ON THE ASYMPTOTIC PROPERTIES OF A KERNEL-TYPE QUANTILE ESTIMATOR FROM CEN. (U) SOUTH CAROLINA UNIV COLUMBIA DEPT OF MATHEMATICS AND STATISTI. Y O LIO ET AL.

UNCLASSIFIED MAY 85 TR-104 AFOSR-TR-85-0865
ON THE ASYMPTOTIC PROPERTIES OF A KERNEL-TYPE QUANTILE ESTIMATOR FROM CENSORED SAMPLES

by

Y. L. Lio, W. J. Padgett, and K. F. Yu

University of South Carolina
Statistics Technical Report No. 104
62005-13
ON THE ASYMPTOTIC PROPERTIES OF A KERNEL-TYPE QUANTILE ESTIMATOR FROM CENSORED SAMPLES *

by

Y. L. Lio, W. J. Padgett, and K. F. Yu**

University of South Carolina
Statistics Technical Report No. 104
62G05-13

May, 1985

Department of Mathematics and Statistics
University of South Carolina
Columbia, South Carolina 29208

* Research supported by the U.S. Air Force Office of Scientific Research and Army Research Office under grant AFOSR-84-0156.

** Partially supported by a University of South Carolina Research and Productive Scholarship Grant.
Abstract

Some asymptotic results for a kernel type estimator of the quantile function from right-censored data are obtained. The estimator is defined by

\[Q_n(p) = h_n^{-1} \int_0^1 \hat{Q}_n(t)K((t-p)/h_n)dt, \]

which is smoother than the usual product-limit quantile function \(\hat{Q}_n(p) = \inf\{t: \hat{F}_n(t) \geq p\} \), where \(\hat{F}_n \) denotes the product-limit estimator of the lifetime distribution \(F_0 \). Under the random censorship model and general conditions on \(h_n, K, \) and \(F_0 \), the asymptotic normality of \(Q_n(p) \) is proven. In addition, an approximation to \(Q_n \) is shown to be asymptotically uniformly equivalent to \(Q_n \) in mean square.

Key Words: Random right-censorship; Kernel estimation; Product-limit quantile function; Asymptotic normality; Mean-square convergence.
1. **Introduction**

In reliability and medical studies, it is often of interest to estimate various quantiles of the unknown lifetime distribution. In particular, the median lifetime and extreme quantiles are of interest to the experimenter in such studies. In many life testing and medical follow-up experiments, however, arbitrarily right-censored data arise, and it is important to be able to estimate the quantiles of interest based on the censored data. For such data, some kernel-type quantile estimators are considered in this paper which give smoother estimates than the usual product-limit quantile function.

For any probability distribution function G, denote the quantile function by $Q(p) = G^{-1}(p) = \inf\{x: G(x) \geq p\}, \ 0 \leq p \leq 1$. For a random (uncensored) sample Y_1, \ldots, Y_n from G, the sample quantile function $G^{-1}_n(p) = \inf\{x: G_n(x) \geq p\}, \ 0 \leq p \leq 1$, has been used to estimate $Q(p)$, where G_n denotes the sample distribution function. Csörgő (1983) gave many of the known results concerning $G^{-1}_n(p)$. Also, Falk (1984) studied the relative deficiency of the sample quantile with respect to kernel-type estimators, and Falk (1985) obtained asymptotic normality for kernel estimators. Yang (1985) has obtained some convergence properties of kernel estimators of $Q(p)$ and gave some simulation results comparing kernel-type estimators with other estimators. For arbitrarily right-censored data, Sander (1975) proposed estimation of $Q(p)$ by the quantile function of the product-limit estimator, and she and Cheng (1981) derived some asymptotic properties of that estimator. Also, Csörgő (1983) presented strong approximation results for that estimator.

