EXPONENTIAL BOUND FOR ERROR PROBABILITY
IN NN-DISCRIMINATION

Z.D. Bai
CENTER FOR MULTIVARIATE ANALYSIS
UNIVERSITY OF PITTSBURGH

Center for Multivariate Analysis
University of Pittsburgh

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited
EXponential BOUND FOR ERROR PROBABILITY
IN NN-DISCRIMINATION*

Z.D. Bai

CENTER FOR MULTIVARIATE ANALYSIS
UNIVERSITY OF PITTSBURGH

April 1985
Technical Report #85-15

Center for Multivariate Analysis
Thackeray Hall
University of Pittsburgh
Pittsburgh, PA 15260

*This work was partially supported by the Air Force Office of
Scientific Research under Contract F49620-85-C-0008. The
United States Government is authorized to reproduce and distribute
reprints for governmental purposes not withstanding any copyright
notation herein.

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited
ABSTRACT

Let \((\theta_1, X_1), \ldots, (\theta_n, X_n)\) be \(n\) simple samples drawn from the population \((\theta, X)\) which is a \(\{1, 2, \ldots, s\} \times \mathbb{R}^d\)-valued random vector. Suppose that \(X\) is known. Let \(X'_n\) be the nearest one among \(X_1, \ldots, X_n\), from \(X\), in the sense of Euclidean norm or \(l_\infty\)-norm, and let \(\theta'_n\) be the \(\theta\)-value paired with \(X'_n\). The posterior error probability is defined by

\[L_n = P(\theta'_n \neq \theta | (\theta_1, X_1), \ldots, (\theta_n, X_n)). \]

It is well known that \(E L_n = P(\theta'_n \neq \theta)\) has always a limit \(R\). In this paper it is shown that for any \(\varepsilon > 0\), there exist constants \(c < \infty\) and \(b > 0\) such that \(P(|L_n - R| \geq \varepsilon) \leq ce^{-bn}\), under the only assumption that the marginal distribution of \(X\) is nonatomic.
1. **INTRODUCTION**

Let \((Y, X)\) be a \((1,2,\ldots,s) \times \mathbb{R}^d\)-valued random vector and \((\theta_1 X_1), \ldots, (\theta_n X_n)\) be iid. samples drawn from \((Y, X)\). The so-called discrimination problem is to find a function of \(X\), usually depending upon \((\theta_1 X_1), \ldots, (\theta_n X_n)\), which is used to predict the value of \(\theta\). One of the most frequently used approaches is the nearest neighbour (NN) discrimination rule, which is defined as follows: Let \(|\cdot|\) be a norm in \(\mathbb{R}^d\). Usually we take this norm being the Euclidean one or \(l_\infty\)-norm. When \(X = x\) is given, we rearrange \(X_1, \ldots, X_n\) according to the increasing order of the distances \(|X_i - x|\), namely,

\[
|X_{R_1} - x| \leq |X_{R_2} - x| \leq \ldots \leq |X_{R_n} - x|,
\]

ties are broken by comparing indices, for instance, if \(|X_i - x| = |X_j - x|\) and \(i < j\), then \(X_i\) is rearranged before \(X_j\). In view of the rearrangement of \(X\)'s, \(\theta_1, \ldots, \theta_n\) are rearranged as \(\theta_{R_1}, \ldots, \theta_{R_n}\). Let \(k \leq n\) be a positive integer. Then \(\theta_{(k)}^n\), called \(k\)-NN discrimination, is defined to be the value which has the biggest frequency among \(\theta_{R_1}, \ldots, \theta_{R_k}\). If such value is not unique, then we randomly take one such value with equal probability.

The probability of misdiscrimination and the posterior one are defined to be
3.

\[R_n^{(k)} = P(\theta_n^{(k)} \neq \theta) \quad (1.1) \]

and

\[I_n^{(k)} = P(\theta_n^{(k)} \neq \theta | (\theta_1, X_1), \ldots, (\theta_n, X_n)) \quad (1.2) \]

which are simply called error probability or posterior error probability, respectively. For \(k = 1 \), \(X_{R_1}^{(1)} \), \(\theta_n^{(1)} \), \(R_n^{(1)} \) and \(L_n^{(1)} \) are simply denoted by \(X_n' \), \(\theta_n' \), \(R_n \) and \(L_n \) respectively. For reviews of the literature on this topic, the reader is referred to Cover and Hart (1967), Wagner (1971), Fritz (1975), Cover (1968), Devroye (1981), Bai (1984).

