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The low-level interpretation-of images: provides constraints on 3D surface shape at multiple reso-
lutions, but typically only at scattered locations over the visual ficld, Subscquent visual processing
can be facilitaicd substantially if the scattered shape constraints are immediately transformed inio
visible-surface representations that unambiguously specify surface shape at every image point. The
required transformation is shown to lead to an ill-posed surface reconstruction problem. A well-
posed variational principle formulation is obtained by invoking “controlled continuity,” a physically
nonicstrictive (generic) assumption about surfaces which is nonetheless strong enough to guarantee
unique sobtions. ‘[he variational principle, which admits an appealing physical interpretation, is
locally discretized by applying the finitc element method to a piecewise, finite clement represen-
tation of surfaces. This forms the mathematical basis of a unificd and general framework for
computing visible-surface representations. The computational framework unifies forinal solutions
to the key problems of (i) integrating multiscale constraints on surface depth and orientation from
multiple visual sources, (ii} interpolating these scattered constraints into dense, piccewise smooth
surfaces, (iii) discovering surtace depth and orientation discontinuitics and allowing them to restrict
interpolation appropriately. and (iv) overcoming the immense computational burden of fine resolu-
tion surface reconstruction. An cfficient surface reconstruction algorithm is developed. 1t exploits
multiresolution hicrarchics of cooperative relaxation processes and is suitable for implementation on
massively paratiel netwaorks of simple, lucally interconnected processors. The algorithm is evaluated
cmpirically in a diversity of applications.
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formulation is obtained by invoking "controlled continuity," a physically non-restictive
(generic) assumption about surfaces which is nonetheless strong enough to guarantee
unique solutions. The variational principle, which admits an appealing physical
interpretation, is locally discretized by applying the finite element method

to a piecewise, finite element representation of surfaces. This forms the mathematical
basis of a unified and general framework for computingvisible-surface representations.
The computational framework unifies formal solutions to the key problems of

(1) intergrating multiscale constraints on surface depth and orientation from

multiple visual sources, (ii) interpolating these scattered constraints into

dense, piecewise smooth surfaces, (iii) discovering surface depth and orientation
discontinuities and allowing them to restrict interpolation appropiately , and

(iv) overcoming the immense computational burden of fine resolution surface
reconstruction. An efficient surface reconstruction algorithm is developed.

It exploits multiresolution hierarchies of cooperative relaxation processes

and is suitable for implementation on massively parallel networks of simple,

locally interconnected processors. The algorithm is evaluated empirically in

a diversity of applications.
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Terzopoulos Computing Visible-Surface Representations

1. Introduction

Over thirty years ago, J.J. Gibson [1950} made the seminal conjecture that natural human perception
’ amounts to thc perception of visible surfuces. 'The explicit representation of visible surfices, an
Q—;cnncdiatc goal of computational vision, has since attracted considerable interest.

The computational framework offered in this paper addresses, in a unified way, certain visual
information processing tasks involved in the representation of visible surfaces. Particular ¢ nphasis
is placed on utilizing highly parallel, cooperative processing to integrate surface shape information
over multiple visual sourccs, to fuse it across a multiplicity of spatial resolutions, and to mairtain the
global consistency of the resulting distributed shape representations. The issucs are first investigated
in terms of a surface reconstruction model rooted in mathematical physics. This. formal ar:alysis is
augmen:cd by an ecmpirical study of the resulting algorithms, which feature multiresolution iterative
processing within hicrarchical surface shape representations. The approach is guided by current
knowlecge of how humans perceive visible surfaces, while applications in machine vision provide

a testbed for the algorithms.  / [ Vion | ST JAomanT a..‘a;ér:;f— ) MMM,/CZ;., )’
s

The remainder of this introdtictory section examinés the role of surface representations in ecarly
visual processing, outlines the key computational problems that will be of primary concern, and
revicws some relevant prior work. ( :

% dﬁ.«é;u,[/ V’W' 1o * w
1.1. Eerly Visual Processing and Visible-Surface Representations J

Early vision comprises a sct of processcs which specialize in recovering the physical properties of
visible surfaces in a2 3D scene from 2D images of the scene. They apply generic assumptions about
the physical world and the imaging process to infer 3D surface shape constraints by interpreting
specific image cues, such as stercoscopic disparity, motion, texture, contours, and shading. These
conceptually independent shape estimation processes fall into two broad categories.

The first category.compriscs what arc commonly referred to as correspondence processes. They
operate over multiple image frames of a scene taken across space or over time. Paradigm cxamples
are stercopsis and structure from motion (sce, e.g., the review articles [Poggio and Poggio, 1984])
and [Ullman, 1983]). Stercopsis is driven by computations on typically two image frames taken
simultancously, but from different spatial positions. The basic structure from motion computation
involves frames taken from the same position, but at different times. [f correspondences can be
cstablished across the frames, between image features which originate from the same point on
a visible surface (not a trivial problem), then the deprh (i.e., 3D distance) to such points can
be estimated by triangulation, given the disparity (i.e., 2D displacement) between corresponding
features as well as some knowledge of the imaging gcometry,

The sccond category of shape estimation processes involve computations on a single static
frame. Perspective projection of 3D scencs onto images imparts a systematic distortion to imaged
surface properties such as shading, texturc, and contours. A major part of this distortior. can be
attributed to the relative oricntations of visible surfaces with respect to the viewer. In principle,
it is possible to estimate surface orientation by measuring and interpreting such distortiors in the
image. ‘1his is the basis of practical approaches to recovering surface shape from shading, texture,
and contours [tkeuchi and Horn, 1981; Horn and Brooks, 198S; Kender, 1980; Witkin, 198 (; Brady
and Yuille, 1934].

The combined output of the shape cstimation processes is best collected into intermediate

representations of the 31D shapes and configurations of visible surfaces, which we will refer to
as visible-surface representations. Notable among proposed visible-surface representations arc the
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depth and necdle maps of Horn [1982]. the intrinsic images of Barrow and Tenenbaum [1978], and
the 2%-[) sketch of Marr and Nishihara [1978]. For humans, the perception of visible surfaces is e
generally immediate, involuntary, and scems to precede (object) recognition. This strongly suggests B
the cxistence of a visual process that autonomously computes visible-surface representations. Aside

p 544

‘: from the perceptual cvidence, the availability of cxplicit visible-surface representations can also

substantially facilitate subsequent surface analysis tasks in machine vision.

'; Since carly visual processing provides relative surface shape estimatcs with respect to the

gt viewer, it is most natural to define the basic shape primitives of visible-surface representations in a
viewer-centered coordinate system. Morcover, the primitives should be computationally compatible

) with the local depth and oricntation measurements (as well as discontinuitics) that are provided by

the various shape estimation processes. These criteria are satisfied by a particularly appealing class
of local, piccewise shapc primitives known as finite clements.

A crucial realization is that shape cstimates can be provided at multiple resolutions. Indeed,
multircsolution spatial frequency channcls have been identified psychophysically in the human
visual system (c.g., [Braddick er al, 1978]). Their existence has influenced the design of early
visual algorithms (e.g., [Marr, 1982]). In addition, machine vision rcscarch has demonstrated that
i multiresolution processing cffectively bridges fine and coarse image structure, while it simultaneously
2 incrcases computational cfficiency (e.g., [Rosenfeld, 1984]). Hence, a multiresolution organization
of visible-surface represcntations is most desirable [I'erzopoulos, 1982, 1983a).

- 1.2. Key Problems of Visible-Surface Reconstruction
A The main topic of concern in this paper is the development of a visible-surface reconstruction process ;
respunsible for gencrating and dynamically maintaining visible surface representations. Whether i :

the intention is to model human vision or to design competent artificial vision systems, this process
must solve four key problems [lerzopoulos, 1983b, 1984]: (i) the constraint intcgration problem,
(ii) the interpolation problem, (iii) the discontinuity problem, and (iv) the computational cfficiency
problem. We claborate on cach of these problems next.

3
(U T B ]

-8,

(i) The Constraint Integration Problem: Each specialized visual process may be thought of as a
& quasi-independent source of information partially constraining the shapes of visible surfaces.
The human visual system is rcliable and robust because it integrates the various processes,
enabling them to complement one another. The integration of multiple sources of information
..' introduces redundancy, which is necessary not only to resolve potential ambiguities, but also
to overcome the detrimental cffects of noise and inaccuracies in the initial shape estimates.
The constraint integration problem is fundamentally one of devising an effective means of
integrating all available surface depth and orientation constraints (and discontinuities) within a
cooperative visible-surface reconstruction process.

- (ii) The Interpolation Problem: It is widely accepted that initial descriptions of images ought to
make cxplicit the occurrence and local 2D structure of image featurcs that are corrclated to
salient cvents on physical surfaces (markings, boundaries, etc.). This is the essence, for instance,

& e

! of Marr’s “primal sketch” representation of significant image irradiance changes (cdges) [Marr,
‘ 1982). Generally, such salient features do not occur everywhere over the visual ficld. The
‘ initial representation of images as a sparse sct of features implics that surface shape constraints

generated by the specialized processes will also be scattered over a subsct of image points, It
is fascinating, however, that the human visual system systematically interprets visual stimuli
such as sparse random dot stercograms as coherent 31D surfaces [Julesz, 1971]. Indeed, these
stercograms continue to clicit perceptions ol dense surfaces, even when the density of dots
carrying disparity information has been reduced until depth is unspecified over 98 percent of
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the visible surface arca (sce Fig. 1). It therefore appears that the surface reconstruction jprocess
is smoothly “filling in the gaps.™ This phenomenon has been the subject of some psychophysical
investigation (c.g.. [Collett, 1984)). "The interpolation problem of visible-surface reconst uction
challenges us to devise a scheme, consistent with human perception, for propagating shape
information into indcterminate regions (devoid of shape cstimates) from places where it is
available.

Figure 1. A sparse random dot stereogram. Binocular fusion of this stercogram reveals a planar surface as a
central, opaque. textured square suspended nearer in depth over a similarly textured background. Vivid depth
discontinuities separate the dense surfaces.

(iii) The Discontinuity Problem: Visual discontinuitics result from significant, spatially-localized

(iv)

changes in the physical world, particularly abrupt changes in surface structure. Both depth
and oricntation discontinuitics are perceptually relevant and provide vital boundary conditions
for surface reconstruction. Discontinuitics in depth occur at occluding contours, along which
a surface in the scene occludes itself or another surface. Orientation discontinuitics occur at
creases or cusps of an otherwise continuous surface. In addition to the pereeption of coherent
surfaces, random dot stercograms clicit vivid perceptions of surface discontinuitics at abrupt
disparity changes (see Fig. 1). 'The discontinuity problem amounts to (1) finding both depth
and orientation discontinuitics in surfaces, and (2) dealing with their presence during visible-
surface reconstruction; i.c., allowing discontinuitics to limit the otherwise smooth interpolation
of shape constraints.