Recently, Padgett (1985) studied a smoothed nonparametric estimator of
Q(p) from arbitrarily right-censored data based on the kernel method. It was shown that his estimator, mentioned briefly by Parzen (1979, p. 119), was strongly consistent, and a small Monte Carlo study was performed to compare the estimator with the product-limit estimator. In addition, a simple approximation to this kernel estimator was shown to be almost surely asymptotically equivalent to it.

The purpose of this paper is to further study the asymptotic properties of the estimators proposed by Padgett (1985). In particular, the asymptotic normality will be proven, and the asymptotic equivalence in mean square of the estimator and its approximation will be shown under general conditions on the kernel function, bandwidth sequence, lifetime distribution, and censoring mechanism.

2. Notation and Preliminaries

Let \(X_1^0, X_2^0, \ldots, X_n^0 \) denote the true survival times of \(n \) items or individuals which are censored on the right by a sequence \(U_1, U_2, \ldots, U_n \), which in general may be either constants or random variables. It is assumed that the \(X_i^0 \)'s are nonnegative independent identically distributed random variables with common unknown distribution function \(F_0 \) and unknown quantile function

\[
Q^0(p) \equiv \xi^0_p = \inf\{t: F_0(t) \geq p\}, \quad 0 \leq p \leq 1.
\]

The observed right-censored data are denoted by the pairs \((X_1^i, \Delta_i) \), \(i=1, \ldots, n \), where

\[
X_i = \min\{X_i^0, U_i\}, \quad \Delta_i = \begin{cases} 1 & \text{if } X_i^0 \leq U_i \\ 0 & \text{if } X_i^0 > U_i \end{cases}.
\]
For the asymptotic results of this paper, the random right-censorship model will be assumed, that is, \(U_1, \ldots, U_n \) constitute a random sample from a distribution \(H \) (usually unknown) and are independent of \(X_1^0, \ldots, X_n^0 \). The distribution function of each \(X_i \), \(i=1, \ldots, n \), is then \(F = 1 - (1 - F_0)(1 - H) \).

A popular estimator of the survival function \(S_0(t) = 1 - F_0(t) \) based on \((X_i, \Delta_i)\), \(i=1, \ldots, n \), is the product-limit estimator, proposed by Kaplan and Meier (1958) as the "nonparametric maximum likelihood estimator." Let \((Z_i, \Delta_i)\), \(i=1, \ldots, n \), denote the ordered \(X_i 's \) along with their corresponding \(\Delta_i 's \). The product-limit estimator of \(S_0(t) \), shown to be "self-consistent" by Efron (1967), is defined by

\[
\hat{P}_n(t) = \begin{cases}
1, & 0 \leq t \leq Z_1, \\
\frac{k-1}{n} \left(\frac{n-1}{n+1} \right)^{\Delta_i^i}, & Z_{k-1} < t \leq Z_k, \ k=2, \ldots, n \\
0, & t > Z_n.
\end{cases}
\]

Denote the product-limit estimator of \(F_0(t) \) by \(\hat{F}_n(t) = 1 - \hat{P}_n(t) \), and let \(s_j \) denote the jump of \(\hat{P}_n \) at \(Z_j \), that is

\[
s_j = \begin{cases}
1 - \hat{P}_n(Z_2), & j = 1 \\
\hat{P}_n(Z_j) - \hat{P}_n(Z_{j+1}), & j = 2, \ldots, n-1 \\
\hat{P}_n(Z_n), & j = n.
\end{cases}
\]

Note that \(s_j = 0 \) if and only if \(\Delta_j = 0 \), \(j < n \), i.e. whenever \(Z_j \) is a censored observation. Also, denote \(S_i = \sum_{j=1}^{i} s_j \), \(i=1, \ldots, n \), with \(S_0 = 0 \), \(Z_0 = 0 \), and \(Z_{n+1} = Z_n + \epsilon \), for some positive constant \(\epsilon \).

