wave form on 3 mi
by a double eigenvalue for M = 4
and Ay = AT 1//3. The fact that @
is a multiple of m er degree of symmetXy
in the mixed mode.

Figure 12.
is even and n

produces & great

L
.lx
()

)
..5

o,

(]

- Pigure 13. An example wave field illustrating the spatial complexity
which can occur. The solution is on a mixed pranch emitted
by a double eigenvalue for m= 1, n* 5, =1, EF 0.1,

and Ay =B " 1/V2.
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“i’ 4. The Secondary Bifurcation Points

o .
In this section, solutions which bifurcate from the primary branches found in Section

Vot

ra 2 are sought. Therefore a perturbation is added to the knowr primary branch solution,

Yo

- * L

:_..: 6 =ed+ ¢ (4.1a)

}:-“ * "

28 n =¢ch+n (4.1b)

The expressions (4.1) are substituted into the governing set of equations and boundary
conditions (2.1) - (2.4) and linearized. The equations independent of ¢ and n were

analyzed in Section 2. The linear problem for ¢ and n |is

2 2 2

2 2 2
9x’ dy 3z
%3 »0 ar x=1Y% (4.3a)
39,0 +-® 4.3b
2y as y ( )
%3 +0 at z =121 (4.3c)

*
and on y = ¢ h(x,z,t),

* * *
an, * 383, * 33
T *E Ix 9x re X 9x

FERTETN T DN I TR

3z oz | 9z oz ay (4-4)
and
*2g, %2030, 30 30, ,2 20 20
Wt Gt oy oyt C Bzhe TN (4.5)

This is a linear differential eigenvlue problem with known nonconstant coefficients.
However, the specific value of e' where the secondary bifurcation takes place is

sought. Therefore e' is the eigenvalue. Since e' appears non-linearly, it is a non-
linear, in the parameter, eigenvalue problem. This does not pose serious complications as

methods for the solution of this type of problem are known [9}. However, there is the

-26-
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. further complication that €* is responsible for the size of the domain. The qualitative
shape of the domain is known since h(x,z,t) is a known function, but the precise amount
of h(x,z,t) is the unknown eigenvalue. This is to be contrasted with the original
eigenvalue problem in Section 2 where w. was the eigenvalue, e. was a variable
parameter, and the shape of the free surface, and hence the domain, was an unknown
function.

To solve this eigenvalue problem, the conjecture of Bauer, Keller, and Reiss, that the
secondary bifurcation occurs in the neighborhood of multiple eigenvalues, is used.

For brevity, the analysis is undertaken in the neighborhood of £ = 1 (a square
cross-section). It is expected that a similar analysis will hold in the neighborhood of
other values of £ at which double eigenvalues occur.

It was shown in Section 3 that for & = 1 there is a double eigenvalue for every pair

(m,n) such that m # n. At the double eigenvalue the hifurcation point corresponds to

1
Ao = m(m? + n2) 72 (4.6)

for any (m,n) such that m # n, and in the neighborhood of £ = 1 this double eigenvalue

splits into two primary branches

1/2

Am,n’ 'n(m2 + Eznz) (4.7)
and

;;3 — w(n? + £%a2) 2 (4.8)
b
::z The neighborhood of £ = 1 is measured by the small parameter u, defined by
Ei E=1+ l;i where 1 = sign (E-1) = ¢ 1 (4.9)
»' Following the conjecture of Bauer, Keller, and Reiss that the secondary bifurcation
:i- disappears at the double eignvalue, the point e' on the primary brnches where secondary
:;j bifurcation takes place is expressed as
. € =butbus. .. (4.10)
- -27-
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with (4.9) and (4.10) the solutions on the primary branch, derived in Section 2, can be re-

expressed in terms of y,

- = + + 00 -1

: o=y, + wuy, (4.11a)

. h = ho + uh1 + ¢ . . (4.11b)
y + vl + (4.12)
w = wo u wz o« e o .