It was shown that whatever the distribution of \((\theta, X)\) is, there is always a constant \(R^k \), depending upon \(k \), such that \(\lim R_n^{(k)} = R^k \), and the constant \(R^k \) satisfies \(R^* \leq R^k \leq R \Delta R^1 \leq R^*(2 - \frac{S}{S-1} R^*) \), where \(R^* \) is the error probability in Bayesian discrimination. Let

\[P_i(x) = P(\theta = i | X = x), \quad i = 1, 2, \ldots, s. \quad (1.3) \]

Then it can be shown that

\[R = 1 - \sum_{i=1}^{S} EP_i^2(x). \quad (1.4) \]

In Chen and Kong (1983), it was proved that when \(S = 2 \), \(L_n \leq C \) for some constant \(C \) if and only if

\[(P(\theta = 1, X = x) - P(\theta = 2, X = x))^2 P(\theta = 1, X = x) P(\theta = 2, X = x) = 0, \quad (1.5) \]

and \(C = R \). This implies that if the marginal distribution
F of X has no atoms, then $L_n \not\subset R$. But according to Hewitt-Savage zero-one law we know that $P(L_n \not\subset R) = 0$ or 1, if F has no atoms. The problem is under what conditions $P(L_n \not\subset R) = 1$ is true. To make it clear, let us introduce the following notations.

Suppose X_1, \ldots, X_n are given. Split R^d into n sets V_{n1}, \ldots, V_{nn}, such that $x \in V_{nj}$ if and only if X_j is the nearest neighbor of x. Note that $V_{nj}, j = 1, 2, \ldots, n$, are random sets. By the definition of L_n, it is not difficult to compute out that

$$L_n = 1 - \sum_{j=1}^{n} \sum_{i=1}^{s} I(\theta_j = i) \int_{V_{nj}} P_i(x) F(dx). \quad (1.6)$$

It is easy to see that when X_1, \ldots, X_n are given, the terms under the first summation in (1.6) is a sum of conditionally independent and bounded random variables, and the coefficients have expectations not exceeding $\frac{1}{n}$. Thus there is a strong reason to believe that there should be an exponential bound for $P(|L_n - R| \geq \varepsilon)$. But up to now, as the author knows, the best result is due to Fritz (1975). It was shown that

$$P(|L_n - R| \geq \varepsilon) \leq c e^{-b \sqrt{n}} \quad (1.7)$$

under the assumptions that F has no atoms and that $P_i(x), i = 1, 2, \ldots, s$, are a.e.x.$F$ continuous. There are some extra examples to support the conjecture that \sqrt{n} in (1.7)
could be improved as to \(n \). Also, there is much evidence to suggest that the assumption of continuity of \(P_i(x) \)'s could be abandoned (see Z. D. Bai, X. R. Chen and G. J. Chen (1984)). The main purpose of this paper is to solve these two problems. In §2, we shall show some lemmas and the proof of main result will be given in §3. In a further paper, we will give the necessary and sufficient conditions for \(L_n \to R \) a.s.

2. SOME LEMMAS

In the sequel, we shall need the following lemmas: Some of them are known, we will quote them below without proof. We shall only give the proof for new ones.

Lemma 1. Let \(\xi \) be a random variable with distribution \(F(x) \) (for convenience we assume that \(F(x) \) is left continuous), and let \(\eta \) be a random variable uniformly distributed over the interval \((0,1)\) and being independent of \(\xi \). Then

\[
Z \overset{\Delta}{=} F(\xi) + [F(\xi+0) - F(\xi)]\eta
\]

is uniformly distributed over \((0,1)\).

The proof is not very difficult and is omitted here.

Lemma 2. Let \(F \) be a nonatomic probability measure defined on \(\mathbb{R}^d \) and \(A \) be a measurable set in \(\mathbb{R}^d \). Then for any \(C \in [0,F(A)] \), there is a measurable set \(B \subset A \) such that \(F(B) = C \).
The proof of this lemma can be found in Fritz (1975) or Loeve (1977) p.101.