It is natural to estimate \(\xi^0_p \) by the product-limit quantile function \(\hat{Q}_n(p) = \inf(t: \hat{F}_n(t) \geq p) \). Sander (1975) and Cheng (1981) obtained
asymptotic normality results for $\hat{\xi}_p$. Padgett (1985) smoothed \hat{Q}_n by the kernel method to obtain the estimator

$$Q_n(p) = h_n^{-1} \int_0^1 \hat{Q}_n(t) K((t-p)/h_n) dt$$

$$= h_n^{-1} \sum_{i=1}^n Z_i \int_{S_{i-1}}^{S_i} K((t-p)/h_n) dt, \quad (2.1)$$

where K is an appropriate kernel function and $\{h_n\}$ is a bandwidth sequence. Also, a simpler kernel-type estimator which is an approximation to (2.1) was defined by

$$Q_n^*(p) = h_n^{-1} \sum_{i=1}^n Z_i K((S_i - p)/h_n). \quad (2.2)$$

Note that only the uncensored observations actually appear in the sums of (2.1) and (2.2).

In the next section, the asymptotic normality of $Q_n(p)$ and $Q_n^*(p)$ will be obtained. The following general conditions on the kernel function, the bandwidth sequence, and the lifetime and censoring distributions will be assumed:

(h.1) $h_n \to 0$ as $n \to \infty$;

(K.1) $K(x)$ is a bounded probability density function which has finite support, i.e. $K(x) = 0$ for $|x| > c$ for some $c > 0$;

(K.2) K is symmetric about zero;

(K.3) K satisfies a Lipschitz condition, i.e. there exist a constant Γ such that for all x,y,

$$|K(x) - K(y)| \leq \Gamma |x - y|;$$

(F.1) F_0 is continuous with density function f_0; and

(F.2) $H(T_{F_0}^-) < 1$, where $T_{F_0}^- = \sup\{t: F_0(t) < 1\}$.

It should be noted that these conditions are not prohibitive and (F.1) and (F.2) are similar to conditions required by Cheng (1981). Also, (F.2) insures that observations will be available from the entire support of F_0, a common condition in random right-censorship models.

3. The Main Results

In this section, the main results are summarized in Theorems 3.1 and 3.2. The proofs will be presented in the next section. Theorem 3.1 gives conditions for the asymptotic normality of $Q_n(p)$. The asymptotic uniform mean-squared equivalence of Q_n and Q_n^* will be shown in Theorem 3.2.

Theorem 3.1. Assume, in addition to conditions (h.1), (K.1) - (K.3), (F.1), and (F.2), that the derivative f'_o is continuous at ξ_p^o and $f_o(\xi_p^o) > 0$. Suppose $\{h_n\}$ is such that $n^{1/4}h_n \to 0$ as $n \to \infty$. Then for $0 < p < T$, where $T < 1$, as $n \to \infty$, $\sqrt{n}[Q_n(p) - Q_0^*(p)] \to Z$ in distribution, where Z is a normally distributed random variable with mean zero and variance

$$\sigma_p^2 = (1 - p)^2 \int_0^\xi_p^o [1 - F(u)]^{-2} \frac{dF_0^*(u)}{f_0^2(\xi_p^o)}$$

with $1 - F(u) = [1 - F_0(u)][1 - H(u)]$ and $F_0^*(u) = P(X_i \leq u, \Delta_i = 1)$, the subdistribution function of the uncensored observations.

Note that an example of a bandwidth sequence that satisfies the conditions of Theorem 3.1 is $h_n = cn^{-\delta}$ with $\delta > 1/4$.