. The analysis is undertaken separately on the two branches, Xm and Xn after

’ ’
splitting. The necessary details for the analysis along the branch A is given, and

r

the result only will be stated for the Xn n branch. Along the primary branch

X d
. corresponding to Xm,n'

2
TBn 2
A= 1+ L] (4.13)
m,n 0 2
2)
0
where AO is given in equation (4.6). The terms in the expansion (4.12) are given by
v
= 2
wo Xo (4.14a)
and ’
2 4 4
o - an s 2 [-mo ) 3(am + B, )]
27,37 % Y g 32w
@y W
4 4
a B
2 m n
+ b | 3 + 5 ] (4.14b)

and the terms in the wave height expansion (4.11b) are given by
ho = cos chx cos an sin t (4.15a)

h1 = (01‘ + D12 cos 2t) cos 2amx + (013 + 014 cos 2t) cos zenz

+ (D15 + D16 cos 2t) cos Zanx cos 2an (4.15b)




16 0

and a similar expression is found for ¢ in (4.11a).

0=u¢1+u2¢2+---

2
n un, + nz + ..

9 ) 9
¢j . Oj . °j -
am® 3yt ez’ 3
34
Tx-i =0 at x = t 1/2
:
. 3¢
.- 3—1 *0 as y* -
c. Y
\»
;-..,' 3
% 3;1 =0 at z = tt@
;.
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(4.10), (4.11) into the eigenvalue problem (4.2) - (4.5) and postulating that

proportional to like powers of 4 to zero, results in the sequence of problems,

Substituting the expressions (4.9),

expanding the free surface boundary conditions in a Taylor series, and equating terms

- LR Pl MR - S T T Ty TyTY YT YY vy
where o, = m¥, Bn =nn, x=x+1%, z=2z+VY, and
boa 2
D = LI (4.16a)
1" 2
8w
o

by tut + 8% by8, 2

012 - 5 - 3 (4. 16b)
Bwo 2(0.m - 2m0 )

bosn2

013 = ” 2 (4. 16¢)
0
4 2 2

b (0w~ + a”) b a

014 - 0'0 - m 0'm 5 (4.164)
Bwo 2(Bn - 2w0 )
D,. = b.w /8 (4. 16e)
15 00 :
2

D = = b wo /8 (4.16f)

(4.17a)

(4.17b)

(4.18)

(4.1%a)

(4.19b)

(4.19¢)
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2,
Y3 Ny TRy (4.20)
3nj a¢j
Yo 3 " Ay 53 (4.21)

for j =1, 2, ceve
In addition to the obvious differences between the Rj and sj appearing here and

those in the previous sets, there is also the addition of the inhomogeneous term in the
2%,

governing equation (4.18). However T4 =0, T; = 0, and T3 - =T 7
3z

Noting that Ry = §y = T4 = 0, and the fact that wg corresponds to a double

eigenvalue, the first order solution is

n1(x,z,t) = [A1’cos a x cos an + A12cos an cos amz] (4.22)

and

2
W, Y

cos a x cos B z + A, _cos B X cos a ;]e 0 cos t (4.23)
m n 12 n m

-1
¢1(x.y,z,t) = u, [A11

For definitness in the normalization, the following relation is taken between Ay,

and 5121

2 2 _
Ayl v A, = (4.24)

with the relative values of A4y and A4y to be determined at higher order.

Before proceeding to higher order, it is noted that the homogeneous problem has a
double eigenvalue. Therefore two solvability conditions are needed at each order. The
general form of the solvability condition, given in Appendix II, is used. Substitution of
the known solutions into R, and S, the second order solution is found to be,

nz(x,z,t) = C20b0A11cos 2t

+ C_.cos 2t] b A1 cos 20m§

+ By * Cyy o™11

+ [822 + szcos 2t] bol‘1cos 28nz

+ + C_ .cos 2t) b A__cos 2a X cos 28 z
0 m n

B3t €5 1

=30=
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+ C_ cos 2t) b‘,A1

[Byq 24 cos (a - Bn)i cos (a = 8 )z

2 n

+

[325 + CzscOI 2t) b°A12co. (cx“l + Bn)x cos (am + Bn)z

+

c26b0A12cos 2t [cos (am - Bn)x cos (cn + Bn)z

+ cos (ﬁn + Bn)x cos (ﬁn - Bn)z] (4.25)
and

¢2(x,y,z,t) = A00b0A11t + A20b0A1131n 2t

2amy - 2Bny -
+ bOA11sin 2t [A21e cos Zumx + Azze cos 28nz

wzy

0 - -
+ A23° cos Zcmx cos 2an]

+ba, sin 2t[A24cos (a, = Bn); cos (a - Bn); exp[v’5|um - Bnlyl

+ Ayccos (a + Bn))-( cos (a_ + an)'i exp (V2 (ay + B )yl

+ Azscos(am - Bn):.: cos (am+ Bn); exp (2 wozy]

- Ca 2
+ Ay ccos(a + 8 )X cos (a = B )Z exp 4] w, vl ] (4.26)

The coefficients “Zj' sz, and Czj are given in Appendix IV. The term Czobohncoa 2t
in the expression for n2 in (4.25) is indicative of non-conservation of mass.

