SLANTING DESIGN: A Pilot Program

FINAL REPORT

October 1985

FOR: The Federal Emergency Management Agency
Washington, DC 20472

Contract No. EMW-C-0705

Work Unit No. 1622B

Approved for Public Release Distribution Unlimited
SLANTING DESIGN: A Pilot Program

FINAL REPORT SUMMARY

October 1985

FOR: The Federal Emergency Management Agency

Washington, DC 20472

Contract No. EMW-C-0705

Work Unit No. 1622B

Approved for Public Release Distribution Unlimited

by Alexander Shaw

American Institute of Architects Foundation

"This report has been reviewed in the Federal Emergency Management Agency and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Federal Emergency Management Agency."
This document is the best quality available. The copy furnished to DTIC contained pages that may have the following quality problems:

- Pages smaller or larger than normal.
- Pages with background color or light colored printing.
- Pages with small type or poor printing; and or
- Pages with continuous tone material or color photographs.

Due to various output media available these conditions may or may not cause poor legibility in the microfiche or hardcopy output you receive.

☐ If this block is checked, the copy furnished to DTIC contained pages with color printing, that when reproduced in Black and White, may change detail of the original copy.
The Federal Emergency Management Agency (FEMA) under the mandate of the U.S. Congress created a pilot program to investigate the practical and cost implications of a national slanting shelter construction program. The availability of such shelters would make a critical workforce concept more viable. The intention was to incorporate shelter areas into buildings in such a manner that the affected spaces would continue to fully serve their intended functional purposes. An additional objective was to evaluate existing slanting design guidance materials, assessing their usefulness to the broad spectrum of practicing architects and engineers.

A case study method was deemed most useful for the project. The AIA Foundation (AIAF) surveyed local architectural firms and found Mariani and Associates to have two appropriate projects with building owners who were willing to entertain the possibility of shelter construction. Mariani was hired and the project begun. An office building and a hospital, both in the Washington, D.C. area were selected. Each building had a non drive-in basement with three floors of structure above. The process of design, construction documents, cost estimates, and construction were observed. Models of the hospital shelter were tested for structural integrity.
The office building was located in downtown Washington at 727 15th Street, N.W., just two blocks from the White House and the Treasury Building. The project involved the demolition of a single story movie theater and the restoration and incorporation of its historic facade into a new eleven-story office structure.

The original hospital project was located at 13th and V Streets, N.W. on a 2.4 acre full block site. Parts of an existing complex were to have been renovated and parts demolished to allow for new construction. The two projects represented a wide cross-section of the types of problems and impediments which might be encountered in a national scale construction program.

The design of the shelter in the office building was straightforward because the program and plan were simple. Major problems were of three types; structural, financial and approval related. The structural difficulty involved the fact that the added dimension required for the floor and ceiling of the shelter necessitated taking the shoring and footings below those of the two adjacent buildings. The additional costs associated with this were not directly related to the construction of the shelter and eventually led to the decision not to construct. The financial problems were related to the sluggish economic climate which existed. The speculative developers proceeded quite slowly hoping to acquire more favorable loan monies. The approval problems related to the fact that the project had to be submitted
to both the Fine Arts and Landmarks Commissions several times, with each submittal extending the design process.

Four alternative designs were considered for the hospital located at 13th and V Streets. A design was selected and detailed, construction documents were prepared and submitted to federal financing agencies only to lead to a complete change of site and total redesign of the project. On the new site the design proceeded simply, the shelter was located in an auditorium below the main entrance to the hospital. Detailed design, structural calculations, construction bids, and contractor selection were all completed. Problems and delays were caused by a change of ownership of the hospital, a labor strike, and a legal dispute related to an adjacent parking structure. Construction difficulties were minimal. The blast shelter added a new layer of complexity which necessitated additional planning and scheduling but no extraordinary constraints.

Construction cost estimates for the two projects ranged between $37 and $110 per square foot. No definitive explanation for this wide range can be offered.

The design guidance materials used in this project were found to provide accurate information but to be inadequate for use in the type of national construction program envisioned with the critical workforce concept. "Protective Construction", TR-20,
(Vol.4) and the other documents were judged to be more textbooks than design manuals; requiring reference to other documents to clarify definitions, terminology, and symbols. The ideal design manual should present straightforward examples, problems and many charts and tables to assist the busy, and probably inexperienced designer.

Two models (at one-fifth scale) of the hospital shelter were constructed and tested. One model was exposed to 15 psi over-pressure, as designed. This model suffered no damage. The second model was exposed to 50 psi overpressure and suffered only minor damage in the form of hairline cracking.

Conclusions are threefold:

- A national shelter construction program is thought to be feasible, but precise project scheduling would be extremely difficult.

- Existing design guidance is thought to be inadequate. No national construction program should be contemplated prior to the preparation of simplified, straightforward design manuals.

- No firm assessments of the costs of a national construction program can be made.
Summary

The AIA Foundation contracted with Mariana and Associates to design basement blast shelter areas in two buildings in Washington, DC. Alternate construction bids were received for both designs. FEMA decided to finance shelter construction at the National Rehabilitation Hospital (NRH) located at 106 Irving Street NW, and not to finance shelter construction at 727 15th Street NW. Incremental shelter construction cost estimates ranged between $37 and $110 per square foot above normal costs.

Keywords

- Cost Implications
- Practicality
- Construction Problems
- Design Guidance
- Model Test

<table>
<thead>
<tr>
<th>Report Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>12. GOVT ACCESSION NO.</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of Report & Period Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINAL REPORT 10/81-11/85</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALEXANDER SHAW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contract or Grant Number(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMW-C-0705</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performing Organization Name and Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMERICAN INSTITUTE OF ARCHITECTS FOUNDATION</td>
</tr>
<tr>
<td>1735 NEW YORK AVENUE NW</td>
</tr>
<tr>
<td>WASHINGTON, DC 20006</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Controlling Office Name and Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEDERAL EMERGENCY MANAGEMENT AGENCY</td>
</tr>
<tr>
<td>OFFICE OF CIVIL PREPAREDNESS</td>
</tr>
<tr>
<td>INDUSTRIAL EMERGENCY PREPAREDNESS DIVISION</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEVENTY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distribution Statement (of this report)</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distribution Statement (of the abstract entered in Block 20, if different from Report)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Supplementary Notes</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Key Words (Continue on reverse side if necessary and identify by block number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COST IMPLICATIONS, PRACTICALITY, CONSTRUCTION PROBLEMS, DESIGN GUIDANCE, MODEL TEST</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abstract (Continue on reverse side if necessary and identify by block number)</th>
</tr>
</thead>
</table>

The AIA Foundation contracted with Mariana and Associates to design basement blast shelter areas in two buildings in Washington, DC. Alternate construction bids were received for both designs. FEMA decided to finance shelter construction at the National Rehabilitation Hospital (NRH) located at 106 Irving Street NW, and not to finance shelter construction at 727 15th Street NW. Incremental shelter construction cost estimates ranged between $37 and $110 per square foot above normal costs. (see reverse side)
Evaluation were performed for two questions: (1) the adequacy of design guidance provided to practicing architects and engineers by "Protective Construction", TR-20 (Vol.4), and other existing references -- Found to be inadequate; and (2) the practical difficulties of incorporating shelter construction into otherwise typical building projects -- Found to be manageable, but difficult to schedule precisely.

The shelters were designed to sustain 15 psi (pounds per square inch) overpressure. Fifth scale models of the NRH shelter were tested at White Sands, NM in July 1935 at overpressures of 15 psi and 50 psi. The model tested at 50 psi sustained only very minor damage in the form of hairline cracks. The model tested at 15 psi sustained no apparent damage.
SLANTING DESIGN: A Pilot Program

FINAL REPORT

October 1985

FOR: The Federal Emergency Management Agency

Washington, DC 20472

Contract No. EMW-C-0705

Work Unit No. 1622B

Approved for Public Release Distribution Unlimited

by Alexander Shaw

American Institute of Architects Foundation

"This report has been reviewed in the Federal Emergency Management Agency and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Federal Emergency Management Agency."
FINAL REPORT: SLANTING SHELTER DESIGN