The next theorem gives some conditions for which Q_n^* and Q_n are asymptotically uniformly equivalent in mean square.
Theorem 3.2. Suppose F_0 and H are continuous and (h.1), (K.1), and (K.3) hold. Assume $E(X_1^{2q}) < \infty$ for some $q > 1$, where $X_1 = \min\{X_1^0, U_1\}$. Let η be such that $[1-F_0(\eta)][1-H(\eta)] > 0$ and let $T^* = F_0(\eta)$. Then for all $T \in [0,T^*]$, \[\lim_{n \to \infty} E\left[\sup_{0 \leq \theta < T} \left| Q_n^*(p) - Q_n(p) \right|^2 \right] = 0, \] provided $n^{1/2}h_n \to \infty$ as $n \to \infty$.

4. Proofs of Theorems

The following two lemmas will be needed in the proof of Theorem 3.1.

In this section, \{K(s,t): 0 \leq s \leq 1, t \geq 0\} will denote the generalized Kiefer process as stated by Csörgő (1983, Ch. 8).

Lemma 1. For $0 < p < T$, where $T < 1$, and $\delta < \min\{T - p, p\}$, as $n \to \infty$
\[\sup_{|h| < \delta} |n^{-1/2}[K(p+h,n) - K(p,n)]| \to 0 \text{ in probability.} \]

The proof of Lemma 1 follows the same argument as the proof of Theorem 8.2.1 of Csörgő (1983).

Lemma 2. Suppose the derivative f_0' is continuous at ξ^0_p and $f_0'(\xi^0_p) > 0$.
Under assumptions (h.1), (K.1), (K.2), (F.1) and (F.2), for $0 < p < 1$,
\[\left| \int_0^1 [q_n(t) - q_n(p)]h_n^{-1} K(h_n t - p) dt \right| \to 0 \text{ in probability} \]
as $n \to \infty$, where $q_n(t) = n^{1/2} [\hat{Q}_n(t) - Q(t)]$ denotes the product-limit quantile process.

Proof. For any given $\delta > 0$, there exists N such that when $n \geq N$,
\[\left| \int_0^1 \left[q_n(t) - q_n(p) \right] h_n^{-1} K(\frac{t-p}{h_n}) \, dt \right| \]

\[= \left| \int_{A(\delta)} \left[q_n(t) - q_n(p) \right] h_n^{-1} K(\frac{t-p}{h_n}) \, dt \right| \]

\[\leq \sup_{t \in A(\delta)} \left| q_n(t) - q_n(p) \right|, \quad (4.1) \]

where \(A(\delta) = [p-\delta, p+\delta] \). By the conditions on \(f_o \), for \(\delta \) sufficiently small, \(f_o(Q_o(t)) > 0 \) for all \(t \in A(\delta) \). Hence, the right-hand-side of (4.1) is less than or equal to

\[\sup_{t \in A(\delta)} \left| \frac{\delta_n(t) - \xi_n(p)}{f_o(Q_o(t))} \right| \cdot \frac{1}{f_o(Q_o(t))} \]

\[+ \sup_{t \in A(\delta)} \left| \frac{\delta_n(p) - 1}{f_o(Q_o(t))} \right| \cdot \frac{1}{f_o(Q_o(t))} \]

where \(\delta_n(t) = f_o(Q_o(t)) \xi_n(t) \).

Let

\[a = \sup_{t \in A(\delta)} \left| \frac{1}{f_o(Q_o(t))} \right| \quad \text{and} \quad b = \sup_{t \in A(\delta)} \left| \frac{1}{f_o(Q_o(t))} - \frac{1}{f_o(Q_o(p))} \right|. \]

From Corollary 1 of Cheng (1981), since \(f_o \) is continuous at \(\xi_o \), \(\delta_n(p) \rightarrow Z \) in distribution as \(n \rightarrow \infty \), where \(Z \) is a normally distributed random variable with mean zero and variance \(\sigma^2 = (1-p)^2 \int_{A_p} \left[1-F(u) \right]^{-2} \, dF_o^*(u), \) with \(1-F(u) = [1-F_o(u)][1-H(u)] \) and \(F_o^*(u) = P(X_1 < u, \, \Delta_1 = 1) \). Therefore,

\[\sup_{t \in A(\delta)} \left| \frac{\delta_n(p) - 1}{f_o(Q_o(t))} \right| \leq b |\delta_n(p)| \quad (4.2) \]

and for given \(\varepsilon > 0 \)
\[\lim_{n \to \infty} \sup P(\left| \hat{s}_n(p) \right| > \varepsilon/b) \leq P(\left| Z \right| > \varepsilon/b) \leq b \varepsilon^2. \tag{4.3}\]