Conservation of mass requires that

1/2 1/2
) / n(x,2,¢)dxdz = 0 (4.27)
- 1/2 - 1/2

which is not satisfied by the term mentioned. However, the solvability condition, at the
next order requires that the product bOA” is always zero, which alleviates this problem.

Substitution of the known solutions and application of the general solvability

condition at third order results in the bifurcation equations,
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b.2A,, =0 (4.28)

2
-(a” -8 7)1
L - a,b

n 2
[ " 3Pg JAq, = 0 (4.29)

which along with the normalizaiton condition

2 2 _
W R (4.30)

form a set of three equations for the three unknowns A4y, Ayy;, and by. The term a3 is

i given by

X 5wo4 3(um4 + Bnd) 3N02 [' ' ]
N a, = + + a -8 |+ (a +8)
" 3 32 8m04 16/3 m n m n
“o'n _ (|, - 8| ]
+ a - - (a +8)
2/3 “o 2 m n m m
4 4
_ %m - Bn
2 2 2 2
2w0 (2(»0 - Bn) 2m0 (Zwo - am)

4 4
L“m - Bnl”‘"o + 8a B ) . tay + 8 )(3u)" - Ba_B )

v 7. 3 = (4.31)
32/2 fduwy® - 2!am—BnJJ [4w,” = Y2ta + 8 )]

It has not been proved that this expression, a3, 1is positive definite but numerical
evaluation, with m,n ranging from 1 to 10, showed this to be the case. The solutions

to (4.28) - (4.30) are

Case I: by = 0, (4.32)

A, =0, A =1 (4.33)

Case II: by = % 12
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The solution is (4.32) is of little interest. It merely points out that the basic solution
bifurcates from the primary branch. In (4.33) the solution for the secondary bifurcation
on branch xn,n is given. The ¢+ s8ign in (4.33) shows that the bifurcation takes place
in both the upper and lower half planes (t €). The jump to the A12 # 0 solution is
often referred to as mode jumping because the solution acquired on the secondary branch is
qualitatively different from that on the primary branch. The radical in (4.33), with the
conjecture that a; > 0, requires that (um - Bm)t < 0 for secondary bifurcation to occur
on branch xn,n'

A similar analysis, to that given for the Xm n branch, results in the following

[

bifurcation equations for the Xn o branch,
14

(amz - an)T
-0 (4.34)

b “A =0 (4.35)
which along with (4.30) provides three equations for the three unknowns. For convenience,

define ¢ to be the point of secondary bifurcation on the A branch and ¢ to
m,n m,n n,m

be the point of secondary bifurcation on the Xn n branch, where
’
(W) = b_ _u+ o(wd (4.36)
n m,n .
2
en,m(u) bn'mu + o(u®) (4.37)

Equation (4.33) and (4.34) show that (retaining only the positive branch for brevity),

(4.38)

(4.39)

The secondary bifurcation phenomena may be summarized as follows.

=33~
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When H =0 and & = 1 there is a double eigenvalue Xo = (am2 + an) /2 for every
' 2
' pair (m,n) such that m # n. As £ 1is varied from £ =1 by an amount £ = 1 +-D§r;1,
. the double bifurcation point splits into two primary bifurcation points,
. 2, 2.2 Y
", ‘aon = O T EE) (4.40a)
I 2, .2 2.Y

= + .

v Xn'm (8n £ o4 ) (4.40b)

According to (4.36) (4.39) a secondary bifurcation tkes place on one - and only one at a
time - branch. Noting that <t = sign (§{ - 1) and that the radical in (4.38) and (4.39)
l must be positive for secondary bifurcation, the branch on which the secondary bifurcation

takes place is

If £>1 and a > B then on 1 (4.41a)
m n n,m
. If £>1 and a < B then on A (4.41b)
b m n m,n
: If £<1 and a > B8 thenon A (4.41¢c)
m n m,n
If <1 and a < B then on A (4.414)
m n n,m

These results suggest the following. As & departs from £ = 1, the split primary
bifuvrcation points move away from the double point. When £ > 1 they both move to the
right, and when £ < 1 they both move to the left. However, in all four cases (4.41), the
secondary bifurcation takes place on the branch which is emitted, after splitting, by the
largest, in magnitude, of the two bifurcation points, regardless of the sign of 1.