For the need in the sequel, we introduce the concept of \(\omega \)-cone. Let \(O \) be a point in \(\mathbb{R}^d \) and \(A \) be a measurable set in \(\mathbb{R}^d \). Then \(A \) is called an \(\omega \)-cone with vertex \(O \) if for any \(x, y \in A \), \(|x-y| < \max(||O-x||, ||O-y||)||\).

Lemma 3. For each \(d \), there is a positive integer \(m = m(d) \), depending only upon \(d \), such that \(\mathbb{R}^d \) can be split into \(m \) disjoint \(\omega \)-cones with a common preassigned vertex.

The proof refers to Fritz (1975).

Let \(F \) be a nonatomic probability measure on \(\mathbb{R}^d \) and \(A \subset \mathbb{R}^d \) be a measurable subset of positive \(F \)-measure. Then, by lemma 3, we can split \(\mathbb{R}^d \) into \(m \) \(\omega \)-cones with a common preassigned vertex. Write the intersections of \(A \) and each \(\omega \)-cone as \(K_1, \ldots, K_m \) with \(\bigcup_{t=1}^{m} K_t = A \). If \(F(K_t) = 0 \), \(t = 1, 2, \ldots, l \), and \(F(K_t) > 0 \), \(t = l + 1, \ldots, m \), by lemma 2, we can split \(K_{l+1} \) into \(l + 1 \) subsets with equal \(F \)-measure. Drop the original \(K_1, \ldots, K_{l+1} \) and write the new \(l + 1 \) subsets as \(K_1, \ldots, K_{l+1} \). Note that the new \(K_1, \ldots, K_{l+1} \) are also \(\omega \)-cones with the same vertex. Hence we obtain the following lemma.

Lemma 4. Let \(F \) be nonatomic, \(A \) be of positive \(F \)-measure and \(O \) be a point in \(\mathbb{R}^d \). Then there are \(m \) disjoint \(\omega \)-cones \(K_1, \ldots, K_m \), having the same vertex \(O \) and satisfying
\[
\sum_{t=1}^{m} F(K_t) = F(A)
\]
\[
F(K_t) > 0, \ t = 1, 2, \ldots, m.
\]

In the last section, we defined the partition \(V_{n_j} \) of \(R^d \), for random points \(X_1, \ldots, X_n \). We point out that for any given points \(X_1, \ldots, X_n \), even they are not random, we can similarly define \(V_{n_j}, j = 1, 2, \ldots, n \). Also, if \(1 \leq j \leq k \leq n \), we always have \(V_{n_j} \subseteq V_{k_j} \).

Lemma 5. Let \(X_1, \ldots, X_k \) be \(k \) points in \(R^d \) and \(F \) be a nonatomic probability measure defined on \(R^d \). Suppose that \(F(V_{k_j}) = q_j > 0, j = 1, 2, \ldots, k \) and that \(X_{k+1}, \ldots, X_n \) are iid. random points with distribution \(F \). Write \(U_{n_j} = F(V_{n_j}) \). Then there are \(mk \) random variables \(\xi_{j\ell}, j = 1, 2, \ldots, k, \ell = 1, 2, \ldots, m \), satisfying the following conditions,

1) \(P(U_{n_j} \leq \sum_{\ell=1}^{m} \xi_{j\ell}) = 1, j = 1, 2, \ldots, k, \)

2) \(0 \leq \xi_{j\ell} \leq q_{j\ell}, j = 1, 2, \ldots, k, \ell = 1, 2, \ldots, m \)

3) \(P(\xi_{j\ell} \geq w_{j\ell}, j = 1, 2, \ldots, k, \ell = 1, 2, \ldots, m) \)
\[
= (1 - \sum_{j=1}^{k} \sum_{\ell=1}^{m} w_{j\ell})^{n-k}, \text{ for } 0 \leq w_{j\ell} \leq q_{j\ell}.
\]

