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. INTRODUCT ION

\

\“, There is currently considerable interest in the use of nitramine .

oxidizers in gun and rocket propellants’{see. for example Refereunce 1), “due to

their desirable properties, such as absence of noxious combustion products,

hizh specific impulse and impetug}wgnd thermal stability. The most commonly

used nitramine oxidizers are RDX"(I), \also known by such names as héxogen or

cyclonite)andacurrencly indexed in Chemical Abstracts under the heading
"1,3,5-Triazine, hexahydro-1, 3, 5-trinitro” and¢HMX (II), also known by such

names as Octogen and indexed in Chemical Abstracts/nnder the heading "1 3,5,7-

.Tetrazocine, octahydro-1,3,5,7-tetranitro.” -'(/j,ro»oh) Loy

s

Before the combustion end deflagration behavior of these materials ran be
understood and intelligently modified, it will be necessary to have an
understanding of their thermal decomposition chemistry. This 1s true for
several reasons, First, combustion modellers use the kinetics and kinetic

parameters as input into their models., Second, the product distributions from

the decomposition reacticns are also needed as input for many of these
models. Also, an understanding of the detailed chemical decomposition modes
might well make it possible to suggest new types of additives for combustion
moiification,

At present, the chemical mechanisms involved in the decomposition of
these materials are not at all well understood. There are a number of
apparent conflicts. in the literature with regard to such topics as kinetic
parameters, product distributions, autocatalysis and acceleration and/or
inhibition of the decomposition by substances, some c¢f which are known
products of the decomposition. Many of these apparent conflicts probably
arise from the great complexity of the decomposition. The course of the
reaction seems to be very dependent on experimental conditions due to the
apparent operation of simultaneous gas, liquid and solid-phase decomposition,
leading to products many of which are able to react among themselves and also
to accelerate or inhibit the decomposition of starting material., In additionm,
the nature of even the first step of the decomposition reaction is not at all
well understood, quite possibly as a result of variations with temperature,
pressure and state of aggregation (gas, liquid, solid, dissolved in solvent)
in the relative rates of the many reactions (N-NOZ cleavage, HONO elimination,
various forms of C~N cleavage, etc.) that have been proposed.

In view of these considerations, it appeared that there was a need for a
critical, interpretative reviaw of the literature on decomposition of
nitramines, with the emphasis on HMX and RDX. Such a review would summarize
what is known about the chemical and physical mechanisms involved, and
involves an attempt to resolve conflicts and to suggest new experiments to
elucidate the mechanisms involved.

The present report is one of a series describing such a review. This
review is written from the point of view of an or%anic chemist and so is
complementary to reviews such as that by McCarty,® which emphasize combustion

1k, P. McCarty, "HMX Propellant Combustion Studies,” AFRPL-TR-76-59 (AD-BO17

;7-))




behavior as seen by a physical chemist or combustion engineer. In the present
report, available information on kinetic parameters for HMX and RDX
decomposition is summarized, and an attempt is made to arrive at suggested
values for activation energies and frequency factors, and to discuss the
results in terms of the possible chemical and physical mechanisms involved in
the decomposition reactions. Brief preliminary discussions of possible
chemical mechanisms aud of needed research have already appeared,< and

_ subsequent reports in the present series will deal with such topics as product
distributions and autogatalysis. There have been a number of reviews of HMX
and RDX decomposition, =6 some of which came to our attention after the
present work was in progress, but there still seems to be a definite need for
a critical, interpretative review written from the point of view of an organic
or physical-organic chemist,

In the present report, an attempt has been made to provide comprehensive
literature coverage to approximately mid-1980, although some later reports and
papers are included.

The scope and organization of the present report are as follows: The
available values for activation energy and frequency factor A (expressed as
log A) are summarized in Appendices A-D. Appendix A summarizes the very few
available values for vapor-phase decomposition of HMX and RDX. Appendix B
summarizes data for HMX decomposition in the neat 1iquid and dissolved
states, Appendix C similarly summarizes data for RDX decomposition in the
neat liquid and dissolved states. Appendix D covers decomposition of HMX and
RDX at temperatures below their respective melting points.: These Appendices

2(a) M. A. Schroeder, “Critical Analysis of Nitramine Decomposition Results:
Some Comments on Chemical Mechanisms,“ Proceedings, 16th JANNAF Combustion
Meeting, Naval Postgraduate School, Monterey, CA, Sep 10-14, 1979, Vol. 2,
p. 17; (b) M. A. Schroeder, "Critical Analysis of Nitramine Decomposition
Data: Some Suggestions for Needed Research Work,” Memorandum Report ARBRL-
MR- 3181, Jure 1982 (AD-All6 194).

35. Wilby, "Thermal Decomposition of RDX/TNT Mixtures, Part 1,” A.R.D.E.
Report (MX) 16/59, August 1959 (AD-285 991).

4F. C. Rauch and R. B. Wainright, “Studies on COmpositibn B,” Final Report
Contract No. DAAA21-68-C-0334, American Cyanamid Com: any, Feb. 1969 (AD-850
928). _

5M. Benreuven and L. H. Caveny, "Nitramine Monopropellant Deflagration and
General Nonsteady Reacting Rocket Chamber Flows,” MAE Report No. 1455,
Princeton University, Princeton, NJ, January 1980.

6Ye. Yu Orlova, N. A. Orlova, et al., "Octogen-Thermoresistant Explosive,”

Publishing House "Nedra,” Moscow, 1975; FTD-ID (RS) T-0667-80, 2 May 1980
(AD-B047 181).
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are sevarately accompanied by discussions intended to justify the selection of
best values and weights of data from each title. The ~»ference numbers in
these discussions correspond to references given in tha: particular

Appendix. A more general discussion of sources of error, chemical mechanism,
etce is given in the main report; this more general discussion is intended to
tie together the information in all of the tables, and to present suggested
values for kinetic parameters of WM{ and RDX decompositioa in the liquid and
gaseous states, .

It should be understood that the entire decomposition process of HMX
cannot be described bv a single set of kinetics constants; the kinetics and
parameters differ appreciably with experimental conditions such as
confinement, tewperature, pressure and phase (solid, liquid, gas, solution)
and with extent of reaction. This is exyucially true for the physically-
complex below-the-melting-point decomposition, in which considerable evidence
seems consistent with the idea that initially, vaporizatisn and gas-phase
decomposition (in at least some cases probably proceeding side-by-side with
true solid-state decomposition) leads to formation of liquid products which
condense onto undecomposed solid and induce liquefaction, leading to
acceleration of condensed-phase decompositio~, However the rates differ
appreciably even between the homogeneous solid, liquid, vapor and solution
phases, and in many cases even the rate constants for homogeneous, single-
phase decomposition seems subject to some autocatalysis. Thus, wnen rate data
such as those summarized here are used for predictive purposes, care should be
taken to understand as well as possible the physical and chemical mechanisms
of HMX and RDX decomposition under the zonditions of pressure and temperature
for which predictions are being made; and to take as much account as possible
of variations in physical and chemical mechanisms with temperature and
pressure, |

» .

It should be remembered that t&e activation energies and trequency
factors given here are the result of efforts to arrive at values ‘
characteristic of certain specific chemical decompositisn reactions occurriug
in the homogeneous liquid or vapor plases (but see the discussion Lia the
preceding paragraph). Consequently, they are strictly applicable to complex
processes (such as combustion) only to the extent that these processes are
representable in terms of these same specific, homogeneous decomposition
steps, Therefore, when the values given here are used as input for ¢ .mbustion
or explosive modeling studies, they can be expected to prove most useful when
used in conjunction with other measured or estimated parameters, in models
which take detailed account of the individual chemical and physical processes
involved. There is a need for further development of propellant-combustion
and explosive models which take detailed account of the chemical decomposition
processes involved, especially since relative rates of various injtial and
follow-up steps may change with changes in pressure and temperature.

IT. SOURCES OF ERROR

One important source of uncertainty in studies such as those summarized
here 1s that use of a very short temperature range for the Arrhenius plot may
lead to inexact values for the frequency factor and activation erergies.
Other important sources of error include self-heating; vaporization followed
by vapor phase decompos‘tion or by condensation onto the cooler parts of the
apparatus; reactions taking place on or catalyzed by the container surface;

i1




and autocatalysis or autoinhibition. Another problem is that it is ofter not
stated whether or what sort of statistical analysis was employed. This can
make a difference, as is shown by the following example: an activation energ
of 48.7 kcal/mole is reported®*’ for the thermal decomposition of neat liquid
RDX. 1In a later report® in the same series, it was stated thac least sauares
analysis of the data gave a log A (sec'l) of 22.4 and an activation energv of
55.6 kcal/mole. This is a significant change from the earlier values which
were stated to be the result of a preliminary analysis, This example
illustrates the possible effect of statistical treatments on the results.

A. Temperature Range

Activation energy and frequency factors are determined from a logaric:.ic
plot of rate constant k vs reciprocal temperature; clearly the longer the
temperature range the more reliable will be the extrapolation t~ the much
higher temperatures characteristic of combustion and explosive behavior, Most
authors studying HMX and RDX decomposition kinetics have worked over
~elatively short temperature ranges, often 20° or less, possibly because
*emperature dependence due to the relatively high (ca 50 kcal/mole) activation
energies results in shortening of the temperature range over which the
decomposition proceeds at conveniently measurable rates, This problem is
especially severe for liquid HMX, which is already within its decomposition
range at ;he melting point of solid HMX (ca 280°). 1In spite of this problem,
Robertson’ was able to study neat liquid RDX over the range of 213-99°C (AT =
86°) and HMX over the range 271-314°C (AT = 43°); the reaction .t higher
temperatures was followed using a wmembrane manometer atiached to an optical
lever, pressure-time traces being recorded on a moving strip of photographic
paper.,

In the present report, we will plot the most reliable data on common
axes, hoping thereby to moot the question of differences in reliability due to
use of different temperature ranges in the different studies by doing common
statistical aralysis on all data for the same compound and phase,

7F. C. Rauch and A. J. Fanelll, "The Thermal Decomposition Kinetics of
Hexahydro-1,3,5~-*rinitro~s-triazine above the Melting Point: Evidence for
both a Gas and Liquid Phase Decomposition,” J, Phys. Chem., Vol. 73,
p. 1604, 1969. -

Rf. c. Rauch and W, P. Colman, “Studies on Composition B,” Final Report,
Contract No. DAAA21-68~C-0334, American Cyaramid Company, March 1970 (AD-869-
226).

9a. J. B. Robertson, "The Thermal Decomposition of Explosives, Part II.
Cyclotrimethylenetrinitramine and Cyclotetramethylenetetramitramine,” Trans.

Faraday Soc., Vol. 45, p. 85, 1949,

12
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B. Self-Heating

Self~heating results when an exothermic reaction generates hcat faster
than the surroundings can conduct it away. Self-~heating would be favoredl? by
large sarple sizes and by higher pressure of gas over the sample since high
pressure would lead to smaller bubbles of decomposition gases, hence to less
efficient stirring of the sample. Thus two checks for self-heating would be
whethet or not the rate were independent of 63) sample size and of (b)
pressure of inert gas atmosphere. Robertson’ found no self-heating by either
methods for RDYX with sample sizes from 4~45 mg, or for HMX with sample sizes
from 1-7 mg. Thus, it would appear that in manometric kinetic apparatus of
this general type, use of samples of these sizes or smaller should obviate the
problem of self-heating., However, as indicated {n Appendices B and C, use of
larger samyles did sometimes give evidence of self-heating. Furthermore,
Goshgartian 1 4n describing a DSC experiment states that "sample weight (of
HMX) greater than 1.0 mg increased the isothermal temperature during HMX
decomposition, apparently due to excess thermal evolution beyond the
capabiiities of the instrument to adequatelv regulate a constant temperature,”
Thus the permissihle sample size in a DSC apparatus appears to be much smaller
than in a standacd kinetic apparatus.

If self-heating were important, {t should give artificially high rate
cnnstants at high temperatures resulting in high values for activation energy
and frequency ractor. : ‘

C. Sublimation and Gas-Phase Reactions

Another possible fmportant. source of error in condensed-phase studies is
vaporization of the sample followed by either gas—phase decumposition, or even
sublimation of undecomposed HMX or RDX onto cooler portions of the apparatus.
In most of the kinetic studies, sublimation was retarded either by carrying
out the reaction under a pressure of inert gas or by carrying out the reaction
in an apparatus designed in such a way that all parts were evenly heated to
the temperature of the experiments., Thes~ precautions serve a purpose, since
it 1s widely reported that in vacuum both YMX and RDX readily vaporize and
condengse on the cooler parts of the appargtus without appreclable
decomposition; see for example Robertson. .

The vapor-phase reaction can Interfere appreciably with determination of

liquid-phase kinetic parameters, as shown by the results of Rogers, < who
found that the vapor phase caused a quite noticeable hump on the tail nf the

-

lOA. J. B. Robertson, "The Thermal Decomposition of Expiosives, Part 1.
Ethylenedinitramine and Tetryl, "Trans. Faraday Soc., Vol. 44, p. 677,
1948,

llB. B. Goshgarian, "The Thermal Decompnsition of Cyclotrimethylene-
trinitramine (RDX) and Cyclotetramethylenetetranitramine (HMX),” AFRPL-TR-
78-76 (AD-B032~275L).

12R. N. Pogers, "The Determination of Condensed Phase Kinetics Constants,”
Thermochimica Acta, Vol., 9, p.44s, 1974.

13
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DSC curve of decomposing RDX. The gas--phase material disappears immediately
after the liquid-phase is all gone; the result is a hump on the tail of the
DSC curve at the point where liquid-phase decomposition ends and the gas-phase
RDX starts to disappear. While liquid=-phase is present, what is actually
beinrg observed is presumably a superposition of a first-order liquid phase
reaction and a gas-phase reaction which reduces to appareat zero-order due to
constant volume and to replenishment of gaseous material by vaporization of
liquid. In the case of RDX this led!? to an apparent E, = 43.1 kcal/mole and
A= 2.44 x 1016 sec”!. When the vapor-phase reaction was taken account of by
using a baseline based on the constant gas-phase decomposition, Rogers
obtained E; = 47.1 kcal/mole and A = 2.02 x 1018 sec™!, in good agreement with
Robertson's manometric values. In spite of Roger's publication, subsequent
workers have generally continued to ignore the vapor-phase coutribution to the
decomposition of neat liquid HMX and RDX.

The above discussion refers to isothermal DSC. When temperature-
programmed nonisothermal DSC is employed, the problem becomes even worse due
to probable temperature dependence of the relative importance of va; ::-and
liquid-phase decomposition, as well as error introduced by the particular
method of calculation employed.

Thus, out of the multitude of thermal analysis studies of Arrhenius
pirameters of HMX/RDX decomposition, the gas-decomposition-corrected values of
Rogers'<? arve preferred. The 4 kcal/mole difference between Rogers'
corrected and uncorrected aczivaiion energies for RDX suggests that a similar
correction should be applied to all isothermal DSC results; examination of
Appendix C suggests that application of such a correction would bring these
values into the same range as those found from non-DSC kinetic studies on
RDX. See also the discussion in Section II. F.

The effect of vapor-phase decomposition may be smaller for non-DSC
studies. Rauch and Wainwright (see page 29 of Reference &), in the course of
their reactant-disappearance kinetic studies of the decomposition of liquid
RDX, calculated (from vapor pressure) the percent RDX initially in the gas
rhase for several different combinations of reactor volume and initial weight
of RDX at 212°C. These percentages varied from 0.3 to 3.6, and seemed
unrelated to the rate constant which varied in the range 2.0+0.3 x 10”3 sec~!
in a manner unrelated to the amount of RDX present in the gas phase. This is
surprising, since the 1i i1id-phase rate constant at this temperature is
calculated to be 1.25 x 13 sec™l, using Robertson's values’ (A = 3.16 x
1018, E, = 47.5 kcal/mole), and the gas-phase rate constant is calculated to
be about ten times faster (1.35 x 10~2 sec ~1) using Rogers' values'® (A =
3.14 x 1013 sec™}, E, = 34.1 kcal/mole) for the gas-phass decomposition,
However, this is in agreement with Robertson's statement” that his manometric
results were 1ndependent of sample weight and pressure of overlying gas.
Thus, it appears that vapor reaction probably does not introduce as much error
into non-thermal kinetic studies as into thermal analysis studies.

