AXIAL TENSION TESTING OF FORGED HORIZONTAL CONNECTORS FOR USE WITH INTERMODAL ISO CONTAINERS

AUTHOR: Bradley Posadas

DATE: September 1985

SPONSOR: Marine Corps Development and Education Command

PROGRAM NO: CO081A-4-101

NAVAL CIVIL ENGINEERING LABORATORY
PORT HUENEME, CALIFORNIA 93043

Approved for public release; distribution unlimited.
AXIAL TENSION TESTING OF FORGED HORIZONTAL CONNECTORS FOR USE WITH INTERMODAL ISO CONTAINERS

Title and Short Abstract
AXIAL TENSION TESTING OF FORGED HORIZONTAL CONNECTORS FOR USE WITH INTERMODAL ISO CONTAINERS

Authors
Bradley Posadas

Report Number
TN-1733

Date
Not Final; Oct 1984 - Feb 1985

Type of Report & Period Covered
Not Final; Oct 1984 - Feb 1985

Performing Org. Report Number
Not Final; Oct 1984 - Feb 1985

Controlled Office Name and Address
Marine Corps Development and Education Command
Quantico, Virginia 22134

Security Classification of This Report
Unclassified

Distribution Statement of This Report
Approved for public release; distribution unlimited.

Keywords
Connectors, testing, transportation.

Abstract
The results of a static test to determine whether a forged Tandemloc Inc. Horizontal Connector meets the tension resistance requirements for use with International Organization for Standardization (ISO) containers in the Marine Corps Container and Expeditionary Shelter Systems are presented. Four identical connectors were tested. The maximum applied forces were measured, recorded, and then compared with the rated capacity. The connector met the tension resistance requirements and should be qualified for use in the container and shelter systems.
The results of a static test to determine whether forged Tandemloc Inc. Horizontal Connector meets the tension resistance requirements for use with International Organization for Standardization (ISO) containers in the Marine Corps Container and Expeditionary Shelter Systems are presented. Four identical connectors were tested. The maximum applied forces were measured, recorded, and then compared with the rated capacity. The connector met the tension resistance requirement and should be qualified for use in the container and shelter systems.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>BACKGROUND</td>
<td>1</td>
</tr>
<tr>
<td>EXPERIMENT</td>
<td>2</td>
</tr>
<tr>
<td>Test Specimens</td>
<td>2</td>
</tr>
<tr>
<td>Apparatus</td>
<td>2</td>
</tr>
<tr>
<td>Procedure</td>
<td>2</td>
</tr>
<tr>
<td>FINDINGS</td>
<td>3</td>
</tr>
<tr>
<td>CONCLUSION AND RECOMMENDATION</td>
<td>3</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>3</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>3</td>
</tr>
</tbody>
</table>
INTRODUCTION

The Marine Corps Container System and the Marine Corps Expeditionary Shelter System, both of which are part of the Marine Corps Field Logistics System (FLS), use intermodal shipping containers that meet the standards of the International Organization for Standardization (ISO). Horizontal connectors are used to couple these containers for shipping by sea, highway, or rail. To determine whether a certain commercially available horizontal connector meets the tension resistance requirements for coupling intermodal shipping containers, four identical connectors were statically tested at a standard loading rate in a tension testing machine. The connectors were pulled by standard ISO corner fittings which, in turn, were pulled by the machine. Maximum applied forces were measured, recorded, and then compared with the rated capacity. This report describes the experiment and presents the results of the test.

BACKGROUND

Horizontal connectors were tested previously for tension resistance (Ref 1 and 2), with differing results. In the first test the connector failed much below the rated capacity; in the second test the connector exceeded the rated capacity. The connectors tested previously were cast steel; the connectors tested herein are forged steel. The forged connector has a manufacturer's ultimate capacity rating of 50,000 pounds. The Marine Corps requirement is 48,000 pounds (page 69 of Ref 3).

Longitudinal restraint in the rail mode is the critical condition for tension in the connector (pages 39 and 40 of Ref 3) only when: (1) 12 connectors are used to form a quad (four Marine Corps quadruple containers (QUADCONS) coupled end-to-end), (2) operational loads govern, and (3) a load factor of 2.0 is applied (page 4 of Ref 4). The Marine Corps QUADCON has a gross weight rating of 10,000 pounds, not the maximum 11,200 pounds allowed in the ISO standard, and a height of 82 inches, not the standard 96 inches.