Now,
\[
\sup_{t \in A(\delta)} \left| \hat{s}_n(t) - \hat{s}_n(p) \right| \frac{1}{f_o(Q^\circ(t))} \leq \sup_{t \in A(\delta)} \left| \hat{s}_n(t) - \hat{s}_n(p) \right|
\]
\[
\leq a \left\{ \sup_{t \in A(\delta)} \left| \hat{s}_n(t) - n^{-1/2} K(t,n) \right| + \sup_{t \in A(\delta)} \left| \hat{s}_n(p) - n^{-1/2} K(p,n) \right| + \sup_{t \in A(\delta)} \left| n^{-1/2} [K(p,n) - K(t,n)] \right| \right\}. \tag{4.4}\]

For small enough \(\delta \), \(p + \delta < T < 1 \) and \(p - \delta > 0 \), so that by Corollary 8.3.3 of Csörgő (1983) as \(n \to \infty \)
\[
\sup_{t \in A(\delta)} \left| \hat{s}_n(t) - n^{-1/2} K(t,n) \right| \to 0 \text{ in probability}
\]
and
\[
\sup_{t \in A(\delta)} \left| \hat{s}_n(p) - n^{-1/2} K(p,n) \right| \to 0 \text{ in probability.}
\]

By Lemma 8.2.1 of Csörgő (1983) (or Berkes and Philipp, 1977) with
\[0 = t_0 < t_1 = n, \text{ letting } B(s) \equiv n^{-1/2} K(s,n), \ 0 \leq s \leq 1,\]
\[
\sup_{t \in A(\delta)} \left| B(p) - B(t) \right| = \sup_{|h| < \delta} \left| B(p+h) - B(p) \right|
\]
which by Lemma 1 converges to zero in probability for sufficiently small \(\delta \).

Therefore, (4.4) converges to zero in probability as \(n \to \infty \).

Finally, since \(b \) depends on \(\delta \), letting \(b \) become arbitrarily small

gives from (4.2) and (4.4) that
sup \(\sup_{t \in A(\delta)} \left| \frac{1}{f'_o(Q(t))} - \frac{1}{f'_o(Q(p))} \right| \to 0 \) in probability.

Thus, the result follows. ///

Proof of Theorem 3.1. Analogous to the beginning of the proof of Theorem 1 of Yang (1985), write

\[
\sqrt{n} \left[Q_n(p) - Q^o(p) \right] = \int_0^1 \left[q_n(t) - q_n(p) \right] n^{-1} K(t - p) dt
\]

\[
+ n^{1/2} \left[\int_0^1 Q^o(t) n^{-1} K(t - p) dt - Q^o(p) \right] + q_n(p),
\]

(4.5)

where \(q_n(t) = n^{1/2} \left[\hat{Q}_n(t) - Q^o(t) \right] \) as in Lemma 2.

From Lemma 2, the first term on the right hand side of (4.5) is \(o_p(1) \), which means that it converges to zero in probability as \(n \to \infty \). Similar to Yang's (1985) equation (10),

\[
\int_0^1 Q^o(t) n^{-1} K(t - p) dt - Q^o(p)
\]

\[
= o_n(1) + \int_0^1 Q^o(p) n^{-1/2} K(t) dt.
\]

(4.6)

With the assumption that \(n^{1/4} h_n \to 0 \) as \(n \to \infty \), (4.6) is also \(o_p(1) \).