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>2</td>
</tr>
<tr>
<td>Abstract</td>
<td>4</td>
</tr>
<tr>
<td>Final Report:</td>
<td>5</td>
</tr>
<tr>
<td>Objectives</td>
<td>5</td>
</tr>
<tr>
<td>Methods</td>
<td>6</td>
</tr>
<tr>
<td>Discussion of Research</td>
<td>7</td>
</tr>
<tr>
<td>Architect Selection</td>
<td>7</td>
</tr>
<tr>
<td>Site Selection</td>
<td>8</td>
</tr>
<tr>
<td>Design Process</td>
<td>12</td>
</tr>
<tr>
<td>Office Building - 727 15th Street, NW</td>
<td>12</td>
</tr>
<tr>
<td>Hospital - 106 Irving Street, NW</td>
<td>18</td>
</tr>
<tr>
<td>Construction</td>
<td>39</td>
</tr>
<tr>
<td>Use of TR-20</td>
<td>52</td>
</tr>
<tr>
<td>Model Test</td>
<td>57</td>
</tr>
<tr>
<td>Conclusions & Recommendations</td>
<td>68</td>
</tr>
<tr>
<td>APPENDICES:</td>
<td></td>
</tr>
<tr>
<td>A. Preliminary Structural Calculations - Hospital Shelter</td>
<td>70</td>
</tr>
<tr>
<td>B. Final Structural Calculations - Hospital Shelter</td>
<td>76</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Architect's Sketch of Office Facade -- 727 15th Street</td>
<td>9</td>
</tr>
<tr>
<td>2.</td>
<td>Preliminary Plan of Office Basement</td>
<td>11</td>
</tr>
<tr>
<td>3.</td>
<td>Developer's Advertisement with Completed Façade -- 727 15th Street</td>
<td>16</td>
</tr>
<tr>
<td>4.</td>
<td>Hospital Alternative #1 -- First Basement Plan</td>
<td>17</td>
</tr>
<tr>
<td>5.</td>
<td>Hospital Alternative #2 -- Shelter Plan</td>
<td>19</td>
</tr>
<tr>
<td>6.</td>
<td>Hospital Alternative #2 -- Sections & Elevation</td>
<td>20</td>
</tr>
<tr>
<td>7.</td>
<td>Hospital Alternative #2 -- First Basement Plan</td>
<td>21</td>
</tr>
<tr>
<td>8.</td>
<td>Hospital Alternative #2 -- Second Basement Plan</td>
<td>22</td>
</tr>
<tr>
<td>9.</td>
<td>Hospital Alternative #3 -- First Floor Plan</td>
<td>23</td>
</tr>
<tr>
<td>10.</td>
<td>Hospital Alternative #4 -- Shelter Plan</td>
<td>25</td>
</tr>
<tr>
<td>11.</td>
<td>Hospital Alternative #4 -- Sections & Elevation</td>
<td>26</td>
</tr>
<tr>
<td>12.</td>
<td>Hospital Alternative #4 -- First Basement Plan</td>
<td>27</td>
</tr>
<tr>
<td>13.</td>
<td>Hospital Alternative #4 -- Second Basement Plan</td>
<td>28</td>
</tr>
<tr>
<td>14.</td>
<td>Hospital Alternative #5 [FINAL] -- First Floor Plan</td>
<td>30</td>
</tr>
<tr>
<td>15.</td>
<td>Preliminary Construction Bid -- Turner</td>
<td>31</td>
</tr>
<tr>
<td>16.</td>
<td>Structural Details -- Sections</td>
<td>32</td>
</tr>
<tr>
<td>17.</td>
<td>Structural Details -- Basement Plan</td>
<td>33</td>
</tr>
<tr>
<td>18.</td>
<td>Structural Details -- First Floor Plan</td>
<td>34</td>
</tr>
<tr>
<td>19.</td>
<td>Structural Details -- Beam Details</td>
<td>35</td>
</tr>
<tr>
<td>20.</td>
<td>Structural Details -- Column Details</td>
<td>36</td>
</tr>
<tr>
<td>21.</td>
<td>Final Construction Bid -- Turner</td>
<td>37</td>
</tr>
<tr>
<td>22.</td>
<td>Final Construction Bid -- Hyman</td>
<td>38</td>
</tr>
<tr>
<td>23.</td>
<td>Hospital Construction -- Site Preparation</td>
<td>40</td>
</tr>
<tr>
<td>24.</td>
<td>Hospital Construction -- Site Preparation</td>
<td>41</td>
</tr>
</tbody>
</table>
25. Hospital Construction -- South Wall of Shelter
26. Hospital Construction -- Footing Preparation
27. Hospital Construction -- Adjacent Story
28. Hospital Construction -- Concrete Formwork
29. Hospital Construction -- Footing Poured
30. Hospital Construction -- Column Reinforcing Steel
31. Hospital Construction -- Beam Reinforcing Steel
32. Beam/Footing Connection Details
33. TR20 (Volume 4) Evaluation – Neubauer
34. TR20 (Volume 4) Evaluation – Cutts
35. Design Guidance Reference List
36. Blast Test of Model -- Front & Side of Shelter
37. Blast Test of Model -- Rear & Side of Shelter
38. Interior of Hospital Shelter
39. Hospital Shelter in Place Before Back Filling
40. Hospital Shelter at 15 psi Level -- After Back Filling
41. Hospital Shelter at 50 psi Level -- After Back Filling
42. View of Hospital Shelter at 50 psi Level
43. Post-Blast View of Hospital Shelter at 15 psi Level -- Showing No Cracks
44. Post-Blast View of Hospital Shelter at 50 psi Level -- Showing Hairline Cracks on Roof
45. Post-Blast View of Hospital Shelter at 50 psi Level -- Showing Hairline Cracks
ABSTRACT

The AIA Foundation contracted with Mariani and Associates to design basement blast shelter areas in two buildings in Washington, D.C. Alternate construction bids were received for both designs. FEMA decided to finance shelter construction at the National Rehabilitation Hospital (NRH) located at 106 Irving Street, N.W. and not to finance shelter construction at 727 15th Street, N.W. Incremental shelter construction cost estimates ranged between $37 and $110 per square foot above normal costs.

Evaluations were performed for two questions: (1) the adequacy of design guidance provided to practicing architects and engineers by "Protective Construction", TR-20 (Vol. 4), and other existing references -- Found to be inadequate; and (2) the practical difficulties of incorporating shelter construction into otherwise typical building projects -- Found to be manageable, but difficult to schedule precisely.

The shelters were designed to sustain 15 psi (pounds per square inch) overpressure. Fifth scale models of the NRH shelter were tested at White Sands, N.M. in July, 1985, at overpressures of 15 psi and 50 psi. The model tested at 50 psi sustained only very minor damage; in the form of hairline cracks. The model tested at 15 psi sustained no apparent damage.
OBJECTIVES

The United States Congress mandated in the 1981 Defense Appropriations Act that the Federal Emergency Management Agency (FEMA) create a pilot program to investigate the practical and cost implications of a national shelter construction program. The pilot program was to consist of designing and constructing a minimum of two buildings with an enhanced ability to withstand nuclear explosions while sustaining minimized damage. The program was an approach to maximizing nuclear effects protection in risk areas in the United States and was to provide shelters which are strong enough to survive high overpressure (above 15 psi). The availability of such shelters would make a critical work force concept more viable. The major objective of the effort was to measure the additional costs and to assess the practical difficulties associated with the design and construction of buildings that incorporate current slanting design and blast resistance guidance. The intention was to incorporate shelter areas into buildings in such a manner that the affected spaces would continue to be fully functional still serving their original purposes.

An additional objective was to evaluate the efficacy and usefulness of existing slanting shelter design guidance for such a national shelter construction program as would be required to sustain the critical workforce concept.
METHODS

A case study method was deemed most useful.

1. The shelters were to be designed and constructed in buildings which did not have drive-in basements.

2. The AIA Foundation (AIAF) searched for and identified two commercial buildings (a hospital and an office) in the Washington, D.C. area for which basements were planned.

3. The AIAF contracted with Marlani and Associates who were the architects of both buildings.

4. Marlani obtained the approval of the building owners for the inclusion of the alternative shelter designs in the two projects.

5. Several alternative shelter locations were selected and presented to FEMA.

6. Final shelter locations were selected and designs created.

7. Engineering calculations and construction documents for the shelter areas were prepared.

8. Construction bids were requested for the shelters as alternates to the base bids for the building construction.

9. Yes/No construction decisions were made for both shelters.

10. Construction of the hospital shelter was begun and completed.

11. Waterways Experiment Station under a separate contract to FEMA constructed two fifth-scale models of the hospital shelter. One model was blast-tested at 15 psi overpressure; the other at 50 psi.
DISCUSSION OF RESEARCH:

Selection of Architects:
At the outset of the project, October 1981, the AIA Foundation performed a survey of architectural firms in the Washington, D.C., metropolitan area to find what types of projects they had underway. AIAF was looking for commercial buildings planned to have a minimum of three stories above grade. The buildings were to have basements which were not of the drive-in type. The building projects were required to be at a preliminary design stage so that incorporation of alternate slanting shelter design would not disrupt the schedule or increase costs to the building owner or developer.

The firm of Mariani and Associates, Inc., located at 1600 20th Street, N.W. was found to have two such projects at that time. The firm also had considerable shelter design expertise from previous work and was judged to be an appropriate subcontractor to work on the project. Mariani requested and received tentative approval from its clients to use the two buildings as the case studies in this project. An AIAF subcontract was subsequently written with Mariani.
Selection of Building Sites:
The two selected building projects were a speculative office building and an addition to a hospital. The office building was located in downtown Washington at 727 15th Street, N.W., just two blocks from the White House and the Treasury building. The project involved the demolition of a single story movie theater and the restoration and incorporation of its historic facade into a new eleven-story office building with basement level below (see Figure 1). The building was planned to have a reinforced concrete structure and contain a total of 50,500 square feet of office and ground floor commercial space. The basement area was to be 4,500 square feet and because no parking was planned, more than one underground level could have been designed as shelter area should that have proven desirable.

The hospital project, the National Rehabilitation Hospital, was located at 13th and V Streets, N.W. on a 2.4 acre full block site. Of the existing building complex, the structures on the northern portion of the site were to be renovated, while those on the southern portion were to be razed to make room for new construction. The renovated segment included basement-level receiving, supply, and laboratory areas and a 5,000 square foot medical records storage area which could have accommodated a shelter if that had been desired. The renovated floors above were to contain administrative, diagnostic and treatment facilities. Both the new and renovated parts of the building were to be column-supported concrete slab construction with exterior
FIGURE 1 -- Architect's Sketch of Office Facade -- 727 15th Street
masonry cavity walls. The total area proposed was 380,000 square feet of which 267,000 was to be new and 113,000 renovated. Both of the above buildings had basement areas which would accommodate blast-resistant design as well as their intended conventional functions. In addition, the two projects represented a wide cross-section of the types of problems and impediments which might be encountered in a national scale shelter construction program trying to incorporate shelter design into otherwise typical building projects.
FIGURE 2 -- Preliminary Plan of Office Basement with Shelter
Design Process: Bank/Office Building (727 15th Street)

Design Alternatives. The design of the blast shelter was begun in October of 1982. Preliminary design of this blast shelter was quite straightforward. The overall basement plan was simple and there were only a few options to consider. The major consideration was the exact location of the blast resistant wall relative to the elevator and stair tower (see Figure 2). The owner's program for the basement changed several times. For example, one corner went from storage area to a health club/gym. This caused adjustments to the area of the blast shelter. Fortunately, the gym was given up and the space became storage again.

A problem which was a concern for both aesthetic and structural reasons had to do with the ceiling height dimension in the conference/board room. The floor to ceiling heights for the building were tight to begin with and adding several inches for shelter construction made the problem worse. The conference space was a large area which needed a higher ceiling height in order to avoid a cramped feeling. Dropping the floor level was not desirable because that put the foundations below those of the adjacent buildings. This lowered floor level would cause shoring, structural, and construction problems which would lead to additional costs beyond those directly related to the shelter.

Detailed Design/Construction Documents. By February of 1982 three months delay had been experienced in the design of this
project. These delays were caused because the architects had to go through the approval processes of the Fine Arts Commission and the Landmarks Commission.

Serious delays were experienced during the period ending in June of 1982. The architects were kept on hold while waiting for decisions from the owner. The project was speculative and the high interest rates and uncertainty in the financial markets provided a strong incentive for the owner to be deliberate in such decisions as the type of heating, ventilation and air-conditioning system to be installed.

Construction documents were begun in August of 1982, but again the owners were not rushing to complete the project. The construction documents were 90 percent complete at the end of February, 1983. The drawings were finished by the end of May.

Bid Documents. Construction bids were requested for the project in September of 1983. A construction management company directed the bid process, receiving piece bids from subcontractors for various segments of construction such as steel, concrete and glazings. When received, the bids for general construction were 50 percent over the developer's budget. This serious problem again stopped the entire process. Alternate bids for the blast shelter and other alternates were not completed at this point. The major problems were the cost of both the steel structure and the marble facade. The redesign of the facade involved resub-
mission to the Fine Arts Commission and additional time delays.

The owners of the development project decided at this juncture for financial reasons that work had to proceed rapidly. In November of 1983 during the redesign process it was determined that construction of the blast shelter would definitely require taking the overall building foundation below those of the adjacent buildings. It was also determined that without shelter construction this would not be necessary. Based on this information an alternate construction bid was produced for the shelter area. The construction estimate of $175,000 calculated to be $110 per square foot for the 1,590 square feet designated for the shelter.