Based on physical and numerical grounds the size of the £ neighborhood, in which

secondary bifurcation may take place, can be estimated. Schwartz and Whitney [10]), in
their analysis of two-dimensional standing waves, in a fluid of infinite depth, estimated i
the highest wave to occur at € ~ 0.2 (the scaling here is different, dividing their

result by n provides congruence with this work). This two-dimensional result may be used

as an estimate of the relevant three-dimensional parameter. WNumerical evaluation of the

expression for b0 gives a valve of b0 ~0.18 for m= 1, n = 2, and for all

-34-

o SO0

PN

RESRSAN

PR AR A




—
: \.rt,:‘-' -

v."‘ - v vE v vv‘wﬁyvy-«.
. . . s .

combinations of m,n with m,n ranging over 1 to 10, the value of by 1is of smaller
magnitude. This suggests an upper bound for u of u ~ 1. Obviously the perturbation
scheme is valid only as u + 0. But the implication is that the neighborhood around

£ = 1 in which secondary bifurcation takes place may be substantial. Therefore the range
of aspect ratios at which secondary bifurcation may take place, at some value of the wave
amplitude, is large enough that the irreqular waves produced on these branches should occur
quite often in vessels of rectangular cross-section. In the next section the solutions

along the secondary branches will be found.
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S.

The Solution Along the Secondary Branch

branch.

(2.4).

where 9, h,

in section 2.

and on y = €h

¢
* ax

ST L

and

e

resulting primary branches.

correspond to solutions on

(w + ) %% -

representation of the solution along the secondary branch may be found.

parameters are such that the secondary bifurcation point occurs on the A

b =¢€d+ 4
t
n =€ch +n
*
w =w+

and © correspond to solutions on the primary branch and ¢, n,

the secondary branch.

After the splitting process, a secondary bifurcation point occurs on one of the two

By expanding in the neighborhood of this point, an asymptotic

Assume the

m,n branch. A

similar expansion can be performed if the secondary bifurcation point occurs on the )

n,m

The governing equations and boundary conditions are given in expressions (2.1) -

The variables have the following form,

(5.1a)

(5.1b)

(5.1¢c)
and Q

The primary branch solutions were found

The problem for ¢, n, and R is given by

2 2
——g ——% + 52 3—% =0 (5.2a)
9x dy 9z
°x=o at x=1t% (5.2b)
ay +0 as y + - (S5.2¢)
az=o at z=1% (5.2d)
+n

30 3n , ;220 3n  3n 3¢ . .2 3h 3¢
JE R AR -5 A~ FALEE i 13

n, g2300m_ _ 3h _ 2030 3h .2 30 3hy _ 30
Ix +E dz 3z el + M it {3x ax ¢ z z} 55; (5.3a)
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2
—e(w + m.g% - en - 5 V070 (5.3b)

The free surface boundary conditions satisfied by ¢ and h are subtracted from (5.3a)
and (5.3b) after expansion of these conditions in Taylor series about y = 0. A small
parameter, Vv, 1is defined as a measure of the distance from the secondary bifurcation

point. The known primary branch solutions are

2

€ bm,nu + 0(u"™) (5.4a)
2

& = Yy + U, + 00 (5.4b)
2

h = h0 + uh1 + 0(u™) (5.4¢)
= 2 3

w = wo + mz + 0(u”) (5.44)

with bm'n given in (4.38), and the terms in (5.4c) and (5.4d) are given in (4. 14a)
through (4.15b). The unknown solutions along the secondary branch are postulated to have

the following form

= v, + v2¢ + .. (S.5a)
1 2
n=vwv_+ v2n + .00 . (5.5b)
1 2 *
Q= vQ_  + v29 + .00 (5.5¢)
1 2 *
[ ]
. Substituting (5.4) = (5.5) into the governing equations and boundary conditions, (5.2) and
i (5.3), expanding the free surface boundary conditions in a Taylor series about the
- equilibrium solution, and equating terms proportional to like powers of Vv to zero,
; results in a sequence of boundary value problems for the °i' Ny and Qi' However, each
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of these boundary value problems is also a function of u. Therefore the functions

¢i, nge and Qi are expanded in terms proportional to powers of U,

_ 2
¢i = u¢i1 + y ¢12 + 0. (5.6)
= + 2 + (5.7)
U ny Wy, “ . . .
Q. =9, + pfl, . + 29 + (5.8)
30T o T M TR e e e :

The substitution of these expressions results in an additional subdivision of boundary
value problems. The analysis, although straightforward, is lengthy and the details will
not be presented.