13g. . Rogers, private communication, Los Alamos Scientific Laboratory, 1979.

L4g, N. Rogers and G. W. Daub, "Scanning Calorimetric Determination of Vapor-
Phase Kinetic DPata,” Anal. Chem., Vol. 45, p. 596, 1979.
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Possible reasons for this discrepancy include the following: . (a) The DSC
experiment follows the decomposition by its heat release. If the gas-phase
decomposition had a greater heat release per mole than the liquid-phase
decomposition, the DSC apparatus 'would sec the gas-phase reaction as being
proportionately more important than would the conventional kinetic
experiments, thereby necessitating a largeg fzrrection. (b) The m/V ratio
for the DSC experiments (ca 0.5mg/0.022m11 4 23mg/ml is generally larger
than those for conventional kinetic experiments (see for example Reference 4)
(ca 40mg/26ml = 1.5mg/ml); this might promote any exothermic reaction of
gaseous products wit!li each other or with unreacted RDX, since the higher m/V
ratio might tend to keep gaseous decomposition products in contact with
unreacted liquid (see discussion under auto-acceleration). This effect might
conceivably operate even though gaseous products are generally allowed to
escape through a small hole in the top of the DSC pan. (c) The DSC apparatus
might detect heat output from reaction of gaseous decomposition products with
each other rather than just that from decomposition of RDX itself,

The possibility should be kept in mind that some of the heat evolution
from the gas phase reaction may be due to reaction among the products rather
than just decomposition of RDX; however, good first order plots and reaction
orders of ca 0.9 were obtained foz the gas phase reaction so it seems likely
that the observed rate constants!® and Arrkenius parameters (Appendix A)
obtained by DSC are actually those for the gas phase decomposition of RDX and
HMX, although it is difficult to rule out the possibility of pseudo-first-
order reaction of products. Expulsion of unreacted HMX or RDX vapor through
the hole in the 1lid of the pan might also lead to artificially high rate

constants,

The above discussion applies specifically to RDX but since HMX also
exhibits a vapor phase reaction it should apply to HMX also. However, the
situation may be more complicated for HMX; see discussion in Appendix B.

D. Reactions on the Container Surface

In connection with ggs-phase decomposition, another possible (and often-
overlooked) complication’’ is the fact that reactions assumed to take place
entirely in the homogeneous gas phase sometimes in fact take place on or are
catalyzed by the wall of the reaction vessel, More work is needed, but wall
reactions are probably not a very important source or error in studies of gas-
phase decomposition of HMX and RDX themselves., This tentative conclusion is

|
|

15p, J. Robinson and K. A. Holbrook, "Unimolecular Reactions,” Wiley~
Intergcience, New York, pp. 6~7, 1972.
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based on two observations: First, it has been reported16 that the rate of
gas-phase HMX pyrolysis is independent of the nature of the container surface
(note however, that dimathylnitramine decomposition did exhibit suvch a
dependency16); second, consider the gas-phase decomposition data for RDX
plotted in Figure 2. As stated in Appendix A and in the section on
“Statistical Analysis,” the data plotted includes NSC data of Refereunces A-}
and A-4, and manometric data from Reference A-3., The DSC data were done in
metal-walled DSC pans.  The wall material of the manometric (Reference A-3)
studies was not stated, but was presumably some kind of glass or quartz. If
this 1s the case, the close correspondence (Figure 2) of data with the two
types of wall material would seem to suggest that wall material doesn't make
much difference, and hence that wall reactions are not tc . important. Note
again, however, that the SRI workersl® found that the rate of
dimethylnitramine decomposition did depend on wall material; thus wall
material is apparently important at least for the case of this one
nitramine. Note also the disrrepancy between dimethylnitramine and HMX in
this respect; possible explanations include structural effects on absorption
characteristics, differences in decomposition mechanism, and difference in
pressure at which the experiments were carried out. See also paragraph 6 of
Note Added in Proof No. 3.

This apparent importance of wall reactions for at least some nitramines
should be kept in mind when reading previous work on gas-phase decomposition
of nitramines, Furthermore, it is recommended that future workers on
decomposition of nitramines under conditions where gas-phase decomposition may
be important, should at least check for wall reactions by examining the effect
of added glass beads, glass wool, etc., 1f practicable it wou.d probablv also
be a good idea to study the effect of variations in wall material. As
discussed above, it appears that HMX and RDX themselves may not he affected
too much by wall reactions, but more information i3 needed here also.

E. Autoacceleration, Chain Reaction and Cage Effects

In the homogenous liquid phase, autoacceleration of decomposition by
products might be swallowed up in the overall first order rate cornstant if the
autoacceleratory follow~up reactions were rapid and the chain lengths
relatively short. Robertson’ reported some evidence of autocatalysis of RDX
decomposition, apparently by a stable product formed in solution.
Autoacceleratory behavior might in principle be expected to either raise or
lower the apparent activation energy depending on the relative temperature
dependencies of the initial cleavage and autocatalyic follow-up steps, but
lowering seems to be the usual pattern. Evidence for some effect on liquid
decomposition by gaseous products is provided by observations that the
activation energies for RDX decomposition were about 15 kcal/mole lower for

e

16p, F. McMillen, J. R. Barker, K. E. Lewis, P. L. Travor and D. M. Golden,
“"Mechanisms of Nitramine Decomposition: Very-Low Pressure Pyrolysis of HMX
and Dimethylnitramine,” Final Report, SRI Project ™YU-5787, 18 June 1979
(SAN-0115/117). (Supported by Department of Energy through Lawrence
Livermore Laboratories).
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closed pan (sealed) than for open pan (1 hole) DSC experiments.l7 Note
however the possibility of heat effects due to confinement of reactive gaseous
products. In general, however, the agreement of the most reliable rate
constants and activation energies with each other and with the vapor-phase-
reaction-corrected DSC results suggests that under these conditions of less
confinement (lower w/V ratio), rate constants are not being affected by
reaction of gaseous products with the liquid phase. It is alco possible that
case effects could affect rates and activation parameters. See also Section V

A and Note Added in Proof No. 2.

F. Isothermal.vs. Nonisothermal Thermal Analysis

Two general aporoaches are generally used in measuring activation
energies and frequency factors by thermal analysis methods. We will refer to
these as isothermal and nonisothermal approaches. In the first (isothermal)
approach the decomposing sample is held at constant temperature and the plot
of heat evolved vs time is used to derive the rate constant at that
temperature; the rate constants derived in this way at several temperatures
are then used in a conventional Arrhenius plot of log of k vs 1/T to derive E,
and A, In the second (nonisothermal) approach the activation energy is
derived by any of a variety of calculation procedures from time-property
curves derived from programmed temperature runs,

The isothermal method seems capable of giving good results for the liquid
phase reaction provided a correction is made for the gas phase reaction which
occurs simultaneously with liquid phase reaction; thus_the activation energy
and frequency factor found for decomposing liquid ROX1Z were 43.1 kcal/mole
and 2.44 x 10!6 sec” respectively without corrections for vapor phase
reaction, and 47.1 kcal/mole and 2.02 x 1018 sec™! with correction for gas
- phase reaction, the latter pair of values being in reasonable agreement with
Robertson's values’ of 47.5 kcal/mole and 3.16 x 1018 gec™ (not 2.17 x 10! 18
sec”* as stated in Reference 12). As far as this writer is aware, this is the
only attempt at correcting isothermal DSC data on liquid HMX and RDX for
concurrent vapor phase reaction; since the correction in activation energy
seems to be about 47.1 - 43.1 = 4,0 kcal/mole and other isothermal DSC values
(Appendix C, References 13, 14, 16, 20, 28-30) are generally in the range
40-44 kcal/mole it would appear that application of this correction would
raise these valueg to the range 44-48 kcal/mole in better agreement with
Robertson's value” of 47.5 kcal/mole. A similar treatment suggests that the
correction factor in A is about 102 or 103; thus it s recommended that
whenever possible values of E, and A measured by thermoanalytical methods for
liquid phase HMX and RDX should be corrected for concurrenc vapor phase

decomposition.

In the case of the nonisothermal approach it is hard to know how to
include a correction for the gas phase reaction. In addition these methods
are generally subject to errors both experimentally and because of assumptions
introduced in the course of deriving the equations used in the calculation

17g. Kishore, "Thermal Decomposition Studies on Hexahydro-1,3,5-trinitro-s-
triazine (RDX) by Differential Scanning Calorimetry,” Propellants and

Explosives, Vol. 2, p. 78, 1977.
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(see for example References 18-21). Because of these considerations, and due
to time limitations only a short discussion of non-isothermal DSC
determinations will be given here. However, an attempt has been made at
including in the Appendices all available values measured by these methods.

For example,_ it seems appropriate to point out that it appearsls'zo that
one common method“! for calculating activation energies. namely the method of
Kissinger,21 may be subject to errors, when used to studa HMX and RDX
decomposition. In particular Rogers and Smith reported2 that the Kissinger
method gave low values for activation energy (28 kcal/mole) aund frequency
factors (log A(sec™l) = 10.63 although several other methods gave values more
in agreement with Robertson.” However, Kishoreli' fou:d that the Kissinger
method gave E, = 42 kcal/mole, in approximate agreement with isothermal and
other scanning methods. Thus, it would appear that until this situation is
better understood, the Kissinger method and other nonisothermal methods should
be used with caution; care snould be taken that the system under study
conforms to the assumptions made in deriving the method. Actually, the
physical couplexities alone may well render HMX and RDX decomposition
unsuitable for study by many nonisothermal methods. ' '

It also seems worth mentioning that several papersl7'20’23 include
comparigons of Arrhenius parameters, obtained by various dynamic or
nonisothermal thermoanalytical methods, including DSC and TGA results. 1In
general, the dependence of the results of these studies on experimental
condizions and method of calculation appears to be such that, as suggested by
Garn? (for systems other than HMX and RDX), it actuaily seems more
appropriate to regard them as "Temperature Coefficients of Reaction™ rather
than “Activation Energies,” since they almost certainly do not represent an
energy of reaction for a single, homogeneous chemical process, but rather the

18y, W. Wendlandt, “Thermal Methods of Analysis,” 2nd. Edition, John Wiley and
Sons, New York, NY, p,. 187-193, 1974.

19;, u, Sharp, "Differential Thermal Analysis,” R. C. Mackenzie, ed., Vol. 2,
Chapter 28, See especially p. 55, Academic Press, New York, NY, 1972.

20g, . Rogers and L. C. Smith, "Application of Scarning Calorimetry to the
Study of Chemical Kinetics,” Thermochimica Acta, Vol. 1, p. I, 1970.

21y, g, Kissinger, "Reaction Kinetics in Differentiszl Thermal Analysis,” Anal.
Chem., v010 29, P- 1702’ 19570 ’

22y, Kishore, “"Comparative Studies on the Decomnosition Behavior of Secondary
Explosives RDX and HMX," Defense Science Journal, Vol. 18, p. 59, See Chem.
Abstr., Vol. 90, 206758V, 1978.

233, ». Smith, "Differential Thermal Analysis and Dynamic Thermogravimetric
Analysis Studies of RDX and HMX," NWL Technical Report TR-2316, July 1969
(AD-857 655).

24p, p, Garn, "Temperature Coefficient of Reaction,” Thermochimica Acta,
Vol. 28, p. 185, 1977.
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temperature dependence of a complex process involving both vapor and condensed
phase, and most likely some degree of autocatalysis as well. Thus, although
these methods may well have usefulness 1n studying trends in data for a series
of experiments under similar conditions, the absolute values probably have
meaning only under the exact conditions for which they were determined.

II7. STATISTICAL ANALYSIS

The statistical analysis was carried out by two methods. The first
method was the method of Cvetanovic and Singletonzs'z6 which involves fitting
the logarithms of the data using a transformation of the weights. The result

~ a least squares fit of the original data. The program used had been

writtan for another project by Dr. T. P. foffee, and a copy of it is included
as Appendix E. The second program fits data to the logarithmic form (log k, =
log A - Ea/RT) of the Arrhenius Equation. The result is a least squares fit
of the logarithms of the data. This program was written by D.R. Crosley and
G.E. Keller for other work. A copy of this program is included as Appendix F
of the present report. The author thanks Drs. Coffee and Keller for carrying
out the analyses of the data using their respective programs,

Data on gas-phase decomposition of HMX and RDX was taken from Tables A-2
and A~3 of Appendix A. These Tables include all data known to the present
writer on gas-phase decomposition of HMX and RDX. Data analyzed for
decomposition of neat liquid HMX were taken from Table B-3 of Appendix B;
these are believed by the present writer to be the most reliable data on
decomposition of neat liquid HMX. Although all three sets of data were
analyzed and plotted together, it is suggested that until the question of the
gac-phase correction for UMX decomposition is better understood, the best
value for liquid HMX would probably be those derived from Robertson's work
(Reference 9). The data analyzed for decomposition of neat liquid RDX were
taken frem Table C-3; for reasons discussed in Appendix C, these are believed
by the present writer to be the best data for decomposition of neat liquid
RDX. Since several authors reported data (Table C-4) on decompnsition of RDX
in TNT solution, these data were analyzed and plotted together also. The data
for neat, 1liquid RDX, gaseous RDX, neat liquid HMX, gaseous HMX, and RDX in
TNT solution are plotted in Figures 1-5 respectively, and the Arrhenius
parameters obtained from the two programs are summarized in the first four
columns of data in the Table. The last two columns of data ia the Table 1list
the values suggested by the present writer for decomposition of the indicated
compounds in the indicated state of aggregation., In general, these are the

values from the Cvetanovic-Singleton Program, as itzgeems that the direct fit

to the logarithmic form should be more accurate.zs’

2%R. J. Cvetanovic and D. L. Singleton, "Comment on the Evaluation of the
Arrhenius Parameters by the Least Squares Method,” Int. J. Chem, Kinet.,
Vol. 9, p. 481, 1977.

26g, 3. cvetanovic and D. L. Singleton, “Comment on the Evaluation of the
Arthenlus Parameters by the Least Squares Method,” Int. J. Chem, Kinet.,
Vol. 9, p. 1007, 1977.
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Figure 4. Plot of Log k vs 1000/T for Gas-Phase HMX Decomposition.
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The values of leg|q A listed in the Table are given to three significant
figures past the declma? point, although it is highly questionable whether the
accuracy of the intercepts themselves justifies more than one such figure.

The other figures are given because 1t is felt that modelers may find more
precision useful in interpolating within the temperature range covered by the
actual measurements, or for extrapolating to temperatures not too far outside
these ranges. Note that the original rate constants and temperatures on which
the values given are based, are for the most part given to three or four
significant figures by the original authors.

IV. GENERAL DISCUSSION AND SUGGESTED VALUES FOR KINETIC PARAMETERS
A. Gas~Phase

There is a need for more work ca the gas-phase kinetic parameters for HMX
and RDX decompositions, as mentioned in the discussion of data in Appendix A.
The best values for use in modeling studies involving gas-phase decomposition
at relacively low temperarures (ca 200-300°C) would probably be log A (sec‘l)
= 11.991 and E; = 30.5 kcal/mole for RDX, based on the plot and statistical '
analysis of all data (Table and Figure 2) For HMX, the data 1s too scattered
to allow choice of a single recommended value (Table, Figure 4) but the values
are most likely in the range 30-35 kcal/mole and log A (Sec” 1y « 12.8
respectively. Until wore data is available, E, = 32.5 kcal/mole would
probably be as good 1s anything.