At that point FEMA decided not to construct the blast shelter in the office building. The decision was based on the fact that 43 percent of the estimated construction costs were not directly associated with the blast shelter itself. Of the total costs $75,000, or $47 per square foot, was required for additional underpinning necessitated by the existence of the blast shelter but not its design. The added depth of both the ceiling and the floor of the shelter required that the building foundation be two feet lower than it would otherwise have been. This added expense was created because the increased dimension put the new foundation below those of the two adjacent structures.
Conclusions. This project (see Figure 3) demonstrated a wide variety of problems which can be encountered in the construction industry. One of the most amusing was that a preservation group called "Don't Tear It Down" opposed the demolition of the theater based on the claim that the open air above the building was an "historic open space". The mixture of factors involved clearly demonstrates that the inclusion of government sponsored shelter areas in a variety of building construction should be expected to take considerably more time than the ideal fast-track scenario might indicate. This particular building witnessed speculative development occurring during a period of economic recession and escalating construction costs. Time was devoted to obtaining reviews and approval from a variety of boards and agencies. In addition to the preservation group and the Fine Arts and Landmark Commissions already mentioned, the project had to be reviewed by the White House security police because of its proximity to 1600 Pennsylvania Avenue. The prime objective of this project, to observe the integration of shelter design into the exigencies of a specific ongoing architectural project, was well met by this building.
The Presidential Point Of View

727 15th Street, NW

Just steps from the White House, 727 15th Street is the epitome of Capital city prestige. This historic address has been fully updated—a distinguished blend of the past and present—with full floor office suites of 3600 sq. ft., dramatic balcony views, state-of-the-art security and office interiors finished to your exacting specifications.

A development of
First Washington Development Group, Inc.

Leasing by
First Capital Realty, Inc.
232-4220

FIGURE 3 -- Developer's Advertisement with Completed Facade -- 727 15th Street
FIGURE 4 -- Hospital Alternative #1 -- First Basement Plan
Design Process: National Rehabilitation Hospital

Design Alternatives. The original design concept involved placing the blast shelter in the medical records area of the existing hospital facility (see Figures 4). Questions arose when AIAF discovered that this section of the hospital was to be partially exposed above grade. Discussion with FEMA led to the determination that renovation type construction was not desired.

A major design objective within the project was to incorporate the blast shelter into an area of the building where the space would still be fully functional on its own right. It was intended that the design not entail any significant structural or construction alterations. The incremental construction costs were to be restricted as much as possible to those for additional material and not for altered design.

The reason stated above led to the rejection of a second alternative location for the blast shelter. That design alternative was the placement of the shelter beneath the lowest parking level in the new construction area (see Figures 5-8). This proposed space was not to be included on the non-shelter construction documents which meant that the incremental costs would have included the entire construction costs as well as additional expenses for excavation and shoring.

Another location was considered and rejected (see Figure 9). The theater on the existing first floor (north side) had a large
FIGURE 5 -- Hospital Alternative #2 -- Shelter Plan

NRH SHELTER PLAN 3RD BASEMENT 1/8"=1'-0"
FIGURE 6 -- Hospital Alternative #2 -- Sections & Elevation

TRANVERSE SECTION

LONGITUDINAL SECTION

N.P.H. SHELTER NORTH ELEVATION
FIGURE 7 -- Hospital Alternative #2 -- First Basement Plan

SHELTER LOCATION BELOW.

NRH SHELTER
FIGURE 3 -- Hospital Alternative #2 -- Second Basement Plan

NRH SHELTER
un-utilized basement which was to be renovated. This alternative did not work for several of the reasons enumerated previously. It would have involved renovation, and significant structural modifications would have been required.

The last concept was placement of the blast shelter on the grade of the lowest parking level (see Figure 10-13). One potential problem with that location was that it fell immediately below the garage ramps. This location was selected and detailed design commenced in March of 1982.

Detailed Design/Construction Documents. In June of 1982 changes to the facade design of the hospital required redesign of the structural column grid. This problem caused delays for the entire project as well as the shelter design.

By August 1982 substantial progress has been made on production of the construction documents. The hospital project was eligible for federal loan monies from the U.S. Department of Housing and Urban Development. Marlani and Associates and their engineering consultants were required to prepare and submit not-to-exceed cost estimates to the HUD program. HUD also required structural and other revisions. Final blast shelter design and analysis had been scheduled for completion by late September in coincidence with the request for construction bids. After submittal of two sets of construction documents to the HUD funding agencies, the decision was made to completely change the building site.
FIGURE 10 -- Hospital Alternative #4 -- Shelter Plan
FIGURE 11 -- Hospital Alternative #4 -- Sections & Elevation
FIGURE 12 -- Hospital Alternative #4 -- First Basement Plan
FIGURE 13 -- Hospital Alternative #4 -- Second Basement Plan
The new location was on the Washington Hospital Center site adjacent to Children's Hospital at 106 Irving Street, N.W. This decision necessitated a complete redesign of the hospital and took this shelter design back to the initial stage of selecting alternative locations.

By November of 1982 the shelter location was selected (see Figure 14), alternative designs were considered, and structural design calculations (see Figures 16-20) were completed. These preliminary calculations, by Don Neubauer, PE, are included as Appendix A of this report. A preliminary construction bid from Turner Construction Company was received at this time (see Figure 15).

During August of 1983 detailed design and construction documents were completed.

Bid Documents. Construction bids were received from two companies; Turner Construction (see Figure 21) and George Hyman Construction (see Figure 22). Turner's bid for the blast shelter alternate was $140,000 while Hyman's was $87,000. Dividing by the 2,300 square feet of shelter area these bids translate to $60.87 per square foot for Turner and $37.83 for Hyman. No satisfactory explanation is available for the large discrepancy in construction bids. Unfortunately, FEMA did not have influence on the ultimate selection of the construction company. FEMA's
November 12, 1982

Mr. T.F. Mariani
Mariani & Associates
1600 20th St., NW
Washington, D.C. 20009

Subject: NRH Blast Resistant Shelter Study.

Dear Mr. Mariani:

We have completed our cost study for the addition of a Blast Resistant Shelter at the ground floor auditorium of the National Rehabilitation Hospital. We value the additional work at $120,000 making the new Parameter Estimate total $19,095,000. (See attached summary sheet).

The study was based on Untitled Drawings prepared by your office dated 11/9/82. The unusually large size beams, walls, columns, and slab coupled with dense reinforcing steel accounted for the relatively high unit cost for the 2,287 sq. ft. shelter.

If you have further questions please do not hesitate to call me.

Very truly yours,

Thomas J. Paci
Chief Estimator

PARAMETER ESTIMATE
National Rehabilitation Hospital at the Children's Hospital Campus

Excavation & Foundations $ 899,000
Structural Frame 3,995,000
Roofing & Waterproofing 459,000
Exterior Wall 1,490,000
Interior Finishes 2,481,000
Special Requirements 381,000
Vertical Transportation 410,000
Plumbing 1,107,000
Fire Protection 402,000
HVAC 2,179,000
Electrical 2,047,000
Site Work 544,000

DIRECT COST 16,402,000
General Conditions 0.0%
5.0% TOTAL 17,714,000
Contingency 0.0%
SUB TOTAL 18,245,000
FEE 0.4% 730,000
TOTAL 18,975,000

BLAST RESISTANT SHELTER $ 115,000
ASSOCIATED FEE 0.4% 5,000

$ 120,000
$ 19,095,000

FIGURE 15 -- Preliminary Construction Bid -- Turner
FIGURE 16 -- Structural Details -- Sections
FIGURE 1d -- Structural Details -- First Floor Plan
FIGURE 19 -- Structural Details -- Beam Details
FIGURE 20 -- Structural Details -- Column Details
Turner Construction Company
1731 F Street, N.W.
Washington, D.C. 20006
Telephone: 202-332-6500

August 26, 1983

Mr. Thomas Sachs
Mariani & Associates
1602 20th Street, N.W.
Washington, D.C. 20009

Subject: Blast Resistant Shelter Alternate
National Rehabilitation Hospital

Dear Mr. Sachs:

Please be advised that our price to add the Blast Resistant Shelter is
One Hundred Forty Thousand Dollars and No Cents ($140,000.00) and is
presented as an Alternate to our National Rehabilitation Hospital Bid

The above price is complete and includes General Conditions, Contingency
Bonds and Fee.

This price is based on Drawings A-42 and S-13 dated August 10, 1983
prepared by your office. No additional specifications for this work was
provided. The drawings are taken to be complete and the price includes
no provisions for scope development. We have assumed that this work will
be performed consistent with the scheduling requirements of the Project's
structural frame. Furthermore, the acceptance of this Alternate will
require the addition of one week to the construction schedule.

If you have any questions, please do not hesitate to contact me.

Very truly yours,

TURNER CONSTRUCTION COMPANY

[Signature]

Thomas J. Fasci
Chief Estimator

FIGURE 21 -- Final Construction Bid -- Turner
August 30, 1983

Mr. Theodore F. Mariani, FAIA
President
Mariani & Associates
1600 20th Street, N.W.
Washington, D.C. 20009

Re: National Rehabilitation Hospital
Washington, D.C.

Dear Mr. Mariani:

In accordance with your Mr. Tom Sack's August 19th letter and our conversations with him we offer the following quotations for Alternates #1, #2 and #3 on the above referenced project.

Alternate No. 1 Substitution of Roofing Membrane Material

Alternate No. 2 Addition of Two Elevators

Alternate No. 3 Modify the Structure Surrounding the Auditorium, Audio-Visual/Project Room, and Storage Room to Function as a Blast Resistant Shelter

Add $ 87,000.00

No adjustments will be required to our construction schedule if these alternates are included with the base contract award.

Yours truly,

A. J. Clark
President

THE GEORGE HYMAN CONSTRUCTION CO.

FIGURE 22 -- Final Construction Bid -- Hyman
option was a yes/no decision on construction of the shelter alternate after the National Rehabilitation Hospital had made its decision. The choice turned out to be Turner Construction, the higher shelter bid.

During January of 1984 several other problems occurred. All were unrelated to the blast shelter. There was a change of ownership of the hospital but Turner Construction remained the building construction contractor. There was also a prolonged legal squabble over an adjacent parking structure. Even after the legal disputes were resolved, the construction of the hospital could not be started until a labor strike was settled and construction of the parking garage was completed. The reason for this was that the future hospital site was needed for on-grade parking for the Washington Hospital Center until the parking garage was opened.

Construction. Construction of the hospital was finally begun about mid-May of 1984. AIAF monitored the progress of construction on a weekly basis. A series of photographs (see Figures 23-31) taken on these visits follow.
FIGURE 24 -- Hospital Construction -- Site Preparation
A: Interior

B: Exterior

FIGURE 25 -- Hospital Construction -- South Wall of Shelter
FIGURE 26 -- Hospital Construction -- Footing Preparation
FIGURE 23 -- Hospital Construction -- Concrete Formwork
A two-installment construction contract for $140,000 was written with the National Rehabilitation Hospital, Inc. The first payment for 95 percent was payable at the completion of all concrete work, and the remaining 5 percent at completion of all work on the blast shelter.