The first order (in v) problem results in 91 = 0, and

2 3
¢1 = u¢11 + ¢12 + 0(w) (5.9)
- s w00 (5.10)
n1 IJ"\.” u Y'I.l2 H .
where 2
-1 - - WY
$1q = W, co8 an cos a z e cos t (5.11)
ny, = cos an cos o z sin t (5.12)

where the parameters are as previously defined, and

¢12 = A121cos (am - Bn)x cos (am - Bn)z exp[ﬁlom - Bnly]sin 2t

+ A122cos (am + Bn)x cos(um + Bn)z exp[/i(am + Bn)y]sin 2t

- - 2
+ A123cos (am - Bn)x cos(cxlll + Bn)z exp[/i wo ylsin 2t

- - 2
+ A,y cos(a + B )x cos(a - B )z exp[v2 w, ¥lsin 2t (5.13)

and

n,, = [

12 +C cos 2t] cos (um - Bn); cos (a - B )z

Bi21 * G129 n = Pn

+ [ +C cos 2t] cos (a + B8 )x cos (cy.m + Bn)2

B122 122 m n

+ +C cos 2t) cos (a_ - B )x cos (am + Bn);

By23 * C123 'n ~ Fn

+C cos 2t) cos (a + Bn); cos (am - Bm);- (5.14)

* [Byay * a3 n

and the coefficients in and n are given in Appendix V.

12
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* The problem of o(vz) yields the following results,

2 3
92 = 020 + u921 +p ﬂzz + 0(u ) (5.15)

2 3
¢2 = u¢21 +u ¢22 + 0(u) (5.16)

2 3
n un, 4 + N, + 0(uw) (5.17)

2

where it has been found that 920 = 021 =0,

: 0 .-i28-97) % _2%F
E 22 (4 - ¥2) 32 16w

4 4
(aﬁ + Bn) (cm - Bn)

’ (5-18)

nN

+ +
2 _ -
- Buy [4w, &lum 8n|] 8w

o [4w

o &(um + Bn)l

= n = 0, and

. 21
. _ ZBny
: ¢22 = A221 cos 28nx e sin 2t

A

- 2<xmy
+ A222 cos Zanz e sin 2t
_ _ 2w 2y
+ A223 cos 28nx cos Zumz e sin 2t (5.19)

and

= (B +C cos 2t) cos 28n;

N2 221 221

+ (3222 + c222 cos 2t) cos 2umz

+ (5223 + c223 cos 2t) cos 28nx cos Zamz (5.20)

The coefficients in (5.19) and (5.20) are also given Appendix V.
The result (5.18) provides the expression for the frequency along the secondary

branch. In the limit as v + 0 and u + 0 the complete expression for the frequency is

* 2 22 3 3
- . |
w w°+umz+uvﬂzz+0(u,\:) (5.21) ‘
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Since 922 is proportional to quadratic terms, the sign of 022 deternines whether the
bifurcation from the secondary bifurcation points is subcritical or supercritical. It has .
not been proved, but numerical evaluation of the expression for 922 suggests that it is
negative for all values of m and n. Therefore, as the solution moves from the primary
to the secondary branch the frequency of oscillation decreases.
An example of this secondary bifurcation phenomena is given in Figure 14. 1In this
particular example m = 2 and n = 1. The double bifurcation point, Ao b§~ 2.65, is
given by the dashed line in the figure. This point is split by choosing u = % « With
T < 0 the agpect ratio after splitting is £ = % . Therefore the two primary
bifurcation points become le‘ ~ 2.6 and XI’Z ~ 2.4. For these parameters b0 ~ 0.18.
Therefore the secondary bifurcation takes place at e. ~ 0.12, on the X2'1 branch, and
from this point the subcritical secondary branches are emitted.
The nature of the solutions on the secondary branch can be illustrated by the time
series, for the wave height in the left front corner of the tank (x =z = 0), given in
Figures 15a and 15b. The result corresponds to that given in Figure 14. In Figure 15a
the wave height on the primary branch at the secondary bifurcation point (e = .12,
v=0, m=2, n=1) is shown. In Figure 15b the solution is advanced along the .
secondary branch to v = 0.08.
The spatial nature of the solution on the secondary branches will be similar to the
result found for the mixed modes emitted by the double eigenvalues. However a greater

degree of complexity may be expected here due to the varying amount (through v) of the