where \(q_{j\ell}, j = 1, 2, \ldots, k, \ell = 1, 2, \ldots, m, \) are positive constants, independent of \(X_{k+1}, \ldots, X_n \) (may depend upon \(X_1, \ldots, X_k \) and \(F \)), and satisfy \(\sum_{\ell=1}^{m} q_{j\ell} = q_j \) (of course, \(\sum_{j=1}^{k} \sum_{\ell=1}^{m} q_{j\ell} = \sum_{j=1}^{k} q_j = 1 \)).
Proof. According to Lemma 4, split V_{kj} into m ω-cones of positive F measure, denoted by K_{kj}, $j = 1, 2, \ldots, k$, $\ell = 1, 2, \ldots, m$. Write $q_{j\ell} = \frac{1}{m} F(K_{kj}) > 0$, $j = 1, 2, \ldots, k$, $\ell = 1, 2, \ldots, m$. It is evident that $\sum_{\ell=1}^{m} q_{j\ell} = q_j$, $j = 1, 2, \ldots, k$.

Define

$$D_{jo} = |x_j - x|, \quad j = 1, 2, \ldots, k,$$

$$D_{jt} = |x_j - x_t|, \quad j = 1, 2, \ldots, k, \quad t = k + 1, \ldots, n,$$

$$I_{j\ell} = \{t: k + 1 \leq t \leq n, x_t \in K_{kj}\},$$

$$n_{j\ell} = *I_{j\ell} = \text{the number of elements of } I_{j\ell},$$

$$H_j = \begin{cases} \min D_{j\ell} & \text{if } I_{j\ell} \neq \emptyset, \\ \infty & \text{otherwise}. \end{cases}$$

By the definition of ω-cone, $x \in V_{nj} \cap K_{kj}$ and $x_t \in K_{kj}$ imply that $D_{jo} < D_{jt}$ hence $D_{jo} < H_{j\ell}$. Therefore

$$U_{nj} = P(X \in V_{nj} | x_{k+1}, \ldots, x_n)$$

$$= \sum_{\ell=1}^{m} P(X \in V_{nj} \cap K_{kj} | x_{k+1}, \ldots, x_n)$$

$$= \sum_{\ell=1}^{m} q_{j\ell} P(X \in V_{nj} | x \in K_{kj}, x_{k+1}, \ldots, x_n)$$

$$\leq \sum_{\ell=1}^{m} q_{j\ell} P(D_{jo} < H_{j\ell} | x \in K_{kj}, x_{k+1}, \ldots, x_n)$$

$$= \sum_{\ell=1}^{m} q_{j\ell} F_{j\ell}(H_{j\ell})$$

$$= \sum_{\ell=1}^{m} q_{j\ell} \min_{t \in I_{j\ell}} F_{j\ell}(D_{jt}), \quad (2.4)$$
where \(F_{j\ell}(u) = P(D_{j\ell} < u | X \in K_{j\ell}) \) and the minimum in (2.4) is one if \(I_{j\ell} = \phi \).

Construct \(n-k \) iid. random variables \(\eta_{k+1}, \ldots, \eta_n \), which are uniformly distributed over the interval \((0,1)\) and are independent of \(X_{k+1}, \ldots, X_n \). Define for each \(t = k+1, \ldots, n, \)

\[
G_t = F_{j\ell}(D_{j\ell t}) + [F_{j\ell}(D_{j\ell t} + 0) - F_{j\ell}(D_{j\ell t})] \eta_t, \text{ if } t \in I_{j\ell}. \tag{2.5}
\]

Note that when \(I_{j\ell}, j = 1,2,\ldots,k, \ell = 1,2,\ldots,m, \) are given and \(X \in K_{j\ell}, D_{j\ell t} \) has the same conditional distribution as \(D_{j\ell t} \) when \(X \in K_{j\ell} \) given. Thus, by lemma 1, \(G_t \) is uniformly distributed over \((0,1)\). Also, when \(I_{j\ell}, j = 1,2,\ldots,k, \ell = 1,2,\ldots,m, \) are given, \(G_t \) depends only upon \(X_t \) and \(\eta_t \), hence \(G_t, t = k+1, \ldots, n, \) are conditionally independent. Define

\[
\xi_{j\ell} = \begin{cases}
q_{j\ell} \min_{t \in I_{j\ell}} G_t & \text{if } I_{j\ell} \neq \phi \\
q_{j\ell} & \text{otherwise,}
\end{cases} \tag{2.6}
\]