The quad will be certified in the marine, highway, and rail modes of transportation in accordance with ISO 1496/1-1978(E) (Ref 4). It will be operated as an uncertified container with American military aircraft in accordance with Military Specification MIL-A-8421f (Ref 5), and will be uncoupled into separate QUADCONS for shipment by commercial aircraft. Furthermore, the quad will be carried on a railcar with each QUADCON lashed to the car.
EXPERIMENT

Test Specimens

The connector tested is a forged Tandemloc Inc. Horizontal Connector, Part No. 7129-45M-PZN, as shown opened in Figure 1 and closed (with cover off) in Figure 2 (Ref 6). Figure 3 shows a partially disassembled connector with internal parts named. The connector weighs 18.5 pounds (Ref 6).

Apparatus

Testing Machine and Grippers. A Baldwin-Tate-Emery testing machine was used to apply and measure the tension load. The capacity of the machine is 120,000 pounds, and the dial gage can be read to the nearest 100 pounds. The gage has one pointer that indicates the applied load and another pointer that remains at the maximum load and must be reset by hand. A constant loading rate of 10,000 lb/min was used during the tests. Grippers were required to grip the bars that were used in conjunction with the corner fittings.

Corner Fittings and Tension Bars. The maximum tension force occurs in connectors that are between bottom corner fittings; therefore, the connectors were tested between two bottom corner fittings that were secured in the machine by means of tension bars that were welded to them. The corner fittings were Tandemloc Inc. ISO Container Bottom Corner Fitting Part No. 72043-VS-B. One left bottom and one right bottom corner fitting were chosen for use as test apparatus. A typical test setup is shown in Figure 4. Figure 5 shows the same assembly mounted vertically in the testing machine. The tension bars were aligned on the centers of the holes in the corner fittings; therefore, the load was applied to the specimen without any eccentricity.

Procedure

Four specimens were chosen at random from a total population of 16 connectors. The specimens were numbered B1 through B4 and tested one at a time in accordance with the following procedure:

1. Mount the connector between the two corner fittings, using a socket wrench to close the connector.

2. Mount the connector and the corner fittings into the test machine, using the tension bars and the grippers as shown in Figure 4.

3. Preset the load at 500 pounds, then slightly release the load to check alignment and security of the specimen.

4. Load the specimen at 10,000 lb/min from zero to the failure load or 50,000 pounds, whichever occurs first.

5. Record the maximum load and remove the specimen.

The corner fittings were used in more than one test; however, if holes were extremely deformed, two new corner fittings were used.
FINDINGS

The test results are listed in Table 1. In the test plan, the test load was limited at 50,000 pounds. In the first test (specimen B3), the limit was reached and, thus, the specimen did not fail. In the other three tests, the specimens failed before the load limit was reached.

The specimens that were tested to failure had internally failed, first at the welded push block retainer nut and then on the threads of the push block drive stud. A partially disassembled specimen (B2) is shown in Figure 3. A closer view of the retainer nut depicted in Figure 6 shows that the weld had failed, causing eccentricity to occur on the push block drive stud. Figures 7, 8, and 9 show that the drive stud threads had either sheared off or been compressed due to uneven distribution of bearing loads to the drive stud stopnut. The stopnut was intentionally cut in half to show thread damage in Figure 7. The chronological order of failure is proven by specimen (B3), since its retainer nut weld failed in a similar fashion as specimen (B1) but without damage to the push block drive stud threads.

The average maximum load applied to all four connectors was 49,575 pounds. This conservative value only approximates the average ultimate capacity, since specimen B3 did not fail before its maximum load limit was reached; otherwise, a higher value would have been achieved. The mean and range of the values were 49,350 ± 650 pounds. This is also a conservative approximation for the same reason. Both the average and the mean exceed the 48,100-pound Marine Corps requirement but are below the manufacturer’s ultimate capacity rating of 50,000 pounds (Ref 6). For each test, the maximum applied tension is listed in Table 2 as a percentage of the requirements.

CONCLUSION AND RECOMMENDATION

The forged Tandemloc Horizontal Connector, Part No. 7129-45M-PZN, meets the Marine Corps tension resistance requirement and should be qualified for use with intermodal ISO containers in the Marine Corps Container and Expeditionary Shelter Systems.

ACKNOWLEDGMENTS

Messrs. Craig Sarsfield and Laurence G. Nixon provided assistance in setting up the tests and analyzing the results. Mr. Richard H. Seabold provided technical assistance and observed the tests.

REFERENCES

Table 1. Maximum Tension Recorded During the Tests

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>Maximum Tension (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>49,700</td>
</tr>
<tr>
<td>B2</td>
<td>48,700</td>
</tr>
<tr>
<td>B3</td>
<td>50,000</td>
</tr>
<tr>
<td>B4</td>
<td>49,900</td>
</tr>
</tbody>
</table>

Table 2. Maximum Tension as a Percentage of the Requirements

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>Maximum Tension as a Percentage of---</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Marine Corps Requirement</td>
</tr>
<tr>
<td>B1</td>
<td>103</td>
</tr>
<tr>
<td>B2</td>
<td>101</td>
</tr>
<tr>
<td>B3</td>
<td>104</td>
</tr>
<tr>
<td>B4</td>
<td>104</td>
</tr>
</tbody>
</table>
Figure 1. Tandemloc forged horizontal connector, part no. 7129-45M-PZN, in the opened position.