Furthermore, there is reason to suspect that as temperature rises the
Arrhenius parameters may change appreciably, due to a change in decomposition
nochanism. Tnis follows from the report by McMillen et al.,l who carried out
thermochemical estimations, very low pressure pyrolysis and masi gpe.cral
studies on gas phase HMX and dimethyl-N-nitroamine decomposition; their
results were in agreement with the idea that at lower temperatures the
principal reaction in the vapor phase was HONO elimination, and at higher
temperatures N-N0, cleavage, with the cross-over point occurring at about
500°K or 300°C. If this is the case, it might be a good idea if possible to
represent the low temperature reaction by the values given above. The high
temperature N-NO, cleavage rp?cclon could be repra2sented by rhe parameters
estimated by Shaw and Walker?’/ for N=-NO4 cleavage of HMX: 1log A (sec™’) =
16.4 and E; = 46.2 kcal/mole., For RDX E, should be about the same but log A
might be expected to be lowered from 16. 40 to 16.28 since RDX has only three
equivalent N-NO, groupings. If pcssible it would probably be best for
modelers to incorporate this possihle mechanism shift by representing low
temperature reactions as proceediug on the basis of whatever temperature is—
predicted by the model under consideration. Note also that_the exact location
of the crossover point is uncertain; thus Shaw and Walker,’ using a somewhat
different set of parameters, got a crossover point of 52.60°C. In nlosing, we

27g. shaw and F. E. Walker, "Estimated Kinetic. and Thermochemistry of Some
Initial Unimolecular Reactions in the Thermal Decomposition of 1,3,5,7-
fetranitro-1,3,5,7-tetraazacyclooctane in the Gas Phase, J. Phys. Chem,
Vol. 81, p. 2572, 1977.
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point out again that there is a need for more data on the gas—-phase
decomposition of both HMX and RDX, especially in the high-temperature range,
where N-NO, cleavage may become important.

Available data on gas-phase decomposition of nitramines other than HMX
and RDX has been summarized by the SRI group,16 who also carried out
additional measurements themselves, on dimethylnitramine and HMX. The
literature28-31 activation energies and frequency factors varied widely (E,
values reported for dimethylnitramine varied from 37 to 53 kcal/mole, for
example), and were generally interpreted as being zonsistent with log A(sec™ D)
= 12.4 and E; = 35-39 kcal/mole, or with log A(sec'l) = 16,5 and E, = 43-48
kcal/mole. These values were of interest because they are characteristic of

- HONO eliminaticn, and of N=NO, cleavage respectively. The SRI workers
interpreted their results in terms of temperature-variation of the relative
importance of these two mechanisms, see the preceding paragraph. However, the
role of wall reactions seems uncertain at this point. As pointed out by the
SRI workers,l6 the apparent lack of surface effects on HMX decomposition seems
puzzling, since dimethylnitramine decomposed faster with a normally aged or
oxygen cleaned surface than with a carbon-coated surface, On the other hand,
the decomposition rate of N-methyl-N-choloromethylnitramine was unaffected by
increasing_the specific surface area of the container by over an order of
magnitude, 1 and Figure 1 of Reference 30 suggests that decomposition kinetics
of Aiethylnitramine were not greatly affectea by filling the reaction vessel
w..n glass packing. The explanation for these results seems uncertain;
differences in pressure between experiments may make a difference, or
possibily the surface reaction has a steric requirement that is satisfied only
by the relatively unhindered dimethylnitramine. In any case, there is clearly
a need for further work on the nature and occurrence of surfzce reactions in
the gas phase decomposition of gaseous nitramines, if the gas-phase
decomposition itself is to be underscood.

B. Liguid Phase

The activation energy and frequency factors from the four apparently most
reliable data sources on decomposition of liquid RDX have been described in
Appendix C and accompanying discussion. A plot of the data for all four
gources on one axis is given in Figure 1, and a statistical analysis of the

285, M, Fluornoy, “Thermal Decomposition of Gaseous Dimethylnitramihe,"_iL
Chem. Phys., Vol. 36, p. 1106, 1962.

293. L. Korsunskii, and F, I. Dubovitskii, "Thermal Decomposition Kinetics of
N, N-Dimethylnitroamine,” Dokl. Akad. Nauk. SSSR, Vol. 155, p. 402, (Eng.
Trans. p.266), 1964.

303. L. Korsunskii, F. I. Dubovitskii, and E. A. Shurygin, "Kinetics of the
Thermal Decomposition of N-N-Diethylnitroamine and N-Nitropiperidine,”
Izvest. Akad. Nauk. SSSR, Ser. Khim., p. 1452, (Eng. Transl. p. 1405), 1967.

31g, 1. Korsunskii, F. T, Dubovitskii and V. I. Losenova, “"Thermal
Decomposition Kinetics of N-Methyl-N-Chloromethylnitramine,” Russian J.
Phys. Chem., Vol. 43, p. 645, 1969.
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points for all four sources by ghe procedure of Cvetanovic and Singleton
(pp. 19-26) gave A = 2.46 x 101° (log A = 18.668) and E_ = 47.8 kcal/mole:
these are our suggested values for decomposition of neat 1liquid RDX.

The values for peat lignid HMX were similarily discussed in_the
discussion accompanying Appendix B. The most reliable values?+13:32 are those
that were plotted (Figure 3), and analyzed siwilarily to the RDX values giving
values for log A and Fa which could possibly he presented as recommended
values for modeling studfes involving decomposition of pure liquid HMY.
however, YBa?Awhi]e the picture of concurrent gas and liquid phase
reactions ‘" still seems to hold for RDX, it has Sgcqgtly begun to appear
that the situation for HMX may be more complicated,”“*’~ and until this
situation is understood bettev ghan at present, it may be a good idea to just
use Robertson's manometric data” as the best data for decomposition of neat
liquid HMX: as shown in Appendix B, this gives E_ = 53,1 kcal/mole and log A
(Sec—l) = 19,950. Note also that the values of log A (sec ') (= 21-21.5)
cbtained from all three sets of data together seem unreasonably high.
Alternatively, Robertson's values of Ea = 52.7 kcal/mole and log A (sec'l) =
19.7 could be used, especially since some of the discrepancy between the two
sets was presumably intgoduced by the present writer in the course of reading
numbers off Robertson's” published graph.

Note,

32g, J. Powers, AFATL, Eglio AFB, FL, Private Communication, 1980.

33R. N. Rogers, Los Alamos Scientific Laboratories, Private Communication,
1980.
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Activation energies for thermal decomposition of nitramines other than
HMX and RDX10+34=39 15 the neat liquid state are generally in the range 40%5
kcal/mole, with frequency factors correspondingly decreased. The values haxg
been observed to decrease with increasing confinement in at least one case,
namely that of di-(2-nitroxyethyl)~N-nitroamine; this was attributed3> to
autoacceleration due to a combination of hydrolysis ard oxidation involving
water and N0, formed in the decomposition.

C. Solution-Phase Decomposition of RDX and HMX

Activation energies and log A for solution phase decomposition of HM! and
RDX are summarlized In Appendix B (HMX) and Appendix C (RDX). Like the gas-
nhase values the values for frequency factors and activation energy are
generally lower for decomposition in solution than in pure liquid. There was
enough data on the decomposition of RDX in solution in TNT to allow
statistical analysis by the procedure of Cvetanovic and Singleton; a plot is
given in Figure 5. The line for the three studies at concentration of 20-60%
falls above the line defined by the studies of Robertson (carried out at
concentrations of 1-52 RDX) within the region studied experimentally, although
the frequency factor for the 20-60% points is lower than that for the 1-5%
points; apparently there is a line crossing resulting from a slightly higher
activation energy for the 1-5% studies. It is not certain whether this line
crossing is real or is an artifact resulting from scatter in the experimental
data. 1If, as it does not seem altogether unreasonable, the line-crossing is a
artifact, then it would appear that the studies at 20-60% concentration have a
frequency factor higher by a factor of ca 2-3 than the studies at 1~57 RDX.

34p, 1. Dubovitskii, 6. B, Manelis and L. P. Smirnov, "Kinetics of the Thermal
Decomposition of N-Methyl-N, 2, 4, 6-Tetranitroaniline (Tetryl),”™ Russian
Journal of Physical Chemistry, Vol. 35, p. 255, 1961.

35F, 1. pubovitskii, Yu. I. Rubtsov, V. V. Barykin and G. B. Manelis,
“Kinetics of Thermal Decomposition of Diethylnitramine Dinitrate,” Bull.
Acad. Sci. USSR, Div, Chem, Sci., p. 1126, 1960.

36p, s. svetlov and B. A. Lur'e, “Thermal Decomposition of Di(nitroxyethyl)
nitramine,” Russian Journal of Physical Chemistry, Vol. 37, p. 1073, 1963.

37y, G. Samoilenko, A. A. Viﬁokurov, V. G« Abramov and A. G. Merzhanov,
"Kinetics of the Thermal Decomposition of Dinitroxydiethylnitramine with no
Removal of Gas from the Reaction Zone,” Russian Journal of Physical

Chemistry, Vol. 44, p. 22.

383, 1. Korsunskii, L. Ya. Kiseleva, V. I. Ramushev and F. I. Dubovitskii,
"Kinetics of the Thermal Decomposition of bis-(2,2-Dinitropropyl)-N-
nitroamine,” Izv. Akad. Nauk. SSSR, Ser. Khim., p. 1778, (Eng. Transl.,
p. 1699) 1974,

396. V. Sitonin, B. L. Korsunskii, N, F. Pyamakov, Y. G. Shva‘ko, I. Sh.
Abrakhmov and F. I. Dubovitskiif, "The Kinetics of the Thermal Decomposition
of N,N-Dinitropiperazine and 1,3-Dinitro-1,3-Diazacyclopentane,” Izv. Akad.
Nauk, SSSR, Ser. Khim., p. 311, (Engl. Transl., p. 284) 1979.
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However, the possibility of a systematic error in the 1-52 studies should be
kept in mind, since these studies are all taken from a single publication.
Continuing this possible trend, the frequency factor for decomposition of neat
li?uid RDX is considerably higher than for the reactions in solution (2.46 x
10 8 sec” , Figure 1). The values for gas-phase decomposition (Table, p. 26-
27) are also lower than tor the neat liquid; possible reasons for this
increase in frequency f~otor with concentration include (a) a difference in
mechanism of energy cransfer leading to an increase with RDX concentration in
the efficiency of energy transfer into RDX molecules; (b) an increase with RDX
concentration in the importance of bimolecular follow-up steps much as those
discussed in our discussions?d of possible mechanisms involved in HMX and RDX
decomposition; and (c) catalysis of TNT decomposition by sclute RDX.

For both HMX and RDX, the activation energies for decomposition in
solution (Appendices B, C and Figure 5) are generally lower (ca 40-45
kcal/mole) than those (ca 50 kcal/mole) for decomposition in the neat liquid
phase (Appendices B, C aund Figures 1 and 3). The best values for the vapor-
phase decomposition of both compounds are also lower than for the neat
liquid. Possible reasons for this include the following: (a) the mechanism
changes from one unimolecular mechanism to another oan golag from gas phase or
solution to neat liquid HMX; (b) the mechanism stays the same, but neat liquid
HMX and RDX exerts a different solvent effect than the ldert solvents studied;
(c) the mechanism shifts from unimolecular in the gas-phase or in dilute
solutions, to bimolecular, possibly chain or autocatalytic, in neat liquid HMX
or RDX. Possible bimolecular steps might include reaction of a aitro group on
one molecule of HMX or RDX with a CHy grouping of another HMX or RDX molecule,
as 1llustrated in Scheme VI of Reference 2-A, or electron transfer between two
molecules of HMX or RDX. A bimolecular first step for the decomposition in
the neat liquid is not inconsistent with the observed first-order kinetics,
since the concentration of HMX/RDX seen by any given molecule of HMX/RDX would
remain constant throughout the reaction; hence the reaction would be zero-
order in the second molecule of HMX/RDX and first-order overall. However, (c¢)
seems unlikely in view of the high (log A = 1018 - 1020) frequency factors for
the liquid-phase reaction, and of the apparent first-order kinetics in
solution. See also the discussion of cage effects in Note Added in Proof No.
2.

, In cornection with the discussion of the decomposition of RDX in TNT
solution, it seems worth mentioning that while RDX catalyzed the thermal
decomposition of Ty3,40 the TNT acts as an inert solvent with regard to the
decomposing RDX.7» '

40y, p, Colman and F. C. Rauch, “"Studies on Composition B,"” Final Report,
Contract No. DAAA21-70-0531, American Cyanamid Company, February 1971 (AD-
881 190).
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The above values for log A and E, are approximately in agreement with
those measured’® for a series of substituted dialkylnitroaminei in
dibutylphthalate solutions; these measurements gave log A(sec ') = 13,7-14.4
and E, = 40-42 kcal/mole. However studies on a series of 4-substituted-2,6-

d1nitrophenylmethyl-N-niE oamines in dinitrobenzene solution gave somewhat
lower values: log A(sec °) = 12,4-13.5 and E, = 32-36 kcal/mole.

D. Decomposition of “"Solid"™ HMX and RDX

The reason for putting quotation marks around the work "solid" is that in
most low temperature (100-300°C) work the decomposition of RDX and (possibly
with somewhat less certainty) HMX below their melting point may well involve
the liquid and vapor phases in addition to, if oot 125522d of, true solid-
state decomposition. For example, Cosgrove and Owen fcund that the rate
of decomposition of RDX at 195°C (ca 5-10° below its melting point) was (a)
directly proportional to the volume of the reaction vessel; (b) for a constant
volume independent of the amount of RDX present: and (c¢) retarded by the
pressure of inert gases, for example, nitrogen. They concluded that RDX does
not decompose in the solid state to any significant degree at that
temperature. Rather, in the early stages of the decomposition, the RDX was
considered to vaporize and the vapor to decompose to liquid products which
dissolve the solid and thus accelerate the decomposition. ‘

In agreement with this, studies43 on decompesition of RDX at high (up to
5 kbar) pressures indicate that decomposition of RDX ig rmuch slower in the
solid state just below its melting point, than in the liquid state at its
melting point. '

Since HMX and RDX are very similar chemically, these results raise strong
suspicions that HMX may behave in & similar manner when decomposed below its

alR. S. Stepanov, V. N. Shan'ko, J. P. Medvetskaya, and V. M. Gorodetskaya,
“Kinetics and Mechanism of Thermal Negradation of Certain Alkyl-and
Arylakylnitroamines,” 5th All-Union Symposium on Combustion and Detonation,
p. 56~9, (FTD-JD(RS)T-1208-78) (AD-B033 622), Sept. 1977.

AZJ. D. Cosgrove and A. J. Owen, "The Thermal Decomposition of 1,3,5~
Trinitrohexahydro-1,3,5~triazine (RDX)," Chem. Commun.. Vol. 286, 1968.

43J. D. Cosgrove and A. J. Owen, "The Thermal Decomposition of 1,3,5~
Trinitrohexahydro-1,3,5~triazine (RDX) Part I: The Prouducts and Physical
Parameters,” Combust. Flame, Vol. 22, p. 13, 1974, .

44J. D. Cosgrove and A. J. Owen, "The Thermal Decomposition of 1,3,5~
Trinitrohexahydro-1,3,5~triazinc (RDX) Part II: The Effects of the
Products,” Combust. Flame, Vol. 22, p. 19, 1974.

aSP. J. Miller, G. W, Nauflett, D. W. Carlson and J. W. Brasch, "The Thermal
Decomposition of 1,3,5-trinitrohexadydro-1,3,5-triazine (RDX) and RDXd at
PFigh Pressures,” Proceedings of the 17th JANNAF Combustion Meetiung, Vol. I,
p. 479, Hampton, VA, 22~26 Sept. 1980.
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melting point. In fact, Maksimov40 found that HMX did behave similarly to RDX
when it was .‘ecomposed below its melting point, zlthough in the case of HMX,
the volume denendence was not as great as for RDX. Thus the true solid-state
decomposition may well be more important for HMX than for RDX, possibly
because HMX is solid at temperatures higher than the melting point of RDX, or
because of lower vapor pressure for HMX than for RDX at the temperatures of

the- respective experiments,

However, there is another point of view in the question of vapor-phase
involvement in "solid”™ HMX/RDX decomposition: Batten has alsc studied
the decomposition of RDX below the melting point and has interpreted his
results in terms of positive or negative catalysis of the condensed phase
decomposition by gaseous decomposition products.