"other" mode which is acquired on the secondary branch.
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Figure 14. A bifurcation diagram with the occurrence of secondary
bifurcation for m =2 and n =1, When £ = 1 the
pure branch emitted by the double eigenvalue is given
by the dashed line. When § is perturbed to & = 7/9
the double eigenvalue splits and secondary bifurcation

occurs on the A branch.
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—-0.25 . . .
0 1 2 3 4

t/2m

Figure l5a. Times series for the wave height corresponding to
Figure 14. The parameters are £ =7/9, m =2, n =1,
€ =0.,12, and v = 0. This is the solution on the
primary branch near the secondary bifurcation point.

AT

-0.25 . . .
0 1 2 3 4

t/2m

Figure 15b. Time series for the wave height corresponding to Figure 14.
The parameters are £ =7/9, m= 2, n=1, € = 0.12, and
Vv = 0.08. This is a solution on the secondary branch.
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6. Remarks
It has been formally shown that multiple and secondary bifurcation of the wave fields

occurs in partially filled vessels of rectangular cross section when the depth of the

A NN Y

fluid is infinite. The many wave solutions depicted in this paper will likely occur often
in nature. Unlike the buckling of plates and shells, for example, where the minimum
eigenvalue is the most important, in the "sloshing"™ problem the band of frequencies, at
which a vessel containing fluid might be excited, is relevant. Consider, for example, an
ocean liner carrying liquid cargo steaming across the north Atlantic. The ship, and hence
the cargo tanks, will be subjected to ocean waves containing a significant band of
frequencies and amplitudes. It is likely, in fact, that even the most casual observer of
waves in partially filled vessels of rectangular cross-section has witnessed wave fields
of the type shown herein.
What about vessels with cross-sections other than rectangular? A basin with a
.? triangular cross-section, for example, will have a multiple (triple?) eigenvalue when it
is equilateral. Similarily, one can imagine that a star-shaped cross-section will also
produce interesting possibilities.

A basin with a circular cross-section, such as a coffee cup, is however different.

There is no relevant parameter such as an aspect ratio. An analogy can be found in the

N NN

work of Cheo and Reiss [11] on the secondary buckling of circular plates. Their analysis

showed that a different type of secondary bifurcation occurs in the buckling of plates

e s
N h

v T

with circular cross-section. In their case, the primary bifurcation was to an

axisymmetric state, from which a secondary bifurcation to an asymmetric state was found.

Iy
g

In the standing wave problem Mack (12] has found the primary bifurcation points to
axisymmetric states for standing waves in a circular basin. It is possible that a

.- secondary bifurcation from these primary states to asymmetric states may take place.

]
. '
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Appendix I
The nonlinear boundary conditions at the free surface,
* -
oo, 20°3n, 23030 3¢,
X 9x 9z 9z y
2" L1 202, 282, 2382,
L
o 3 7 [ Gy ) * &G 1+ =0

If each of the unknown variables has a power series expansion

*

2
= + + o o .
¢ =+ ey,
."E +€2 +
n n1 nz o o o
* 2
w =g 4+ €0, + € g _t+t ¢ o

0 1 2

After expansion of (I.1) and (I.2) about y = 0, and substitution of (I.3), the following

sequence of boundary conditions results

an ¢,
A N T
0 3t dy h]
3
—d -
oo 3t + nj Sj
where
R1 = 0
an, an, 2¢ an, 2 a4
Romcgoam T 2% 2
% 3t x Ix 9z 3z N 2
3y
A SO N Wt SO S B
3 % ® % Ix 9Ix iz dz
an, 3 an, 2 ' '
i 2y ’1+“ ’2‘”‘ 2
Ix Ix 9z 9z 1 32 2 ”2
3 2 2
c1aah g 2,
21 3 119x  xdy 9z dyoz