The Computational Efficiency Problem: Visible-surface reconstruction at the resolution of the
imagic imposes an immense computational burden on both biological and artificial vision sys-
temei. Nevertheless, visible-surtace representations must be computed quickly if they are to
be of any practical value. It is generaily accepted that to achieve the necessary perfor nance,
visuab algorithms and mechanisms must emphasize parallclism [Ballard er af., 19§3]; however,
visible-surface reconstruction is compute bound to the point where the fundamental limitations
of massively parallel mechanisms, particularly with respect to global interprocessor commu-
pications, Icad to severe incfliciencies. The computational efficiency problem is to develop a
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g . . . .
e visible-surface reconstruction process that not only exploits parallelism, but also overcomes co- B
Nﬁ operative communication bottlenccks to compute visible-surface representations quickly, given &f:-;:')
\ suitable architectures. For the reasons outlined in the foregoing section and following our ’
previous work [T'erzopoulos, 1982, 1983a). our solution to this problem hinges on the idea of
;t,: multircsolution structuring of visual representations and assaciated cooperative processcs.
23
Kot 1.3. Prior Work
, There has been some prior work relating to the computation of visible-surface representations.
ﬁ Barrow and ‘I'encnbaum [1979] describe an approach to reconstructing smooth surfaces from noisy
X o visual data. 'This approach did not apply to general classes of surfaces, however, and the proposed
"-; relaxation algorithms were not supported by a firm mathematical analysis. Nevertheless, Barrow
o and Tenenbaum’s {1978] basic model of intrinsic images and much of the philosophy underlying
their computation seems appropriate, and it has influenced our approach.
‘The interpolation problem is related to classical spline approximation. A number of well-known
.;-f-j surface approximation mcthods for scattered data are reviewed by Schumaker {1976). Grimson
:—,:f- [1983] employed one of these methods for the continuous interpolation of visual surfaces from depth
.,:._,:: constraints; a minimization scheme involving a particular functional containing sccond derivatives
e (he referred to it as the “quadratic variation™). Brady and"Horn [1983] obscrve that this functional
= is related to the bending cnergy of a thin plate (a connection noted by Duchon [1977]), and the
e thin plate model was developed further by Terzopoulos [1983a] (see also [Blake, 1984]).
= Interestingly, thin plate interpolants have appeared in other areas, including the interpolation
‘~'::' of aircraft wing deflections [Harder and Desmarais, 1972), interpolation of meteorological fields ‘
L [Wahba and Wendelberger, 1980], and the interpolation of digital terrain maps [Briges, 1974; -j,
L Bolondi et al., 1976]. In this latter paper there is some concern for the presence of discontinuitics :
:f~. (faults).
j::.. Following Ullman {1979} and others, Grimson [1983] pursued “biologically feasible,” parallel
,-,f.jj and itcrative algorithms for surface interpolation. A scrious drawback of algorithms which satisfy
o these criteria is that they often converge cxcruciatingly slowly for problems of reasonable size.
) The idea of multiresolution surface reconstruction cxploiting multigrid relaxation methods was
N shown to overcome this problem while adhering to biological feasibility [Terzopoulos, 1982, 1983a).
" ‘The multiresolution methodology yields cfficient algorithms not only for the surface reconstruction
:C::-: problem but for other visual problems as well [Terzopoulos, 1984).
\.: In retrospect, although progress has been made, a satisfactory computational theory of visible-
0 surface representations has been clusive. This is largely a consequence of the significant technical
T obstacles encountered in devising formal solutions to all four key problems of visible-surface
_:Z‘j_ reconstruction within a unified computational framework. The difficulty of the task appears to have
S0 cvoked some skepticism as to the actual computability (hence, cven the uscfulness) of intrinsic
- surface representations [Witkin and” Tenenbaum, 1983). Based on the theoretical gencrality of
our approach and the accompanying cmpirical results, however, we believe such skepticism to be
T premature. ‘

2. Mathematical Analysis of Visible-Surface Reconstruction

N

f::jl Let the true distance from the viewer to visible surfaces be given by the function Z(z,y), where
;\: x and y arc the image coordinates. Low-level visual processes generate a sct of noise corrupted
b

.._‘)
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- surface shape estimates (i.c.. constraints) {¢;} which can be expressed in the abstract notation
:.. R ¢ = L','[Z(:c,y)] + ¢, (1)
. w, . . .
o where £; denote measurement functionals of Z (. y) and ¢; denote associated measurement errors.
’ Stated simply, the visible-surface reconstruction problem is to reconstruct, as faithfully as possible,
& the depth function Z(z.y) from the available constraints {¢;}.
": 2.1. The HI-Posed Nature of the Problem and Regularization
The problem is made nontrivial by the nature of the constraints, First, constraints are contribt ted not
) by onc, but by multiple specialized carly visual processes. Hence, slightly inconsistent measurements
<. provide1 by different processes that happen to coincide will locally overdetermine surface shape.
- ’ Sccond. constraints are not dense, but scattered sparsely over the visual ficld. Therefore, while
3N they mey restrict surface shape locally, they do not determine it uniquely everywhere; there remain

very meny feasible surfaces that arc consistent with the constraints, Third, the measurcments are
subject to crrors and noise. High spatial frequency additive noise, regardless how small its (RMS)
amplitude, can locally perturb the surface (oricntation) radically.

In view of the above three considerations, we cannot conclude in general that the solution
will exist, nor that it will be unique, nor that it will be stable with respect to measurement
crrors. viathematical problems for which the existence, uniquencss, or stability of solutions cannot
ke be guatanteed a priori are said to be ill-posed [Tikhonov and Arscnin, 1977]. Visible-surface
reconstruction can thus be characterized as a fundamentally ill-posed problem.

2 Hl-posed reconstruction (or inverse) problems are the rule rather than the exception 'n early
vision [Poggio and Torre, 1984). Tll-posed problems cannot be solved in general, without imposing

.
A

»

.
d“ll

- - o some additional restrictions on possible solutions. This is the basis of a number of systematic
3 m approachcs, notably the regularization methods introduced by Tikhonov and others (sec {Tikhonov
- and Arscnin, 1977] and references therein). Duda and Hart {1973, Sec. 7.4] mention a basic form
:t of regularization (essentially spatial smoothing) for combating the effects of noisc in images. A
~ more sophisticated class of regularization methods is discussed in the context of low-level vision by
3 Poggio and Torre [1984].

Through regularization, ill-posed problems can be solved by reformulating them as variational
o principles that are effectively computable. Unlike the original problems, the variational principle
- formulations are well-posed, i.c., it is possible to guarantee the existence, uniqueness, and stability
:: of their solutions under nonrestrictive conditions. Reformulation proceeds with the introduction of
[+ suitable stabilizing functionals, notably the class of stabilizers proposed by Tikhonov and Arsenin
‘. [1977, pp. 69-70]. These stabilizers can be interpreted as spline functionals that impose smoothness
o assumptions on the admissible solutions (by restricting them to Sobolev spaces of smooth functions).!
N Pragmatically then, this type of regularization is esscntially equivalent to optimal approximation by
:- generalized splines [Terzopoulos, 1985a). We pursue the generalized spline approximation point of
. view, since splines are faniliar and since they suggest helpful physical interpretations.
L 2.2. A Variational Principle
» The abstract theory of optimal splinc approximation is well-developed and a close connect.on has
:\: been established with variational principles involving the constrained minimization of (semi-; norms
» in (scmi-) Hilbert function spaces [Laurent, 1972]. Let X be a lincar space of smooth functions and
N - let ${v) be a lunctionat detined on ¥ which measures the (lack of) smoothness of a function in
.:: T ! Generic smmthnc\a .lssumpuons are generally the weakest (Ieast committal) assumptions that onc cin make
» about feasible solutions and still obtain well-posed formutations.
s
X

Y |

g

R VLA SR
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X. Furthermore, let P be a functional on ¥ which provides a mcasure of the discrepancy between
the function and the given constraints. Consider the following variational principle: .-fjﬁ-j_-

VP: Find u € X such that
£(u) = inf €(v), (2)
v

where the energy functional

£(v) = S(v) + P(v). (3)

This variational principlec will serve as a formal statement of the visible-surface reconstruction
problem: The best reconstruction of the depth function Z(z, y) from the available constraints will
be given by the solution u(z,y), the smoothest function in the admissible space ¥ which is most
compatible with the constraints,

Before proceeding to specify the smoothness functional §{v) and the penalty functional P (v),
it should be noted that, if the solution exists, it satisfies the nccessary condition for the minimum
given by the vanishing of the first variation 8,

6&(u) =68 (u)+6P(u) =0, (4),
which expresses the so called Euler-Lagrange equations.

2.3. Generalized Spline Functionals

For an appropriate smoothness functional §(v), we turn to the multidimensional splines studied
by Duchon [1977] and Mcinguet [1979], gencralizations of the classical univariate splines {Ahlberg,
et al., 1967]. The subclass of (21D} surface splincs relevant to our problem can be charactcrized as
members of a suitable space of admissible functions v(z, y) which minimize the functional i

lo[2, = f /m ’}:( )((may’; ’)2d:cdy. (5)

The positive integer m dictates the order of the partial derivatives that occur in the functional,
which in turn determines the order of continuity possessed by the admissible functions. The Euler-
Lagrange cquation satisfied by the minimizing function u(z,y) is an itcrated version of Laplace’s
cquation: (—1)"A™u = 0, where Au = ug; + uy, is the Laplacian of u.

Low order surface splincs have interesting physical interpretations involving cquilibria of clastic
o bodies. Two spccial cases are of interest. For m = 1 the functional rcduces to

‘- |u|2=//(v§ -+ v:) dz dy, (6)

which is proportional to the small deflection energy of a membranc (c.g., rubber sheet), while for
‘--.-- m= 2’

::::} |v|§ :// (v:, + 21)3,, + vzy) dz dy, (7)
is proportional to the small dcflection bending encrgy of a thin plate (with zcro Poisson ratio)

[Courant and Hilbert, 1953]. Duchon [1977] refers to the minimizers of ]v|§ as thin plate splines,

Since thin plate splines arc the natural 2I) analogs of cubic splincs, |u|§ finds frequent usage in
surface intcrpolation problems [Schumaker, 1976). In particular, it has been cmployed for visual

3:‘ surface intcrpolation [Grimson, 1983; Terzopoulos, 1983a.

\““: - . . . .

3 The physical interpretations make it clear that membrance splines offer a lower order of -
SN continuity than thin plate splincs. Since the physical forces in the membrane are due primarily Uy
ey to its surface tension, it gencrates minimal area surfaces.  Although minimal arca surfaces arc o
BN continuous, they nced not have continuous first partial derivatives; i.c., they are C? surfaces. For

S

.‘ J“}":: “q“.":":.‘.:f‘ W _:'.-.L‘_‘-"v.‘.-.:-.-.', >
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instance & sharp corner would result readily it an idealized physical membrane were subjccted to
the deflecting force of a knife edge. In contrast. the restoring forces in a physical thin pate are
duc primarily to its flexural rigidity. A thin plate would not crease when defiected by a knife cdge.
‘Thin plate splines therefore maintain continuity as well as continuous first partial derivatives; i.e.,
they generate C'! surfaces.

24. Controlled Continuity and the Thin Plate Surface Under Tension

Gencric smoothness assumptions arc justified in pursuing a regularization approach to the visible-
surface -cconstruction problem, inasmuch as the coherence of matter tends to give rise to sraoothly
varying surfaccs relative to the viewing distance, over some range of scales; however, smoothness
assumptions clearly do not hold arbitrarily across surface discontinuitics, some of which persist
across 21l scales. ‘This introduces significant complications for classical spline approximaztion or
regularization methods; the continuity of spline functionals (or stabilizers) must be controlled at
discontiwitics in order to prescrve them.

A atabilizer providing the necessary local continuity control can be realized as a weighted
combination of genceralized spline functionals of more than one order m [l'erzopoulos, 1985a). We
propose the following smoothness functional:

piv) = 5 [ [ oo {rle ol + 28, o) 4 1= ol 62 + o)} dody, (6)

where ! denotes the image domain, and p(z,y) and 7(z,y) are real-valucd weighting functions
whose range is [0, 1]. This controlled-continuity stabilizer is a wcxghted convex combination of the
thin plate spline functional |v|2 and membrane spline functional |v|1 integrands. The associated
Euler-Lagrange equation is

5%(/“":1) r)('; (2pu zy) + )02 (nu y!l) (77 z) = ay (T]‘U.y) (9)

where p(z,y) = plz,y)7(z,y) and n(z,y) = plz,y)[1 -7 z,y)], with natural (i.c., free) boundary
conditions. The functional S, (v) can be thought of as a thin plate surface under tension, where
p(x,y) is a spatially varying “rigidity” and {1 — 7(z,y)| is the spatially varying “surface tension.”
It generalizes the unidimensional splines under tension of Schweikert (see [Ahlberg, et al., 1967)).