Evidently, (2.2) follows from (2.6). Also, (2.1) follows from (2.4) - (2.6). Finally, we have for \(0 \leq w_{j\ell} \leq q_{j\ell}, j = 1,2,\ldots,k, \ell = 1,2,\ldots,m, \)

\[
P(\xi_{j\ell} \geq w_{j\ell}, j=1,2,\ldots,k, \ell=1,2,\ldots,m)
\]

\[
= \sum \left[\begin{array}{c} (n-k)! \\ k \mbox{ m} \mbox{ n}_{j\ell}! \end{array} \right] \left[\begin{array}{c} k \mbox{ m} \mbox{ n}_{j\ell}! \\ j=1 \ell=1 \end{array} \right] w_{j\ell}^{\xi_{j\ell}} q_{j\ell}^{n_{j\ell}}
\]

\[
\times P(G_t \geq w_{j\ell}, t \in I_{j\ell}, j=1,2,\ldots,k, \ell=1,2,\ldots,m | \{I_{j\ell}\})
\]
where the summation unspecified in (2.7) runs over all possibilities that \(n_{jz} = n - k, n_{jz} \geq 0 \), integers. The proof of lemma 5 is completed.

Lemma 6. Let \(\phi \) be an a.e. positive function defined on the line and

\[
H(q_1, \ldots, q_k) = \int_0^{q_1} \ldots \int_0^{q_k} \phi(w_1 + \ldots + w_k) \, dw_1 \ldots dw_k.
\]

Then we have

\[
\sup_{q_1 + \ldots + q_k = kq, q_1 \geq 0, \ldots, q_k \geq 0} H(q_1, \ldots, q_k) = H(q, \ldots, q), \tag{2.8}
\]

here \(q > 0 \) be a given number.

Proof. Note that \(D = \{(q_1, \ldots, q_k), q_1 + \ldots + q_k = kq, q_1 \geq 0, \ldots, q_k \geq 0\} \) is a bounded and closed set and that \(H(q_1, \ldots, q_k) \) is continuous on \(D \). Hence there exists a point \((q_1^0, \ldots, q_k^0) \in D \) such that

\[
\sup_{D} H(q_1, \ldots, q_k) = H(q_1^0, \ldots, q_k^0).
\]
To prove (2.8), we only need to prove

\[q_1^0 = q_2^0 = \ldots = q_k^0. \]

By symmetry in \(q_1^0, \ldots, q_k^0 \), we only need to prove that \(q_1^0 = q_2^0 \). Let

\[\psi(x) = \int_q \int_{q_k} \psi(x + w_3 + \ldots + w_k) \, dw_3 \ldots dw_k. \]

Then

\[Q(q_1^0, q_2^0) \triangleq R(q_1^0, q_2^0, \ldots, q_k^0) = \int_0^{q_1^0} \int_0^{q_2^0} \psi(x+y) \, dx \, dy. \]

\[= \int_0^{q_1^0+q_2^0} \psi(u) \min(u, q_1^0, q_2^0, q_1^0+q_2^0-u) \, du \]

\[\leq \int_0^{q_1^0+q_2^0} \psi(u) \min(u, q_1^0+q_2^0-u) \, du \]

\[= \frac{q_1^0+q_2^0}{2} \int_0^{q_1^0+q_2^0} \psi(x+y) \, dx \, dy = Q(\frac{q_1^0+q_2^0}{2}, \frac{q_1^0+q_2^0}{2}). \] \hspace{1cm} (2.9)

The quality of (2.9) holds if and only if \(q_1^0 = q_2^0 = \frac{q_1^0+q_2^0}{2} \)

because \(\psi(u) \) is positive. The proof of lemma 6 is completed.

