DEMONSTRATION OF A
JACOBI POLYNOMIAL REPRESENTATION
OF A KRONECKER DELTA FUNCTION

RICHARD A. FARRELL
ERNEST P. GRAY
ROBERT W. HART
REPORT DOCUMENTATION PAGE

Title: Demonstration of a Jacobi Polynomial Representation of a Kronecker Delta Function (U)

Performing Organization Name: The Johns Hopkins University

Monitored Organization: Naval Plant Representative Office

Monitored Organization Address: Johns Hopkins Road, Laurel, Maryland 20707

Source of Funds: N00024-85-C-5301

Type of Report: Technical Memorandum

Date of Report: 1985, September

Subject Terms: Kronecker delta function, Jacobi polynomials, fluid shells.

Abstract: A method derived by Noble has been generalized to obtain an expansion of the Kronecker delta function as an infinite series involving the products of Legendre polynomials.
Technical Memorandum

DEMONSTRATION OF A
JACOBI POLYNOMIAL REPRESENTATION
OF A KRONECKER DELTA FUNCTION

RICHARD A. FARRELL
ERNEST P. GRAY
ROBERT W. HART
ABSTRACT

A formula derived by Noble has been generalized to obtain an expansion of the Kronecker delta function as an infinite series involving the products of two Jacobi polynomials.
INTRODUCTION

In our investigations of the inviscid, incompressible flow of rotating fluid shells confined between concentric, spherical, rigid, co-rotating boundaries, we encountered the need for a proof of a Kronecker delta function representation in terms of a series of products of two Jacobi polynomials. In particular, we required a proof that

\[\delta_{L,0} = \frac{(\mu + 1/2) (1 - \Lambda)^{\mu - 1}}{2^\mu} \cdot F_{\mu - 1, \mu - 1} (\Lambda), \]

(1)

where

\[F_{\mu - 1, \mu - 1} (\Lambda) = \sum_{k=0}^{\infty} \left(\frac{\mu + 1/2}{k + 1/2} \right) \frac{1}{(k + \mu + 1/2) (k + \mu + 1/2)} \]

\[\times P_{k}^{(\mu - 1/2)} (\Lambda) P_{\mu - 1}^{(\mu - 1/2)} (\Lambda), \quad 0 \leq |\Lambda| \leq 1. \]

(2)

For \((\alpha, \beta) > -1\), the \(P_n^{(\alpha, \beta)}(\Lambda)\) are the Jacobi polynomials which are orthogonal over the interval \((-1, +1)\) with the integration weight factor \(w(x) = (1 - x) ^{\alpha} (1 + x)^\beta\). They are normalized by the relation \(P_n^{(\alpha, \beta)}(1) = \Gamma(\alpha + n + 1)/[\Gamma(n + 1) \Gamma(\alpha + 1)]\), with \(\Gamma(z)\) the gamma (factorial) function. For \((\alpha, \beta) \leq -1\), the Jacobi polynomials \(P_n^{(\alpha, \beta)}(\Lambda)\) are defined in terms of the polynomials for \((\alpha, \beta) > -1\) through repeated applications of the contiguous relations \(^{1,2}\)

\[(2n + \alpha + \beta) P_n^{(\alpha, \beta)} (\Lambda) = (n + \alpha + \beta) P_n^{(\alpha + 1, \beta)} (\Lambda) - (n + \beta) P_{n-1}^{(\alpha, \beta)} (\Lambda) \]

(3a)

and

\[(2n + \alpha + \beta) P_n^{(\alpha, \beta)} (\Lambda) = (n + \alpha + \beta) P_n^{(\alpha + 1, \beta)} + (n + \alpha) P_{n-1}^{(\alpha + 1, \beta)} (\Lambda) \]

(3b)

with \(P_0^{(\alpha, \beta)}(\Lambda) = 1\) and \(P_0^{(\alpha, \beta)}(\Lambda) = 0\).