‘The local continuity propertics of the thin plate surface under tension functional can be
controlled at any point (z,y) ¢ 0 by specifying the valucs of the continuity control functions
p(r.y) and 7(r.y) at that point. As 7 approaches 1 the functional tends to a thin plate spline (a
¢! surface) whereas towards the other extreme, 0, the functional tends to a membrane spline (a
C" surface) with intermediate values characterizing a hybrid C! surface that blends the properties
of both constituent splincs. p determines the overall potency of the smoothness functional.

Reconstructed surfaces must be able to faithfully preserve known depth and oricntation
discontinuitics, while not introducing spurious discontinuitics at other locations. This can be
accomplished if (i) away from known depth and orientation discontinuitics, the reconstructed
surface possesses (at least) the C! smoothness of a thin plate, maintaining both continuity and
continuous derivatives, (i) at known oricotation discontinuitics, it cxhibits just the C" smootkness of
a membrane, maintaining continuity only, and (iii) at known depth discontinuitics, the smoothness
functional is deactivated so that the reconstructed surface is free to “fracture™ locally. Hence,
Spe(v) will be manipulated as follows: At all non-discontinuity points (z,y), p(x,y) and 7(.y)
should ke nonzero. At orientation discontinuity points, 7(x,y) is sct to zero. At depth discontinuity
points, g, y) Is set to zero. Mechanisms for automatically detecting discontinuitics by comiputing
continuity control (unctions optimally according to local criteria arc considered in a subscquent

scetion.
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2.5. Penalty Functionals

Assuming independently distributed measurement errors ¢; with zero means and variances a?. the
optimal measure of incompatibility is a weighted Euclidcan norm of the discrepancy between the
admissible function and the data ¢;:

Plvy= % Z a;(Liv] - €)?, (10)

where the «; are nonnegative real-valued weights (ideally oy is inverscly proportional to of:
ie. ; = 1/Aa?) [Kimeldorf and Wahba, 1970]. This penalty functional can also be employed
(suboptimally) when the above assumptions do not hold strictly.

Appropriate measurement functionals £; for surface reconstruction may be synthesized from

generalized k®-order derivatives:
L, 1__92__| ' =0,1 k (11)
l[vl - (').Tjayk"j)(:”y')’ J=U,1,...,K

k = 0 yiclds simplc cvaluation functionals L;{v(z,y)] = v(zi, %), which will be employed to
model the local depth constraints

¢ = v(Ti, %) + & = dz, - (12)
The components of the local surface normal n(z;,y;) = [vz(zi, %), vy (i, ¥:), —1), which deter-
minc local surface orientation, can be handled by the first order (k = 1) derivative functionals
Lilv(z,y)] = vz(zi, %) and Liv(z,y)] = vy(zi, v:) and yield anclogous expressions for the local
oricntation constraints:

¢ =z (i, ¥i) + € = Pz )

¢; =vy(y, %)+ 6 = V[ETAD
Other potentially refevant functionals such as dircctional derivatives can be accommodated straight-
forwardly with the above notation.

It is convenient to scparate the various constraints into three sets; the set ¢+ € D of image
points at which depth constraints d(,, ,.) occur, and the scts ¢ € I” and ¢ € @ at which orientation
ConsStraints p(z, y,) and q(z, 4,y occur respectively. The penalty functional can then be expressed as
a sum of thrcc components

(13)

1 1 1
Plo) = 5 Y auilv(ziw)-dg, ,y.)J2+§ > apfv.(z, yi)—P(zi,y;)JzﬂLE D ooy (30, 9:) (e )]

i€D i€P i€Q
(14)
where the a; parameters are now distinguished as ay;, ap,, and ay;.

2.6. A Physical Model for Visible-Surface Reconstruction

The variational principle formulation of the surface reconstruction problem has an appealing
physical interpretation which is iflustrated in Fig. 2. 'The thin plate surface under tension may
be visualized as an clastic surface, planar in its natural state, whosc clastic bending encigy S, (v)
stabilizes surface shape so that it varics smoothly in between constraints (but not at discontinuitics).
Constraints deflect the surface according the penalty functional £ (v), which can be interpreted as
the total stretching cnergy of a sct of ideal springs attached to the constraints. ‘The left part of
the figure shows the clastic surface whose deflection u(x, y) at equilibrium is determined by an
infrastructure of scattered depth constraints. The local depth cstimate is encoded as the vertical
height of the constraint and the tightness of cach constraint is controlled by associated spring
stiffness ;. The right part of the figure illustrates an orientation constraint cocrcing the local
surface normal. ‘The spring stiffness is determined by (he constraint parameters e, and cvg,.
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Proposition. The solution w(x,y) will exist, be unique, and stable given any one of the following
- minimal conditions

oRe
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2
2 — —
‘.\-
-
o orientatior constraint
. surface normal
.
-.‘_\\
o ANV
.-:’:-
el
Figure 2. The physical model. Thin plate surface under tension and depth constraints (left). Local influence
T of an orientation constraint (right).
2.7. Fxistence, Uniqueness, and Stability of the Solution
e Existence, uniquencss, and stability of the solution u(x,y) to the variational principle VP are
o . guaranteed when &,.(v) = S, (v) + P(v) is a norm in the admissible space ¥. Unfortunately,
(i‘“' generalized spline functionals [v]fn arc a priori only semi-norms (of a particular class of Sobolev
5 spaces). ‘The null spaces N of functions that map to zero under the semi-norms are simply the
5 (M=(", l) dimensional) spaces of all polynomials over R of degree less than or equal to m - 1
[ [Mcinguet. 1979]. The penalty functional P (v) can force €,-(v) to be a norm, however, if it at
-::\'. lcast constrains N to a unique polynomial. A possible set of conditions for this to occur is that the
; 2, include cvaluation functionals at an N -unisolvent set of points (i.c., a set of M points which
) ] defing a unique polynomial in the null space of the smoothness functional). In particular, since the
maximum order of genceralized splines in the stabilizer Sy (v) is m = 2, its null space is the space
e of lincar polynomials. Thus, the following proposition can be proven [I'erzopoulos, 1984]:
YO

v 0

N (i) three noncolinear depth constraints,

. (ii) two deptl constraints as well as a single p or q constraint,

5 (iii) a single depth constraint as well as a single.p and a single q constraint,
R 3 (iv) a single p and a single q constraint with the “center of gravity” of the surface fixed.
Thase minimal conditions will hold in practice, due to the large number of constraints typically
- available from carly shape estimation processes (the fixed center of gravity condition can be imposed
- when necessary). Consequently, the visible-surface reconstruction problem may be considered well-
[ posed, hence effectively computable in general,
+ -~ Satisfving the conditions for a well-posed problem essentially guarantees that a unique state of
._-:'.: stable cquilibrivm will exist tor the plate/spring system (the minimal energy state &,,(u)). In this
‘A context, the controlled continuity asstmption about surfaces, as embodied by the thin plate surface
o

Y
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T under tension model. is physically nonrestrictive but nonctheless powerful cnough to guarantee the .
N . . . L. .. .
- existence of unique solutions to the variational principle. ) a‘

v
>

L
o
3
. 3. Discretization
ot
=
o4
E_( It is extremely difficult, if not impossible, to obtain an analytic solution to the variational principle
due to the irregular occurrence and geometry of constraints and discontinuities. For our purposes,
the only viablc approach is to convert the continuous surface reconstruction problem to an equivalent
::' discrete problem whose solution can be computed numerically. To this end, finite elements make
\, ideal local surface shape primitives for usc in visible-surface represcntations [Terzopoulos, 1982,
A 1983a]. The finite element method [Strang and Fix, 1973] is a general, powerful, and mathematically
o rigorous approximation technique which guides the selection of appropriate clements and governs
.a. ) their interactions according to the nature of the variational principle.
N " The finite clement method offers substantial flexibility in discretizing domains with irregular
L~ shaped boundarics. Although the use of irrcgularly shaped clements to discretize such domains
Co may not present a feasibility problem with regard to distributed biological mechanisms, it makes o
nontrivial the mapping of elemental computations onto regularly interconnected processing networks 3
N typically provided by VLSI technology. In this paper we restrict ourselves to regular finite clements
s in order to facilitatc such mappings. Since the goal is to obtain a particularly finc discretization, at
?;:; the resolution of the image, the restriction to fine rcgular clements will not jeopardize our ability
= to accommodate the irregular occurrence of constraints or discontinuities.
e
N 3.1. The Discrete Equations
o
-~
'4 The domain Q is tessellated into square clement subdomains with sides of length h. Nodes are
)‘ located at clement corners and shared by adjacent clements, This results in a planar and uniform
Lo squarc grid of nodes that is idcally suited to VLSI implementation. The nodes are naturally
3 indexed by (i,7) fori =1,...,N; and j = 1,..., N, where N; and N, arc the number of
- nodes along the = and y axis respectively of the (rectangular) domain 2. The total number of nodes
s is N = Nz x N,. The reconstructed surface is represented by an assembly of (nonconforming)
4 finitc clements, cach of which is a six-point (full) quadratic interpolant defined locally within its
"::f particular subdomain. The unknown displacement (surface depth), at node (¢, 7) is denoted by the
‘:: variable vf“ ;= v(th, 7h). Taken together, the displacement variables are denoted by the vector
e v* € R¥. Once this vector is determined by solving a discrete version of the variational principle,
ey the local interpolants arc known cxactly and, conscquently, they explicitly represent depth and
- oricntation everywhere over the surface. P
-3 N
Y.
.- The proposed square, quadratic clement leads to the following O(h?) formulas for the required

.

s
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partial derivatives at an arbitrary node (2, ) [Terzopoulos, 1983a);

h 1y h h .
Ver = ,72_ (vi)l‘j - zvi.j v l,j) '

h Iy
Vyy hz(,w —2vh +Vz,1)
1 .
h h A h h\.
Vay = 13 (VH-l,jH T Vig+t T Vipr st Vi,j) i (15)

h g h\ L
vy = Z (Vl'+l,j - Vi,j) )

= 5 (e =)
Note that the formulas arc finite difference expressions. Their appearance is due to the uniformity
and low order of the clement and their relative simplicity will facilitate the calculations substantially.
Subsmutmg the above expressions with the constant approximations p(z,y) = p, ' and
7(z,y) = rt >; into (8). and noting that the area of cach clement is h2%, we obtain the discrete

functional
h

1 T 2
h )
Spe (V") = ) Z p:',{'}% [(V?H.j - 2v""d' + v?‘l’j)

4]
2 h ] A 2
+ ( ' g+l T ivj +1 v""’lvj + v’.vj)

. 2
+ (Vi,j+1 — vl 4 1)

2 2
h h h h h
+ {1 = Ti.j] [(Vm,j - "-'.j) + (Vi.ju - V-',J') ”

Although by no mcans a nccessity, it is both natural (in view of common image discretization)
and convenicnt to assune that the constraints coincide with nodes (¢, 7) of the grid. Hence, to
obtain a discrete expression for P(v), we collect the nodes at which the various constraints occur
into three sets; the set (¢, 7) € D at which depth constraints d’-' . occur, and the scts (1,7) € P

and (¢, 7) € Q at which oricntation constraints p} . and ql occur Using symmetric difference
approximations for the partial derivatives in (13), the dlsuctc penalty functional may be written in
terms of the nodal variables as

P"(v"):% > adl, (v, - )2

(16)

('.’J.)ED
h h \1
2 Z Pl,] <2h( Ul] Avl'»l.j) P..,/ (17)
(v.5)cpP
1 RN h a )
+ —i Z n'h,_j (2—h (Vi,jd ~ Vi l) - ql.]) :
(15)eQ

The encrgy-minimizing vector of nodal displacements u® satisfies the cquilibrium condition
VER () = VSI(uh) + TP (uh) = 0. ('8)
whcrc V is the gradient operator. Since the discrete functional 6" (uh) is a quadratic form in the
. the above cquation defines a lincar system of simultancous cquations th.at are sainficd by u*