Two construction related problems occurred but both were easily resolved. The first problem involved the fact that the shop drawings for the reinforcing steel were completed after the major steel order had been placed. Rather than risk a possible construction delay awaiting the specialized reinforcing steel, the decision was made to redesign the shop drawings to use commonly available steel. A second problem occurred when a concrete footing was poured from non-shelter construction documents which left the footing one foot higher than it should have been. The resolution was a redesign of the detail to accept a beam above the new footing (see Figure 32). No other significant problems were encountered during the construction. There was difficulty with ground water in an area proximal to the shelter footings, but this was not attributable to the shelter design.

AIAF performed a walk thru inspection of the shelter on September 25, 1984, with representatives of Marian! and Associates and Turner Construction. Construction of the blast shelter was virtually complete at that time. Major observations on the construction process were the following:
FIGURE 32 -- Beam/Footing Connection Details
o Construction difficulties exist with wall penetrations and beam corners which do not fit flush with other building elements.

o The scheduling of concrete pours requires careful planning and special attention.

o Careful planning and additional time is required for building up reinforcing steel during shelter construction.

o Blast shelter construction did not constitute an extraordinary problem. It was rather one more layer of complexity to be coordinated into the overall process.
Use of TR-20 - Volume 4 and Other Design Guidance:

One of the objectives of the project was to evaluate the usefulness of existing slanting design guidance materials. A national program of blast shelter construction which would be necessary to sustain the critical workforce concept would require design guidance materials which were understandable and immediately usable by architects and engineers without prior shelter design experience. Architects, most of whom would not have shelter design expertise, would certainly be involved in the process of incorporating blast shelters into otherwise typical buildings in a large-scale construction program.

In recent years the practice of architecture has increasingly become a problem of leading a team of experts. The architect's task is to communicate effectively with each specialist and ensure that each separate agenda is incorporated into the overall program for the building and addressed adequately as the design proceeds. The ideal design manual would provide the architect with a conceptual overview of what slanting design is all about. Such a document should contain visual presentation of architectural concepts. It is difficult to overstate the importance of visual, graphic thinking for architects.

The findings of the architects and engineers working on this project are that Volume 4, TR 20, "Protective Construction", and the other documents used are inadequate and provide insufficient guidance. The personnel at Cutts Engineers had no prior shelter
design experience and became quite frustrated, even angry, at some of the difficulties they experienced. Don Neubauer, on the other hand, did have prior shelter experience. On the positive side, Mr. Neubauer commented that Vol.4 TR 20 is superior to other design guidance materials (military documents) he has used, especially when designing something out of the ordinary. Comments from both structural engineers follow at the end of this section (see Figures 33-34).

The existing reference documents (see Figure 35) were judged to be more textbooks than design manuals and had other problems as well. Definitions and terminology were inconsistent. Several references were needed to clarify symbology. The layout of Vol.4, TR 20 is quite cumbersome, and requires considerable searching and flipping back and forth. All of these problems increase time of use and consequently design costs.

The ideal design manual would be a single, self-contained reference source. It should present straightforward examples, problems and many charts and tables to assist the busy, inexperienced designer.
November 12, 1982

Mariani and Associates
1600 20th St., N.W.
Washington, D.C. 20009

Be: Blast-resistant design
National Rehabilitation Hospital

Gentlemen:

Following are comments that we offer regarding the use of "Protective Construction" TR-20 (Vol 4) May 1977 in the design of blast resistant structures. There is no particular significance in the order of the comments and some come as a reflection about the use of the manual. The manual is competent in presenting a very complex problem in one volume. The comments are not intended to give a negative value to the manual.

1. The examples given are rather irrelevant. It is assumed that the manual will be used to harden certain areas of a building and it would be most helpful to have examples that relate to the same. Also it is doubtful that an attempt would be made to harden a structure above ground to act as a blast resistant foundation, so the number of relevant sample calculations need not be large.

2. An index would be very helpful. Considerable time was spent in searching both backwards and forwards in the manual to refresh ones understanding of the meaning of a certain letter. The meaning of symbols was not always given when the symbol was first used. This is a deficiency in the majority of technical books. Some symbols are used in the text and not noted in the list of symbols.

3. Some symbols were casually explained further on in the manual which makes use of the manual time consuming. Some had two different meanings and which one was being used was not always that apparent.

4. Sometimes the lower case of symbols was used in the text and upper case in the charts or graphs. In some instances elsewhere in the text the upper and lower case have symbols that have different meanings. This creates an uncertainty in that one is really never certain that the correct definition is being used. If one designs a lot of hardened structures on a frequent basis, these uncertainties resolve themselves. But it is suspected that the vast majority of architects and engineers will do so on a very infrequent basis and each subsequent problem would result in beginning again from the data of the manual. Design costs for hardened structures will be very high.

5. Fortunately copies of the principal references were in hand which were of help. It is doubtful that more than a very small percentage of architects and engineers would be so equipped. Therefore the manual needs to be more explicit even to the arithmetic so that the time spent using the manual. The references were used to determine more clearly the meaning of some of the symbols.

6. Very few architects and engineers these days have the time to devote to design projects that is really needed. The lack of time usually results from insufficient fees and insufficient expertise, so those that use the manual will have to follow it "blindly" without fully understanding the design process. Under these conditions, in order to minimize errors, all symbols, formulas and procedures have to be readily apparent and not involve referring to other steps behind or ahead in the text unless those steps are specifically annotated as to page and paragraph.

7. It was noted in the design problem for the National Rehabilitation Hospital that there were many design details that were not considered in the manual. In doing blast resistant design, the problem should be formulated to conform with various charts and tables rather than trying to interpolate the charts and tables to a problem that is not "simple". Such a suggestion should be noted in the introduction. Structurally dynamic design is much more an art rather than a science. But for most engineers and architects, the more science and the less art, the better the solutions will be with respect to cost and performance. This means having problems that are comfortably within the range of the manual's tables and charts.

8. The best way to obtain comments on the manual would be to sit down with a user and review the manual page by page. Hopefully the authors will not be defensive for if they are not as much value will be derived from the exercise as would be otherwise.

Very truly yours,
Donald J. Neubauer

FIGURE 33 -- TR20 (Volume 4) Evaluation -- Neubauer
March 2, 1985

REPORT ON VIABILITY
IN PROTECTIVE CONCRETE PANELS
(FFR-20 Vol. 4)

In an attempt to use the Protective Construction Manual (FFR-20) as a primary source to design a blast resistant shelter, it was found that the manual by itself is inadequate.

The following are major points in design which, in our point of view, were lacking in the manual and require more attention and elaboration:

1. Loading Terms:

The loading definitions were found to be very confusing. The manual should elaborate more on definitions of loading and loading on the structure to provide a simplified means of understanding of loading for the designer.

2. Safety Factor:

The application of load factor in respect to ultimate strength design is not clearly explained. It should be noted that load factor in respect to ultimate strength design equal to 1.0.

3. Modes of failure:

Since the design is controlled by three modes of failure (shear, diagonal tension and flexure), the manual should elaborate on approach to design through these three modes of failure. The manual should familiarize the designer with behavior of the structure in three different modes. Also, the importance of choosing the appropriate ductility ratio for each mode of failure.

4. Ductility:

Since ductility is of great importance in blast resistant design, the manual should elaborate more on the subject of ductility. It should familiarize the designer with the importance of assuming the required ratio of ductility for each mode of failure and plain why. Also, it should be noted that the formula \(\delta = \frac{1}{r} \) is only a definition and it is.

5. Dynamic Analysis:

The manual should provide complete practical examples for dynamic analysis and explain what results to look for in dynamic analysis. Since this portion of design is the most complicated and time-consuming, the manual should concentrate on use of charts and tables, through sample problems.

6. Slab on grade:

Since design of slab on grade requires careful attention, the manual should explain the procedure and assumptions which should be used in design of slab on grade (slab on grade or fixed).

7. Rebound resistance:

The calculation of rebound steel requires more elaboration.

8. Preliminary & final design:

In final design calculation, it should be noted that convergence of only ductility ratios for flexure mode is required and ductility ratios used in shear and diagonal tension are to provide only a means of checking resistance for those modes of failure.

9. Typical details:

Typical details & spacing for web reinforcing should provide guidance for size and spacing of ties beyond the distance of 4d from support. It should also be noted that since the slab is allowed to have large deflections, the presence of web reinforcing also provides a means of securing top and bottom reinforcing in place during deflection and rebound.

10. Charts:

Since charts and design aids in blast resistant design can save the designer a considerable amount of time, the manual should include all the charts and design aids available for blast resistant design.

General:

In general the manual is an informative test book in the field of blast resistant design. However, it is inadequate and impractical to be used as a design manual by an average structural engineer, especially for one with no back ground in dynamic analysis and design.
REFERENCE DOCUMENTS

MAXIMIZING PROTECTION IN NEW EOS'S FROM NUCLEAR BLAST AND RELATED EFFECTS: GUIDANCE PROVIDED BY LECTURE & CONSULTATION. NTIS Accession Number AD/A 039 499, September 1976.

SLANTING IN NEW BASEMENTS FOR COMBINED NUCLEAR WEAPONS EFFECTS: A CONSOLIDATED PRINTING OF FOUR TECHNICAL REPORTS. NTIS Accession Number AD/A 023 237, October 1975.

FIGURE 35 -- Existing Reference Documents
Model Tests

Two models (at one-fifth scale) of the blast shelter at the National Rehabilitation Hospital were constructed. These models were built by Waterways Experiment Station under a separate contract to the Federal Emergency Management Agency. These two models were exposed to a simulated nuclear explosion at White Sands, New Mexico, in July of 1985. The following photographs were taken in New Mexico at the blast test (see Figures 36-45). One model was placed at a location so that it was exposed to the 15 psi overpressure for which the actual shelter was designed. The other model was placed at a location so that it was exposed to 50 psi overpressure. No above-grade structure was included on either model which further increased the vulnerability to structural damage, because this was taken into account in the actual design calculations.

The model exposed to 15 psi overpressure suffered no apparent structural damage (see Figure 43). The model exposed to 50 psi overpressure suffered only minor damage in the form of hairline cracks. The cracks may be seen on the photographs (see Figures 44-45). The cracks were traced with a marker to highlight their location, but the result is that the damage appears more serious than actual. The apparent conclusion is that the design guidance provided by "Protective Construction", TR 20, (Vol. 4) leads to partial overdesign for shelter structures intended to withstand 15 psi overpressure.
FIGURE 44 -- Post-Blast View of Hospital Shelter at 50 psi Level -- Showing Hairline Cracks on Roof
CONCLUSIONS

Conclusions can be drawn in regard to two major issues which were investigated.