Certain sums involving products of two Jacobi polynomials have been previously evaluated (see, for example, Refs. 3-6). Our method for evaluating the sum in Eq. 2 employs mathematical procedures analogous to those which Noble \(^{3}\) used to show that \(^{3}\)

\begin{align*}
2^{\nu - 1}(1 - y)^\nu (1 + x)^\nu (x - y)^{a + b - c - 1} \Delta(x, y) \\
= \Gamma(a + b - c) \sum_{k=0}^{\infty} \frac{k! \Gamma(k + c + 1) (2k + c + 1)}{\Gamma(k + a + 1) \Gamma(k + b + 1)} P_{k}^{(c, b, c)}(x) P_{k}^{(a, c, a)}(y),
\end{align*}

where

\begin{equation}
\Delta(x, y) = \begin{cases}
1 & \text{if } -1 \leq y < x \leq 1 \\
0 & \text{if } -1 \leq x \leq y \leq 1.
\end{cases}
\end{equation}

PROOF

The proof is done in two stages: first the \(l = 0 \) case is treated, and then the \(l \neq 0 \) case is analyzed. Both stages use the expansion of a function of two variables in an infinite series of Jacobi polynomials of one variable and coefficients that depend on the other variable. In particular, the coefficients in the expansion are obtained by representing the Jacobi polynomial as a finite series, evaluating the resulting elementary integrals, and re-summing the resultant series.

In proving Eq. 1, it is convenient to use the relationship

\begin{equation}
P_n^{(\nu, 1)}(x) = \left(\frac{\alpha + n}{2n}\right) (1 + x) P_{n-1}^{(\nu, 1)}(x) \quad \text{for } n \geq 1,
\end{equation}

in order to write Eq. 2 as

\begin{align*}
F_{\mu, \lambda, \nu, l} &= \frac{1}{(2\mu + 1)} P_{1}^{(\mu - \lambda, \nu - \lambda)}(\Lambda) \\
+ \frac{(1 + \Lambda)^2}{8} \sum_{k=1}^{\infty} \frac{(2k + \mu + l + 1/2)}{k(k + l)} P_{k}^{(\mu - \lambda, \nu - \lambda)}(\Lambda) P_{k+1}^{(\mu - \lambda, \nu - \lambda)}(\Lambda),
\end{align*}

where the first term is the \(k = 0 \) term of the sum appearing in Eq. 2.
CASE OF $l = 0$

For $l = 0$, we expand

$$H^{(0)}(x,y) = \frac{2^{\mu+5/2}}{(1+x)(1+y)} \int_{-1}^{1} (1-t)^{-(\mu+3/2)} dt$$

$$= \sum_{k=0}^{\infty} C_{k}^{(0)}(y) \ P_{k}^{(\mu+1,1)}(x), \quad (8a)$$

where

$$w = \begin{cases} x & \text{if } y > x, \\ y & \text{if } y \leq x. \end{cases} \quad (8b)$$

Multiplying Eq. 8a by $(1+x)(1-x)^{-\mu-1} \ P_{m}^{(\mu+1,1)}(x)$ and integrating from $x = -1$ to 1 yields

$$\frac{(m+1)2^{\mu+5/2}C_{m}^{(0)}(y)}{(m+\mu+3/2)(2m+\mu+5/2)} = \frac{2^{\mu+5/2}}{(1+y)}$$

$$\times \left\{ \int_{-1}^{1} dx (1-x)^{\mu+1} : P_{m}^{(\mu+1,1)}(x) \right\} \int_{-1}^{1} dt (1-t)^{-(\mu+3/2)}$$

$$+ \left[\int_{-1}^{1} dx (1-x)^{\mu+1} : P_{m}^{(\mu+1,1)}(x) \right] \left[\int_{-1}^{1} (1-t)^{-(\mu+3/2)} dt \right] \right\}$$

$$= (1+y)^{-(\mu+\frac{1}{2})} \left[-4 \int_{-1}^{1} dx (1-x)^{\mu+1} : P_{m}^{(\mu+1,1)}(x) \right.$$

$$+ 2^{\mu+5/2} \int_{-1}^{1} dx P_{m}^{(\mu+1,1)}(x)$$

$$+ 2^{\mu+5/2} (1-y)^{-(\mu+1/2)} \int_{-1}^{1} dx (1-x)^{\mu+1} : P_{m}^{(\mu+1,1)}(x) \right]. \quad (9)$$