Therefore, by Corollary 1 of Cheng (1981), the conclusion of the theorem follows. ///

Proof of Theorem 3.2. For \(0 \leq p \leq T \), write

\[
Q^*_n(p) - Q_n(p) = n^{-1} \sum_{i=1}^n \left[\hat{Z}_i \left(\frac{S_i - p}{h_n} \right) - \int_{S_{i-1}}^{S_i} K(t - p) dt \right].
\]

When \(s_i > 0 \), that is, \(Z_i \) is uncensored, let \(S^*_i \) be an interior point of the interval \((S_{i-1}, S_i) \) with probability one so that
\[
s_i K((S_i^* - p)/h_n) = \int_{S_i - 1}^{S_i} K((t-p)/h_n) dt \text{ almost surely.}
\]

Then by condition (K.3), letting \(I_A \) denote the indicator function of the set \(A \),

\[
|Q_n^*(p) - Q_n(p)| I_{[0,T]}(p) \leq h_n^{-1} \sum_{i=1}^{n} s_i Z_i |K((S_i^* - p)/h_n)|
\]

\[
- K((S_i^* - p)/h_n)|I_{[0,T]}(p) I_{[S_i - ch_n,1]}(p)
\]

\[
\leq h_n^{-2} \sum_{i=1}^{n} Z_i^2 s_i |S_i - S_i^*| I_{[0,T]}(p) I_{[S_i - ch_n,1]}(p)
\]

\[
\leq h_n^{-2} \sum_{i=1}^{n} Z_i^2 s_i I_{[0,T]}(p) I_{[S_i - ch_n,1]}(p) \text{ almost surely.}
\]

So

\[
|Q_n^*(p) - Q_n(p)|^2 I_{[0,T]}(p) \leq h_n^{-4} (\sum_{i=1}^{n} Z_i^2 s_i I_{[0,T]}(p) I_{[S_i - ch_n,1]}(p))^2. \quad (4.7)
\]

Now,

\[
(\sum_{i=1}^{n} Z_i^2 s_i I_{[0,T]}(p) I_{[S_i - ch_n,1]}(p))^2
\]

\[
\leq \sum_{i=1}^{n} Z_i^2 s_i I_{[0,T]}(p) I_{[S_i - ch_n,1]}(p)
\]

\[
\leq \sum_{i=1}^{n} Z_i^2 s_i (|\hat{F}_n(Z_i) - F_o(Z_i)| + |F_o(Z_i^*) - F_n(Z_i)|)^3 I_{[0,T]}(p) I_{[S_i - 2ch_n,1]}(p), \quad (4.8)
\]

where \(g(x^-) \) denotes the limit from the left at \(x \) of the function \(g \).

There is an \(N \) such that for all \(n \geq N \), \(T + ch_n < t^* \) and

\(T_N < F_o(n-\epsilon) \) where \(T_N = T + ch_N \). For all such \(n \)'s
\[\sum \left| \tilde{F}_n(z) - F_o(z) \right|^2 \leq 8 \sum \sup_{0 \leq z \leq \hat{\Omega}_n(T_N)} \left| \tilde{F}_n(x) - F_o(x) \right|^2, \quad (4.9) \]

which is independent of \(p \). Notice also that

\[\sup_{0 \leq z \leq \hat{\Omega}_n(T_N) + \varepsilon} \left| \tilde{F}_n(x) - F_o(x) \right| \leq \sup_{0 \leq z \leq \hat{\Omega}_n(T_N)} \left| \tilde{F}_n(x) - F_o(x) \right| + \mathbb{I}_{\left\{ \hat{\Omega}_n(T_N) > \eta - \varepsilon \right\}}. \]