- Feasibility of incorporating blast resistant shelters into otherwise typical building projects.
- Adequacy of currently existing shelter design guidance materials.

No conclusion as to the cost implications of a large-scale blast shelter construction program can be drawn from this effort.

Blast shelter construction as an add-on proposition to structures being built for totally different purposes is a viable concept. It is a manageable task which can be accomplished rather simply given adequate financing and proper planning and forethought. Given the significant number of variables over which FEMA has no control, however, it would be extremely difficult to predict precisely when the construction of any particular shelter might be completed. There was a significant increase in anti-nuclear sentiment during the course of this project which might also tend to make the task more difficult.

Existing design guidance is considered inadequate for use in a large scale shelter construction program. The materials used for this project assumed prior knowledge, provided more education than assistance, and were difficult and taxing to use. The information and recommendations which the documents provided were proven to be accurate, though apparently based on highly
RECOMMENDATIONS

Any large-scale shelter construction program should be formulated in recognition of the exigencies of the construction industry, financial markets, and the whims of public opinion relative to nuclear issues.

No such national program should be contemplated prior to the preparation of simplified, straightforward design manuals for architects and engineers as well as generalized educational materials for building owners and others involved in the construction process.
APPENDIX A:
PRELIMINARY STRUCTURAL CALCULATIONS -- HOSPITAL SHELTER
15 psi OVERPRESSURE LOADING

$\text{15 psi} = 15 \times 14.4 = 216 \text{ psi}$

Beam Loading: $= 216 \times 10^3 = 21600 \text{ N}$

$M = \frac{1}{2} \times 21600 \times 300^2 = 2730 \text{ kN} \cdot \text{m}

\[d = \frac{2730}{2779} \approx 49.8 \text{ kN} \cdot \text{m} \]

Pa.: $13.14 / 262.44 = 0.0518$

Beam 24×60 (charged to 70 x 68)

$\text{A} = 0.91 \times 0.0119 = 0.0011 \text{ in} \times 0.0000005 \text{ psi} = 2.383^2 \approx 2430$

\[
\begin{align*}
\phi & = 0.95 (1 - 0.13 \times 0.0119) + 0.0035 (1 - 0.13 \times 0.0085) = 7600 \\
\phi & = 116.1 \text{ psi}
\end{align*}
\]

$q_y = \frac{116.1 \times 2.25}{120} > 15 \text{ psi}$

Torsional Tension

\[
\begin{align*}
\phi & = \left(\frac{2}{2 + 0.0012} \right) \left(\frac{1}{0.0119} \right) \left(\frac{0.0119 \times 2750 \times \left(\frac{64}{360} \right)}{120} \right) \left(\frac{0.0119 \times 3750 \times \left(\frac{64}{360} \right)}{120} \right) \approx 10.9 \text{ psi} < 15 \text{ psi}
\end{align*}
\]

Increase web steel: $6^4 @ 9^o = 6 \times 0.025 \times 1.12 = 0.77 \text{ in}$

\[
\begin{align*}
\phi & = 0.95 (1 - 0.13 \times 0.0119) + 0.0035 (1 - 0.13 \times 0.0085) = 12.1 \text{ psi} < 15 \text{ psi}
\end{align*}
\]

Bent Beam To 30\degree

\[
\begin{align*}
\phi & = 0.95 (1 - 0.13 \times 0.0119) + 0.0035 (1 - 0.13 \times 0.0085) = 15.24 \text{ psi} < 0.0115
\end{align*}
\]

\[
\begin{align*}
\phi & = \left(\frac{2}{2 + 0.0012} \right) \left(\frac{1}{0.0119} \right) \left(\frac{0.0119 \times 2750 \times \left(\frac{64}{360} \right)}{120} \right) \left(\frac{0.0119 \times 3750 \times \left(\frac{64}{360} \right)}{120} \right) \approx 15.0 \text{ psi} < 15.0 \text{ psi}
\end{align*}
\]

Increase web steel yield 47 feet

\[
\begin{align*}
\phi & = \left(\frac{2}{2 + 0.0012} \right) \left(\frac{1}{0.0119} \right) \left(\frac{0.0119 \times 2750 \times \left(\frac{64}{360} \right)}{120} \right) \left(\frac{0.0119 \times 3750 \times \left(\frac{64}{360} \right)}{120} \right) \approx 18.1 \text{ psi}
\end{align*}
\]

\[
\begin{align*}
\sqrt{2} & = 32.4 \times 0.320 \times 9.00 = 24.5 \text{ psi} < 18.9 \text{ psi}
\end{align*}
\]

\[
\begin{align*}
\text{d/c} & = 48/360 = 0.130 < 0.20
\end{align*}
\]

\[
\begin{align*}
\phi (\theta) & = 0.95 \times 3600 \left(\frac{0.127}{1 - 0.127} \right) = 183.8 & \phi (\theta) & = 183.8 \times 32 = 45.9 \text{ psi} > 18.0 \text{ psi}
\end{align*}
\]

REFERENCES

NRN- BUILT WELTER

ENWATERSON, CONS. ENGNS

NOV 15 82
M = \frac{1}{10} \times 2160 \times 10.6^2 = 21600 \text{ ft} \times \text{ft} \\
A_s = 21.6/4.02 \times 12 \times 65 = 0.64 \text{ in}^2/\text{ft} \\
P = 0.64/12 \times 6.5 = 0.068 \text{ ksi} > 0.005 \\

FLEXURAL YIELD RESISTANCE
FOR COMPARISON STEEL USE 0.0085/2 = 0.0044

\[q = \frac{1}{2} \left(1 - 0.1 \% \right) \left(0.0085 + 0.0044 \right) \times 0.0055 \times 42000 \times \left(\frac{65}{120} \right) = 8.2 \text{ psi} < 15.0 \text{ (2.5 in.)} \]

\[q = \frac{1}{2} \left(1 - 0.1 \% \right) \left(0.0085 + 0.0044 \right) \times 0.0055 \times 42000 \times \left(\frac{65}{120} \right) = 9.1 \text{ psi} < 15.0 \]

\[q = \frac{1}{2} \left(1 - 0.1 \% \right) \left(0.0085 + 0.0044 \right) \times 0.0055 \times 42000 \times \left(\frac{65}{120} \right) = 11.2 \text{ psi} \]

\[q = \frac{1}{2} \left(1 - 0.1 \% \right) \left(0.0085 + 0.0044 \right) \times 0.0055 \times 42000 \times \left(\frac{65}{120} \right) = 13.7 \text{ psi} < 15.0 \]

\[q = \frac{1}{2} \left(1 - 0.1 \% \right) \left(0.0085 + 0.0044 \right) \times 0.0055 \times 42000 \times \left(\frac{65}{120} \right) = 15.8 \text{ psi} > 15.0 \text{ (4 in.)} \]

DOUGLAS: Tension

\[q = \frac{1}{2} \left(1 - 0.1 \% \right) \left(0.0085 + 0.0044 \right) \times 0.0055 \times 42000 \times \left(\frac{65}{120} \right) = 8.2 \text{ psi} < 15.0 \text{ (4 in.)} \]

\[q = \frac{1}{2} \left(1 - 0.1 \% \right) \left(0.0085 + 0.0044 \right) \times 0.0055 \times 42000 \times \left(\frac{65}{120} \right) = 9.1 \text{ psi} < 15.0 \]

\[q = \frac{1}{2} \left(1 - 0.1 \% \right) \left(0.0085 + 0.0044 \right) \times 0.0055 \times 42000 \times \left(\frac{65}{120} \right) = 11.2 \text{ psi} \]

\[q = \frac{1}{2} \left(1 - 0.1 \% \right) \left(0.0085 + 0.0044 \right) \times 0.0055 \times 42000 \times \left(\frac{65}{120} \right) = 13.7 \text{ psi} < 15.0 \]

\[q = \frac{1}{2} \left(1 - 0.1 \% \right) \left(0.0085 + 0.0044 \right) \times 0.0055 \times 42000 \times \left(\frac{65}{120} \right) = 15.8 \text{ psi} > 15.0 \text{ (4 in.)} \]

NEW: BUILT SUBTER

NEWCASTLE, WA, 1944
COLUMN

Dynamic Load = 10' x 12' x 15' = 21,600 lb. x 30' = 648,000 lb./in.²

2 x 324 = 648 x 2 (Load Factor) = 1296

Tay Column 30' (To match beam with 4' = 4% Rebars = 0.04 x 30 x 18 = 2.16 m²

18 x 10 = 18 x 1.7 = 29.66 m² P = 29.86 / 30 x 18 = 0.0523

\[
\begin{align*}
\frac{P}{A} &= \frac{29.86}{29.66} = 0.9748
\end{align*}
\]

However, it is recommended that spiral ties column be used for elastic design.

Try 18' x 12 (Column x Beam) = 216 x 12 = 2.2

From case @ 0.16 Pu = 743 x 12 (Dynamic Stresses) = 892 lb. Close enough

\[
\begin{align*}
\text{Current span} &= 100' \\
324' &= 324' = 324' \\
200' &= 200'
\end{align*}
\]

\[
\begin{align*}
\frac{A}{P} &= \frac{0.150 x 24 x 20 = 972}{0.175 x 324 x 10 = 1134} \\
d &= \frac{1134}{24 x 20} = 34.1 \text{ use } 80'' (18' x 64'' beam)
\end{align*}
\]

\[
\begin{align*}
\frac{A}{P} &= \frac{1134}{60 x 12 x 180 = 6.944} \text{ Min } \frac{1}{4} = 0.005 x 18 x 80 x 7.2 = 3.6 x 7.2 = 25.6 \text{ lb.} \\
P &= \frac{2.62}{18 x 13 = 0.0029}
\end{align*}
\]

Pursh Shear

\[
\begin{align*}
\frac{d}{l} &= \frac{20}{140} = 0.133 \\
f_p &= 0.55 x 4000 = 152 = 126.3 \text{ in.} \\
f &= \frac{206.3 x 18 = 15.5}{240} > 15.0 \text{ ok.}
\end{align*}
\]

Flex. CR

\[
\begin{align*}
f &= 8(1 - 0.13 x 0.0053)(0.0053 + 0.0053) x 72000 \left(\frac{80}{240}\right) = 66.6
\end{align*}
\]

\[
\begin{align*}
f &= 66.6 x 18 = 985 \text{ psi} > 15.0 \text{ ok. Interchange span}
\end{align*}
\]

End Span

\[
\begin{align*}
f &= 8(1 - 0.13 x 0.0053)(0.0053 + 0.0026) x 72000 \left(\frac{80}{240}\right) = 480.2
\end{align*}
\]

\[
\begin{align*}
f &= 480.2 x 18 = 73.6 \text{ psi} > 15.0 \text{ ok.}
\end{align*}
\]