The integrals are readily evaluated by expanding the Jacobi polynomial as

$$P_{m}^{(\mu+1,1)}(x) = \sum_{r=0}^{m} \gamma(m,\alpha,\beta,r) (1-x)^{r}. \quad (10a)$$
with
\[\gamma(m, \alpha, \beta; r) = \Gamma(\alpha + m + 1) \Gamma(\alpha + \beta + m + r + 1) (\frac{1}{2})^{-1} \]
\[\left[r!(m-r)! \Gamma(\alpha + r + 1) \Gamma(\alpha + \beta + m + 1) \right]; \]
\hspace{1cm} (10b)

integrating each term; and re-summing the series. In particular,

\[\frac{(m+1)2^{r+5/2}}{(m+\mu+3/2)(2m+\mu+5/2)} C_m^{(\mu)}(y) = (1+y)^{-1}(\mu + \frac{1}{2})^{-1} \]
\[\times \sum_{r=0}^{m} \gamma(m, \mu + \frac{1}{2}, 1, r) \left\{ \frac{-2^{r+\mu+7/2}}{(r+\mu+3/2)} - \frac{2^{r+5/2}}{(r+1)}\left[(1-y)^{r+1} - 2^{r+1}\right] \right\} \]
\[+ 2^{r+5/2} \frac{(1-y)^{r+1}}{(r+\mu+3/2)} \} = (1+y)^{-1}(\mu + \frac{1}{2})^{-1} \sum_{r=0}^{m} \gamma(m, \mu + \frac{1}{2}, 1, r) \]
\[\times \left[2^{r+\mu+7/2} - 2^{r+5/2}(1-y)^{r+1} \right] \frac{(\mu + \frac{1}{2})}{(r+1)(r+\mu+3/2)} \]
\[= -2^{r+5/2}(1+y)^{-1}(m+\mu+3/2)^{-2} \left[P_{m+1}^{(\mu+\frac{1}{2}, -1)}(1) - P_{m+1}^{(\mu+\frac{1}{2}, -1)}(y) \right] \]
\[= \frac{2^{r+5/2}}{(m+1)(m+\mu+3/2)} P_{m}^{(\mu + \frac{1}{2}, 1)}(y), \]
\hspace{1cm} (11)

where the fact that
\[\gamma(m + 1, \mu + \frac{1}{2}, -1; r + 1) = \]
\[-(m + \mu + 3/2)^2 \gamma(m, \mu + \frac{1}{2}, 1; r) / [2(r + \mu + 3/2)(r + 1)] \]

is used to arrive at the next to the last line, and Eq. 6 is used in the final step. Inserting this result in Eq. 8a yields
\[H^{(0)}(x,y) = \frac{2^{\mu+5/2}}{(1+y)(1+x)} \left[\frac{(1-w)^{-(\mu+\gamma/2)} - 2^{-(\mu+\gamma/2)}}{\mu + \frac{5}{2}} \right] \]

\[= \sum_{k=0}^{\infty} \frac{(2k+\mu+5/2)}{(k+1)^2} P_k^{(\mu+\gamma/2,1)}(y) P_k^{(\mu+\gamma/2,1)}(x) \]

or

\[\frac{1}{(2\mu+1)} \left(\frac{2}{1-w} \right)^{\mu+\gamma/2} = \frac{1}{(2\mu+1)} + \frac{(1+y)(1+x)}{8} \]