After the publication of Batten's work, Cosgrove and Owen43 argued again
in favor of the gas-phase decomposition, saying that the results quoted by
Batten are not at variance with the suggestion that the gas-phase
decomposition is important in the early stages of the reaction. In addition
to the arguments of_Cosgrove and Owen, this writer feels that it is worth
noting that Batten® reported that with 0.4 g of RDX in a standard sample
‘tube, the induction rate (in percent per minute) was one~-half that with only
0.2 g RDX in the sample tube. Since the sample size was twice as great, this
corresponds to a constant rate of decomposition in grams/minute. Since the
same constant-volume reactor was presumably used for both experiments, this

.result seems more consistent with vaporization and gas-phase decomposition 1if

it is considered that the second 0.2 g of RDX must lie underneath the first

"0.2 g, and hence its vaporization is suppressed. In general, it seems to this

writer that the increase in rate with increasing reactot volume, or amount of
free space, spreading, etc., and its independence on sample weight at constant
volume, suggest that the gas phase decomposition is important in the early
stages of the decomposition below the melting point. 'Note however that the

I
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i
!
|
V
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46Yu. Ya. Maksimov, Tr. Mosk. Khim-Tekhnol, Inst. No. i53, p.73, 1967; see
Chem. Abstr., Vol. 68, p. 41742r. Translated by H. J. Dahlby, Los Alamos,
Report LA~-TR-68-29, lLos Alamos, NM, 1968. i

i
97J. J. Batten and D. C. Murdie, "The Thermal Decomposition of RDX at
Temperatures Below ti.e Melting Point. I, Comments on the Mechanism,“ Aust.
Je. Chem., Vol. 23, p. 737, 1970.

483, J. Batten and D. C. Murdie, "The Thermal Decomposition of RDX at
Temperatures Below the Melting Point. II. Activation Energy,” Aust. J.
Chem., Vol. 23, p. 749, 1970. .

495, 5. Batten, "The Thermal Decomposition of RDX at Temperatures Below the
Melting Point III. Towards the Elucidation of the Mechanism,” Aust. J.
Chem., Vol. 24, p. 945, 1971,

5OJ. J. Batten, "The Thermal Decomposition of RDX at Temperatures Below the
Melting Point. IV. Catalysis of the Decomposition by Formaldehyde,” Aust.
Jo Chemo, Vol. 24, Pe 2025, 1971.
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decomposition residue 1s apparently a positive catalystg’l’g’s1 and that such
apparent products as formaldehyde, N02'and hydroxymethylformamide can catalyze
the reaction either positively or negatively depending on the exact reaction
conditions (see for example References 44 and 49). Thus, it may well be
possible to explain just about =any set of results by some combination of
inhibition and catalysis of the condensed phase reaction by gaseous products
such as formaldehyde and NO,, expecially when the possibility of reaction
between thase products is considered.

Clearly, there is a need for more work on the relative roles of vapor-
phase, liquid-phase, and true solid-state reaction in the decomposition of HMX
and RDX below their melting points, in order that the contribution due to true
solid-state decomposition can be extracted and, extrapolated intelligently to
combustion and explosion conditions. One possible type of experiment that
might help here would be to use various amounts of sample in varying amounts
of sample tubes of similiar construction, in reactors of differing volumes but
otherwise similar coanstruction. This would make it possible to get a better
idea of the effect of sample size, configuration, and reactor volume, each
with the others held constant, This should be done for HMX as well as for

RDX.

Thus, these below-melting polnt activation parameters are actually
overall numbers for complex processes, and it is difficult to relate them to
any single, homogeneous chemical reaction. Garn“' has suggested the use of
the term "Temperature Coefficient of Reaction” rather than "Activation Energy"
in situations of this type; the present writer agrees with this suggestion.

Furthermore, Arrhenius parameters for decomposition below the melting
point seem to be dependent on such factors as degree of spreading of the
sample, which are difficulc to evaluate in view of the limited infomation
given in many of the reports. For example, Batten and Murdie found that
activation energies for decomposition of RDX below its melting point were
dependent on the degree of spreading of the sample.

For these reasons and because of time limitations, a complete discussion
and evaluation of Arrhenius parameters for decomposition of nominally "solid"
HMX and RDX below the melting point does not, at this time, seem jusvified in
terms of its relevance to any true solid-state decomposition of propellants
that may occur under combustion conditions. Consequently, although for future
reference an attempt has been made at including all available activation
energies for decomposition of HMX and RDX below their melting points in
Appendix D, they wili not be discussed in detail; only a few trends and
particularly relevant points will be considered. ,

It seems worthwhilé to begin the discussicn of these points by saying
something about the relative rates of the gas, liquid and solid decomposition
and their relations to combustion modeling efforts. The above-mentioned work

Slg, Suryanarayana and R. J. Graybush, "Thermal Decomposition of 1,3,5,7-
tetranitro-1,3,5-Tetrazacyclooctane (HMX); A Mass Spectrometric Study of the
Products from B-HMX,"” Ind. Chim. Belg., Vol. 32, Spec. No. Part 3, p. 647,
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of Cosgrove and 0wen42'44 indicates that the gas-phase reaction is much faster
than the solid-state decomposition. Furthermore, the Ii?uid-phase
decomposition is faster than the solid-phase reaction,3’ 1,14,52 eyen up to
pressures of 5 kbar, A liquid/solid rate ratio of 10/1 or greater seems
reasonable for RDX at its melting point, based on examination of the pressure-
time data in Figure 8 of Reference 3. Also, decomposition of HMX accelerates
sharply when it is heated past its melting point. In view of these results,
it seems quite reasonable for combustion modelers to assume that the solid-
phase decomposes relatively slowly, and that primary decomposition takes
place, almost entirely in the liquid layer or in the vapor phase. However
some, albeit slow, solid state reaction apparently does take place, even for
RDX and pressures and temperatures of combustion are much higher than those at
which the decomposition studies are carried out; it is quite possible that
these higher temperatures and pressures may lead to accelerated solid state
decomposition. This point seems especially relevant to conditions where there
is no 1iquid layer. It would also help to know whether at the heating rates
involved in combustion, HMX has time to transform from the B~ to the
é~polymorph.

Another interesting trend is that, in many cases (Appendix D) HMX
exhibits a change in activation energy in the region 240-260°C. Sometimes
there are two changes separated by ca 10-20°. This break appears in the
results of studies by thermal analysis and or manometric studies, so it is not
a peculiarity of any one experimental method, One possible explanation for
this might be as follows: Goshgarian (p. 13 of Reference 11) has observed an
endotherm in DSC curves of HMX samples, as well as increased gas evolutinn, at
ca 250°C. He tentatively attributes this to melting of B-HMX left over from
the B-& phase transition at ca 190°C, apparently following an earlier report
by Tettsov and McCrone®? that some B-HMX survives the (-8 phase transition and
melts at 240°C; these observations are described more fully in Reference 54 of
the present report than in Reference 6 of Reference 11. Photographs of this
effect are shown on pages 19-21 of Reference 1. If the f-HMX melts, it
presumably exhibits a tendency to solidify into §~-HMX, seeded by the &-HMX
already present., While liquid HMX was present it might decompose at a faster
(preceding paragraph) rate than rhe solid HMX and changes with temperature in
the amount of liquid HMX present might cause a shift in temperature-dependence
of the decomposition rate, as observed. Even if the B-HMX melt hypothesis
proves incorrect, the activation energy shift might still be related to the
endotherm and increase in gas evolution at 250°C.

52¢, B, Joyner, "Thermal Decomposition of Explosives. Part I. Effect of
Asphalt on the Decomposition of Asphalt-Bearing Expiosives,” NWC TP 4709,
March 1969 (AD-500 573).

335, N. Bradley, A. K. Butler, W. D. Capey, and J. R. Gilbert, "Mass
Spectrometric Study of the Thermal Decomposition c¢f 1,3,5-Trinitohexahydro-
1,3,5~triazine (RDX)," J. Chem. Soc., Faraday Tramns. Pt. 1, Vol. 73,

p. 1789, 1977.

34A. S. Teetsov and W. C. McCrone, Jr., “"The Microscopical Study of Polymorph
Stability Diagrams,"” Miscroc Cryst-Front, Vol. 15, p. 13, 1965.
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Anothar interesting aspect is that NDSC and Flow Reactor Mass
Spectrometric (FRMS) studies on pure HMX and RDX decomposing at or very close
to their melting points (Appendix D) often show very high gcg%vation energies
of 100-20) kcal/mgle or more. These have been attributeds Y to ther?al
chain reactlons,”’ or to the complexity. of the decomposition reactionS or to
the ocurrence of pITcesses involving the simultaneous breaking of more than
one cherical bond, although this last seems more likely to lower than to
raise the activation energy. In view of the faster decomposition rate for the
1iquid than for the solid state, the [ollowing explanation might also be worth
considering: over the melting range of HMX (or RDX) a small increase in
temperature will cause some of the sulid to melt. Because of the greater
decomposition rate of the liquid, thic causes the rate to increase, resulting
in an artificially large temperature-dependence of the decomposition rate,
until the solid is entirely melted and the temperature dependence of the
decomposition becc.ucs that of the neat liquid.

V. CHEMICAL MECHANISMS

A. Autocatalysis

When decomposition tzkes pl:ce under very confined conditions, activation
energlies for liquid decomposition of HMX and RDX can apparently be lowered due
to autocata}ysis by gas-phase products. For example, when RDX was
decomposedl in an open (one hole in 1id) DSC pan, F_, was ca 41 kcal/mole but
when the decomposition took place in a closed pan, tﬁe rate was faster and
activation energy was ca 10-15 kcal/mole lower. A similar pattern has also
been observed for dinitroxydiethylnitramine; it was attributed by the authors
to a combination of hydrolysis and oxidation by NO, formed in the
decomposition. A similar effect may hold a high pressure, where products
would have a more difficult time escaping from the surface. Thus, serious
consideration should be given to the possibility that apparent activation
energy {(or temperature coefficient of reaction) might be lower under the
higher pressure characteristic of combustion cornditions than the values given’
above. However, it is difficult to rule out the possibility that the above
effects might be heat effects due to confinement of reactive products near the
startinz material. Also, under the higher temperatures of combustion
conditions, higher activation-energy unimolecular reactions might predominate.

55, N. Rogers and E. D. Morris, Jr., "On Estimating Activation Energies with
a Differential Scanning Calorimeter,” Apal. Chem., Vol. 38, p. 412, 1966.

56?. G. Hall, "Thermal Decomposition and Phase Transitions in Solid
Nitramines,” J. Chem. Soc., Faraday Trans. Pt. 2z, Vol. 67, p. 556, 1971.

57B. v. Novazhilov, “The Temperature Dependence of the Kinetic Characteristics
of Exothermic Reactions in the Condensed Phase,” Dokl. Akad. Nauk. SSSR,
Vol. 154, p. 106, 196". :
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Dimethylnitramine decomposition slso appeared subject to autocatalysis by
NOZ‘ ’ Thus, other nitramines also seem to show autocatalysis.
Furthermore, HMX and RDX decompositions have been reported to be accelerated

or retarded by addition Zf %nzgn decomposition products such as formaldehyde.
and oxides of nitrogen. ) .

There are also a number of reports (see for exsmple References 9, 11, 49,
51) of residues or stable products that are capable of accelerating the
decomposition or of lowering the decomposition temperature.

More work 1s needed in the area of autocatalysis of nitramine, HMX and
RDX decomposition. Since may of the references cited in the proceeding
paragraph do not specifically allude to tha possi?élity of surface catalysis
of gas-phase reactions, and since the SRI workers™~ found that at least some
of the rates were affected by the nature of the container surface, it would be
helpful to have a hetter understanding of the role of surface reactions here.

B. Initial Step

As discussed previously,2 these are complex systems. However, at
pres.at, the avallable data seems consistent with the idea that the most
likely mechanism for the initial decomposition in the gaseous phase is a
combination of HONO eiimination at lower temperatures and N-NO, c1eava¥g at
higher temp:ratures, with the crossover point occurring at about 300°C*® or
600°K. This 1s based on thermochemical estimates of temperature-variation
of relative rates for the possible decomposition steps,l on comparison of the
preliminary best values (Table) for activation energies and frequency factors
with values estimated?’ for the indiyidual processes, and on the results of
very low - essure pyrolysis studiesl® on dimethylnitramine decomposition.

For decomposition in the pure liquid phase, the above values for the
activation energies for decomposition of RDX (47.8 kcal/ggle) and HMX (53-57
kcal/mole) seem reasonably close to the values estimated“’ for gas-phase N-NO
cleavage (46.2 kcal/mole), although 5he value for HMX does seem uncomfortably
close to the 60 kcal/mole estimated for gas-phase unagsisted C-N cleavage
and is also associated with a log A (sec” ) value of 1020 - 1021. which seems
unexpectedly high. However, without more detailed knowledge of the molecular
and electronic structure of the transition state, 1t 18 difficult to evaluate
the effect of such factors as (a) the electrostatic effect of the other N-NO,
groupings in the starting HMX or FDX, or (b) "solvent” as opposed to the gas-
phase) effects of neat liquid HMX and RDX on the observed activation energies.

The activation energies for decomposition of HMX and RDX in solution are
difricult to interpret. They tend to be around 40 kcal/mole, which is several
kcal/mole lower than those of the neat liquids, although not quite as low as
the vapor-phase values (ca 30-35 kcal/mole). The reasons for this are
uncertain, in view of the difficulty in evaluating the solvent effects on

58g, L. Korsunskii, F. 1. Dubovitskii and G. V. Sitonina, “"Kinetics of the
Thermal Decomposition of N,N-Dimethylnitroamine in the Presence of
Formaldehyde, "™ Dokl. Akad. Nauk. SSSR, Vol. 174, P. 1126, 1967
(Engl.Transl., p. 436).
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these activation energies. One possible explanation might be that {n the gas-
phase and in solvents studied to date the first step is HONO elimination,
while in the neat liquid it is N-NO, cleavage, although without more
information it is difficult to suggest why the "solvent effect” exerted by
neat liquid HMX or RDX should be so different from the other solvents. Note,
however, that the studies have apparently been carried out in a temperature
range where the intrinsic (gas phase) reactivities toward HONO elimination and
N-NO, cleavage are near the crossover point; thus small variations in solvent
effects could conceivably have more dramatic effects on the nature of the

principal pathway.

Possibly the main conclusion to be drawn from the activation energies is
that the observed values for HMX and RDX decomposition in the gaseous and
liquid phases seem to be in a region (ca 30-50 kcal/mole) that is more
characteristic of HONO elimination and N N-NO, cleavage than of the higher
values estimated27 for C-N cleavage, although it is difficult to rule out all
possible variations on the general theme of C-N cleavage, such as C-N cleavage
involving two or more bonds simultaneously, expecially since unexpectedly low
activation energies for depolymerization of trioxane to formaldehyde (a
reasonable model for depolymerization of RDX to N-nitroforminine) ha- : been
interpreted in terms of a concerted ring cleavage.””? However, some degree
of N-N cleavage must be capable of taking place, since_isotope-labeling
studies on mixtures of un- and fully N~15 labelled AMX32 show some s -ambling
of the labelled and unlabelled nitrogens. The scrambling most likely takes
place during the primary decomposition step, since HMX labelled in the nitro
group with N~-15 decomposes to §1ve unscrambled N,0 with the labelled nitrogen
still attached _to the: oxygen. The most straightforward explanation for
the sctambling32 is alpreliminary equilibrium involving dissociation and

recombination of the N—NOZ bond.
| .
|
However, it should be remembered that the activation energy for the

decomposition of neat'liquid HMX and RDX may be influenced by factors other
than the occurrence of a single, homogeneous process. For example, it has

|
i
|
|
|
|

595. W. Benson and H. E. 0'Neal, "Kinetic Data on Gas-Phase Unimolecular
Reactions,” NSRDS-NBS 21, p. 314ff. For sale by the Superintendent of
Documents, US Printing Office, Washington, DC 20202, February 1970.