Held Bolt WALTER
DIAMONDB TENSION
\[
T = \left(\frac{1}{2+0.0053} \right) \left(\frac{1000 + 2 \times 0.0025 \times 7000}{0.0053} \right) \sqrt{0.0053 \times 0.0004 \times \left(\frac{80}{2+0.0053} \right) \times \frac{120}{120}} \approx 304.8 \text{ psi} > 150
\]

NATURAL PERIOD
\[
\zeta \approx \frac{1}{850,000 \times 0.010} \times 120^3 = 0.0226 \text{ sec}
\]

\[
\mu = 5
\]
\[
t_2/\tau = 1.6/0.0226 = 70.8 \quad \frac{\frac{\tau}{\mu}}{\tau} = 0.91 \quad \frac{\frac{1}{\mu}}{\tau} = 1.6 \quad \frac{\tau}{\mu} = 0.13
\]

SEAM
\[
p = 0.0118
\]
\[
T = \frac{340 \times 10^{-4}}{425,000 \times 0.0118} = 0.046 \text{ sec}
\]

\[
\mu = 5
\]
\[
t_2/\tau = 1.6/0.046 = 37 \quad \frac{\frac{\tau}{\mu}}{\tau} = 0.85 \quad \frac{\frac{1}{\mu}}{\tau} = 1.0 \quad \frac{\tau}{\mu} = -0.25
\]

WALL
\[
p = 0.0083
\]
\[
T = \frac{156 \times 10^{-4}}{450,000 \times 0.0083 \times 10} = 0.059
\]
\[
t_2/\tau = 1.6/0.059 = 27.0 \quad \frac{\frac{\tau}{\mu}}{\tau} = 0.96 \quad \frac{\frac{1}{\mu}}{\tau} = 1.6 \quad \frac{\tau}{\mu} = -0.17
\]

AEROSOL
\[
p = 0.0053
\]
\[
T = \frac{340 \times 10^{-4}}{450,000 \times 0.0053 \times 150} = 0.0117
\]

\[
\mu = 3
\]
\[
t_2/\tau = 1.6/0.0117 = 136.7 \quad \frac{\frac{\tau}{\mu}}{\tau} = 0.84 \quad \frac{\frac{1}{\mu}}{\tau} = 1.05 \quad \frac{\tau}{\mu} = -0.22
\]

WALL
\[
M = 98 \times 2160 \times 13.02 \times 66.63 \text{ kN} \quad d = \frac{66.63}{0.879} = 79.01 \text{ mm} \quad \text{wall: } d = 10, \text{ A5 = 65.62} \text{ kN/m} \text{, } A5 = 65.62 / 4.02 \times 1.21
\]
\[
p = \frac{30}{10} = 0.0083 \quad \frac{d}{l} = \frac{19}{120} = 0.064 < 0.20
\]

PURE SHEAR
\[
T_u(e) = 0.44 \times 4000 \sqrt{\frac{0.004}{1.004}} = 120.3 \text{ psi} > 15 - 0.14
\]

NEUHAUS

NEUBAUER

EINSTEIN

Recurve

\[f_1(s) = 9 \left(1 - 0.13 \times 0.0083 \right) \times 0.0083 \times 72000 \left(\frac{10.5}{15.6} \right) = 20.6 \text{ psi} > 15.0 \]

Resistance

- **Column, Recurve** \(q_y = 20.9 \text{ psi} \)
 - Shear \(q_v = 15.0 \text{ psi} \)
 - Diam. Tensile \(q_e = 37.5 \text{ psi} \)

- **Beam, Recurve** \(q_y = 29.5 \text{ psi} \)
 - Shear \(q_v = 45.9 \text{ psi} \)
 - Diam. Tensile \(q_e = 18.1 \text{ psi} \)

- **Wall, Recurve** \(q_y = 20.6 \text{ psi} \)
 - Shear \(q_v = 150.0 \text{ psi} \)
 - Diam. Tensile \(q_e = 15.4 \text{ psi} \)

- **Rafter, Recurve** \(q_y = 75.4 \text{ psi} \)
 - Shear \(q_v = 15.5 \text{ psi} \)
 - Diam. Tensile \(q_e = 30.2 \text{ psi} \)

NEW - BLAST SHELD
APPENDIX B:
FINAL STRUCTURAL CALCULATIONS -- HOSPITAL SHELTER
NATIONAL REHABILITATION HOSPITAL
BLAST SHELTER

CALCULATIONS

AUGUST, 1983
<table>
<thead>
<tr>
<th>James Cor~suiling</th>
<th>Consulting Structural Engineers</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madison Cutts</td>
<td>Washington DC</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Job</th>
<th>Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>1/1</td>
</tr>
</tbody>
</table>

- \(f_c = 3000 \text{ psi} \)
- \(f_d = 3750 \text{ psi} \)
- \(f_d' = 27500 \text{ psi} \)

- \(\mu = 0.1 \)
- \(P = P' = 0.02 \)

1. Use steel: \(\mu = 1.3 \)

2. Moment capacity: \(M = 3.0 \)

- Bending moment resisted by flange \(rac{M}{1.5} \)
- Spacing: \(P < 0.025 \text{ ft} \)

- Bending moment resisted by web \(rac{M}{P} \)
- Spacing: \(P > 0.025 \text{ ft} \)

- Shear \(q_v = 15/(1 - \frac{1}{2.0}) = 15.6 \text{ psi} \)

- Torsion \(q_t = 15/(1 - \frac{1}{2.1}) = 16 \text{ psi} \)

- Inclined slab: \(q_e = 15/(1 - \frac{1}{2.5}) = 22.5 \text{ psi} \)

- Shear due to end moments \(S \text{ in.} \)

- Depth based on flexure

- End span \(9.0 = 7.3(0.02 + 0.01) \times 2000 (d')^2 = 15.8 \times 10^{-6} \)

\[d' = \sqrt{15.8} = 0.399 \text{ ft} \]
Note use d' = 12" for 1/2" spa

\[\frac{d}{L} = \frac{0.06}{13 \times 12} \]

\[d = \frac{0.06}{13 \times 12} \approx 0.0025 \]

\[0.06 = \sqrt{\frac{15.6}{7.3 \times (P + \frac{P}{2}) \times 7200}} \]

\[0.01 = \frac{15.6}{7.3 \times (P + \frac{P}{2}) \times 7200} \]

15.6 = \text{load} (P + \frac{P}{2}) \quad P = 0.003

\[\text{Use } P = P \text{ min of } 0.005 \]

Check for interior span

\[\frac{d}{L} = \sqrt{\frac{15.6}{7.3 \times 0.01 \times 7200}} = 0.55 \]

\[d = 0.55 \times 12 \times 12 = 6.5^\circ < 12^\circ \quad \text{OK} \]

Check for end span

\[\frac{d}{L} = \sqrt{\frac{15.6}{7.3 \times 0.0075 \times 7200}} \]

\[d = 0.06 \times 12 \times 12 = 9.4^\circ < 12^\circ \quad \text{OK} \]

Checks: Diagonal Tension

\[q = 3.5 \sqrt{3000 (0.08)} = 15.34 \leq 22.5 \quad \text{psi} \]

\[22.5 \left[\frac{1}{(2 + 1)} \left[1000 + (9.2 \times 7200) \right] \sqrt{0.005 \times 7200} \times 0.06 \times [1 + 1.5] \right] \]
| James Madison Cutts Consulting Structural Engineers Washington DC |
|---|---|

\[PV = \frac{2}{2944} \approx 0.0025 \]

\[ULC = \frac{P}{V} \approx 0.0025 \]

\[.0025 = \frac{P}{10 \times 3} = .08 \]

\[ULC = 3 \text{ (left)} \]

\[10 \times 10 \times 10 \]

\[\text{calculate natural period} \]

\[T = \frac{1 \times 156}{63800 \sqrt{0.005 \times 1.12}} \approx 0.4 \text{ sec for end sway} \]

\[T = \frac{1 \times 156}{65000 \sqrt{0.005 \times 1.12}} \approx 0.03 \text{ sec for incl. sway} \]

\[\text{single bracket reinforcement; check required resisting} \]

\[T < \frac{1}{20} \]

\[\frac{7}{.04} < 15.5 \]

\[\frac{7}{.05} < 23.3 \]

\[\text{flexure:} \]

\[M = 10.0 \quad \frac{7}{.04} = 17.5 \quad \text{end sway} \]

\[\frac{7}{.05} = 23.3 \quad \text{incl. sway} \]

\[\text{figure 4-13} \]

\[\frac{7}{.05} = 23.3 \quad \text{incl...} \]

\[F \text{ required} = 15 \times 15.15 = 226.25 \text{ psi} \]

\[P = .65 \times 23.06 \text{ psi} \]

\[P = 23.06 \text{ psi} \]
James Madison
Consulting Structural
Engineers
Washington DC

Floor Shear, Floor Cont'd

Fig. 12

Provided resistance:

Flexure

\[M = 7.5 \times 10^5 \times 0.5 = 18.75 \text{ kips}\]

Pure shear

\[q = 0.44 \times 2000 \left(\frac{5}{5} \right) = 114.8 \text{ kips} \]

Reinforcement

\[\phi = \frac{1}{\phi + 1} \left[\frac{1000 \times 0.025 \times 7 \times 3.85}{0.06^2 \times 25} \right] - 27.8 \text{ psi} \]

Note: The provided resistance in each detail is greater than required.

Check result:

\[M = 10.0 \text{ kips}\]

\[\frac{q}{q} = 17.5 \text{ kips} \]

RC2 Re. resistance = 16 \times 33.6 = 6.05 \text{ psi}

Provided Re. Re. resistance = 734 \times 0.05 \times 2000 \times 0.05 = 6.66

Slab summary:

Use #7 @ 16" o.c.

\[\frac{15}{2} \text{ in.} \]

@ 3" o.c.
James Madison Catts Consulting Structural Engineers
Washington DC

Location
KIAH V. D.C.