\[\times \sum_{k=1}^{\infty} \frac{(2k+\mu+\frac{5}{2})}{k^2} P_k^{(\mu+\gamma/2,1)}(y) P_k^{(\mu+\gamma/2,1)}(x) , \]

with \(w \) defined by Eq. 8b. Since \(P_0^{(\mu,\delta)}(\Lambda) = 1 \), comparing Eq. 7 with \(l = 0 \) to Eq. 12b with \(x=y=\Lambda \) yields

\[F_{\mu,\mu} = \frac{1}{(2\mu+1)} \left(\frac{2}{1-\Lambda} \right)^{\mu+\gamma/2} , \]

which demonstrates that Eq. 1 holds for \(l = 0 \).

CASE \(l \neq 0 \)

For \(l \neq 0 \), we consider

\[H^{(l)}(x,y) = \begin{cases}
0 & \text{for } 1 \geq y \geq x \geq -1, \\
\frac{\Gamma(\mu+5/2)}{\Gamma(\mu-l+5/2)\Gamma(1+x)} \frac{\partial^{l-1}}{\partial y^{l-1}} \left[(1-y)^{-(\mu+3/2)}(x-y)^l \right] & \text{for } 1 \geq x > y \geq -1.
\end{cases} \]

Application of Leibnitz’s rule for differentiating a product yields

\[H^{(l)}(x,y) = \sum_{r=0}^{\infty} \frac{(x-y)^{l+1}}{(1+x)} U(x,y) , \]
with \(S_r = \frac{(\mu + 3/2)\Gamma(\mu + r + 3/2)\Gamma(l) (-1)^{l+1-r} (1-y)^{-l+3/2 + 1}}{\Gamma(\mu - l + 5/2)\Gamma(t + 2)\Gamma(t + 1)\Gamma(l-t)} \),

and \(U(x, y) = 1 \) if \(1 > x > y \geq -1 \), and \(U(x, y) = 0 \) otherwise. The function \(H^{(l)}(x, y) \) is expanded in terms of Jacobi polynomials

\[
H^{(l)}(x, y) = \sum_{k=0}^{\infty} C^{(l)}_k(y) P_k^{(-l+1/2, 1)}(x) , \tag{16}
\]

with the coefficients determined from

\[
I(m, l) = \frac{(m+1)2^{m-l+5/2}}{(m+\mu-l+3/2)(2m+\mu-l+5/2)} C^{(l)}_m(y)
\]

\[
= \int_{-1}^{1} H^{(l)}(x, y) (1-x)^{\mu-l/2} (1+x)P_m^{(-l+3/2, 1)}(x) \, dx
\]

\[
= \sum_{l=0}^{l-1} S_r \sum_{r=0}^{m} \gamma(m, \mu - l + 1/2, 1; r) \int_{-1}^{1} dx (1-x)^{\mu-l/2 + r} (x-y)\, dx . \tag{17}
\]

The integral is evaluated by changing the variable from \(x \) to \(z = (x-y)/(1-y) \), which leads to

\[
I(m, l) = \sum_{r=0}^{m} \gamma(m, \mu - l + 1/2, 1; r) (1-y)^{\mu-l/2 + r+2}\Gamma(\mu - l + r + 3/2)
\]

\[
\times \sum_{l=0}^{l-1} \left[\frac{\Gamma(l+2)S_r(1-y)^l}{\Gamma(\mu - l + r + l + 3/2)} \right] . \tag{18}
\]

Substituting for \(S_r \), the inner summation appearing in Eq. 18 reduces to

\[
\sigma(r, l) = \frac{(\mu + 3/2)(-1)^{l-1}}{\Gamma(\mu - l + 5/2)} \sum_{l=0}^{l-1} \left\{ \frac{\Gamma(\mu + 3/2 + t)}{\Gamma(\mu + 3/2 + l - (l-2-r))} \right\}
\]

\[
\times \left[\frac{(l-1)!}{l!(l-1)!(l-1-t)!} \right] (-1)^\prime . \tag{19}
\]