Lemma 7 (Bennett, 1962, see Hoeffding (1963)). Let \(U_1, \ldots, U_n \) be independent and let \(EU_i = 0, \sigma_i^2 = EU_i^2 \).

\[\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} \sigma_i^2. \]

Suppose that \(|U_i| \leq b, i = 1, 2, \ldots, n \). Then for any \(\varepsilon > 0 \),

\[P\left(\left| \frac{1}{n} \sum_{i=1}^{n} U_i \right| > \varepsilon \right) \leq 2 \exp\left\{ -n\varepsilon^2 / 2(\sigma^2 + b\varepsilon) \right\}. \]
Lemma 8 (Hoeffding, 1963). Let $\xi \sim B(n,p)$, the binomial distribution with parameter n and p. Then for any $\varepsilon > 0$,

$$P\left(\left| \frac{1}{n} \xi - p \right| \geq \varepsilon \right) \leq 2\exp\left\{ -n\varepsilon^2/(2p+\varepsilon) \right\}.$$

3. THE MAIN RESULT

Theorem 3.1. If F, the marginal distribution of X, has no atoms, then for any $\varepsilon > 0$, there exist constants c and b, depending upon ε and the distribution of (θ, X), such that

$$P(\left| L_n - R \right| \geq \varepsilon) \leq ce^{-bn}. \quad (3.1)$$

Proof. Define

$$T_n = P(\theta_n \neq \theta | X_1, \ldots, X_n) = E(L_n | X_1, \ldots, X_n). \quad (3.2)$$

Using the notations defined in §1 and §2, we have

$$L_n = 1 - \sum_{j=1}^{n} \sum_{i=1}^{s} I(\theta_j = i) \int_{V_{nj}} P_i(x) F(dx) \quad (3.3)$$

and

$$T_n = 1 - \sum_{j=1}^{n} \sum_{i=1}^{s} P_i(X_j) \int_{V_{nj}} P_i(x) F(dx) \quad (3.4)$$

Hence

$$P(\left| L_n - T_n \right| \geq 2s\varepsilon')$$

$$\leq \sum_{i=1}^{s} \sum_{j=1}^{n} P(\left| I(\theta_j = i) - P_i(X_j) \right| \int_{V_{nj}} P_i(x) F(dx) \geq 2\varepsilon') \quad (3.5)$$
Define
\[Q_{nj}^{(i)} = \int_{V_{nj}} p_i(x) f(dx) \leq u_{nj} = \int_{V_{nj}} f(dx). \]
(3.6)

\[\phi_n = \{j, j \leq n, u_{nj} \leq \Delta/n\}, \quad \phi_n^c = \{1, 2, \ldots, n\} \backslash \phi_n \]
(3.7)

and
\[k = [\delta n] \]
(3.8)

where \(\Delta \) and \(\delta \) are positive constants to be specified later, and \([x]\) denotes the largest integer less than or equal to \(x\). By lemma 5 and lemma 6, we have

\begin{align*}
&\leq \frac{(n-k)!}{(n-k-m-k)!} \int_0^1 \cdots \int_0^1 \frac{1}{m_k} \prod_{j=1}^k \prod_{l=1}^m I_D(1- \sum_{j=1}^k \sum_{l=1}^m w_{jl} x_l) \exp\{-\varepsilon'(n-k-m-k)\},
\end{align*}

(3.9)

where \(D = \{w_{ij}, j=1,2,\ldots,k, l=1,2,\ldots,m, \sum_{j=1}^k \sum_{l=1}^m w_{jl} \geq \varepsilon'\} \) and
\(I_D \) is the indicator of the set \(D \).

Let
\[E_n = \{\max_{1 \leq j_1 < \cdots < j_k \leq n} \sum_{i=1}^k u_{n \cdot j_i} \geq \varepsilon'\} \]
(3.10)
We have from (3.9)

\[P(E_n) \leq \sum_{1 \leq j_1 < \ldots < j_k \leq n} P(\sum_{i=1}^{k} U_{nj_i} \geq \varepsilon') \]

\[= \binom{n}{k} P(\sum_{j=1}^{k} U_{nj} \geq \varepsilon') = \binom{n}{k} \exp(-\sum_{j=1}^{k} U_{nj} \geq \varepsilon' | X_1, \ldots, X_k) \]

\[\leq \binom{n}{k} \frac{(n-k)!}{(n-k-mk)!} \frac{1}{mk} \exp(-\varepsilon'(n-k-mk)). \quad (3.11) \]