605. W. Benson, "Thermochemical Kinetics,” Wiley Interscience, New York,
p. 117, 1976.

618. Suryanarayana, R. J. Graybush and J. R. Autera, "Thermal Degradation of
Secondary Nitramines: A Nitrogen-15 Tracer Study of HMX (1,3,5,7-
Tetranitro-1,3,5,7-Tetrazacyclooctane)”, Chem. Ind., London, p. 2177, 1967.

37




been suggested62’63 that the higher values observed for decomposition of
nitrate esters in the liquid than in the vapor phase may be due to a decrease
with increasing temperature, in the inhibition of the reaction due to
recombination of NN, and alkoxy radical forgsdeﬁn the primary O-NO2 bond
breaking step. This decrease was suggested ~’"~ to be due to increased
mobility and to increased tendency for the NO, to undergo further reaction
rather than recombination, as tempcrature increases. Like the nitrate esters,
the nitramines exhibit higher activation energies for decomposition in the
liquid than in the vapor phase, although in the case of the nitramines, the
gas—-phase activation energies and frequency factors seem more characteristic
of HONO elimination than of N-NO, cleavage. However the above "cage” effect
could conceivably be raising the neat-liquid activation energies for HMX and
RDX decomposition. In this connection it seems worth mentioning that
nitroalkanes appear to undergo HONO elimination rather than C-Niggo cleavage
in the gas phase, at least up to temperatures of about 450°c.0%» '

The frequency factors are somewhat more difficult to interpret,
especially the condensed phase values. The frequency factors for the neat-
liquid decompositions (Table) RDX, log A (sec™ ') = 18,7; HMX log A(sec'l) =
19-22 seem unexpectedly high for a first order reaction. Although this is
consistent with the ogcurrence of bimolecular follow-up reactions of the type
discussed previously,“ it should be remembered that little if anything {is
known about energy transfer processes in liquid HMX and RDX. These high
frequency factors seem inconsistent with bimolecular initial steps, or with
anchimerically assisted C-N cleavage, since suck mechanisms would be expected
to lead to low frequency factors due to the high degree of ordering in the
transition states. ‘

C. Unimolecular Follow-Up Steps

Some pgssible unimolecular follow-up steps have been discussed
previously;“ these include (2) rinz opening by B-cleavage reactions, and
elimination of N-Nitroformimine (H2C=NNOZ) from the ring-opened open-chain
intermediates by further 3-cleavage reactions; and (b) further reaction of
HyC=NNO,, most likely to give formaldehyde and N,0 (both of which are known
(see for example References 1, 7~9, 43, 44 and 5%) to be formed in large

62C. E. Waring and G. Krastins, "The Kinetics and Mechanism of the Thermal
Dgcomposition of Nitroglycerin,” J. Phys. Chem., Vol. 74, p. %99., 1970.

63R. A. Fifer, "A Hypothesis for the Phase Dependence of the Necomposition
Rate Constants of Propellant Molecules,” in the abstract hooklet for ONR-
AFOSR-ARO Workshop on Fundamental Research Directions for the Decomposition
of Energetic Materials, Berkeley, CA, January 1981,

64?. G. Coombes, "Nitro and Nitroso Compounds,” D. Barton and W. D. Ollis,
ed., Comprehensive Organic Chemistry, Pergamon Press, Flmsford, NY, Vol, 2,

Chapter 7, p. 439, 1979.

65G. M. Nazin, G. B. Manelis and F. I. DubeItskii. "Thermal Decomposition of

Aliphatic Nitro-Compounds,” Russ. Chem. kev., Vol. 37. p. 603, 1968.

38




LY

amounts in HMX and RDX decomposition), although at higher temperatures it is
possible that N-N cleavage of N-Nitroform;mine *o N0, and H,CN might also
occur. '

D. Bimolecular Follow-up Steps

" As discussed earlier,2 possible bimolecular follow-up steps include (a)
abstraction of hydrogen from starting HMX and RDX by free radicals formed in
the reaction, and (b) attack on nitro oxygen by free radicals formed in the
reaction, possibly followed by N-O or N~N cleavage of the resulting
oxynitroxide radical to give a nitrosocamine or a denitro nitrogen-centered
_ radical. Available literaturc analogies and thermo-chemical estimates® are

consistent with the idea that these are both reasonable follow-up steps.
Possibly steps such as these, involving radicals formed either (a) directly
from HMX or RDX decomposition or (b) by reaction between primary products such
as N0, ot HZC=0’ are at least partly responsible for the high frequency
factors and apparent autocatalysis of nitramine decorposition referred to

above.,

More work is needed on all aspects of HMX and RDX decomposition
mechanisms. While the above and similar mechanisms seem reasonahle and
onsistent to the present writer, the individual mechanisms are not firmly

stablished and in fact are at present test considerad only as a basis for
further discussion., The formation of other known products of HMX and RDX
decomposition, such as N, and N0, can be explained by adaptations or
combinations of the above mechanisms, Products such as O, ,, and Hy0,
could be formed by reaction among primary products, for example N0, and H,CO.

E. Extension to Combustion Conditions

_Since combustion takes place at much higher temperatures and pressures
than encountered in the low-temperature decomposition studies summarized here,
it seems appropriate to discuss the possible effect of high temperature,
pressure and heating rate. These have been discussed in our previous
presentation.2 Some further discussion follows,

. When the decomposition takes place at increased pressure, there might be
an increase in the importance of bimolecular processes relative to .
unimolecular processes; this might have an important effect on combustion
behavior, as discussed previously.2 Another possible effect of pressure might
be that at sufficiently high pressures, the vapor phase might become so
compressed that the environment "seen” by a single molecule might resemble a
liquid more than a low-pressure vapor or gas; if this were the case the
decomposition mechanism might well resemble the liquid decomposition rather
than a low-pressure gas; for modeling purposes, possibly, assumed activation
energies and frequency factors should be modified accordingly.

The effect of temperature on reaciion mechanisms and products could also
be imporiant; as temperature rises, reactions with high activation energy
would he expected to accelerate relative to those with lower activation
energies, since the activation energy is simply the slope of a plot of rate
constant v3 reciprocal temperature. Two examples of this have appeared
earlier in the present report; these are the apparent temperature devendence
of the relative rate of N-ND5 cleavage and of HONO elimination in the gas-
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ohase decomposition,16 and the possible tendency for cleavage of H2C=NNO

F,CN and NO, to vecome more important relative to formation of N,0 and H,CO,
a3 temperature rises. Such changes in relative importance of various chemical
mecharisms could give rise to temperature-and heating-rate-dependent changes
in decomposition product distribution and chemistry; as with the pressure
effects, these might well de very important in nodeling and understanding-
combustion and explosive behavior.

Another possible effect of high heating rate or high temperature mizht be
to cause the first step of the decomposition and unimolecular follow-up steps
to become faster relative to bimolecular follow-up steps because of the higher
activation energy characteristic of first-order reactions, and since more
unimolecular decomposition might be expected to take place immediately, with
corresponding decrease in opportunity for bimolecular follow~up steps
involving starting HMX or RDX molecules or early intermediates. This effect
might also cause important changes in product distribution or chemistry with
increasing temperature or heating rate. The temperature and pressure effects
on the unimolecular/bimolecular ratio apparently work in opposite direction
but complete compensation is of course not assured.

In view of the preceding paragraphs, possibly the most useful aspect of
thermal decomposition studies at low temperatures and pressures is not to
provide product distributions and kinetic parameters that can be applied
directly to combustion conditicns, bhut rather to elucidate the types of
chemical decomposition processes involved, includiiz minor (at low
temperatures and pressures) pathways in addition to the principal ones.
Informed extension of this body of knowledge to combustion conditions could
then provide the basis for improved understanding and control of combustion
processes and operational properties such as stablility, sensitivity, and
burning rate behavior.

VI. WORK NEEDED

More work is needed in a number of areas. Several of these seem
particularly worth mentioning, among them the following:

1. The first step of the decomposition of HMX and RDX is still oot well
understood. 1In addition to an improved understanding of the nature of the
first step itself (for example, is it HONO elimination, N-Nﬂz cleavage, C-N
cleavage, or something else?) there is a need for a better understanding of
the effect of temperature, pressure and state of aggregation (solid, liquid,
vapor, as well as solvent effegg 87 Time~-resolved laser spectroscopic
techniques may be helpful here at least for the vapor-phase
decomposition.

668. H. Rockney and E. R. Grant, "Resonant Multiphoton lonization Detection of

the NO, Fragment from Infrared Multiphoton Dissociation of CH3N02." Chemw.

Phys. lett., Vol. 75, p. 15, 198l.
€7x. E. Lewils, D. F., McMillen and D. M. Golden, “Laser~Powered Homogeneous

Pyrolysis of Aromatic Nitro Compounds,” J. Phys. Chem., Vol. 84, p. 226,
1980.
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2. There seems to be very little work available on the gas-phase
decomposition of HMX and RDX. There is a need for more understanding of thiﬁ
with regard to both the kinetics and the product distributions, especially
since the gas-phase decowposition would most reflect the intrinsic behavior g
the molecules themselves; behavior in the liquid and solid phases could then
be regarded as variations on the vapor-phase behavior, induced by the
environment set up by neighboring molecules. In addition to techniques such
as those d;scribed in References 16 and 66, laser-powered homogeneous
pyrolysis6 might well be capable of providing information on this point.
Note that care should be taken to work under conditions such that the result
are not influenced by wall reactions. ' %

3. There 18 a need for improved understanding of the solig-phrse
decompoz’tion. In view of the discussions of Cosgrove and Owen 24~ and of
Batten, it seems clear that in studying the behavior of HMX and RDX below
their melting points, care shculd be taken to separate the true solid-state
decomposition from concurrent sublimation followed by gas-phase decomposition
and to understand the relative roles of gas, liquid, and solid-state
decomposition: see the discussion on pages 31-35 of the present report.

4. There 1is also a need for improved understanding of the effect of
temperature and pressure on the decomposition of HMX and RDX. In extending
low-temperature, low-pressure results to combustion conditions, it should be
remembered that the Arrhenius parameters, which are usually used to carry out
these extenslions, may themselves depend on temperature and pressure; improvec
understunding of these variations would enhance the resliability of the
extension.

G B IR Wad . ob

S. There is a need for improved understanding of the nature and
occurrence of autocatalysis and autoinhibition in the thermal decomposition (¢
HMX and RDX. This is especially true in view of apparent discrepancies
between literature statements concerning acceleration or inhibition of HMX ar
RDX decomgosition bg known products such as formaldehyde and oxides of
nitrogen. 4,46,49,68 g also the discussion above under "Autocatalysis" and
references cited therein. ’

i 7
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6. There 1s alsn a need for more research into the effect of pressure ¢
HMX and RDX decomposition, gith regard to both kinetics and product
distributions. One study,6 carried out at pressures up to 1000 psi (0.067
kbar), resulted in activation energies for HMX decomposition which decreas :d
from 55.9 kcal/mole at atmospheric pressure to 41.8 kcal/mole at 1000 psi
(0.067 kbar) of argon, although the activation energy for RDX decomposition

|

680. F. Dehenham and A. J. Owen, "The Thermal Decomposition of 1,3,5-
Trinitrohexahydro-1,3,5-triazine (RDX) in 1,3,5~-Trinitrobenzene,” Symp.
Chem, Probl. Connected Stab. Explos. (Proc.), Vol. 4, p. 201, 1976., Pub.
1977,

e

6%, a. Flanigan and B. B. Stokes, "HMX Deflagration and Flame
Characterization. Volume T, Phase II Nitramine Decomposition and
Deflagration Characterization,” Thiokol Corporation, Huntsville Division,
Runtsville, AL, Report AFRPL-TR-79-94, October 1980 (AD-B053 0S8L).
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was reported to be independent of pressure from atmospheric pressure to 500
psi (0.03 kbar). In a study of time-to-explosion versuc temperature for a
number of explosives including HMX, O it was found that “activation cnergyv”
appeared constant from <1 kbar to 50 kbar; it was suguested that the
decompogition mechanism was independent of pressure. There has also heen a
reportl7 that the activation energy for decomposition of RDX was ca 15
kcal/mole lower when measured by closed-pan than by open-pan DSC. Pressure
effects on product distributions from HMX and RDX decomposition have been
summarized briefly, 1" In view of the differences between experimental
conditions and results reported in these studies,“’6 =7l it is clear the
pressure effects on HMX and RDX decomposition are far from well understood,
and much more work in this area is required.

VII. NOTES ADDED IN PROOF

A. Note Added in Proof No. 1 While this report was teing proofread, the
author became aware of a review article’? in the Russian literature; although
as this is written this review probably will not be available in English
translation for several months, it seems worth while to call it to the
attention of anyone reading the present report.

B. Note Added in Proof No. 2 Brill and Karpowicz73’74 have recently
suggested that the decomposition reactions of condensed-phase HMX and RDX may
be governed by release of intermolecular interactions occurring prior to
unimolecular decomposition, rather than by the decomposition steps
themselves., This is based on large (ca 40-50 kcal/mole) activation energies
observed for phase transitions among the solid polymorphic forms of HMX; Brill
aad Xarpowicz feel that the large activation energies for these phase
transitions (much larger than the net energies of reaction for the same
transitions) represent energy needed for "freeing-up® of HMX or RDX molacules

70h R. Lee, R. H. Sanhorn and H. D. Stromberg, "Thermal Decomposition of High
Explosives at Static Pressures 10-50 Kilobars." Proceedings Sth Symposium
(International) on Detonation, 1970, p.331-337, for sale by the Superintendent
nf Documents, U.S. Goverument Printing Office, Washington, Du 20402,

71M, A Schroeder, "Critical Analysis of Nitramine Decomposition Data:
Product Distributions from HMX and RDX Decomposition,” Proceedings 18th
JANNAF Combustion Meeting, Pasadena, CA, Vol. 2, p. 395, CPIA Publication
347, October 19-23, 1981. ‘

72p, 1. pubovitskii and B. L. Korsunskii, "Thermal Decomposition Kinetics of
N-Nitro Compounds,” Usp. Khim., Vol. 50, p. 1828, 1981, cited in Current
Contents, Physical, Chemical and Earth Sciences, Vol. 22, p.l44, No. 2,
January 11, 1982.

731, B. Brill and R. J. Xarpowicz, "Solid Phase Transition Kinetics The Role
of Intermolecular Forces in the Condensed-Phase Decomposition of Jctahydro-
1,3,5,7-tetranitro-1,3,5,7~tetrazocine,” J. Phys. Chem., Vol., 86, p. 4260-5,
1982. .

Thg, J. Karpowicz, L. S. Gelfand and T. B. Brill, "Application of Solid-Phase
Transition Kinetics to the Properties of HMX " ATAA Journal, Vol. 21,
p. 310-12, 1983.
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which presumably must take place before decomposition. The magnitudes of the
energies involved are such as to raise at least the possibility that the
freeing-up of the wolecules may be the rate-determining step, at least for the
gsolid-state decomposition.

Note that this treatment depends critically on the assumption that the
rate constants measured in References 73 and 74 and attributed to solid-solid
phase transitions in HMX, are actually rate constants for true first-order
processes and hence that the activation energles are also true activation
energies for a specific first-order process, not merely effective temperature
coefficients of reaction (see Reference 24) for a complicated assembly of

processes,

In addition, Fifer’2 has published a more recent and accessible
discussion than reference®3 of the cage effect hypothesis. The basic idea of
this hypothesis is that the relative ordering of the rates and Arrhenius
parameters for the gas, liquid and solid-state thermal decomposition of
nitramines and nitrate esters (Gas phase rates faster than liquid, which in
turn are faster than solid-state rates of decomposition; Arrhenius parameters
follow the opposite ordering) is explainable in terms of greater confinement
of radicals (such as Nu, and denitro-HMX/RDX) formed in the initial step of
decomposition. This is in agreement with recent work 6 on the thermolysis of

1,2-diphenylethane.

Note that this hypothesis applies only to radical-producing reactions and
not, for example, to HONO elimination. However, even Lf the gas-phase
reaction were found ultimately to proceed via some other mechanism, for
example HONO elimination, the cage~effect hypothesis might well still be
useful to understand quantitative differences between the observed liquid-
phase decomposition kinetics and parameters, and values reliably estimated for
the hypothetical gas-phase radical pathways.