For \(l \geq r + 2 \), we note that
\[\sigma(r,l) = \frac{(\mu + 3/2)(-1)^{l+1}}{\Gamma(\mu - l + 5/2)} \left. \frac{\partial^{l-2-r}(z^{\mu+1}(1-z)^{-1})}{\partial z^{l-2-r}} \right|_{z=1} = 0 \text{ for } r \geq 0. \] (20)

The derivative is zero at \(z = 1 \) because \((l-2-r) < l-1\). The fact that the derivative reproduces the series in Eq. 19 can be readily verified by writing the factor \((1-z)^{-1}\) as a polynomial in \(z \), differentiating each term, and then setting \(z = 1 \). For \(l < r+2 \), we note that

\[
\sigma(r,l) = \frac{(-1)^{l-r}(\mu + 3/2)}{\Gamma(\mu - l + 5/2)} \int_0^1 ds_1 \int_0^{s_1} ds_2 \cdots \int_0^{s_{l-1}} ds_l \mu^{\mu+1} \left(1 - s_{l-1}\right)^{l-r-1} \int_0^{s_{l-1}} f(s) ds. \] (21)

The multiple integral in Eq. 21 is readily evaluated by recalling that integration by parts leads to

\[
\int_0^1 ds_1 \int_0^{s_1} ds_2 \cdots \int_0^{s_{l-1}} ds_l f(s) = \int_0^1 \frac{(1-s_1)^{l-r-1}}{(l-1)!} f(s_1) ds_1. \] (22)

The fact that the multiple integral reproduces the series in Eq. 19 can be readily verified by writing \((1-s)_j^{l-r-1}\) as a polynomial in \(s_j \) and integrating each term separately. Inserting Eqs. 20 and 21 into Eq. 18 yields

\[
I(m,l) = \begin{cases}
\frac{(-1)^{l-r}(\mu + 5/2)}{\Gamma(\mu - l + 5/2)} \sum_{r=1}^m \gamma(m,\mu - l + 1/2,1;r) \left(1-y\right)^{r-l+1} \\
\times \frac{\Gamma(\mu - l + r + 3/2)\Gamma(r+1)}{\Gamma(\mu + 5/2 + r)(r+1)!} & \text{for } m \geq l-1 \\
0 & \text{otherwise.} \end{cases} \] (23)

For \(m \geq l-1 \), using the definition of \(\gamma(m,\mu - l + 1/2,1;r) \) and introducing the indices \(r^* = r - (l-1) \) and \(m^* = m - (l-1) \) leads to
\begin{align}
I(m,l) & = \frac{\Gamma(\mu + 5/2)}{(m' + \mu + \frac{5}{2}) \Gamma(\mu + 5/2 - l)} \\
& \times \sum_{r' = 0}^{m} \frac{((y-1)/2)^r \Gamma(m' + \mu + l + \frac{5}{2} + r')}{(m' - r')! r'! \Gamma(\mu + l + 3/2 + r')}
& = \frac{\Gamma(\mu + 5/2)}{(m + \mu + 3/2) (m + \mu - l + 3/2) \Gamma(\mu - l + 5/2)} P_{m-(l-1)}(\mu+\frac{5}{2}-1)(y),
\end{align}

where the definition of \(\gamma(m-l+1, \mu + l + \frac{5}{2}, -1, r)\) was employed to obtain the last line. Inserting Eqs. 23 and 24 into Eqs. 17 and 16 yields

\begin{align}
H^{(i)}(x,y) & = 2^{-\mu \frac{3}{2}} \sum_{m=0}^{\infty} \frac{(2m + \mu - l + 5/2)}{(m + 1) (m + \mu + 3/2)} \\
& \times \sum_{m'=1}^{m} \frac{(2m' + \mu + \frac{5}{2})}{m' (m' + l)} P_{m'-1}(\mu+\frac{5}{2}-1)(y) P_{m'-l-1}(\mu+\frac{5}{2}-1)(x).
\end{align}