-'I hc discrete problem amounts to solving these nodal equations.
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3.2. Computational Molccules
To progress towards cxplicit expressions for the nodal cquations, we first dclcrmmc the partial
derivatives of $% (u*) and P*(u") with respect to an arbitrary nodal variable uf ;. Letting
”"J = pt,J "J/hz and "i.:i = pi,j(l - Tia’)’ (19)
35, (u") h h
5= { (ug"'.j - 2“?—1,;’ + ui~2,j) Bi-15

h
au.-’ ;

we obtain

+ 2u,+l gt 4u 2u,'-'_1,j) yf"j

+

h h h
2l - by - 20t + 2“.'-1,;'-»1) B 15-1

+

(-

+ ( Uiy J 2"’t+1 W + u; _1) ”’t+1,1
(202
(-

h h
2 Uir1,y + 2ul J + 2“:-41 WJ-1 zui,j—l) Hi5-1

+

( 2ul L+ 2ut iy +2u; 2u?_,,j) phy
+ {20k o1 — 208500 - zug'm.”uaj) ub, (20)
+(uf; - 20l g+l 2)1",,1

+(-2ut 41 +4u? 2le'j_1) p,‘-h’j

Ugj+2 ~ 2“1 g+1 T U ;) l‘.,,“}

(2t

(uf

(-

+(uh

+{ (u i~ Ui 1,) Tl?—x,j + (u?,j - “c"'+1.j) "31’
+ (U W U 7~ 1) Nij-1+ (u:‘ u?,.‘f*'l) '7::.1'}’

the discrete version of (9). Next, for (i,7) € DN PNQ,

APM(uh) (a L _ad;,d|,1)

811.,,

Pa l,] h
Pi-1,j

-+

U

4h2 6,5

(Bt () -
’ ("f;:’:;, (“ i uly ,) *=n ap, H'J Pla,s
(B s - h) -

(21)

ah,, -1 A

91,5--1
ok -1

4h?

ub
Ui j — Ui

\/\_/\—/

h h
Qt.JH h h qt,JH h
T (ui,j - “i.j-i-Z) t—on Gt

The above expressions specify the nodal equations implicitly. Each constituent term in (round)
parcntheses can be represented graphically as a basic computational molecule.  Computational
molecules will be interpreted both as spatial representations of the nonzero coefficients in the nodal
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cquations, and as local computations involving multiplications and additions of specific proximal
nodal variables. ‘the former interpretation will facilitate the construction of individual nodal
cquations given some local structure of constraints and discontinuitics, while the latter will lead
directly to local iterative algorithms for solving the resulting simultancous lincar system.

3.2.1. Basic Molccules

28 28 88 88
O 00O 060 6

Figure 3. Plate molecules (a) and membrane molecules (b).
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3

T Eg. (20) is a convex combination of two components; the first stemming from the thin plate
{%' energy functional, the sccond, from the membrane energy functional. Each constituent term yiclds Y
oy RN

a basic computational molccule (sce Fig. 3). a sct of linked aroms indicated by circles. The central
. node (s, ) is indicated by a double circle in cach molccule. Fig. 3(a) illustrates the ten plate
‘: molecules obtained from the terms of the first component, while Fig. 3(b) shows the four membrane
et molecules obtained from the terms of the sccond component. Each atom contains the cocfficient of
\"‘ the associated nodal variable (aside from the p? ; and n factors).
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: Figure 4. Depth constraint molecule (a) and orientation constraint molecules (b).

'...
(o]

Similarly, the depth constraint term in (21) can be rcplcs'cmcd by the depth constraint molecule
shown in Fig. 4(a). Associated with it is the factor n,,, ; l," - Which is indicated underncath the :
molecule, ‘The remaining oricntation constraint terms of (21) arc represented by the orientation ORI
constraint molecules and associated factors shown in Fig. 4(b).
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-
o 3.2.2. Molecular Summation within Smooth Regions
A
o . . ‘
WA, T'he formation of nodal cquations within continuous regions can be visualized as a process of
molecular summation. During molecular summation, the basic molecules combine at the central
7' node, coincident atoms summing together.
3 )’ . . . . » .
N When (¢, 7) is an interior node, away from constraints and discontinuities, p:-' ;= r,-"- =1, and
o only the plate component of (20) contributes to the cxpression for the partial derivative. Hence,
a the cquilibrium condition (18) reduces to the nodal equation
‘ 20, 8, h h h
. 0= YT e (ui—l,j R TSW R M uz‘,j+l)
iﬂ“ 2
oy | h h h h
= : Ry (ui—l,j--l F UGy -1 g gy T ui+1.j+1) (22)
o 1
ey h h h h
y) (ui—Z,j tUg U2t U.‘,j+z) .
|- This equation can be represented by the composite nodal molecule illustrated in Fig. 5(a), which
o results from the summation of the plate molecules in Fig. 3.
3
l..‘
o )l‘n
P
: OO
o
)
‘h
| ]
A
[
.“ A
7 B
b~
;*:.: ;
R : Figure 5. Interior node molecules. (a) Away from discontinuitics. (b) At interior orientation discontinuities.
N ‘ :
::::: : Note that the computational molecule for the center of the region is a factor of k2 (due to the
S clemental area) times an order O(h?) finite difference approximation for the bihanmonic operator
¢ [Abramowitz and Stegun, 1965, p. 885), the Euler-l.agrange equation associated with the thin plate
o spline. This is an expected consequence of the particular clement employed which yiclded finite
LI . . . . . .
_S difference approximations for the second partial derivatives of v*.
AN If node (7, 7) is a depth constraint, the first term in (21) takes_part in the nodal cquation. The
e cffect can be represented as a summation of the depth constraint molecule and associated constraint
. . factor with the nodal molecule for (7, 7) shown in Fig. 5(a).
PR Similarly, if (£ - 1,7) or (¢ + 1. 7) arc p constraints, or (3,7 — 1) or (¢, 7 + 1) arc ¢ constraints,
_'::-j the other terms in (21) participate in the nodal cquation. Again this can be represented as the
N
1‘..‘
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summation of computational molccules. Specifically. the upper Icft molecule in Fig. 4(b) sums with
the nodal molecule if (¢ — 1,7) € P, the upper right only if (£ + 1,7) € P, the lower left only if ey
(1,7 — 1) € Q. and the lower right only if (i,5 + 1) € Q. e

3.2.3. Molecular Inhibition at Discontinuities

If (¢. ) is a discontinuity, cither u . or n, or both may be zcro, thus nullifying the summation
of specific molecules. This crucial mﬂucncc of the discrete continuity control functions near known
discontinuitics will be referred to as molecular inhibition. 1t was convenient for expressing (20) and
(21) to discretize u(z,y), p(z,y). and 7(z,y) over the same sct of nodes. Although orientation
discontinuitics can be situated at these nodes (since uﬁ 5 is defined at an oricntation discontinuity),
it is better to position depth discontinuitics on the links half way between nodes (since u:‘, ;s
undcfined at a depth discontinuity). Discretizing 7(z,y) on links docs not present a problem in
practice. As a general rule, a discontinuity mdy inhibit a molecule only if it coincides with a

constituent atom or link.

First consider orientation discontinuities. At an orientation discontinuity, 7;*. = 0 and only
the sccond component of (20) contributes to the nodal equation. In effect, the platc molecules are
inhibited and replaced by the membrane molecules of Fig. 3. At an interior oricntation discontinuity
(¢.4), away from depth discontinuitics, all four membrane molecules superpose to yicld the nodal
molecule shown in Fig. 5(b), which represcats the nodal equation

h h h h o b _
AU — Uy~ Uy T Uy Ui = 0 (23)
The cquation will be recognized as —h? times a standard finite difference equation for the Laplacian

[Abramowitz and Stegun, 1965, p. 885]. It too appears as a consequence of the Euler-Lagrange
cquation associated with thec membrane spline.

Since an oricntation constrain cannot meaningfully coincide with an oricntation discontinuity,
oricntation discontinuity nodes inhibit orientation constraint molecules. On the other hand, depth
constraint molccules are not inhibited by oricntation discontinuitics since it is perfectly reasonable
to locally constrain a membrane spline in depth.

Because smoothness constraints arc unsuitable at a depth discontinuity node (¢, §) (i.e., pi; =
0), a nodal cquation cannot involve nodal variables separated by or coinciding with a dcpth
discontinuity. Conscquently, depth discontinuitics inhibit all of the basic computational molecules.
Fig. 6(a) illustratcs examples (disrcgarding constraints) of nodal molecules for boundary nodes
(marked as double circles) which are near depth discontinuity nodes (marked by X’s). Examples of
nodal molecules at boundary oricntation discontinuitics (double circles) next to depth discontinuities
(X's) are shown in Fig. 6(b). .

4, Detection and Localization of Surface Discontinuitics

An important feature of our framework for computing visible-surface representations is the uni-
form treatment of constraints and discontinuitics, essentially as localized and independent surface
shape primitives. ‘This facilitates the paraliel integration of discontinuity information, along with ]
shape constraints, over the various carly shape estimation processes. It is convenient to think of
discontinuity information as being collected into a discontinuity map which is in registration with
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Figure 6. Molccular inhibition at discontinuitics. (a) Nodal molecules at boundary nodes (double circles) near
depth discontinuity nodes (X's). (b) Nodal miolecules at boundary orientation discontinuitics (double circles)
next o depth discontinuities (X's).
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the reconstructed surface. Technically. the map comprises the nodal variables {p"-"J-} and {r‘{'j
representing the discrete continuity control functions.

Any carly visual process can participate in initializing the discontinuity map according to its
own local hypotheses about the occurrence of discontinuitics. In general, this prior discontinuity
information will be partly incomplete and inconsistent, since it derives from narrowly specialized 21D
image analysis. In cvolving a globally consistent surface, the visible-surface reconstruction process
performs a crucial task: it brings the prior discontinuity information into consonance with the 3D
shape constraints collected from all the carly processes. This raises the problem of detecting and
localizing both depth and orientation discontinuitics during reconstruction. The current scction
investigates this problem for the (impoverished) case in which no prior discontinuity information
is available. We first propose a straightforward scheme which exploits the regularizing properties
of the surface modecl, then a more sophisticated approach that extends the variational principle to
optimally estimate discontinuities according to gencric expectations about their local structure.

4.1, Regularization Based Discontinuity Detection

From one perspective, surface discontinuity detection shares much in common with traditional
approaches to image intensity edge detection. In particular, it is possible to detect discontinuities
by applying thresholded local differencing operations to the reconstructed surface which, like the
image, is a regularly sampled function. Because they are easily corrupted by image noisc, however,
local edge operators such as Laplacians perform poorly [Rosenfeld and Kak, 1982] without a
smoothing prefilter, say a Gaussian [Marr and Hildreth, 1980]. Interestingly, the thin plate surface
under tension performs the necessary smoothing on the sparse and noisy shape constraints (standard
low-pass filters such as Gaussians are inapplicable to sparse data). This regularizing effect permits
the reliable computation of numerical derivatives for detecting discontinuitics [Bakhvalov, 1977,
Scc. 5.4; Poggio and Torre, 1984; Terzopoulos, 1985a). In addition to exploiting the regularizing
effect of the thin plate surface under tension, the discontinuity detection scheme described next
is casily accommodated within the distributed computational structure of our framework, and it
permits relevant criteria such as psychophysically measured limits on stercofusion to impact on
discontinuity detcction.

Consider the random dot stercogram in Fig. 7 which depicts a sct of planar surfaces stacked in
depth. I-ig. 8 shows a singlc continuous surface generated by the surface reconstruction algorithm
from sparsc stercoscopic disparitics provided the Marr-Poggio-Grimson (MPG) sterco algorithm
[Grimson, 1985]. Fig. 9 dramatizes a portion of the reconstructed surface in cross section as it passes
across a depth discontinuity. The C'! surface overshoots constraints near the discontinuity because
its smoothness canflicts with the sudden change in depth. The surface is clearly inappropriate as-a
final solution necar depth discontinuitics, but the local incompatibility can signal the occurrence of
these discontinuitics. '

Opposing bending moments are imparted to the surface by the constraints on either side of
the discontinuity. The surface inflection (see Fig. 9), where the bending moment undergoes a sign
change. localizes the depth discontinuity. FFor a thin plate spline u(z, y). the bending moment per
unit length parallel to the z-2 planc is proportional 10 —u,.,, while its countcrpart parallel to the
y-z planc is proportional 0 —uy, [Szitard, 1974]. The sum of orthogonat bending moments gives
the total moment M = —(uz; +uyy) = - Au. the negative Laplacian of the deficction function. It
can be computed readily at a node (¢, 7) of the discrete surface using the standard approximation:

Lfn h A h h
M,"]‘ = *‘""—2‘ (ll.‘ 1,5 + ut'+l.j t ui,j 1 + ui.jll - 4”:',]') . (24)
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Figure 7. Synthesized random dot stereogram. When fused, the stereogram depicts four planar surfaces
stacked one atop the other in depth.