Applying Stirling's formula and recalling \(k = \lfloor \delta n \rfloor \), we have

\[P(E'_n) \leq \frac{n!}{k!(mk)^k(n-mk-k)!} \exp(-\varepsilon'(1-\delta(m+1))n) \]

\[\leq [\delta^{-\delta}(m\delta)^{-m\delta}(1-(m+1)\delta)^{-(1-\delta(m+1)\delta)}]^{n} \exp(-\varepsilon'(1-(m+1)\delta)n) \]

\[\leq \exp(-bn), \quad (3.12) \]

where \(b = \frac{1}{2} \varepsilon'(1-(m+1)\delta) \) and \(\delta \in (0, \min(\varepsilon', \frac{1}{m+1})) \), being such that

\[\log[\delta^{-\delta}(m\delta)^{-m\delta}(1-(m+1)\delta)^{-(1-\delta(m+1)\delta)}] < \frac{1}{2} \varepsilon'(1-(m+1)\delta). \quad (3.13) \]

Here the reason that such \(\delta \) can be chosen is based upon the fact that when \(\delta \to 0 \), the left hand side of the above inequality tends to zero and the right hand side to \(\frac{1}{2} \varepsilon' > 0 \).

If we choose \(\Delta > \frac{1}{\delta} \), then \#(C_n) \leq k, hence we have
P($\sum_{j\in\phi_n^c} (I(\theta_j=i) - P_i(X_j)) \int_{\mathbb{V}_{nj}} P_i(x) F(dx) | \geq \epsilon'$)

$\leq P(\sum_{j\in\phi_n^c} \geq \epsilon')$

$\leq P(E_n) \leq \exp\{-bn\}$. \hspace{1cm} (3.14)

Hence

$P(\sum_{j=1}^{n} (I(\theta_j=i) - P_i(X_j)) \int_{\mathbb{V}_{nj}} P_i(x) F(dx) | \geq 2\epsilon')$

$\leq e^{-bn} + P(| \sum_{j\in\phi_n^c} (I(\theta_j=i) - P_i(X_j)) Q_{nj} | \geq \epsilon')$

$= e^{-bn} + \mathbb{E}P(| \sum_{j\in\phi_n^c} (I(\theta_j=i) - P_i(X_j)) Q_{nj} | \geq \epsilon' | X_1, \ldots, X_n).$ \hspace{1cm} (3.15)

Note that when X_1, \ldots, X_n are given, $I(\theta_j=i), j = 1, 2, \ldots, n$ are conditionally independent and $P_i(X_j), Q_{nj}$ and ϕ_n depend only upon X_1, \ldots, X_n. Hence applying lemma 7, we have

$P(| \sum_{j\in\phi_n^c} (I(\theta_j=i) - P_i(X_j)) Q_{nj} | \geq \epsilon' | X_1, \ldots, X_n)$

$= P(| \sum_{j\in\phi_n^c} (I(\theta_j=i) - P_i(X_j)) Q_{nj} | \geq \epsilon' | X_1, \ldots, X_n)$

$\leq 2 \exp\{-n_*(\epsilon')^2/2(\frac{1}{n_*} \sum_{j\in\phi_n^c} Q_{nj}^2 + \frac{\epsilon'}{n_*} \max_{j\in\phi_n^c} Q_{nj})\}$

$\leq 2 \exp\{-\epsilon'/2(1+\epsilon') \max_{j\in\phi_n^c} Q_{nj}\}$

$\leq 2 \exp\{-\frac{\epsilon'}{2(1+\epsilon')} \Delta n \Delta \epsilon \exp^{-bn}\}$, \hspace{1cm} (3.16)
where $n_* = \#(\mathcal{F}_n)$, and b is a positive constant independent of n, but in its different appearance, it may take different value, e.g. this b is different from that b in (3.13).

From (3.5), (3.15) and (3.16), it follows that

$$P(|L_n - T_n| \geq 2s\varepsilon') \leq 4s \exp\{-bn\}. \quad (3.17)$$

Finally, we shall establish the similar bound for $P(|T_n - R| \geq 3s\varepsilon')$. According to Lusin's Theorem, for each i, $i = 1, 2, \ldots, s$, there exists a continuous function $\tilde{P}_i(x)$ satisfying the following two conditions

a) $0 \leq \tilde{P}_i(x) \leq \sup_x P_i(x) \leq 1$, \quad (3.18)

b) $P(A) < \delta/2$, $A = \{x \in \mathbb{R}^d, P_i(x) \neq \tilde{P}_i(x)\}$, \quad (3.19)

where δ is the constant determined by inequality (3.13).