By: Check Date
K.O. 7/20/67
Sheet 5/18

Beam Designed

Length = 30.5' 5" = 3750

Assume \(\mu = 1.0 \) for flexure 5# per 10000 ft

Max Shear: \(\mu = 1.5 \) 12 ft 1210

Initial Section

\[m = 3.0 \quad \mu > 0.0025 \]

\[m = 1.5 \quad \mu < 0.0025 \]

Deflection (in) = \(\frac{150 \times 14^2 (1 - \frac{1}{6})}{1728} \times 1.0 \) psi

Deflection (in) = \(\frac{150 \times 14^2 (1 - \frac{1}{3})}{1728} \times 1.0 \) psi

Downward [\[\frac{150 \times 14^2 (1 - \frac{1}{6})}{1728} \times 1.0 \] psi

\[\mu > 0.0025 \]

\[\mu < 0.0025 \]

\[\nu = \frac{16}{6} = 19.3 \text{ psi} \]

\[\nu = \frac{15.75}{1.2} = 12.9 \text{ psi} \]

\[\nu = \frac{16}{6} = 19.3 \text{ psi} \]

\[\nu > 0.0025 \]

\[\nu < 0.0025 \]

Def. of beam on 3" flange

\[0.5 \times 25.5 \times 13 \times \frac{1}{3} = \frac{60 \times 144 \times 3000}{1 - \frac{1}{6}} \]

\[110.5 - 110.5 \frac{1}{6} = 1320 \]

\[\frac{1}{3} \]

\[\frac{1}{2} \times 0.9 \]

\[110.5 - 110.5 \frac{1}{6} = 1320 \]
James Madison Consulting Structural Engineers
Washington DC

Location: Wasington, DC
By: Check Date: 7/4/83
Sheet: 6/12

Circular Beam Depth for Effect:

\[\frac{19.5}{12} = 1.625 \times \frac{7.3}{12} \times 72000 \times \frac{1}{3} \]

\[\frac{19.5}{12} = \frac{72000}{72000} \times \frac{1}{3} = \frac{1}{3} \]

Depth: Assume 0.05

\[f_y = 35 \times \frac{3000}{(0.09) \times 3} = 398 \ psi \]

Try: \[f_y < 0.025 \] \[\text{Required} = 23.7 \ psi \]

\[23.7 = \left[\frac{1}{(2 + 0.025)} \right] \left[1000 + 2 \times 72000 \times \sqrt{0.02 \times 72000 \times (0.09) \times \frac{3}{13}} \right] \times 7.75 \times 0.01 \times 2.3 \]

\[23.7 = 7.64 + 112.4/2 \]

\[f_y = 0.045 \] \[\text{Required} = 19.2 \ psi \]

\[19.2 = \left[\frac{1}{(2 + 0.025)} \right] \left[1000 + 144000 \times \frac{2}{\beta} \right] \times \sqrt{0.02 \times 30000 \times 0.09 \times \frac{3}{13}} \]

\[19.2 = 7.64 + 112.4 \]

\[\beta = 0.0101 \]

\[\rho = \frac{A_y}{b's} \]

\[A_y = 0.0101 \times 36 \times 6 = 2.16 \ in^2 \]

\[\# 7 \ E6^* \% \ for \ 12^0 \]

Wires: Reinforcement Intersect:

Try: \[d = 4/3 \]

\[\frac{d}{h} = \frac{3.56}{20.67} = 0.167 \]

\[19.2 = \left[\frac{1}{(2 + 0.025)} \right] \left[1000 + 144000 \times \frac{2}{\beta} \right] \times \sqrt{0.02 \times 30000 \times 1167 \times \frac{2}{13}} \]
19v = 10.7 + 1542.4 P
\[
\frac{Pv}{k^2} = \frac{1542.4}{17.5} = 0.055
\]

19v = \frac{AV}{k^2} \\
AV = 0.055 \times 36 \times 6 = 1.19 \text{ in}^2

USC = 5 \text{ in.}

\text{Not adjusted for } P \text{ for } d = 43''

\text{Required } = 19.2 \text{ psi}

\text{Use } 6 \times 10 \text{ Top}

\text{Dynamic analysis of beam}

L = 12 \times 12 = 36 \text{ in} \quad P = 0.0115 \text{ psi}

T = \frac{36}{\sqrt{42500 \times 0.0115 \times 0.4}} = 0.0681 \text{ sec}

\text{Rebound} \quad T_2 = 0.7 \text{ sec} \quad \frac{T}{T_2} = \frac{0.3}{0.7} = 10.3

\mu = \frac{1}{0.0115 \times 0.005} = 15.3 > 10 \quad \text{Use 10}

\frac{1}{h} = 0.25 \quad \beta = 7.3 \times 0.0124 \times 72000 \times (0.1167) \times \frac{3}{13} = 20.4

h = \frac{1}{10 \times 20.4} = 4.6 \text{ psi}
Provided resisted resistance.

\[f = 7.54 \times 0.05 \times 72000 \times (1167)^{\frac{3}{13}} = 8.26 \text{ psi} > 46 \text{ psi} \text{ ok} \]

Check resistance in each mode.

Required resistance vs. provided.

Flexure:
\[\mu = 3.0 \quad \frac{f}{f} = 103 \quad f = 4-13 \]
\[\frac{P_0}{f} = 2.85 \quad f = \frac{16}{0.85} = 18.8 \text{ psi} \]

Provided \(f = 20.4 \text{ psi} > 18.8 \text{ ok} \)

Pure shear:
\[\mu = 1.3 \quad \frac{f}{f} = 10.7 \]
\[\frac{P_0}{f} = 2.65 \quad \frac{f}{f} = 24.3 \text{ psi} \]

Provided \(f = 55 \times 30000 \times 1167 \times \frac{3}{13} = 444 \text{ psi} \)

Dia. 1.6 \(f = 10.3 \quad f = 3.0 \quad f = 16.5 \text{ psi} \)

\[f = \frac{4}{\sqrt{2} + 0.05} \times (1000 + 444) \times 0.0057 \times \sqrt{0.125} = 14.8 \text{ psi} < 16.5 \text{ ok} \]

Design:
8 in. 8 in. 8 in. 4 in. 4 in.

\[d = \frac{4}{2} = 1.28 \text{ in.} \]

Use \(f = 0.15 \text{ psi} \)

\[P = 19.2 \times 13 = 7.3 \times 4 \times 2000 \times 126 = 8011.4 \text{ ft}^2 \text{ psi} = 124.6 \text{ psi} \]
pure shear by intension 0.7

2.000,000 = 1.92
192 = \left[\frac{1}{(1 + \frac{0.005}{0.015})} \right] \left[\frac{1000 \times 1 + 2000}{2} \right] \times \sqrt{0.15 \times 3000 \times 0.128 \times \frac{2}{13}}

192 = 97.5 + 1049.5\Psi

\Psi = 0.045

P = 0.065

Try 3/4" x 4" x 6'

10.32 x 1.5 = 7.7 x P x 7200 x 1.2

P = 0.0075

Try 3/4" x 4" x 6'

19.2 = \left[\frac{1}{(1 + \frac{0.005}{0.0075})} \right] \left[\frac{1000 + 1440000}{2} \right] \times \sqrt{0.15 \times 3000 \times 0.128 \times \frac{2}{13}}

19.2 = 9.86 + 1291.3\Psi

\Psi = 0.0069

\Psi = 0.0069 x 46.6 = 2.1 in

Try 3" x 4" x 6'

N/Increased P

19.2 = \left[\frac{1}{(1 + \frac{0.005}{0.002})} \right] \left[\frac{1000 + 1440000}{2} \right] \times \sqrt{0.15 \times 3000 \times 1.16 \times \frac{2}{13}}

19.2 = 6 + 1146.5\Psi

\Psi = 0.096

\Psi = 0.096 x 36 x 6 = 2.1 in

Use 3" x 4" x 6'

N/Increased P

19.2 = \left[\frac{1}{(1 + \frac{0.005}{0.005})} \right] \left[\frac{1000 + 1440000 \times 0.0057}{2} \right] \times \sqrt{0.15 \times 3000 \times 1.16 \times \frac{2}{13}}

19.2 = 19.1 \Psi = 1.05

19.7 P1 > 1.2 x 0.85
<table>
<thead>
<tr>
<th>James Madison Cutts Consulting Structural Engineers</th>
<th>JOD: N.R.H. BLIND SHELFER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Washington DC</td>
<td>Location: WASH. D.C.</td>
</tr>
<tr>
<td></td>
<td>By Check Date: 7/19/87</td>
</tr>
<tr>
<td></td>
<td>Sheet: 10/16</td>
</tr>
</tbody>
</table>

Repetitive dynamic analysis

\[T = \frac{368}{2000 \times 100 \times 4} = 0.0536 \]

\[\frac{7}{0.0536} = 13.65 \]

\[\mu_2 = \frac{1}{0.0536} = 6.67 \]

Failure

\[P_{\text{required}} = \frac{16}{0.96} = 16.3 \text{ psi} \]

\[P_{\text{required}} = 7.3 \times 10^{-4} \times 72000 \times 1.167 \times \frac{2}{15} = 33 \text{ psi} \]

Pure shear

\[\mu_1 = 1.3 \]

\[\frac{16}{1.3} = 12.3 \text{ psi} \]

\[\frac{15.6}{0.65} = 24.3 \text{ psi} \]

Tension

\[\frac{2.44 \times 2000 \left(\frac{1.167}{1 - 1.167} \right) \times \frac{2}{15}}{1.3} = 40.7 \text{ psi} \]

\[\mu_2 = 1.3 \]

\[\frac{16}{1.3} = 12.3 \text{ psi} \]

\[\frac{2.44 \times 10 \times 20 - 19.7 \text{ psi}}{19.7 \text{ psi}} > 18.8 \text{ o.k.} \]

Circle around

\[\frac{12.05}{0.21} > 0.2 \text{ o.k.} \]

BEAM SUMMARY

<table>
<thead>
<tr>
<th>60 ft. steel</th>
<th>20 # 11</th>
<th>in two layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top steel</td>
<td>6 # 10</td>
<td>Top</td>
</tr>
<tr>
<td>+5 & 6 0'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>User A40 2.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: 0.210 x 0.210 clear 22.5 ft. from 16.5 ft. dimensions.
WALL DESIGN

DESIGN WALL FOR $L = 14' - 6"$, $P_m = 15$, $P_i = 130$

$f_{dy} = 72000$ $f'_{dc} = 3750$ $f'_{c} = 2000$ psi

REQUIRED RESISTANCE: $f'_{y} = 15.6$ psi

$f'_{y} = 24.4$ ksi

$f'_{c} = 18$ psi $A_f = 0.005$

$f'_{c} = 225$ ksi $A_f = 0.005$

DESIGN BASED ON SHEAR:

$V_f = 0.65 f'_{c} L / 2 = 72500 = 0.015$

$d = 0.015 \times 14.5 \times 12 = 2.6$

DESIGN LAYERS TO FLEXURE: $f = 0.005$ $P = 0.0025$

$A = \frac{2 \times 15.5}{\sqrt{7.3 \times 0.01 \times 7200}} = 0.0775$

$d = 0.0775 \times 14.5 \times 12 = 13.5$

$\phi_y = 0.1 \frac{d}{L} = \sqrt{15.5}{7.3 \times 0.01 \times 7200} = 0.0546$

$d = 0.0546 \times 14.5 \times 12 = 9.5$ USE $f = 12.00$ psi

CHECK DIA. TENSILE: $f = 3.5 \sqrt{3000 \times 0.0775} = 11$ psi

$g_f = \left(\frac{1}{2} + 0.005 \right) x \left(1000 \right) = 1000 \times 12 \times 3000 \times 0.0575 = 67.5$ psi

USE WEB STEEL

<table>
<thead>
<tr>
<th>James Madison Consulting Structural Engineers</th>
<th>Job Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madison Cutts</td>
<td>N.R.V. B.O. 51/62</td>
</tr>
<tr>
<td>Washington DC</td>
<td>Location</td>
</tr>
</tbody>
</table>

By K.O. Check Date Sheet 12/18

Wall Design Con't

\[P_v < 0.025 \quad m = 3 \quad \psi = 22.5 \quad P_1 = 0.025 \]

\[22.5 = \left[\frac{1}{(2 + 0.025)} \left(\frac{1000 \times 144000}{0.01 \times 3000 \times 0.0575} \right) \right] \]

\[22.5 = (0.444) \left(\frac{1000 \times 144000}{0.01} \right) (5.4) \times 0.033 \]

\[22.5 - 7.9 = 1139 \psi \quad P_v = 0.126 > 0.025 \]

\[\psi = 7.9 \times 3000 \times 0.0575 \]

\[18 = 12 \times 1139 \psi \quad P_v = \frac{12.1 - 0.0089}{1139} \]

Sky d = 12 \quad T = 14°

\[\frac{d}{L} = \frac{12}{12 \times 145} = 0.069 \]

\[P_v = \frac{15.8}{7.3 \times 12000 \times 0.069} = 0.0063 \quad USE P_v = 0.065 \]

Depth for pure shear is 1142 o.k.