The zcro crossings of M for the rcconstructed surface in Fig. 8 arc shown on the left in
Fig. 10 as black contours, Most of these correspond to weak inflections duce to slight ripples in the
cconstructed surface. A measure of significarice is therefore needed to detect true discontinuities
while weeding out spurious, weak inflections. The magnitude of the local depth gradient (surface
tilt) is a suitable significance measure for depth discontinuitics. Hence, an inflection point will

be considered significant if ¢ = |Vu| = /u? + ul exceeds a limit ¢4 (it is more efficient to

use the square of this gxprcssiun ul + uﬁ, or even |ug| + luy|). Employing the usual discrete
approximations, we obtain

1 2 2
Givj = 472 [(u?ﬂ.j - u?tl.j) + (ul’},j+l - ul"l.j—l) } (25)
The right half of Fig. 10 shows the significant inflection points where G;; > tq with ¢ = 1.
Adding these significant points to the discontinuity map (by sctting the associated ":l.j to zero)
fractures the continuous surface to yield as a solution the reconstructed stack of surfaces shown in
Fig. 11.

The limit ¢; must be large cnough so that weak inflection points are rejected as possible
discontinuitics. while not so large as to miss many true depth discontinuities. A possible criterion
for choosing ¢4 in applications to stercopsis of opaque surfaces is suggested by Panum’s luniting
case; i.c., when a surface is tilted so much from the viewer that it begins to occlude itself from one
cye, causing stercopsis to fail. Human stercofusion limits have been measured psychophysically.
Using pairs of points at different orientations, Burt and Julesz [1980] measured a roughly isotropic
disparity gradicnt limit of approximately 1 between fusion and diplopia. Interestingly, this is only
half the Panum limit.

It is not inconsistent with these findings to use the disparity gradicnt limit £y to detect
significant depth discontinuities in conjunction with the isotropic bending moments M, ; to ‘ocalize
these discontinuitics. ‘The required local support computations can be performed in parallel at cach
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Figure 8. Single surface reconstructed from the stereogram of Fig. 7.

grid point over the surface.  Analogously, significant orientation discontinuities may be detected
when the magnitude of the bending moment | M, ;| of the surface exceeds a limit ¢, (points of
high curvature), and they may be localized at relative extrema of the bending moment (positions
of locally highest curvature). The sign of a bending moment extremum indicates the sense of the
orientation discontinuity; ncgative signals a concave crease, and positive, a convex crease. Curvature
peaks were also employed in a scheme for detecting surface orientation discontinuities proposed by
Langridge (1984).

4.2. Discontinuity Detection by Variational Continuity Control

On the one hand. experimentation on natural data with the regularized approach to discontinuity
detection demonstrates the feasibility of discovering many of the more significant discontinuitics
during surface reconstruction (results are presented later). On the other hand, certain inherent
inadequacics of this simple scheme ca often lead to poor surface reconstructions. The shortcoming
are duc to a basic contlict caused by smoothing. While regularization climinates noise, making
reasonable estimation of surface derivatives possible in continuous regions, it tends to obscure
discontinuities [Lerzopoulos, 1985a). It can result in poor detectability and localization of the more
subtle discontinuitics, a common problem with smoothing cdge operators in gencral {l.cclerc and
Zucker, 1984].
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' L

significant inflection

\ insignificant inflections

Figure 9. Cross-section of a reconstructed surface across a depth discontinuity, The significant and insiznificant
inflectior.s of the surface are indicated.

The problem can be resolved by exploiting more fully the controlled continuity model to
preserve surface discontinuitics and, morcover, to incorporate a priori cxpectations abcut dis-
continuity structure into the variational principle for surface rcconstruction. So augmented, the
variational principle cstablishes a beneficial cooperation between the interpolation process. which
smoothly propagates shape information across regions, and the complementary discontinuity pro-
ess, which delimits these regions. Thus it optimally reconstructs the piecewise continuous surfaces
and discontinuitics simultancously ta achicve the best possible surface shape.

As was mentioned in the previous scction, the smoothness of the thin plate surface under
tension is incompatible with any sudden transitions imposed by the scattered shape constraints.
‘This implics that its potential energy of deformation is generally greater at what vugh: to be
interpreted as surface discontinuitics. Any local reduction in the continuity of the surface -cduces
the incompatibility and locally reduces potential cnergy. This can be scen from (8), S,r(v)
considered as a function of (v, p. 7). decreases as cither p(z. y) or 7(«, y) arc made 7cro over more
of (1. 'Lhis suggests that discontinuitics can be discovered in the course of solving the variational
principle, by allowing the surface to crcase and fracture as needed to reduce the total energy
below the minimum obtainable with a single smooth surface. 'The insertion of discontinuitics must,
O however, incur some energy increase, otherwise p(z.y) = 0 everywhere would trivially minimize

the cnergy.
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Figure 10. Bending moment zero crossings (left) and detected depth discontinuities (right) for the reconstructed
surtace in Fig. 8.

‘The variational continuity control approach to detecting discontinuities involves augmenting
the original cnergy functional &,,(v) = Sy (v) ++ P(v) with the discontinuity functional D{p, 1)
(cxplained shortly) to obtain the new variational principle

Find u, p, and T such that

E(u,p,7) = inf E(v,p,7), (26)
v.p,T
where the encrgy functional
E(v.p.t) = S{v.p,7) + Plv)-1- Dip.7). (27)

The solutions u(r. y), p(z.y), and F(z.y), satisfy the three coupled Euler-Lagrange equations,
which express the vanishing of the first variation with respect to cach independent function
J

_ d - J ,_ - ad .
:5;5 (/”lu) + ;):;(E (2/“‘1y) + 5372 (l“"yy) - 5’; (nuz) - 5‘1; ("luy);

8,8 (w.p.7) = 0 =F(v2, + 22 + k) + ({1 (02 +0)) +8,0(.7);

6 (u.p.7) =0

& & (v 7)) = 0 =p|(vE, + 21)53, + vgy) - (vf + vi)] + 8. D(p, 7).
' (28)
Note that the first cquation is identical to (9).

The functional D(p.7) maps the depth and orientation discontinuity configurations p(zx, y)
and 7(.r.y) into positive energics (this is analogous to the role of S, (v) with respect to ). In its
simplest form, the functional can increase monotonically with the total number of discontinuitics;
cg. Do 1) = ff“ Ball o plroy)] AL = 1(r.y)] dedy, where By and B, are positive energy
scaling paramcters for the depth and orientation discontinuity contributions, respectively,

More inicrestingly. significant advantages accrue in the detection of weak or subtle disconti-
nuities if the functonal can be designed so as to bias the solution according to generic constraints
about the local structure of discontinuitics.  Uselul constraints can, for example, be based on
Gestalt principles of good continuation — discontinuitics tend to be wrranged along contours, these
contours tend to be continuous, cte. This may be accomplished readily by assigning potential
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:
o

Figure 11, Rceonstructed surfaces and discontinuitics.

energics to various focal discontinuity configurations on ibe {7, 7) grid of nodes for the discrete
problem. Encodings of local cdge configunations that favor good continuation have been employed,
for instance, in relaxation Libeling curve enhancement processes {Zucker e of., 1977) and in Markov
random fickd image reswietion models [Geman and Gemaa, 19851

[n our current implementation, the discrete discontinuity functional is a weighted nodal sum
of potential cnergy quanta l),"_J and ():fj over depth and orientation discontinuity configurations
respectively:

R Y IEDE () AROR () (29)
tJ
We employ a heurisiic caceding which favors the formation of continuous and smoothly curving
contours by ocally assigninge higher encergies 1o isolated discontinuities, terminations, sharp bends,
junctions, and regions. Figo 12 tlustrates some of the configurations, and the (numeric) cacrgies
associated with them and their rotaticnally symmetric counterparts.  Just as for computational
molecules. the drcles denote nodes (2. 7). while the X's denote discontinuities (positions where pP
or 7% aie 0). The quanta m Fig. 12(a) constitute I):fj for depth discontinuitics, which oczur on

»‘! - finks beween nodes as explamed previously, Fhey are equivalent to the configurations foand in
e [Geman ant Geman, 1985]. g 12(h) depicts some of the orientation discontinuity configurations
o encoded by ():,~ Orientaton discontnuitios coincide with nodes.
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The discrete variational principle simultancously governs the values of the displacement nodal
; variables of the surface as well as the nodal variables in the discontinuity map. Although the encrgy
- functional £, ,(») has a unique minimum (given the conditions of Sec. 2.7) for fixed p and 7, this T
. is no longer the case for € (v, p, 7) which allows variation of the continuity control functions in the
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minimization. ‘The nonconvexity of the encrgy lundscape makes this a much more difficult problem
& o solve numerically. In the discontinuity detection experiments to be presented in Sec. 0.5, we
iy proposc a strategy for cfficiently obtaining good. though not necessarily optimal solutions.

5. Overview of the Multiresolution Surface Reconstruction Algorithm

Application of the finite element yiclds the discrete problem of solving a lincar system of simul-
tancous cquations. This system has computationally desirable propertics; i.c., its matrix is sparse,
banded. symmetric, as well as positive definite (for fixed p(z,y) and tau(z,y)) when the available
constraints satisfy the conditions for a well-posed problem. 'The sparseness of the matrix, a direct
consequence of the local support of the finite clement, is evident from the nodal cquation of an
interior node: rows associated with interior nodes have only 13 nonzero entrics, while nodes at and
near discontinuitics have even fewer. The N x N matrix however, tends to be extremely large in
practice. since the number of pixels N in a typical image can range from 10% to 10° or greater.
This combination of propertics suggests the application of iterative techniques such as (parallel)
Jacobi or (scquential) Gauss-Scidel relaxation methods [Hageman and Young, 1981]. Relaxation
methods lead to distributed algorithms, and the parallel variants may be implemented concurrently
on networks of many simple, locally-interconnected processors.

-r

5.1. Nodal Relaxation Computations

@

6‘— A local-support nodal relaxation computation can be obtained at node (1, 7) by expressing uf‘_ j

in terms of the remaining vai.ables in the nodal cquation detcrmined by the local structurc of
constraints and discontinuitics. The nodal relaxation computation may be constructed automatically
by applying our simple rules governing the summation of basic computational molecules:

(i) Plate, depth constraint, and oricntation constraint molecules sum at interior (non-discontinuity)
nodes.

(ii) Membranc and depth constraint molecules sum at orientativa discontinuity nodes.
(iii) Orientation discontinuitics inhibit plate and oricntation constraint molecules.
(iv) Depth discontinuitics inhibit all basic molecules.