Define

$$\Psi_n = \{j \in n, X_j \in A\}.$$

Then we have

$$P(\sum_{j=1}^n P_i(X_j)Q_{nj} - \sum_{j=1}^n \tilde{P}_i(X_j)Q_{nj} \geq \varepsilon')$$

$$\leq P(\sum_{j \in \Psi_n} Q_{nj} \geq \varepsilon') \leq P(\sum_{j \in \Psi_n} U_{nj} \geq \varepsilon')$$

$$\leq P(\#\{\Psi_n\} \geq \delta n) + P(E_n). \quad (3.20)$$
By Hoeffding's inequality (see Hoeffding (1963)), we have

\[
P\left(\#\left\{ \bar{X}_n \right\} \geq \delta n \right) \leq 2 \exp\left\{-n(\delta - F(A))^2/(2F(A) + (\delta - F(A)))\right\}
\]

\[
\leq 2 \exp\left\{-\left(\frac{\delta}{6}\right)n\right\} = 2 \exp\{-bn\}. \quad (3.21)
\]

(3.21), together with (3.14), yields

\[
P\left(\sum_{j=1}^{n} \tilde{P}_i(X_j)Q_{nj} - \sum_{j=1}^{n} \bar{P}_i(X_j)Q_{nj} \geq \varepsilon'\right) \leq 3 \exp\{-bn\}. \quad (3.22)
\]

Define

\[
\tilde{H}_i = \int_{R^d} \tilde{P}_i(x)P_i(x)F(dx) \quad (3.23)
\]

and

\[
H_i = \int_{R^d} p_i^2(x)F(dx). \quad (3.24)
\]

It is obvious that

\[
|\tilde{H}_i - H_i| \leq F(A) < \delta/2 < \varepsilon'. \quad (3.25)
\]

On the other hand, using the same approach as in Fritz (1975), we can prove that

\[
P\left(\sum_{j=1}^{n} \tilde{P}_i(X_j) - \tilde{H}_i \geq \varepsilon'\right) \leq \frac{6}{\varepsilon'} \exp\{-bn\}. \quad (3.26)
\]

From (3.22), (3.25) and (3.26), it follows that

\[
P\left(\sum_{j=1}^{n} P_i(X_j)Q_{nj} - H_i \geq 3\varepsilon'\right) \leq (3 + \frac{6}{\varepsilon'})\exp\{-bn\}. \quad (3.27)
\]

Recalling that \(R = 1 - \sum_{i=1}^{s} H_i \) we obtain that
\[P(\left| T_n - R \right| \geq 3\varepsilon') \leq S\left(3 + \frac{6}{\varepsilon'}\right)e^{-bn} \]
(3.28)

(3.17) and (3.28) yield

\[P(\left| L_n - R \right| \geq 5\varepsilon') \leq S\left(7 + \frac{6}{\varepsilon'}\right)e^{-bn}, \]
(3.29)

which, together with taking \(\varepsilon' = \varepsilon/5S \), completes the proof of Theorem 3.1.

REFERENCES

Exponential Bound for Error Probability in NN-Discrimination

Let \((\theta_1, X_1), \ldots, (\theta_n, X_n)\) be \(n\) simple samples drawn from the population \((\theta, X)\) which is a \(\{1, 2, \ldots, 8\} \times \mathbb{R}^d\)-valued random vector. Suppose that \(X\) is known. Let \(X'_n\) be the nearest one among \(X_1, \ldots, X_n\) from \(X\), in the sense of Euclidean norm or \(L_\infty\)-norm, and let \(e'_n\) be the \(\theta\)-value paired with \(X'_n\). The posterior...
error probability is defined by \(L_n = P(\theta' \neq \theta | (\theta_1, X_1), \ldots, (\theta_n, X_n)) \). It is well known that \(EL_n = P(\theta' \neq \theta) \) has always a limit \(R \). In this paper it is shown that for any \(\epsilon > 0 \), there exist constants \(c < 0 \) and \(b > 0 \) such that \(P(|L_n - R| > \epsilon) \leq ce^{-bn} \), under the only assumption that the marginal distribution of \(X \) is nonatomic.
END

FILMED

11-85

DTIC