Furthermore it was argued75 that a practical implication of the cage
effect hypothesis was that at higher temperatures the condensed phase rates
would approach those for the gas phase; so that at the higher temperature
characteristic of combustion it might be a reasonable approximation to use the
gas phase kinetic parameters to represent the condensed phase decomposition.
The present writer suggests it may also be worthwhile to consider the
possibility that, at the higher pressures characteristic of combustion, the
density of the gas phase might be increased to the point where it aight
resemble the liquid more than what would be thought of at more modcrate

_pressures as a vapor: if this 1is true, the system might exhibit behavior such
that it would be the vapor phase that would assume Arrhenius parameters
charactevistic of the liquid, rather than the other way around.

75g. A. Fifer, "Cage Effects in the Thermal Decomposition of Nitramines and
Other Energetic Materials,” Proceedings 19th JANNAF Combustion Meeting,
Greenbelt, MD; Vol. I, CPIA Publicatina 366, p. 311-319, Octcber 1982.

768. E. Stein, D. A. Robaugh, A. D. Alfieri and R. E. Miller, "Bond Homolysis
in High-Temperature Fluids,” J. Amer. Chem. Soc., Vol. 104, p. 6567-70,
1982.
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At the very least, both of the effects73'76 described in the above
paragraphs will have to bc better understood than at present before Arrhenius
parameters applicable to combustion conditions can be reliable derived from
studies of decompositicn under more moderate temperatures and pressures. It

will also of course be necessary to understand the role of such factors as

dielectric constant of the medium, and other types of solveant effects aud
intermolecular interactions,

C. Note Added in Proof No. 3 It :also_seems worthwhile td mention an

interesting paper in which Burov and Nazin77 have very recently reported some

kinetic measurements on gas phase thermal decomposition of several nitramines
including HMX and RDX. Other compounds studied included N,N~dinitropiperazine
and 1,3-dinitrazacyclopentadiene. The decompositions of all of these
compounds except HMX were studied in the presence of NO, addition of which
noticeably affected the kinetics, resulting in lower rates by factors of 2 to
4 at 200°C, as well as noticeable changes in Arrhenius parameters; thus chain
reactions or autocatalysis are appareantly of some importance here. The
decompositions were studied manometrically, at pressures of 0.05-0.1 mm Hg.
Gas phase and solution kinetic measurements on the above nitramines as well as
dimethy% and diethyl nitramines and N-nitropiperidine were summarized in a

table.

The authors’’ make the interesting suggestion that differences in
decomposition rates of these nitramines are determined by the configuration of
the amino nitrogens, the more-rapidly decomposing, low-activation-energy ‘
compounds, including RDX, being those with tetrahedral or pyrimidal nitrogens,
whil: the slower-decomposing, higher activation energy compounds have trigonal
coplanar nitrogens. This will be discussed further in a final, wrap-up
portion of the present review, which will be devited to chemical and physical
mechanisms of decomposition.

It also secems worth mentioning that the authors of Reference 77 are of
the opinion that the N-NO, bond dissnciation energy of_nitromethane is about
40 kcal/mole, giving as tﬁeir authority a Russian book’8 which, as far as the
present writer is aware, is not available in English translation. This value
is considerably lower than the 46.2 kcal/mole estimated by Shaw and Walker for
dimethylnitramine and applied also to HMX. Korsunskii and Dubovitskii 2 also
seen to feel that the N-NO, bond dissociation energy for simple nitramines is
around 40 kcal/mole. This discrepancy should be checked into further, in view
of the obvious importance of an accurate knowledge of the N-NO, dissociation
energies of dimethylnitramine and other nitramines to the decomposition
chemistry of these compounds. In view of the possible importance of wall
reactions and autocatalysis, and of decomposition pathways such as HONO

77Yu. M. Burov and G. M. Nazin, "Influence of Structure on Rate of
Decomposition of Secondary Nitramines in the Gas Phase,” Kinetika i Kataliz,
vol. 23, No. I, pps 12-17, 1982 (English Translation, p. 5~10).

78y, . Gurvich, G. V. Karachevtsev, V. N. Kondrat'ev, Yu. A. Lebedev,
V. A. Dedvedev, V. K. Potapov and Yu. S. Khndeev, "Chemical Bond Rupture
Energy, Ionization Potentials and Electron Affinity,” Nauka, Moscow, 1974,
(Reference 15 of reference 77 above).
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elimination, this knowledge should be obtained from sources, such as

thermochemical studies, tnat are independent of kinetic measurements on the
decomposition reactions of the nitramines.

It seems worth noting that Reference 77 says that Shaw and Walker's
estimated parameters for N-NO, bond dissociation were taken from a private
communication concerning DMNA. The value of E was stated to have been adopted
without change, and log A to have been multiplied by 4. However, an
examination of Shaw and Walker's paper (Reference 27 of the present report)
shows that they are based on heats of formation and frequency factors given in
References 12-14 and 21 of Reference 27 of the present report; these
references are not to any private communications but to two journal articles
and to two standard compilations of data. In particular the NO,
dissociation energy is based on, in addition to (CH3), NNU,,’” heats of
formation for (CH, ) N* and NO,, which are the same as those given in standard
compilations of daca 80,81 ﬁaw and Walker also cite a number of reported
values for the N-NO, bond dissociation energy, nearly all of which are higher
than 40 kcal/mole, ranging from 47 to 66 kcal/mole. Thus the 46.2 kcal/mole
estimated by Shaw and Walker for the N-N02 dissociation energy of
dimethylnitramine seems to be reasonably well-founded in the litygature.77
However it would be most helpful to have access to the reference cited as
supporting an upper limit of 170 kJ/mole (40.6 kcal/mole) for the N-NO, bond
energy of dimethylnitramine; expecially since additional measurements might
lead to revision of the heats of formation on which the figure of 46.2
kcal/mole w?s based. The frequency factor (log A = 15.8) suggested by Shaw
and Walker?’ was based on an average of values from decomposition of
nitromethane and N,0,; possibly more elaborate thermochemical calculations

would be helpful in arriving at a firmer value.

Activation energlies and frequency factors (log A(sec‘l)) reported in
Reference 77 were as follows: for RDX, 146.6 kJ/mole (35.04) kcal/mole) and
13,5 without NO; 167.6 kJ/mole (40.06 kcal/mole) (see footnote, p. 6 of
Reference 77) and 15.6 with N0. For HMX, the values were 165.5 kJ/mole
(39.56) kcal/mole) and 14.2 without added NO. N,N'-dinitropiperazine gave 160
kJ/mole (38.2 kcal/mole) and 13.6 alone, but 151.2 kJ/mole (36.14 kcal/mole)
and 12.0 in the presence of NO, while 1,3-dinitrazacyclopentane gave 146.6
kJ/mole (35.04 kcal/mole) and 13.5 alone and 169.3 kJ/mole (40.46) kcal/mole)

and 15.6 in the presence of NO.

When the results for RDX are plotted alongside those given in Figure 2,
they do not fall on the same line as the other results plotted in Figure 2,

79R. c. Cass, S. E. Fletcher, C. T. Mortimer, P. G. Quincey and H. D.
Springall, “Heats of Combustion and Molecular Structure, Part IV. Aliphatic

Nitroalkanes and Nitric Esters,” J., Ctem. Soc., p. 958-63, 1958.

C. Weast and M. J. Astle, eds., CRC Handbook of Chemistry and Physics,

80
R. C
p. F-204, 63rd. edition, CRC Press, Inc., Boca Raton, FL, 1982-~1983.

818. W. Benson, "Thermochemical Kinetics,” 2nd. edition, Wiley, New York NY,
1976, p. 292.
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but lie on a parallel line, about 0.5 log unit below those plotted in the
figure. However, they no not seem to fit the other points on the graph as
well as the data of Belyaeva et al., judging from the degree of scatter when
the line defined by the points of Reference 77 is extended through the other
points, :

There also seems to be a series of typographical errors in Table 1,
column 6 of Reference 77; the values given do not matc: those calculated from
the values of E and log A (sec”!) in columns 4 and 5. The present writer
recalculated the numbers in column 6 of Table 1 of reference’’ and obtained
the fellowing values: 1line 1, 0.268 instead of 4; line 2, 1.67 instead of
0.158; line 3, 5.0 instead of 0.525; line 4, 721 fnstead of 0.676; line 5,
2.12 instead of 0.2; line 6, 31.2 instead of 2.9; line 7, 22.5 instead of
2.24; line 8, 8.73 instead of 0.87; line 9, 530 instead of 50; line 10, 666
instead of 63; line 11, 207 instead of 20; line 12, 81.3 instead of 8; line
13, 1.7 instead of 0.56; line 14, 5.20 instead of 0.56; line 15, 255 instead
of 2500; line 16, 8.50 instead of 0.8; line 17, 0.631 instead of 0.063; line
18, 8.64 instead of 0.83; line 19, 2.03 instead of 0.22; line 20, 24.5 instead
of 2.5; line 21, 207 instead of 20; line 22, 81.3 instead of 8.
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APPENDIX A.

REPORTED ARRHENIUS PARAMETERS FOR THERMAL DECOMPOSITION
OF HMX AND RDX IN THE VAPOR PHASE

Available values®A~1-4 for gas-phase decomposition of HMX and RDX are v
summarized in Table A-1, together with temperature ranges, kinetics, etc., The
activation energy and frequency factor for gas phase decomposition of HMX have
been determined by isothermal pscA~1s% (see discussion accompanxing Appendix
B, p. 70-72), ty very~low-pressure pyrolys’is‘{-‘“2 and by a method?™” involving
combined manometric study of gas- and condensed-phase decomposition in. the
very early stages of the reaction. The DSC values®™! are much higher than
those determined by the other methods. A=2,A3 Both DSC and VLPP data for
XA~ 152 ghow considerable scatter, but the vLPPA~2 values seem more reliable
due to the larger tempevature range (135° as compared to 12°); thus, the
activation energy for gas-phase HMX decomposition i1+ the temperature range ca
250-400 C would appear to be ca 33 kcal/mele, with a frequency factor of log | A
(sec™ ) ca 12.8 although the authors point out that their data are too
scattered -0 completely rule out that 45.50 kcal/mole that would signify
initial N-NO, bond scission.?A”! This value of ca 33 kcal/mole is in agreement

with the manometric values.”™

The DSC valuesA~1s4 for RDX decdmposition in the vapor phase were
measured over a wider temperature range (51°) than for HMX (12°), and the plot
shows considerably less scatter; thus the RDX values measured by DSC seem much
more reliable than the HMX values measured by DSC. For further discussion of
DSC studies on vapor-phase HMX and RDX decomposition, see Appendix B.

Since HMX and RDX might be expected to decohpose by similar mechanisms,
it is interesting to note the general agreement between the manometric™ 2 and
VLPPA"2 values for HMX and the values for RDX.A"1»3»

A-lp  n. Rogers and G. W. Daub, "Scanning Calorimetric Determination of Vapor-
Phase Kinetics Data,” Anal. Chem., V,l. 45, p. 596, 1973.

A=2p, F, McMillen, J. R. Barker, K. E. Lewis, P. L. Trevor and D. M. Golden,
"Mechanisms of Nitramine Decomposition: Very Low-Pressure Pyrolysis of HMX
and Dimethylnitramine,” Final Report on SRI Project PYU 5787, Supported by
Department of Energy through Lawrence Livermore Laboratories, Contract No.

EY-76-C-03-C115, 18 June 1979.

A=3y, s. Belyayeva, G. K. Klimenko, L. T. Babaytseva, P. N. Stolyarov,
"Factors Determining the Thermal Stability of Cyclic Nitramines in the
Crystalline State,” FTD-ID(RS)T-1209-78 (AD-B033 572L).

A'AR. M. Potter, G. J. Knutson, and M. F. Zimmer, Compat. Propellants Explos.
Pyrotechnics Plast. Addit., Conf. Pub. 1975, II-D., 12 pp., Chem. Abstr.,
Vol. 86, 1424113, 1974.
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e

As discussed in the main body of the report, reactions on the container
surface probably are not influencing these values too much, although more work
on this point would help since wall reactions do seem to influence dimethyl-
nitramine decomposition.

Tables A-2 and A-3 show the actual data points reported by the authors of
References A-1-4 these were analyzed statistically as described in the main
report {p. 19-26). Recommended values are given in the table in the main
report, and the points are plotted in Figures 2 and 4 of the main report.
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APPENDIX B.

REPORTED ARRHENIUS PARAMETERS FOR DECOMPOSITION
OF NEAT LIQUID AND DISSOLVED HMX

Available values®~1-10 gor liquid-phase decomposition of HMX are
summarized in Table B-1, and solution-phase values in Table B-2, together with

temperature ranges, kinetics, etc.

The best literature set of Arrhenius parameters for thermal decomposition
of neat liquid HMX (Table Bl) seems to be the 52.7 kcal/mole and log A(sec” )
of 19.7 reported by Robertson; this is based on the long temperature range

B~1,, J. B. Robertson, "The Thermal Decomposition of ExblosiVes. Part II
Cyclotrimethylenetrinitramine and Cyclotetramethylenetetranitramine,”
Trans, Faraday Soc., Vol. 45, p. 85, 1949.

B~23. N. Rogers and E. D. Morris, Jr., "On Estimating Activation Energies with
a Differential Scanning Calorimeter,” Anal. Chem., Vol. 38, p. 412, 1966.

3'3R. N. Rogers and L. C. Smith, "Eotimation of Preexponential Factor from
Thermal Decomposition Curve of an Unweighed Sample,” Anal. Chem.,, Vol 39,
_ pe 1024, 196%.

B~4g, K. Rideal and A. J. B. Robertson, *The Sensitiveness of Solid High
Explosives to Impact,” Proc. Roy. Soc., Vol. 1954, p. 135, 1948.

B~5g. w. Rogers, "Differential Scanning Calorimetric Determination of Kinetic
Constants of Systems chat Melt with Decomposition," Thermochinmia Acta,
Vvol. 3, p. 437, 1972.

B"68. B. Goshgarian, “The Thermal Decomposition of Cyclotrimethylene-
trinitramine {RDX) and Cyclotetramethylenetetranitramine (HMY),” AFRPL-TR-

78-76 (AD-B032 275L).

B7p. A. Flanigan and B. B. Stokes, "HMX Deflagration and Flame
Characterization., Volume I. Phase II Nitramine Decomposition and
Deflagration Characterization,” Thiokol Corporation, Huntsville Division,
Huntsville, AL, Report AFRPL~TR-79~94, October 1980 (AD-B0O53 0S8L).

B-8g, J. Powers, "Hazards Due to Precomescion Behavior of High Energy
Propellants,” AFATL, Private Communication, June 1980, of data presented at
JANNAF Workshop, Eglin AFB, April 1980.

B9y, Ya. Maksimov, "Thermal Decomposition of Hexagen and Octogen,” Tr. Mosk.

Khim~Tekhnol, Inst. No 53, p. 73, 1967} see Chem. Abstr., Vol. 68,
p. 41742r. Translated by H. J. Dahlby, Los Alamos Report LA-TR-68-30, Los

Alamos, 1968.

B-10paksimov (presumably), work summarized| in K. K. Andreyev, "Thermal
Decomposition and Combustion of Explosives,” FTD-HT-23-1329-68, p. 87,
p. 130 (AD-€93 600).
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covered (44°); on the fact *hat the absence of any effect of sample size
(varied from 1-7mg) suggests that self heating is not important; and on the
low degree of scatter in the Arrhenius plot. However some of the other
authors do not state temperature range or provide enough information to enable
the degree of scatter to be evaluated. 'On reading Robertson's paper and
experimental reference cited therein, no obvious sources of systematic error
were evident to this writer. :

Mcst of the values BT 17257 of A and E,, measured at or below atmospheric
pressure, given in Table Bl for decomposition of neat liquid HMX agree within
a few kcal/mole with those of Robertson. The exceptions are the values of
References B-6 and B-§. However, these points were measured over the shortest
temperature ranges in Table B-1 and it is difficult to rule out the
possibility of self heating, since Reference B~6 states (p.l10) that the sample
size was 2 mg, but 1t is stated on paga 34 that “sample weipght greater than
1.0mg increased the isothermal tumperature during HMX decomposition,
apparently due to excess thermal evolution beyond the capabilities of the
fastrument to adequately regulate a constant temperature,”

Reference B-8 used sample sizes on the order of 1.5 mg, so self-heating
may not be quite as bad. Robertson used sample sizes of }-7 mg and found no
eff:ct of mass le,, apparently no self-heating. Possibly this is because in

i 2=-cm glass bulb or copper oven apparatus used by Robertson, the sample
would be more spr.ad out than in a millimeter s .zed DSC pan.