Assume: \(P_v > 0.005 \quad m = 3 \quad \psi = 22.5 \quad \psi = 18 \psi \)

\[18 = \left[\frac{1}{(2 + 0.025)} \right] \times \left(\frac{1000 \times 144000}{0.0065 \times 3000 \times 0.069} \right) \]

\[18 = (0.419) \left(\frac{1000 \times 144000}{P_v} \right) \times 0.021 \]

\[18 = 8.6 + 1266 \psi \quad P_v = \frac{9.0}{1266} = 0.0073 \]
Natural period \(T = \frac{17\pi^2}{4 \cdot 6000 / 10065 \times 14} \) sec

\(T = 0.7 \) sec \(F_z = 2 - 14 \) \(\frac{F}{T} = \frac{9.5}{10} \)

Check rebound \(\frac{F}{T} = \frac{9.5}{10} \)\(\frac{10}{0.065 - 0.25} \) ok

Check resistance in each mode

Flexure \(m_2 < \frac{T}{F} = \frac{29.5}{9.5} \) \(\frac{1.05}{91} \)

\(\frac{F_2}{m_2} < 15.8 \) ok

Pure shear \(m_2 < \frac{T}{F} = \frac{29.5}{9.5} \) \(\frac{1.05}{91} \)

\(\frac{F_2}{m_2} < 15.8 \) ok

Dia. test \(m_2 < \frac{T}{F} = \frac{29.5}{9.5} \) \(\frac{1.05}{91} \)

\(\frac{F_2}{m_2} < 15.8 \) 718 ok

Will summary \(T = 14 \)\(\frac{d}{14} \)

\(A_2 = 0.065 \times 14 \times 14 = 0.936 \)
\(A_5 = 0.005 \times 14 \times 14 = 0.36 \)
\(A_Y = 0.0073 \times 10 \times 3 = 0.219 \)

USF \#6 E10' \#14

USF \#5 E10' 016 0.5

USF \#4 E 3' 01
consider 1 strip of wall
\[P_a = \left(0.65 \times 3750 + 0.09 \times 7200 \right) \times 10 \]
\[P_a = 38355 \] T
\[P = 1 \times \left(\frac{6.5 \times 12}{2} \right) \times 16 = 1248 \] T
\[\frac{P}{P_a} = \frac{1248}{38355} = 0.0325 \]
\[\frac{P}{f_c} = \frac{1248}{2.16} = 580 \] T

by inspection will ok

check wall for heat rejection

trip area = 16 \times 12 \times 12 = 28080

assume \(a_2.1 \) design load \(600 \times 2 \times 16 \times 9000 = 900 \) k

assume 3 ft of wall under heat

\[P_a = 36 \times 56.4 = 1380 \] k

\[\frac{P}{P_a} = \frac{900}{1380} = 0.65 \]
\[\frac{P}{f_c} = \frac{900}{2.16} = 416 \] T

from figure 3.2.2 \(\frac{P}{P_a} = 2.7 > 0.65 \) ok
James Madison Cutts
Consulting Structural Engineers
Washington, DC

<table>
<thead>
<tr>
<th>Sheet</th>
<th>15/15</th>
</tr>
</thead>
</table>

Col. Design

Col. Load = 900 K
 Lil = 1.0

Assume
\[P = 0.05 \]

Note: Col. is braced by
\[A = \frac{900}{4.63} = 194 \text{ in}^2 \]
\[d_c = \frac{194 	imes 4}{3.14} = 247 \text{ in} \]
\[d_c = 15.7 \text{ in} \]

\[P = 0.05 \]
\[A = \frac{900}{3.91} = 230 \text{ in}^2 \]
\[d_c = \frac{230 	imes 4}{3.14} = 290 \text{ in} \]
\[d_c = 17 \text{ in} \]

Note: Col. size used \(\gamma \times \gamma \)

Use \(d_c = 18 \)

Assume \(i \) or cover \(d_p = \gamma \times \gamma \)

Spiral steel rods

\[f_y = 0.4 (A_d / \gamma_c - 1) \times 5000 \]
\[P_r = \frac{A_d \times 0.05}{d_c} = \frac{3.14 \times 247}{290} = 2.36 \]
\[b = 0.45 \left(\frac{560}{254} - 1 \right) \times 31 / 4 = 0.01 \]
\[b = 0.12 \text{ in} \]
\[P_r = \frac{480}{2.36} = 1.92 \text{ in} \]
\[d_c = \frac{43.14}{3.14 \times 0.01} = 2.44 \text{ in} \]

Try #3 bar 18 @ 15 in.
Compression Stirr

\[\frac{P_t \cdot d}{A_s} = \frac{852.254}{3.14 \times 18.74} \]

Note: Steel area used for
BLD is excess (than req. for
BLA). Use same steel req. for
BLD with spiral ties = 3

\[\varnothing = \frac{1}{2} \]

Design stirrup on 1/2 span of door so carry door

Use width = 3' 0" \hspace{1cm} L = 14' 0"

in flexure = 10 \hspace{1cm} A8.250 \hspace{1cm} f = 2.025

\[\varnothing = 15.6 \, \text{psi} \hspace{1cm} \varnothing = 25.5 \, \text{psi} \]

\[\varnothing = 19.7 \, \text{psi} \hspace{1cm} \varnothing > 2.025 \hspace{1cm} \varnothing > 2.025 \]

P/6 = 30 \hspace{1cm} A = 0.055 \hspace{1cm} \varnothing = 23.7 \hspace{1cm} A = 0.055

depth required for flexure

\[15.6 \times 3 = 7.3 \times 0.0 \times 72000 \left(\frac{A}{L} \right) \]

\[\frac{d}{L} = \sqrt{\frac{414}{72000 - 23.7 \times 0.055}} \]

\[d = 0.67 \]
Depth for Dr. Tension

Assume $\mu = 3$
$\frac{P}{A_2} > 0.005$
$\delta_T = 19.7 \text{ in} \times 0.5 \% = 0.1$

$$19.7 \left[\frac{1/2 (2 + 0.005)}{1000 + 144000 P_Y} \right] \sqrt{0.02 \times 300 \times 0.67} = \frac{1}{\delta_T}$$

$$19.7 = (1.44) (1000 + 144000 P_Y) (0.013)$$

$$19.7 = 5.64 + 601 P_Y$$
$$19.7 - 5.64 = 801 P_Y$$

$$P_Y = \frac{19.7}{801} < 0.005$$
$$0.005 \times 3 \times 12 = 0.9$$

Note: Use reinforce used in hill. 15.4 63\%.

By Lintin (1933)
Length $l = 168$ in $P = 0.02$

$$T = \frac{168}{4 \times 5000 \times 15 \times 0.02} = 0.039$$
$$\frac{P}{T} = \frac{0.02}{0.039} = 17.9$$

$$\mu = \frac{1}{0.05} = 6.6$$

Check resistance
$$\frac{P}{A_2} = 0.18 \text{ in} \times 4.14$$

$$\frac{P}{A_2} \geq 0.05 \times 25 > 18 \text{ o.k.}$$

Check resistance for each mode

Flexure
$$M = 6.6 \quad \frac{P}{T} = 17.9 \quad \frac{P}{A_2} = 0.97$$

$$\frac{M}{P} = \frac{15}{0.97} > 15.5 \text{ o.k.}$$

Pure Shear
$$M = 12 \quad \frac{P}{T} = 17.9 \quad \frac{P}{A_2} = 0.65$$

$$\frac{M}{P} = \frac{15}{0.65} > 23 \text{ o.k.}$$
<table>
<thead>
<tr>
<th>James Madison Cutts Consulting Structural Engineers</th>
<th>JOO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Washington DC</td>
<td></td>
</tr>
</tbody>
</table>

Location: J.O.
Check Date: 5/1/83
Sheet: 13/18

DESIGN WALL S/84" 30' CARRY WORK TO

Reinforcement

- **Tensile**
 - $A_d = 7.03$
 - $f' = 17.6$
 - $0.12 < 16.6$
 - O.K.

Design resistance provided where more is greater than resistance required

Summary

- $f = 2.07$
- $d = 10"$
- $t = 14"$

Assumptions

- $A_d = 10.24 x 12 = 122.88$
- Use steel
- $A_s = 1.065 x 12 = 12.78$
- Use $5/8$
- Use steel size 8
DISTRIBUTION LIST

Federal Emergency Management Agency
Research Office
Attn: Assistant Associate Director
National Preparedness Programs
Washington, DC 20472

Assistant Secretary of the Army
Attn: Assistant for Research
Washington, DC 20306

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Oak Ridge National Laboratory
Attn: Librarian
P.O. Box X
Oak Ridge, TN 37830

H.L. Murphy Associates
P.O. Box 1727
San Mateo, CA 94401

Los Alamos Scientific Laboratory
Attn: Document Library
Los Alamos, NM 87544

The RAND Corporation
Attn: Document Library
1700 Main St
Santa Monica, CA 90401

Emergency Technology Division
Oak Ridge National Laboratory
Attn: Librarian
Oak Ridge, TN 37830

Director
Lovelace Foundation
5200 Gibson Blvd SE
Albuquerque, NM 87108

Commanding Officer
U.S. Naval C.E. Laboratory
Attn: Document Library
Port Hueneme, CA 93401

Air Force Weapons Laboratory
Attn: SUL Technical Library
Kirtland Air Force Base
Albuquerque, NM 87117