Changing the summation index to \(m' = m - (l-1)\), writing the \(m' = 0\) term separately, and using Eq. 6 in both the \(m' = 0\) and the \(m' \neq 0\) terms lead to

\begin{align}
H^{(i)}(x,y) & = 2^{-\mu \frac{3}{2}} (1+x) \frac{P_{l}(\mu+\frac{5}{2}-1)(x)}{\Gamma(\mu+5/2-l)} + \frac{(1+x)(1+y)}{2(\mu+1)} \\
& \times \sum_{m'=1}^{\infty} \frac{(2m' + l + \mu + \frac{5}{2})}{m' (m' + l)} P_{m'-1}(\mu+\frac{5}{2}-1)(y) P_{m'-l-1}(\mu+\frac{5}{2}-1)(x).\n\end{align}

Setting \(x = y = \Lambda\) in Eq. 26 and comparing with Eq. 7, one finds

\begin{align}
H^{(i)}(\Lambda, \Lambda) & = \frac{2^{-\mu \frac{3}{2}} \Gamma(\mu+5/2)}{(1+\Lambda) \Gamma(\mu+5/2-l)} F_{l+1, \mu-1} = 0, \ l \neq 0,
\end{align}

where the vanishing of \(H^{(i)}(\Lambda, \Lambda)\) follows directly from the form of Eq. 15. This completes the proof of Eq. 1.
REFERENCES

INITIAL DISTRIBUTION EXTERNAL TO THE APPLIED PHYSICS LABORATORY

The work reported in TC-1480 was done under Navy Contract N00014-88-C-0021. This work is related to Task 4331 which is supported by Naval Sea Systems Command.

<table>
<thead>
<tr>
<th>ORGANIZATION</th>
<th>LOCATION</th>
<th>ATTENTION</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEPARTMENT OF DEFENSE</td>
<td>Alexandria, VA</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>DEPARTMENT OF THE NAVY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAVAIR NARCOM</td>
<td>Washington, DC</td>
<td>SJA 6904</td>
<td>5</td>
</tr>
<tr>
<td>NAVYCOM</td>
<td>Washington, DC</td>
<td>NRO 228</td>
<td>2</td>
</tr>
<tr>
<td>OSR</td>
<td>Laurel, MD</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Arlington, VA</td>
<td>Code 412</td>
<td>1</td>
</tr>
<tr>
<td>CONTRACTOR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lockheed Palo Alto Research Lab</td>
<td>Palo Alto, CA</td>
<td>L R Hansen</td>
<td>1</td>
</tr>
<tr>
<td>UNIVERSITIES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catholic Univ. of America, Dept. Phys.</td>
<td>Washington, DC</td>
<td>P Meyer</td>
<td>1</td>
</tr>
<tr>
<td>Royal College of Science and</td>
<td>Glasgow, Scotland</td>
<td>R Noble</td>
<td>1</td>
</tr>
<tr>
<td>Technology, Dept. of Mathematics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johns Hopkins Univ., Dept. of</td>
<td>Baltimore, MD</td>
<td>O M Phillips</td>
<td>1</td>
</tr>
<tr>
<td>Earth and Planetary Science</td>
<td></td>
<td>P E Olson</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R R Long</td>
<td>1</td>
</tr>
</tbody>
</table>

Requests for copies of this report from DoD activities and contractors should be directed to DTIC, Cameron Station, Alexandria, Virginia 22314 using DTIC Form 1 and, if necessary, DTIC Form 55.

Initial distribution of this document within the Applied Physics Laboratory has been made in accordance with a list on file in the APL Technical Publications Group.
END

FILMED

12-85

DTIC