Judging from the results in Table B~1, activation energles and frequency
factors seem to be independent of .vype and pressure of inert gases present up
to 1 atmosphere; however, judging from the data of Raference B-7 it would
appear that on going from |1 to 70 atmospheres, the activration energy decreases
noticeably, from ca 56 kcal/mole at 1 to ca 42 kcal at 70 atmospheres. These
recults are least squares averages and appeir independent of particle size.

In addition to the data given in Tables B-] and B~-2, R. N. Rogersﬂ"11
furnished several points for decomposition of neat liquid HMX, measured by
isothermal DSC with correction for the concurrent gas-phase reaction,

Powers, on the other hand, in his studies of the decomposition of neat
liquid HMX by isothermal DSC, felt that the gas-phase decomposition was
sufficiently unimportaut to be neglect.d; this is in agreement with
Goshgarian'sB'6 observation that the decay portion of HMX decomposition curves
appeared smooth throughout the decomposition., However for spread ~ample a
gas-phase "hump” could be seen. Thus the gas-phase dczomposition seems less
important for HMX than for RDX. 1In any case, Powers' data were obtained in
the initial phase of the liquid decomposition, where the vapor phase should be
proportionately least important; thus they w3re included along with
Robertsons Bl and Rogers' gas-phase-corrected data, in the best three sets of
data on liquid~phase HMX decomposition,

The actual data poiants obtained by Robertson,B'l RogersB'11 and PowersE 8
are given in Table B-3. These polnts were analyzed statistically as given in

B-l11g, y. Rogers, Los Aiamos Sclentific Laboratories, Private Communication,
February 1980.
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the main report, and plotted in Figure 3 of the main report. Note, however,
that while the picture of concurrent liquid and vapor-phase reactions being
the main contributors to the shape of §hi DSC curves still seems to hold for
RDX, it has recently begun to appearB' »11 that the situation for HMX may bhe
more complicated, possibly as a result of complications due to presence of th
non-volatile residue. Until this situstion is understood better than it is a
present, it may well be a good fdea to just use Robertson's manometric data a
the best data for decomposition of liquid WMX. As shown in Table B~3, this
gives E, = 53.1 kcal/mole and log A (sec” 1) = 19.950.

- There are only a few values for decomposition of HMX in solution. The
value of 50.3 kcal/mole in Convalex-10 was measured by dynamic DSC, and there
is no 1nfo§m?8ion on the temperature range covered., The data of
MaksimovP™ 7+ were done over a fairly large éé&’C) temperature range, and th
degree of scatter in the Arrlienius plot given does not seem unreasonable.
Thus it does not seem unreasonable to conclude from thc data in Tables B-2 an
B-1, that the activation energy and frequency factor for decomposition of HMX
in an inert solvent are somewhat lower than those for neat liquid HMX,
although the data for HMX in solution were not reanalyzed statistically by th
present writer. '
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APPENDIX C.

REPORTFD ARRHENIUS PARAMETERS FOR DECOMPOSITION
~ OF NEAT LIOUID AND DISSOLVED RDX
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APPENDIX C.

REPORTED AR. HENIUS PARAMETERS FOR DECOMPOSITION
OF N. AT LIQUID AND DISSOLVED RDX

Available kinetic parametersc°l'3l for decompnsition of RDX in the neat
l1iquid phase and in solution are summarized in Tables C-1 and C-2, respectively.

C-1a. J. B. Robertson, "The Thermal Decompositod of Explosives. Part II.
Cyclotrimethylenetrinitramine and Cyclotetramethylenetetranitramine,
Trans. Faraday Soc., Vol. 45, p. 85, 1949,

C-2y, 4. 3. Robertson, S.A.C. No. 4885, referred to in Reference 5.

C-3g. k. Adams, S.A.C. No. 5766, "The Thermal Decomposition of RDX,” February
1944.

C-4,. J. B. Robertson, S.A.C. No. 3264, referred to in Reference 5.

C-5;, Wilby; “Thermal Decomposition of RDX/TNT Miktures, Part I,” A.R.D.E.
Report (MX) 16/59, AD-225 991, August 1959.

C'GC. E. H. Bavm, J. K. Hays and F. H. Pnllard, "The Thermal Decomposition of
Tetryl and RDx,“ S.A.C. No. 2025, April 1942.

C-74. J. B. Robertson and R. P. Sinclair, "The Thermal Sensitivity of
Explosives,” S.A.C. No. 1596, January 1942.

C-8g, C. Rauch and R. B. Wainwright, "Studies on Composition B, " Final
Report, Contract No. DAAA21-68-C-0334, American Cyanamid Company, February
1969, AD-850-928.

C-9%. c. Rauch and A. J. Fanelli, "The Thermal Decomposition Kinetics of
Hexahydro-1,3,5-trinitro~s-triazene above the Melting Point: Evidence for
both a Gas and Liquid-Phase Decomposition,”, J. Phys. Chem., Vol., 73,

p. 1604, 1969.

C-10g, ¢. Rauch and W. P. Colman, “"Studies on Composition B,” Final Report,
Contract No. DAAA 21-68-C-0334, American Cyanamid Company, March 1970, AD-
869 226.

c-llR. N. Rogers and E. D. Morris, Jr., “On Estimating Activation Energies
with a Differential Scanning Calorimeter,” Anal. Chem., Vol. 38, p. 412,
1966.

G-IZR. N. Rogers and L. C. Smith, "Estimation of Preexponential Factor from
Thermal Decomposition Curve of an Unweighed Sample,” Anal. Chem., Vol. 39,
PP. 1024-5.
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C"I3R. N. Rogers and G. W. Daub, "Scanning Calorimetric Determination of
Vapor-Phase Kinetics Data,” Anal, Chem., Vol. 45, p. 596, 1973.

c'“’R. N. Rogers, "Determination of Condensed-Phase Kinetics Constants,”
Therochimica Acta, Vol. 9, p. 444, 1974,

C-15p, q. Hall, "Thermal Decomposition and Phase Transitions in Solid
Nitramines,” J. Chem. Soc., Faraday Trans., Par: II. Vol. 67, p. 556,

C-16¢, Kishore, "Thermal Decomposition Studies on Hexahydro-1,3,5-trinitro-s-
triazene (RDX) by Differential Scanning Calorimetry,” Propellants and
Explosives, Vol. 2, p. 78, 1978.

C-17q, . Joyner,"”Thermal Lecomposition of Explosives. Part I. Effect of
Asphalt on the Decomposition of Asphalt-Bearing Explosives,“ NWC TP 4709,
"March 1969, AD-500 573.

C-IBJ. Harris, "Autoignition Temperatures of Military High Explosives by
Differential Thermal Analysis,” Thermochimica Acta, Vol. 14, p. 183, 1976.

C-19;, Harris and E. Demberg, "Autoignition Temperatures of Military High
Explosives by Differential Thermal Analysis,” PATR 4481, March 1973, AD-
908 846L.

C_ZOT G. Floyd, "Reaction Kinetics of Temperature-Cycled Cyclotrimethylene-
trinitramine (RDX),” Journal of Hazardous Materials, Vol. 2, p. 163,
1977/178.

C'ZIW. P, Colman and F. C. Rauch, "Studies on Composition B,” Final Report,
Contract No. DAAA21-70~-0531, American Cyanimid Company, February 1971.,
AD~881 190.

C-224, Wilby, "Thermal Decomposition of RDX/TNT Mixtures, Part I.,” A.R.D.E.
Report (MX) 16/59, August 1959, AD-225 991.

c'23.1. Wilby, “Thermal Stability of RDX and HMX Compositions, Particularly
their Mixtures with TNT,” Symp. Chem. Probl. Connected Stab. Explos.,
(Proc.), pp. 51-65, 1967, for availability see Reference C-24, 1968.

c"ZI’D. F. Debenham and A, J. Owen, "The Thermal Decomposition of 1,3,5-
trinitro-hexahydro-1,3,5-triazine (RDX) in 1,3,5-Trinitrobenzene,” Symp.
Chem. Probl. Connected Stab. Explos., (Proc.) 1976, Vol. 4, pp. 210-20;
1977, can be ordered from the Secretary, Tekn Lic Stig Johansson,
Sektionen for Detonik och Forbramnning, Box 608, S~551 02 Jonkoping,
Sweden. Postal Account No. 507690—6, Banking Account Gotabanken No., 652-
4383.

C-25yy., Ya. Maksimov, "Thermal Decomposition of Hexogen and Octogen,” Tr.
Mosk. Khim.-Tekhnol, Inst. No. 53, p. 73, 1967, see Chem. Abstr., Vol. 68,
P. 41742r., Translated by H. J. Dahlby, los Alamos Sclentific Laboratory
Report LA-TR-68-30, Los Alamos, NM, 1968.
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C-26Maksimov (Presumably), work summarized in K. K. Andreyev, "Thermal
Decomposition and Combustion of Explouives,”™ FTD-HT-23-1329-68, p. 87,
ps 130 (AD-693 600).

C-27¢, x. Miles, gThe Thermal Decomposition of RDX,” Master's Thesis, Naval
Postgraduate School, Monterey, March 1972 (AD~743 762).

C-28p, a. Flanigan and B. B. Stokes, "HMX Deflagration and Flame
' Characterization,” Volume I. Phase II Nitramine Decomposition and
Deflagration Characterization,” Thiokol Corporation, Huntsville Division,
: Huntsville, AL, Report AFRPL-TR-79-94, October 1980 (AD-B053 058L).

C-29g, M. Potter, G. J. Knutson, and M. F. Zimmer, "ﬁffect of Dibutyl Tin
Dilaurate on the Thermal Decomposition of RDX,” Compat. Propellants,
Explos. Pyrotechnics Plast. Addit., Conf. 1974, 1I-D, 197S5.

(C-30y, Kishore, "Comparative Studies on the Decomposition Behavior of
Secondary Explosives RDX and HMX,” Defense Science Journal, Vol. 18,
p. 59, 1978, summarized in Chem. Abstr., Vol. 90, 206758v.

c-3lpo We M. Jacobsand A. R. T. K“reishy, J. Chem, Soc., Pe 4718' 1964.
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Due to the long temperature range, low degree of scatter in the Arrhenius
plots, and care to avoid such sources of error .as self heating, the best pair
of Arrhenius parameterg for the decomposition of liquid RDX is probably that
given by RobertsonC~1+2 (Table c-1). :

However, there remains the problem of Xaporization followed by gas~phaae
reactions. Robertson's other set of data®” " are probably in error as Wilby =5
quotes Reference C-4 as saying that the values may be in error due to poor
equilibéigm and to gas-phase decompositiag, The values of BRawn, gggs and
Pollard” * and of Robertson and Sinclair are probably in error due to
short temperature range egi %drge sample sizes leading Fg3se1f heating., Along

- with éggertson's values, '~ the values of G. K. Adams” ~ were accepted by
Wilby as the best values. However, examination of Table 1 of Adams'
report -3 reveals that while the values for the experimentally determined
loglok and the calculated log 0 kc le match each other they did not match
values calculated from the stateé Arrﬁenius parameters, and the plot of the
values given for loglokc shows a large degree of scatter. The source of
this discrepancy 1s unknown to the present writer. Until it is explalned it

would probably be best to disregard the data given in Reference C-3.

The group at American Cyanamidc_a’g’lo decomposed RDX in reactors of
constant known volumes and followed the reaction by gas chromotographic
analysis of the undecomposed RDX. This has an advantage over manometric
determination, since it is not subject to errors due to seccndary reactions
among gaseous products, although the manipulations necessary to quench the
reaction in each reactor individually appear to have limited the temperature
range to 20°. The rate constants were independent of ini:.ial mass, reactor
volume or added pressure of NO, or helium.

The results described in this series of repssgsgillustrate the importance
of statistical analysis. The preliminary values »7 (log A=19.2, 38-68.7)
were obtainsd from a preliminary analysis, but a subsequent least squares
analysisc'l ylelded log A = 22.4 and E, = 55.6 kcal/mole. The difference
seems large enough to be chemically sigrificant. This illustrates the
importance of applying statistical analysis when estimating Arrhenius
parameters from kinetic data, since it is evidently difficult to "eyeball” a
slope and intercept with sufficient accuracy. '

Joynerc-l7 carried out manometric studies on the decomposition of RDX;
the data were believed satisfactory despite some problems with sublimation and
pressure fluctuation. In agreement with this the three points, plotted for
neat liquid RDX appear to fall on the same line (main report, Figure 1) eg? 2
’

the rate constants seem to agree reasonably well with those of Robertson
and of the American Cyanamid groupr.“"

Thermal analysis studies will be considered in two parts -~ first the
isothermal DSC and DTA, then dynamic or temperature-programmed studies. We
begin w%g?bisothermal DSC results. The best isothermal DSC result is' that of
Rogers, who obtained log A (sec °) = 18.3 and E, = 47.1 kcal/mole from
experiments in which correction was made for gas—phase reaction which proceeds
concurrently with the liquid reaction. To this writer's knowledge, this 1is
the only study in which a quantitative correction for vapor-ghaze reaction has
been carried out. Comparison with the uncorrected valuesC-13,1% of log A

(sec™”) = 16.4 and E, = 43.1 kcal/mole reveals that the correction is of the
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order of a factor of 10G in A and a difference of 4 kcal/mole in ac* .. tion
energy for DNSC measurements of heat output using the Perkin-Elme— ., -1B
apparatus of Reference C~14; but the magnitude of the correc-’ .. will of
course vary with the mass/volume ratio and the geometry of the system. Since
the other isothermal DSC st:ud:i.esc'lf’'20'28'3 made no attempt to correct their
results specifically for the gas—-phase reaction it is not surprising to note
that their activation energies and frequency factors fall somewhat lower than
the best DSCC14 and kineticC=1:2:8-10,17 yalyes,

In addition to the above error (previous paragraph) due to vapor-phase
reaction, non-isothermal thermal analysis experiments would be affected by a
variation with temperature of the proportion of the vapor-phase reaction; this
is in addition to any errors introduced in the derivation of the Kissinger
equation (see p. 17-19) or other method used to estimate kinetic parameters.
None of these studies attempts to correct for gas-phase reaction.
Consequently, while all non-isothermal thermal analysis stud?‘es of which this
writer is aware have been tabulated they will not be discus: ' individually.

‘Activation energies for decomposition of RDX in solution (Table C-2) seem
to be generally several kcal/mole lower than the values (Table Cl) for the
neat liquid. Robertson®~! found values for log A (sec™!) and activation
energy (ca 15.5 and 41 kcal/mole respectively) that were noticeably lower than
his values (18.5 and 47.5) for the neat liquid. However, the values in TNT
may be affected by concomitant decomposition of TNT; see following paragraph.

The work of w11byc‘22’23 was done over a short (17-18°) temperature
range, using large samples which might have led to self-heating; furthermore,
Wilby pointed out that TNT was decomposing at the same time as RDX and that
this might have complicated matters. However, the Arrhenius parameters werte
in reasonable agreement with those of Robertson. =1 This agreement for such
large sample size may suggest that self heating 1is not a source of error for
decomposing RDX in TNT and possibly in inert solvents generally; however, note
the short temperature range in Wilby's measurements. The Russian workers also
found®23,26 that log A (sec™!) and E, were lower in solution in
dinitrobenzene than were the best values for liquid RDX.