For instance, at a depth constraint node away from discontinuitics, the Gauss-Scidel relaxation
computation becomes

< )
: (n+1) 1 8 ( (n+1) | (n) (nr1) () )
4 : u'o = g +uy o u ) g
: . 1,7 %9'*’%!{,_1[" y;. 1,9 141,75 1,71 (RES
1O 2 ([ (nt1) (n+1) (n) (n)
1 ' Y] (U,-, R R “au,gu) (30)
Q L] .
- L nit) | (n) (n+1)  (n)
\j‘ h ( i 25 +us+21+uz1 2 Ty J+2)+adfd'd",j ’
i)
’,' where we have suppressed the discretization superscript A and instead introduced the bracketed
$ iteration indices. At an unconstrained depth discontinuity, we obtain
(nit) _ (ne1) () gD )
- u.] 4(:1)+u1011' l)l+uljll (31)
P ,\'ﬁ‘
SRS Note that the nodal relaxation computations do not change from onc itcration to the next, so long
& as the influencing constraints or discontinuitics remain unperturbed.
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5.2. Multiresolution Relaxation

A scrious problem with itcrative techniques, in general, is their slow convergence rates for large
problems. This inherent incfficiency is duc to the fact that information must propagate incrementally
across large representations from nodes to their near neighbors in accordance with the nodal
relaxation formulas.2 We have developed highly efficient iterative algorithms that overcome this
problem for surface reconstruction [Terzopoulos, 1982, 1983a] as well as for certain other visual
problems [l'erzopoulos, 1984]. ‘T'hese algorithms achicve cfficiency by cxploiting multiresolution
relaxation methods [Fedorenko, 1961; Brandt, 1977, Hackbusch and ‘Itottenberg, 1982].

Bricfly, the multiresolution surface reconstruction algorithm features (i) multiple representations
of surface shapc over a range of spatial resolutions. (i) local, iterative (relaxation) processes
that propagate smoothness constraints within cach representational fevel, (iii) local coarse-to-fine
(prolongation) processcs that allow coarser representations to constrain finer ones, (iv) fine-to-coarse
(restriction) processes that allow finer representations to constrain and improve the accuracy coarser
ones, and (v) a multilevel coordination strategy that enables the hicrarchy of representations and
componcnt processes to cooperate towards increasing the computational cfficicncy, usually by orders
of magnitude.

Fig. 13 depicts the structure of the algorithm schematically. In this particular case, only three
levels arc shown. Note the 2:1 resolution reduction between adjacent levels. Not only does this
ratio simplify the component processes considerably, but it is also nearly optimal with regard to
total computation to convergence (this is conveniently measured in machine independent work
units, where a work unit is the amount of computation required for a rclaxation iteration on the
finest level) [Brandt, 1977). The diagram illustrates the intralevel relaxation processes, as well as the
fine-to-coarse restriction and coarse-to-fine prolongation processes that communicate between levels,
The figure shows synthetically gencrated scattered orientation and depth constraints consistent with
a hemispherical surface. ‘The algorithm rcconstructs a dense representation of surface at three
resolutions. ‘The sparse information at any particular scale can be thought of as a set of constraints
which defines a discrete surface approximation problem at that level. It is natural then to view the
multiresolution surface reconstruction algorithm as iteratively solving a coupled hicrarchy of discrete
surface reconstruction problems.> For a detailed description of the algorithm sce [Terzopoulos,
1982, 1983a).

6. Experimental Analysis of the Algorithm

The multiresolution visible-surface reconstruction algorithm was tested on a variety of data scts
including synthcetic data, structured light (lascr) range data, automated stercopsis and photometric
stereo data from natural images, and digital terrain model data. Some results are prescnted
in this section (for further details and examples, see [T'erzopoulos, 1984]). In all the examples

2 It is possible to accelerate the basic relaxation methods so that fewer iterations are required. However, prac-
tical accelerated methods such as the conjugate gradient method, successive overrclaxation, and Chebyshev
semi-iteration use global procedures (0 determine the acceleration parameters. In paralicl implementation,
the greater complexity of the globally accelerated methads and, even more importantly, the communications
costs of performing the global operations nullifics any potential gains. _

3 A recursive multilevel coordination strategy was employed in the experiments described next. The recursive
strategy activates only a single level at any one time. We have recently developed a concurrent strategy
based on a multilevel variational principle [Terzopoulos, 1985b). Concurrent coordination maintains all
levels active simultancously. thus achieving full parallclism.
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Figure 13. The structure of the multiresolution surface reconstruction algorithm. ltcrative relaxation processes
operate at cach level. Fine-to-course and coarse-to-fine processes transfer information between levels. Synthetic
orientation and depth constraints input to the algorithm are shown at the top. The dense multiscale surface

representation is output at the bottom.
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presented, the intralevel process was Gauss-Scidel relaxation and the algorithm was started from
z¢ro initial approximations on all the levels. ‘The border nodes on cach grid were preset as depth
discontinuity nodes to introduce natural boundary conditions which free the reconstructed surface
on the boundary of {1.

6.1. Synthetic Data

The first two examples involve randomly placed depth constraints. The left half of Fig. 14
shows 15%-density constraints at three resolutions. These constraints were obtained by sampling
a hemisphere whose z values were multiplied by a radial sinusoid. The nodes outside the circular
region occupied by the constraints were specified as depth discontinuitics. The reconstructed surface
representation is shown on the right half of Fig. 14. In Fig. 15, the 15%-density depth constraints
shown on the left are samples of a stacked sct of planar surfaces at three resolutions. In this
cxample, depth discontinuitics were placed along the circular arcs bounding the plancs, and along
the outer edges of the grids. The reconstructed surface representation is shown on the right half of
Fig. 15. This cxamplc indicates that discontinuitics can be placed along arbitrary contours within (2
to prevent surface shape from being degraded by unwanted smoothing over sharp depth changes.

The next examples involve reconstructions from orientation constraints. The left half of Fig. 16
shows in perspective a sct of oricntation constraints over a square region. On cach of three scalcs,
the region is divided into four quadrants each containing constant oricntation constraints, and the
nodes along their boundarics arc preset as orientation discontinuitics. The surfaces reconstructed
by the three-level algorithm are shown on the right half of the figure. Since absolute depth cannot
be determined solely from orientation constraints, a relative depth reconstruction results, with the
center of gravity of the resulting pyramidal surface resting near the z—y plane.

The left half of Fig. 17 shows 30%-density scattered orientation constraints consistent with a
hemispherical surface at three resolutions. The reconstructed surface representation is shown on
the right. All nodes outside the hemispherical surface patch were specificd as depth discontinuities.
Again, the center of gravity of the surface rests near the z-y plane.

The next examples demonstrate the integration of both depth and oricntation constraints. The
left half of FFig. 18 shows 15%-dcensity depth constraints consistent with a hemispherical surface at
three resolutions. On the right are 15%-density oricntation constraints consistent with the same
surface. Nodes outside the surface have been specificd as depth discontinuitics. The reconstructed
surface is shown in Fig. 19. Whercas in the previous cxample (Fig. 17) only relative depth can be
determined for lack of any depth constraints, in the present example the additional depth constraints
cnablc the absolute depth of the surface to be determined at all points, hence the surface is “raised”
to the correct height above the base planc. In addition, note that (10%) uniformly distributed
noisc has been added to the constraint values. With the given constraint parameters, the surface is
slightly bumpy on the finest level. This can be reduced by decreasing the constraint parameters, in
effect, loosening the springs of the physical model.

6.2. Structured Light ata

The muttiresolution algorithm was applied to the reconstruction of scveral objects from raw
range data supplicd by a lascr rangefinder constructed by P. Brou at MIT, The scan resolution
in the y dircction is half that in the z direction. A four-level surface reconstruction algorithm
was cmployed in the cxamples. The data was introduced as depth constraints at the finest level
and transferred to the coarser levels by successive 2 X 2 averaging between levels, To expedicntly
segment the objects from the background, values smaller than a threshold were treated as depth
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Figure 14.
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Reconstruction of a surfuce from depth constraints. (Grid dimensions: N{" = N:' = 17, xj
|

= NP+ = Nt =33 NMs = N}» = 65. Grid spacings: hy = 0.4, hy = 0.2, hg = 0.1. Constraint
parameters: a,™ = 2.0/h;. Computation: 24.25 work units.)
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Figure 15.  Reconstruction of planes with circular depth discontinuities from depth constraints. (Grid —
o dimensions: N x N = 22 x 17, N}* x NJ» = 43 x 33, N» x NI = 85 x 65. Grid spacings: .

. hy = 0.4, hy = 0.2, hy = 0.1. Constraint parameters: ag™ = 2.0/h;. Computation: 20.375 work units.)
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Figure 16. Reconstruction of # pyramidal surface with oricntation discontinuitics from oricntation constraints.
O (Grid dimensions: N'' = N = 17, N% = N2 = 33, N}> = NJ* = 65. Grid spacings: hy = 04,

- hy = 0.2, hy = 0.1. Constraint parameters: n:’ = a,'," = 4.0/h;. Computation: 19.5 work units.)
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Figure 18. Depth constraints (left) and orientation constraints (right) consistent with a hemisphere at three
resolutions.
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Figure 19. Reconstruction from depth and orientation constraints in Fig. 18. (Grid dimensions: N1 =
Nl = 1T N}* = NJ» = 33, N}» == N = 65. Grid spacings: hy = 0.4, hy = 0.2, k3 = 0.1.

Constraint parameters aq®s = 2.0/k;, (r::’ = n,'," == 4.0/h;. Computation: 17.75 work units.)
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Figure 20. Reconstruction of a lightbulb from range data. (Finest grid dimensions: N** x N« = 257 x 281.

5 ‘; Grid spacings: hy = 0.8, hy = 0.4, hy = 0.2, and hy = 0.1. Conslraint parameters: ayg® = 0.2/h;.
o Computation: 9.78 work units.)
= discontinuities. Fig. 20 shows the reconstructed surface of a lightbulb. "The algorithm smoothes the
- noise in the data and reconstructs the missing points.

)
¥
e 6.3. Natural Image Data
.
£&A . - » . .
W In this scction. we apply the multiresolution surface rcconstruction algorithm to depth data eorig-
- inating from natural images. The examples involve photometric sterco, and two binocular sterco
= algorithms applicd to tetrain stercopairs.
e 6.3.1. Photometric Sterco Data
:f:: ‘Q':;:-‘ Photometric sterco is a technique that uses multiple (usually 3) images of a scene from the same
N viewpoint, but with differing illumination {Woodham, 1981]. Assuming that the surface material
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Figure 21. Image of a matte white torus.

is known and that the vicwer and lightsources arc far from the object, the method determines
the surface vrientation from the image irradiance. Our surface reconstruction algorithm provides
a noise resistant technique for computing depth from the surface oricntation data provided by
photometric sterco. We demonstrate this with the image of torus in Fig. 21. The photometric sterco -
data (generated by a system implemented at MIT by K. lkcuchi) was introduced as orientation

constraints on a two-level algorithm. Aside from sporadic missing data, the constraints on the

coarse level are dense, whereas only every other node on the fine level is a constraint. Fig, 22

shows the oricntation data and the reconstructed torus.

Our method for reconstructing surfaces from scattered orientation constraints can be compared
to a variational scheme for obtaining relative depth from dense surface gradient information reported
by Horn and Brooks [1985]. Thcir proposed least squares integral [ f(vz — p)% + (vy — ¢)2 dz dy
will be recognized as being a continuous version of the oricntation constraint penalty functional. By
virtue of the additional smoothness functional S, (v). however, our surface reconstruction algorithm
can dcal with oricntation constraints that arc scattered. It also can integrate depth constraints (rom
other sources to arrive at absolute surface depth.