=44~
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-
y =n (x,2z,t),

in the amplitude
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are

(I.5)

(I.1)

(1.2)

(1.3a)

(x.3b)

(I.3¢)

(1.4)

(1.6)

(1.7)

(I.8)
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. 81 =0 (109)
M, o0,
S, = =% T "2 V" " %N Fyee (1.10)
G e My 3y 30 %, B4y 3, 2243
3 Y% " %% "W W 3y Iy 3z 9z
2 2 2
2%, s, a%e,

= %" Fyat ~ %02 Byoe ~ Y1™ Fyet

2
3, 370, 36, 2, 5 36, 370, 4 5, ¥4,
bt s 2 3 2" %2 (r-1m
* yOx Y 3y Z 2ydz 3y“at
Appendix II
Inhomogeneous eigenvalue problems of the following type arise in the analysis
2 2 2
2—%-"3—:;*' Ez 3_;_ f,(x,y,z)cos t (II.1)
ax dy 3z
B0 at x=1% (11.2)
' %’0 as y * - = (1I.3)
-g-:; =0 at z=z%1) (I1.4)
2
-g% + ooz % = fz(x,z)cos t (11.5)
.

Other inhomogeneous terms with higher multiples of t occur and for them a similar

analysis holds. The term proportional to cost is the most important. Define
i., ®(x,y,z,t) = ¢(x,y,z)cos t, then ¢ satisfies
— 2 2 2
]
A 3—; + 3—% s 2 2o ey, (11.6)
.. Ix dy 3z
g %;% =0 at x =t (IX.7)
» %;;. +0 as y > - (11.8)
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. 3
: =0 at z=1Y%

? 2
-fyt - 0,20 = £,(x,2)

which satisfies (II.6) - (II.10) with £, = f5 = 0, then multiplying (A.6) by y,

(11.9)

(11.10)

The set (II.6) - (II.10) without the forcing terms is self adjoint. Define a function ¢

integrating over the domain, and using Green's theorem, results in the necessary condition

for solvability

o 0o a0
/ | [ wix,y,2)£,(x,y,2)dxdydz = ] f ¥(x,0,2)£,(x,z)dxdz
sV - - -% -
Agggndix II11

(11.11)

In this appendix the coefficients used in equations (3.7) and (3.8) for the analysis

at double eigenvalues are defined,

-0

. 2 2
z B = g BRyy T Ay
. 2 2
A - B A1
21 2
40 (am - 200 )
g 2, 2
A - n 12
3 22 2
40 (am 200 )
a2
A = 12
23 2
3 40,(8 = 20,7)
g 2, 2
A = % Aqq
24 2
40,(8 - 20,°)
2
. A11A12 (um - Bn)
25 2

200(/2(am + an) - 49,%)
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ndix IV

A

In this appendix the coefficients used in equations (4.25) and (4.26) for the

They are not to be confused with

analysis of the secondary bifurcation, are defined.

those in Appendix IIX.
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Appendix V

In this appendix the coefficients corresponding to the solutions along the secondary

branches are given. They are used in equations (5.13), (5.14), (5.19), and (5.20).

2
-bo(agm + Bn)

A -
121 2
20, (4 - v”z'lctlu - Bnll
1
2
. . bo(“m Bn)
122 2
20y L4, /i(um + 8]
~by¥
M3 ™
2(4 - V2)
b (a - 8 )2 b.a_B
B = 0 = n [ = =20 A -41 b w 2 . —2—5—2
121 o2 121 0%121 ~ 3 “0% 2
0 4w
() 0 |
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A 20. In an interesting development, Bauer, Keller, and Reiss [4],
in their analysis of shell buckling, showed that the splitting of
multiple eigenvalues may lead to secondary bifurcation. This theory
is applied to the non-linear standing wave problem herein, and it is ‘
shown that secondary bifurcation does occur in the neighborhood of
the double eigenvalue. A perturbation method is used to find the
secondary bifurcation points, and the solutions along the secondary
branches, in the neighborhood of their respective branch points, are
found.
The neighborhood around the critical aspect ratios is substantial,
suggesting that secondary branching may occur in a variety of vessels
with rectangular cross section. This theory offers an explanation of ‘
p. the irregular waves often observed in the "sloshing” of fluid in a
o rectangular vessel.
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