The value of '7.13 obtained by Joynerc'17 is somewhat higher than the
value of about 14-.6 obtained in the other entries of Table C-2. However,
this is to be expected since it was obtained by assuming an activation energy
(44.2 kcal/mole) determined for neat liquid RDX; this value is higher than
most of those in Table C~2 and would thus be expected to lead to a higher
frequency factor,

The above studies were all done manometrically. Colman and Rauch®~21
studied the decomposition in TNT kinetically, by analysis of undecomposed RDX;
this would reduce errors due to vaporization followed by decomposition of RDX
in the vapor phase. This is especially pertinent since while RDX
decomposition seems unaffected by TNT, the TNT decompositicn is accelerated in
the presence of more than a 5% concentration of decomposing RDX; the
composition of the gaseous products appears .to be a superposition of those
from RDX and TNT alone. Thus, while Robertson's values for 1% and 5% RDX in
TNT are probably not in error from this source, studies using more than about
5-10% RDX and TNT may be in error. Howaver, the errors in E, and Log A may
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not be too great since it was found®=2l that activation energies for
decomposition of RDX and of solvent were about the same within the rather
large (£ 5 kcal/mole) error limits.

Debenham and Owen® 2% also followed the reaction by analysis of
undecomposed RDX. Ccnsidering the short (10°) temperature range, their
approxinate activation energy of 46 kcal/mole seems essentially the same as
the other values in Table C-2 although a hit on the high end of the range.

Rogers and MorrisC1! obtained an activation energy of 48.4 kcal/mole by
DSC, in Convalex-10 (polyphenyl ether). This value is about the same as the
best values in Table C-2 for the decomposition of neat liquid RDX, but
significantly lower than the value (67.4 kcal/mole) reported on the same
apparatus by Rogers and MorrisC 1! for decomposition of liquid RDX; thus, the
activation energy for RDX in solution 1s still less than for the neat liquid,
when the two are determined by the same method on the same apparatus.

Table C-3 lists the rate constant and temperature data useclc"l’lo’“"17
in what, on the basis of the above discussion, the present writer feels to be
the most reliable studies on decomposition of liquid RDX. These data were
analyzed together on a common axis (main report, Figure 1, Table and
accompanying discussion) to give the best values for log A (sec’l) and E,
reported there, Table C-3 also gives the values ohtained when the programs
used in the present report were applied to the data from the {i. ividual data
sets; values reported by the individual authors are given in Taole C-1.

Table_C-4 lists the actual rat=z constant and temperature
data,c_l’17’21’22 used in what the present writer feels, on the basis of the
above discussion, to be the most reliable data for decomposition of RDX in
solution in TNT. These data were plotted together on a common axis (main
report, Figure 5) and the data were analyzed statistically as described in the
main report (Table and accompanying discussion) to give the suggested values
for log A (sec'l) and F_ rzported there. Table C-3 also gives the values
obtained whea the programs used in the present report were applied to the data
from the individual data sets; values reported by the individual authors are

given in Table C-2.
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APPENDIX D.

REPORTED ARRHENIUS PARAMETERS FOR THFRMAL DECOMPOSITIONS OF
HMX AND RDX AT TEMPERATURES BELOW THETR MELTING POINTS.
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APPE~ "~ 3.

REPORTED ARRHENIUS PARAMETERS FOR THERMAL DECOMPOSITIONS OF
HMX AND RDX AT TEMPERA. 'RES BELCW THEIR MELTING POINTS.

Available valuesP~!1-27 for decomposftion of HMX and RDX at temperatures
below their melting points are summarized in Tables D-! and D-2. : '

D-1p, . Goshgarian, “The Thermal Decomposition of Cyclotrimethylene-
" trinitramine (RDX), and Cyclotetramethylenetetr:r.tramine (HMX),” AFRPL-TR-
78-76, October 1978 (AD-B032 275L). : :

D~2yy. Ya. Maksimov, "Thermal Dec:~ ..cion of Hexogen and Octogan,” Tr. Mosk.
Khim. Tekhnol, Inst. No. 53, p. 73, see Chem, Abstr., Vol. 68, p. 41742r,
Translated by H. J. Dahlby, Los Alamos Report LA~TR-68-30, Los Alamos, NM,
1968.

D'3Haksimov, work summarized in K. K. Andreyev, "Thermal Decomposition and
Combustion of Explosives,” FTD-HT-23-1329-68, p. 87, 130 (AD-~'93 600).

D-4g, K. AMams, “Chemistry of the Solid State,” personal communir-.ion.
referred to by C. H. Bawn, W. H. Garner, ed., Butterworths, London, p. 265,
1955.

D-5¢. x. Mans, “"The Thermal Decomposition of RDX,” S. A. C. 5766, 1 February
1944,

D'6C. E. H. Bawn, "Chemistry of the Solid State,” W. E. Garner, ed.,
Butterworths, London, p. 261, 1955.

D-75. 3. Batten and D. C. Hurdie, “"The Thermal Decomposition of RDX at
Temperatures Below the Melting Point. 11. Activation Energy,” Aust. J.
Chem., Vol. 23, p. 749, 1970.

D'BJ. J. Batten "The Thermal Decompnsition of RDX at Temperatures Below the
Melting Point. 1IV. Catalysis of the Decomposition by Formaldehyde,” Aust.
J. Chem., Vol. 24, pp. 2025-9, 1971.

D-9%. K. Miles, "The Thermal Decomposition of RDX,” Master's Thesis, U.S.
Naval Postgraduate School, Monterey, CA, March 1972 (AD-743762).

D-10p, g, Hall, "Thermal Decomposition and Phase Transitions in Solid
Nitramines,” J. Chem. Soc., Faraday Trans. Part 2, Vol. 67, p. 556, 1971.

D-11,, g. Medvedev, G. V. Sakovich, and V. V. Konstantinov, "Nonisothermal
Kinetics of the Solid-phase Decomposition of Octogen,” Tezisy Dokl.
Sovesch. Kinet. Mekh., Khim. Reakts. Tverd. Tele., 7th., Vol. 1, pp. 163=5,
1977, Chem. Abstr., Vol. 88, p. 177810g, 1978.
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D-12g, R. Miller, R. C. Musso, and A. F. Grigor, "Combustion Mechanisms of Low
Burning Rate Propellant,” AFRPL-TR-69-130, May 1969 (AD-502957).

D-l3s.(sic) Goshgarian, private communication cited in K. P. McCarty, HMX
Propellant Combustion Studies,” AFRPL-TR-76~59 (AD-BO17 527L).

D"‘w. Hoondee, "The Thermal Decomposition of B~HMX ,” Master's Thesis, Naval
Postgraduate School, Monterey, CA, June 1971 (AD-728 582).

D-155, E. sinclair and W. Hoondee, "The Thermal Dccomposition of B-HMX ,”
Proc. Symp. Explos. Pyrotechnics, 7th, I1-5, 1-4, (Chem. Abstr., Vol. 76,
143050w), 1971.

D-165, . Maycock and V. R. Pai Vernecker, “"Thermal Decomposition of B-HMX
(Cyclotetramethylene Tetranitramir ,,” Explosivestoffe, Vol. 17, p. 5,
1969.

L 7. ~uryzs~vana and R. .. Graybush, "Thermal Decomposition c¢f 1,3,5,7-
Tetranitro~i, .S T-~7:craazacyclooctane (HMX): A Mass Spectrometric Study
of the Products from g-HMX ," Ind. Chim, Belg., Vol. 32, Spec. No. Part 3,
pp. 647-50, : J7.

- D-18g, Suryanarayana, V. I. Siele, and J. Harris, unpublished work cited in

Reference 19.

D-19g, Suryanarayana, J. R. Autera, and R. J. Graybush, "Mechanism of Thermal
Decomposition of HMX (1,3,5,7-Tetranitro-1,3,5,7-Tetraazacyclooctane),”
Froceedings of the 1968 Army Science Conference, (OCRD)} West Point,

Vole 2, p. 423, .968 (AD-837 173).

D-205, g, sinclair and W. Hoondee, "Thermal Decomposition of B-HMX,"
Jahrestag, Inst., Chem. Treib., Explosivestoffe Fraunhofer-Ges. 1971, Pub.
1972, 57, Chem. Abstr., Vol.81, 108070j.

D-21g, . Rogers and E. D. Morris, Jr., “"On Estimating Activation Energies
with a Differential Scanning Calorimeter,” Anal. Chem., Vol. 38, p. 412,
1966. -

D-ZZM S. Belyayeva, G. K. Klimenko, L. T. Babaytseva and, P. N. Stolyarov,
“Factors Determining the Thermal Stability of Cyclic Nitroamines ln the
Crystalline State,” FID-ID (RS) T-1209-78, AD~B033 572L.

D-23;, kimura and N. Kubota, “Thermal Decomposition Process of HMX,"
Propellants and Explosives, Vol. 5, p. 1, 1980.

DfZAK. Takaira and K. Okazaki, M.S. Thesis, National Defense Academy, 1974,
cited in Reference 23, 1974.

D-25g, Goshgarian, Private Communication, August 1976, cited in Reference 23.
D~26y, Farber and R. D. Srivastava, "A Mass-Spectrometric Investigation of the

Decomposition Products of Advanced Propellants and Explosives,” Space
Sciences, Inc., August 1979 (AD-A074-963).
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D-27g, Ki.shore,."Comparat:ive Studies on the Decomposition Behavior of
Seconr iry Explosives RDX and HMX," Defense Science Journal, Vol. 18,
p. 59, (summarized in Chem., Abstr., Vol. 90, 206758), 1978.
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As discussed elsewhere (Section IV. D. of the main report), decomposition
of HMX and RDX at temperatures below their melting points is most likely a
complex process involving the liquid and vapor states as well as the solid
state. Furthermore, the activation energies and frequency factors appear to
be dependent on factors like degree of spreading of the sample (see for
example Reference D-7) which are often difficult to evaluate in view of the
limited information given in many of the reports. ' Therefore, although an
attempt has been made to include all available values in Tables D-1 and D-2,
we will confine ourselves to pointing out some of the main trends in the data.

One trend is a tendency for activation energies measured at or near the
melting point by TGAP=25, pscP~9,10,21,23,24 5p ppysD-l techniques to have
what seem to be unreasonably high values, sometimes well over 200 kcal/mole.
Possibily these values are artifacts resulting from complexity in the behavior
of the material as it simultaneously melts and decomposes (see p. 35 of the

main report).

Another pattern is that manyn'“'ll"ls’”‘m'25 (but not all) of the
studies on HMX decomposition show changes in activation energy in the region
around approximately 245 t 15°C. The magnitude and exact locations of these
changes are not reproducible from study to study, except that they generally
fall in the approximate range 230-60°C.

An at:temptD"28 at applying autocatalytic solid reaction kinetics to HMX
decomposition yielded an activation energy of 140 kcal/mole and a frequency
factor of 4.76 x 1037, However, the significance of these numbers seens
uncertain; for one thing, the kg in equation 6.4.2 of Reference D-29, which is
equated by the authors of Reference D-28 to a rate constant, is described in
Reference D-29 as an “adjustable parameter;” the justification for relating it
to a rate constant is not obvious. Also, according to this treatment the rate
constant comes out with units of time raised to the power of -3.5, although
rate constants generally, because of the manner of their derivation, are
expected to be expressed in terms of recinrocal (time xultiplied by
(concentration™!), If the term k tB‘in equation 6.4.2 of Reference D-29 is

replaced by (kt?a, and k (= (k )l/B is considered as a rate constant having
dimensions sec™', ft would yiefd values of log p A and E; that would be lower
by a factor of B (=3.5, Reference D-28) than t&ose (loglo A= 35 and E; = 149

kcal/mole) given in Reference D-28, or log; A(sec;l) = 10 and E, = 40
kcal/mole.

Belyaeva et al.D"22 have reported a series of manometric studies on HMX
and RDX decomposition in which separate account was taken of the gas and

D-28,, E. Axworthy, J. E. Flanagan, and J. C. Gray, "Interaction of Reaction
Kinetics and Nitramine Combustion,” Rocketdyne Division, Rockwell
International, Canoga Park, CA, Report AFATL-TR-30-58, May 1980 (AD-B0S52
861L).

D29y, Boudart, "Kinetics of Chemical Processes,” Preantice-Hall, New York,
Chapter 6, 1968.
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condensed phase decompositions; the gas~ and condensed-phase rates were
evaluated separately from the following equation:

dn , ¢ ¥V -
ot Axlm P2 + 321(2(1 n)

o

where A = 273/76OV°° T, B = 273R/760M; K, and K, are the decomposition rates in
the gas and condensed phases respectively; V 18 the volume of products up to a
glven point in time; V_ 1s the final volume of conversion products; m_ is the
sample weight, and M 18 molecular weight; and dn/dt is the total rate of
thermal decomposition.

Initial rate data 1n the gas- and condensed phases are given in Appendix
A and 10 the final lines of Tables D-1 and D-2 respectively. The condensed-
phase Arrhenius parameters in Tables D~1 and D-2 are based on statistical
analyses done by the present writer; the original Russian authors of Reference
D-22 did not report Arrhenius parameters from thelr condensed phase data; it
should be noted that this may well be the result of well-founded doubts as to
their exact significance. Nevertheless, it seemed worthwhile to carry out the
statistical analyses whose results are summarized in the last two lines of
Tables D-1 and D-2. The "condensed phase™ Arrhenius parameters or temperature
coefficients of reaction are signiflcantly lower for HMX than for RDX; 1in fact
the frequency factor for HMX (log A(sec”™ 1y = 9,1, Table D-2) 1s in a range
that in the gas phasf would be characteristic of a bimolecular reaction, while
that for (log A(sec™*) = 13.5) is 1in a region that in the gas phase would be
more characteristic of a unimolecular reaction. Possible reasons for this
discrepancy include (a) differences in chemical mechanisms for the solid-state
decomposition of HMX and RDX; and (b) differences in kind or contribution of
physical mechanisms, in particular vaporization and gas-phase decomposition of
HMX and RDX, and liquefaction of the z0lid phase due to condensation of
products such as hydroxymethylformamide.
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APPENDIX E.
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AFPENDIX RE.

- COMPUTER PROGRAM USED FOR LEAST-SQUARES FIT OF ORIGINAL DaTA
- FROGHRO GOTEN ' '

. - DIMENSION TITLE(BO)

CRMNO

ity

g

I ¢, *

DO 20 TLIs=i, 10

RESD O3, 2001 (END=5000 ERR=5000) TITLE
S0t FORMAT (80A1)

WRITE (&, 200 TITLE
SO0 FORMAT(80AL, /)

H=0)

K=,

SRV =0,
1 ('J ll'“l T ”‘J. . 1(")(11")

S Fu%HHIQTFlJ 4)
TFA(XJER, 999,060 TO 20
WEITTE (4, 20000 X, ¥

L N 1 1

: COY Y
. GAYEGXYHXRY
- For CORTINUE
S0 CONT INUE
X F1=GX2-((SX*%2) /FLOAT (N))

= - FR={GXY--{((HX*8Y)Y /FLOATIN ) ) /F 1

- Flz (~SX*F2+6Y) /FLOAT (N)
- Fa= CF 2% 286X 2) ~ (SXY*I¥F2) +8YL-FLOAT (N) #FZ#%2) /FLOAT (N)
: e g o1 1
SH=SORT (BX2#FS/FLOAT (N) )
. n-rq
k- GAM=G0RT (F5)
- KM=FD
’ WHITE (6, 400)

WRITE (& ,200) XM, SXM, B, SK

® L o ACTFAC=2.2026%1.9072

AXM= (-1, ) #XMACTFAC

. ASXE=SXMYACTIAC
-. WRTTE (4,502) AXM, ASXM
- 30 CONTINUF

SO0 FORMAT (4F L. 4)

§ SO FORMAT (/)
- 400 FORMAT (/7,7 SLOPE, S16 SLOFE, INTERCEFT, 616 INTERCEPT',/)

Lm0l FORMAT(/,  ACT EN SIG ACT EN' /7 ,2F10.4,77)
) - 000 CORT INUE

¥ EHD
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APPENDIX F.

COMPUTER PROGRAM USED LEAST SQUARE3 TIT OF LOGARITHMS OF DATA
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