6.3.2. Correlation Based Sterco Data

At the top of Fig. 23 is a stercopair on which Kass's [1983] correlation based sterco algorithm
was run. The output of the sterco algorithm is shown on the lower left, with brightness proportional
to disparity. ‘T'he algorithm has failed to produce a match in the neutral grey patches, so disparity
is unknown in these areas. To apply the multiresolution algorithm, the disparity data on the finest
level were reduced by factors of two, through averaging, to three coarser levels. Relatively small
constraint parameter values were chosen in order to counteract the potentially detrimental effects
of false matches and noise in the disparity data. The reconstructions on the three coarsest lovels
arc shown as 30 plots in Fig. 24 (the finest level was too dense to represent this way). Fig. 25 W
shows isoclevation contour maps of the solution on all levels.
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. Figure 22. Reconstruction of the torus (right) from the crientation constraints provided by photometric stereo
r - (Ieft). (Grid dimensions N = NJ* = 51 and N}* = NJ'* = 101. Constraint parameters: a”i = 4.0/h;.
‘ Computation: 52,0 work units.)
-
" 6.3.3. Feature Based Sterco Data

The next cxample involves disparity constraints generated by the MPG stereo algorithm
K [Grimson, 1985]. A three-channel version of the sterco algorithm was run on the stercopair at
L the top of Fig. 26. The output of the sterco algorithm is shown on the lower part of the figure.
Disparity information is provided only along zero crossing contours at the three finest scales. In
L the figure, the darkness along contours is proportional to disparity. This disparity data was input to
:Z: a four-level surface reconstruction algorithm. The constraints on the coarsest level were derived by
: averaging the constraints from the next finer level. The reconstructions on the three coarsest levels
:: arc shown as 31D plots in Fig. 27. Fig. 28 shows isoclevation contour maps of the solution on all

levels.

f;: : ,”" 6.4. Digital Terrain Map Data
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Figure 23, Natural terrain sterecopair (top) and output of Kass™ stereo algorithm (bottoin). The images were -
256 x 256 pixels. quantized o 256 levels (provided by the US Defense Mapping Agency). e
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Figure 24. Reconstruction of terrain in Fig. 23. (Grid dimensions: N} = N;" = 33, Nk = N,’" = G5,
Nl» = Nl = 120, Nl = N}« = 257, Grid spacings: hy = 0.8, hy = 0.4, hy = 0.2, hy = 0.1
Constraint parameters: ay™ . 0.01/h%. Computation: 29.0 work units.)
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: Figure 25. Isoelevation contour maps of the reconstructed terrain in Fig, 24,
-
A four-level surface. reconstruction algorithm was applied to contoured terrain clevation data.
A contour map of the Black River Gorges (published by the UK Ministry of Defense) was
. digitized manually on a digitizing tablet by J. Mahoncy. The 256 x 256 digital contour array is
» shown at the top of IFig. 29. The constraints input to the algorithm are shown at the bottom
¥ of the figure. The elevation of the contours is proportional to brightness. Local averaging was
used to derive the constraints on the coarser grids from those on the finest grid. The terrain
: reconstructions on the three coarsest levels are shown as 3D plots in Fig. 30 (the finest level is too
h dense to represent this way). Fig. 31 shoyvs isoclevation contour piots of the reconstructed terrain
[ on all levels. 'The reconstructed contours on the finest level can be compared subjectively with
; the digitized contours in Fig. 29. but note the reconstructed contours depict clevations half way
1 between the original constraint contours for an unbiased comparison. The reconstructed contours
. arc somcewhat smoother than the (predigitized) contours in the original map —. the jaggedacss
Z: introduced by manual digitization has been reduced. The extent of '+ - oothing can be regulated
. by adjusting the constraint parameters. Shaded image renditions of the reconstructed terrain using
: reflectance map techniques for hill shading [Horn, 1981 arc shown at the bottom of Fig. 31. Terrain
reconstructions using the thin plate surface under tension model were compared to reconstructions
using the simpler membranc spline model (1.aplacian smoothing). The former gives good results, ST
" whereas the latter generally suffers from insufficient smoothness and produces flat spots across BN
g terrain peaks [Terzopoulos, 1984] (see also [Bolondi er al., 1976)).
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were 512 x 512 pixels, quantized 10 256 levels (provided by the US Army Engineer Topographic Labs).

. Figure 26. Natural terrain stereopair (top) and output of the MPG stereo algorithm (bottom). The images

. 'J\.‘
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= Figure 27. Reconstruction of data in Fig. 26 on the three coarsest levels. (Grid dimensions: N} = NJ* = 33,

Nl = Nt =65 N} = N}» = 129, N} = N+ = 257. Grid spacings: hy = 0.8, hy == 0.4, hy = 0.2, -
he = 0.1. Constraint parameters: ag™ = 0.01 /h?. Computation: 31.0 work units.)
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Figure 28. Isoelevation contour maps of the reconstructed terrain in Fig. 27.

6.5. Discontinuity Detection Experiments

The forcgoing examples have shown that the surface reconstruction algorithm can handle disconti-
nuitics that are prespecified. In the next two sections, we present examples involving the automatic
detection of discontinuitics,

6.5.1. 'The Regularization Approach

The acrial view stercopair of Fig. 32 was input to the MPG stereo algorithm which generated
the sparsc disparity map shown on the top of Fig. 33. The finest level dense disparity map gencrated
by a four-level surface reconstruction algorithm is shown at the iower Icft of the figure, Darkness
is proportional to disparity. The discontinuitics found from this disparity map, using a disparity
limit G;; > tq = 1 are shown at the lower right as white contours After the detected points are
added to the discontinuity map, the surface reconstruction algorithm continues iterating from the
tentative approximation on the left. The amount of additional computation required is relatively
small, since the tentative surface is a fairly good approximation in most places. At convergence, the
reconstructed surface has fractured along the contours to give the solution on the right, Portions
of the main discontinuitics around the buildings have been found, but contours are broken and

shifted.

The next example involves the synthesized random dot stercogram in Fig. 7. The depth
constraints gencrated by a three-channcl version of the MPG sterco algorithm are shown in Fig. 34




L el Yad ‘Bl ok R’ A .“‘.‘11\.""“'1

Terzopoulos Computing Visible-Surface Representations 44

i
=
RN

Figure 29, Digitized contour data (top) and constriints (bottom). The patch to the lower right represents a
lake.
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Figure 30. Reconstruction of data in Fig. 29, The terrain reconstruction on the three coarsest levels is
represented as 3D surface plots. (Grid Dimensions: Nt = NJ* = 33, N}» = N}» = 65, N}* = N}» =
120 N}« = NP+ = 257. Grid spucings: hy = 0.8, hy == 0.4, hy = 0.2, h¢ = 0.1. Consiraint parameters:
agh = 0. 5/h’ )
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Figure 31. Isoclevation contour map (10p) of the data in Fig. 30 and shaded representations of the reconstructed ‘]
terrain (bottom). N
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Figure 32. Aerial view of a hospital complex. The stercopair was provided by the UBC Faculty of Forestry.
Images are 320 x 320 pixels.

(the finest Jevel dimensions are 320 x 320). The constraints on the coarsest level were obtained by
averaging those on the next finer level, Fig. 35 shows the smooth disparity maps initially computed
by a four-level surface reconstruction algorithm. Fig. 36 shows the discontinuitics detected from
these naps with ¢4 = 1. ‘The discontinuitics have been superimposed onto the final disparity maps
in Fig. 37. Better performance is observed in this case due to the simpler surface structure, but the
contours, while mostly intact, are quite ragged.

In general, not detecting true discontinuitics affects surface shape more adversely over larger
regions than introducing some spurious ones within a continuous surface. Discontinuity points
are missed by the thresholding operation, and no adjustinent of the globat limit can be expected
to producc perfect results. Note, however, that the surface reconstruction algorithm docs not
break down. Rather, the reconstructed surface degrades as it “lcaks” through the gaps. The
discontinuity detection procedure may be improved by allowing the disparity limit to vary spatially,
or by modifying it during multiple passcs. On the first pass, surface shape is poorest, so a fairly
conservative limit should be set to reduce the number of false detections. Conservative limits fail
to detect many discontinuitics, but as more discontinuitics are identificd, surface shape improves
and limits can be lowered in subscquent passes to find the less prominent discontinuitics.

6.5.2. The Variational Continuity Control Approach

A multipass schemg is also employed in the variational continuity control approach to cfficiently
obtain good solutions. An cxample will be used to cxplain the stratcgy. Fig. 38 shows depth
constraints randomly sampled from a sct of sloping plancs that form discontinuities along their
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Figure 33. Discontinuities in the aerial stereogram. Disparily contours gencrated by slereo algorithm (top),
; fuli disparity map generated by the surface reconstruction algorithm at the finest level (fower left), and detected
discontinuities supcrimposed on the disparity map (lower right).
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Figure 34. Depth constraints for the random dot stereogram,

extremitics. A single continuous surface can be reconstructed from these constraints as shown, but
it sinvoths over the depth discontinuitics and rounds out the orientation discontinuities,

The algorithm finds both kinds of discontinuitics and reconstructs a surface which preserves
them. When the surface simooths through a depth discontinuity, two spurious regions of high
curvature border the discontinuity. These spurious regions can casily be mistaken for orientation
discontinuitics. 'T'o avoid this unwanted interaction which can substantially slow down the optimiza-
tion process, the algorithm postpones the orientation discontinuity detection phase until all depth
discontinuitics have been found. The surface evolves in several steps over which the parameters
[i"; and [5",‘ in (29) are modified. Bach step consists of first flipping the value of the continuity
control parameter (p:"j or r,.'_‘J) from 0 to 1 or conversely, if this lowers the energy (27), and then
running the reconstruction algorithm to convergence (which always results in cquilibrium, since the
variational principle is convex for fixed p?; and 7%;).

For depth discontinuitics, ﬂ",‘ is initially sct to a high value that heavily penalizes their insertion,
then lowered in steps. This strategy of Ieast commitment finds the prominent discontinuitics carliest,
improving the surface as it docs so, and lcaves the more subtle ones for later. It results in the
flipping of relatively fow variables in cach stage, hence the solution is obtained cflicicntly. Beginning
with the continuous surface Fig. 39(a), Fig. 39(b-d) illustrates the steps of the evolving discontinuity
detection process. during which discontinuitics are determined with increasing accuracy as ﬂ",‘ is
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Figure 35. Full disparity maps without discontinuities.

lowered. The energy can be lowered further still if g% is then increased slightly to climinate
spurious discontinuitics in Iig. 39(d). Note that since the surfaces have now scparated, a very large
increase would be needed w flip a true discontinuity point (a hysteresis cffect). The improved
surface in Fig. 39(¢) results. Next, the orientation discontinuity detection phase is activated and it
runs in the same way, but modifies 8%, In this example, the orientation discontinuitics arc found
in only one step.

Fig. 39(F) shows the final solution. The depth and oricntation discontinuities have been made
explicit and are preserved by the reconstructed surface. Incidentally, the global optimum of the
variationa] principle has been found in this example: however, this procedure can generally be
cxpected o vield good. though not necessarily optimal approximations. [ts main attractions are
that it is deterministic and cfficient.

7. Discussion and Research Directions

Several issues coneerning the framework for computing visible-surface representations are discussed
i tus section, and directions for future rescarch arc suggested.  The discussion focuses on
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Figure 36. Detected discontinuities.

discontinuity detection, choosing constraint parameters, handling rivalrics in constraints, grouping
constraints, invariance propertics of the surface reconstruction model, and visible-surface analysis.
[Terzopoulos, 1984, Ch. 11} contains a more extensive treatment of these and other issucs, including
multiresolution relative depth representations of surfaces, and the possibility of computing visible-
surface representations “instantancously” by analog networks.

7.1.  On Discontinuity Detection

Some recent work in image restoration is of relevance to the problem of piccewise continuous
surface reconstruction. A piecewisc constant image model employed by Blake [1983] for image
reconstruction is interesting in that it incorporates “weak constraints™ which can be broken at a cost.
The resulting optimization problem -is related to our variational continuity control approach, but
more restricted. Blake used an adaptive mcthod, which he referred to as “graduated nonconvexity,”
to obtain good soluticns to the nonconvex problem. It has not been cstablished however whether
this interesting method applics to the sparse data case as well,

Geman and Geman [1985) used Markov random ficld models with associated Gibbs distributions
to restore piecewise constant images corrupted by additive Gaussian noise. The restoration secks
a maximum a posteriori cstimate of the original image, given the degraded image. and includes
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Figure 37. Discontinuities and final disparity maps.

an cxplicit “linc process™ that estimates the locations of step edges in intensity, This work was
restricted to dense image data. The Gemans' approach was adopled with encouraging results to
surface reconstruction from sparse depth constraints by Marroquin [1984]. His markov random ficld
model, while less restrictive than the Gemans' piccewise constant one, in fact models a membranc
spline whose smoothness is insufficicnt for computing visible-surface representations. A line process
essentially cquivalent to the Gemans' was incorporated to estimate depth discontinuitics. The
numerical solution strategy in both of the above studies was stochastic optimization using the
Metropolis algorithm and simulated anncaling to optimize the nonconvex functional [Kirkpatrick
et al., 1983]. T'his strategy can find optimal solutions, but for such large rcconstruction problems it
has been observed to converge notoriously slowly. Based on our experience, we believe that it can
S be accclerated, perhaps enough to make it practical, through the use of multiresolution processing.