Figure 2. The Tandemloc connector in the closed position with its cover off.
Figure 3. A partially disassembled Tandemloc connector, specimen (B2).

Figure 4. The corner fittings and tension bar test setup with the Tandemloc connector.
Figure 5. Specimen (B3) and corner fittings mounted vertically into the Baldwin-Tate-Emery testing machine.
Figure 6. A close-up view of the welded push block retainer nut on the drive stud of specimen (Bl). Note weld crack.

Figure 7. The push block drive stud with split stopnut of specimen (Bl). Note thread damage.
Figure 8. The push block drive stud of specimen (Bl). Note thread damage.

Figure 9. A close-up view of the drive stud of specimen (Bl).
DISTRIBUTION LIST

AF HQ Traffic Mgmt Ctg Br, Washington, DC
AFB DET Wright-Patterson OH, Shelter Mgmt Office. Cod LPS OCMS. Hanover, MA; HQ Space Com Det Q
AF Mortons Peterson AFB, CO
AF MN HQS (DAAF-FF-A) RAD Ctr STRNG-US (Off Incp), Natick, MA
ARMY CORPS OF ENGRNS MD Eng Div, Omaha NE, Seattle Dist Library, Seattle WA
ARMY DARC (Code DRLC) Alexandria VA
ARMY ENG WATERWAYS EXP STA WESOP-E (1 Green), Vicksburg, MS
ARMY ENVIRON HYGiene AGCY HSE-EW Water Qual Eng Div Aberdeen Prov Grnd MD
ARMY LOGISTICS COMMAND Code ATC/ATL-MS (Morrosett) Fort Lee, VA
ARMY MAT SYS ANALYSIS ACT Code DRXY-CM (M Ojurzalek) Aberdeen Prov Grnd MD
ARMY MTC Trans Engr Agencies MTT-C, Newport News, VA
ARMY TRANSPORTATION SCHOOL Code ATSP CD-TE Fort Eustis, VA
ARMY TRNG & DOCTRINE CMD Code ATCD-6L Fort Monroe, VA
ARMY-MERADCOM CFLO Eng Fort Belvoir VA; DRDME-WC Ft Belvoir VA
CENTAF (Civil Eng Sup Plans Offr, Norfolk, VA
CENTPAC Fac Engng Div (J44) Makalapa, HI
COMSBLANT Code 516T
COMCIBPAC Operations Off, Makalapa HI
COMFAIRMED SC, Code N55, Naples IT
COMNAVBEACHGRU ONE, CO, San Diego, CA
COMNAVBEACHPHIBFTRGRU ONE San Diego CA
COMNAVLOGPAC Code 430L, Pearl Harbor, HI
COMNAVSMARIANAS Code 54, Guam
COMNAVSP E Person A, Fort Eustis, VA
COMNAVSP E Person A, Fort Eustis, VA
COMSURFWARDEVRU CO, Norfolk, VA
COMUSNAVCENT N42, Pearl Harbor, HI
NAVSURFFPAC Code N-4, Coronado
COMPTOEYOR CMGR, Norfolk, VA; Code 705, San Diego, CA
DELSIE Army Logistics Mgt Ctr, Fort Lee, VA
DIOC Alexandria, VA
DNSRDC Code 119, Annapolis, MD; Code 1506, Annapolis, MD; Code 4120, Annapolis, MD
FRO (Fowler) Code APM-740, Wash, DC
FMFLANT CDC Offr, Norfolk VA
FMPAC C(GEO) Camp Smith, HI
NAV Asst Comm Dev & Cnt (74A) D R Dibner Washington, DC
LIBRARY OF CONGRESS Washington, DC (Sciences & Tech Div)
MARINE CORPS BASE PWO, Camp Pendleton CA; PWO, Camp S. D. Butler, Kawasaki Japan
MCAS Fac Eng Div, Cherry Point NC
MCB 1st For Serv Supp Gru (Engr Sup Offr) Camp Pendleton CA
MCAS Facs Maint Dept - Operations Div, Cherry Point
MCDC NSAP REP, Quantico VA
MILITARY SEALIFT COMMAND Washington DC
NAF PWO, Atsugi Japan
NAIRF Equip Eng Div (Code 61000), Pensacola, FL
NAS PWO - Engr Div, Oak Harbor, WA; PWO (Code 182), Bermuda
NAVAREITSCEN PWO, Patuxent River, MD
NAS PWO, Glenview IL; PWO, So. Weymouth MA; SCE Norfolk, VA
NATL BUREAU OF STANDARDS R Chung Washington, DC
NATL RESEARCH COUNCIL Naval Studies Board, Washington DC
NAVCHOSP SCE, Pensacola FL
NAVCHOSYSCOM Code 41712 (G. Michals). Washington, DC
NAVCHAPGRU CO Williamsburg VA; Operations Officer, Code 30 Williamsburg, VA
NAVCOASTYSCEN CO, Panama City FL; Code 715 (J Quirk) Panama City, FL; Code 772 (C B Koesy)
Panama City FL; Library Panama City, FL
NAVCOMMAREAMSTRSTA SCE Unit 1 Naples Italy; See Offr, Waialua, HI
NAVCOMMSTA Code 401 Nea Makri, Greece
NAVEDTPRODEVCCN Technical Library, Pensacola, FL
NAVEDTTECHCMN Tech Library, Indian Head, MD