From the exponential bound in Theorem 2 of Pöldes and Rejtő (1981), for any \(r \geq 1 \), \(\{n^{1/2} \sup_{0 \leq z \leq \hat{\Omega}_n(T_N)} \left| \tilde{F}_n(x) - F_o(x) \right| \}^r \), \(n \geq 1 \) is uniformly integrable. Also,

\[E(n^{3/2} \mathbb{I}_{\left\{ \hat{\Omega}_n(T_N) > \eta - \varepsilon \right\}})^r \]

\[= \frac{n^{3r/2}}{2} \mathbb{P}[\hat{\Omega}_n(T_N) > \eta - \varepsilon] \]

\[= \frac{n^{3r/2}}{2} \mathbb{P}[\hat{\Omega}_n(T_N) - F^{-1}_o(T_N) > \eta - F^{-1}_o(T_N) - \varepsilon]. \]

Letting \(\gamma = \eta - F^{-1}_o(T_N) - \varepsilon \), where \(\varepsilon \) is chosen so that \(\gamma > 0 \),

\[\mathbb{P}[\hat{\Omega}_n(T_N) - F^{-1}_o(T_N) > \gamma] \]

\[\leq \mathbb{P}[T_N > \tilde{\Omega}_n(\eta - \varepsilon)] \]

\[= \mathbb{P}[T_N - F_o(\eta - \varepsilon) > \tilde{\Omega}_n(\eta - \varepsilon) - F_o(\eta - \varepsilon)] \]

\[\leq \mathbb{P}[|\tilde{F}_n(\eta - \varepsilon) - F_o(\eta - \varepsilon)| > F_o(\eta - \varepsilon) - T_n]. \]
By the same exponential bound as in Theorem 2 of Földes and Rejtő (1981), as \(n \to \infty \)

\[
E(n^{3/2} \mathbb{I}_{[\hat{Q}_n(T_N) > n^{-\varepsilon}]}) \to 0.
\]

Therefore, \(\{(n^{1/2} \sup_{0 \leq x \leq \hat{Q}_n(T_N) + \varepsilon} |\hat{F}_n(x) - F_0(x)|^3, \ n \geq 1\} \) is uniformly integrable.

By hypothesis, \(E(X_1^{2q}) < \infty \) for some \(q > 1 \), so \(\{(n^{-1/2} \sum_1^n Z_i^2)^q, \ n \geq 1\} \) is uniformly integrable. Thus, for \(\frac{1}{s} + \frac{1}{q} = 1 \),

\[
E(n^{3/2} \sup_{0 \leq x \leq \hat{Q}_n(T_N) + \varepsilon} |\hat{F}_n(x) - F_0(x)|^3 n^{-1/2} \sum_1^n Z_i^2)^q, \ n \geq 1\}
\]

\[
\leq (E(n^{3/2} \sup_{0 \leq x \leq \hat{Q}_n(T_N) + \varepsilon} |\hat{F}_n(x) - F_0(x)|^3)^{1/s})^{1/q} \ E((n^{-1/2} \sum_1^n Z_i^2)^q)^{1/q}
\]

\[
= o(1).
\]

Therefore, from (4.7) - (4.10), by the hypothesis \(n^{1/2} \to \infty \),

\[
E[\sup_{0 \leq p \leq T} |Q^*_n(p) - Q_n(p)|^2] = o(1),
\]

completing the proof. ///
References

Title: On the Asymptotic Properties of a Kernel Type Quantile Estimator from Censored Samples

Abstract: Some asymptotic results for a kernel type estimator of the quantile function from right-censored data are obtained. The estimator is defined by

\[Q_n(p) = h_n^{-1} \int_0^\infty t \hat{F}_n(t) dt / \int_0^\infty \hat{F}_n(t) dt, \]

where \(\hat{F}_n(t) \) denotes the product-limit estimator of the lifetime distribution \(F_0 \). Under the random censorship model and general conditions on \(h_n \), \(K \), and \(F_0 \), the asymptotic normality of \(Q_n(p) \) is proven. In addition, as approximation to \(Q_n \) is shown to be asymptotically uniformly equivalent to \(Q_n \) in mean square.