Obviously, the linc processes used in the above work as well as our own encoding of disconti-
nuity contour configurations is unpleasingly heuristic and in need of refinement. The discontinuity
map can be augmented by nodal variables to encode the local orientations of the curvilinear ¢le-
ments to a higher degree of accuracy. Such an cencoding is employed by Zucker and Parent [1984)
in an optimization (relaxation labeling) approach to finding contours in images. Tt appears that
idcas from their work can also be applied to finding surface discontinuitics within our framework.
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A promising possibility is to cinploy 11> controlled-continuity stabilizers as formal models S
of smoothness constraints along surface discontinuity contours in the z-y planc. A functional )
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-ft: Figure 38. Scattered depth constraints consistent with sloping planes meeting discontinuously (top) and the

L smooth reconstructed surface (bottom).

that naturally comes to mind is the curvilincar analog of the thin plate surface under tension:

- $o By (s){Bals)(D%c/D5%) +[1— Ba()](Ic/ D)} ds. where s denotes arc length along discontinuity
contours ¢ € C. Here, A3, allows breaks, while f, allows angles (tanjent discontinuitics) to form

o in the discontinuity contours. Again, additional cnergy penaltics must be associated with these

™) G occurrences.  Given our finite element representation of surfaces, curvilinear finite clements are

] the natural local representation for discontinuity contours. The combined variational principle has

o both a surface component and an analogous contour component. Although technically nontiivial,

> a formulation of surface reconstruction generalized along these lines has very strong appeal.

™ 7.2.  On Constraints — Parameters, Rivalrics, and Grouping

o ‘The constraint (spring) parameters offer the flexibility to individually tune the coerciveness of cach

- constraint on the reconstructed surface. In the special case of Gaussian crror distributions, the

- parameters should be inversely proportional to the expected variances (a; = 1/ A(r:-z). It ought to be

o possible for the Jow-level visual processes to associate a variance estimate or confidence with each

. constraint that they provide. In general, however, it's not obvious how to choose the censtraint

- parameters optimally,

< The constant of proportionality A~} can also be used to tune the overall smoothness of

o the reconstructed surface.  Cross validation techniques may be used to sct A optimally (e.g.,

x [Wahba and Wendclberger, 1980]). The basic criterion is to choose A so as to minimize over all

L constraints the (weighted) discrepancy between cach constraint and its valuc as estimated from the

N surface reconstructed using the remaining constraints. Unfortunately, this involves computationally

' cxpensive scquential afgorithms.  Interestingly, the continuous tuning of surface smootliness is

“ . . I « . |
[, analogous to the scale space filtering technique proposed by Witkin [1983] with the added attraction !
" that it can be applied to scattered data. i
A Although the variational principle was designed to account for measurement crrors in the 1

i3 ."

constraints, the possibility of massive rivalries between constraints from different sources, such as
stercopsis and analysis of motion processes, was disregarded. Massive rivalrics are unnatur:! visual
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o Figure 39. Evolution of the discontinuity detection process.
i
‘ phenomena that can nevertheless occur, especially under contrived conditions. and they often lead
to multistable percepts [Attnecave, 1971]. The framework can potentially accommodate rivalries with
e a mechanism that inhibits individual or entire sets of constraints by nullifying sclected constraint -{'_{l
f- parameters. This mechanism can be activated by a global arbitrator which monitors the contents e
_’. of visible-surface representations to detect rivalries may also have access to higher level knowledge
e
»
x::' :
by
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5 S .
:_‘ about the scene. ‘The arbitrator's influence can account for multistability.
- e
:»j'.: I:-;Z;- A particular type of rivalry ariscs from transparent surfaces. For instance, a surface such as a
Al dirty window in front of a background scenc would lead to two well defined populations of depth .
- (and oricntation) constraints over the same visual angle, one from the window, the other from the
{'.} background. A transparency interpretation can be arrived at by an arbitrator which mouitors the
:-:.‘ surface reconstruction process looking for high approximation error between surface and constraints
e over a significant arca. Under the ¢ conditions the arbitrator can trigger a constraint grouping
= process which clusters the constraints into two populations, based on depth valucs, say. Multiple
. surfaces can then be reconstructed over the same visual arca for cach resulting constraint pcpulation.
L This scheme has been applied on a transparent surface random dot stercogram [Terzopoutos, 1984,
3o Ch. 11}.
" 7.3.  On Invariance Properties of the Surface Model
'.:':_? As a transformation from sparse constraints to dense surfaces, the thin plate under tension model
can be shown to be invariant under (i.e. commutes with) certain image planc transformations
.-'f;- applied to the constraints; namely, translations, rotations, and similarity transformations. This
g implies that surface shapes will be preserved through rigid motions of the scene or viewpoint
paralle! to the image planc or along the view direction. Thesc are essential invariance properties
::. for visible-surface reconstruction [Terzopoulos, 1982).
:'{ Note, however, that the thin plate spline, characterized by the small deficction approximation
= [ [ 3 + 2%, + v}, drdy to the bending encrgy density of a thin plate, is not invariant under
‘ G arbitrary 3D transformations of the constraints. ‘Thus, surface intcrpolation using this expression is
o not invariant under changes in the view direction, as Blake [1984] points out. He shows that rotating

the view dircction induces the 11 analog of the thin plate spline to “wobble,” and he demonstrates
. that this effect is most pronounced as the (continuous) spline is inclined sharply with respect to the
o viewer or is forced to bend sharply. Blake views this as a problem that should be eliminated by
cmploying the large deflection bending cnergy of the thin plate, a convex combination of the mean
and Gaussian curvatures of the surface v(z,y), which is view dircction invariant.
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Although €, (v) can also be made view dircction invariant by employing the large deflection
counterparts for the thin platc and membranc bending encrgics, this approach has a serious
technical drawback [Terzopoulos, 1984]: The large deflection formulas lead to an extremcly difficult
nonlincar problem (c.g.. the large deflection equations for the thin plate are two coupled nonlinear
'y fourth-order partial differential cquations known as Von Karmann's cquations [Szilard, 1974]).

Fortunately, the surface reconstruction modecl, as it stands, is not hampered by the lack of
view dircction invariance because the available constraints arc usually sufficiently dense in practice
to tightly determine surface shape; as the view direction is varied, the reconstructed surface would
vary ncgligibly (note that Blake's experiments reveal a significant wobble effect just in the case
of extremely sparse constraints). Furthermore, the explicit introduction of depth and orientation
- discontinuitics alleviates much of the wobble precisely at those places where Blake's experiments
show it to be most pronounced on a globally continuous surface. An interesting psychophysical
experiment would be to determine whether there might be some slight variance in the surfaces
¢ . perceived by humans viewing sparse random dot stercograms while the dots undergo simulated
rigid 31 transformations and, if so, whether the variations are consistent with the reconstruction

maodel (J. Mayhew, personal communication),
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74. On Visible-Surface Analysis

R e s

. The visible-surface representation is an intermediate and volatile description of the 31D surfaces
. in scenes. It drives ensuing processes which generate stable higher-level representations of shape
that are better tuncd to object recognition. The processing begins with visible-surface analysis

»

: whose goal is to abstract from the numeric, viewer-centered representation a rich set of more
:C symbolic, object-centered features that are stable through viewpoint changes. The extraction of
It geometric surface features is facilitated by the dense shape information provided by visible-surface
representations.
::: A promising approach to visible-surface analysis is to apply concepts from diffcrential gcometry
-~ [do Carmo, 1976). For instance, a surface’s intrinsic geometry (including Gaussian curvature,
:: geodesics, etc.) is determined completely by the first fundamental form, which dcfines arc length
over the surface. It's extrinsic geometry (including normal curvature, principal curvatures, ctc.) are
determined by the sccond fundamental form, which describes the deviation of the surface from the
. local tangent plane. The fundamental thcorem of the local theory of surfaces (usually attributed :
::', to Bonnet) states that the analytic study of surface propertics consists of the study of the two ,
fundamental forms; i.e., the six fundamental tensor coefficicnts (which arc not all indcpendent) as |
< functions of the two independent parameters of the surfacc. The fundamental forms are invariant
under changes in the parameterization, and together they determine surface shape up to rigid body
transformations. These properties make them ideal foundations for object centered symbolic surface
) 2." representations.
N The visible-surface representation makes it possible to estimate the first and second funda-
o mental forms on a point-by-point basis over the entire visible surface. 'The finite element shape
. representation reduces the computation of crucial local surface features such as the Gaussian curva- datla
@ ture, principal curvatures, and principal directions to the cvaluation of simple algebraic expressions e’
S of neighboring nodal variables (see [Terzopoulos, 1984, Ch. 11] for dcrivations). It is then a simple
:; step to determine the elliptic, hyperbolic, parabolic, umbilic, and planar points, as well as geodesics,
N asymptotes, and lines of curvature.
X For example, Fig. 39 shows the reconstructed surface of a lightbulb. Fig. 40 shows the Gaussian
3 curvature K (z,y) computed for the reconstructed lightbulb surface of Fig. 20. The elliptic points
(K > 0) are shown in white, the hyperbolic points (K < 0) arc shown in black, and the parabolic
:-;' (K = 0) points scparate the two regions. Note the alternation in the sigh of curvature at the
-:3' screw mount. Fig. 41 plots the computed field of principal dircctions for the lightbulb at the
N two coarsest scales. These demonstrations illustrate the feasibility of reliably computing from these
f representations higher-order intrinsic and cxtrinsic propertics of surface shape. The reliability can
o be attributed to the regularizing properties of the thin plate surface under tension which overcomes
~ the potentially detrimental cffects of noisc in the data, while prescrving discontinuities. For turther
analysis of the kinds of featurcs that can be computed from dense, numcric, representations of
surfaces sce, e.g., [Brady et al., 1985] or [Mecdioni and Nevatia, 1984].
L) .
P
“r
o
by 8. Conclusion ;
|
a Constraints on surface shape, contributed by multiple low-level visual processes, can be computed \
- rcliably at multiple resolutions, but only at scattered locations in the ficld of view. Subscquent ‘F*:: |
:E visual processing can be facilitated substantially if the scattered constraints arce transtormed into A }
\

visible-surface representations that make surface shape explicit everywhere, To accomplish this
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Figure 40. Flliptic (white) and hypcrbolic (black) points of the reconstructed lightbulb at four scales.

effectively, information must be integrated over multiple visual modalitics and fuscd across multiple
scales of resolution.

In this paper, we have developed a computational theory of visible-surface representations.
Within a unificd computational framework, formal solutions were offered to fundamental problems
of reconstructing visible surfaces: (i) integrating constraints on the depth and orientation of surfaces
across various modalitics and scales, (ii) interpolating surface shape information into (piccewise)
smooth surfaces, (iii) discovering discontinuities in surface depth and oricntation and cnabling them
to restrict interpolation, and (iv) efficiently maintaining consistency in distributed, multiresolution
visible-surface representations.

A visible-surface reconstruction algorithm implements the framework. Extensive testing has
shown it to be viable, The algorithm coordinates cooperative processes within a multiresolution
hicrarchy of surface representations to dramatically increase computational efficiency. It is well
suited to implementation on massively parallel networks of simple, locally interconnected processors.
Such computational nctworks are suggestive of biological mechanisms and are also well suited to
VLSI technology.
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Figure 41. Principal directions for the reconstructed lightbulb at the two coarsest scales. The directions of
greatest curvature are shown on the lefl. Those of least curvature are shown on the right,
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