11
PLEASE HELP US PUT THE ZIP IN YOUR MAIL! ADD YOUR FOUR NEW ZIP DIGITS TO YOUR LABEL (OR FACSIMILE), STAPLE INSIDE THIS SELF-MAILER, AND RETURN TO US.

Commanding Officer
Code L14
Naval Civil Engineering Laboratory
Port Hueneme, California 93043-5003
INSTRUCTIONS

The Naval Civil Engineering Laboratory has revised its primary distribution lists. The bottom of the mailing label has several numbers listed. These numbers correspond to numbers assigned to the list of Subject Categories. Numbers on the label corresponding to those on the list indicate the subject category and type of documents you are presently receiving. If you are satisfied, throw this card away (or file it for later reference).

If you want to change what you are presently receiving:

- **Delete** - mark off number on bottom of label.
- **Add** - circle number on list.
- **Remove my name from all your lists** - check box on list.
- **Change my address** - line out incorrect line and write in correction (ATTACH MAILING LABEL).
- **Number of copies should be entered after the title of the subject categories you select.**

Fold on line below and drop in the mail.

Note: Numbers on label but not listed on questionnaire are for NCEL use only, please ignore them.
DISTRIBUTION QUESTIONNAIRE
The Naval Civil Engineering Laboratory is revising its primary distribution lists.

SUBJECT CATEGORIES

1. SHORE FACILITIES
2. Construction methods and materials (including corrosion control, coatings)
3. Waterfront structures (maintenance/decommission control)
4. Utilities (including power conditioning)
5. Explosives safety
6. Construction equipment and machinery
7. Fire prevention and control
8. Antenna technology
9. Structural analysis and design (including numerical and computer techniques)
10. Protective construction (including hardened shelters, shock and vibration studies)
11. Seakeep mechanics
12. GEO
13. Airfields and pavements
14. ADVANCED BASE AND AMPHIBIOUS FACILITIES
15. Base facilities (including shelters, power generation, water supplies)
16. Expedition roads/airfields/bridges
17. Amphibious operations (including breasting wedges, wave forces)
18. Over-the-Behch operations (including containerization, material transfer, lightering and crane)
19. POL storage, transfer and distribution
20. POL STORAGE, TRANSFER AND DISTRIBUTION
21. POLAR ENGINEERING
22. Same as Advanced Base and Amphibious Facilities, except limited to cold-region environments
23. ENERGY/POWER GENERATION
24. Thermal conservation (thermal engineering of buildings, HVAC systems, energy loss measurement, power generation)
25. Controls and electrical conservation (electrical systems, energy monitoring and control systems)
26. Fuel flexibility (liquid fuels, coal utilization, energy from solid waste)
27. Alternate energy sources (geothermal power, photovoltaic power systems, solar systems, wind systems, energy storage systems)
28. Site data and systems integration (energy resource data, energy consumption data, integrating energy systems)
29. ENVIRONMENTAL PROTECTION
30. Solid waste management
31. Hazardous/toxic materials management
32. Waste/water management and sanitary engineering
33. Oil pollution removal and recovery
34. Air pollution
35. Noise abatement
36. OCEAN ENGINEERING
37. Seafloor soils and foundations
38. Seafloor construction systems and operations (including diver and manipulator tools)
39. Undersea structures and materials
40. Anchors and moorings
41. Undersea power systems, electromechanical cables, and connectors
42. Undersea structures and materials
43. Hyperbaric chambers
44. Undersea cable dynamics

TYPES OF DOCUMENTS
83 Technical Notes
84 Technical Reports and Technical Notes
85 NCEL Guides & Updates
91 Physical Security
83 Table of Contents & Index to TDS